rt2500pci.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2500pci_read_csr,
  174. .write = rt2500pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2500pci_bbp_read,
  186. .write = rt2500pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2500pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2500PCI_RFKILL
  199. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2500pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2500PCI_RFKILL */
  208. #ifdef CONFIG_RT2500PCI_LEDS
  209. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. u32 reg;
  216. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  217. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  218. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  219. else if (led->type == LED_TYPE_ACTIVITY)
  220. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  221. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  222. }
  223. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  224. unsigned long *delay_on,
  225. unsigned long *delay_off)
  226. {
  227. struct rt2x00_led *led =
  228. container_of(led_cdev, struct rt2x00_led, led_dev);
  229. u32 reg;
  230. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  231. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  232. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  233. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  234. return 0;
  235. }
  236. #endif /* CONFIG_RT2500PCI_LEDS */
  237. /*
  238. * Configuration handlers.
  239. */
  240. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  241. const unsigned int filter_flags)
  242. {
  243. u32 reg;
  244. /*
  245. * Start configuration steps.
  246. * Note that the version error will always be dropped
  247. * and broadcast frames will always be accepted since
  248. * there is no filter for it at this time.
  249. */
  250. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  251. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  252. !(filter_flags & FIF_FCSFAIL));
  253. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  254. !(filter_flags & FIF_PLCPFAIL));
  255. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  256. !(filter_flags & FIF_CONTROL));
  257. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  258. !(filter_flags & FIF_PROMISC_IN_BSS));
  259. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  260. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  261. !rt2x00dev->intf_ap_count);
  262. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  263. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  264. !(filter_flags & FIF_ALLMULTI));
  265. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  266. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  267. }
  268. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  269. struct rt2x00_intf *intf,
  270. struct rt2x00intf_conf *conf,
  271. const unsigned int flags)
  272. {
  273. struct data_queue *queue =
  274. rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
  275. unsigned int bcn_preload;
  276. u32 reg;
  277. if (flags & CONFIG_UPDATE_TYPE) {
  278. /*
  279. * Enable beacon config
  280. */
  281. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  282. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  283. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  284. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  285. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  286. /*
  287. * Enable synchronisation.
  288. */
  289. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  290. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  291. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  292. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  293. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  294. }
  295. if (flags & CONFIG_UPDATE_MAC)
  296. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  297. conf->mac, sizeof(conf->mac));
  298. if (flags & CONFIG_UPDATE_BSSID)
  299. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  300. conf->bssid, sizeof(conf->bssid));
  301. }
  302. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  303. struct rt2x00lib_erp *erp)
  304. {
  305. int preamble_mask;
  306. u32 reg;
  307. /*
  308. * When short preamble is enabled, we should set bit 0x08
  309. */
  310. preamble_mask = erp->short_preamble << 3;
  311. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  312. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  313. erp->ack_timeout);
  314. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  315. erp->ack_consume_time);
  316. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  317. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  318. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  319. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  320. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  321. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  322. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  323. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  324. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  325. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  326. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  327. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  328. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  329. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  330. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  331. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  332. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  333. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  334. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  335. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  336. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  337. }
  338. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  339. const int basic_rate_mask)
  340. {
  341. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  342. }
  343. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  344. struct rf_channel *rf, const int txpower)
  345. {
  346. u8 r70;
  347. /*
  348. * Set TXpower.
  349. */
  350. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  351. /*
  352. * Switch on tuning bits.
  353. * For RT2523 devices we do not need to update the R1 register.
  354. */
  355. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  356. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  357. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  358. /*
  359. * For RT2525 we should first set the channel to half band higher.
  360. */
  361. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  362. static const u32 vals[] = {
  363. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  364. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  365. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  366. 0x00080d2e, 0x00080d3a
  367. };
  368. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  369. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  370. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  371. if (rf->rf4)
  372. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  373. }
  374. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  375. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  376. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  377. if (rf->rf4)
  378. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  379. /*
  380. * Channel 14 requires the Japan filter bit to be set.
  381. */
  382. r70 = 0x46;
  383. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  384. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  385. msleep(1);
  386. /*
  387. * Switch off tuning bits.
  388. * For RT2523 devices we do not need to update the R1 register.
  389. */
  390. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  391. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  392. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  393. }
  394. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  395. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  396. /*
  397. * Clear false CRC during channel switch.
  398. */
  399. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  400. }
  401. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  402. const int txpower)
  403. {
  404. u32 rf3;
  405. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  406. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  407. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  408. }
  409. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  410. struct antenna_setup *ant)
  411. {
  412. u32 reg;
  413. u8 r14;
  414. u8 r2;
  415. /*
  416. * We should never come here because rt2x00lib is supposed
  417. * to catch this and send us the correct antenna explicitely.
