md.c 187 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/reboot.h>
  38. #include <linux/file.h>
  39. #include <linux/compat.h>
  40. #include <linux/delay.h>
  41. #include <linux/raid/md_p.h>
  42. #include <linux/raid/md_u.h>
  43. #include "md.h"
  44. #include "bitmap.h"
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. static LIST_HEAD(pers_list);
  51. static DEFINE_SPINLOCK(pers_lock);
  52. static void md_print_devices(void);
  53. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  54. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  55. /*
  56. * Default number of read corrections we'll attempt on an rdev
  57. * before ejecting it from the array. We divide the read error
  58. * count by 2 for every hour elapsed between read errors.
  59. */
  60. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  61. /*
  62. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  63. * is 1000 KB/sec, so the extra system load does not show up that much.
  64. * Increase it if you want to have more _guaranteed_ speed. Note that
  65. * the RAID driver will use the maximum available bandwidth if the IO
  66. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  67. * speed limit - in case reconstruction slows down your system despite
  68. * idle IO detection.
  69. *
  70. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  71. * or /sys/block/mdX/md/sync_speed_{min,max}
  72. */
  73. static int sysctl_speed_limit_min = 1000;
  74. static int sysctl_speed_limit_max = 200000;
  75. static inline int speed_min(mddev_t *mddev)
  76. {
  77. return mddev->sync_speed_min ?
  78. mddev->sync_speed_min : sysctl_speed_limit_min;
  79. }
  80. static inline int speed_max(mddev_t *mddev)
  81. {
  82. return mddev->sync_speed_max ?
  83. mddev->sync_speed_max : sysctl_speed_limit_max;
  84. }
  85. static struct ctl_table_header *raid_table_header;
  86. static ctl_table raid_table[] = {
  87. {
  88. .procname = "speed_limit_min",
  89. .data = &sysctl_speed_limit_min,
  90. .maxlen = sizeof(int),
  91. .mode = S_IRUGO|S_IWUSR,
  92. .proc_handler = proc_dointvec,
  93. },
  94. {
  95. .procname = "speed_limit_max",
  96. .data = &sysctl_speed_limit_max,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. { }
  102. };
  103. static ctl_table raid_dir_table[] = {
  104. {
  105. .procname = "raid",
  106. .maxlen = 0,
  107. .mode = S_IRUGO|S_IXUGO,
  108. .child = raid_table,
  109. },
  110. { }
  111. };
  112. static ctl_table raid_root_table[] = {
  113. {
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { }
  120. };
  121. static const struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. }
  140. EXPORT_SYMBOL_GPL(md_new_event);
  141. /* Alternate version that can be called from interrupts
  142. * when calling sysfs_notify isn't needed.
  143. */
  144. static void md_new_event_inintr(mddev_t *mddev)
  145. {
  146. atomic_inc(&md_event_count);
  147. wake_up(&md_event_waiters);
  148. }
  149. /*
  150. * Enables to iterate over all existing md arrays
  151. * all_mddevs_lock protects this list.
  152. */
  153. static LIST_HEAD(all_mddevs);
  154. static DEFINE_SPINLOCK(all_mddevs_lock);
  155. /*
  156. * iterates through all used mddevs in the system.
  157. * We take care to grab the all_mddevs_lock whenever navigating
  158. * the list, and to always hold a refcount when unlocked.
  159. * Any code which breaks out of this loop while own
  160. * a reference to the current mddev and must mddev_put it.
  161. */
  162. #define for_each_mddev(mddev,tmp) \
  163. \
  164. for (({ spin_lock(&all_mddevs_lock); \
  165. tmp = all_mddevs.next; \
  166. mddev = NULL;}); \
  167. ({ if (tmp != &all_mddevs) \
  168. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  169. spin_unlock(&all_mddevs_lock); \
  170. if (mddev) mddev_put(mddev); \
  171. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  172. tmp != &all_mddevs;}); \
  173. ({ spin_lock(&all_mddevs_lock); \
  174. tmp = tmp->next;}) \
  175. )
  176. /* Rather than calling directly into the personality make_request function,
  177. * IO requests come here first so that we can check if the device is
  178. * being suspended pending a reconfiguration.
  179. * We hold a refcount over the call to ->make_request. By the time that
  180. * call has finished, the bio has been linked into some internal structure
  181. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  182. */
  183. static int md_make_request(struct request_queue *q, struct bio *bio)
  184. {
  185. const int rw = bio_data_dir(bio);
  186. mddev_t *mddev = q->queuedata;
  187. int rv;
  188. int cpu;
  189. if (mddev == NULL || mddev->pers == NULL) {
  190. bio_io_error(bio);
  191. return 0;
  192. }
  193. rcu_read_lock();
  194. if (mddev->suspended || mddev->barrier) {
  195. DEFINE_WAIT(__wait);
  196. for (;;) {
  197. prepare_to_wait(&mddev->sb_wait, &__wait,
  198. TASK_UNINTERRUPTIBLE);
  199. if (!mddev->suspended && !mddev->barrier)
  200. break;
  201. rcu_read_unlock();
  202. schedule();
  203. rcu_read_lock();
  204. }
  205. finish_wait(&mddev->sb_wait, &__wait);
  206. }
  207. atomic_inc(&mddev->active_io);
  208. rcu_read_unlock();
  209. rv = mddev->pers->make_request(mddev, bio);
  210. cpu = part_stat_lock();
  211. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  212. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
  213. bio_sectors(bio));
  214. part_stat_unlock();
  215. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  216. wake_up(&mddev->sb_wait);
  217. return rv;
  218. }
  219. static void mddev_suspend(mddev_t *mddev)
  220. {
  221. BUG_ON(mddev->suspended);
  222. mddev->suspended = 1;
  223. synchronize_rcu();
  224. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  225. mddev->pers->quiesce(mddev, 1);
  226. md_unregister_thread(mddev->thread);
  227. mddev->thread = NULL;
  228. /* we now know that no code is executing in the personality module,
  229. * except possibly the tail end of a ->bi_end_io function, but that
  230. * is certain to complete before the module has a chance to get
  231. * unloaded
  232. */
  233. }
  234. static void mddev_resume(mddev_t *mddev)
  235. {
  236. mddev->suspended = 0;
  237. wake_up(&mddev->sb_wait);
  238. mddev->pers->quiesce(mddev, 0);
  239. }
  240. int mddev_congested(mddev_t *mddev, int bits)
  241. {
  242. if (mddev->barrier)
  243. return 1;
  244. return mddev->suspended;
  245. }
  246. EXPORT_SYMBOL(mddev_congested);
  247. /*
  248. * Generic barrier handling for md
  249. */
  250. #define POST_REQUEST_BARRIER ((void*)1)
  251. static void md_end_barrier(struct bio *bio, int err)
  252. {
  253. mdk_rdev_t *rdev = bio->bi_private;
  254. mddev_t *mddev = rdev->mddev;
  255. if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
  256. set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
  257. rdev_dec_pending(rdev, mddev);
  258. if (atomic_dec_and_test(&mddev->flush_pending)) {
  259. if (mddev->barrier == POST_REQUEST_BARRIER) {
  260. /* This was a post-request barrier */
  261. mddev->barrier = NULL;
  262. wake_up(&mddev->sb_wait);
  263. } else
  264. /* The pre-request barrier has finished */
  265. schedule_work(&mddev->barrier_work);
  266. }
  267. bio_put(bio);
  268. }
  269. static void submit_barriers(mddev_t *mddev)
  270. {
  271. mdk_rdev_t *rdev;
  272. rcu_read_lock();
  273. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  274. if (rdev->raid_disk >= 0 &&
  275. !test_bit(Faulty, &rdev->flags)) {
  276. /* Take two references, one is dropped
  277. * when request finishes, one after
  278. * we reclaim rcu_read_lock
  279. */
  280. struct bio *bi;
  281. atomic_inc(&rdev->nr_pending);
  282. atomic_inc(&rdev->nr_pending);
  283. rcu_read_unlock();
  284. bi = bio_alloc(GFP_KERNEL, 0);
  285. bi->bi_end_io = md_end_barrier;
  286. bi->bi_private = rdev;
  287. bi->bi_bdev = rdev->bdev;
  288. atomic_inc(&mddev->flush_pending);
  289. submit_bio(WRITE_BARRIER, bi);
  290. rcu_read_lock();
  291. rdev_dec_pending(rdev, mddev);
  292. }
  293. rcu_read_unlock();
  294. }
  295. static void md_submit_barrier(struct work_struct *ws)
  296. {
  297. mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
  298. struct bio *bio = mddev->barrier;
  299. atomic_set(&mddev->flush_pending, 1);
  300. if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
  301. bio_endio(bio, -EOPNOTSUPP);
  302. else if (bio->bi_size == 0)
  303. /* an empty barrier - all done */
  304. bio_endio(bio, 0);
  305. else {
  306. bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
  307. if (mddev->pers->make_request(mddev, bio))
  308. generic_make_request(bio);
  309. mddev->barrier = POST_REQUEST_BARRIER;
  310. submit_barriers(mddev);
  311. }
  312. if (atomic_dec_and_test(&mddev->flush_pending)) {
  313. mddev->barrier = NULL;
  314. wake_up(&mddev->sb_wait);
  315. }
  316. }
  317. void md_barrier_request(mddev_t *mddev, struct bio *bio)
  318. {
  319. spin_lock_irq(&mddev->write_lock);
  320. wait_event_lock_irq(mddev->sb_wait,
  321. !mddev->barrier,
  322. mddev->write_lock, /*nothing*/);
  323. mddev->barrier = bio;
  324. spin_unlock_irq(&mddev->write_lock);
  325. atomic_set(&mddev->flush_pending, 1);
  326. INIT_WORK(&mddev->barrier_work, md_submit_barrier);
  327. submit_barriers(mddev);
  328. if (atomic_dec_and_test(&mddev->flush_pending))
  329. schedule_work(&mddev->barrier_work);
  330. }
  331. EXPORT_SYMBOL(md_barrier_request);
  332. static inline mddev_t *mddev_get(mddev_t *mddev)
  333. {
  334. atomic_inc(&mddev->active);
  335. return mddev;
  336. }
  337. static void mddev_delayed_delete(struct work_struct *ws);
  338. static void mddev_put(mddev_t *mddev)
  339. {
  340. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  341. return;
  342. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  343. mddev->ctime == 0 && !mddev->hold_active) {
  344. /* Array is not configured at all, and not held active,
  345. * so destroy it */
  346. list_del(&mddev->all_mddevs);
  347. if (mddev->gendisk) {
  348. /* we did a probe so need to clean up.
  349. * Call schedule_work inside the spinlock
  350. * so that flush_scheduled_work() after
  351. * mddev_find will succeed in waiting for the
  352. * work to be done.
  353. */
  354. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  355. schedule_work(&mddev->del_work);
  356. } else
  357. kfree(mddev);
  358. }
  359. spin_unlock(&all_mddevs_lock);
  360. }
  361. static mddev_t * mddev_find(dev_t unit)
  362. {
  363. mddev_t *mddev, *new = NULL;
  364. retry:
  365. spin_lock(&all_mddevs_lock);
  366. if (unit) {
  367. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  368. if (mddev->unit == unit) {
  369. mddev_get(mddev);
  370. spin_unlock(&all_mddevs_lock);
  371. kfree(new);
  372. return mddev;
  373. }
  374. if (new) {
  375. list_add(&new->all_mddevs, &all_mddevs);
  376. spin_unlock(&all_mddevs_lock);
  377. new->hold_active = UNTIL_IOCTL;
  378. return new;
  379. }
  380. } else if (new) {
  381. /* find an unused unit number */
  382. static int next_minor = 512;
  383. int start = next_minor;
  384. int is_free = 0;
  385. int dev = 0;
  386. while (!is_free) {
  387. dev = MKDEV(MD_MAJOR, next_minor);
  388. next_minor++;
  389. if (next_minor > MINORMASK)
  390. next_minor = 0;
  391. if (next_minor == start) {
  392. /* Oh dear, all in use. */
  393. spin_unlock(&all_mddevs_lock);
  394. kfree(new);
  395. return NULL;
  396. }
  397. is_free = 1;
  398. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  399. if (mddev->unit == dev) {
  400. is_free = 0;
  401. break;
  402. }
  403. }
  404. new->unit = dev;
  405. new->md_minor = MINOR(dev);
  406. new->hold_active = UNTIL_STOP;
  407. list_add(&new->all_mddevs, &all_mddevs);
  408. spin_unlock(&all_mddevs_lock);
  409. return new;
  410. }
  411. spin_unlock(&all_mddevs_lock);
  412. new = kzalloc(sizeof(*new), GFP_KERNEL);
  413. if (!new)
  414. return NULL;
  415. new->unit = unit;
  416. if (MAJOR(unit) == MD_MAJOR)
  417. new->md_minor = MINOR(unit);
  418. else
  419. new->md_minor = MINOR(unit) >> MdpMinorShift;
  420. mutex_init(&new->open_mutex);
  421. mutex_init(&new->reconfig_mutex);
  422. mutex_init(&new->bitmap_info.mutex);
  423. INIT_LIST_HEAD(&new->disks);
  424. INIT_LIST_HEAD(&new->all_mddevs);
  425. init_timer(&new->safemode_timer);
  426. atomic_set(&new->active, 1);
  427. atomic_set(&new->openers, 0);
  428. atomic_set(&new->active_io, 0);
  429. spin_lock_init(&new->write_lock);
  430. atomic_set(&new->flush_pending, 0);
  431. init_waitqueue_head(&new->sb_wait);
  432. init_waitqueue_head(&new->recovery_wait);
  433. new->reshape_position = MaxSector;
  434. new->resync_min = 0;
  435. new->resync_max = MaxSector;
  436. new->level = LEVEL_NONE;
  437. goto retry;
  438. }
  439. static inline int mddev_lock(mddev_t * mddev)
  440. {
  441. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  442. }
  443. static inline int mddev_is_locked(mddev_t *mddev)
  444. {
  445. return mutex_is_locked(&mddev->reconfig_mutex);
  446. }
  447. static inline int mddev_trylock(mddev_t * mddev)
  448. {
  449. return mutex_trylock(&mddev->reconfig_mutex);
  450. }
  451. static struct attribute_group md_redundancy_group;
  452. static void mddev_unlock(mddev_t * mddev)
  453. {
  454. if (mddev->to_remove) {
  455. /* These cannot be removed under reconfig_mutex as
  456. * an access to the files will try to take reconfig_mutex
  457. * while holding the file unremovable, which leads to
  458. * a deadlock.
  459. * So hold open_mutex instead - we are allowed to take
  460. * it while holding reconfig_mutex, and md_run can
  461. * use it to wait for the remove to complete.
  462. */
  463. struct attribute_group *to_remove = mddev->to_remove;
  464. mddev->to_remove = NULL;
  465. mutex_lock(&mddev->open_mutex);
  466. mutex_unlock(&mddev->reconfig_mutex);
  467. if (to_remove != &md_redundancy_group)
  468. sysfs_remove_group(&mddev->kobj, to_remove);
  469. if (mddev->pers == NULL ||
  470. mddev->pers->sync_request == NULL) {
  471. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  472. if (mddev->sysfs_action)
  473. sysfs_put(mddev->sysfs_action);
  474. mddev->sysfs_action = NULL;
  475. }
  476. mutex_unlock(&mddev->open_mutex);
  477. } else
  478. mutex_unlock(&mddev->reconfig_mutex);
  479. md_wakeup_thread(mddev->thread);
  480. }
  481. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  482. {
  483. mdk_rdev_t *rdev;
  484. list_for_each_entry(rdev, &mddev->disks, same_set)
  485. if (rdev->desc_nr == nr)
  486. return rdev;
  487. return NULL;
  488. }
  489. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  490. {
  491. mdk_rdev_t *rdev;
  492. list_for_each_entry(rdev, &mddev->disks, same_set)
  493. if (rdev->bdev->bd_dev == dev)
  494. return rdev;
  495. return NULL;
  496. }
  497. static struct mdk_personality *find_pers(int level, char *clevel)
  498. {
  499. struct mdk_personality *pers;
  500. list_for_each_entry(pers, &pers_list, list) {
  501. if (level != LEVEL_NONE && pers->level == level)
  502. return pers;
  503. if (strcmp(pers->name, clevel)==0)
  504. return pers;
  505. }
  506. return NULL;
  507. }
  508. /* return the offset of the super block in 512byte sectors */
  509. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  510. {
  511. sector_t num_sectors = bdev->bd_inode->i_size / 512;
  512. return MD_NEW_SIZE_SECTORS(num_sectors);
  513. }
  514. static int alloc_disk_sb(mdk_rdev_t * rdev)
  515. {
  516. if (rdev->sb_page)
  517. MD_BUG();
  518. rdev->sb_page = alloc_page(GFP_KERNEL);
  519. if (!rdev->sb_page) {
  520. printk(KERN_ALERT "md: out of memory.\n");
  521. return -ENOMEM;
  522. }
  523. return 0;
  524. }
  525. static void free_disk_sb(mdk_rdev_t * rdev)
  526. {
  527. if (rdev->sb_page) {
  528. put_page(rdev->sb_page);
  529. rdev->sb_loaded = 0;
  530. rdev->sb_page = NULL;
  531. rdev->sb_start = 0;
  532. rdev->sectors = 0;
  533. }
  534. }
  535. static void super_written(struct bio *bio, int error)
  536. {
  537. mdk_rdev_t *rdev = bio->bi_private;
  538. mddev_t *mddev = rdev->mddev;
  539. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  540. printk("md: super_written gets error=%d, uptodate=%d\n",
  541. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  542. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  543. md_error(mddev, rdev);
  544. }
  545. if (atomic_dec_and_test(&mddev->pending_writes))
  546. wake_up(&mddev->sb_wait);
  547. bio_put(bio);
  548. }
  549. static void super_written_barrier(struct bio *bio, int error)
  550. {
  551. struct bio *bio2 = bio->bi_private;
  552. mdk_rdev_t *rdev = bio2->bi_private;
  553. mddev_t *mddev = rdev->mddev;
  554. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  555. error == -EOPNOTSUPP) {
  556. unsigned long flags;
  557. /* barriers don't appear to be supported :-( */
  558. set_bit(BarriersNotsupp, &rdev->flags);
  559. mddev->barriers_work = 0;
  560. spin_lock_irqsave(&mddev->write_lock, flags);
  561. bio2->bi_next = mddev->biolist;
  562. mddev->biolist = bio2;
  563. spin_unlock_irqrestore(&mddev->write_lock, flags);
  564. wake_up(&mddev->sb_wait);
  565. bio_put(bio);
  566. } else {
  567. bio_put(bio2);
  568. bio->bi_private = rdev;
  569. super_written(bio, error);
  570. }
  571. }
  572. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  573. sector_t sector, int size, struct page *page)
  574. {
  575. /* write first size bytes of page to sector of rdev
  576. * Increment mddev->pending_writes before returning
  577. * and decrement it on completion, waking up sb_wait
  578. * if zero is reached.
  579. * If an error occurred, call md_error
  580. *
  581. * As we might need to resubmit the request if BIO_RW_BARRIER
  582. * causes ENOTSUPP, we allocate a spare bio...
  583. */
  584. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  585. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
  586. bio->bi_bdev = rdev->bdev;
  587. bio->bi_sector = sector;
  588. bio_add_page(bio, page, size, 0);
  589. bio->bi_private = rdev;
  590. bio->bi_end_io = super_written;
  591. bio->bi_rw = rw;
  592. atomic_inc(&mddev->pending_writes);
  593. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  594. struct bio *rbio;
  595. rw |= (1<<BIO_RW_BARRIER);
  596. rbio = bio_clone(bio, GFP_NOIO);
  597. rbio->bi_private = bio;
  598. rbio->bi_end_io = super_written_barrier;
  599. submit_bio(rw, rbio);
  600. } else
  601. submit_bio(rw, bio);
  602. }
  603. void md_super_wait(mddev_t *mddev)
  604. {
  605. /* wait for all superblock writes that were scheduled to complete.
  606. * if any had to be retried (due to BARRIER problems), retry them
  607. */
  608. DEFINE_WAIT(wq);
  609. for(;;) {
  610. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  611. if (atomic_read(&mddev->pending_writes)==0)
  612. break;
  613. while (mddev->biolist) {
  614. struct bio *bio;
  615. spin_lock_irq(&mddev->write_lock);
  616. bio = mddev->biolist;
  617. mddev->biolist = bio->bi_next ;
  618. bio->bi_next = NULL;
  619. spin_unlock_irq(&mddev->write_lock);
  620. submit_bio(bio->bi_rw, bio);
  621. }
  622. schedule();
  623. }
  624. finish_wait(&mddev->sb_wait, &wq);
  625. }
  626. static void bi_complete(struct bio *bio, int error)
  627. {
  628. complete((struct completion*)bio->bi_private);
  629. }
  630. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  631. struct page *page, int rw)
  632. {
  633. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  634. struct completion event;
  635. int ret;
  636. rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
  637. bio->bi_bdev = bdev;
  638. bio->bi_sector = sector;
  639. bio_add_page(bio, page, size, 0);
  640. init_completion(&event);
  641. bio->bi_private = &event;
  642. bio->bi_end_io = bi_complete;
  643. submit_bio(rw, bio);
  644. wait_for_completion(&event);
  645. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  646. bio_put(bio);
  647. return ret;
  648. }
  649. EXPORT_SYMBOL_GPL(sync_page_io);
  650. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  651. {
  652. char b[BDEVNAME_SIZE];
  653. if (!rdev->sb_page) {
  654. MD_BUG();
  655. return -EINVAL;
  656. }
  657. if (rdev->sb_loaded)
  658. return 0;
  659. if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
  660. goto fail;
  661. rdev->sb_loaded = 1;
  662. return 0;
  663. fail:
  664. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  665. bdevname(rdev->bdev,b));
  666. return -EINVAL;
  667. }
  668. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  669. {
  670. return sb1->set_uuid0 == sb2->set_uuid0 &&
  671. sb1->set_uuid1 == sb2->set_uuid1 &&
  672. sb1->set_uuid2 == sb2->set_uuid2 &&
  673. sb1->set_uuid3 == sb2->set_uuid3;
  674. }
  675. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  676. {
  677. int ret;
  678. mdp_super_t *tmp1, *tmp2;
  679. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  680. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  681. if (!tmp1 || !tmp2) {
  682. ret = 0;
  683. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  684. goto abort;
  685. }
  686. *tmp1 = *sb1;
  687. *tmp2 = *sb2;
  688. /*
  689. * nr_disks is not constant
  690. */
  691. tmp1->nr_disks = 0;
  692. tmp2->nr_disks = 0;
  693. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  694. abort:
  695. kfree(tmp1);
  696. kfree(tmp2);
  697. return ret;
  698. }
  699. static u32 md_csum_fold(u32 csum)
  700. {
  701. csum = (csum & 0xffff) + (csum >> 16);
  702. return (csum & 0xffff) + (csum >> 16);
  703. }
  704. static unsigned int calc_sb_csum(mdp_super_t * sb)
  705. {
  706. u64 newcsum = 0;
  707. u32 *sb32 = (u32*)sb;
  708. int i;
  709. unsigned int disk_csum, csum;
  710. disk_csum = sb->sb_csum;
  711. sb->sb_csum = 0;
  712. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  713. newcsum += sb32[i];
  714. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  715. #ifdef CONFIG_ALPHA
  716. /* This used to use csum_partial, which was wrong for several
  717. * reasons including that different results are returned on
  718. * different architectures. It isn't critical that we get exactly
  719. * the same return value as before (we always csum_fold before
  720. * testing, and that removes any differences). However as we
  721. * know that csum_partial always returned a 16bit value on
  722. * alphas, do a fold to maximise conformity to previous behaviour.
  723. */
  724. sb->sb_csum = md_csum_fold(disk_csum);
  725. #else
  726. sb->sb_csum = disk_csum;
  727. #endif
  728. return csum;
  729. }
  730. /*
  731. * Handle superblock details.
  732. * We want to be able to handle multiple superblock formats
  733. * so we have a common interface to them all, and an array of
  734. * different handlers.
  735. * We rely on user-space to write the initial superblock, and support
  736. * reading and updating of superblocks.
  737. * Interface methods are:
  738. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  739. * loads and validates a superblock on dev.
  740. * if refdev != NULL, compare superblocks on both devices
  741. * Return:
  742. * 0 - dev has a superblock that is compatible with refdev
  743. * 1 - dev has a superblock that is compatible and newer than refdev
  744. * so dev should be used as the refdev in future
  745. * -EINVAL superblock incompatible or invalid
  746. * -othererror e.g. -EIO
  747. *
  748. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  749. * Verify that dev is acceptable into mddev.
  750. * The first time, mddev->raid_disks will be 0, and data from
  751. * dev should be merged in. Subsequent calls check that dev
  752. * is new enough. Return 0 or -EINVAL
  753. *
  754. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  755. * Update the superblock for rdev with data in mddev
  756. * This does not write to disc.
  757. *
  758. */
  759. struct super_type {
  760. char *name;
  761. struct module *owner;
  762. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  763. int minor_version);
  764. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  765. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  766. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  767. sector_t num_sectors);
  768. };
  769. /*
  770. * Check that the given mddev has no bitmap.
  771. *
  772. * This function is called from the run method of all personalities that do not
  773. * support bitmaps. It prints an error message and returns non-zero if mddev
  774. * has a bitmap. Otherwise, it returns 0.
  775. *
  776. */
  777. int md_check_no_bitmap(mddev_t *mddev)
  778. {
  779. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  780. return 0;
  781. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  782. mdname(mddev), mddev->pers->name);
  783. return 1;
  784. }
  785. EXPORT_SYMBOL(md_check_no_bitmap);
  786. /*
  787. * load_super for 0.90.0
  788. */
  789. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  790. {
  791. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  792. mdp_super_t *sb;
  793. int ret;
  794. /*
  795. * Calculate the position of the superblock (512byte sectors),
  796. * it's at the end of the disk.
  797. *
  798. * It also happens to be a multiple of 4Kb.
  799. */
  800. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  801. ret = read_disk_sb(rdev, MD_SB_BYTES);
  802. if (ret) return ret;
  803. ret = -EINVAL;
  804. bdevname(rdev->bdev, b);
  805. sb = (mdp_super_t*)page_address(rdev->sb_page);
  806. if (sb->md_magic != MD_SB_MAGIC) {
  807. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  808. b);
  809. goto abort;
  810. }
  811. if (sb->major_version != 0 ||
  812. sb->minor_version < 90 ||
  813. sb->minor_version > 91) {
  814. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  815. sb->major_version, sb->minor_version,
  816. b);
  817. goto abort;
  818. }
  819. if (sb->raid_disks <= 0)
  820. goto abort;
  821. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  822. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  823. b);
  824. goto abort;
  825. }
  826. rdev->preferred_minor = sb->md_minor;
  827. rdev->data_offset = 0;
  828. rdev->sb_size = MD_SB_BYTES;
  829. if (sb->level == LEVEL_MULTIPATH)
  830. rdev->desc_nr = -1;
  831. else
  832. rdev->desc_nr = sb->this_disk.number;
  833. if (!refdev) {
  834. ret = 1;
  835. } else {
  836. __u64 ev1, ev2;
  837. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  838. if (!uuid_equal(refsb, sb)) {
  839. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  840. b, bdevname(refdev->bdev,b2));
  841. goto abort;
  842. }
  843. if (!sb_equal(refsb, sb)) {
  844. printk(KERN_WARNING "md: %s has same UUID"
  845. " but different superblock to %s\n",
  846. b, bdevname(refdev->bdev, b2));
  847. goto abort;
  848. }
  849. ev1 = md_event(sb);
  850. ev2 = md_event(refsb);
  851. if (ev1 > ev2)
  852. ret = 1;
  853. else
  854. ret = 0;
  855. }
  856. rdev->sectors = rdev->sb_start;
  857. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  858. /* "this cannot possibly happen" ... */
  859. ret = -EINVAL;
  860. abort:
  861. return ret;
  862. }
  863. /*
  864. * validate_super for 0.90.0
  865. */
  866. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  867. {
  868. mdp_disk_t *desc;
  869. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  870. __u64 ev1 = md_event(sb);
  871. rdev->raid_disk = -1;
  872. clear_bit(Faulty, &rdev->flags);
  873. clear_bit(In_sync, &rdev->flags);
  874. clear_bit(WriteMostly, &rdev->flags);
  875. clear_bit(BarriersNotsupp, &rdev->flags);
  876. if (mddev->raid_disks == 0) {
  877. mddev->major_version = 0;
  878. mddev->minor_version = sb->minor_version;
  879. mddev->patch_version = sb->patch_version;
  880. mddev->external = 0;
  881. mddev->chunk_sectors = sb->chunk_size >> 9;
  882. mddev->ctime = sb->ctime;
  883. mddev->utime = sb->utime;
  884. mddev->level = sb->level;
  885. mddev->clevel[0] = 0;
  886. mddev->layout = sb->layout;
  887. mddev->raid_disks = sb->raid_disks;
  888. mddev->dev_sectors = sb->size * 2;
  889. mddev->events = ev1;
  890. mddev->bitmap_info.offset = 0;
  891. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  892. if (mddev->minor_version >= 91) {
  893. mddev->reshape_position = sb->reshape_position;
  894. mddev->delta_disks = sb->delta_disks;
  895. mddev->new_level = sb->new_level;
  896. mddev->new_layout = sb->new_layout;
  897. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  898. } else {
  899. mddev->reshape_position = MaxSector;
  900. mddev->delta_disks = 0;
  901. mddev->new_level = mddev->level;
  902. mddev->new_layout = mddev->layout;
  903. mddev->new_chunk_sectors = mddev->chunk_sectors;
  904. }
  905. if (sb->state & (1<<MD_SB_CLEAN))
  906. mddev->recovery_cp = MaxSector;
  907. else {
  908. if (sb->events_hi == sb->cp_events_hi &&
  909. sb->events_lo == sb->cp_events_lo) {
  910. mddev->recovery_cp = sb->recovery_cp;
  911. } else
  912. mddev->recovery_cp = 0;
  913. }
  914. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  915. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  916. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  917. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  918. mddev->max_disks = MD_SB_DISKS;
  919. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  920. mddev->bitmap_info.file == NULL)
  921. mddev->bitmap_info.offset =
  922. mddev->bitmap_info.default_offset;
  923. } else if (mddev->pers == NULL) {
  924. /* Insist on good event counter while assembling */
  925. ++ev1;
  926. if (ev1 < mddev->events)
  927. return -EINVAL;
  928. } else if (mddev->bitmap) {
  929. /* if adding to array with a bitmap, then we can accept an
  930. * older device ... but not too old.
