dm9000.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/dm9000.h>
  32. #include <linux/delay.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/irq.h>
  35. #include <asm/delay.h>
  36. #include <asm/irq.h>
  37. #include <asm/io.h>
  38. #include "dm9000.h"
  39. /* Board/System/Debug information/definition ---------------- */
  40. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  41. #define CARDNAME "dm9000"
  42. #define PFX CARDNAME ": "
  43. #define DRV_VERSION "1.30"
  44. #ifdef CONFIG_BLACKFIN
  45. #define readsb insb
  46. #define readsw insw
  47. #define readsl insl
  48. #define writesb outsb
  49. #define writesw outsw
  50. #define writesl outsl
  51. #define DEFAULT_TRIGGER IRQF_TRIGGER_HIGH
  52. #else
  53. #define DEFAULT_TRIGGER (0)
  54. #endif
  55. /*
  56. * Transmit timeout, default 5 seconds.
  57. */
  58. static int watchdog = 5000;
  59. module_param(watchdog, int, 0400);
  60. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  61. /* DM9000 register address locking.
  62. *
  63. * The DM9000 uses an address register to control where data written
  64. * to the data register goes. This means that the address register
  65. * must be preserved over interrupts or similar calls.
  66. *
  67. * During interrupt and other critical calls, a spinlock is used to
  68. * protect the system, but the calls themselves save the address
  69. * in the address register in case they are interrupting another
  70. * access to the device.
  71. *
  72. * For general accesses a lock is provided so that calls which are
  73. * allowed to sleep are serialised so that the address register does
  74. * not need to be saved. This lock also serves to serialise access
  75. * to the EEPROM and PHY access registers which are shared between
  76. * these two devices.
  77. */
  78. /* Structure/enum declaration ------------------------------- */
  79. typedef struct board_info {
  80. void __iomem *io_addr; /* Register I/O base address */
  81. void __iomem *io_data; /* Data I/O address */
  82. u16 irq; /* IRQ */
  83. u16 tx_pkt_cnt;
  84. u16 queue_pkt_len;
  85. u16 queue_start_addr;
  86. u16 dbug_cnt;
  87. u8 io_mode; /* 0:word, 2:byte */
  88. u8 phy_addr;
  89. unsigned int flags;
  90. unsigned int in_suspend :1;
  91. int debug_level;
  92. void (*inblk)(void __iomem *port, void *data, int length);
  93. void (*outblk)(void __iomem *port, void *data, int length);
  94. void (*dumpblk)(void __iomem *port, int length);
  95. struct device *dev; /* parent device */
  96. struct resource *addr_res; /* resources found */
  97. struct resource *data_res;
  98. struct resource *addr_req; /* resources requested */
  99. struct resource *data_req;
  100. struct resource *irq_res;
  101. struct mutex addr_lock; /* phy and eeprom access lock */
  102. spinlock_t lock;
  103. struct mii_if_info mii;
  104. u32 msg_enable;
  105. } board_info_t;
  106. /* debug code */
  107. #define dm9000_dbg(db, lev, msg...) do { \
  108. if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
  109. (lev) < db->debug_level) { \
  110. dev_dbg(db->dev, msg); \
  111. } \
  112. } while (0)
  113. static inline board_info_t *to_dm9000_board(struct net_device *dev)
  114. {
  115. return dev->priv;
  116. }
  117. /* function declaration ------------------------------------- */
  118. static int dm9000_probe(struct platform_device *);
  119. static int dm9000_open(struct net_device *);
  120. static int dm9000_start_xmit(struct sk_buff *, struct net_device *);
  121. static int dm9000_stop(struct net_device *);
  122. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd);
  123. static void dm9000_init_dm9000(struct net_device *);
  124. static irqreturn_t dm9000_interrupt(int, void *);
  125. static int dm9000_phy_read(struct net_device *dev, int phyaddr_unsused, int reg);
  126. static void dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg,
  127. int value);
  128. static void dm9000_read_eeprom(board_info_t *, int addr, u8 *to);
  129. static void dm9000_write_eeprom(board_info_t *, int addr, u8 *dp);
  130. static void dm9000_rx(struct net_device *);
  131. static void dm9000_hash_table(struct net_device *);
  132. /* DM9000 network board routine ---------------------------- */
  133. static void
  134. dm9000_reset(board_info_t * db)
  135. {
  136. dev_dbg(db->dev, "resetting device\n");
  137. /* RESET device */
  138. writeb(DM9000_NCR, db->io_addr);
  139. udelay(200);
  140. writeb(NCR_RST, db->io_data);
  141. udelay(200);
  142. }
  143. /*
  144. * Read a byte from I/O port
  145. */
  146. static u8
  147. ior(board_info_t * db, int reg)
  148. {
  149. writeb(reg, db->io_addr);