  418. */
  419. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  420. ant->tx == ANTENNA_SW_DIVERSITY);
  421. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  422. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  423. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  424. /*
  425. * Configure the TX antenna.
  426. */
  427. switch (ant->tx) {
  428. case ANTENNA_A:
  429. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  430. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  431. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  432. break;
  433. case ANTENNA_B:
  434. default:
  435. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  436. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  437. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  438. break;
  439. }
  440. /*
  441. * Configure the RX antenna.
  442. */
  443. switch (ant->rx) {
  444. case ANTENNA_A:
  445. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  446. break;
  447. case ANTENNA_B:
  448. default:
  449. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  450. break;
  451. }
  452. /*
  453. * RT2525E and RT5222 need to flip TX I/Q
  454. */
  455. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  456. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  457. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  458. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  459. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  460. /*
  461. * RT2525E does not need RX I/Q Flip.
  462. */
  463. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  464. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  465. } else {
  466. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  467. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  468. }
  469. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  470. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  471. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  472. }
  473. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  474. struct rt2x00lib_conf *libconf)
  475. {
  476. u32 reg;
  477. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  478. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  479. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  480. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  481. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  482. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  483. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  484. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  485. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  486. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  487. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  488. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  489. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  490. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  491. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  492. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  493. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  494. libconf->conf->beacon_int * 16);
  495. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  496. libconf->conf->beacon_int * 16);
  497. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  498. }
  499. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  500. struct rt2x00lib_conf *libconf,
  501. const unsigned int flags)
  502. {
  503. if (flags & CONFIG_UPDATE_PHYMODE)
  504. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  505. if (flags & CONFIG_UPDATE_CHANNEL)
  506. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  507. libconf->conf->power_level);
  508. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  509. rt2500pci_config_txpower(rt2x00dev,
  510. libconf->conf->power_level);
  511. if (flags & CONFIG_UPDATE_ANTENNA)
  512. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  513. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  514. rt2500pci_config_duration(rt2x00dev, libconf);
  515. }
  516. /*
  517. * Link tuning
  518. */
  519. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  520. struct link_qual *qual)
  521. {
  522. u32 reg;
  523. /*
  524. * Update FCS error count from register.
  525. */
  526. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  527. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  528. /*
  529. * Update False CCA count from register.
  530. */
  531. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  532. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  533. }
  534. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  535. {
  536. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  537. rt2x00dev->link.vgc_level = 0x48;
  538. }
  539. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  540. {
  541. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  542. u8 r17;
  543. /*
  544. * To prevent collisions with MAC ASIC on chipsets
  545. * up to version C the link tuning should halt after 20
  546. * seconds while being associated.
  547. */
  548. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  549. rt2x00dev->intf_associated &&
  550. rt2x00dev->link.count > 20)
  551. return;
  552. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  553. /*
  554. * Chipset versions C and lower should directly continue
  555. * to the dynamic CCA tuning. Chipset version D and higher
  556. * should go straight to dynamic CCA tuning when they
  557. * are not associated.
  558. */
  559. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  560. !rt2x00dev->intf_associated)
  561. goto dynamic_cca_tune;
  562. /*
  563. * A too low RSSI will cause too much false CCA which will
  564. * then corrupt the R17 tuning. To remidy this the tuning should
  565. * be stopped (While making sure the R17 value will not exceed limits)
  566. */
  567. if (rssi < -80 && rt2x00dev->link.count > 20) {
  568. if (r17 >= 0x41) {
  569. r17 = rt2x00dev->link.vgc_level;
  570. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  571. }
  572. return;
  573. }
  574. /*
  575. * Special big-R17 for short distance
  576. */
  577. if (rssi >= -58) {
  578. if (r17 != 0x50)
  579. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  580. return;
  581. }
  582. /*
  583. * Special mid-R17 for middle distance
  584. */
  585. if (rssi >= -74) {
  586. if (r17 != 0x41)
  587. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  588. return;
  589. }
  590. /*
  591. * Leave short or middle distance condition, restore r17
  592. * to the dynamic tuning range.
  593. */
  594. if (r17 >= 0x41) {
  595. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  596. return;
  597. }
  598. dynamic_cca_tune:
  599. /*
  600. * R17 is inside the dynamic tuning range,
  601. * start tuning the link based on the false cca counter.
  602. */
  603. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  604. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  605. rt2x00dev->link.vgc_level = r17;
  606. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  607. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  608. rt2x00dev->link.vgc_level = r17;
  609. }
  610. }
  611. /*
  612. * Initialization functions.