  931. */
  932. if (ev1 < mddev->bitmap->events_cleared)
  933. return 0;
  934. } else {
  935. if (ev1 < mddev->events)
  936. /* just a hot-add of a new device, leave raid_disk at -1 */
  937. return 0;
  938. }
  939. if (mddev->level != LEVEL_MULTIPATH) {
  940. desc = sb->disks + rdev->desc_nr;
  941. if (desc->state & (1<<MD_DISK_FAULTY))
  942. set_bit(Faulty, &rdev->flags);
  943. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  944. desc->raid_disk < mddev->raid_disks */) {
  945. set_bit(In_sync, &rdev->flags);
  946. rdev->raid_disk = desc->raid_disk;
  947. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  948. /* active but not in sync implies recovery up to
  949. * reshape position. We don't know exactly where
  950. * that is, so set to zero for now */
  951. if (mddev->minor_version >= 91) {
  952. rdev->recovery_offset = 0;
  953. rdev->raid_disk = desc->raid_disk;
  954. }
  955. }
  956. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  957. set_bit(WriteMostly, &rdev->flags);
  958. } else /* MULTIPATH are always insync */
  959. set_bit(In_sync, &rdev->flags);
  960. return 0;
  961. }
  962. /*
  963. * sync_super for 0.90.0
  964. */
  965. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  966. {
  967. mdp_super_t *sb;
  968. mdk_rdev_t *rdev2;
  969. int next_spare = mddev->raid_disks;
  970. /* make rdev->sb match mddev data..
  971. *
  972. * 1/ zero out disks
  973. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  974. * 3/ any empty disks < next_spare become removed
  975. *
  976. * disks[0] gets initialised to REMOVED because
  977. * we cannot be sure from other fields if it has
  978. * been initialised or not.
  979. */
  980. int i;
  981. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  982. rdev->sb_size = MD_SB_BYTES;
  983. sb = (mdp_super_t*)page_address(rdev->sb_page);
  984. memset(sb, 0, sizeof(*sb));
  985. sb->md_magic = MD_SB_MAGIC;
  986. sb->major_version = mddev->major_version;
  987. sb->patch_version = mddev->patch_version;
  988. sb->gvalid_words = 0; /* ignored */
  989. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  990. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  991. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  992. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  993. sb->ctime = mddev->ctime;
  994. sb->level = mddev->level;
  995. sb->size = mddev->dev_sectors / 2;
  996. sb->raid_disks = mddev->raid_disks;
  997. sb->md_minor = mddev->md_minor;
  998. sb->not_persistent = 0;
  999. sb->utime = mddev->utime;
  1000. sb->state = 0;
  1001. sb->events_hi = (mddev->events>>32);
  1002. sb->events_lo = (u32)mddev->events;
  1003. if (mddev->reshape_position == MaxSector)
  1004. sb->minor_version = 90;
  1005. else {
  1006. sb->minor_version = 91;
  1007. sb->reshape_position = mddev->reshape_position;
  1008. sb->new_level = mddev->new_level;
  1009. sb->delta_disks = mddev->delta_disks;
  1010. sb->new_layout = mddev->new_layout;
  1011. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1012. }
  1013. mddev->minor_version = sb->minor_version;
  1014. if (mddev->in_sync)
  1015. {
  1016. sb->recovery_cp = mddev->recovery_cp;
  1017. sb->cp_events_hi = (mddev->events>>32);
  1018. sb->cp_events_lo = (u32)mddev->events;
  1019. if (mddev->recovery_cp == MaxSector)
  1020. sb->state = (1<< MD_SB_CLEAN);
  1021. } else
  1022. sb->recovery_cp = 0;
  1023. sb->layout = mddev->layout;
  1024. sb->chunk_size = mddev->chunk_sectors << 9;
  1025. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1026. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1027. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1028. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1029. mdp_disk_t *d;
  1030. int desc_nr;
  1031. int is_active = test_bit(In_sync, &rdev2->flags);
  1032. if (rdev2->raid_disk >= 0 &&
  1033. sb->minor_version >= 91)
  1034. /* we have nowhere to store the recovery_offset,
  1035. * but if it is not below the reshape_position,
  1036. * we can piggy-back on that.
  1037. */
  1038. is_active = 1;
  1039. if (rdev2->raid_disk < 0 ||
  1040. test_bit(Faulty, &rdev2->flags))
  1041. is_active = 0;
  1042. if (is_active)
  1043. desc_nr = rdev2->raid_disk;
  1044. else
  1045. desc_nr = next_spare++;
  1046. rdev2->desc_nr = desc_nr;
  1047. d = &sb->disks[rdev2->desc_nr];
  1048. nr_disks++;
  1049. d->number = rdev2->desc_nr;
  1050. d->major = MAJOR(rdev2->bdev->bd_dev);
  1051. d->minor = MINOR(rdev2->bdev->bd_dev);
  1052. if (is_active)
  1053. d->raid_disk = rdev2->raid_disk;
  1054. else
  1055. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1056. if (test_bit(Faulty, &rdev2->flags))
  1057. d->state = (1<<MD_DISK_FAULTY);
  1058. else if (is_active) {
  1059. d->state = (1<<MD_DISK_ACTIVE);
  1060. if (test_bit(In_sync, &rdev2->flags))
  1061. d->state |= (1<<MD_DISK_SYNC);
  1062. active++;
  1063. working++;
  1064. } else {
  1065. d->state = 0;
  1066. spare++;
  1067. working++;
  1068. }
  1069. if (test_bit(WriteMostly, &rdev2->flags))
  1070. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1071. }
  1072. /* now set the "removed" and "faulty" bits on any missing devices */
  1073. for (i=0 ; i < mddev->raid_disks ; i++) {
  1074. mdp_disk_t *d = &sb->disks[i];
  1075. if (d->state == 0 && d->number == 0) {
  1076. d->number = i;
  1077. d->raid_disk = i;
  1078. d->state = (1<<MD_DISK_REMOVED);
  1079. d->state |= (1<<MD_DISK_FAULTY);
  1080. failed++;
  1081. }
  1082. }
  1083. sb->nr_disks = nr_disks;
  1084. sb->active_disks = active;
  1085. sb->working_disks = working;
  1086. sb->failed_disks = failed;
  1087. sb->spare_disks = spare;
  1088. sb->this_disk = sb->disks[rdev->desc_nr];
  1089. sb->sb_csum = calc_sb_csum(sb);
  1090. }
  1091. /*
  1092. * rdev_size_change for 0.90.0
  1093. */
  1094. static unsigned long long
  1095. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1096. {
  1097. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1098. return 0; /* component must fit device */
  1099. if (rdev->mddev->bitmap_info.offset)
  1100. return 0; /* can't move bitmap */
  1101. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  1102. if (!num_sectors || num_sectors > rdev->sb_start)
  1103. num_sectors = rdev->sb_start;
  1104. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1105. rdev->sb_page);
  1106. md_super_wait(rdev->mddev);
  1107. return num_sectors / 2; /* kB for sysfs */
  1108. }
  1109. /*
  1110. * version 1 superblock
  1111. */
  1112. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1113. {
  1114. __le32 disk_csum;
  1115. u32 csum;
  1116. unsigned long long newcsum;
  1117. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1118. __le32 *isuper = (__le32*)sb;
  1119. int i;
  1120. disk_csum = sb->sb_csum;
  1121. sb->sb_csum = 0;
  1122. newcsum = 0;
  1123. for (i=0; size>=4; size -= 4 )
  1124. newcsum += le32_to_cpu(*isuper++);
  1125. if (size == 2)
  1126. newcsum += le16_to_cpu(*(__le16*) isuper);
  1127. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1128. sb->sb_csum = disk_csum;
  1129. return cpu_to_le32(csum);
  1130. }
  1131. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1132. {
  1133. struct mdp_superblock_1 *sb;
  1134. int ret;
  1135. sector_t sb_start;
  1136. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1137. int bmask;
  1138. /*
  1139. * Calculate the position of the superblock in 512byte sectors.
  1140. * It is always aligned to a 4K boundary and
  1141. * depeding on minor_version, it can be:
  1142. * 0: At least 8K, but less than 12K, from end of device
  1143. * 1: At start of device
  1144. * 2: 4K from start of device.
  1145. */
  1146. switch(minor_version) {
  1147. case 0:
  1148. sb_start = rdev->bdev->bd_inode->i_size >> 9;
  1149. sb_start -= 8*2;
  1150. sb_start &= ~(sector_t)(4*2-1);
  1151. break;
  1152. case 1:
  1153. sb_start = 0;
  1154. break;
  1155. case 2:
  1156. sb_start = 8;
  1157. break;
  1158. default:
  1159. return -EINVAL;
  1160. }
  1161. rdev->sb_start = sb_start;
  1162. /* superblock is rarely larger than 1K, but it can be larger,
  1163. * and it is safe to read 4k, so we do that
  1164. */
  1165. ret = read_disk_sb(rdev, 4096);
  1166. if (ret) return ret;
  1167. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1168. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1169. sb->major_version != cpu_to_le32(1) ||
  1170. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1171. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1172. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1173. return -EINVAL;
  1174. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1175. printk("md: invalid superblock checksum on %s\n",
  1176. bdevname(rdev->bdev,b));
  1177. return -EINVAL;
  1178. }
  1179. if (le64_to_cpu(sb->data_size) < 10) {
  1180. printk("md: data_size too small on %s\n",
  1181. bdevname(rdev->bdev,b));
  1182. return -EINVAL;
  1183. }
  1184. rdev->preferred_minor = 0xffff;
  1185. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1186. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1187. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1188. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1189. if (rdev->sb_size & bmask)
  1190. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1191. if (minor_version
  1192. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1193. return -EINVAL;
  1194. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1195. rdev->desc_nr = -1;
  1196. else
  1197. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1198. if (!refdev) {
  1199. ret = 1;
  1200. } else {
  1201. __u64 ev1, ev2;
  1202. struct mdp_superblock_1 *refsb =
  1203. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  1204. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1205. sb->level != refsb->level ||
  1206. sb->layout != refsb->layout ||
  1207. sb->chunksize != refsb->chunksize) {
  1208. printk(KERN_WARNING "md: %s has strangely different"
  1209. " superblock to %s\n",
  1210. bdevname(rdev->bdev,b),
  1211. bdevname(refdev->bdev,b2));
  1212. return -EINVAL;
  1213. }
  1214. ev1 = le64_to_cpu(sb->events);
  1215. ev2 = le64_to_cpu(refsb->events);
  1216. if (ev1 > ev2)
  1217. ret = 1;
  1218. else
  1219. ret = 0;
  1220. }
  1221. if (minor_version)
  1222. rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  1223. le64_to_cpu(sb->data_offset);
  1224. else
  1225. rdev->sectors = rdev->sb_start;
  1226. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1227. return -EINVAL;
  1228. rdev->sectors = le64_to_cpu(sb->data_size);
  1229. if (le64_to_cpu(sb->size) > rdev->sectors)
  1230. return -EINVAL;
  1231. return ret;
  1232. }
  1233. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1234. {
  1235. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1236. __u64 ev1 = le64_to_cpu(sb->events);
  1237. rdev->raid_disk = -1;
  1238. clear_bit(Faulty, &rdev->flags);
  1239. clear_bit(In_sync, &rdev->flags);
  1240. clear_bit(WriteMostly, &rdev->flags);
  1241. clear_bit(BarriersNotsupp, &rdev->flags);
  1242. if (mddev->raid_disks == 0) {
  1243. mddev->major_version = 1;
  1244. mddev->patch_version = 0;
  1245. mddev->external = 0;
  1246. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1247. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1248. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1249. mddev->level = le32_to_cpu(sb->level);
  1250. mddev->clevel[0] = 0;
  1251. mddev->layout = le32_to_cpu(sb->layout);
  1252. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1253. mddev->dev_sectors = le64_to_cpu(sb->size);
  1254. mddev->events = ev1;
  1255. mddev->bitmap_info.offset = 0;
  1256. mddev->bitmap_info.default_offset = 1024 >> 9;
  1257. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1258. memcpy(mddev->uuid, sb->set_uuid, 16);
  1259. mddev->max_disks = (4096-256)/2;
  1260. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1261. mddev->bitmap_info.file == NULL )
  1262. mddev->bitmap_info.offset =
  1263. (__s32)le32_to_cpu(sb->bitmap_offset);
  1264. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1265. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1266. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1267. mddev->new_level = le32_to_cpu(sb->new_level);
  1268. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1269. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1270. } else {
  1271. mddev->reshape_position = MaxSector;
  1272. mddev->delta_disks = 0;
  1273. mddev->new_level = mddev->level;
  1274. mddev->new_layout = mddev->layout;
  1275. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1276. }
  1277. } else if (mddev->pers == NULL) {
  1278. /* Insist of good event counter while assembling */
  1279. ++ev1;
  1280. if (ev1 < mddev->events)
  1281. return -EINVAL;
  1282. } else if (mddev->bitmap) {
  1283. /* If adding to array with a bitmap, then we can accept an
  1284. * older device, but not too old.
  1285. */
  1286. if (ev1 < mddev->bitmap->events_cleared)
  1287. return 0;
  1288. } else {
  1289. if (ev1 < mddev->events)
  1290. /* just a hot-add of a new device, leave raid_disk at -1 */
  1291. return 0;
  1292. }
  1293. if (mddev->level != LEVEL_MULTIPATH) {
  1294. int role;
  1295. if (rdev->desc_nr < 0 ||
  1296. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1297. role = 0xffff;
  1298. rdev->desc_nr = -1;
  1299. } else
  1300. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1301. switch(role) {
  1302. case 0xffff: /* spare */
  1303. break;
  1304. case 0xfffe: /* faulty */
  1305. set_bit(Faulty, &rdev->flags);
  1306. break;
  1307. default:
  1308. if ((le32_to_cpu(sb->feature_map) &
  1309. MD_FEATURE_RECOVERY_OFFSET))
  1310. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1311. else
  1312. set_bit(In_sync, &rdev->flags);
  1313. rdev->raid_disk = role;
  1314. break;
  1315. }
  1316. if (sb->devflags & WriteMostly1)
  1317. set_bit(WriteMostly, &rdev->flags);
  1318. } else /* MULTIPATH are always insync */
  1319. set_bit(In_sync, &rdev->flags);
  1320. return 0;
  1321. }
  1322. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1323. {
  1324. struct mdp_superblock_1 *sb;
  1325. mdk_rdev_t *rdev2;
  1326. int max_dev, i;
  1327. /* make rdev->sb match mddev and rdev data. */
  1328. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1329. sb->feature_map = 0;
  1330. sb->pad0 = 0;
  1331. sb->recovery_offset = cpu_to_le64(0);
  1332. memset(sb->pad1, 0, sizeof(sb->pad1));
  1333. memset(sb->pad2, 0, sizeof(sb->pad2));
  1334. memset(sb->pad3, 0, sizeof(sb->pad3));
  1335. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1336. sb->events = cpu_to_le64(mddev->events);
  1337. if (mddev->in_sync)
  1338. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1339. else
  1340. sb->resync_offset = cpu_to_le64(0);
  1341. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1342. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1343. sb->size = cpu_to_le64(mddev->dev_sectors);
  1344. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1345. sb->level = cpu_to_le32(mddev->level);
  1346. sb->layout = cpu_to_le32(mddev->layout);
  1347. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1348. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1349. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1350. }
  1351. if (rdev->raid_disk >= 0 &&
  1352. !test_bit(In_sync, &rdev->flags)) {
  1353. sb->feature_map |=
  1354. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1355. sb->recovery_offset =
  1356. cpu_to_le64(rdev->recovery_offset);
  1357. }
  1358. if (mddev->reshape_position != MaxSector) {
  1359. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1360. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1361. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1362. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1363. sb->new_level = cpu_to_le32(mddev->new_level);
  1364. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1365. }
  1366. max_dev = 0;
  1367. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1368. if (rdev2->desc_nr+1 > max_dev)
  1369. max_dev = rdev2->desc_nr+1;
  1370. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1371. int bmask;
  1372. sb->max_dev = cpu_to_le32(max_dev);
  1373. rdev->sb_size = max_dev * 2 + 256;
  1374. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1375. if (rdev->sb_size & bmask)
  1376. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1377. }
  1378. for (i=0; i<max_dev;i++)
  1379. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1380. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1381. i = rdev2->desc_nr;
  1382. if (test_bit(Faulty, &rdev2->flags))
  1383. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1384. else if (test_bit(In_sync, &rdev2->flags))
  1385. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1386. else if (rdev2->raid_disk >= 0)
  1387. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1388. else
  1389. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1390. }
  1391. sb->sb_csum = calc_sb_1_csum(sb);
  1392. }
  1393. static unsigned long long
  1394. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1395. {
  1396. struct mdp_superblock_1 *sb;
  1397. sector_t max_sectors;
  1398. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1399. return 0; /* component must fit device */
  1400. if (rdev->sb_start < rdev->data_offset) {
  1401. /* minor versions 1 and 2; superblock before data */
  1402. max_sectors = rdev->bdev->bd_inode->i_size >> 9;
  1403. max_sectors -= rdev->data_offset;
  1404. if (!num_sectors || num_sectors > max_sectors)
  1405. num_sectors = max_sectors;
  1406. } else if (rdev->mddev->bitmap_info.offset) {
  1407. /* minor version 0 with bitmap we can't move */
  1408. return 0;
  1409. } else {
  1410. /* minor version 0; superblock after data */
  1411. sector_t sb_start;
  1412. sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
  1413. sb_start &= ~(sector_t)(4*2 - 1);
  1414. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1415. if (!num_sectors || num_sectors > max_sectors)
  1416. num_sectors = max_sectors;
  1417. rdev->sb_start = sb_start;
  1418. }
  1419. sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
  1420. sb->data_size = cpu_to_le64(num_sectors);
  1421. sb->super_offset = rdev->sb_start;
  1422. sb->sb_csum = calc_sb_1_csum(sb);
  1423. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1424. rdev->sb_page);
  1425. md_super_wait(rdev->mddev);
  1426. return num_sectors / 2; /* kB for sysfs */
  1427. }
  1428. static struct super_type super_types[] = {
  1429. [0] = {
  1430. .name = "0.90.0",
  1431. .owner = THIS_MODULE,
  1432. .load_super = super_90_load,
  1433. .validate_super = super_90_validate,
  1434. .sync_super = super_90_sync,
  1435. .rdev_size_change = super_90_rdev_size_change,
  1436. },
  1437. [1] = {
  1438. .name = "md-1",
  1439. .owner = THIS_MODULE,
  1440. .load_super = super_1_load,
  1441. .validate_super = super_1_validate,
  1442. .sync_super = super_1_sync,
  1443. .rdev_size_change = super_1_rdev_size_change,
  1444. },
  1445. };
  1446. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1447. {
  1448. mdk_rdev_t *rdev, *rdev2;
  1449. rcu_read_lock();
  1450. rdev_for_each_rcu(rdev, mddev1)
  1451. rdev_for_each_rcu(rdev2, mddev2)
  1452. if (rdev->bdev->bd_contains ==
  1453. rdev2->bdev->bd_contains) {
  1454. rcu_read_unlock();
  1455. return 1;
  1456. }
  1457. rcu_read_unlock();
  1458. return 0;
  1459. }
  1460. static LIST_HEAD(pending_raid_disks);
  1461. /*
  1462. * Try to register data integrity profile for an mddev
  1463. *
  1464. * This is called when an array is started and after a disk has been kicked
  1465. * from the array. It only succeeds if all working and active component devices
  1466. * are integrity capable with matching profiles.
  1467. */
  1468. int md_integrity_register(mddev_t *mddev)
  1469. {
  1470. mdk_rdev_t *rdev, *reference = NULL;
  1471. if (list_empty(&mddev->disks))
  1472. return 0; /* nothing to do */
  1473. if (blk_get_integrity(mddev->gendisk))
  1474. return 0; /* already registered */
  1475. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1476. /* skip spares and non-functional disks */
  1477. if (test_bit(Faulty, &rdev->flags))
  1478. continue;
  1479. if (rdev->raid_disk < 0)
  1480. continue;
  1481. /*
  1482. * If at least one rdev is not integrity capable, we can not
  1483. * enable data integrity for the md device.
  1484. */
  1485. if (!bdev_get_integrity(rdev->bdev))
  1486. return -EINVAL;
  1487. if (!reference) {
  1488. /* Use the first rdev as the reference */
  1489. reference = rdev;
  1490. continue;
  1491. }
  1492. /* does this rdev's profile match the reference profile? */
  1493. if (blk_integrity_compare(reference->bdev->bd_disk,
  1494. rdev->bdev->bd_disk) < 0)
  1495. return -EINVAL;
  1496. }
  1497. /*
  1498. * All component devices are integrity capable and have matching
  1499. * profiles, register the common profile for the md device.
  1500. */
  1501. if (blk_integrity_register(mddev->gendisk,
  1502. bdev_get_integrity(reference->bdev)) != 0) {
  1503. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1504. mdname(mddev));
  1505. return -EINVAL;
  1506. }
  1507. printk(KERN_NOTICE "md: data integrity on %s enabled\n",
  1508. mdname(mddev));
  1509. return 0;
  1510. }
  1511. EXPORT_SYMBOL(md_integrity_register);
  1512. /* Disable data integrity if non-capable/non-matching disk is being added */
  1513. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1514. {
  1515. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1516. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1517. if (!bi_mddev) /* nothing to do */
  1518. return;
  1519. if (rdev->raid_disk < 0) /* skip spares */
  1520. return;
  1521. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1522. rdev->bdev->bd_disk) >= 0)
  1523. return;
  1524. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1525. blk_integrity_unregister(mddev->gendisk);
  1526. }
  1527. EXPORT_SYMBOL(md_integrity_add_rdev);
  1528. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1529. {
  1530. char b[BDEVNAME_SIZE];
  1531. struct kobject *ko;
  1532. char *s;
  1533. int err;
  1534. if (rdev->mddev) {
  1535. MD_BUG();
  1536. return -EINVAL;
  1537. }
  1538. /* prevent duplicates */
  1539. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1540. return -EEXIST;
  1541. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1542. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1543. rdev->sectors < mddev->dev_sectors)) {
  1544. if (mddev->pers) {
  1545. /* Cannot change size, so fail
  1546. * If mddev->level <= 0, then we don't care
  1547. * about aligning sizes (e.g. linear)
  1548. */
  1549. if (mddev->level > 0)
  1550. return -ENOSPC;
  1551. } else
  1552. mddev->dev_sectors = rdev->sectors;
  1553. }
  1554. /* Verify rdev->desc_nr is unique.
  1555. * If it is -1, assign a free number, else
  1556. * check number is not in use
  1557. */
  1558. if (rdev->desc_nr < 0) {
  1559. int choice = 0;
  1560. if (mddev->pers) choice = mddev->raid_disks;
  1561. while (find_rdev_nr(mddev, choice))
  1562. choice++;
  1563. rdev->desc_nr = choice;
  1564. } else {
  1565. if (find_rdev_nr(mddev, rdev->desc_nr))
  1566. return -EBUSY;
  1567. }
  1568. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1569. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1570. mdname(mddev), mddev->max_disks);
  1571. return -EBUSY;
  1572. }
  1573. bdevname(rdev->bdev,b);
  1574. while ( (s=strchr(b, '/')) != NULL)
  1575. *s = '!';
  1576. rdev->mddev = mddev;
  1577. printk(KERN_INFO "md: bind<%s>\n", b);
  1578. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1579. goto fail;
  1580. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1581. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1582. kobject_del(&rdev->kobj);
  1583. goto fail;
  1584. }
  1585. rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
  1586. list_add_rcu(&rdev->same_set, &mddev->disks);
  1587. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1588. /* May as well allow recovery to be retried once */
  1589. mddev->recovery_disabled = 0;
  1590. return 0;
  1591. fail:
  1592. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1593. b, mdname(mddev));
  1594. return err;
  1595. }
  1596. static void md_delayed_delete(struct work_struct *ws)
  1597. {
  1598. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1599. kobject_del(&rdev->kobj);
  1600. kobject_put(&rdev->kobj);
  1601. }
  1602. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1603. {
  1604. char b[BDEVNAME_SIZE];
  1605. if (!rdev->mddev) {
  1606. MD_BUG();
  1607. return;
  1608. }
  1609. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1610. list_del_rcu(&rdev->same_set);
  1611. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1612. rdev->mddev = NULL;
  1613. sysfs_remove_link(&rdev->kobj, "block");
  1614. sysfs_put(rdev->sysfs_state);
  1615. rdev->sysfs_state = NULL;
  1616. /* We need to delay this, otherwise we can deadlock when
  1617. * writing to 'remove' to "dev/state". We also need
  1618. * to delay it due to rcu usage.
  1619. */
  1620. synchronize_rcu();
  1621. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1622. kobject_get(&rdev->kobj);
  1623. schedule_work(&rdev->del_work);
  1624. }
  1625. /*
  1626. * prevent the device from being mounted, repartitioned or
  1627. * otherwise reused by a RAID array (or any other kernel
  1628. * subsystem), by bd_claiming the device.