  150. return readb(db->io_data);
  151. }
  152. /*
  153. * Write a byte to I/O port
  154. */
  155. static void
  156. iow(board_info_t * db, int reg, int value)
  157. {
  158. writeb(reg, db->io_addr);
  159. writeb(value, db->io_data);
  160. }
  161. /* routines for sending block to chip */
  162. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  163. {
  164. writesb(reg, data, count);
  165. }
  166. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  167. {
  168. writesw(reg, data, (count+1) >> 1);
  169. }
  170. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  171. {
  172. writesl(reg, data, (count+3) >> 2);
  173. }
  174. /* input block from chip to memory */
  175. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  176. {
  177. readsb(reg, data, count);
  178. }
  179. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  180. {
  181. readsw(reg, data, (count+1) >> 1);
  182. }
  183. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  184. {
  185. readsl(reg, data, (count+3) >> 2);
  186. }
  187. /* dump block from chip to null */
  188. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  189. {
  190. int i;
  191. int tmp;
  192. for (i = 0; i < count; i++)
  193. tmp = readb(reg);
  194. }
  195. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  196. {
  197. int i;
  198. int tmp;
  199. count = (count + 1) >> 1;
  200. for (i = 0; i < count; i++)
  201. tmp = readw(reg);
  202. }
  203. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  204. {
  205. int i;
  206. int tmp;
  207. count = (count + 3) >> 2;
  208. for (i = 0; i < count; i++)
  209. tmp = readl(reg);
  210. }
  211. /* dm9000_set_io
  212. *
  213. * select the specified set of io routines to use with the
  214. * device
  215. */
  216. static void dm9000_set_io(struct board_info *db, int byte_width)
  217. {
  218. /* use the size of the data resource to work out what IO
  219. * routines we want to use
  220. */
  221. switch (byte_width) {
  222. case 1:
  223. db->dumpblk = dm9000_dumpblk_8bit;
  224. db->outblk = dm9000_outblk_8bit;
  225. db->inblk = dm9000_inblk_8bit;
  226. break;
  227. case 3:
  228. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  229. case 2:
  230. db->dumpblk = dm9000_dumpblk_16bit;
  231. db->outblk = dm9000_outblk_16bit;
  232. db->inblk = dm9000_inblk_16bit;
  233. break;
  234. case 4:
  235. default:
  236. db->dumpblk = dm9000_dumpblk_32bit;
  237. db->outblk = dm9000_outblk_32bit;
  238. db->inblk = dm9000_inblk_32bit;
  239. break;
  240. }
  241. }
  242. /* Our watchdog timed out. Called by the networking layer */
  243. static void dm9000_timeout(struct net_device *dev)
  244. {
  245. board_info_t *db = (board_info_t *) dev->priv;
  246. u8 reg_save;
  247. unsigned long flags;
  248. /* Save previous register address */
  249. reg_save = readb(db->io_addr);
  250. spin_lock_irqsave(&db->lock,flags);
  251. netif_stop_queue(dev);
  252. dm9000_reset(db);
  253. dm9000_init_dm9000(dev);
  254. /* We can accept TX packets again */
  255. dev->trans_start = jiffies;
  256. netif_wake_queue(dev);
  257. /* Restore previous register address */
  258. writeb(reg_save, db->io_addr);
  259. spin_unlock_irqrestore(&db->lock,flags);
  260. }
  261. #ifdef CONFIG_NET_POLL_CONTROLLER
  262. /*
  263. *Used by netconsole
  264. */
  265. static void dm9000_poll_controller(struct net_device *dev)
  266. {
  267. disable_irq(dev->irq);
  268. dm9000_interrupt(dev->irq,dev);
  269. enable_irq(dev->irq);
  270. }
  271. #endif
  272. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  273. {
  274. board_info_t *dm = to_dm9000_board(dev);
  275. if (!netif_running(dev))
  276. return -EINVAL;
  277. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  278. }
  279. /* ethtool ops */
  280. static void dm9000_get_drvinfo(struct net_device *dev,
  281. struct ethtool_drvinfo *info)
  282. {
  283. board_info_t *dm = to_dm9000_board(dev);
  284. strcpy(info->driver, CARDNAME);
  285. strcpy(info->version, DRV_VERSION);
  286. strcpy(info->bus_info, to_platform_device(dm->dev)->name);
  287. }
  288. static u32 dm9000_get_msglevel(struct net_device *dev)
  289. {
  290. board_info_t *dm = to_dm9000_board(dev);
  291. return dm->msg_enable;
  292. }
  293. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  294. {
  295. board_info_t *dm = to_dm9000_board(dev);
  296. dm->msg_enable = value;
  297. }
  298. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  299. {
  300. board_info_t *dm = to_dm9000_board(dev);
  301. mii_ethtool_gset(&dm->mii, cmd);
  302. return 0;
  303. }
  304. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  305. {