  613. */
  614. static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  615. struct queue_entry *entry)
  616. {
  617. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  618. u32 word;
  619. rt2x00_desc_read(priv_rx->desc, 1, &word);
  620. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
  621. rt2x00_desc_write(priv_rx->desc, 1, word);
  622. rt2x00_desc_read(priv_rx->desc, 0, &word);
  623. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  624. rt2x00_desc_write(priv_rx->desc, 0, word);
  625. }
  626. static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  627. struct queue_entry *entry)
  628. {
  629. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  630. u32 word;
  631. rt2x00_desc_read(priv_tx->desc, 1, &word);
  632. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
  633. rt2x00_desc_write(priv_tx->desc, 1, word);
  634. rt2x00_desc_read(priv_tx->desc, 0, &word);
  635. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  636. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  637. rt2x00_desc_write(priv_tx->desc, 0, word);
  638. }
  639. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  640. {
  641. struct queue_entry_priv_pci_rx *priv_rx;
  642. struct queue_entry_priv_pci_tx *priv_tx;
  643. u32 reg;
  644. /*
  645. * Initialize registers.
  646. */
  647. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  648. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  649. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  651. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  652. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  653. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  654. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  655. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  656. priv_tx->desc_dma);
  657. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  658. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  659. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  660. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  661. priv_tx->desc_dma);
  662. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  663. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  664. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  665. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  666. priv_tx->desc_dma);
  667. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  668. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  669. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  670. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  671. priv_tx->desc_dma);
  672. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  673. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  674. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  675. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  676. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  677. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  678. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  679. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
  680. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  681. return 0;
  682. }
  683. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  684. {
  685. u32 reg;
  686. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  687. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  688. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  689. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  690. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  691. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  692. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  693. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  694. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  695. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  696. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  697. rt2x00dev->rx->data_size / 128);
  698. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  699. /*
  700. * Always use CWmin and CWmax set in descriptor.
  701. */
  702. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  703. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  704. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  705. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  706. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  707. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  708. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  709. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  710. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  711. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  712. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  713. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  714. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  715. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  716. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  717. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  718. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  719. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  720. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  721. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  722. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  723. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  724. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  725. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  726. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  727. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  728. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  729. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  730. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  731. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  732. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  733. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  734. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  740. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  741. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  742. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  743. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  744. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  745. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  746. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  747. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  748. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  749. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  750. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  751. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  752. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  753. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  754. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  755. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  756. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  757. return -EBUSY;
  758. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  759. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  760. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  761. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  762. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  763. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  764. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  765. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  766. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  767. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  768. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  769. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  770. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  771. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  772. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  773. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  774. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  775. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  776. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  777. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  778. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  779. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  780. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  781. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  782. /*
  783. * We must clear the FCS and FIFO error count.
  784. * These registers are cleared on read,
  785. * so we may pass a useless variable to store the value.
  786. */
  787. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  788. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  789. return 0;
  790. }
  791. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  792. {
  793. unsigned int i;
  794. u16 eeprom;
  795. u8 reg_id;
  796. u8 value;
  797. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  798. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  799. if ((value != 0xff) && (value != 0x00))
  800. goto continue_csr_init;
  801. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  802. udelay(REGISTER_BUSY_DELAY);
  803. }
  804. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  805. return -EACCES;
  806. continue_csr_init:
  807. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  808. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  809. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  810. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  811. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  812. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  813. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  814. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  815. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  816. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  817. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  818. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  819. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  820. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  821. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  822. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  823. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  824. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  825. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  826. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  827. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  828. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  829. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  830. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  831. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  832. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  833. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  834. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  835. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  836. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  837. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  838. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  839. if (eeprom != 0xffff && eeprom != 0x0000) {
  840. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  841. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  842. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  843. }
  844. }
  845. return 0;
  846. }
  847. /*
  848. * Device state switch handlers.
  849. */
  850. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  851. enum dev_state state)
  852. {
  853. u32 reg;
  854. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  855. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  856. state == STATE_RADIO_RX_OFF);
  857. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  858. }
  859. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  860. enum dev_state state)
  861. {
  862. int mask = (state == STATE_RADIO_IRQ_OFF);
  863. u32 reg;
  864. /*
  865. * When interrupts are being enabled, the interrupt registers
  866. * should clear the register to assure a clean state.
  867. */
  868. if (state == STATE_RADIO_IRQ_ON) {
  869. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  870. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  871. }
  872. /*
  873. * Only toggle the interrupts bits we are going to use.
  874. * Non-checked interrupt bits are disabled by default.