  1629. */
  1630. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1631. {
  1632. int err = 0;
  1633. struct block_device *bdev;
  1634. char b[BDEVNAME_SIZE];
  1635. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1636. if (IS_ERR(bdev)) {
  1637. printk(KERN_ERR "md: could not open %s.\n",
  1638. __bdevname(dev, b));
  1639. return PTR_ERR(bdev);
  1640. }
  1641. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1642. if (err) {
  1643. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1644. bdevname(bdev, b));
  1645. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1646. return err;
  1647. }
  1648. if (!shared)
  1649. set_bit(AllReserved, &rdev->flags);
  1650. rdev->bdev = bdev;
  1651. return err;
  1652. }
  1653. static void unlock_rdev(mdk_rdev_t *rdev)
  1654. {
  1655. struct block_device *bdev = rdev->bdev;
  1656. rdev->bdev = NULL;
  1657. if (!bdev)
  1658. MD_BUG();
  1659. bd_release(bdev);
  1660. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1661. }
  1662. void md_autodetect_dev(dev_t dev);
  1663. static void export_rdev(mdk_rdev_t * rdev)
  1664. {
  1665. char b[BDEVNAME_SIZE];
  1666. printk(KERN_INFO "md: export_rdev(%s)\n",
  1667. bdevname(rdev->bdev,b));
  1668. if (rdev->mddev)
  1669. MD_BUG();
  1670. free_disk_sb(rdev);
  1671. #ifndef MODULE
  1672. if (test_bit(AutoDetected, &rdev->flags))
  1673. md_autodetect_dev(rdev->bdev->bd_dev);
  1674. #endif
  1675. unlock_rdev(rdev);
  1676. kobject_put(&rdev->kobj);
  1677. }
  1678. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1679. {
  1680. unbind_rdev_from_array(rdev);
  1681. export_rdev(rdev);
  1682. }
  1683. static void export_array(mddev_t *mddev)
  1684. {
  1685. mdk_rdev_t *rdev, *tmp;
  1686. rdev_for_each(rdev, tmp, mddev) {
  1687. if (!rdev->mddev) {
  1688. MD_BUG();
  1689. continue;
  1690. }
  1691. kick_rdev_from_array(rdev);
  1692. }
  1693. if (!list_empty(&mddev->disks))
  1694. MD_BUG();
  1695. mddev->raid_disks = 0;
  1696. mddev->major_version = 0;
  1697. }
  1698. static void print_desc(mdp_disk_t *desc)
  1699. {
  1700. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1701. desc->major,desc->minor,desc->raid_disk,desc->state);
  1702. }
  1703. static void print_sb_90(mdp_super_t *sb)
  1704. {
  1705. int i;
  1706. printk(KERN_INFO
  1707. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1708. sb->major_version, sb->minor_version, sb->patch_version,
  1709. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1710. sb->ctime);
  1711. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1712. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1713. sb->md_minor, sb->layout, sb->chunk_size);
  1714. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1715. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1716. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1717. sb->failed_disks, sb->spare_disks,
  1718. sb->sb_csum, (unsigned long)sb->events_lo);
  1719. printk(KERN_INFO);
  1720. for (i = 0; i < MD_SB_DISKS; i++) {
  1721. mdp_disk_t *desc;
  1722. desc = sb->disks + i;
  1723. if (desc->number || desc->major || desc->minor ||
  1724. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1725. printk(" D %2d: ", i);
  1726. print_desc(desc);
  1727. }
  1728. }
  1729. printk(KERN_INFO "md: THIS: ");
  1730. print_desc(&sb->this_disk);
  1731. }
  1732. static void print_sb_1(struct mdp_superblock_1 *sb)
  1733. {
  1734. __u8 *uuid;
  1735. uuid = sb->set_uuid;
  1736. printk(KERN_INFO
  1737. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1738. "md: Name: \"%s\" CT:%llu\n",
  1739. le32_to_cpu(sb->major_version),
  1740. le32_to_cpu(sb->feature_map),
  1741. uuid,
  1742. sb->set_name,
  1743. (unsigned long long)le64_to_cpu(sb->ctime)
  1744. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1745. uuid = sb->device_uuid;
  1746. printk(KERN_INFO
  1747. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1748. " RO:%llu\n"
  1749. "md: Dev:%08x UUID: %pU\n"
  1750. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1751. "md: (MaxDev:%u) \n",
  1752. le32_to_cpu(sb->level),
  1753. (unsigned long long)le64_to_cpu(sb->size),
  1754. le32_to_cpu(sb->raid_disks),
  1755. le32_to_cpu(sb->layout),
  1756. le32_to_cpu(sb->chunksize),
  1757. (unsigned long long)le64_to_cpu(sb->data_offset),
  1758. (unsigned long long)le64_to_cpu(sb->data_size),
  1759. (unsigned long long)le64_to_cpu(sb->super_offset),
  1760. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1761. le32_to_cpu(sb->dev_number),
  1762. uuid,
  1763. sb->devflags,
  1764. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1765. (unsigned long long)le64_to_cpu(sb->events),
  1766. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1767. le32_to_cpu(sb->sb_csum),
  1768. le32_to_cpu(sb->max_dev)
  1769. );
  1770. }
  1771. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1772. {
  1773. char b[BDEVNAME_SIZE];
  1774. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1775. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1776. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1777. rdev->desc_nr);
  1778. if (rdev->sb_loaded) {
  1779. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1780. switch (major_version) {
  1781. case 0:
  1782. print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
  1783. break;
  1784. case 1:
  1785. print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
  1786. break;
  1787. }
  1788. } else
  1789. printk(KERN_INFO "md: no rdev superblock!\n");
  1790. }
  1791. static void md_print_devices(void)
  1792. {
  1793. struct list_head *tmp;
  1794. mdk_rdev_t *rdev;
  1795. mddev_t *mddev;
  1796. char b[BDEVNAME_SIZE];
  1797. printk("\n");
  1798. printk("md: **********************************\n");
  1799. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1800. printk("md: **********************************\n");
  1801. for_each_mddev(mddev, tmp) {
  1802. if (mddev->bitmap)
  1803. bitmap_print_sb(mddev->bitmap);
  1804. else
  1805. printk("%s: ", mdname(mddev));
  1806. list_for_each_entry(rdev, &mddev->disks, same_set)
  1807. printk("<%s>", bdevname(rdev->bdev,b));
  1808. printk("\n");
  1809. list_for_each_entry(rdev, &mddev->disks, same_set)
  1810. print_rdev(rdev, mddev->major_version);
  1811. }
  1812. printk("md: **********************************\n");
  1813. printk("\n");
  1814. }
  1815. static void sync_sbs(mddev_t * mddev, int nospares)
  1816. {
  1817. /* Update each superblock (in-memory image), but
  1818. * if we are allowed to, skip spares which already
  1819. * have the right event counter, or have one earlier
  1820. * (which would mean they aren't being marked as dirty
  1821. * with the rest of the array)
  1822. */
  1823. mdk_rdev_t *rdev;
  1824. /* First make sure individual recovery_offsets are correct */
  1825. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1826. if (rdev->raid_disk >= 0 &&
  1827. !test_bit(In_sync, &rdev->flags) &&
  1828. mddev->curr_resync_completed > rdev->recovery_offset)
  1829. rdev->recovery_offset = mddev->curr_resync_completed;
  1830. }
  1831. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1832. if (rdev->sb_events == mddev->events ||
  1833. (nospares &&
  1834. rdev->raid_disk < 0 &&
  1835. (rdev->sb_events&1)==0 &&
  1836. rdev->sb_events+1 == mddev->events)) {
  1837. /* Don't update this superblock */
  1838. rdev->sb_loaded = 2;
  1839. } else {
  1840. super_types[mddev->major_version].
  1841. sync_super(mddev, rdev);
  1842. rdev->sb_loaded = 1;
  1843. }
  1844. }
  1845. }
  1846. static void md_update_sb(mddev_t * mddev, int force_change)
  1847. {
  1848. mdk_rdev_t *rdev;
  1849. int sync_req;
  1850. int nospares = 0;
  1851. mddev->utime = get_seconds();
  1852. if (mddev->external)
  1853. return;
  1854. repeat:
  1855. spin_lock_irq(&mddev->write_lock);
  1856. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1857. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1858. force_change = 1;
  1859. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1860. /* just a clean<-> dirty transition, possibly leave spares alone,
  1861. * though if events isn't the right even/odd, we will have to do
  1862. * spares after all
  1863. */
  1864. nospares = 1;
  1865. if (force_change)
  1866. nospares = 0;
  1867. if (mddev->degraded)
  1868. /* If the array is degraded, then skipping spares is both
  1869. * dangerous and fairly pointless.
  1870. * Dangerous because a device that was removed from the array
  1871. * might have a event_count that still looks up-to-date,
  1872. * so it can be re-added without a resync.
  1873. * Pointless because if there are any spares to skip,
  1874. * then a recovery will happen and soon that array won't
  1875. * be degraded any more and the spare can go back to sleep then.
  1876. */
  1877. nospares = 0;
  1878. sync_req = mddev->in_sync;
  1879. /* If this is just a dirty<->clean transition, and the array is clean
  1880. * and 'events' is odd, we can roll back to the previous clean state */
  1881. if (nospares
  1882. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1883. && (mddev->events & 1)
  1884. && mddev->events != 1)
  1885. mddev->events--;
  1886. else {
  1887. /* otherwise we have to go forward and ... */
  1888. mddev->events ++;
  1889. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1890. /* .. if the array isn't clean, an 'even' event must also go
  1891. * to spares. */
  1892. if ((mddev->events&1)==0)
  1893. nospares = 0;
  1894. } else {
  1895. /* otherwise an 'odd' event must go to spares */
  1896. if ((mddev->events&1))
  1897. nospares = 0;
  1898. }
  1899. }
  1900. if (!mddev->events) {
  1901. /*
  1902. * oops, this 64-bit counter should never wrap.
  1903. * Either we are in around ~1 trillion A.C., assuming
  1904. * 1 reboot per second, or we have a bug:
  1905. */
  1906. MD_BUG();
  1907. mddev->events --;
  1908. }
  1909. /*
  1910. * do not write anything to disk if using
  1911. * nonpersistent superblocks
  1912. */
  1913. if (!mddev->persistent) {
  1914. if (!mddev->external)
  1915. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1916. spin_unlock_irq(&mddev->write_lock);
  1917. wake_up(&mddev->sb_wait);
  1918. return;
  1919. }
  1920. sync_sbs(mddev, nospares);
  1921. spin_unlock_irq(&mddev->write_lock);
  1922. dprintk(KERN_INFO
  1923. "md: updating %s RAID superblock on device (in sync %d)\n",
  1924. mdname(mddev),mddev->in_sync);
  1925. bitmap_update_sb(mddev->bitmap);
  1926. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1927. char b[BDEVNAME_SIZE];
  1928. dprintk(KERN_INFO "md: ");
  1929. if (rdev->sb_loaded != 1)
  1930. continue; /* no noise on spare devices */
  1931. if (test_bit(Faulty, &rdev->flags))
  1932. dprintk("(skipping faulty ");
  1933. dprintk("%s ", bdevname(rdev->bdev,b));
  1934. if (!test_bit(Faulty, &rdev->flags)) {
  1935. md_super_write(mddev,rdev,
  1936. rdev->sb_start, rdev->sb_size,
  1937. rdev->sb_page);
  1938. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1939. bdevname(rdev->bdev,b),
  1940. (unsigned long long)rdev->sb_start);
  1941. rdev->sb_events = mddev->events;
  1942. } else
  1943. dprintk(")\n");
  1944. if (mddev->level == LEVEL_MULTIPATH)
  1945. /* only need to write one superblock... */
  1946. break;
  1947. }
  1948. md_super_wait(mddev);
  1949. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1950. spin_lock_irq(&mddev->write_lock);
  1951. if (mddev->in_sync != sync_req ||
  1952. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1953. /* have to write it out again */
  1954. spin_unlock_irq(&mddev->write_lock);
  1955. goto repeat;
  1956. }
  1957. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1958. spin_unlock_irq(&mddev->write_lock);
  1959. wake_up(&mddev->sb_wait);
  1960. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  1961. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  1962. }
  1963. /* words written to sysfs files may, or may not, be \n terminated.
  1964. * We want to accept with case. For this we use cmd_match.
  1965. */
  1966. static int cmd_match(const char *cmd, const char *str)
  1967. {
  1968. /* See if cmd, written into a sysfs file, matches
  1969. * str. They must either be the same, or cmd can
  1970. * have a trailing newline
  1971. */
  1972. while (*cmd && *str && *cmd == *str) {
  1973. cmd++;
  1974. str++;
  1975. }
  1976. if (*cmd == '\n')
  1977. cmd++;
  1978. if (*str || *cmd)
  1979. return 0;
  1980. return 1;
  1981. }
  1982. struct rdev_sysfs_entry {
  1983. struct attribute attr;
  1984. ssize_t (*show)(mdk_rdev_t *, char *);
  1985. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1986. };
  1987. static ssize_t
  1988. state_show(mdk_rdev_t *rdev, char *page)
  1989. {
  1990. char *sep = "";
  1991. size_t len = 0;
  1992. if (test_bit(Faulty, &rdev->flags)) {
  1993. len+= sprintf(page+len, "%sfaulty",sep);
  1994. sep = ",";
  1995. }
  1996. if (test_bit(In_sync, &rdev->flags)) {
  1997. len += sprintf(page+len, "%sin_sync",sep);
  1998. sep = ",";
  1999. }
  2000. if (test_bit(WriteMostly, &rdev->flags)) {
  2001. len += sprintf(page+len, "%swrite_mostly",sep);
  2002. sep = ",";
  2003. }
  2004. if (test_bit(Blocked, &rdev->flags)) {
  2005. len += sprintf(page+len, "%sblocked", sep);
  2006. sep = ",";
  2007. }
  2008. if (!test_bit(Faulty, &rdev->flags) &&
  2009. !test_bit(In_sync, &rdev->flags)) {
  2010. len += sprintf(page+len, "%sspare", sep);
  2011. sep = ",";
  2012. }
  2013. return len+sprintf(page+len, "\n");
  2014. }
  2015. static ssize_t
  2016. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2017. {
  2018. /* can write
  2019. * faulty - simulates and error
  2020. * remove - disconnects the device
  2021. * writemostly - sets write_mostly
  2022. * -writemostly - clears write_mostly
  2023. * blocked - sets the Blocked flag
  2024. * -blocked - clears the Blocked flag
  2025. * insync - sets Insync providing device isn't active
  2026. */
  2027. int err = -EINVAL;
  2028. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2029. md_error(rdev->mddev, rdev);
  2030. err = 0;
  2031. } else if (cmd_match(buf, "remove")) {
  2032. if (rdev->raid_disk >= 0)
  2033. err = -EBUSY;
  2034. else {
  2035. mddev_t *mddev = rdev->mddev;
  2036. kick_rdev_from_array(rdev);
  2037. if (mddev->pers)
  2038. md_update_sb(mddev, 1);
  2039. md_new_event(mddev);
  2040. err = 0;
  2041. }
  2042. } else if (cmd_match(buf, "writemostly")) {
  2043. set_bit(WriteMostly, &rdev->flags);
  2044. err = 0;
  2045. } else if (cmd_match(buf, "-writemostly")) {
  2046. clear_bit(WriteMostly, &rdev->flags);
  2047. err = 0;
  2048. } else if (cmd_match(buf, "blocked")) {
  2049. set_bit(Blocked, &rdev->flags);
  2050. err = 0;
  2051. } else if (cmd_match(buf, "-blocked")) {
  2052. clear_bit(Blocked, &rdev->flags);
  2053. wake_up(&rdev->blocked_wait);
  2054. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2055. md_wakeup_thread(rdev->mddev->thread);
  2056. err = 0;
  2057. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2058. set_bit(In_sync, &rdev->flags);
  2059. err = 0;
  2060. }
  2061. if (!err && rdev->sysfs_state)
  2062. sysfs_notify_dirent(rdev->sysfs_state);
  2063. return err ? err : len;
  2064. }
  2065. static struct rdev_sysfs_entry rdev_state =
  2066. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2067. static ssize_t
  2068. errors_show(mdk_rdev_t *rdev, char *page)
  2069. {
  2070. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2071. }
  2072. static ssize_t
  2073. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2074. {
  2075. char *e;
  2076. unsigned long n = simple_strtoul(buf, &e, 10);
  2077. if (*buf && (*e == 0 || *e == '\n')) {
  2078. atomic_set(&rdev->corrected_errors, n);
  2079. return len;
  2080. }
  2081. return -EINVAL;
  2082. }
  2083. static struct rdev_sysfs_entry rdev_errors =
  2084. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2085. static ssize_t
  2086. slot_show(mdk_rdev_t *rdev, char *page)
  2087. {
  2088. if (rdev->raid_disk < 0)
  2089. return sprintf(page, "none\n");
  2090. else
  2091. return sprintf(page, "%d\n", rdev->raid_disk);
  2092. }
  2093. static ssize_t
  2094. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2095. {
  2096. char *e;
  2097. int err;
  2098. char nm[20];
  2099. int slot = simple_strtoul(buf, &e, 10);
  2100. if (strncmp(buf, "none", 4)==0)
  2101. slot = -1;
  2102. else if (e==buf || (*e && *e!= '\n'))
  2103. return -EINVAL;
  2104. if (rdev->mddev->pers && slot == -1) {
  2105. /* Setting 'slot' on an active array requires also
  2106. * updating the 'rd%d' link, and communicating
  2107. * with the personality with ->hot_*_disk.
  2108. * For now we only support removing
  2109. * failed/spare devices. This normally happens automatically,
  2110. * but not when the metadata is externally managed.
  2111. */
  2112. if (rdev->raid_disk == -1)
  2113. return -EEXIST;
  2114. /* personality does all needed checks */
  2115. if (rdev->mddev->pers->hot_add_disk == NULL)
  2116. return -EINVAL;
  2117. err = rdev->mddev->pers->
  2118. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2119. if (err)
  2120. return err;
  2121. sprintf(nm, "rd%d", rdev->raid_disk);
  2122. sysfs_remove_link(&rdev->mddev->kobj, nm);
  2123. rdev->raid_disk = -1;
  2124. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2125. md_wakeup_thread(rdev->mddev->thread);
  2126. } else if (rdev->mddev->pers) {
  2127. mdk_rdev_t *rdev2;
  2128. /* Activating a spare .. or possibly reactivating
  2129. * if we ever get bitmaps working here.
  2130. */
  2131. if (rdev->raid_disk != -1)
  2132. return -EBUSY;
  2133. if (rdev->mddev->pers->hot_add_disk == NULL)
  2134. return -EINVAL;
  2135. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2136. if (rdev2->raid_disk == slot)
  2137. return -EEXIST;
  2138. rdev->raid_disk = slot;
  2139. if (test_bit(In_sync, &rdev->flags))
  2140. rdev->saved_raid_disk = slot;
  2141. else
  2142. rdev->saved_raid_disk = -1;
  2143. err = rdev->mddev->pers->
  2144. hot_add_disk(rdev->mddev, rdev);
  2145. if (err) {
  2146. rdev->raid_disk = -1;
  2147. return err;
  2148. } else
  2149. sysfs_notify_dirent(rdev->sysfs_state);
  2150. sprintf(nm, "rd%d", rdev->raid_disk);
  2151. if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
  2152. printk(KERN_WARNING
  2153. "md: cannot register "
  2154. "%s for %s\n",
  2155. nm, mdname(rdev->mddev));
  2156. /* don't wakeup anyone, leave that to userspace. */
  2157. } else {
  2158. if (slot >= rdev->mddev->raid_disks)
  2159. return -ENOSPC;
  2160. rdev->raid_disk = slot;
  2161. /* assume it is working */
  2162. clear_bit(Faulty, &rdev->flags);
  2163. clear_bit(WriteMostly, &rdev->flags);
  2164. set_bit(In_sync, &rdev->flags);
  2165. sysfs_notify_dirent(rdev->sysfs_state);
  2166. }
  2167. return len;
  2168. }
  2169. static struct rdev_sysfs_entry rdev_slot =
  2170. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2171. static ssize_t
  2172. offset_show(mdk_rdev_t *rdev, char *page)
  2173. {
  2174. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2175. }
  2176. static ssize_t
  2177. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2178. {
  2179. char *e;
  2180. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2181. if (e==buf || (*e && *e != '\n'))
  2182. return -EINVAL;
  2183. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2184. return -EBUSY;
  2185. if (rdev->sectors && rdev->mddev->external)
  2186. /* Must set offset before size, so overlap checks
  2187. * can be sane */
  2188. return -EBUSY;
  2189. rdev->data_offset = offset;
  2190. return len;
  2191. }
  2192. static struct rdev_sysfs_entry rdev_offset =
  2193. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2194. static ssize_t
  2195. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2196. {
  2197. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2198. }
  2199. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2200. {
  2201. /* check if two start/length pairs overlap */
  2202. if (s1+l1 <= s2)
  2203. return 0;
  2204. if (s2+l2 <= s1)
  2205. return 0;
  2206. return 1;
  2207. }
  2208. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2209. {
  2210. unsigned long long blocks;
  2211. sector_t new;
  2212. if (strict_strtoull(buf, 10, &blocks) < 0)
  2213. return -EINVAL;
  2214. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2215. return -EINVAL; /* sector conversion overflow */
  2216. new = blocks * 2;
  2217. if (new != blocks * 2)
  2218. return -EINVAL; /* unsigned long long to sector_t overflow */
  2219. *sectors = new;
  2220. return 0;
  2221. }
  2222. static ssize_t
  2223. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2224. {
  2225. mddev_t *my_mddev = rdev->mddev;
  2226. sector_t oldsectors = rdev->sectors;
  2227. sector_t sectors;
  2228. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2229. return -EINVAL;
  2230. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2231. if (my_mddev->persistent) {
  2232. sectors = super_types[my_mddev->major_version].
  2233. rdev_size_change(rdev, sectors);
  2234. if (!sectors)
  2235. return -EBUSY;
  2236. } else if (!sectors)
  2237. sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  2238. rdev->data_offset;
  2239. }
  2240. if (sectors < my_mddev->dev_sectors)
  2241. return -EINVAL; /* component must fit device */
  2242. rdev->sectors = sectors;
  2243. if (sectors > oldsectors && my_mddev->external) {
  2244. /* need to check that all other rdevs with the same ->bdev
  2245. * do not overlap. We need to unlock the mddev to avoid
  2246. * a deadlock. We have already changed rdev->sectors, and if
  2247. * we have to change it back, we will have the lock again.
  2248. */
  2249. mddev_t *mddev;
  2250. int overlap = 0;
  2251. struct list_head *tmp;
  2252. mddev_unlock(my_mddev);
  2253. for_each_mddev(mddev, tmp) {
  2254. mdk_rdev_t *rdev2;
  2255. mddev_lock(mddev);
  2256. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2257. if (test_bit(AllReserved, &rdev2->flags) ||
  2258. (rdev->bdev == rdev2->bdev &&
  2259. rdev != rdev2 &&
  2260. overlaps(rdev->data_offset, rdev->sectors,
  2261. rdev2->data_offset,
  2262. rdev2->sectors))) {
  2263. overlap = 1;
  2264. break;
  2265. }
  2266. mddev_unlock(mddev);
  2267. if (overlap) {
  2268. mddev_put(mddev);
  2269. break;
  2270. }
  2271. }
  2272. mddev_lock(my_mddev);
  2273. if (overlap) {
  2274. /* Someone else could have slipped in a size
  2275. * change here, but doing so is just silly.
  2276. * We put oldsectors back because we *know* it is
  2277. * safe, and trust userspace not to race with
  2278. * itself
  2279. */
  2280. rdev->sectors = oldsectors;
  2281. return -EBUSY;
  2282. }
  2283. }
  2284. return len;
  2285. }
  2286. static struct rdev_sysfs_entry rdev_size =
  2287. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2288. static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
  2289. {
  2290. unsigned long long recovery_start = rdev->recovery_offset;
  2291. if (test_bit(In_sync, &rdev->flags) ||
  2292. recovery_start == MaxSector)
  2293. return sprintf(page, "none\n");
  2294. return sprintf(page, "%llu\n", recovery_start);
  2295. }
  2296. static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2297. {
  2298. unsigned long long recovery_start;
  2299. if (cmd_match(buf, "none"))
  2300. recovery_start = MaxSector;
  2301. else if (strict_strtoull(buf, 10, &recovery_start))
  2302. return -EINVAL;
  2303. if (rdev->mddev->pers &&
  2304. rdev->raid_disk >= 0)
  2305. return -EBUSY;
  2306. rdev->recovery_offset = recovery_start;
  2307. if (recovery_start == MaxSector)
  2308. set_bit(In_sync, &rdev->flags);
  2309. else
  2310. clear_bit(In_sync, &rdev->flags);
  2311. return len;
  2312. }
  2313. static struct rdev_sysfs_entry rdev_recovery_start =
  2314. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2315. static struct attribute *rdev_default_attrs[] = {
  2316. &rdev_state.attr,
  2317. &rdev_errors.attr,
  2318. &rdev_slot.attr,
  2319. &rdev_offset.attr,
  2320. &rdev_size.attr,
  2321. &rdev_recovery_start.attr,
  2322. NULL,
  2323. };
  2324. static ssize_t
  2325. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2326. {
  2327. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2328. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2329. mddev_t *mddev = rdev->mddev;
  2330. ssize_t rv;
  2331. if (!entry->show)
  2332. return -EIO;
  2333. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2334. if (!rv) {
  2335. if (rdev->mddev == NULL)
  2336. rv = -EBUSY;
  2337. else
  2338. rv = entry->show(rdev, page);
  2339. mddev_unlock(mddev);
  2340. }
  2341. return rv;
  2342. }
  2343. static ssize_t
  2344. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2345. const char *page, size_t length)
  2346. {
  2347. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2348. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2349. ssize_t rv;
  2350. mddev_t *mddev = rdev->mddev;
  2351. if (!entry->store)
  2352. return -EIO;
  2353. if (!capable(CAP_SYS_ADMIN))
  2354. return -EACCES;
  2355. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2356. if (!rv) {
  2357. if (rdev->mddev == NULL)
  2358. rv = -EBUSY;
  2359. else
  2360. rv = entry->store(rdev, page, length);
  2361. mddev_unlock(mddev);
  2362. }
  2363. return rv;
  2364. }
  2365. static void rdev_free(struct kobject *ko)
  2366. {
  2367. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2368. kfree(rdev);
  2369. }
  2370. static struct sysfs_ops rdev_sysfs_ops = {
  2371. .show = rdev_attr_show,
  2372. .store = rdev_attr_store,
  2373. };
  2374. static struct kobj_type rdev_ktype = {
  2375. .release = rdev_free,
  2376. .sysfs_ops = &rdev_sysfs_ops,
  2377. .default_attrs = rdev_default_attrs,
  2378. };
  2379. /*
  2380. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2381. *
  2382. * mark the device faulty if:
  2383. *
  2384. * - the device is nonexistent (zero size)
  2385. * - the device has no valid superblock
  2386. *
  2387. * a faulty rdev _never_ has rdev->sb set.
  2388. */
  2389. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2390. {
  2391. char b[BDEVNAME_SIZE];
  2392. int err;
  2393. mdk_rdev_t *rdev;
  2394. sector_t size;
  2395. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2396. if (!rdev) {
  2397. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2398. return ERR_PTR(-ENOMEM);
  2399. }
  2400. if ((err = alloc_disk_sb(rdev)))
  2401. goto abort_free;
  2402. err = lock_rdev(rdev, newdev, super_format == -2);
  2403. if (err)
  2404. goto abort_free;
  2405. kobject_init(&rdev->kobj, &rdev_ktype);
  2406. rdev->desc_nr = -1;
  2407. rdev->saved_raid_disk = -1;
  2408. rdev->raid_disk = -1;
  2409. rdev->flags = 0;
  2410. rdev->data_offset = 0;
  2411. rdev->sb_events = 0;
  2412. rdev->last_read_error.tv_sec = 0;
  2413. rdev->last_read_error.tv_nsec = 0;
  2414. atomic_set(&rdev->nr_pending, 0);
  2415. atomic_set(&rdev->read_errors, 0);
  2416. atomic_set(&rdev->corrected_errors, 0);
  2417. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2418. if (!size) {
  2419. printk(KERN_WARNING
  2420. "md: %s has zero or unknown size, marking faulty!\n",
  2421. bdevname(rdev->bdev,b));
  2422. err = -EINVAL;
  2423. goto abort_free;
  2424. }
  2425. if (super_format >= 0) {
  2426. err = super_types[super_format].
  2427. load_super(rdev, NULL, super_minor);
  2428. if (err == -EINVAL) {
  2429. printk(KERN_WARNING
  2430. "md: %s does not have a valid v%d.%d "
  2431. "superblock, not importing!\n",
  2432. bdevname(rdev->bdev,b),
  2433. super_format, super_minor);
  2434. goto abort_free;
  2435. }
  2436. if (err < 0) {
  2437. printk(KERN_WARNING
  2438. "md: could not read %s's sb, not importing!\n",
  2439. bdevname(rdev->bdev,b));
  2440. goto abort_free;
  2441. }
  2442. }
  2443. INIT_LIST_HEAD(&rdev->same_set);
  2444. init_waitqueue_head(&rdev->blocked_wait);
  2445. return rdev;
  2446. abort_free:
  2447. if (rdev->sb_page) {
  2448. if (rdev->bdev)
  2449. unlock_rdev(rdev);
  2450. free_disk_sb(rdev);
  2451. }
  2452. kfree(rdev);
  2453. return ERR_PTR(err);
  2454. }
  2455. /*
  2456. * Check a full RAID array for plausibility
  2457. */
  2458. static void analyze_sbs(mddev_t * mddev)
  2459. {
  2460. int i;
  2461. mdk_rdev_t *rdev, *freshest, *tmp;
  2462. char b[BDEVNAME_SIZE];
  2463. freshest = NULL;
  2464. rdev_for_each(rdev, tmp, mddev)
  2465. switch (super_types[mddev->major_version].