  306. board_info_t *dm = to_dm9000_board(dev);
  307. return mii_ethtool_sset(&dm->mii, cmd);
  308. }
  309. static int dm9000_nway_reset(struct net_device *dev)
  310. {
  311. board_info_t *dm = to_dm9000_board(dev);
  312. return mii_nway_restart(&dm->mii);
  313. }
  314. static u32 dm9000_get_link(struct net_device *dev)
  315. {
  316. board_info_t *dm = to_dm9000_board(dev);
  317. return mii_link_ok(&dm->mii);
  318. }
  319. #define DM_EEPROM_MAGIC (0x444D394B)
  320. static int dm9000_get_eeprom_len(struct net_device *dev)
  321. {
  322. return 128;
  323. }
  324. static int dm9000_get_eeprom(struct net_device *dev,
  325. struct ethtool_eeprom *ee, u8 *data)
  326. {
  327. board_info_t *dm = to_dm9000_board(dev);
  328. int offset = ee->offset;
  329. int len = ee->len;
  330. int i;
  331. /* EEPROM access is aligned to two bytes */
  332. if ((len & 1) != 0 || (offset & 1) != 0)
  333. return -EINVAL;
  334. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  335. return -ENOENT;
  336. ee->magic = DM_EEPROM_MAGIC;
  337. for (i = 0; i < len; i += 2)
  338. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  339. return 0;
  340. }
  341. static int dm9000_set_eeprom(struct net_device *dev,
  342. struct ethtool_eeprom *ee, u8 *data)
  343. {
  344. board_info_t *dm = to_dm9000_board(dev);
  345. int offset = ee->offset;
  346. int len = ee->len;
  347. int i;
  348. /* EEPROM access is aligned to two bytes */
  349. if ((len & 1) != 0 || (offset & 1) != 0)
  350. return -EINVAL;
  351. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  352. return -ENOENT;
  353. if (ee->magic != DM_EEPROM_MAGIC)
  354. return -EINVAL;
  355. for (i = 0; i < len; i += 2)
  356. dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
  357. return 0;
  358. }
  359. static const struct ethtool_ops dm9000_ethtool_ops = {
  360. .get_drvinfo = dm9000_get_drvinfo,
  361. .get_settings = dm9000_get_settings,
  362. .set_settings = dm9000_set_settings,
  363. .get_msglevel = dm9000_get_msglevel,
  364. .set_msglevel = dm9000_set_msglevel,
  365. .nway_reset = dm9000_nway_reset,
  366. .get_link = dm9000_get_link,
  367. .get_eeprom_len = dm9000_get_eeprom_len,
  368. .get_eeprom = dm9000_get_eeprom,
  369. .set_eeprom = dm9000_set_eeprom,
  370. };
  371. /* dm9000_release_board
  372. *
  373. * release a board, and any mapped resources
  374. */
  375. static void
  376. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  377. {
  378. if (db->data_res == NULL) {
  379. if (db->addr_res != NULL)
  380. release_mem_region((unsigned long)db->io_addr, 4);
  381. return;
  382. }
  383. /* unmap our resources */
  384. iounmap(db->io_addr);
  385. iounmap(db->io_data);
  386. /* release the resources */
  387. if (db->data_req != NULL) {
  388. release_resource(db->data_req);
  389. kfree(db->data_req);
  390. }
  391. if (db->addr_req != NULL) {
  392. release_resource(db->addr_req);
  393. kfree(db->addr_req);
  394. }
  395. }
  396. #define res_size(_r) (((_r)->end - (_r)->start) + 1)
  397. /*
  398. * Search DM9000 board, allocate space and register it
  399. */
  400. static int
  401. dm9000_probe(struct platform_device *pdev)
  402. {
  403. struct dm9000_plat_data *pdata = pdev->dev.platform_data;
  404. struct board_info *db; /* Point a board information structure */
  405. struct net_device *ndev;
  406. const unsigned char *mac_src;
  407. unsigned long base;
  408. int ret = 0;
  409. int iosize;
  410. int i;
  411. u32 id_val;
  412. /* Init network device */
  413. ndev = alloc_etherdev(sizeof (struct board_info));
  414. if (!ndev) {
  415. dev_err(&pdev->dev, "could not allocate device.\n");
  416. return -ENOMEM;
  417. }
  418. SET_NETDEV_DEV(ndev, &pdev->dev);
  419. dev_dbg(&pdev->dev, "dm9000_probe()");
  420. /* setup board info structure */
  421. db = (struct board_info *) ndev->priv;
  422. memset(db, 0, sizeof (*db));
  423. db->dev = &pdev->dev;
  424. spin_lock_init(&db->lock);
  425. mutex_init(&db->addr_lock);
  426. if (pdev->num_resources < 2) {
  427. ret = -ENODEV;
  428. goto out;
  429. } else if (pdev->num_resources == 2) {
  430. base = pdev->resource[0].start;
  431. if (!request_mem_region(base, 4, ndev->name)) {
  432. ret = -EBUSY;
  433. goto out;
  434. }
  435. ndev->base_addr = base;
  436. ndev->irq = pdev->resource[1].start;
  437. db->io_addr = (void __iomem *)base;
  438. db->io_data = (void __iomem *)(base + 4);
  439. /* ensure at least we have a default set of IO routines */
  440. dm9000_set_io(db, 2);
  441. } else {
  442. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  443. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  444. db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  445. if (db->addr_res == NULL || db->data_res == NULL ||