  875. */
  876. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  877. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  878. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  879. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  880. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  881. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  882. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  883. }
  884. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  885. {
  886. /*
  887. * Initialize all registers.
  888. */
  889. if (rt2500pci_init_queues(rt2x00dev) ||
  890. rt2500pci_init_registers(rt2x00dev) ||
  891. rt2500pci_init_bbp(rt2x00dev)) {
  892. ERROR(rt2x00dev, "Register initialization failed.\n");
  893. return -EIO;
  894. }
  895. /*
  896. * Enable interrupts.
  897. */
  898. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  899. return 0;
  900. }
  901. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  902. {
  903. u32 reg;
  904. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  905. /*
  906. * Disable synchronisation.
  907. */
  908. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  909. /*
  910. * Cancel RX and TX.
  911. */
  912. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  913. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  914. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  915. /*
  916. * Disable interrupts.
  917. */
  918. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  919. }
  920. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  921. enum dev_state state)
  922. {
  923. u32 reg;
  924. unsigned int i;
  925. char put_to_sleep;
  926. char bbp_state;
  927. char rf_state;
  928. put_to_sleep = (state != STATE_AWAKE);
  929. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  930. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  931. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  932. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  933. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  934. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  935. /*
  936. * Device is not guaranteed to be in the requested state yet.
  937. * We must wait until the register indicates that the
  938. * device has entered the correct state.
  939. */
  940. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  941. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  942. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  943. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  944. if (bbp_state == state && rf_state == state)
  945. return 0;
  946. msleep(10);
  947. }
  948. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  949. "current device state: bbp %d and rf %d.\n",
  950. state, bbp_state, rf_state);
  951. return -EBUSY;
  952. }
  953. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  954. enum dev_state state)
  955. {
  956. int retval = 0;
  957. switch (state) {
  958. case STATE_RADIO_ON:
  959. retval = rt2500pci_enable_radio(rt2x00dev);
  960. break;
  961. case STATE_RADIO_OFF:
  962. rt2500pci_disable_radio(rt2x00dev);
  963. break;
  964. case STATE_RADIO_RX_ON:
  965. case STATE_RADIO_RX_ON_LINK:
  966. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  967. break;
  968. case STATE_RADIO_RX_OFF:
  969. case STATE_RADIO_RX_OFF_LINK:
  970. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  971. break;
  972. case STATE_DEEP_SLEEP:
  973. case STATE_SLEEP:
  974. case STATE_STANDBY:
  975. case STATE_AWAKE:
  976. retval = rt2500pci_set_state(rt2x00dev, state);
  977. break;
  978. default:
  979. retval = -ENOTSUPP;
  980. break;
  981. }
  982. return retval;
  983. }
  984. /*
  985. * TX descriptor initialization
  986. */
  987. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  988. struct sk_buff *skb,
  989. struct txentry_desc *txdesc,
  990. struct ieee80211_tx_control *control)
  991. {
  992. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  993. __le32 *txd = skbdesc->desc;
  994. u32 word;
  995. /*
  996. * Start writing the descriptor words.
  997. */
  998. rt2x00_desc_read(txd, 2, &word);
  999. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1000. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1001. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1002. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1003. rt2x00_desc_write(txd, 2, word);
  1004. rt2x00_desc_read(txd, 3, &word);
  1005. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1006. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1007. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1008. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1009. rt2x00_desc_write(txd, 3, word);
  1010. rt2x00_desc_read(txd, 10, &word);
  1011. rt2x00_set_field32(&word, TXD_W10_RTS,
  1012. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1013. rt2x00_desc_write(txd, 10, word);
  1014. rt2x00_desc_read(txd, 0, &word);
  1015. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1016. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1017. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1018. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1019. rt2x00_set_field32(&word, TXD_W0_ACK,
  1020. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1021. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1022. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1023. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1024. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1025. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1026. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1027. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1028. !!(control->flags &
  1029. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1030. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1031. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1032. rt2x00_desc_write(txd, 0, word);
  1033. }
  1034. /*
  1035. * TX data initialization
  1036. */
  1037. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1038. const unsigned int queue)
  1039. {
  1040. u32 reg;
  1041. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  1042. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1043. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1044. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1045. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1046. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1047. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1048. }
  1049. return;
  1050. }
  1051. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1052. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  1053. (queue == IEEE80211_TX_QUEUE_DATA0));
  1054. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  1055. (queue == IEEE80211_TX_QUEUE_DATA1));
  1056. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  1057. (queue == RT2X00_BCN_QUEUE_ATIM));
  1058. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1059. }
  1060. /*
  1061. * RX control handlers
  1062. */
  1063. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1064. struct rxdone_entry_desc *rxdesc)
  1065. {
  1066. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1067. u32 word0;
  1068. u32 word2;
  1069. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1070. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  1071. rxdesc->flags = 0;
  1072. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1073. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1074. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1075. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1076. /*
  1077. * Obtain the status about this packet.