  2466. load_super(rdev, freshest, mddev->minor_version)) {
  2467. case 1:
  2468. freshest = rdev;
  2469. break;
  2470. case 0:
  2471. break;
  2472. default:
  2473. printk( KERN_ERR \
  2474. "md: fatal superblock inconsistency in %s"
  2475. " -- removing from array\n",
  2476. bdevname(rdev->bdev,b));
  2477. kick_rdev_from_array(rdev);
  2478. }
  2479. super_types[mddev->major_version].
  2480. validate_super(mddev, freshest);
  2481. i = 0;
  2482. rdev_for_each(rdev, tmp, mddev) {
  2483. if (mddev->max_disks &&
  2484. (rdev->desc_nr >= mddev->max_disks ||
  2485. i > mddev->max_disks)) {
  2486. printk(KERN_WARNING
  2487. "md: %s: %s: only %d devices permitted\n",
  2488. mdname(mddev), bdevname(rdev->bdev, b),
  2489. mddev->max_disks);
  2490. kick_rdev_from_array(rdev);
  2491. continue;
  2492. }
  2493. if (rdev != freshest)
  2494. if (super_types[mddev->major_version].
  2495. validate_super(mddev, rdev)) {
  2496. printk(KERN_WARNING "md: kicking non-fresh %s"
  2497. " from array!\n",
  2498. bdevname(rdev->bdev,b));
  2499. kick_rdev_from_array(rdev);
  2500. continue;
  2501. }
  2502. if (mddev->level == LEVEL_MULTIPATH) {
  2503. rdev->desc_nr = i++;
  2504. rdev->raid_disk = rdev->desc_nr;
  2505. set_bit(In_sync, &rdev->flags);
  2506. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2507. rdev->raid_disk = -1;
  2508. clear_bit(In_sync, &rdev->flags);
  2509. }
  2510. }
  2511. }
  2512. /* Read a fixed-point number.
  2513. * Numbers in sysfs attributes should be in "standard" units where
  2514. * possible, so time should be in seconds.
  2515. * However we internally use a a much smaller unit such as
  2516. * milliseconds or jiffies.
  2517. * This function takes a decimal number with a possible fractional
  2518. * component, and produces an integer which is the result of
  2519. * multiplying that number by 10^'scale'.
  2520. * all without any floating-point arithmetic.
  2521. */
  2522. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2523. {
  2524. unsigned long result = 0;
  2525. long decimals = -1;
  2526. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2527. if (*cp == '.')
  2528. decimals = 0;
  2529. else if (decimals < scale) {
  2530. unsigned int value;
  2531. value = *cp - '0';
  2532. result = result * 10 + value;
  2533. if (decimals >= 0)
  2534. decimals++;
  2535. }
  2536. cp++;
  2537. }
  2538. if (*cp == '\n')
  2539. cp++;
  2540. if (*cp)
  2541. return -EINVAL;
  2542. if (decimals < 0)
  2543. decimals = 0;
  2544. while (decimals < scale) {
  2545. result *= 10;
  2546. decimals ++;
  2547. }
  2548. *res = result;
  2549. return 0;
  2550. }
  2551. static void md_safemode_timeout(unsigned long data);
  2552. static ssize_t
  2553. safe_delay_show(mddev_t *mddev, char *page)
  2554. {
  2555. int msec = (mddev->safemode_delay*1000)/HZ;
  2556. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2557. }
  2558. static ssize_t
  2559. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2560. {
  2561. unsigned long msec;
  2562. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2563. return -EINVAL;
  2564. if (msec == 0)
  2565. mddev->safemode_delay = 0;
  2566. else {
  2567. unsigned long old_delay = mddev->safemode_delay;
  2568. mddev->safemode_delay = (msec*HZ)/1000;
  2569. if (mddev->safemode_delay == 0)
  2570. mddev->safemode_delay = 1;
  2571. if (mddev->safemode_delay < old_delay)
  2572. md_safemode_timeout((unsigned long)mddev);
  2573. }
  2574. return len;
  2575. }
  2576. static struct md_sysfs_entry md_safe_delay =
  2577. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2578. static ssize_t
  2579. level_show(mddev_t *mddev, char *page)
  2580. {
  2581. struct mdk_personality *p = mddev->pers;
  2582. if (p)
  2583. return sprintf(page, "%s\n", p->name);
  2584. else if (mddev->clevel[0])
  2585. return sprintf(page, "%s\n", mddev->clevel);
  2586. else if (mddev->level != LEVEL_NONE)
  2587. return sprintf(page, "%d\n", mddev->level);
  2588. else
  2589. return 0;
  2590. }
  2591. static ssize_t
  2592. level_store(mddev_t *mddev, const char *buf, size_t len)
  2593. {
  2594. char level[16];
  2595. ssize_t rv = len;
  2596. struct mdk_personality *pers;
  2597. void *priv;
  2598. mdk_rdev_t *rdev;
  2599. if (mddev->pers == NULL) {
  2600. if (len == 0)
  2601. return 0;
  2602. if (len >= sizeof(mddev->clevel))
  2603. return -ENOSPC;
  2604. strncpy(mddev->clevel, buf, len);
  2605. if (mddev->clevel[len-1] == '\n')
  2606. len--;
  2607. mddev->clevel[len] = 0;
  2608. mddev->level = LEVEL_NONE;
  2609. return rv;
  2610. }
  2611. /* request to change the personality. Need to ensure:
  2612. * - array is not engaged in resync/recovery/reshape
  2613. * - old personality can be suspended
  2614. * - new personality will access other array.
  2615. */
  2616. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  2617. return -EBUSY;
  2618. if (!mddev->pers->quiesce) {
  2619. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2620. mdname(mddev), mddev->pers->name);
  2621. return -EINVAL;
  2622. }
  2623. /* Now find the new personality */
  2624. if (len == 0 || len >= sizeof(level))
  2625. return -EINVAL;
  2626. strncpy(level, buf, len);
  2627. if (level[len-1] == '\n')
  2628. len--;
  2629. level[len] = 0;
  2630. request_module("md-%s", level);
  2631. spin_lock(&pers_lock);
  2632. pers = find_pers(LEVEL_NONE, level);
  2633. if (!pers || !try_module_get(pers->owner)) {
  2634. spin_unlock(&pers_lock);
  2635. printk(KERN_WARNING "md: personality %s not loaded\n", level);
  2636. return -EINVAL;
  2637. }
  2638. spin_unlock(&pers_lock);
  2639. if (pers == mddev->pers) {
  2640. /* Nothing to do! */
  2641. module_put(pers->owner);
  2642. return rv;
  2643. }
  2644. if (!pers->takeover) {
  2645. module_put(pers->owner);
  2646. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2647. mdname(mddev), level);
  2648. return -EINVAL;
  2649. }
  2650. /* ->takeover must set new_* and/or delta_disks
  2651. * if it succeeds, and may set them when it fails.
  2652. */
  2653. priv = pers->takeover(mddev);
  2654. if (IS_ERR(priv)) {
  2655. mddev->new_level = mddev->level;
  2656. mddev->new_layout = mddev->layout;
  2657. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2658. mddev->raid_disks -= mddev->delta_disks;
  2659. mddev->delta_disks = 0;
  2660. module_put(pers->owner);
  2661. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2662. mdname(mddev), level);
  2663. return PTR_ERR(priv);
  2664. }
  2665. /* Looks like we have a winner */
  2666. mddev_suspend(mddev);
  2667. mddev->pers->stop(mddev);
  2668. if (mddev->pers->sync_request == NULL &&
  2669. pers->sync_request != NULL) {
  2670. /* need to add the md_redundancy_group */
  2671. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2672. printk(KERN_WARNING
  2673. "md: cannot register extra attributes for %s\n",
  2674. mdname(mddev));
  2675. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  2676. }
  2677. if (mddev->pers->sync_request != NULL &&
  2678. pers->sync_request == NULL) {
  2679. /* need to remove the md_redundancy_group */
  2680. if (mddev->to_remove == NULL)
  2681. mddev->to_remove = &md_redundancy_group;
  2682. }
  2683. if (mddev->pers->sync_request == NULL &&
  2684. mddev->external) {
  2685. /* We are converting from a no-redundancy array
  2686. * to a redundancy array and metadata is managed
  2687. * externally so we need to be sure that writes
  2688. * won't block due to a need to transition
  2689. * clean->dirty
  2690. * until external management is started.
  2691. */
  2692. mddev->in_sync = 0;
  2693. mddev->safemode_delay = 0;
  2694. mddev->safemode = 0;
  2695. }
  2696. module_put(mddev->pers->owner);
  2697. /* Invalidate devices that are now superfluous */
  2698. list_for_each_entry(rdev, &mddev->disks, same_set)
  2699. if (rdev->raid_disk >= mddev->raid_disks) {
  2700. rdev->raid_disk = -1;
  2701. clear_bit(In_sync, &rdev->flags);
  2702. }
  2703. mddev->pers = pers;
  2704. mddev->private = priv;
  2705. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2706. mddev->level = mddev->new_level;
  2707. mddev->layout = mddev->new_layout;
  2708. mddev->chunk_sectors = mddev->new_chunk_sectors;
  2709. mddev->delta_disks = 0;
  2710. if (mddev->pers->sync_request == NULL) {
  2711. /* this is now an array without redundancy, so
  2712. * it must always be in_sync
  2713. */
  2714. mddev->in_sync = 1;
  2715. del_timer_sync(&mddev->safemode_timer);
  2716. }
  2717. pers->run(mddev);
  2718. mddev_resume(mddev);
  2719. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2720. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2721. md_wakeup_thread(mddev->thread);
  2722. sysfs_notify(&mddev->kobj, NULL, "level");
  2723. return rv;
  2724. }
  2725. static struct md_sysfs_entry md_level =
  2726. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2727. static ssize_t
  2728. layout_show(mddev_t *mddev, char *page)
  2729. {
  2730. /* just a number, not meaningful for all levels */
  2731. if (mddev->reshape_position != MaxSector &&
  2732. mddev->layout != mddev->new_layout)
  2733. return sprintf(page, "%d (%d)\n",
  2734. mddev->new_layout, mddev->layout);
  2735. return sprintf(page, "%d\n", mddev->layout);
  2736. }
  2737. static ssize_t
  2738. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2739. {
  2740. char *e;
  2741. unsigned long n = simple_strtoul(buf, &e, 10);
  2742. if (!*buf || (*e && *e != '\n'))
  2743. return -EINVAL;
  2744. if (mddev->pers) {
  2745. int err;
  2746. if (mddev->pers->check_reshape == NULL)
  2747. return -EBUSY;
  2748. mddev->new_layout = n;
  2749. err = mddev->pers->check_reshape(mddev);
  2750. if (err) {
  2751. mddev->new_layout = mddev->layout;
  2752. return err;
  2753. }
  2754. } else {
  2755. mddev->new_layout = n;
  2756. if (mddev->reshape_position == MaxSector)
  2757. mddev->layout = n;
  2758. }
  2759. return len;
  2760. }
  2761. static struct md_sysfs_entry md_layout =
  2762. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2763. static ssize_t
  2764. raid_disks_show(mddev_t *mddev, char *page)
  2765. {
  2766. if (mddev->raid_disks == 0)
  2767. return 0;
  2768. if (mddev->reshape_position != MaxSector &&
  2769. mddev->delta_disks != 0)
  2770. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2771. mddev->raid_disks - mddev->delta_disks);
  2772. return sprintf(page, "%d\n", mddev->raid_disks);
  2773. }
  2774. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2775. static ssize_t
  2776. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2777. {
  2778. char *e;
  2779. int rv = 0;
  2780. unsigned long n = simple_strtoul(buf, &e, 10);
  2781. if (!*buf || (*e && *e != '\n'))
  2782. return -EINVAL;
  2783. if (mddev->pers)
  2784. rv = update_raid_disks(mddev, n);
  2785. else if (mddev->reshape_position != MaxSector) {
  2786. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2787. mddev->delta_disks = n - olddisks;
  2788. mddev->raid_disks = n;
  2789. } else
  2790. mddev->raid_disks = n;
  2791. return rv ? rv : len;
  2792. }
  2793. static struct md_sysfs_entry md_raid_disks =
  2794. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2795. static ssize_t
  2796. chunk_size_show(mddev_t *mddev, char *page)
  2797. {
  2798. if (mddev->reshape_position != MaxSector &&
  2799. mddev->chunk_sectors != mddev->new_chunk_sectors)
  2800. return sprintf(page, "%d (%d)\n",
  2801. mddev->new_chunk_sectors << 9,
  2802. mddev->chunk_sectors << 9);
  2803. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  2804. }
  2805. static ssize_t
  2806. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2807. {
  2808. char *e;
  2809. unsigned long n = simple_strtoul(buf, &e, 10);
  2810. if (!*buf || (*e && *e != '\n'))
  2811. return -EINVAL;
  2812. if (mddev->pers) {
  2813. int err;
  2814. if (mddev->pers->check_reshape == NULL)
  2815. return -EBUSY;
  2816. mddev->new_chunk_sectors = n >> 9;
  2817. err = mddev->pers->check_reshape(mddev);
  2818. if (err) {
  2819. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2820. return err;
  2821. }
  2822. } else {
  2823. mddev->new_chunk_sectors = n >> 9;
  2824. if (mddev->reshape_position == MaxSector)
  2825. mddev->chunk_sectors = n >> 9;
  2826. }
  2827. return len;
  2828. }
  2829. static struct md_sysfs_entry md_chunk_size =
  2830. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2831. static ssize_t
  2832. resync_start_show(mddev_t *mddev, char *page)
  2833. {
  2834. if (mddev->recovery_cp == MaxSector)
  2835. return sprintf(page, "none\n");
  2836. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2837. }
  2838. static ssize_t
  2839. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2840. {
  2841. char *e;
  2842. unsigned long long n = simple_strtoull(buf, &e, 10);
  2843. if (mddev->pers)
  2844. return -EBUSY;
  2845. if (cmd_match(buf, "none"))
  2846. n = MaxSector;
  2847. else if (!*buf || (*e && *e != '\n'))
  2848. return -EINVAL;
  2849. mddev->recovery_cp = n;
  2850. return len;
  2851. }
  2852. static struct md_sysfs_entry md_resync_start =
  2853. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2854. /*
  2855. * The array state can be:
  2856. *
  2857. * clear
  2858. * No devices, no size, no level
  2859. * Equivalent to STOP_ARRAY ioctl
  2860. * inactive
  2861. * May have some settings, but array is not active
  2862. * all IO results in error
  2863. * When written, doesn't tear down array, but just stops it
  2864. * suspended (not supported yet)
  2865. * All IO requests will block. The array can be reconfigured.
  2866. * Writing this, if accepted, will block until array is quiescent
  2867. * readonly
  2868. * no resync can happen. no superblocks get written.
  2869. * write requests fail
  2870. * read-auto
  2871. * like readonly, but behaves like 'clean' on a write request.
  2872. *
  2873. * clean - no pending writes, but otherwise active.
  2874. * When written to inactive array, starts without resync
  2875. * If a write request arrives then
  2876. * if metadata is known, mark 'dirty' and switch to 'active'.
  2877. * if not known, block and switch to write-pending
  2878. * If written to an active array that has pending writes, then fails.
  2879. * active
  2880. * fully active: IO and resync can be happening.
  2881. * When written to inactive array, starts with resync
  2882. *
  2883. * write-pending
  2884. * clean, but writes are blocked waiting for 'active' to be written.
  2885. *
  2886. * active-idle
  2887. * like active, but no writes have been seen for a while (100msec).
  2888. *
  2889. */
  2890. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2891. write_pending, active_idle, bad_word};
  2892. static char *array_states[] = {
  2893. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2894. "write-pending", "active-idle", NULL };
  2895. static int match_word(const char *word, char **list)
  2896. {
  2897. int n;
  2898. for (n=0; list[n]; n++)
  2899. if (cmd_match(word, list[n]))
  2900. break;
  2901. return n;
  2902. }
  2903. static ssize_t
  2904. array_state_show(mddev_t *mddev, char *page)
  2905. {
  2906. enum array_state st = inactive;
  2907. if (mddev->pers)
  2908. switch(mddev->ro) {
  2909. case 1:
  2910. st = readonly;
  2911. break;
  2912. case 2:
  2913. st = read_auto;
  2914. break;
  2915. case 0:
  2916. if (mddev->in_sync)
  2917. st = clean;
  2918. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2919. st = write_pending;
  2920. else if (mddev->safemode)
  2921. st = active_idle;
  2922. else
  2923. st = active;
  2924. }
  2925. else {
  2926. if (list_empty(&mddev->disks) &&
  2927. mddev->raid_disks == 0 &&
  2928. mddev->dev_sectors == 0)
  2929. st = clear;
  2930. else
  2931. st = inactive;
  2932. }
  2933. return sprintf(page, "%s\n", array_states[st]);
  2934. }
  2935. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  2936. static int md_set_readonly(mddev_t * mddev, int is_open);
  2937. static int do_md_run(mddev_t * mddev);
  2938. static int restart_array(mddev_t *mddev);
  2939. static ssize_t
  2940. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2941. {
  2942. int err = -EINVAL;
  2943. enum array_state st = match_word(buf, array_states);
  2944. switch(st) {
  2945. case bad_word:
  2946. break;
  2947. case clear:
  2948. /* stopping an active array */
  2949. if (atomic_read(&mddev->openers) > 0)
  2950. return -EBUSY;
  2951. err = do_md_stop(mddev, 0, 0);
  2952. break;
  2953. case inactive:
  2954. /* stopping an active array */
  2955. if (mddev->pers) {
  2956. if (atomic_read(&mddev->openers) > 0)
  2957. return -EBUSY;
  2958. err = do_md_stop(mddev, 2, 0);
  2959. } else
  2960. err = 0; /* already inactive */
  2961. break;
  2962. case suspended:
  2963. break; /* not supported yet */
  2964. case readonly:
  2965. if (mddev->pers)
  2966. err = md_set_readonly(mddev, 0);
  2967. else {
  2968. mddev->ro = 1;
  2969. set_disk_ro(mddev->gendisk, 1);
  2970. err = do_md_run(mddev);
  2971. }
  2972. break;
  2973. case read_auto:
  2974. if (mddev->pers) {
  2975. if (mddev->ro == 0)
  2976. err = md_set_readonly(mddev, 0);
  2977. else if (mddev->ro == 1)
  2978. err = restart_array(mddev);
  2979. if (err == 0) {
  2980. mddev->ro = 2;
  2981. set_disk_ro(mddev->gendisk, 0);
  2982. }
  2983. } else {
  2984. mddev->ro = 2;
  2985. err = do_md_run(mddev);
  2986. }
  2987. break;
  2988. case clean:
  2989. if (mddev->pers) {
  2990. restart_array(mddev);
  2991. spin_lock_irq(&mddev->write_lock);
  2992. if (atomic_read(&mddev->writes_pending) == 0) {
  2993. if (mddev->in_sync == 0) {
  2994. mddev->in_sync = 1;
  2995. if (mddev->safemode == 1)
  2996. mddev->safemode = 0;
  2997. if (mddev->persistent)
  2998. set_bit(MD_CHANGE_CLEAN,
  2999. &mddev->flags);
  3000. }
  3001. err = 0;
  3002. } else
  3003. err = -EBUSY;
  3004. spin_unlock_irq(&mddev->write_lock);
  3005. } else
  3006. err = -EINVAL;
  3007. break;
  3008. case active:
  3009. if (mddev->pers) {
  3010. restart_array(mddev);
  3011. if (mddev->external)
  3012. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3013. wake_up(&mddev->sb_wait);
  3014. err = 0;
  3015. } else {
  3016. mddev->ro = 0;
  3017. set_disk_ro(mddev->gendisk, 0);
  3018. err = do_md_run(mddev);
  3019. }
  3020. break;
  3021. case write_pending:
  3022. case active_idle:
  3023. /* these cannot be set */
  3024. break;
  3025. }
  3026. if (err)
  3027. return err;
  3028. else {
  3029. sysfs_notify_dirent(mddev->sysfs_state);
  3030. return len;
  3031. }
  3032. }
  3033. static struct md_sysfs_entry md_array_state =
  3034. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3035. static ssize_t
  3036. max_corrected_read_errors_show(mddev_t *mddev, char *page) {
  3037. return sprintf(page, "%d\n",
  3038. atomic_read(&mddev->max_corr_read_errors));
  3039. }
  3040. static ssize_t
  3041. max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
  3042. {
  3043. char *e;
  3044. unsigned long n = simple_strtoul(buf, &e, 10);
  3045. if (*buf && (*e == 0 || *e == '\n')) {
  3046. atomic_set(&mddev->max_corr_read_errors, n);
  3047. return len;
  3048. }
  3049. return -EINVAL;
  3050. }
  3051. static struct md_sysfs_entry max_corr_read_errors =
  3052. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3053. max_corrected_read_errors_store);
  3054. static ssize_t
  3055. null_show(mddev_t *mddev, char *page)
  3056. {
  3057. return -EINVAL;
  3058. }
  3059. static ssize_t
  3060. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  3061. {
  3062. /* buf must be %d:%d\n? giving major and minor numbers */
  3063. /* The new device is added to the array.
  3064. * If the array has a persistent superblock, we read the
  3065. * superblock to initialise info and check validity.
  3066. * Otherwise, only checking done is that in bind_rdev_to_array,
  3067. * which mainly checks size.
  3068. */
  3069. char *e;
  3070. int major = simple_strtoul(buf, &e, 10);
  3071. int minor;
  3072. dev_t dev;
  3073. mdk_rdev_t *rdev;
  3074. int err;
  3075. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3076. return -EINVAL;
  3077. minor = simple_strtoul(e+1, &e, 10);
  3078. if (*e && *e != '\n')
  3079. return -EINVAL;
  3080. dev = MKDEV(major, minor);
  3081. if (major != MAJOR(dev) ||
  3082. minor != MINOR(dev))
  3083. return -EOVERFLOW;
  3084. if (mddev->persistent) {
  3085. rdev = md_import_device(dev, mddev->major_version,
  3086. mddev->minor_version);
  3087. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3088. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3089. mdk_rdev_t, same_set);
  3090. err = super_types[mddev->major_version]
  3091. .load_super(rdev, rdev0, mddev->minor_version);
  3092. if (err < 0)
  3093. goto out;
  3094. }
  3095. } else if (mddev->external)
  3096. rdev = md_import_device(dev, -2, -1);
  3097. else
  3098. rdev = md_import_device(dev, -1, -1);
  3099. if (IS_ERR(rdev))
  3100. return PTR_ERR(rdev);
  3101. err = bind_rdev_to_array(rdev, mddev);
  3102. out:
  3103. if (err)
  3104. export_rdev(rdev);
  3105. return err ? err : len;
  3106. }
  3107. static struct md_sysfs_entry md_new_device =
  3108. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3109. static ssize_t
  3110. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  3111. {
  3112. char *end;
  3113. unsigned long chunk, end_chunk;
  3114. if (!mddev->bitmap)
  3115. goto out;
  3116. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3117. while (*buf) {
  3118. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3119. if (buf == end) break;
  3120. if (*end == '-') { /* range */
  3121. buf = end + 1;
  3122. end_chunk = simple_strtoul(buf, &end, 0);
  3123. if (buf == end) break;
  3124. }
  3125. if (*end && !isspace(*end)) break;
  3126. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3127. buf = skip_spaces(end);
  3128. }
  3129. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3130. out:
  3131. return len;
  3132. }
  3133. static struct md_sysfs_entry md_bitmap =
  3134. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3135. static ssize_t
  3136. size_show(mddev_t *mddev, char *page)
  3137. {
  3138. return sprintf(page, "%llu\n",
  3139. (unsigned long long)mddev->dev_sectors / 2);
  3140. }
  3141. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3142. static ssize_t
  3143. size_store(mddev_t *mddev, const char *buf, size_t len)
  3144. {
  3145. /* If array is inactive, we can reduce the component size, but
  3146. * not increase it (except from 0).
  3147. * If array is active, we can try an on-line resize
  3148. */
  3149. sector_t sectors;
  3150. int err = strict_blocks_to_sectors(buf, &sectors);
  3151. if (err < 0)
  3152. return err;
  3153. if (mddev->pers) {
  3154. err = update_size(mddev, sectors);
  3155. md_update_sb(mddev, 1);
  3156. } else {
  3157. if (mddev->dev_sectors == 0 ||
  3158. mddev->dev_sectors > sectors)
  3159. mddev->dev_sectors = sectors;
  3160. else
  3161. err = -ENOSPC;
  3162. }
  3163. return err ? err : len;
  3164. }
  3165. static struct md_sysfs_entry md_size =
  3166. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3167. /* Metdata version.
  3168. * This is one of
  3169. * 'none' for arrays with no metadata (good luck...)
  3170. * 'external' for arrays with externally managed metadata,
  3171. * or N.M for internally known formats
  3172. */
  3173. static ssize_t
  3174. metadata_show(mddev_t *mddev, char *page)
  3175. {
  3176. if (mddev->persistent)
  3177. return sprintf(page, "%d.%d\n",
  3178. mddev->major_version, mddev->minor_version);
  3179. else if (mddev->external)
  3180. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3181. else
  3182. return sprintf(page, "none\n");
  3183. }
  3184. static ssize_t
  3185. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3186. {
  3187. int major, minor;
  3188. char *e;
  3189. /* Changing the details of 'external' metadata is
  3190. * always permitted. Otherwise there must be
  3191. * no devices attached to the array.
  3192. */
  3193. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3194. ;
  3195. else if (!list_empty(&mddev->disks))
  3196. return -EBUSY;
  3197. if (cmd_match(buf, "none")) {
  3198. mddev->persistent = 0;
  3199. mddev->external = 0;
  3200. mddev->major_version = 0;
  3201. mddev->minor_version = 90;
  3202. return len;
  3203. }
  3204. if (strncmp(buf, "external:", 9) == 0) {
  3205. size_t namelen = len-9;
  3206. if (namelen >= sizeof(mddev->metadata_type))
  3207. namelen = sizeof(mddev->metadata_type)-1;
  3208. strncpy(mddev->metadata_type, buf+9, namelen);
  3209. mddev->metadata_type[namelen] = 0;
  3210. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3211. mddev->metadata_type[--namelen] = 0;
  3212. mddev->persistent = 0;
  3213. mddev->external = 1;
  3214. mddev->major_version = 0;
  3215. mddev->minor_version = 90;
  3216. return len;
  3217. }
  3218. major = simple_strtoul(buf, &e, 10);
  3219. if (e==buf || *e != '.')