  446. db->irq_res == NULL) {
  447. dev_err(db->dev, "insufficient resources\n");
  448. ret = -ENOENT;
  449. goto out;
  450. }
  451. i = res_size(db->addr_res);
  452. db->addr_req = request_mem_region(db->addr_res->start, i,
  453. pdev->name);
  454. if (db->addr_req == NULL) {
  455. dev_err(db->dev, "cannot claim address reg area\n");
  456. ret = -EIO;
  457. goto out;
  458. }
  459. db->io_addr = ioremap(db->addr_res->start, i);
  460. if (db->io_addr == NULL) {
  461. dev_err(db->dev, "failed to ioremap address reg\n");
  462. ret = -EINVAL;
  463. goto out;
  464. }
  465. iosize = res_size(db->data_res);
  466. db->data_req = request_mem_region(db->data_res->start, iosize,
  467. pdev->name);
  468. if (db->data_req == NULL) {
  469. dev_err(db->dev, "cannot claim data reg area\n");
  470. ret = -EIO;
  471. goto out;
  472. }
  473. db->io_data = ioremap(db->data_res->start, iosize);
  474. if (db->io_data == NULL) {
  475. dev_err(db->dev,"failed to ioremap data reg\n");
  476. ret = -EINVAL;
  477. goto out;
  478. }
  479. /* fill in parameters for net-dev structure */
  480. ndev->base_addr = (unsigned long)db->io_addr;
  481. ndev->irq = db->irq_res->start;
  482. /* ensure at least we have a default set of IO routines */
  483. dm9000_set_io(db, iosize);
  484. }
  485. /* check to see if anything is being over-ridden */
  486. if (pdata != NULL) {
  487. /* check to see if the driver wants to over-ride the
  488. * default IO width */
  489. if (pdata->flags & DM9000_PLATF_8BITONLY)
  490. dm9000_set_io(db, 1);
  491. if (pdata->flags & DM9000_PLATF_16BITONLY)
  492. dm9000_set_io(db, 2);
  493. if (pdata->flags & DM9000_PLATF_32BITONLY)
  494. dm9000_set_io(db, 4);
  495. /* check to see if there are any IO routine
  496. * over-rides */
  497. if (pdata->inblk != NULL)
  498. db->inblk = pdata->inblk;
  499. if (pdata->outblk != NULL)
  500. db->outblk = pdata->outblk;
  501. if (pdata->dumpblk != NULL)
  502. db->dumpblk = pdata->dumpblk;
  503. db->flags = pdata->flags;
  504. }
  505. dm9000_reset(db);
  506. /* try two times, DM9000 sometimes gets the first read wrong */
  507. for (i = 0; i < 8; i++) {
  508. id_val = ior(db, DM9000_VIDL);
  509. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  510. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  511. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  512. if (id_val == DM9000_ID)
  513. break;
  514. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  515. }
  516. if (id_val != DM9000_ID) {
  517. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  518. ret = -ENODEV;
  519. goto out;
  520. }
  521. /* from this point we assume that we have found a DM9000 */
  522. /* driver system function */
  523. ether_setup(ndev);
  524. ndev->open = &dm9000_open;
  525. ndev->hard_start_xmit = &dm9000_start_xmit;
  526. ndev->tx_timeout = &dm9000_timeout;
  527. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  528. ndev->stop = &dm9000_stop;
  529. ndev->set_multicast_list = &dm9000_hash_table;
  530. ndev->ethtool_ops = &dm9000_ethtool_ops;
  531. ndev->do_ioctl = &dm9000_ioctl;
  532. #ifdef CONFIG_NET_POLL_CONTROLLER
  533. ndev->poll_controller = &dm9000_poll_controller;
  534. #endif
  535. db->msg_enable = NETIF_MSG_LINK;
  536. db->mii.phy_id_mask = 0x1f;
  537. db->mii.reg_num_mask = 0x1f;
  538. db->mii.force_media = 0;
  539. db->mii.full_duplex = 0;
  540. db->mii.dev = ndev;
  541. db->mii.mdio_read = dm9000_phy_read;
  542. db->mii.mdio_write = dm9000_phy_write;
  543. mac_src = "eeprom";
  544. /* try reading the node address from the attached EEPROM */
  545. for (i = 0; i < 6; i += 2)
  546. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  547. if (!is_valid_ether_addr(ndev->dev_addr)) {
  548. /* try reading from mac */
  549. mac_src = "chip";
  550. for (i = 0; i < 6; i++)
  551. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  552. }
  553. if (!is_valid_ether_addr(ndev->dev_addr))
  554. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
  555. "set using ifconfig\n", ndev->name);
  556. platform_set_drvdata(pdev, ndev);
  557. ret = register_netdev(ndev);
  558. if (ret == 0) {
  559. DECLARE_MAC_BUF(mac);
  560. printk("%s: dm9000 at %p,%p IRQ %d MAC: %s (%s)\n",
  561. ndev->name, db->io_addr, db->io_data, ndev->irq,
  562. print_mac(mac, ndev->dev_addr), mac_src);
  563. }
  564. return 0;
  565. out:
  566. dev_err(db->dev, "not found (%d).\n", ret);
  567. dm9000_release_board(pdev, db);
  568. free_netdev(ndev);
  569. return ret;
  570. }
  571. /*
  572. * Open the interface.