  1078. * When frame was received with an OFDM bitrate,
  1079. * the signal is the PLCP value. If it was received with
  1080. * a CCK bitrate the signal is the rate in 100kbit/s.
  1081. */
  1082. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1083. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1084. entry->queue->rt2x00dev->rssi_offset;
  1085. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1086. rxdesc->dev_flags = 0;
  1087. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1088. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1089. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1090. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1091. }
  1092. /*
  1093. * Interrupt functions.
  1094. */
  1095. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1096. const enum ieee80211_tx_queue queue_idx)
  1097. {
  1098. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1099. struct queue_entry_priv_pci_tx *priv_tx;
  1100. struct queue_entry *entry;
  1101. struct txdone_entry_desc txdesc;
  1102. u32 word;
  1103. while (!rt2x00queue_empty(queue)) {
  1104. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1105. priv_tx = entry->priv_data;
  1106. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1107. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1108. !rt2x00_get_field32(word, TXD_W0_VALID))
  1109. break;
  1110. /*
  1111. * Obtain the status about this packet.
  1112. */
  1113. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1114. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1115. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1116. }
  1117. }
  1118. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1119. {
  1120. struct rt2x00_dev *rt2x00dev = dev_instance;
  1121. u32 reg;
  1122. /*
  1123. * Get the interrupt sources & saved to local variable.
  1124. * Write register value back to clear pending interrupts.
  1125. */
  1126. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1127. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1128. if (!reg)
  1129. return IRQ_NONE;
  1130. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1131. return IRQ_HANDLED;
  1132. /*
  1133. * Handle interrupts, walk through all bits
  1134. * and run the tasks, the bits are checked in order of
  1135. * priority.
  1136. */
  1137. /*
  1138. * 1 - Beacon timer expired interrupt.
  1139. */
  1140. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1141. rt2x00lib_beacondone(rt2x00dev);
  1142. /*
  1143. * 2 - Rx ring done interrupt.
  1144. */
  1145. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1146. rt2x00pci_rxdone(rt2x00dev);
  1147. /*
  1148. * 3 - Atim ring transmit done interrupt.
  1149. */
  1150. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1151. rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
  1152. /*
  1153. * 4 - Priority ring transmit done interrupt.
  1154. */
  1155. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1156. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1157. /*
  1158. * 5 - Tx ring transmit done interrupt.
  1159. */
  1160. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1161. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1162. return IRQ_HANDLED;
  1163. }
  1164. /*
  1165. * Device probe functions.
  1166. */
  1167. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1168. {
  1169. struct eeprom_93cx6 eeprom;
  1170. u32 reg;
  1171. u16 word;
  1172. u8 *mac;
  1173. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1174. eeprom.data = rt2x00dev;
  1175. eeprom.register_read = rt2500pci_eepromregister_read;
  1176. eeprom.register_write = rt2500pci_eepromregister_write;
  1177. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1178. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1179. eeprom.reg_data_in = 0;
  1180. eeprom.reg_data_out = 0;
  1181. eeprom.reg_data_clock = 0;
  1182. eeprom.reg_chip_select = 0;
  1183. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1184. EEPROM_SIZE / sizeof(u16));
  1185. /*
  1186. * Start validation of the data that has been read.
  1187. */
  1188. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1189. if (!is_valid_ether_addr(mac)) {
  1190. DECLARE_MAC_BUF(macbuf);
  1191. random_ether_addr(mac);
  1192. EEPROM(rt2x00dev, "MAC: %s\n",
  1193. print_mac(macbuf, mac));
  1194. }
  1195. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1196. if (word == 0xffff) {
  1197. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1198. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1199. ANTENNA_SW_DIVERSITY);
  1200. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1201. ANTENNA_SW_DIVERSITY);
  1202. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1203. LED_MODE_DEFAULT);
  1204. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1205. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1206. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1207. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1208. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1209. }
  1210. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1211. if (word == 0xffff) {
  1212. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1213. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1214. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1215. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1216. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1217. }
  1218. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1219. if (word == 0xffff) {
  1220. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1221. DEFAULT_RSSI_OFFSET);
  1222. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1223. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1224. }
  1225. return 0;
  1226. }
  1227. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1228. {
  1229. u32 reg;
  1230. u16 value;
  1231. u16 eeprom;
  1232. /*
  1233. * Read EEPROM word for configuration.
  1234. */
  1235. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1236. /*
  1237. * Identify RF chipset.