  3220. return -EINVAL;
  3221. buf = e+1;
  3222. minor = simple_strtoul(buf, &e, 10);
  3223. if (e==buf || (*e && *e != '\n') )
  3224. return -EINVAL;
  3225. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3226. return -ENOENT;
  3227. mddev->major_version = major;
  3228. mddev->minor_version = minor;
  3229. mddev->persistent = 1;
  3230. mddev->external = 0;
  3231. return len;
  3232. }
  3233. static struct md_sysfs_entry md_metadata =
  3234. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3235. static ssize_t
  3236. action_show(mddev_t *mddev, char *page)
  3237. {
  3238. char *type = "idle";
  3239. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3240. type = "frozen";
  3241. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3242. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3243. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3244. type = "reshape";
  3245. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3246. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3247. type = "resync";
  3248. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3249. type = "check";
  3250. else
  3251. type = "repair";
  3252. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3253. type = "recover";
  3254. }
  3255. return sprintf(page, "%s\n", type);
  3256. }
  3257. static ssize_t
  3258. action_store(mddev_t *mddev, const char *page, size_t len)
  3259. {
  3260. if (!mddev->pers || !mddev->pers->sync_request)
  3261. return -EINVAL;
  3262. if (cmd_match(page, "frozen"))
  3263. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3264. else
  3265. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3266. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3267. if (mddev->sync_thread) {
  3268. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3269. md_unregister_thread(mddev->sync_thread);
  3270. mddev->sync_thread = NULL;
  3271. mddev->recovery = 0;
  3272. }
  3273. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3274. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3275. return -EBUSY;
  3276. else if (cmd_match(page, "resync"))
  3277. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3278. else if (cmd_match(page, "recover")) {
  3279. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3280. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3281. } else if (cmd_match(page, "reshape")) {
  3282. int err;
  3283. if (mddev->pers->start_reshape == NULL)
  3284. return -EINVAL;
  3285. err = mddev->pers->start_reshape(mddev);
  3286. if (err)
  3287. return err;
  3288. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3289. } else {
  3290. if (cmd_match(page, "check"))
  3291. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3292. else if (!cmd_match(page, "repair"))
  3293. return -EINVAL;
  3294. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3295. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3296. }
  3297. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3298. md_wakeup_thread(mddev->thread);
  3299. sysfs_notify_dirent(mddev->sysfs_action);
  3300. return len;
  3301. }
  3302. static ssize_t
  3303. mismatch_cnt_show(mddev_t *mddev, char *page)
  3304. {
  3305. return sprintf(page, "%llu\n",
  3306. (unsigned long long) mddev->resync_mismatches);
  3307. }
  3308. static struct md_sysfs_entry md_scan_mode =
  3309. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3310. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3311. static ssize_t
  3312. sync_min_show(mddev_t *mddev, char *page)
  3313. {
  3314. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3315. mddev->sync_speed_min ? "local": "system");
  3316. }
  3317. static ssize_t
  3318. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3319. {
  3320. int min;
  3321. char *e;
  3322. if (strncmp(buf, "system", 6)==0) {
  3323. mddev->sync_speed_min = 0;
  3324. return len;
  3325. }
  3326. min = simple_strtoul(buf, &e, 10);
  3327. if (buf == e || (*e && *e != '\n') || min <= 0)
  3328. return -EINVAL;
  3329. mddev->sync_speed_min = min;
  3330. return len;
  3331. }
  3332. static struct md_sysfs_entry md_sync_min =
  3333. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3334. static ssize_t
  3335. sync_max_show(mddev_t *mddev, char *page)
  3336. {
  3337. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3338. mddev->sync_speed_max ? "local": "system");
  3339. }
  3340. static ssize_t
  3341. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3342. {
  3343. int max;
  3344. char *e;
  3345. if (strncmp(buf, "system", 6)==0) {
  3346. mddev->sync_speed_max = 0;
  3347. return len;
  3348. }
  3349. max = simple_strtoul(buf, &e, 10);
  3350. if (buf == e || (*e && *e != '\n') || max <= 0)
  3351. return -EINVAL;
  3352. mddev->sync_speed_max = max;
  3353. return len;
  3354. }
  3355. static struct md_sysfs_entry md_sync_max =
  3356. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3357. static ssize_t
  3358. degraded_show(mddev_t *mddev, char *page)
  3359. {
  3360. return sprintf(page, "%d\n", mddev->degraded);
  3361. }
  3362. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3363. static ssize_t
  3364. sync_force_parallel_show(mddev_t *mddev, char *page)
  3365. {
  3366. return sprintf(page, "%d\n", mddev->parallel_resync);
  3367. }
  3368. static ssize_t
  3369. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3370. {
  3371. long n;
  3372. if (strict_strtol(buf, 10, &n))
  3373. return -EINVAL;
  3374. if (n != 0 && n != 1)
  3375. return -EINVAL;
  3376. mddev->parallel_resync = n;
  3377. if (mddev->sync_thread)
  3378. wake_up(&resync_wait);
  3379. return len;
  3380. }
  3381. /* force parallel resync, even with shared block devices */
  3382. static struct md_sysfs_entry md_sync_force_parallel =
  3383. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3384. sync_force_parallel_show, sync_force_parallel_store);
  3385. static ssize_t
  3386. sync_speed_show(mddev_t *mddev, char *page)
  3387. {
  3388. unsigned long resync, dt, db;
  3389. if (mddev->curr_resync == 0)
  3390. return sprintf(page, "none\n");
  3391. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3392. dt = (jiffies - mddev->resync_mark) / HZ;
  3393. if (!dt) dt++;
  3394. db = resync - mddev->resync_mark_cnt;
  3395. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3396. }
  3397. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3398. static ssize_t
  3399. sync_completed_show(mddev_t *mddev, char *page)
  3400. {
  3401. unsigned long max_sectors, resync;
  3402. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3403. return sprintf(page, "none\n");
  3404. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3405. max_sectors = mddev->resync_max_sectors;
  3406. else
  3407. max_sectors = mddev->dev_sectors;
  3408. resync = mddev->curr_resync_completed;
  3409. return sprintf(page, "%lu / %lu\n", resync, max_sectors);
  3410. }
  3411. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3412. static ssize_t
  3413. min_sync_show(mddev_t *mddev, char *page)
  3414. {
  3415. return sprintf(page, "%llu\n",
  3416. (unsigned long long)mddev->resync_min);
  3417. }
  3418. static ssize_t
  3419. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3420. {
  3421. unsigned long long min;
  3422. if (strict_strtoull(buf, 10, &min))
  3423. return -EINVAL;
  3424. if (min > mddev->resync_max)
  3425. return -EINVAL;
  3426. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3427. return -EBUSY;
  3428. /* Must be a multiple of chunk_size */
  3429. if (mddev->chunk_sectors) {
  3430. sector_t temp = min;
  3431. if (sector_div(temp, mddev->chunk_sectors))
  3432. return -EINVAL;
  3433. }
  3434. mddev->resync_min = min;
  3435. return len;
  3436. }
  3437. static struct md_sysfs_entry md_min_sync =
  3438. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3439. static ssize_t
  3440. max_sync_show(mddev_t *mddev, char *page)
  3441. {
  3442. if (mddev->resync_max == MaxSector)
  3443. return sprintf(page, "max\n");
  3444. else
  3445. return sprintf(page, "%llu\n",
  3446. (unsigned long long)mddev->resync_max);
  3447. }
  3448. static ssize_t
  3449. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3450. {
  3451. if (strncmp(buf, "max", 3) == 0)
  3452. mddev->resync_max = MaxSector;
  3453. else {
  3454. unsigned long long max;
  3455. if (strict_strtoull(buf, 10, &max))
  3456. return -EINVAL;
  3457. if (max < mddev->resync_min)
  3458. return -EINVAL;
  3459. if (max < mddev->resync_max &&
  3460. mddev->ro == 0 &&
  3461. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3462. return -EBUSY;
  3463. /* Must be a multiple of chunk_size */
  3464. if (mddev->chunk_sectors) {
  3465. sector_t temp = max;
  3466. if (sector_div(temp, mddev->chunk_sectors))
  3467. return -EINVAL;
  3468. }
  3469. mddev->resync_max = max;
  3470. }
  3471. wake_up(&mddev->recovery_wait);
  3472. return len;
  3473. }
  3474. static struct md_sysfs_entry md_max_sync =
  3475. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3476. static ssize_t
  3477. suspend_lo_show(mddev_t *mddev, char *page)
  3478. {
  3479. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3480. }
  3481. static ssize_t
  3482. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3483. {
  3484. char *e;
  3485. unsigned long long new = simple_strtoull(buf, &e, 10);
  3486. if (mddev->pers == NULL ||
  3487. mddev->pers->quiesce == NULL)
  3488. return -EINVAL;
  3489. if (buf == e || (*e && *e != '\n'))
  3490. return -EINVAL;
  3491. if (new >= mddev->suspend_hi ||
  3492. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  3493. mddev->suspend_lo = new;
  3494. mddev->pers->quiesce(mddev, 2);
  3495. return len;
  3496. } else
  3497. return -EINVAL;
  3498. }
  3499. static struct md_sysfs_entry md_suspend_lo =
  3500. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3501. static ssize_t
  3502. suspend_hi_show(mddev_t *mddev, char *page)
  3503. {
  3504. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3505. }
  3506. static ssize_t
  3507. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3508. {
  3509. char *e;
  3510. unsigned long long new = simple_strtoull(buf, &e, 10);
  3511. if (mddev->pers == NULL ||
  3512. mddev->pers->quiesce == NULL)
  3513. return -EINVAL;
  3514. if (buf == e || (*e && *e != '\n'))
  3515. return -EINVAL;
  3516. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  3517. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  3518. mddev->suspend_hi = new;
  3519. mddev->pers->quiesce(mddev, 1);
  3520. mddev->pers->quiesce(mddev, 0);
  3521. return len;
  3522. } else
  3523. return -EINVAL;
  3524. }
  3525. static struct md_sysfs_entry md_suspend_hi =
  3526. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3527. static ssize_t
  3528. reshape_position_show(mddev_t *mddev, char *page)
  3529. {
  3530. if (mddev->reshape_position != MaxSector)
  3531. return sprintf(page, "%llu\n",
  3532. (unsigned long long)mddev->reshape_position);
  3533. strcpy(page, "none\n");
  3534. return 5;
  3535. }
  3536. static ssize_t
  3537. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3538. {
  3539. char *e;
  3540. unsigned long long new = simple_strtoull(buf, &e, 10);
  3541. if (mddev->pers)
  3542. return -EBUSY;
  3543. if (buf == e || (*e && *e != '\n'))
  3544. return -EINVAL;
  3545. mddev->reshape_position = new;
  3546. mddev->delta_disks = 0;
  3547. mddev->new_level = mddev->level;
  3548. mddev->new_layout = mddev->layout;
  3549. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3550. return len;
  3551. }
  3552. static struct md_sysfs_entry md_reshape_position =
  3553. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3554. reshape_position_store);
  3555. static ssize_t
  3556. array_size_show(mddev_t *mddev, char *page)
  3557. {
  3558. if (mddev->external_size)
  3559. return sprintf(page, "%llu\n",
  3560. (unsigned long long)mddev->array_sectors/2);
  3561. else
  3562. return sprintf(page, "default\n");
  3563. }
  3564. static ssize_t
  3565. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3566. {
  3567. sector_t sectors;
  3568. if (strncmp(buf, "default", 7) == 0) {
  3569. if (mddev->pers)
  3570. sectors = mddev->pers->size(mddev, 0, 0);
  3571. else
  3572. sectors = mddev->array_sectors;
  3573. mddev->external_size = 0;
  3574. } else {
  3575. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3576. return -EINVAL;
  3577. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3578. return -E2BIG;
  3579. mddev->external_size = 1;
  3580. }
  3581. mddev->array_sectors = sectors;
  3582. set_capacity(mddev->gendisk, mddev->array_sectors);
  3583. if (mddev->pers)
  3584. revalidate_disk(mddev->gendisk);
  3585. return len;
  3586. }
  3587. static struct md_sysfs_entry md_array_size =
  3588. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3589. array_size_store);
  3590. static struct attribute *md_default_attrs[] = {
  3591. &md_level.attr,
  3592. &md_layout.attr,
  3593. &md_raid_disks.attr,
  3594. &md_chunk_size.attr,
  3595. &md_size.attr,
  3596. &md_resync_start.attr,
  3597. &md_metadata.attr,
  3598. &md_new_device.attr,
  3599. &md_safe_delay.attr,
  3600. &md_array_state.attr,
  3601. &md_reshape_position.attr,
  3602. &md_array_size.attr,
  3603. &max_corr_read_errors.attr,
  3604. NULL,
  3605. };
  3606. static struct attribute *md_redundancy_attrs[] = {
  3607. &md_scan_mode.attr,
  3608. &md_mismatches.attr,
  3609. &md_sync_min.attr,
  3610. &md_sync_max.attr,
  3611. &md_sync_speed.attr,
  3612. &md_sync_force_parallel.attr,
  3613. &md_sync_completed.attr,
  3614. &md_min_sync.attr,
  3615. &md_max_sync.attr,
  3616. &md_suspend_lo.attr,
  3617. &md_suspend_hi.attr,
  3618. &md_bitmap.attr,
  3619. &md_degraded.attr,
  3620. NULL,
  3621. };
  3622. static struct attribute_group md_redundancy_group = {
  3623. .name = NULL,
  3624. .attrs = md_redundancy_attrs,
  3625. };
  3626. static ssize_t
  3627. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3628. {
  3629. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3630. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3631. ssize_t rv;
  3632. if (!entry->show)
  3633. return -EIO;
  3634. rv = mddev_lock(mddev);
  3635. if (!rv) {
  3636. rv = entry->show(mddev, page);
  3637. mddev_unlock(mddev);
  3638. }
  3639. return rv;
  3640. }
  3641. static ssize_t
  3642. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3643. const char *page, size_t length)
  3644. {
  3645. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3646. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3647. ssize_t rv;
  3648. if (!entry->store)
  3649. return -EIO;
  3650. if (!capable(CAP_SYS_ADMIN))
  3651. return -EACCES;
  3652. rv = mddev_lock(mddev);
  3653. if (mddev->hold_active == UNTIL_IOCTL)
  3654. mddev->hold_active = 0;
  3655. if (!rv) {
  3656. rv = entry->store(mddev, page, length);
  3657. mddev_unlock(mddev);
  3658. }
  3659. return rv;
  3660. }
  3661. static void md_free(struct kobject *ko)
  3662. {
  3663. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3664. if (mddev->sysfs_state)
  3665. sysfs_put(mddev->sysfs_state);
  3666. if (mddev->gendisk) {
  3667. del_gendisk(mddev->gendisk);
  3668. put_disk(mddev->gendisk);
  3669. }
  3670. if (mddev->queue)
  3671. blk_cleanup_queue(mddev->queue);
  3672. kfree(mddev);
  3673. }
  3674. static struct sysfs_ops md_sysfs_ops = {
  3675. .show = md_attr_show,
  3676. .store = md_attr_store,
  3677. };
  3678. static struct kobj_type md_ktype = {
  3679. .release = md_free,
  3680. .sysfs_ops = &md_sysfs_ops,
  3681. .default_attrs = md_default_attrs,
  3682. };
  3683. int mdp_major = 0;
  3684. static void mddev_delayed_delete(struct work_struct *ws)
  3685. {
  3686. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3687. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  3688. kobject_del(&mddev->kobj);
  3689. kobject_put(&mddev->kobj);
  3690. }
  3691. static int md_alloc(dev_t dev, char *name)
  3692. {
  3693. static DEFINE_MUTEX(disks_mutex);
  3694. mddev_t *mddev = mddev_find(dev);
  3695. struct gendisk *disk;
  3696. int partitioned;
  3697. int shift;
  3698. int unit;
  3699. int error;
  3700. if (!mddev)
  3701. return -ENODEV;
  3702. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3703. shift = partitioned ? MdpMinorShift : 0;
  3704. unit = MINOR(mddev->unit) >> shift;
  3705. /* wait for any previous instance if this device
  3706. * to be completed removed (mddev_delayed_delete).
  3707. */
  3708. flush_scheduled_work();
  3709. mutex_lock(&disks_mutex);
  3710. error = -EEXIST;
  3711. if (mddev->gendisk)
  3712. goto abort;
  3713. if (name) {
  3714. /* Need to ensure that 'name' is not a duplicate.
  3715. */
  3716. mddev_t *mddev2;
  3717. spin_lock(&all_mddevs_lock);
  3718. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3719. if (mddev2->gendisk &&
  3720. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3721. spin_unlock(&all_mddevs_lock);
  3722. goto abort;
  3723. }
  3724. spin_unlock(&all_mddevs_lock);
  3725. }
  3726. error = -ENOMEM;
  3727. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3728. if (!mddev->queue)
  3729. goto abort;
  3730. mddev->queue->queuedata = mddev;
  3731. /* Can be unlocked because the queue is new: no concurrency */
  3732. queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
  3733. blk_queue_make_request(mddev->queue, md_make_request);
  3734. disk = alloc_disk(1 << shift);
  3735. if (!disk) {
  3736. blk_cleanup_queue(mddev->queue);
  3737. mddev->queue = NULL;
  3738. goto abort;
  3739. }
  3740. disk->major = MAJOR(mddev->unit);
  3741. disk->first_minor = unit << shift;
  3742. if (name)
  3743. strcpy(disk->disk_name, name);
  3744. else if (partitioned)
  3745. sprintf(disk->disk_name, "md_d%d", unit);
  3746. else
  3747. sprintf(disk->disk_name, "md%d", unit);
  3748. disk->fops = &md_fops;
  3749. disk->private_data = mddev;
  3750. disk->queue = mddev->queue;
  3751. /* Allow extended partitions. This makes the
  3752. * 'mdp' device redundant, but we can't really
  3753. * remove it now.
  3754. */
  3755. disk->flags |= GENHD_FL_EXT_DEVT;
  3756. add_disk(disk);
  3757. mddev->gendisk = disk;
  3758. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3759. &disk_to_dev(disk)->kobj, "%s", "md");
  3760. if (error) {
  3761. /* This isn't possible, but as kobject_init_and_add is marked
  3762. * __must_check, we must do something with the result
  3763. */
  3764. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3765. disk->disk_name);
  3766. error = 0;
  3767. }
  3768. if (sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  3769. printk(KERN_DEBUG "pointless warning\n");
  3770. abort:
  3771. mutex_unlock(&disks_mutex);
  3772. if (!error) {
  3773. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3774. mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
  3775. }
  3776. mddev_put(mddev);
  3777. return error;
  3778. }
  3779. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3780. {
  3781. md_alloc(dev, NULL);
  3782. return NULL;
  3783. }
  3784. static int add_named_array(const char *val, struct kernel_param *kp)
  3785. {
  3786. /* val must be "md_*" where * is not all digits.
  3787. * We allocate an array with a large free minor number, and
  3788. * set the name to val. val must not already be an active name.
  3789. */
  3790. int len = strlen(val);
  3791. char buf[DISK_NAME_LEN];
  3792. while (len && val[len-1] == '\n')
  3793. len--;
  3794. if (len >= DISK_NAME_LEN)
  3795. return -E2BIG;
  3796. strlcpy(buf, val, len+1);
  3797. if (strncmp(buf, "md_", 3) != 0)
  3798. return -EINVAL;
  3799. return md_alloc(0, buf);
  3800. }
  3801. static void md_safemode_timeout(unsigned long data)
  3802. {
  3803. mddev_t *mddev = (mddev_t *) data;
  3804. if (!atomic_read(&mddev->writes_pending)) {
  3805. mddev->safemode = 1;
  3806. if (mddev->external)
  3807. sysfs_notify_dirent(mddev->sysfs_state);
  3808. }
  3809. md_wakeup_thread(mddev->thread);
  3810. }
  3811. static int start_dirty_degraded;
  3812. static int md_run(mddev_t *mddev)
  3813. {
  3814. int err;
  3815. mdk_rdev_t *rdev;
  3816. struct mdk_personality *pers;
  3817. if (list_empty(&mddev->disks))
  3818. /* cannot run an array with no devices.. */
  3819. return -EINVAL;
  3820. if (mddev->pers)
  3821. return -EBUSY;
  3822. /* These two calls synchronise us with the
  3823. * sysfs_remove_group calls in mddev_unlock,
  3824. * so they must have completed.
  3825. */
  3826. mutex_lock(&mddev->open_mutex);
  3827. mutex_unlock(&mddev->open_mutex);
  3828. /*
  3829. * Analyze all RAID superblock(s)
  3830. */
  3831. if (!mddev->raid_disks) {
  3832. if (!mddev->persistent)
  3833. return -EINVAL;
  3834. analyze_sbs(mddev);
  3835. }
  3836. if (mddev->level != LEVEL_NONE)
  3837. request_module("md-level-%d", mddev->level);
  3838. else if (mddev->clevel[0])
  3839. request_module("md-%s", mddev->clevel);
  3840. /*
  3841. * Drop all container device buffers, from now on
  3842. * the only valid external interface is through the md
  3843. * device.
  3844. */
  3845. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3846. if (test_bit(Faulty, &rdev->flags))
  3847. continue;
  3848. sync_blockdev(rdev->bdev);
  3849. invalidate_bdev(rdev->bdev);
  3850. /* perform some consistency tests on the device.
  3851. * We don't want the data to overlap the metadata,
  3852. * Internal Bitmap issues have been handled elsewhere.
  3853. */
  3854. if (rdev->data_offset < rdev->sb_start) {
  3855. if (mddev->dev_sectors &&
  3856. rdev->data_offset + mddev->dev_sectors
  3857. > rdev->sb_start) {
  3858. printk("md: %s: data overlaps metadata\n",
  3859. mdname(mddev));
  3860. return -EINVAL;
  3861. }
  3862. } else {
  3863. if (rdev->sb_start + rdev->sb_size/512
  3864. > rdev->data_offset) {
  3865. printk("md: %s: metadata overlaps data\n",
  3866. mdname(mddev));
  3867. return -EINVAL;
  3868. }
  3869. }
  3870. sysfs_notify_dirent(rdev->sysfs_state);
  3871. }
  3872. spin_lock(&pers_lock);
  3873. pers = find_pers(mddev->level, mddev->clevel);
  3874. if (!pers || !try_module_get(pers->owner)) {
  3875. spin_unlock(&pers_lock);
  3876. if (mddev->level != LEVEL_NONE)
  3877. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  3878. mddev->level);
  3879. else
  3880. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3881. mddev->clevel);
  3882. return -EINVAL;
  3883. }
  3884. mddev->pers = pers;
  3885. spin_unlock(&pers_lock);
  3886. if (mddev->level != pers->level) {
  3887. mddev->level = pers->level;
  3888. mddev->new_level = pers->level;
  3889. }
  3890. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3891. if (mddev->reshape_position != MaxSector &&
  3892. pers->start_reshape == NULL) {
  3893. /* This personality cannot handle reshaping... */
  3894. mddev->pers = NULL;
  3895. module_put(pers->owner);
  3896. return -EINVAL;
  3897. }
  3898. if (pers->sync_request) {
  3899. /* Warn if this is a potentially silly
  3900. * configuration.
  3901. */
  3902. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3903. mdk_rdev_t *rdev2;
  3904. int warned = 0;
  3905. list_for_each_entry(rdev, &mddev->disks, same_set)
  3906. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  3907. if (rdev < rdev2 &&
  3908. rdev->bdev->bd_contains ==
  3909. rdev2->bdev->bd_contains) {
  3910. printk(KERN_WARNING
  3911. "%s: WARNING: %s appears to be"
  3912. " on the same physical disk as"
  3913. " %s.\n",
  3914. mdname(mddev),
  3915. bdevname(rdev->bdev,b),
  3916. bdevname(rdev2->bdev,b2));
  3917. warned = 1;
  3918. }
  3919. }
  3920. if (warned)
  3921. printk(KERN_WARNING
  3922. "True protection against single-disk"
  3923. " failure might be compromised.\n");
  3924. }
  3925. mddev->recovery = 0;
  3926. /* may be over-ridden by personality */
  3927. mddev->resync_max_sectors = mddev->dev_sectors;
  3928. mddev->barriers_work = 1;
  3929. mddev->ok_start_degraded = start_dirty_degraded;
  3930. if (start_readonly && mddev->ro == 0)
  3931. mddev->ro = 2; /* read-only, but switch on first write */
  3932. err = mddev->pers->run(mddev);
  3933. if (err)
  3934. printk(KERN_ERR "md: pers->run() failed ...\n");
  3935. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  3936. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  3937. " but 'external_size' not in effect?\n", __func__);
  3938. printk(KERN_ERR
  3939. "md: invalid array_size %llu > default size %llu\n",
  3940. (unsigned long long)mddev->array_sectors / 2,
  3941. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  3942. err = -EINVAL;
  3943. mddev->pers->stop(mddev);
  3944. }
  3945. if (err == 0 && mddev->pers->sync_request) {
  3946. err = bitmap_create(mddev);
  3947. if (err) {
  3948. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3949. mdname(mddev), err);
  3950. mddev->pers->stop(mddev);
  3951. }
  3952. }
  3953. if (err) {
  3954. module_put(mddev->pers->owner);
  3955. mddev->pers = NULL;
  3956. bitmap_destroy(mddev);
  3957. return err;
  3958. }
  3959. if (mddev->pers->sync_request) {
  3960. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3961. printk(KERN_WARNING
  3962. "md: cannot register extra attributes for %s\n",
  3963. mdname(mddev));
  3964. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3965. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3966. mddev->ro = 0;
  3967. atomic_set(&mddev->writes_pending,0);
  3968. atomic_set(&mddev->max_corr_read_errors,
  3969. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  3970. mddev->safemode = 0;
  3971. mddev->safemode_timer.function = md_safemode_timeout;
  3972. mddev->safemode_timer.data = (unsigned long) mddev;
  3973. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3974. mddev->in_sync = 1;
  3975. list_for_each_entry(rdev, &mddev->disks, same_set)
  3976. if (rdev->raid_disk >= 0) {
  3977. char nm[20];
  3978. sprintf(nm, "rd%d", rdev->raid_disk);
  3979. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3980. printk("md: cannot register %s for %s\n",
  3981. nm, mdname(mddev));
  3982. }
  3983. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3984. if (mddev->flags)
  3985. md_update_sb(mddev, 0);
  3986. md_wakeup_thread(mddev->thread);
  3987. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3988. md_new_event(mddev);
  3989. sysfs_notify_dirent(mddev->sysfs_state);
  3990. if (mddev->sysfs_action)
  3991. sysfs_notify_dirent(mddev->sysfs_action);
  3992. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3993. return 0;
  3994. }
  3995. static int do_md_run(mddev_t *mddev)
  3996. {
  3997. int err;
  3998. err = md_run(mddev);
  3999. if (err)
  4000. goto out;
  4001. set_capacity(mddev->gendisk, mddev->array_sectors);
  4002. revalidate_disk(mddev->gendisk);
  4003. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4004. out:
  4005. return err;
  4006. }
  4007. static int restart_array(mddev_t *mddev)
  4008. {
  4009. struct gendisk *disk = mddev->gendisk;
  4010. /* Complain if it has no devices */
  4011. if (list_empty(&mddev->disks))
  4012. return -ENXIO;
  4013. if (!mddev->pers)
  4014. return -EINVAL;
  4015. if (!mddev->ro)
  4016. return -EBUSY;
  4017. mddev->safemode = 0;
  4018. mddev->ro = 0;
  4019. set_disk_ro(disk, 0);
  4020. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4021. mdname(mddev));
  4022. /* Kick recovery or resync if necessary */
  4023. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4024. md_wakeup_thread(mddev->thread);
  4025. md_wakeup_thread(mddev->sync_thread);
  4026. sysfs_notify_dirent(mddev->sysfs_state);
  4027. return 0;
  4028. }
  4029. /* similar to deny_write_access, but accounts for our holding a reference
  4030. * to the file ourselves */
  4031. static int deny_bitmap_write_access(struct file * file)
  4032. {
  4033. struct inode *inode = file->f_mapping->host;
  4034. spin_lock(&inode->i_lock);
  4035. if (atomic_read(&inode->i_writecount) > 1) {
  4036. spin_unlock(&inode->i_lock);
  4037. return -ETXTBSY;
  4038. }
  4039. atomic_set(&inode->i_writecount, -1);
  4040. spin_unlock(&inode->i_lock);
  4041. return 0;
  4042. }
  4043. void restore_bitmap_write_access(struct file *file)
  4044. {
  4045. struct inode *inode = file->f_mapping->host;
  4046. spin_lock(&inode->i_lock);
  4047. atomic_set(&inode->i_writecount, 1);
  4048. spin_unlock(&inode->i_lock);
  4049. }
  4050. static void md_clean(mddev_t *mddev)
  4051. {
  4052. mddev->array_sectors = 0;
  4053. mddev->external_size = 0;
  4054. mddev->dev_sectors = 0;
  4055. mddev->raid_disks = 0;
  4056. mddev->recovery_cp = 0;
  4057. mddev->resync_min = 0;
  4058. mddev->resync_max = MaxSector;
  4059. mddev->reshape_position = MaxSector;
  4060. mddev->external = 0;
  4061. mddev->persistent = 0;
  4062. mddev->level = LEVEL_NONE;
  4063. mddev->clevel[0] = 0;
  4064. mddev->flags = 0;
  4065. mddev->ro = 0;
  4066. mddev->metadata_type[0] = 0;
  4067. mddev->chunk_sectors = 0;
  4068. mddev->ctime = mddev->utime = 0;
  4069. mddev->layout = 0;
  4070. mddev->max_disks = 0;
  4071. mddev->events = 0;
  4072. mddev->delta_disks = 0;
  4073. mddev->new_level = LEVEL_NONE;
  4074. mddev->new_layout = 0;
  4075. mddev->new_chunk_sectors = 0;
  4076. mddev->curr_resync = 0;
  4077. mddev->resync_mismatches = 0;
  4078. mddev->suspend_lo = mddev->suspend_hi = 0;
  4079. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4080. mddev->recovery = 0;
  4081. mddev->in_sync = 0;
  4082. mddev->degraded = 0;
  4083. mddev->barriers_work = 0;
  4084. mddev->safemode = 0;
  4085. mddev->bitmap_info.offset = 0;
  4086. mddev->bitmap_info.default_offset = 0;
  4087. mddev->bitmap_info.chunksize = 0;
  4088. mddev->bitmap_info.daemon_sleep = 0;
  4089. mddev->bitmap_info.max_write_behind = 0;
  4090. }
  4091. static void md_stop_writes(mddev_t *mddev)
  4092. {
  4093. if (mddev->sync_thread) {
  4094. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4095. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4096. md_unregister_thread(mddev->sync_thread);
  4097. mddev->sync_thread = NULL;
  4098. }
  4099. del_timer_sync(&mddev->safemode_timer);
  4100. bitmap_flush(mddev);
  4101. md_super_wait(mddev);
  4102. if (!mddev->in_sync || mddev->flags) {
  4103. /* mark array as shutdown cleanly */
  4104. mddev->in_sync = 1;
  4105. md_update_sb(mddev, 1);
  4106. }
  4107. }
  4108. static void md_stop(mddev_t *mddev)
  4109. {
  4110. md_stop_writes(mddev);
  4111. mddev->pers->stop(mddev);
  4112. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4113. mddev->to_remove = &md_redundancy_group;
  4114. module_put(mddev->pers->owner);
  4115. mddev->pers = NULL;
  4116. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4117. }
  4118. static int md_set_readonly(mddev_t *mddev, int is_open)
  4119. {
  4120. int err = 0;
  4121. mutex_lock(&mddev->open_mutex);
  4122. if (atomic_read(&mddev->openers) > is_open) {
  4123. printk("md: %s still in use.\n",mdname(mddev));
  4124. err = -EBUSY;
  4125. goto out;
  4126. }
  4127. if (mddev->pers) {
  4128. md_stop_writes(mddev);
  4129. err = -ENXIO;
  4130. if (mddev->ro==1)
  4131. goto out;
  4132. mddev->ro = 1;
  4133. set_disk_ro(mddev->gendisk, 1);
  4134. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4135. sysfs_notify_dirent(mddev->sysfs_state);
  4136. err = 0;
  4137. }
  4138. out:
  4139. mutex_unlock(&mddev->open_mutex);
  4140. return err;
  4141. }
  4142. /* mode:
  4143. * 0 - completely stop and dis-assemble array
  4144. * 2 - stop but do not disassemble array
  4145. */
  4146. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  4147. {
  4148. int err = 0;
  4149. struct gendisk *disk = mddev->gendisk;
  4150. mdk_rdev_t *rdev;
  4151. mutex_lock(&mddev->open_mutex);
  4152. if (atomic_read(&mddev->openers) > is_open) {
  4153. printk("md: %s still in use.\n",mdname(mddev));
  4154. err = -EBUSY;
  4155. } else if (mddev->pers) {
  4156. if (mddev->ro)
  4157. set_disk_ro(disk, 0);
  4158. md_stop(mddev);
  4159. mddev->queue->merge_bvec_fn = NULL;
  4160. mddev->queue->unplug_fn = NULL;
  4161. mddev->queue->backing_dev_info.congested_fn = NULL;
  4162. /* tell userspace to handle 'inactive' */
  4163. sysfs_notify_dirent(mddev->sysfs_state);
  4164. list_for_each_entry(rdev, &mddev->disks, same_set)
  4165. if (rdev->raid_disk >= 0) {
  4166. char nm[20];
  4167. sprintf(nm, "rd%d", rdev->raid_disk);
  4168. sysfs_remove_link(&mddev->kobj, nm);
  4169. }
  4170. set_capacity(disk, 0);
  4171. revalidate_disk(disk);
  4172. if (mddev->ro)
  4173. mddev->ro = 0;
  4174. err = 0;
  4175. }
  4176. mutex_unlock(&mddev->open_mutex);
  4177. if (err)
  4178. return err;
  4179. /*
  4180. * Free resources if final stop
  4181. */
  4182. if (mode == 0) {
  4183. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4184. bitmap_destroy(mddev);
  4185. if (mddev->bitmap_info.file) {
  4186. restore_bitmap_write_access(mddev->bitmap_info.file);
  4187. fput(mddev->bitmap_info.file);
  4188. mddev->bitmap_info.file = NULL;
  4189. }
  4190. mddev->bitmap_info.offset = 0;
  4191. export_array(mddev);
  4192. md_clean(mddev);
  4193. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4194. if (mddev->hold_active == UNTIL_STOP)
  4195. mddev->hold_active = 0;
  4196. }
  4197. err = 0;
  4198. blk_integrity_unregister(disk);
  4199. md_new_event(mddev);
  4200. sysfs_notify_dirent(mddev->sysfs_state);
  4201. return err;
  4202. }
  4203. #ifndef MODULE
  4204. static void autorun_array(mddev_t *mddev)
  4205. {
  4206. mdk_rdev_t *rdev;
  4207. int err;
  4208. if (list_empty(&mddev->disks))
  4209. return;
  4210. printk(KERN_INFO "md: running: ");
  4211. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4212. char b[BDEVNAME_SIZE];
  4213. printk("<%s>", bdevname(rdev->bdev,b));
  4214. }
  4215. printk("\n");
  4216. err = do_md_run(mddev);
  4217. if (err) {
  4218. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4219. do_md_stop(mddev, 0, 0);
  4220. }
  4221. }
  4222. /*
  4223. * lets try to run arrays based on all disks that have arrived
  4224. * until now. (those are in pending_raid_disks)
  4225. *
  4226. * the method: pick the first pending disk, collect all disks with
  4227. * the same UUID, remove all from the pending list and put them into
  4228. * the 'same_array' list. Then order this list based on superblock
  4229. * update time (freshest comes first), kick out 'old' disks and
  4230. * compare superblocks. If everything's fine then run it.