  573. * The interface is opened whenever "ifconfig" actives it.
  574. */
  575. static int
  576. dm9000_open(struct net_device *dev)
  577. {
  578. board_info_t *db = (board_info_t *) dev->priv;
  579. unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
  580. if (netif_msg_ifup(db))
  581. dev_dbg(db->dev, "enabling %s\n", dev->name);
  582. /* If there is no IRQ type specified, default to something that
  583. * may work, and tell the user that this is a problem */
  584. if (irqflags == IRQF_TRIGGER_NONE) {
  585. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  586. irqflags = DEFAULT_TRIGGER;
  587. }
  588. irqflags |= IRQF_SHARED;
  589. if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))
  590. return -EAGAIN;
  591. /* Initialize DM9000 board */
  592. dm9000_reset(db);
  593. dm9000_init_dm9000(dev);
  594. /* Init driver variable */
  595. db->dbug_cnt = 0;
  596. mii_check_media(&db->mii, netif_msg_link(db), 1);
  597. netif_start_queue(dev);
  598. return 0;
  599. }
  600. /*
  601. * Initilize dm9000 board
  602. */
  603. static void
  604. dm9000_init_dm9000(struct net_device *dev)
  605. {
  606. board_info_t *db = (board_info_t *) dev->priv;
  607. dm9000_dbg(db, 1, "entering %s\n", __func__);
  608. /* I/O mode */
  609. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  610. /* GPIO0 on pre-activate PHY */
  611. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  612. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  613. iow(db, DM9000_GPR, 0); /* Enable PHY */
  614. if (db->flags & DM9000_PLATF_EXT_PHY)
  615. iow(db, DM9000_NCR, NCR_EXT_PHY);
  616. /* Program operating register */
  617. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  618. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  619. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  620. iow(db, DM9000_SMCR, 0); /* Special Mode */
  621. /* clear TX status */
  622. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  623. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  624. /* Set address filter table */
  625. dm9000_hash_table(dev);
  626. /* Enable TX/RX interrupt mask */
  627. iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
  628. /* Init Driver variable */
  629. db->tx_pkt_cnt = 0;
  630. db->queue_pkt_len = 0;
  631. dev->trans_start = 0;
  632. }
  633. /*
  634. * Hardware start transmission.
  635. * Send a packet to media from the upper layer.
  636. */
  637. static int
  638. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  639. {
  640. unsigned long flags;
  641. board_info_t *db = (board_info_t *) dev->priv;
  642. dm9000_dbg(db, 3, "%s:\n", __func__);
  643. if (db->tx_pkt_cnt > 1)
  644. return 1;
  645. spin_lock_irqsave(&db->lock, flags);
  646. /* Move data to DM9000 TX RAM */
  647. writeb(DM9000_MWCMD, db->io_addr);
  648. (db->outblk)(db->io_data, skb->data, skb->len);
  649. dev->stats.tx_bytes += skb->len;
  650. db->tx_pkt_cnt++;
  651. /* TX control: First packet immediately send, second packet queue */
  652. if (db->tx_pkt_cnt == 1) {
  653. /* Set TX length to DM9000 */
  654. iow(db, DM9000_TXPLL, skb->len);
  655. iow(db, DM9000_TXPLH, skb->len >> 8);
  656. /* Issue TX polling command */
  657. iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  658. dev->trans_start = jiffies; /* save the time stamp */
  659. } else {
  660. /* Second packet */
  661. db->queue_pkt_len = skb->len;
  662. netif_stop_queue(dev);
  663. }
  664. spin_unlock_irqrestore(&db->lock, flags);
  665. /* free this SKB */
  666. dev_kfree_skb(skb);
  667. return 0;
  668. }
  669. static void
  670. dm9000_shutdown(struct net_device *dev)
  671. {
  672. board_info_t *db = (board_info_t *) dev->priv;
  673. /* RESET device */
  674. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  675. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  676. iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
  677. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  678. }
  679. /*
  680. * Stop the interface.
  681. * The interface is stopped when it is brought.