  1238. */
  1239. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1240. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1241. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1242. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1243. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1244. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1245. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1246. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1247. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1248. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1249. return -ENODEV;
  1250. }
  1251. /*
  1252. * Identify default antenna configuration.
  1253. */
  1254. rt2x00dev->default_ant.tx =
  1255. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1256. rt2x00dev->default_ant.rx =
  1257. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1258. /*
  1259. * Store led mode, for correct led behaviour.
  1260. */
  1261. #ifdef CONFIG_RT2500PCI_LEDS
  1262. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1263. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1264. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1265. rt2x00dev->led_radio.led_dev.brightness_set =
  1266. rt2500pci_brightness_set;
  1267. rt2x00dev->led_radio.led_dev.blink_set =
  1268. rt2500pci_blink_set;
  1269. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1270. if (value == LED_MODE_TXRX_ACTIVITY) {
  1271. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1272. rt2x00dev->led_radio.type = LED_TYPE_ACTIVITY;
  1273. rt2x00dev->led_qual.led_dev.brightness_set =
  1274. rt2500pci_brightness_set;
  1275. rt2x00dev->led_qual.led_dev.blink_set =
  1276. rt2500pci_blink_set;
  1277. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1278. }
  1279. #endif /* CONFIG_RT2500PCI_LEDS */
  1280. /*
  1281. * Detect if this device has an hardware controlled radio.
  1282. */
  1283. #ifdef CONFIG_RT2500PCI_RFKILL
  1284. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1285. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1286. #endif /* CONFIG_RT2500PCI_RFKILL */
  1287. /*
  1288. * Check if the BBP tuning should be enabled.
  1289. */
  1290. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1291. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1292. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1293. /*
  1294. * Read the RSSI <-> dBm offset information.
  1295. */
  1296. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1297. rt2x00dev->rssi_offset =
  1298. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1299. return 0;
  1300. }
  1301. /*
  1302. * RF value list for RF2522
  1303. * Supports: 2.4 GHz
  1304. */
  1305. static const struct rf_channel rf_vals_bg_2522[] = {
  1306. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1307. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1308. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1309. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1310. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1311. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1312. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1313. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1314. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1315. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1316. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1317. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1318. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1319. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1320. };
  1321. /*
  1322. * RF value list for RF2523
  1323. * Supports: 2.4 GHz
  1324. */
  1325. static const struct rf_channel rf_vals_bg_2523[] = {
  1326. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1327. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1328. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1329. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1330. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1331. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1332. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1333. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1334. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1335. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1336. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1337. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1338. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1339. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1340. };
  1341. /*
  1342. * RF value list for RF2524
  1343. * Supports: 2.4 GHz
  1344. */
  1345. static const struct rf_channel rf_vals_bg_2524[] = {
  1346. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1347. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1348. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1349. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1350. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1351. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1352. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1353. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1354. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1355. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1356. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1357. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1358. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1359. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1360. };
  1361. /*
  1362. * RF value list for RF2525
  1363. * Supports: 2.4 GHz
  1364. */
  1365. static const struct rf_channel rf_vals_bg_2525[] = {
  1366. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1367. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1368. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1369. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1370. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1371. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1372. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1373. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1374. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1375. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1376. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1377. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1378. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1379. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1380. };
  1381. /*
  1382. * RF value list for RF2525e
  1383. * Supports: 2.4 GHz
  1384. */
  1385. static const struct rf_channel rf_vals_bg_2525e[] = {
  1386. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1387. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1388. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1389. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1390. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1391. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1392. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1393. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1394. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1395. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1396. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1397. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1398. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1399. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1400. };
  1401. /*
  1402. * RF value list for RF5222
  1403. * Supports: 2.4 GHz & 5.2 GHz
  1404. */
  1405. static const struct rf_channel rf_vals_5222[] = {
  1406. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1407. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1408. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1409. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1410. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1411. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1412. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1413. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1414. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1415. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1416. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1417. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1418. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1419. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1420. /* 802.11 UNI / HyperLan 2 */
  1421. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1422. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1423. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1424. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1425. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1426. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1427. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1428. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1429. /* 802.11 HyperLan 2 */
  1430. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1431. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1432. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1433. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1434. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1435. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1436. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1437. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1438. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1439. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1440. /* 802.11 UNII */
  1441. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1442. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1443. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1444. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1445. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1446. };
  1447. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1448. {
  1449. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1450. u8 *txpower;
  1451. unsigned int i;
  1452. /*
  1453. * Initialize all hw fields.