  4231. *
  4232. * If "unit" is allocated, then bump its reference count
  4233. */
  4234. static void autorun_devices(int part)
  4235. {
  4236. mdk_rdev_t *rdev0, *rdev, *tmp;
  4237. mddev_t *mddev;
  4238. char b[BDEVNAME_SIZE];
  4239. printk(KERN_INFO "md: autorun ...\n");
  4240. while (!list_empty(&pending_raid_disks)) {
  4241. int unit;
  4242. dev_t dev;
  4243. LIST_HEAD(candidates);
  4244. rdev0 = list_entry(pending_raid_disks.next,
  4245. mdk_rdev_t, same_set);
  4246. printk(KERN_INFO "md: considering %s ...\n",
  4247. bdevname(rdev0->bdev,b));
  4248. INIT_LIST_HEAD(&candidates);
  4249. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4250. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4251. printk(KERN_INFO "md: adding %s ...\n",
  4252. bdevname(rdev->bdev,b));
  4253. list_move(&rdev->same_set, &candidates);
  4254. }
  4255. /*
  4256. * now we have a set of devices, with all of them having
  4257. * mostly sane superblocks. It's time to allocate the
  4258. * mddev.
  4259. */
  4260. if (part) {
  4261. dev = MKDEV(mdp_major,
  4262. rdev0->preferred_minor << MdpMinorShift);
  4263. unit = MINOR(dev) >> MdpMinorShift;
  4264. } else {
  4265. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4266. unit = MINOR(dev);
  4267. }
  4268. if (rdev0->preferred_minor != unit) {
  4269. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4270. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4271. break;
  4272. }
  4273. md_probe(dev, NULL, NULL);
  4274. mddev = mddev_find(dev);
  4275. if (!mddev || !mddev->gendisk) {
  4276. if (mddev)
  4277. mddev_put(mddev);
  4278. printk(KERN_ERR
  4279. "md: cannot allocate memory for md drive.\n");
  4280. break;
  4281. }
  4282. if (mddev_lock(mddev))
  4283. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4284. mdname(mddev));
  4285. else if (mddev->raid_disks || mddev->major_version
  4286. || !list_empty(&mddev->disks)) {
  4287. printk(KERN_WARNING
  4288. "md: %s already running, cannot run %s\n",
  4289. mdname(mddev), bdevname(rdev0->bdev,b));
  4290. mddev_unlock(mddev);
  4291. } else {
  4292. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4293. mddev->persistent = 1;
  4294. rdev_for_each_list(rdev, tmp, &candidates) {
  4295. list_del_init(&rdev->same_set);
  4296. if (bind_rdev_to_array(rdev, mddev))
  4297. export_rdev(rdev);
  4298. }
  4299. autorun_array(mddev);
  4300. mddev_unlock(mddev);
  4301. }
  4302. /* on success, candidates will be empty, on error
  4303. * it won't...
  4304. */
  4305. rdev_for_each_list(rdev, tmp, &candidates) {
  4306. list_del_init(&rdev->same_set);
  4307. export_rdev(rdev);
  4308. }
  4309. mddev_put(mddev);
  4310. }
  4311. printk(KERN_INFO "md: ... autorun DONE.\n");
  4312. }
  4313. #endif /* !MODULE */
  4314. static int get_version(void __user * arg)
  4315. {
  4316. mdu_version_t ver;
  4317. ver.major = MD_MAJOR_VERSION;
  4318. ver.minor = MD_MINOR_VERSION;
  4319. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4320. if (copy_to_user(arg, &ver, sizeof(ver)))
  4321. return -EFAULT;
  4322. return 0;
  4323. }
  4324. static int get_array_info(mddev_t * mddev, void __user * arg)
  4325. {
  4326. mdu_array_info_t info;
  4327. int nr,working,insync,failed,spare;
  4328. mdk_rdev_t *rdev;
  4329. nr=working=insync=failed=spare=0;
  4330. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4331. nr++;
  4332. if (test_bit(Faulty, &rdev->flags))
  4333. failed++;
  4334. else {
  4335. working++;
  4336. if (test_bit(In_sync, &rdev->flags))
  4337. insync++;
  4338. else
  4339. spare++;
  4340. }
  4341. }
  4342. info.major_version = mddev->major_version;
  4343. info.minor_version = mddev->minor_version;
  4344. info.patch_version = MD_PATCHLEVEL_VERSION;
  4345. info.ctime = mddev->ctime;
  4346. info.level = mddev->level;
  4347. info.size = mddev->dev_sectors / 2;
  4348. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4349. info.size = -1;
  4350. info.nr_disks = nr;
  4351. info.raid_disks = mddev->raid_disks;
  4352. info.md_minor = mddev->md_minor;
  4353. info.not_persistent= !mddev->persistent;
  4354. info.utime = mddev->utime;
  4355. info.state = 0;
  4356. if (mddev->in_sync)
  4357. info.state = (1<<MD_SB_CLEAN);
  4358. if (mddev->bitmap && mddev->bitmap_info.offset)
  4359. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4360. info.active_disks = insync;
  4361. info.working_disks = working;
  4362. info.failed_disks = failed;
  4363. info.spare_disks = spare;
  4364. info.layout = mddev->layout;
  4365. info.chunk_size = mddev->chunk_sectors << 9;
  4366. if (copy_to_user(arg, &info, sizeof(info)))
  4367. return -EFAULT;
  4368. return 0;
  4369. }
  4370. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4371. {
  4372. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4373. char *ptr, *buf = NULL;
  4374. int err = -ENOMEM;
  4375. if (md_allow_write(mddev))
  4376. file = kmalloc(sizeof(*file), GFP_NOIO);
  4377. else
  4378. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4379. if (!file)
  4380. goto out;
  4381. /* bitmap disabled, zero the first byte and copy out */
  4382. if (!mddev->bitmap || !mddev->bitmap->file) {
  4383. file->pathname[0] = '\0';
  4384. goto copy_out;
  4385. }
  4386. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4387. if (!buf)
  4388. goto out;
  4389. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4390. if (IS_ERR(ptr))
  4391. goto out;
  4392. strcpy(file->pathname, ptr);
  4393. copy_out:
  4394. err = 0;
  4395. if (copy_to_user(arg, file, sizeof(*file)))
  4396. err = -EFAULT;
  4397. out:
  4398. kfree(buf);
  4399. kfree(file);
  4400. return err;
  4401. }
  4402. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4403. {
  4404. mdu_disk_info_t info;
  4405. mdk_rdev_t *rdev;
  4406. if (copy_from_user(&info, arg, sizeof(info)))
  4407. return -EFAULT;
  4408. rdev = find_rdev_nr(mddev, info.number);
  4409. if (rdev) {
  4410. info.major = MAJOR(rdev->bdev->bd_dev);
  4411. info.minor = MINOR(rdev->bdev->bd_dev);
  4412. info.raid_disk = rdev->raid_disk;
  4413. info.state = 0;
  4414. if (test_bit(Faulty, &rdev->flags))
  4415. info.state |= (1<<MD_DISK_FAULTY);
  4416. else if (test_bit(In_sync, &rdev->flags)) {
  4417. info.state |= (1<<MD_DISK_ACTIVE);
  4418. info.state |= (1<<MD_DISK_SYNC);
  4419. }
  4420. if (test_bit(WriteMostly, &rdev->flags))
  4421. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4422. } else {
  4423. info.major = info.minor = 0;
  4424. info.raid_disk = -1;
  4425. info.state = (1<<MD_DISK_REMOVED);
  4426. }
  4427. if (copy_to_user(arg, &info, sizeof(info)))
  4428. return -EFAULT;
  4429. return 0;
  4430. }
  4431. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4432. {
  4433. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4434. mdk_rdev_t *rdev;
  4435. dev_t dev = MKDEV(info->major,info->minor);
  4436. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4437. return -EOVERFLOW;
  4438. if (!mddev->raid_disks) {
  4439. int err;
  4440. /* expecting a device which has a superblock */
  4441. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4442. if (IS_ERR(rdev)) {
  4443. printk(KERN_WARNING
  4444. "md: md_import_device returned %ld\n",
  4445. PTR_ERR(rdev));
  4446. return PTR_ERR(rdev);
  4447. }
  4448. if (!list_empty(&mddev->disks)) {
  4449. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4450. mdk_rdev_t, same_set);
  4451. err = super_types[mddev->major_version]
  4452. .load_super(rdev, rdev0, mddev->minor_version);
  4453. if (err < 0) {
  4454. printk(KERN_WARNING
  4455. "md: %s has different UUID to %s\n",
  4456. bdevname(rdev->bdev,b),
  4457. bdevname(rdev0->bdev,b2));
  4458. export_rdev(rdev);
  4459. return -EINVAL;
  4460. }
  4461. }
  4462. err = bind_rdev_to_array(rdev, mddev);
  4463. if (err)
  4464. export_rdev(rdev);
  4465. return err;
  4466. }
  4467. /*
  4468. * add_new_disk can be used once the array is assembled
  4469. * to add "hot spares". They must already have a superblock
  4470. * written
  4471. */
  4472. if (mddev->pers) {
  4473. int err;
  4474. if (!mddev->pers->hot_add_disk) {
  4475. printk(KERN_WARNING
  4476. "%s: personality does not support diskops!\n",
  4477. mdname(mddev));
  4478. return -EINVAL;
  4479. }
  4480. if (mddev->persistent)
  4481. rdev = md_import_device(dev, mddev->major_version,
  4482. mddev->minor_version);
  4483. else
  4484. rdev = md_import_device(dev, -1, -1);
  4485. if (IS_ERR(rdev)) {
  4486. printk(KERN_WARNING
  4487. "md: md_import_device returned %ld\n",
  4488. PTR_ERR(rdev));
  4489. return PTR_ERR(rdev);
  4490. }
  4491. /* set save_raid_disk if appropriate */
  4492. if (!mddev->persistent) {
  4493. if (info->state & (1<<MD_DISK_SYNC) &&
  4494. info->raid_disk < mddev->raid_disks)
  4495. rdev->raid_disk = info->raid_disk;
  4496. else
  4497. rdev->raid_disk = -1;
  4498. } else
  4499. super_types[mddev->major_version].
  4500. validate_super(mddev, rdev);
  4501. rdev->saved_raid_disk = rdev->raid_disk;
  4502. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4503. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4504. set_bit(WriteMostly, &rdev->flags);
  4505. else
  4506. clear_bit(WriteMostly, &rdev->flags);
  4507. rdev->raid_disk = -1;
  4508. err = bind_rdev_to_array(rdev, mddev);
  4509. if (!err && !mddev->pers->hot_remove_disk) {
  4510. /* If there is hot_add_disk but no hot_remove_disk
  4511. * then added disks for geometry changes,
  4512. * and should be added immediately.
  4513. */
  4514. super_types[mddev->major_version].
  4515. validate_super(mddev, rdev);
  4516. err = mddev->pers->hot_add_disk(mddev, rdev);
  4517. if (err)
  4518. unbind_rdev_from_array(rdev);
  4519. }
  4520. if (err)
  4521. export_rdev(rdev);
  4522. else
  4523. sysfs_notify_dirent(rdev->sysfs_state);
  4524. md_update_sb(mddev, 1);
  4525. if (mddev->degraded)
  4526. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4527. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4528. md_wakeup_thread(mddev->thread);
  4529. return err;
  4530. }
  4531. /* otherwise, add_new_disk is only allowed
  4532. * for major_version==0 superblocks
  4533. */
  4534. if (mddev->major_version != 0) {
  4535. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4536. mdname(mddev));
  4537. return -EINVAL;
  4538. }
  4539. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4540. int err;
  4541. rdev = md_import_device(dev, -1, 0);
  4542. if (IS_ERR(rdev)) {
  4543. printk(KERN_WARNING
  4544. "md: error, md_import_device() returned %ld\n",
  4545. PTR_ERR(rdev));
  4546. return PTR_ERR(rdev);
  4547. }
  4548. rdev->desc_nr = info->number;
  4549. if (info->raid_disk < mddev->raid_disks)
  4550. rdev->raid_disk = info->raid_disk;
  4551. else
  4552. rdev->raid_disk = -1;
  4553. if (rdev->raid_disk < mddev->raid_disks)
  4554. if (info->state & (1<<MD_DISK_SYNC))
  4555. set_bit(In_sync, &rdev->flags);
  4556. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4557. set_bit(WriteMostly, &rdev->flags);
  4558. if (!mddev->persistent) {
  4559. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4560. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4561. } else
  4562. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4563. rdev->sectors = rdev->sb_start;
  4564. err = bind_rdev_to_array(rdev, mddev);
  4565. if (err) {
  4566. export_rdev(rdev);
  4567. return err;
  4568. }
  4569. }
  4570. return 0;
  4571. }
  4572. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4573. {
  4574. char b[BDEVNAME_SIZE];
  4575. mdk_rdev_t *rdev;
  4576. rdev = find_rdev(mddev, dev);
  4577. if (!rdev)
  4578. return -ENXIO;
  4579. if (rdev->raid_disk >= 0)
  4580. goto busy;
  4581. kick_rdev_from_array(rdev);
  4582. md_update_sb(mddev, 1);
  4583. md_new_event(mddev);
  4584. return 0;
  4585. busy:
  4586. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4587. bdevname(rdev->bdev,b), mdname(mddev));
  4588. return -EBUSY;
  4589. }
  4590. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4591. {
  4592. char b[BDEVNAME_SIZE];
  4593. int err;
  4594. mdk_rdev_t *rdev;
  4595. if (!mddev->pers)
  4596. return -ENODEV;
  4597. if (mddev->major_version != 0) {
  4598. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4599. " version-0 superblocks.\n",
  4600. mdname(mddev));
  4601. return -EINVAL;
  4602. }
  4603. if (!mddev->pers->hot_add_disk) {
  4604. printk(KERN_WARNING
  4605. "%s: personality does not support diskops!\n",
  4606. mdname(mddev));
  4607. return -EINVAL;
  4608. }
  4609. rdev = md_import_device(dev, -1, 0);
  4610. if (IS_ERR(rdev)) {
  4611. printk(KERN_WARNING
  4612. "md: error, md_import_device() returned %ld\n",
  4613. PTR_ERR(rdev));
  4614. return -EINVAL;
  4615. }
  4616. if (mddev->persistent)
  4617. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4618. else
  4619. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4620. rdev->sectors = rdev->sb_start;
  4621. if (test_bit(Faulty, &rdev->flags)) {
  4622. printk(KERN_WARNING
  4623. "md: can not hot-add faulty %s disk to %s!\n",
  4624. bdevname(rdev->bdev,b), mdname(mddev));
  4625. err = -EINVAL;
  4626. goto abort_export;
  4627. }
  4628. clear_bit(In_sync, &rdev->flags);
  4629. rdev->desc_nr = -1;
  4630. rdev->saved_raid_disk = -1;
  4631. err = bind_rdev_to_array(rdev, mddev);
  4632. if (err)
  4633. goto abort_export;
  4634. /*
  4635. * The rest should better be atomic, we can have disk failures
  4636. * noticed in interrupt contexts ...
  4637. */
  4638. rdev->raid_disk = -1;
  4639. md_update_sb(mddev, 1);
  4640. /*
  4641. * Kick recovery, maybe this spare has to be added to the
  4642. * array immediately.
  4643. */
  4644. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4645. md_wakeup_thread(mddev->thread);
  4646. md_new_event(mddev);
  4647. return 0;
  4648. abort_export:
  4649. export_rdev(rdev);
  4650. return err;
  4651. }
  4652. static int set_bitmap_file(mddev_t *mddev, int fd)
  4653. {
  4654. int err;
  4655. if (mddev->pers) {
  4656. if (!mddev->pers->quiesce)
  4657. return -EBUSY;
  4658. if (mddev->recovery || mddev->sync_thread)
  4659. return -EBUSY;
  4660. /* we should be able to change the bitmap.. */
  4661. }
  4662. if (fd >= 0) {
  4663. if (mddev->bitmap)
  4664. return -EEXIST; /* cannot add when bitmap is present */
  4665. mddev->bitmap_info.file = fget(fd);
  4666. if (mddev->bitmap_info.file == NULL) {
  4667. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4668. mdname(mddev));
  4669. return -EBADF;
  4670. }
  4671. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  4672. if (err) {
  4673. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4674. mdname(mddev));
  4675. fput(mddev->bitmap_info.file);
  4676. mddev->bitmap_info.file = NULL;
  4677. return err;
  4678. }
  4679. mddev->bitmap_info.offset = 0; /* file overrides offset */
  4680. } else if (mddev->bitmap == NULL)
  4681. return -ENOENT; /* cannot remove what isn't there */
  4682. err = 0;
  4683. if (mddev->pers) {
  4684. mddev->pers->quiesce(mddev, 1);
  4685. if (fd >= 0)
  4686. err = bitmap_create(mddev);
  4687. if (fd < 0 || err) {
  4688. bitmap_destroy(mddev);
  4689. fd = -1; /* make sure to put the file */
  4690. }
  4691. mddev->pers->quiesce(mddev, 0);
  4692. }
  4693. if (fd < 0) {
  4694. if (mddev->bitmap_info.file) {
  4695. restore_bitmap_write_access(mddev->bitmap_info.file);
  4696. fput(mddev->bitmap_info.file);
  4697. }
  4698. mddev->bitmap_info.file = NULL;
  4699. }
  4700. return err;
  4701. }
  4702. /*
  4703. * set_array_info is used two different ways
  4704. * The original usage is when creating a new array.
  4705. * In this usage, raid_disks is > 0 and it together with
  4706. * level, size, not_persistent,layout,chunksize determine the
  4707. * shape of the array.
  4708. * This will always create an array with a type-0.90.0 superblock.
  4709. * The newer usage is when assembling an array.
  4710. * In this case raid_disks will be 0, and the major_version field is
  4711. * use to determine which style super-blocks are to be found on the devices.
  4712. * The minor and patch _version numbers are also kept incase the
  4713. * super_block handler wishes to interpret them.
  4714. */
  4715. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4716. {
  4717. if (info->raid_disks == 0) {
  4718. /* just setting version number for superblock loading */
  4719. if (info->major_version < 0 ||
  4720. info->major_version >= ARRAY_SIZE(super_types) ||
  4721. super_types[info->major_version].name == NULL) {
  4722. /* maybe try to auto-load a module? */
  4723. printk(KERN_INFO
  4724. "md: superblock version %d not known\n",
  4725. info->major_version);
  4726. return -EINVAL;
  4727. }
  4728. mddev->major_version = info->major_version;
  4729. mddev->minor_version = info->minor_version;
  4730. mddev->patch_version = info->patch_version;
  4731. mddev->persistent = !info->not_persistent;
  4732. /* ensure mddev_put doesn't delete this now that there
  4733. * is some minimal configuration.
  4734. */
  4735. mddev->ctime = get_seconds();
  4736. return 0;
  4737. }
  4738. mddev->major_version = MD_MAJOR_VERSION;
  4739. mddev->minor_version = MD_MINOR_VERSION;
  4740. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4741. mddev->ctime = get_seconds();
  4742. mddev->level = info->level;
  4743. mddev->clevel[0] = 0;
  4744. mddev->dev_sectors = 2 * (sector_t)info->size;
  4745. mddev->raid_disks = info->raid_disks;
  4746. /* don't set md_minor, it is determined by which /dev/md* was
  4747. * openned
  4748. */
  4749. if (info->state & (1<<MD_SB_CLEAN))
  4750. mddev->recovery_cp = MaxSector;
  4751. else
  4752. mddev->recovery_cp = 0;
  4753. mddev->persistent = ! info->not_persistent;
  4754. mddev->external = 0;
  4755. mddev->layout = info->layout;
  4756. mddev->chunk_sectors = info->chunk_size >> 9;
  4757. mddev->max_disks = MD_SB_DISKS;
  4758. if (mddev->persistent)
  4759. mddev->flags = 0;
  4760. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4761. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  4762. mddev->bitmap_info.offset = 0;
  4763. mddev->reshape_position = MaxSector;
  4764. /*
  4765. * Generate a 128 bit UUID
  4766. */
  4767. get_random_bytes(mddev->uuid, 16);
  4768. mddev->new_level = mddev->level;
  4769. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4770. mddev->new_layout = mddev->layout;
  4771. mddev->delta_disks = 0;
  4772. return 0;
  4773. }
  4774. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  4775. {
  4776. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  4777. if (mddev->external_size)
  4778. return;
  4779. mddev->array_sectors = array_sectors;
  4780. }
  4781. EXPORT_SYMBOL(md_set_array_sectors);
  4782. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4783. {
  4784. mdk_rdev_t *rdev;
  4785. int rv;
  4786. int fit = (num_sectors == 0);
  4787. if (mddev->pers->resize == NULL)
  4788. return -EINVAL;
  4789. /* The "num_sectors" is the number of sectors of each device that
  4790. * is used. This can only make sense for arrays with redundancy.
  4791. * linear and raid0 always use whatever space is available. We can only
  4792. * consider changing this number if no resync or reconstruction is
  4793. * happening, and if the new size is acceptable. It must fit before the
  4794. * sb_start or, if that is <data_offset, it must fit before the size
  4795. * of each device. If num_sectors is zero, we find the largest size
  4796. * that fits.
  4797. */
  4798. if (mddev->sync_thread)
  4799. return -EBUSY;
  4800. if (mddev->bitmap)
  4801. /* Sorry, cannot grow a bitmap yet, just remove it,
  4802. * grow, and re-add.
  4803. */
  4804. return -EBUSY;
  4805. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4806. sector_t avail = rdev->sectors;
  4807. if (fit && (num_sectors == 0 || num_sectors > avail))
  4808. num_sectors = avail;
  4809. if (avail < num_sectors)
  4810. return -ENOSPC;
  4811. }
  4812. rv = mddev->pers->resize(mddev, num_sectors);
  4813. if (!rv)
  4814. revalidate_disk(mddev->gendisk);
  4815. return rv;
  4816. }
  4817. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4818. {
  4819. int rv;
  4820. /* change the number of raid disks */
  4821. if (mddev->pers->check_reshape == NULL)
  4822. return -EINVAL;
  4823. if (raid_disks <= 0 ||
  4824. (mddev->max_disks && raid_disks >= mddev->max_disks))
  4825. return -EINVAL;
  4826. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4827. return -EBUSY;
  4828. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4829. rv = mddev->pers->check_reshape(mddev);
  4830. return rv;
  4831. }
  4832. /*
  4833. * update_array_info is used to change the configuration of an
  4834. * on-line array.
  4835. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4836. * fields in the info are checked against the array.
  4837. * Any differences that cannot be handled will cause an error.
  4838. * Normally, only one change can be managed at a time.
  4839. */
  4840. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4841. {
  4842. int rv = 0;
  4843. int cnt = 0;
  4844. int state = 0;
  4845. /* calculate expected state,ignoring low bits */
  4846. if (mddev->bitmap && mddev->bitmap_info.offset)
  4847. state |= (1 << MD_SB_BITMAP_PRESENT);
  4848. if (mddev->major_version != info->major_version ||
  4849. mddev->minor_version != info->minor_version ||
  4850. /* mddev->patch_version != info->patch_version || */
  4851. mddev->ctime != info->ctime ||
  4852. mddev->level != info->level ||
  4853. /* mddev->layout != info->layout || */
  4854. !mddev->persistent != info->not_persistent||
  4855. mddev->chunk_sectors != info->chunk_size >> 9 ||
  4856. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  4857. ((state^info->state) & 0xfffffe00)
  4858. )
  4859. return -EINVAL;
  4860. /* Check there is only one change */
  4861. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4862. cnt++;
  4863. if (mddev->raid_disks != info->raid_disks)
  4864. cnt++;
  4865. if (mddev->layout != info->layout)
  4866. cnt++;
  4867. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  4868. cnt++;
  4869. if (cnt == 0)
  4870. return 0;
  4871. if (cnt > 1)
  4872. return -EINVAL;
  4873. if (mddev->layout != info->layout) {
  4874. /* Change layout
  4875. * we don't need to do anything at the md level, the
  4876. * personality will take care of it all.