  682. */
  683. static int
  684. dm9000_stop(struct net_device *ndev)
  685. {
  686. board_info_t *db = (board_info_t *) ndev->priv;
  687. if (netif_msg_ifdown(db))
  688. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  689. netif_stop_queue(ndev);
  690. netif_carrier_off(ndev);
  691. /* free interrupt */
  692. free_irq(ndev->irq, ndev);
  693. dm9000_shutdown(ndev);
  694. return 0;
  695. }
  696. /*
  697. * DM9000 interrupt handler
  698. * receive the packet to upper layer, free the transmitted packet
  699. */
  700. static void
  701. dm9000_tx_done(struct net_device *dev, board_info_t * db)
  702. {
  703. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  704. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  705. /* One packet sent complete */
  706. db->tx_pkt_cnt--;
  707. dev->stats.tx_packets++;
  708. if (netif_msg_tx_done(db))
  709. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  710. /* Queue packet check & send */
  711. if (db->tx_pkt_cnt > 0) {
  712. iow(db, DM9000_TXPLL, db->queue_pkt_len);
  713. iow(db, DM9000_TXPLH, db->queue_pkt_len >> 8);
  714. iow(db, DM9000_TCR, TCR_TXREQ);
  715. dev->trans_start = jiffies;
  716. }
  717. netif_wake_queue(dev);
  718. }
  719. }
  720. static irqreturn_t
  721. dm9000_interrupt(int irq, void *dev_id)
  722. {
  723. struct net_device *dev = dev_id;
  724. board_info_t *db = (board_info_t *) dev->priv;
  725. int int_status;
  726. u8 reg_save;
  727. dm9000_dbg(db, 3, "entering %s\n", __func__);
  728. /* A real interrupt coming */
  729. spin_lock(&db->lock);
  730. /* Save previous register address */
  731. reg_save = readb(db->io_addr);
  732. /* Disable all interrupts */
  733. iow(db, DM9000_IMR, IMR_PAR);
  734. /* Got DM9000 interrupt status */
  735. int_status = ior(db, DM9000_ISR); /* Got ISR */
  736. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  737. if (netif_msg_intr(db))
  738. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  739. /* Received the coming packet */
  740. if (int_status & ISR_PRS)
  741. dm9000_rx(dev);
  742. /* Trnasmit Interrupt check */
  743. if (int_status & ISR_PTS)
  744. dm9000_tx_done(dev, db);
  745. /* Re-enable interrupt mask */
  746. iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
  747. /* Restore previous register address */
  748. writeb(reg_save, db->io_addr);
  749. spin_unlock(&db->lock);
  750. return IRQ_HANDLED;
  751. }
  752. struct dm9000_rxhdr {
  753. u8 RxPktReady;
  754. u8 RxStatus;
  755. __le16 RxLen;
  756. } __attribute__((__packed__));
  757. /*
  758. * Received a packet and pass to upper layer
  759. */
  760. static void
  761. dm9000_rx(struct net_device *dev)
  762. {
  763. board_info_t *db = (board_info_t *) dev->priv;
  764. struct dm9000_rxhdr rxhdr;
  765. struct sk_buff *skb;
  766. u8 rxbyte, *rdptr;
  767. bool GoodPacket;
  768. int RxLen;
  769. /* Check packet ready or not */
  770. do {
  771. ior(db, DM9000_MRCMDX); /* Dummy read */
  772. /* Get most updated data */
  773. rxbyte = readb(db->io_data);
  774. /* Status check: this byte must be 0 or 1 */
  775. if (rxbyte > DM9000_PKT_RDY) {
  776. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  777. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  778. iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
  779. return;
  780. }
  781. if (rxbyte != DM9000_PKT_RDY)
  782. return;
  783. /* A packet ready now & Get status/length */
  784. GoodPacket = true;
  785. writeb(DM9000_MRCMD, db->io_addr);
  786. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  787. RxLen = le16_to_cpu(rxhdr.RxLen);
  788. if (netif_msg_rx_status(db))
  789. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  790. rxhdr.RxStatus, RxLen);
  791. /* Packet Status check */
  792. if (RxLen < 0x40) {
  793. GoodPacket = false;
  794. if (netif_msg_rx_err(db))
  795. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  796. }
  797. if (RxLen > DM9000_PKT_MAX) {
  798. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  799. }
  800. if (rxhdr.RxStatus & 0xbf) {
  801. GoodPacket = false;
  802. if (rxhdr.RxStatus & 0x01) {
  803. if (netif_msg_rx_err(db))
  804. dev_dbg(db->dev, "fifo error\n");
  805. dev->stats.rx_fifo_errors++;
  806. }
  807. if (rxhdr.RxStatus & 0x02) {
  808. if (netif_msg_rx_err(db))
  809. dev_dbg(db->dev, "crc error\n");
  810. dev->stats.rx_crc_errors++;
  811. }
  812. if (rxhdr.RxStatus & 0x80) {
  813. if (netif_msg_rx_err(db))
  814. dev_dbg(db->dev, "length error\n");
  815. dev->stats.rx_length_errors++;
  816. }
  817. }
  818. /* Move data from DM9000 */
  819. if (GoodPacket
  820. && ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
  821. skb_reserve(skb, 2);
  822. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  823. /* Read received packet from RX SRAM */
  824. (db->inblk)(db->io_data, rdptr, RxLen);
  825. dev->stats.rx_bytes += RxLen;
  826. /* Pass to upper layer */
  827. skb->protocol = eth_type_trans(skb, dev);
  828. netif_rx(skb);
  829. dev->stats.rx_packets++;
  830. } else {
  831. /* need to dump the packet's data */
  832. (db->dumpblk)(db->io_data, RxLen);
  833. }
  834. } while (rxbyte == DM9000_PKT_RDY);
  835. }
  836. static unsigned int
  837. dm9000_read_locked(board_info_t *db, int reg)
  838. {
  839. unsigned long flags;
  840. unsigned int ret;
  841. spin_lock_irqsave(&db->lock, flags);
  842. ret = ior(db, reg);
  843. spin_unlock_irqrestore(&db->lock, flags);
  844. return ret;
  845. }
  846. static int dm9000_wait_eeprom(board_info_t *db)
  847. {
  848. unsigned int status;
  849. int timeout = 8; /* wait max 8msec */
  850. /* The DM9000 data sheets say we should be able to
  851. * poll the ERRE bit in EPCR to wait for the EEPROM
  852. * operation. From testing several chips, this bit
  853. * does not seem to work.