  1454. */
  1455. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1456. rt2x00dev->hw->extra_tx_headroom = 0;
  1457. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1458. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1459. rt2x00dev->hw->queues = 2;
  1460. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1461. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1462. rt2x00_eeprom_addr(rt2x00dev,
  1463. EEPROM_MAC_ADDR_0));
  1464. /*
  1465. * Convert tx_power array in eeprom.
  1466. */
  1467. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1468. for (i = 0; i < 14; i++)
  1469. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1470. /*
  1471. * Initialize hw_mode information.
  1472. */
  1473. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1474. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1475. spec->tx_power_a = NULL;
  1476. spec->tx_power_bg = txpower;
  1477. spec->tx_power_default = DEFAULT_TXPOWER;
  1478. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1479. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1480. spec->channels = rf_vals_bg_2522;
  1481. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1482. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1483. spec->channels = rf_vals_bg_2523;
  1484. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1485. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1486. spec->channels = rf_vals_bg_2524;
  1487. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1488. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1489. spec->channels = rf_vals_bg_2525;
  1490. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1491. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1492. spec->channels = rf_vals_bg_2525e;
  1493. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1494. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1495. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1496. spec->channels = rf_vals_5222;
  1497. }
  1498. }
  1499. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1500. {
  1501. int retval;
  1502. /*
  1503. * Allocate eeprom data.
  1504. */
  1505. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1506. if (retval)
  1507. return retval;
  1508. retval = rt2500pci_init_eeprom(rt2x00dev);
  1509. if (retval)
  1510. return retval;
  1511. /*
  1512. * Initialize hw specifications.
  1513. */
  1514. rt2500pci_probe_hw_mode(rt2x00dev);
  1515. /*
  1516. * This device requires the atim queue
  1517. */
  1518. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1519. /*
  1520. * Set the rssi offset.
  1521. */
  1522. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1523. return 0;
  1524. }
  1525. /*
  1526. * IEEE80211 stack callback functions.
  1527. */
  1528. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1529. u32 short_retry, u32 long_retry)
  1530. {
  1531. struct rt2x00_dev *rt2x00dev = hw->priv;
  1532. u32 reg;
  1533. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1534. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1535. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1536. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1537. return 0;
  1538. }
  1539. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1540. {
  1541. struct rt2x00_dev *rt2x00dev = hw->priv;
  1542. u64 tsf;
  1543. u32 reg;
  1544. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1545. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1546. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1547. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1548. return tsf;
  1549. }
  1550. static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1551. struct ieee80211_tx_control *control)
  1552. {
  1553. struct rt2x00_dev *rt2x00dev = hw->priv;
  1554. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1555. struct queue_entry_priv_pci_tx *priv_tx;
  1556. struct skb_frame_desc *skbdesc;
  1557. u32 reg;
  1558. if (unlikely(!intf->beacon))
  1559. return -ENOBUFS;
  1560. priv_tx = intf->beacon->priv_data;
  1561. /*
  1562. * Fill in skb descriptor
  1563. */
  1564. skbdesc = get_skb_frame_desc(skb);
  1565. memset(skbdesc, 0, sizeof(*skbdesc));
  1566. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1567. skbdesc->data = skb->data;
  1568. skbdesc->data_len = skb->len;
  1569. skbdesc->desc = priv_tx->desc;
  1570. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1571. skbdesc->entry = intf->beacon;
  1572. /*
  1573. * Disable beaconing while we are reloading the beacon data,
  1574. * otherwise we might be sending out invalid data.
  1575. */
  1576. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1577. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1578. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1579. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1580. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1581. /*
  1582. * mac80211 doesn't provide the control->queue variable
  1583. * for beacons. Set our own queue identification so
  1584. * it can be used during descriptor initialization.
  1585. */
  1586. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1587. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1588. /*
  1589. * Enable beacon generation.
  1590. * Write entire beacon with descriptor to register,
  1591. * and kick the beacon generator.