  4877. */
  4878. if (mddev->pers->check_reshape == NULL)
  4879. return -EINVAL;
  4880. else {
  4881. mddev->new_layout = info->layout;
  4882. rv = mddev->pers->check_reshape(mddev);
  4883. if (rv)
  4884. mddev->new_layout = mddev->layout;
  4885. return rv;
  4886. }
  4887. }
  4888. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4889. rv = update_size(mddev, (sector_t)info->size * 2);
  4890. if (mddev->raid_disks != info->raid_disks)
  4891. rv = update_raid_disks(mddev, info->raid_disks);
  4892. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  4893. if (mddev->pers->quiesce == NULL)
  4894. return -EINVAL;
  4895. if (mddev->recovery || mddev->sync_thread)
  4896. return -EBUSY;
  4897. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  4898. /* add the bitmap */
  4899. if (mddev->bitmap)
  4900. return -EEXIST;
  4901. if (mddev->bitmap_info.default_offset == 0)
  4902. return -EINVAL;
  4903. mddev->bitmap_info.offset =
  4904. mddev->bitmap_info.default_offset;
  4905. mddev->pers->quiesce(mddev, 1);
  4906. rv = bitmap_create(mddev);
  4907. if (rv)
  4908. bitmap_destroy(mddev);
  4909. mddev->pers->quiesce(mddev, 0);
  4910. } else {
  4911. /* remove the bitmap */
  4912. if (!mddev->bitmap)
  4913. return -ENOENT;
  4914. if (mddev->bitmap->file)
  4915. return -EINVAL;
  4916. mddev->pers->quiesce(mddev, 1);
  4917. bitmap_destroy(mddev);
  4918. mddev->pers->quiesce(mddev, 0);
  4919. mddev->bitmap_info.offset = 0;
  4920. }
  4921. }
  4922. md_update_sb(mddev, 1);
  4923. return rv;
  4924. }
  4925. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  4926. {
  4927. mdk_rdev_t *rdev;
  4928. if (mddev->pers == NULL)
  4929. return -ENODEV;
  4930. rdev = find_rdev(mddev, dev);
  4931. if (!rdev)
  4932. return -ENODEV;
  4933. md_error(mddev, rdev);
  4934. return 0;
  4935. }
  4936. /*
  4937. * We have a problem here : there is no easy way to give a CHS
  4938. * virtual geometry. We currently pretend that we have a 2 heads
  4939. * 4 sectors (with a BIG number of cylinders...). This drives
  4940. * dosfs just mad... ;-)
  4941. */
  4942. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4943. {
  4944. mddev_t *mddev = bdev->bd_disk->private_data;
  4945. geo->heads = 2;
  4946. geo->sectors = 4;
  4947. geo->cylinders = mddev->array_sectors / 8;
  4948. return 0;
  4949. }
  4950. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  4951. unsigned int cmd, unsigned long arg)
  4952. {
  4953. int err = 0;
  4954. void __user *argp = (void __user *)arg;
  4955. mddev_t *mddev = NULL;
  4956. int ro;
  4957. if (!capable(CAP_SYS_ADMIN))
  4958. return -EACCES;
  4959. /*
  4960. * Commands dealing with the RAID driver but not any
  4961. * particular array:
  4962. */
  4963. switch (cmd)
  4964. {
  4965. case RAID_VERSION:
  4966. err = get_version(argp);
  4967. goto done;
  4968. case PRINT_RAID_DEBUG:
  4969. err = 0;
  4970. md_print_devices();
  4971. goto done;
  4972. #ifndef MODULE
  4973. case RAID_AUTORUN:
  4974. err = 0;
  4975. autostart_arrays(arg);
  4976. goto done;
  4977. #endif
  4978. default:;
  4979. }
  4980. /*
  4981. * Commands creating/starting a new array:
  4982. */
  4983. mddev = bdev->bd_disk->private_data;
  4984. if (!mddev) {
  4985. BUG();
  4986. goto abort;
  4987. }
  4988. err = mddev_lock(mddev);
  4989. if (err) {
  4990. printk(KERN_INFO
  4991. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4992. err, cmd);
  4993. goto abort;
  4994. }
  4995. switch (cmd)
  4996. {
  4997. case SET_ARRAY_INFO:
  4998. {
  4999. mdu_array_info_t info;
  5000. if (!arg)
  5001. memset(&info, 0, sizeof(info));
  5002. else if (copy_from_user(&info, argp, sizeof(info))) {
  5003. err = -EFAULT;
  5004. goto abort_unlock;
  5005. }
  5006. if (mddev->pers) {
  5007. err = update_array_info(mddev, &info);
  5008. if (err) {
  5009. printk(KERN_WARNING "md: couldn't update"
  5010. " array info. %d\n", err);
  5011. goto abort_unlock;
  5012. }
  5013. goto done_unlock;
  5014. }
  5015. if (!list_empty(&mddev->disks)) {
  5016. printk(KERN_WARNING
  5017. "md: array %s already has disks!\n",
  5018. mdname(mddev));
  5019. err = -EBUSY;
  5020. goto abort_unlock;
  5021. }
  5022. if (mddev->raid_disks) {
  5023. printk(KERN_WARNING
  5024. "md: array %s already initialised!\n",
  5025. mdname(mddev));
  5026. err = -EBUSY;
  5027. goto abort_unlock;
  5028. }
  5029. err = set_array_info(mddev, &info);
  5030. if (err) {
  5031. printk(KERN_WARNING "md: couldn't set"
  5032. " array info. %d\n", err);
  5033. goto abort_unlock;
  5034. }
  5035. }
  5036. goto done_unlock;
  5037. default:;
  5038. }
  5039. /*
  5040. * Commands querying/configuring an existing array:
  5041. */
  5042. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5043. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5044. if ((!mddev->raid_disks && !mddev->external)
  5045. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5046. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5047. && cmd != GET_BITMAP_FILE) {
  5048. err = -ENODEV;
  5049. goto abort_unlock;
  5050. }
  5051. /*
  5052. * Commands even a read-only array can execute:
  5053. */
  5054. switch (cmd)
  5055. {
  5056. case GET_ARRAY_INFO:
  5057. err = get_array_info(mddev, argp);
  5058. goto done_unlock;
  5059. case GET_BITMAP_FILE:
  5060. err = get_bitmap_file(mddev, argp);
  5061. goto done_unlock;
  5062. case GET_DISK_INFO:
  5063. err = get_disk_info(mddev, argp);
  5064. goto done_unlock;
  5065. case RESTART_ARRAY_RW:
  5066. err = restart_array(mddev);
  5067. goto done_unlock;
  5068. case STOP_ARRAY:
  5069. err = do_md_stop(mddev, 0, 1);
  5070. goto done_unlock;
  5071. case STOP_ARRAY_RO:
  5072. err = md_set_readonly(mddev, 1);
  5073. goto done_unlock;
  5074. case BLKROSET:
  5075. if (get_user(ro, (int __user *)(arg))) {
  5076. err = -EFAULT;
  5077. goto done_unlock;
  5078. }
  5079. err = -EINVAL;
  5080. /* if the bdev is going readonly the value of mddev->ro
  5081. * does not matter, no writes are coming
  5082. */
  5083. if (ro)
  5084. goto done_unlock;
  5085. /* are we are already prepared for writes? */
  5086. if (mddev->ro != 1)
  5087. goto done_unlock;
  5088. /* transitioning to readauto need only happen for
  5089. * arrays that call md_write_start
  5090. */
  5091. if (mddev->pers) {
  5092. err = restart_array(mddev);
  5093. if (err == 0) {
  5094. mddev->ro = 2;
  5095. set_disk_ro(mddev->gendisk, 0);
  5096. }
  5097. }
  5098. goto done_unlock;
  5099. }
  5100. /*
  5101. * The remaining ioctls are changing the state of the
  5102. * superblock, so we do not allow them on read-only arrays.
  5103. * However non-MD ioctls (e.g. get-size) will still come through
  5104. * here and hit the 'default' below, so only disallow
  5105. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5106. */
  5107. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5108. if (mddev->ro == 2) {
  5109. mddev->ro = 0;
  5110. sysfs_notify_dirent(mddev->sysfs_state);
  5111. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5112. md_wakeup_thread(mddev->thread);
  5113. } else {
  5114. err = -EROFS;
  5115. goto abort_unlock;
  5116. }
  5117. }
  5118. switch (cmd)
  5119. {
  5120. case ADD_NEW_DISK:
  5121. {
  5122. mdu_disk_info_t info;
  5123. if (copy_from_user(&info, argp, sizeof(info)))
  5124. err = -EFAULT;
  5125. else
  5126. err = add_new_disk(mddev, &info);
  5127. goto done_unlock;
  5128. }
  5129. case HOT_REMOVE_DISK:
  5130. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5131. goto done_unlock;
  5132. case HOT_ADD_DISK:
  5133. err = hot_add_disk(mddev, new_decode_dev(arg));
  5134. goto done_unlock;
  5135. case SET_DISK_FAULTY:
  5136. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5137. goto done_unlock;
  5138. case RUN_ARRAY:
  5139. err = do_md_run(mddev);
  5140. goto done_unlock;
  5141. case SET_BITMAP_FILE:
  5142. err = set_bitmap_file(mddev, (int)arg);
  5143. goto done_unlock;
  5144. default:
  5145. err = -EINVAL;
  5146. goto abort_unlock;
  5147. }
  5148. done_unlock:
  5149. abort_unlock:
  5150. if (mddev->hold_active == UNTIL_IOCTL &&
  5151. err != -EINVAL)
  5152. mddev->hold_active = 0;
  5153. mddev_unlock(mddev);
  5154. return err;
  5155. done:
  5156. if (err)
  5157. MD_BUG();
  5158. abort:
  5159. return err;
  5160. }
  5161. #ifdef CONFIG_COMPAT
  5162. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5163. unsigned int cmd, unsigned long arg)
  5164. {
  5165. switch (cmd) {
  5166. case HOT_REMOVE_DISK:
  5167. case HOT_ADD_DISK:
  5168. case SET_DISK_FAULTY:
  5169. case SET_BITMAP_FILE:
  5170. /* These take in integer arg, do not convert */
  5171. break;
  5172. default:
  5173. arg = (unsigned long)compat_ptr(arg);
  5174. break;
  5175. }
  5176. return md_ioctl(bdev, mode, cmd, arg);
  5177. }
  5178. #endif /* CONFIG_COMPAT */
  5179. static int md_open(struct block_device *bdev, fmode_t mode)
  5180. {
  5181. /*
  5182. * Succeed if we can lock the mddev, which confirms that
  5183. * it isn't being stopped right now.
  5184. */
  5185. mddev_t *mddev = mddev_find(bdev->bd_dev);
  5186. int err;
  5187. if (mddev->gendisk != bdev->bd_disk) {
  5188. /* we are racing with mddev_put which is discarding this
  5189. * bd_disk.
  5190. */
  5191. mddev_put(mddev);
  5192. /* Wait until bdev->bd_disk is definitely gone */
  5193. flush_scheduled_work();
  5194. /* Then retry the open from the top */
  5195. return -ERESTARTSYS;
  5196. }
  5197. BUG_ON(mddev != bdev->bd_disk->private_data);
  5198. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5199. goto out;
  5200. err = 0;
  5201. atomic_inc(&mddev->openers);
  5202. mutex_unlock(&mddev->open_mutex);
  5203. out:
  5204. return err;
  5205. }
  5206. static int md_release(struct gendisk *disk, fmode_t mode)
  5207. {
  5208. mddev_t *mddev = disk->private_data;
  5209. BUG_ON(!mddev);
  5210. atomic_dec(&mddev->openers);
  5211. mddev_put(mddev);
  5212. return 0;
  5213. }
  5214. static const struct block_device_operations md_fops =
  5215. {
  5216. .owner = THIS_MODULE,
  5217. .open = md_open,
  5218. .release = md_release,
  5219. .ioctl = md_ioctl,
  5220. #ifdef CONFIG_COMPAT
  5221. .compat_ioctl = md_compat_ioctl,
  5222. #endif
  5223. .getgeo = md_getgeo,
  5224. };
  5225. static int md_thread(void * arg)
  5226. {
  5227. mdk_thread_t *thread = arg;
  5228. /*
  5229. * md_thread is a 'system-thread', it's priority should be very
  5230. * high. We avoid resource deadlocks individually in each
  5231. * raid personality. (RAID5 does preallocation) We also use RR and
  5232. * the very same RT priority as kswapd, thus we will never get
  5233. * into a priority inversion deadlock.
  5234. *
  5235. * we definitely have to have equal or higher priority than
  5236. * bdflush, otherwise bdflush will deadlock if there are too
  5237. * many dirty RAID5 blocks.
  5238. */
  5239. allow_signal(SIGKILL);
  5240. while (!kthread_should_stop()) {
  5241. /* We need to wait INTERRUPTIBLE so that
  5242. * we don't add to the load-average.
  5243. * That means we need to be sure no signals are
  5244. * pending
  5245. */
  5246. if (signal_pending(current))
  5247. flush_signals(current);
  5248. wait_event_interruptible_timeout
  5249. (thread->wqueue,
  5250. test_bit(THREAD_WAKEUP, &thread->flags)
  5251. || kthread_should_stop(),
  5252. thread->timeout);
  5253. clear_bit(THREAD_WAKEUP, &thread->flags);
  5254. thread->run(thread->mddev);
  5255. }
  5256. return 0;
  5257. }
  5258. void md_wakeup_thread(mdk_thread_t *thread)
  5259. {
  5260. if (thread) {
  5261. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  5262. set_bit(THREAD_WAKEUP, &thread->flags);
  5263. wake_up(&thread->wqueue);
  5264. }
  5265. }
  5266. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5267. const char *name)
  5268. {
  5269. mdk_thread_t *thread;
  5270. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5271. if (!thread)
  5272. return NULL;
  5273. init_waitqueue_head(&thread->wqueue);
  5274. thread->run = run;
  5275. thread->mddev = mddev;
  5276. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5277. thread->tsk = kthread_run(md_thread, thread,
  5278. "%s_%s",
  5279. mdname(thread->mddev),
  5280. name ?: mddev->pers->name);
  5281. if (IS_ERR(thread->tsk)) {
  5282. kfree(thread);
  5283. return NULL;
  5284. }
  5285. return thread;
  5286. }
  5287. void md_unregister_thread(mdk_thread_t *thread)
  5288. {
  5289. if (!thread)
  5290. return;
  5291. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5292. kthread_stop(thread->tsk);
  5293. kfree(thread);
  5294. }
  5295. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5296. {
  5297. if (!mddev) {
  5298. MD_BUG();
  5299. return;
  5300. }
  5301. if (!rdev || test_bit(Faulty, &rdev->flags))
  5302. return;
  5303. if (mddev->external)
  5304. set_bit(Blocked, &rdev->flags);
  5305. /*
  5306. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  5307. mdname(mddev),
  5308. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  5309. __builtin_return_address(0),__builtin_return_address(1),
  5310. __builtin_return_address(2),__builtin_return_address(3));
  5311. */
  5312. if (!mddev->pers)
  5313. return;
  5314. if (!mddev->pers->error_handler)
  5315. return;
  5316. mddev->pers->error_handler(mddev,rdev);
  5317. if (mddev->degraded)
  5318. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5319. sysfs_notify_dirent(rdev->sysfs_state);
  5320. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5321. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5322. md_wakeup_thread(mddev->thread);
  5323. md_new_event_inintr(mddev);
  5324. }
  5325. /* seq_file implementation /proc/mdstat */
  5326. static void status_unused(struct seq_file *seq)
  5327. {
  5328. int i = 0;
  5329. mdk_rdev_t *rdev;
  5330. seq_printf(seq, "unused devices: ");
  5331. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5332. char b[BDEVNAME_SIZE];
  5333. i++;
  5334. seq_printf(seq, "%s ",
  5335. bdevname(rdev->bdev,b));
  5336. }
  5337. if (!i)
  5338. seq_printf(seq, "<none>");
  5339. seq_printf(seq, "\n");
  5340. }
  5341. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5342. {
  5343. sector_t max_sectors, resync, res;
  5344. unsigned long dt, db;
  5345. sector_t rt;
  5346. int scale;
  5347. unsigned int per_milli;
  5348. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5349. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5350. max_sectors = mddev->resync_max_sectors;
  5351. else
  5352. max_sectors = mddev->dev_sectors;
  5353. /*
  5354. * Should not happen.
  5355. */
  5356. if (!max_sectors) {
  5357. MD_BUG();
  5358. return;
  5359. }
  5360. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5361. * in a sector_t, and (max_sectors>>scale) will fit in a
  5362. * u32, as those are the requirements for sector_div.
  5363. * Thus 'scale' must be at least 10
  5364. */
  5365. scale = 10;
  5366. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5367. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5368. scale++;
  5369. }
  5370. res = (resync>>scale)*1000;
  5371. sector_div(res, (u32)((max_sectors>>scale)+1));
  5372. per_milli = res;
  5373. {
  5374. int i, x = per_milli/50, y = 20-x;
  5375. seq_printf(seq, "[");
  5376. for (i = 0; i < x; i++)
  5377. seq_printf(seq, "=");
  5378. seq_printf(seq, ">");
  5379. for (i = 0; i < y; i++)
  5380. seq_printf(seq, ".");
  5381. seq_printf(seq, "] ");
  5382. }
  5383. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5384. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5385. "reshape" :
  5386. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5387. "check" :
  5388. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5389. "resync" : "recovery"))),
  5390. per_milli/10, per_milli % 10,
  5391. (unsigned long long) resync/2,
  5392. (unsigned long long) max_sectors/2);
  5393. /*
  5394. * dt: time from mark until now
  5395. * db: blocks written from mark until now
  5396. * rt: remaining time
  5397. *
  5398. * rt is a sector_t, so could be 32bit or 64bit.
  5399. * So we divide before multiply in case it is 32bit and close
  5400. * to the limit.
  5401. * We scale the divisor (db) by 32 to avoid loosing precision
  5402. * near the end of resync when the number of remaining sectors
  5403. * is close to 'db'.
  5404. * We then divide rt by 32 after multiplying by db to compensate.
  5405. * The '+1' avoids division by zero if db is very small.
  5406. */
  5407. dt = ((jiffies - mddev->resync_mark) / HZ);
  5408. if (!dt) dt++;
  5409. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5410. - mddev->resync_mark_cnt;
  5411. rt = max_sectors - resync; /* number of remaining sectors */
  5412. sector_div(rt, db/32+1);
  5413. rt *= dt;
  5414. rt >>= 5;
  5415. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5416. ((unsigned long)rt % 60)/6);
  5417. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5418. }
  5419. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5420. {
  5421. struct list_head *tmp;
  5422. loff_t l = *pos;
  5423. mddev_t *mddev;
  5424. if (l >= 0x10000)
  5425. return NULL;
  5426. if (!l--)
  5427. /* header */
  5428. return (void*)1;
  5429. spin_lock(&all_mddevs_lock);
  5430. list_for_each(tmp,&all_mddevs)
  5431. if (!l--) {
  5432. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5433. mddev_get(mddev);
  5434. spin_unlock(&all_mddevs_lock);
  5435. return mddev;
  5436. }
  5437. spin_unlock(&all_mddevs_lock);
  5438. if (!l--)
  5439. return (void*)2;/* tail */
  5440. return NULL;
  5441. }
  5442. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5443. {
  5444. struct list_head *tmp;
  5445. mddev_t *next_mddev, *mddev = v;
  5446. ++*pos;
  5447. if (v == (void*)2)
  5448. return NULL;
  5449. spin_lock(&all_mddevs_lock);
  5450. if (v == (void*)1)
  5451. tmp = all_mddevs.next;
  5452. else
  5453. tmp = mddev->all_mddevs.next;
  5454. if (tmp != &all_mddevs)
  5455. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5456. else {
  5457. next_mddev = (void*)2;
  5458. *pos = 0x10000;
  5459. }
  5460. spin_unlock(&all_mddevs_lock);
  5461. if (v != (void*)1)
  5462. mddev_put(mddev);
  5463. return next_mddev;
  5464. }
  5465. static void md_seq_stop(struct seq_file *seq, void *v)
  5466. {
  5467. mddev_t *mddev = v;
  5468. if (mddev && v != (void*)1 && v != (void*)2)
  5469. mddev_put(mddev);
  5470. }
  5471. struct mdstat_info {
  5472. int event;
  5473. };
  5474. static int md_seq_show(struct seq_file *seq, void *v)
  5475. {
  5476. mddev_t *mddev = v;
  5477. sector_t sectors;
  5478. mdk_rdev_t *rdev;
  5479. struct mdstat_info *mi = seq->private;
  5480. struct bitmap *bitmap;
  5481. if (v == (void*)1) {
  5482. struct mdk_personality *pers;
  5483. seq_printf(seq, "Personalities : ");
  5484. spin_lock(&pers_lock);
  5485. list_for_each_entry(pers, &pers_list, list)
  5486. seq_printf(seq, "[%s] ", pers->name);
  5487. spin_unlock(&pers_lock);
  5488. seq_printf(seq, "\n");
  5489. mi->event = atomic_read(&md_event_count);
  5490. return 0;
  5491. }
  5492. if (v == (void*)2) {
  5493. status_unused(seq);
  5494. return 0;
  5495. }
  5496. if (mddev_lock(mddev) < 0)
  5497. return -EINTR;
  5498. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5499. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5500. mddev->pers ? "" : "in");
  5501. if (mddev->pers) {
  5502. if (mddev->ro==1)
  5503. seq_printf(seq, " (read-only)");
  5504. if (mddev->ro==2)
  5505. seq_printf(seq, " (auto-read-only)");
  5506. seq_printf(seq, " %s", mddev->pers->name);
  5507. }
  5508. sectors = 0;
  5509. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5510. char b[BDEVNAME_SIZE];
  5511. seq_printf(seq, " %s[%d]",
  5512. bdevname(rdev->bdev,b), rdev->desc_nr);
  5513. if (test_bit(WriteMostly, &rdev->flags))
  5514. seq_printf(seq, "(W)");
  5515. if (test_bit(Faulty, &rdev->flags)) {
  5516. seq_printf(seq, "(F)");
  5517. continue;
  5518. } else if (rdev->raid_disk < 0)
  5519. seq_printf(seq, "(S)"); /* spare */
  5520. sectors += rdev->sectors;
  5521. }
  5522. if (!list_empty(&mddev->disks)) {
  5523. if (mddev->pers)
  5524. seq_printf(seq, "\n %llu blocks",
  5525. (unsigned long long)
  5526. mddev->array_sectors / 2);
  5527. else
  5528. seq_printf(seq, "\n %llu blocks",
  5529. (unsigned long long)sectors / 2);
  5530. }
  5531. if (mddev->persistent) {
  5532. if (mddev->major_version != 0 ||
  5533. mddev->minor_version != 90) {
  5534. seq_printf(seq," super %d.%d",
  5535. mddev->major_version,
  5536. mddev->minor_version);
  5537. }
  5538. } else if (mddev->external)
  5539. seq_printf(seq, " super external:%s",
  5540. mddev->metadata_type);
  5541. else
  5542. seq_printf(seq, " super non-persistent");
  5543. if (mddev->pers) {
  5544. mddev->pers->status(seq, mddev);
  5545. seq_printf(seq, "\n ");
  5546. if (mddev->pers->sync_request) {
  5547. if (mddev->curr_resync > 2) {
  5548. status_resync(seq, mddev);
  5549. seq_printf(seq, "\n ");
  5550. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5551. seq_printf(seq, "\tresync=DELAYED\n ");
  5552. else if (mddev->recovery_cp < MaxSector)
  5553. seq_printf(seq, "\tresync=PENDING\n ");
  5554. }
  5555. } else
  5556. seq_printf(seq, "\n ");
  5557. if ((bitmap = mddev->bitmap)) {
  5558. unsigned long chunk_kb;
  5559. unsigned long flags;
  5560. spin_lock_irqsave(&bitmap->lock, flags);
  5561. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5562. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5563. "%lu%s chunk",
  5564. bitmap->pages - bitmap->missing_pages,
  5565. bitmap->pages,
  5566. (bitmap->pages - bitmap->missing_pages)
  5567. << (PAGE_SHIFT - 10),
  5568. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5569. chunk_kb ? "KB" : "B");
  5570. if (bitmap->file) {
  5571. seq_printf(seq, ", file: ");
  5572. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5573. }
  5574. seq_printf(seq, "\n");
  5575. spin_unlock_irqrestore(&bitmap->lock, flags);
  5576. }
  5577. seq_printf(seq, "\n");
  5578. }
  5579. mddev_unlock(mddev);
  5580. return 0;
  5581. }
  5582. static const struct seq_operations md_seq_ops = {
  5583. .start = md_seq_start,
  5584. .next = md_seq_next,
  5585. .stop = md_seq_stop,
  5586. .show = md_seq_show,
  5587. };
  5588. static int md_seq_open(struct inode *inode, struct file *file)
  5589. {
  5590. int error;
  5591. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5592. if (mi == NULL)
  5593. return -ENOMEM;
  5594. error = seq_open(file, &md_seq_ops);
  5595. if (error)
  5596. kfree(mi);
  5597. else {
  5598. struct seq_file *p = file->private_data;
  5599. p->private = mi;
  5600. mi->event = atomic_read(&md_event_count);
  5601. }
  5602. return error;
  5603. }
  5604. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5605. {
  5606. struct seq_file *m = filp->private_data;
  5607. struct mdstat_info *mi = m->private;
  5608. int mask;
  5609. poll_wait(filp, &md_event_waiters, wait);
  5610. /* always allow read */
  5611. mask = POLLIN | POLLRDNORM;
  5612. if (mi->event != atomic_read(&md_event_count))
  5613. mask |= POLLERR | POLLPRI;
  5614. return mask;
  5615. }
  5616. static const struct file_operations md_seq_fops = {
  5617. .owner = THIS_MODULE,
  5618. .open = md_seq_open,
  5619. .read = seq_read,
  5620. .llseek = seq_lseek,
  5621. .release = seq_release_private,
  5622. .poll = mdstat_poll,
  5623. };
  5624. int register_md_personality(struct mdk_personality *p)
  5625. {
  5626. spin_lock(&pers_lock);
  5627. list_add_tail(&p->list, &pers_list);
  5628. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5629. spin_unlock(&pers_lock);
  5630. return 0;
  5631. }
  5632. int unregister_md_personality(struct mdk_personality *p)
  5633. {
  5634. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5635. spin_lock(&pers_lock);
  5636. list_del_init(&p->list);
  5637. spin_unlock(&pers_lock);
  5638. return 0;
  5639. }
  5640. static int is_mddev_idle(mddev_t *mddev, int init)
  5641. {
  5642. mdk_rdev_t * rdev;
  5643. int idle;
  5644. int curr_events;
  5645. idle = 1;
  5646. rcu_read_lock();
  5647. rdev_for_each_rcu(rdev, mddev) {
  5648. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5649. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5650. (int)part_stat_read(&disk->part0, sectors[1]) -
  5651. atomic_read(&disk->sync_io);
  5652. /* sync IO will cause sync_io to increase before the disk_stats
  5653. * as sync_io is counted when a request starts, and
  5654. * disk_stats is counted when it completes.
  5655. * So resync activity will cause curr_events to be smaller than
  5656. * when there was no such activity.
  5657. * non-sync IO will cause disk_stat to increase without
  5658. * increasing sync_io so curr_events will (eventually)
  5659. * be larger than it was before. Once it becomes
  5660. * substantially larger, the test below will cause
  5661. * the array to appear non-idle, and resync will slow
  5662. * down.
  5663. * If there is a lot of outstanding resync activity when
  5664. * we set last_event to curr_events, then all that activity
  5665. * completing might cause the array to appear non-idle
  5666. * and resync will be slowed down even though there might
  5667. * not have been non-resync activity. This will only
  5668. * happen once though. 'last_events' will soon reflect
  5669. * the state where there is little or no outstanding
  5670. * resync requests, and further resync activity will
  5671. * always make curr_events less than last_events.