  854. *
  855. * We attempt to use the bit, but fall back to the
  856. * timeout (which is why we do not return an error
  857. * on expiry) to say that the EEPROM operation has
  858. * completed.
  859. */
  860. while (1) {
  861. status = dm9000_read_locked(db, DM9000_EPCR);
  862. if ((status & EPCR_ERRE) == 0)
  863. break;
  864. if (timeout-- < 0) {
  865. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  866. break;
  867. }
  868. }
  869. return 0;
  870. }
  871. /*
  872. * Read a word data from EEPROM
  873. */
  874. static void
  875. dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
  876. {
  877. unsigned long flags;
  878. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  879. to[0] = 0xff;
  880. to[1] = 0xff;
  881. return;
  882. }
  883. mutex_lock(&db->addr_lock);
  884. spin_lock_irqsave(&db->lock, flags);
  885. iow(db, DM9000_EPAR, offset);
  886. iow(db, DM9000_EPCR, EPCR_ERPRR);
  887. spin_unlock_irqrestore(&db->lock, flags);
  888. dm9000_wait_eeprom(db);
  889. /* delay for at-least 150uS */
  890. msleep(1);
  891. spin_lock_irqsave(&db->lock, flags);
  892. iow(db, DM9000_EPCR, 0x0);
  893. to[0] = ior(db, DM9000_EPDRL);
  894. to[1] = ior(db, DM9000_EPDRH);
  895. spin_unlock_irqrestore(&db->lock, flags);
  896. mutex_unlock(&db->addr_lock);
  897. }
  898. /*
  899. * Write a word data to SROM
  900. */
  901. static void
  902. dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
  903. {
  904. unsigned long flags;
  905. if (db->flags & DM9000_PLATF_NO_EEPROM)
  906. return;
  907. mutex_lock(&db->addr_lock);
  908. spin_lock_irqsave(&db->lock, flags);
  909. iow(db, DM9000_EPAR, offset);
  910. iow(db, DM9000_EPDRH, data[1]);
  911. iow(db, DM9000_EPDRL, data[0]);
  912. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  913. spin_unlock_irqrestore(&db->lock, flags);
  914. dm9000_wait_eeprom(db);
  915. mdelay(1); /* wait at least 150uS to clear */
  916. spin_lock_irqsave(&db->lock, flags);
  917. iow(db, DM9000_EPCR, 0);
  918. spin_unlock_irqrestore(&db->lock, flags);
  919. mutex_unlock(&db->addr_lock);
  920. }
  921. /*
  922. * Set DM9000 multicast address
  923. */
  924. static void
  925. dm9000_hash_table(struct net_device *dev)
  926. {
  927. board_info_t *db = (board_info_t *) dev->priv;
  928. struct dev_mc_list *mcptr = dev->mc_list;
  929. int mc_cnt = dev->mc_count;
  930. int i, oft;
  931. u32 hash_val;
  932. u16 hash_table[4];
  933. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  934. unsigned long flags;
  935. dm9000_dbg(db, 1, "entering %s\n", __func__);
  936. spin_lock_irqsave(&db->lock, flags);
  937. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  938. iow(db, oft, dev->dev_addr[i]);
  939. /* Clear Hash Table */
  940. for (i = 0; i < 4; i++)
  941. hash_table[i] = 0x0;
  942. /* broadcast address */
  943. hash_table[3] = 0x8000;
  944. if (dev->flags & IFF_PROMISC)
  945. rcr |= RCR_PRMSC;
  946. if (dev->flags & IFF_ALLMULTI)
  947. rcr |= RCR_ALL;
  948. /* the multicast address in Hash Table : 64 bits */
  949. for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
  950. hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
  951. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  952. }
  953. /* Write the hash table to MAC MD table */
  954. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  955. iow(db, oft++, hash_table[i]);
  956. iow(db, oft++, hash_table[i] >> 8);
  957. }
  958. iow(db, DM9000_RCR, rcr);
  959. spin_unlock_irqrestore(&db->lock, flags);
  960. }
  961. /*
  962. * Sleep, either by using msleep() or if we are suspending, then
  963. * use mdelay() to sleep.