  1592. */
  1593. memcpy(priv_tx->data, skb->data, skb->len);
  1594. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
  1595. return 0;
  1596. }
  1597. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1598. {
  1599. struct rt2x00_dev *rt2x00dev = hw->priv;
  1600. u32 reg;
  1601. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1602. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1603. }
  1604. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1605. .tx = rt2x00mac_tx,
  1606. .start = rt2x00mac_start,
  1607. .stop = rt2x00mac_stop,
  1608. .add_interface = rt2x00mac_add_interface,
  1609. .remove_interface = rt2x00mac_remove_interface,
  1610. .config = rt2x00mac_config,
  1611. .config_interface = rt2x00mac_config_interface,
  1612. .configure_filter = rt2x00mac_configure_filter,
  1613. .get_stats = rt2x00mac_get_stats,
  1614. .set_retry_limit = rt2500pci_set_retry_limit,
  1615. .bss_info_changed = rt2x00mac_bss_info_changed,
  1616. .conf_tx = rt2x00mac_conf_tx,
  1617. .get_tx_stats = rt2x00mac_get_tx_stats,
  1618. .get_tsf = rt2500pci_get_tsf,
  1619. .beacon_update = rt2500pci_beacon_update,
  1620. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1621. };
  1622. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1623. .irq_handler = rt2500pci_interrupt,
  1624. .probe_hw = rt2500pci_probe_hw,
  1625. .initialize = rt2x00pci_initialize,
  1626. .uninitialize = rt2x00pci_uninitialize,
  1627. .init_rxentry = rt2500pci_init_rxentry,
  1628. .init_txentry = rt2500pci_init_txentry,
  1629. .set_device_state = rt2500pci_set_device_state,
  1630. .rfkill_poll = rt2500pci_rfkill_poll,
  1631. .link_stats = rt2500pci_link_stats,
  1632. .reset_tuner = rt2500pci_reset_tuner,
  1633. .link_tuner = rt2500pci_link_tuner,
  1634. .write_tx_desc = rt2500pci_write_tx_desc,
  1635. .write_tx_data = rt2x00pci_write_tx_data,
  1636. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1637. .fill_rxdone = rt2500pci_fill_rxdone,
  1638. .config_filter = rt2500pci_config_filter,
  1639. .config_intf = rt2500pci_config_intf,
  1640. .config_erp = rt2500pci_config_erp,
  1641. .config = rt2500pci_config,
  1642. };
  1643. static const struct data_queue_desc rt2500pci_queue_rx = {
  1644. .entry_num = RX_ENTRIES,
  1645. .data_size = DATA_FRAME_SIZE,
  1646. .desc_size = RXD_DESC_SIZE,
  1647. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1648. };
  1649. static const struct data_queue_desc rt2500pci_queue_tx = {
  1650. .entry_num = TX_ENTRIES,
  1651. .data_size = DATA_FRAME_SIZE,
  1652. .desc_size = TXD_DESC_SIZE,
  1653. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1654. };
  1655. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1656. .entry_num = BEACON_ENTRIES,
  1657. .data_size = MGMT_FRAME_SIZE,
  1658. .desc_size = TXD_DESC_SIZE,
  1659. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1660. };
  1661. static const struct data_queue_desc rt2500pci_queue_atim = {
  1662. .entry_num = ATIM_ENTRIES,
  1663. .data_size = DATA_FRAME_SIZE,
  1664. .desc_size = TXD_DESC_SIZE,
  1665. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1666. };
  1667. static const struct rt2x00_ops rt2500pci_ops = {
  1668. .name = KBUILD_MODNAME,
  1669. .max_sta_intf = 1,
  1670. .max_ap_intf = 1,
  1671. .eeprom_size = EEPROM_SIZE,
  1672. .rf_size = RF_SIZE,
  1673. .rx = &rt2500pci_queue_rx,
  1674. .tx = &rt2500pci_queue_tx,
  1675. .bcn = &rt2500pci_queue_bcn,
  1676. .atim = &rt2500pci_queue_atim,
  1677. .lib = &rt2500pci_rt2x00_ops,
  1678. .hw = &rt2500pci_mac80211_ops,
  1679. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1680. .debugfs = &rt2500pci_rt2x00debug,
  1681. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1682. };
  1683. /*
  1684. * RT2500pci module information.
  1685. */
  1686. static struct pci_device_id rt2500pci_device_table[] = {
  1687. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1688. { 0, }
  1689. };
  1690. MODULE_AUTHOR(DRV_PROJECT);
  1691. MODULE_VERSION(DRV_VERSION);
  1692. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1693. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1694. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1695. MODULE_LICENSE("GPL");
  1696. static struct pci_driver rt2500pci_driver = {
  1697. .name = KBUILD_MODNAME,
  1698. .id_table = rt2500pci_device_table,
  1699. .probe = rt2x00pci_probe,
  1700. .remove = __devexit_p(rt2x00pci_remove),
  1701. .suspend = rt2x00pci_suspend,
  1702. .resume = rt2x00pci_resume,
  1703. };
  1704. static int __init rt2500pci_init(void)
  1705. {
  1706. return pci_register_driver(&rt2500pci_driver);
  1707. }
  1708. static void __exit rt2500pci_exit(void)
  1709. {
  1710. pci_unregister_driver(&rt2500pci_driver);
  1711. }
  1712. module_init(rt2500pci_init);
  1713. module_exit(rt2500pci_exit);