  5672. *
  5673. */
  5674. if (init || curr_events - rdev->last_events > 64) {
  5675. rdev->last_events = curr_events;
  5676. idle = 0;
  5677. }
  5678. }
  5679. rcu_read_unlock();
  5680. return idle;
  5681. }
  5682. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5683. {
  5684. /* another "blocks" (512byte) blocks have been synced */
  5685. atomic_sub(blocks, &mddev->recovery_active);
  5686. wake_up(&mddev->recovery_wait);
  5687. if (!ok) {
  5688. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5689. md_wakeup_thread(mddev->thread);
  5690. // stop recovery, signal do_sync ....
  5691. }
  5692. }
  5693. /* md_write_start(mddev, bi)
  5694. * If we need to update some array metadata (e.g. 'active' flag
  5695. * in superblock) before writing, schedule a superblock update
  5696. * and wait for it to complete.
  5697. */
  5698. void md_write_start(mddev_t *mddev, struct bio *bi)
  5699. {
  5700. int did_change = 0;
  5701. if (bio_data_dir(bi) != WRITE)
  5702. return;
  5703. BUG_ON(mddev->ro == 1);
  5704. if (mddev->ro == 2) {
  5705. /* need to switch to read/write */
  5706. mddev->ro = 0;
  5707. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5708. md_wakeup_thread(mddev->thread);
  5709. md_wakeup_thread(mddev->sync_thread);
  5710. did_change = 1;
  5711. }
  5712. atomic_inc(&mddev->writes_pending);
  5713. if (mddev->safemode == 1)
  5714. mddev->safemode = 0;
  5715. if (mddev->in_sync) {
  5716. spin_lock_irq(&mddev->write_lock);
  5717. if (mddev->in_sync) {
  5718. mddev->in_sync = 0;
  5719. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5720. md_wakeup_thread(mddev->thread);
  5721. did_change = 1;
  5722. }
  5723. spin_unlock_irq(&mddev->write_lock);
  5724. }
  5725. if (did_change)
  5726. sysfs_notify_dirent(mddev->sysfs_state);
  5727. wait_event(mddev->sb_wait,
  5728. !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
  5729. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5730. }
  5731. void md_write_end(mddev_t *mddev)
  5732. {
  5733. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5734. if (mddev->safemode == 2)
  5735. md_wakeup_thread(mddev->thread);
  5736. else if (mddev->safemode_delay)
  5737. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5738. }
  5739. }
  5740. /* md_allow_write(mddev)
  5741. * Calling this ensures that the array is marked 'active' so that writes
  5742. * may proceed without blocking. It is important to call this before
  5743. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5744. * Must be called with mddev_lock held.
  5745. *
  5746. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5747. * is dropped, so return -EAGAIN after notifying userspace.
  5748. */
  5749. int md_allow_write(mddev_t *mddev)
  5750. {
  5751. if (!mddev->pers)
  5752. return 0;
  5753. if (mddev->ro)
  5754. return 0;
  5755. if (!mddev->pers->sync_request)
  5756. return 0;
  5757. spin_lock_irq(&mddev->write_lock);
  5758. if (mddev->in_sync) {
  5759. mddev->in_sync = 0;
  5760. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5761. if (mddev->safemode_delay &&
  5762. mddev->safemode == 0)
  5763. mddev->safemode = 1;
  5764. spin_unlock_irq(&mddev->write_lock);
  5765. md_update_sb(mddev, 0);
  5766. sysfs_notify_dirent(mddev->sysfs_state);
  5767. } else
  5768. spin_unlock_irq(&mddev->write_lock);
  5769. if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  5770. return -EAGAIN;
  5771. else
  5772. return 0;
  5773. }
  5774. EXPORT_SYMBOL_GPL(md_allow_write);
  5775. #define SYNC_MARKS 10
  5776. #define SYNC_MARK_STEP (3*HZ)
  5777. void md_do_sync(mddev_t *mddev)
  5778. {
  5779. mddev_t *mddev2;
  5780. unsigned int currspeed = 0,
  5781. window;
  5782. sector_t max_sectors,j, io_sectors;
  5783. unsigned long mark[SYNC_MARKS];
  5784. sector_t mark_cnt[SYNC_MARKS];
  5785. int last_mark,m;
  5786. struct list_head *tmp;
  5787. sector_t last_check;
  5788. int skipped = 0;
  5789. mdk_rdev_t *rdev;
  5790. char *desc;
  5791. /* just incase thread restarts... */
  5792. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5793. return;
  5794. if (mddev->ro) /* never try to sync a read-only array */
  5795. return;
  5796. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5797. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5798. desc = "data-check";
  5799. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5800. desc = "requested-resync";
  5801. else
  5802. desc = "resync";
  5803. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5804. desc = "reshape";
  5805. else
  5806. desc = "recovery";
  5807. /* we overload curr_resync somewhat here.
  5808. * 0 == not engaged in resync at all
  5809. * 2 == checking that there is no conflict with another sync
  5810. * 1 == like 2, but have yielded to allow conflicting resync to
  5811. * commense
  5812. * other == active in resync - this many blocks
  5813. *
  5814. * Before starting a resync we must have set curr_resync to
  5815. * 2, and then checked that every "conflicting" array has curr_resync
  5816. * less than ours. When we find one that is the same or higher
  5817. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5818. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5819. * This will mean we have to start checking from the beginning again.
  5820. *
  5821. */
  5822. do {
  5823. mddev->curr_resync = 2;
  5824. try_again:
  5825. if (kthread_should_stop())
  5826. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5827. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5828. goto skip;
  5829. for_each_mddev(mddev2, tmp) {
  5830. if (mddev2 == mddev)
  5831. continue;
  5832. if (!mddev->parallel_resync
  5833. && mddev2->curr_resync
  5834. && match_mddev_units(mddev, mddev2)) {
  5835. DEFINE_WAIT(wq);
  5836. if (mddev < mddev2 && mddev->curr_resync == 2) {
  5837. /* arbitrarily yield */
  5838. mddev->curr_resync = 1;
  5839. wake_up(&resync_wait);
  5840. }
  5841. if (mddev > mddev2 && mddev->curr_resync == 1)
  5842. /* no need to wait here, we can wait the next
  5843. * time 'round when curr_resync == 2
  5844. */
  5845. continue;
  5846. /* We need to wait 'interruptible' so as not to
  5847. * contribute to the load average, and not to
  5848. * be caught by 'softlockup'
  5849. */
  5850. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  5851. if (!kthread_should_stop() &&
  5852. mddev2->curr_resync >= mddev->curr_resync) {
  5853. printk(KERN_INFO "md: delaying %s of %s"
  5854. " until %s has finished (they"
  5855. " share one or more physical units)\n",
  5856. desc, mdname(mddev), mdname(mddev2));
  5857. mddev_put(mddev2);
  5858. if (signal_pending(current))
  5859. flush_signals(current);
  5860. schedule();
  5861. finish_wait(&resync_wait, &wq);
  5862. goto try_again;
  5863. }
  5864. finish_wait(&resync_wait, &wq);
  5865. }
  5866. }
  5867. } while (mddev->curr_resync < 2);
  5868. j = 0;
  5869. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5870. /* resync follows the size requested by the personality,
  5871. * which defaults to physical size, but can be virtual size
  5872. */
  5873. max_sectors = mddev->resync_max_sectors;
  5874. mddev->resync_mismatches = 0;
  5875. /* we don't use the checkpoint if there's a bitmap */
  5876. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5877. j = mddev->resync_min;
  5878. else if (!mddev->bitmap)
  5879. j = mddev->recovery_cp;
  5880. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5881. max_sectors = mddev->dev_sectors;
  5882. else {
  5883. /* recovery follows the physical size of devices */
  5884. max_sectors = mddev->dev_sectors;
  5885. j = MaxSector;
  5886. rcu_read_lock();
  5887. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  5888. if (rdev->raid_disk >= 0 &&
  5889. !test_bit(Faulty, &rdev->flags) &&
  5890. !test_bit(In_sync, &rdev->flags) &&
  5891. rdev->recovery_offset < j)
  5892. j = rdev->recovery_offset;
  5893. rcu_read_unlock();
  5894. }
  5895. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  5896. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  5897. " %d KB/sec/disk.\n", speed_min(mddev));
  5898. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  5899. "(but not more than %d KB/sec) for %s.\n",
  5900. speed_max(mddev), desc);
  5901. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  5902. io_sectors = 0;
  5903. for (m = 0; m < SYNC_MARKS; m++) {
  5904. mark[m] = jiffies;
  5905. mark_cnt[m] = io_sectors;
  5906. }
  5907. last_mark = 0;
  5908. mddev->resync_mark = mark[last_mark];
  5909. mddev->resync_mark_cnt = mark_cnt[last_mark];
  5910. /*
  5911. * Tune reconstruction:
  5912. */
  5913. window = 32*(PAGE_SIZE/512);
  5914. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  5915. window/2,(unsigned long long) max_sectors/2);
  5916. atomic_set(&mddev->recovery_active, 0);
  5917. last_check = 0;
  5918. if (j>2) {
  5919. printk(KERN_INFO
  5920. "md: resuming %s of %s from checkpoint.\n",
  5921. desc, mdname(mddev));
  5922. mddev->curr_resync = j;
  5923. }
  5924. mddev->curr_resync_completed = mddev->curr_resync;
  5925. while (j < max_sectors) {
  5926. sector_t sectors;
  5927. skipped = 0;
  5928. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  5929. ((mddev->curr_resync > mddev->curr_resync_completed &&
  5930. (mddev->curr_resync - mddev->curr_resync_completed)
  5931. > (max_sectors >> 4)) ||
  5932. (j - mddev->curr_resync_completed)*2
  5933. >= mddev->resync_max - mddev->curr_resync_completed
  5934. )) {
  5935. /* time to update curr_resync_completed */
  5936. blk_unplug(mddev->queue);
  5937. wait_event(mddev->recovery_wait,
  5938. atomic_read(&mddev->recovery_active) == 0);
  5939. mddev->curr_resync_completed =
  5940. mddev->curr_resync;
  5941. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5942. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5943. }
  5944. while (j >= mddev->resync_max && !kthread_should_stop()) {
  5945. /* As this condition is controlled by user-space,
  5946. * we can block indefinitely, so use '_interruptible'
  5947. * to avoid triggering warnings.
  5948. */
  5949. flush_signals(current); /* just in case */
  5950. wait_event_interruptible(mddev->recovery_wait,
  5951. mddev->resync_max > j
  5952. || kthread_should_stop());
  5953. }
  5954. if (kthread_should_stop())
  5955. goto interrupted;
  5956. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  5957. currspeed < speed_min(mddev));
  5958. if (sectors == 0) {
  5959. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5960. goto out;
  5961. }
  5962. if (!skipped) { /* actual IO requested */
  5963. io_sectors += sectors;
  5964. atomic_add(sectors, &mddev->recovery_active);
  5965. }
  5966. j += sectors;
  5967. if (j>1) mddev->curr_resync = j;
  5968. mddev->curr_mark_cnt = io_sectors;
  5969. if (last_check == 0)
  5970. /* this is the earliers that rebuilt will be
  5971. * visible in /proc/mdstat
  5972. */
  5973. md_new_event(mddev);
  5974. if (last_check + window > io_sectors || j == max_sectors)
  5975. continue;
  5976. last_check = io_sectors;
  5977. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5978. break;
  5979. repeat:
  5980. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  5981. /* step marks */
  5982. int next = (last_mark+1) % SYNC_MARKS;
  5983. mddev->resync_mark = mark[next];
  5984. mddev->resync_mark_cnt = mark_cnt[next];
  5985. mark[next] = jiffies;
  5986. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  5987. last_mark = next;
  5988. }
  5989. if (kthread_should_stop())
  5990. goto interrupted;
  5991. /*
  5992. * this loop exits only if either when we are slower than
  5993. * the 'hard' speed limit, or the system was IO-idle for
  5994. * a jiffy.
  5995. * the system might be non-idle CPU-wise, but we only care
  5996. * about not overloading the IO subsystem. (things like an
  5997. * e2fsck being done on the RAID array should execute fast)
  5998. */
  5999. blk_unplug(mddev->queue);
  6000. cond_resched();
  6001. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6002. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6003. if (currspeed > speed_min(mddev)) {
  6004. if ((currspeed > speed_max(mddev)) ||
  6005. !is_mddev_idle(mddev, 0)) {
  6006. msleep(500);
  6007. goto repeat;
  6008. }
  6009. }
  6010. }
  6011. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6012. /*
  6013. * this also signals 'finished resyncing' to md_stop
  6014. */
  6015. out:
  6016. blk_unplug(mddev->queue);
  6017. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6018. /* tell personality that we are finished */
  6019. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6020. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6021. mddev->curr_resync > 2) {
  6022. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6023. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6024. if (mddev->curr_resync >= mddev->recovery_cp) {
  6025. printk(KERN_INFO
  6026. "md: checkpointing %s of %s.\n",
  6027. desc, mdname(mddev));
  6028. mddev->recovery_cp = mddev->curr_resync;
  6029. }
  6030. } else
  6031. mddev->recovery_cp = MaxSector;
  6032. } else {
  6033. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6034. mddev->curr_resync = MaxSector;
  6035. rcu_read_lock();
  6036. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6037. if (rdev->raid_disk >= 0 &&
  6038. !test_bit(Faulty, &rdev->flags) &&
  6039. !test_bit(In_sync, &rdev->flags) &&
  6040. rdev->recovery_offset < mddev->curr_resync)
  6041. rdev->recovery_offset = mddev->curr_resync;
  6042. rcu_read_unlock();
  6043. }
  6044. }
  6045. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6046. skip:
  6047. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6048. /* We completed so min/max setting can be forgotten if used. */
  6049. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6050. mddev->resync_min = 0;
  6051. mddev->resync_max = MaxSector;
  6052. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6053. mddev->resync_min = mddev->curr_resync_completed;
  6054. mddev->curr_resync = 0;
  6055. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6056. mddev->curr_resync_completed = 0;
  6057. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6058. wake_up(&resync_wait);
  6059. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6060. md_wakeup_thread(mddev->thread);
  6061. return;
  6062. interrupted:
  6063. /*
  6064. * got a signal, exit.
  6065. */
  6066. printk(KERN_INFO
  6067. "md: md_do_sync() got signal ... exiting\n");
  6068. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6069. goto out;
  6070. }
  6071. EXPORT_SYMBOL_GPL(md_do_sync);
  6072. static int remove_and_add_spares(mddev_t *mddev)
  6073. {
  6074. mdk_rdev_t *rdev;
  6075. int spares = 0;
  6076. mddev->curr_resync_completed = 0;
  6077. list_for_each_entry(rdev, &mddev->disks, same_set)
  6078. if (rdev->raid_disk >= 0 &&
  6079. !test_bit(Blocked, &rdev->flags) &&
  6080. (test_bit(Faulty, &rdev->flags) ||
  6081. ! test_bit(In_sync, &rdev->flags)) &&
  6082. atomic_read(&rdev->nr_pending)==0) {
  6083. if (mddev->pers->hot_remove_disk(
  6084. mddev, rdev->raid_disk)==0) {
  6085. char nm[20];
  6086. sprintf(nm,"rd%d", rdev->raid_disk);
  6087. sysfs_remove_link(&mddev->kobj, nm);
  6088. rdev->raid_disk = -1;
  6089. }
  6090. }
  6091. if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
  6092. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6093. if (rdev->raid_disk >= 0 &&
  6094. !test_bit(In_sync, &rdev->flags) &&
  6095. !test_bit(Blocked, &rdev->flags))
  6096. spares++;
  6097. if (rdev->raid_disk < 0
  6098. && !test_bit(Faulty, &rdev->flags)) {
  6099. rdev->recovery_offset = 0;
  6100. if (mddev->pers->
  6101. hot_add_disk(mddev, rdev) == 0) {
  6102. char nm[20];
  6103. sprintf(nm, "rd%d", rdev->raid_disk);
  6104. if (sysfs_create_link(&mddev->kobj,
  6105. &rdev->kobj, nm))
  6106. printk(KERN_WARNING
  6107. "md: cannot register "
  6108. "%s for %s\n",
  6109. nm, mdname(mddev));
  6110. spares++;
  6111. md_new_event(mddev);
  6112. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6113. } else
  6114. break;
  6115. }
  6116. }
  6117. }
  6118. return spares;
  6119. }
  6120. /*
  6121. * This routine is regularly called by all per-raid-array threads to
  6122. * deal with generic issues like resync and super-block update.
  6123. * Raid personalities that don't have a thread (linear/raid0) do not
  6124. * need this as they never do any recovery or update the superblock.
  6125. *
  6126. * It does not do any resync itself, but rather "forks" off other threads
  6127. * to do that as needed.
  6128. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6129. * "->recovery" and create a thread at ->sync_thread.
  6130. * When the thread finishes it sets MD_RECOVERY_DONE
  6131. * and wakeups up this thread which will reap the thread and finish up.
  6132. * This thread also removes any faulty devices (with nr_pending == 0).
  6133. *
  6134. * The overall approach is:
  6135. * 1/ if the superblock needs updating, update it.
  6136. * 2/ If a recovery thread is running, don't do anything else.
  6137. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6138. * 4/ If there are any faulty devices, remove them.
  6139. * 5/ If array is degraded, try to add spares devices
  6140. * 6/ If array has spares or is not in-sync, start a resync thread.
  6141. */
  6142. void md_check_recovery(mddev_t *mddev)
  6143. {
  6144. mdk_rdev_t *rdev;
  6145. if (mddev->bitmap)
  6146. bitmap_daemon_work(mddev);
  6147. if (mddev->ro)
  6148. return;
  6149. if (signal_pending(current)) {
  6150. if (mddev->pers->sync_request && !mddev->external) {
  6151. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6152. mdname(mddev));
  6153. mddev->safemode = 2;
  6154. }
  6155. flush_signals(current);
  6156. }
  6157. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6158. return;
  6159. if ( ! (
  6160. (mddev->flags && !mddev->external) ||
  6161. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6162. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6163. (mddev->external == 0 && mddev->safemode == 1) ||
  6164. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6165. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6166. ))
  6167. return;
  6168. if (mddev_trylock(mddev)) {
  6169. int spares = 0;
  6170. if (mddev->ro) {
  6171. /* Only thing we do on a ro array is remove
  6172. * failed devices.
  6173. */
  6174. remove_and_add_spares(mddev);
  6175. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6176. goto unlock;
  6177. }
  6178. if (!mddev->external) {
  6179. int did_change = 0;
  6180. spin_lock_irq(&mddev->write_lock);
  6181. if (mddev->safemode &&
  6182. !atomic_read(&mddev->writes_pending) &&
  6183. !mddev->in_sync &&
  6184. mddev->recovery_cp == MaxSector) {
  6185. mddev->in_sync = 1;
  6186. did_change = 1;
  6187. if (mddev->persistent)
  6188. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6189. }
  6190. if (mddev->safemode == 1)
  6191. mddev->safemode = 0;
  6192. spin_unlock_irq(&mddev->write_lock);
  6193. if (did_change)
  6194. sysfs_notify_dirent(mddev->sysfs_state);
  6195. }
  6196. if (mddev->flags)
  6197. md_update_sb(mddev, 0);
  6198. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6199. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6200. /* resync/recovery still happening */
  6201. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6202. goto unlock;
  6203. }
  6204. if (mddev->sync_thread) {
  6205. /* resync has finished, collect result */
  6206. md_unregister_thread(mddev->sync_thread);
  6207. mddev->sync_thread = NULL;
  6208. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6209. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6210. /* success...*/
  6211. /* activate any spares */
  6212. if (mddev->pers->spare_active(mddev))
  6213. sysfs_notify(&mddev->kobj, NULL,
  6214. "degraded");
  6215. }
  6216. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6217. mddev->pers->finish_reshape)
  6218. mddev->pers->finish_reshape(mddev);
  6219. md_update_sb(mddev, 1);
  6220. /* if array is no-longer degraded, then any saved_raid_disk
  6221. * information must be scrapped
  6222. */
  6223. if (!mddev->degraded)
  6224. list_for_each_entry(rdev, &mddev->disks, same_set)
  6225. rdev->saved_raid_disk = -1;
  6226. mddev->recovery = 0;
  6227. /* flag recovery needed just to double check */
  6228. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6229. sysfs_notify_dirent(mddev->sysfs_action);
  6230. md_new_event(mddev);
  6231. goto unlock;
  6232. }
  6233. /* Set RUNNING before clearing NEEDED to avoid
  6234. * any transients in the value of "sync_action".
  6235. */
  6236. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6237. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6238. /* Clear some bits that don't mean anything, but
  6239. * might be left set
  6240. */
  6241. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6242. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6243. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6244. goto unlock;
  6245. /* no recovery is running.
  6246. * remove any failed drives, then
  6247. * add spares if possible.
  6248. * Spare are also removed and re-added, to allow
  6249. * the personality to fail the re-add.
  6250. */
  6251. if (mddev->reshape_position != MaxSector) {
  6252. if (mddev->pers->check_reshape == NULL ||
  6253. mddev->pers->check_reshape(mddev) != 0)
  6254. /* Cannot proceed */
  6255. goto unlock;
  6256. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6257. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6258. } else if ((spares = remove_and_add_spares(mddev))) {
  6259. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6260. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6261. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6262. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6263. } else if (mddev->recovery_cp < MaxSector) {
  6264. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6265. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6266. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6267. /* nothing to be done ... */
  6268. goto unlock;
  6269. if (mddev->pers->sync_request) {
  6270. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6271. /* We are adding a device or devices to an array
  6272. * which has the bitmap stored on all devices.
  6273. * So make sure all bitmap pages get written
  6274. */
  6275. bitmap_write_all(mddev->bitmap);
  6276. }
  6277. mddev->sync_thread = md_register_thread(md_do_sync,
  6278. mddev,
  6279. "resync");
  6280. if (!mddev->sync_thread) {
  6281. printk(KERN_ERR "%s: could not start resync"
  6282. " thread...\n",
  6283. mdname(mddev));
  6284. /* leave the spares where they are, it shouldn't hurt */
  6285. mddev->recovery = 0;
  6286. } else
  6287. md_wakeup_thread(mddev->sync_thread);
  6288. sysfs_notify_dirent(mddev->sysfs_action);
  6289. md_new_event(mddev);
  6290. }
  6291. unlock:
  6292. if (!mddev->sync_thread) {
  6293. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6294. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6295. &mddev->recovery))
  6296. if (mddev->sysfs_action)
  6297. sysfs_notify_dirent(mddev->sysfs_action);
  6298. }
  6299. mddev_unlock(mddev);
  6300. }
  6301. }
  6302. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6303. {
  6304. sysfs_notify_dirent(rdev->sysfs_state);
  6305. wait_event_timeout(rdev->blocked_wait,
  6306. !test_bit(Blocked, &rdev->flags),
  6307. msecs_to_jiffies(5000));
  6308. rdev_dec_pending(rdev, mddev);
  6309. }
  6310. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6311. static int md_notify_reboot(struct notifier_block *this,
  6312. unsigned long code, void *x)
  6313. {
  6314. struct list_head *tmp;
  6315. mddev_t *mddev;
  6316. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  6317. printk(KERN_INFO "md: stopping all md devices.\n");
  6318. for_each_mddev(mddev, tmp)
  6319. if (mddev_trylock(mddev)) {
  6320. /* Force a switch to readonly even array
  6321. * appears to still be in use. Hence
  6322. * the '100'.
  6323. */
  6324. md_set_readonly(mddev, 100);
  6325. mddev_unlock(mddev);
  6326. }
  6327. /*
  6328. * certain more exotic SCSI devices are known to be
  6329. * volatile wrt too early system reboots. While the
  6330. * right place to handle this issue is the given
  6331. * driver, we do want to have a safe RAID driver ...
  6332. */
  6333. mdelay(1000*1);
  6334. }
  6335. return NOTIFY_DONE;
  6336. }
  6337. static struct notifier_block md_notifier = {
  6338. .notifier_call = md_notify_reboot,
  6339. .next = NULL,
  6340. .priority = INT_MAX, /* before any real devices */
  6341. };
  6342. static void md_geninit(void)
  6343. {
  6344. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  6345. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  6346. }
  6347. static int __init md_init(void)
  6348. {
  6349. if (register_blkdev(MD_MAJOR, "md"))
  6350. return -1;
  6351. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  6352. unregister_blkdev(MD_MAJOR, "md");
  6353. return -1;
  6354. }
  6355. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  6356. md_probe, NULL, NULL);
  6357. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  6358. md_probe, NULL, NULL);
  6359. register_reboot_notifier(&md_notifier);
  6360. raid_table_header = register_sysctl_table(raid_root_table);
  6361. md_geninit();
  6362. return 0;
  6363. }
  6364. #ifndef MODULE
  6365. /*
  6366. * Searches all registered partitions for autorun RAID arrays
  6367. * at boot time.
  6368. */
  6369. static LIST_HEAD(all_detected_devices);
  6370. struct detected_devices_node {
  6371. struct list_head list;
  6372. dev_t dev;
  6373. };
  6374. void md_autodetect_dev(dev_t dev)
  6375. {
  6376. struct detected_devices_node *node_detected_dev;
  6377. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  6378. if (node_detected_dev) {
  6379. node_detected_dev->dev = dev;
  6380. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  6381. } else {
  6382. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  6383. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  6384. }
  6385. }
  6386. static void autostart_arrays(int part)
  6387. {
  6388. mdk_rdev_t *rdev;
  6389. struct detected_devices_node *node_detected_dev;
  6390. dev_t dev;
  6391. int i_scanned, i_passed;
  6392. i_scanned = 0;
  6393. i_passed = 0;
  6394. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  6395. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  6396. i_scanned++;
  6397. node_detected_dev = list_entry(all_detected_devices.next,
  6398. struct detected_devices_node, list);
  6399. list_del(&node_detected_dev->list);
  6400. dev = node_detected_dev->dev;
  6401. kfree(node_detected_dev);
  6402. rdev = md_import_device(dev,0, 90);
  6403. if (IS_ERR(rdev))
  6404. continue;
  6405. if (test_bit(Faulty, &rdev->flags)) {
  6406. MD_BUG();
  6407. continue;
  6408. }
  6409. set_bit(AutoDetected, &rdev->flags);
  6410. list_add(&rdev->same_set, &pending_raid_disks);
  6411. i_passed++;
  6412. }
  6413. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  6414. i_scanned, i_passed);
  6415. autorun_devices(part);
  6416. }
  6417. #endif /* !MODULE */
  6418. static __exit void md_exit(void)
  6419. {
  6420. mddev_t *mddev;
  6421. struct list_head *tmp;
  6422. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  6423. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  6424. unregister_blkdev(MD_MAJOR,"md");
  6425. unregister_blkdev(mdp_major, "mdp");
  6426. unregister_reboot_notifier(&md_notifier);
  6427. unregister_sysctl_table(raid_table_header);
  6428. remove_proc_entry("mdstat", NULL);
  6429. for_each_mddev(mddev, tmp) {
  6430. export_array(mddev);
  6431. mddev->hold_active = 0;
  6432. }
  6433. }
  6434. subsys_initcall(md_init);
  6435. module_exit(md_exit)
  6436. static int get_ro(char *buffer, struct kernel_param *kp)
  6437. {
  6438. return sprintf(buffer, "%d", start_readonly);
  6439. }
  6440. static int set_ro(const char *val, struct kernel_param *kp)
  6441. {
  6442. char *e;
  6443. int num = simple_strtoul(val, &e, 10);
  6444. if (*val && (*e == '\0' || *e == '\n')) {
  6445. start_readonly = num;
  6446. return 0;
  6447. }
  6448. return -EINVAL;
  6449. }
  6450. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  6451. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  6452. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  6453. EXPORT_SYMBOL(register_md_personality);
  6454. EXPORT_SYMBOL(unregister_md_personality);
  6455. EXPORT_SYMBOL(md_error);
  6456. EXPORT_SYMBOL(md_done_sync);
  6457. EXPORT_SYMBOL(md_write_start);
  6458. EXPORT_SYMBOL(md_write_end);
  6459. EXPORT_SYMBOL(md_register_thread);
  6460. EXPORT_SYMBOL(md_unregister_thread);
  6461. EXPORT_SYMBOL(md_wakeup_thread);
  6462. EXPORT_SYMBOL(md_check_recovery);
  6463. MODULE_LICENSE("GPL");
  6464. MODULE_DESCRIPTION("MD RAID framework");
  6465. MODULE_ALIAS("md");
  6466. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);