  964. */
  965. static void dm9000_msleep(board_info_t *db, unsigned int ms)
  966. {
  967. if (db->in_suspend)
  968. mdelay(ms);
  969. else
  970. msleep(ms);
  971. }
  972. /*
  973. * Read a word from phyxcer
  974. */
  975. static int
  976. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  977. {
  978. board_info_t *db = (board_info_t *) dev->priv;
  979. unsigned long flags;
  980. unsigned int reg_save;
  981. int ret;
  982. mutex_lock(&db->addr_lock);
  983. spin_lock_irqsave(&db->lock,flags);
  984. /* Save previous register address */
  985. reg_save = readb(db->io_addr);
  986. /* Fill the phyxcer register into REG_0C */
  987. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  988. iow(db, DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  989. writeb(reg_save, db->io_addr);
  990. spin_unlock_irqrestore(&db->lock,flags);
  991. dm9000_msleep(db, 1); /* Wait read complete */
  992. spin_lock_irqsave(&db->lock,flags);
  993. reg_save = readb(db->io_addr);
  994. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  995. /* The read data keeps on REG_0D & REG_0E */
  996. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  997. /* restore the previous address */
  998. writeb(reg_save, db->io_addr);
  999. spin_unlock_irqrestore(&db->lock,flags);
  1000. mutex_unlock(&db->addr_lock);
  1001. return ret;
  1002. }
  1003. /*
  1004. * Write a word to phyxcer
  1005. */
  1006. static void
  1007. dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg, int value)
  1008. {
  1009. board_info_t *db = (board_info_t *) dev->priv;
  1010. unsigned long flags;
  1011. unsigned long reg_save;
  1012. mutex_lock(&db->addr_lock);
  1013. spin_lock_irqsave(&db->lock,flags);
  1014. /* Save previous register address */
  1015. reg_save = readb(db->io_addr);
  1016. /* Fill the phyxcer register into REG_0C */
  1017. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  1018. /* Fill the written data into REG_0D & REG_0E */
  1019. iow(db, DM9000_EPDRL, value);
  1020. iow(db, DM9000_EPDRH, value >> 8);
  1021. iow(db, DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  1022. writeb(reg_save, db->io_addr);
  1023. spin_unlock_irqrestore(&db->lock, flags);
  1024. dm9000_msleep(db, 1); /* Wait write complete */
  1025. spin_lock_irqsave(&db->lock,flags);
  1026. reg_save = readb(db->io_addr);
  1027. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  1028. /* restore the previous address */
  1029. writeb(reg_save, db->io_addr);
  1030. spin_unlock_irqrestore(&db->lock, flags);
  1031. mutex_unlock(&db->addr_lock);
  1032. }
  1033. static int
  1034. dm9000_drv_suspend(struct platform_device *dev, pm_message_t state)
  1035. {
  1036. struct net_device *ndev = platform_get_drvdata(dev);
  1037. board_info_t *db;
  1038. if (ndev) {
  1039. db = (board_info_t *) ndev->priv;
  1040. db->in_suspend = 1;
  1041. if (netif_running(ndev)) {
  1042. netif_device_detach(ndev);
  1043. dm9000_shutdown(ndev);
  1044. }
  1045. }
  1046. return 0;
  1047. }
  1048. static int
  1049. dm9000_drv_resume(struct platform_device *dev)
  1050. {
  1051. struct net_device *ndev = platform_get_drvdata(dev);
  1052. board_info_t *db = (board_info_t *) ndev->priv;
  1053. if (ndev) {
  1054. if (netif_running(ndev)) {
  1055. dm9000_reset(db);
  1056. dm9000_init_dm9000(ndev);
  1057. netif_device_attach(ndev);
  1058. }
  1059. db->in_suspend = 0;
  1060. }
  1061. return 0;
  1062. }
  1063. static int
  1064. dm9000_drv_remove(struct platform_device *pdev)
  1065. {
  1066. struct net_device *ndev = platform_get_drvdata(pdev);
  1067. platform_set_drvdata(pdev, NULL);
  1068. unregister_netdev(ndev);
  1069. dm9000_release_board(pdev, (board_info_t *) ndev->priv);
  1070. free_netdev(ndev); /* free device structure */
  1071. dev_dbg(&pdev->dev, "released and freed device\n");
  1072. return 0;
  1073. }
  1074. static struct platform_driver dm9000_driver = {
  1075. .driver = {
  1076. .name = "dm9000",
  1077. .owner = THIS_MODULE,
  1078. },
  1079. .probe = dm9000_probe,
  1080. .remove = dm9000_drv_remove,
  1081. .suspend = dm9000_drv_suspend,
  1082. .resume = dm9000_drv_resume,
  1083. };
  1084. static int __init
  1085. dm9000_init(void)
  1086. {
  1087. printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
  1088. return platform_driver_register(&dm9000_driver); /* search board and register */
  1089. }
  1090. static void __exit
  1091. dm9000_cleanup(void)
  1092. {
  1093. platform_driver_unregister(&dm9000_driver);
  1094. }
  1095. module_init(dm9000_init);
  1096. module_exit(dm9000_cleanup);
  1097. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1098. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1099. MODULE_LICENSE("GPL");
  1100. MODULE_ALIAS("platform:dm9000");