core.c 194 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched.h"
  80. #include "../workqueue_sched.h"
  81. #define CREATE_TRACE_POINTS
  82. #include <trace/events/sched.h>
  83. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  84. {
  85. unsigned long delta;
  86. ktime_t soft, hard, now;
  87. for (;;) {
  88. if (hrtimer_active(period_timer))
  89. break;
  90. now = hrtimer_cb_get_time(period_timer);
  91. hrtimer_forward(period_timer, now, period);
  92. soft = hrtimer_get_softexpires(period_timer);
  93. hard = hrtimer_get_expires(period_timer);
  94. delta = ktime_to_ns(ktime_sub(hard, soft));
  95. __hrtimer_start_range_ns(period_timer, soft, delta,
  96. HRTIMER_MODE_ABS_PINNED, 0);
  97. }
  98. }
  99. DEFINE_MUTEX(sched_domains_mutex);
  100. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  101. static void update_rq_clock_task(struct rq *rq, s64 delta);
  102. void update_rq_clock(struct rq *rq)
  103. {
  104. s64 delta;
  105. if (rq->skip_clock_update > 0)
  106. return;
  107. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  108. rq->clock += delta;
  109. update_rq_clock_task(rq, delta);
  110. }
  111. /*
  112. * Debugging: various feature bits
  113. */
  114. #define SCHED_FEAT(name, enabled) \
  115. (1UL << __SCHED_FEAT_##name) * enabled |
  116. const_debug unsigned int sysctl_sched_features =
  117. #include "features.h"
  118. 0;
  119. #undef SCHED_FEAT
  120. #ifdef CONFIG_SCHED_DEBUG
  121. #define SCHED_FEAT(name, enabled) \
  122. #name ,
  123. static __read_mostly char *sched_feat_names[] = {
  124. #include "features.h"
  125. NULL
  126. };
  127. #undef SCHED_FEAT
  128. static int sched_feat_show(struct seq_file *m, void *v)
  129. {
  130. int i;
  131. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  132. if (!(sysctl_sched_features & (1UL << i)))
  133. seq_puts(m, "NO_");
  134. seq_printf(m, "%s ", sched_feat_names[i]);
  135. }
  136. seq_puts(m, "\n");
  137. return 0;
  138. }
  139. #ifdef HAVE_JUMP_LABEL
  140. #define jump_label_key__true jump_label_key_enabled
  141. #define jump_label_key__false jump_label_key_disabled
  142. #define SCHED_FEAT(name, enabled) \
  143. jump_label_key__##enabled ,
  144. struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
  145. #include "features.h"
  146. };
  147. #undef SCHED_FEAT
  148. static void sched_feat_disable(int i)
  149. {
  150. if (jump_label_enabled(&sched_feat_keys[i]))
  151. jump_label_dec(&sched_feat_keys[i]);
  152. }
  153. static void sched_feat_enable(int i)
  154. {
  155. if (!jump_label_enabled(&sched_feat_keys[i]))
  156. jump_label_inc(&sched_feat_keys[i]);
  157. }
  158. #else
  159. static void sched_feat_disable(int i) { };
  160. static void sched_feat_enable(int i) { };
  161. #endif /* HAVE_JUMP_LABEL */
  162. static ssize_t
  163. sched_feat_write(struct file *filp, const char __user *ubuf,
  164. size_t cnt, loff_t *ppos)
  165. {
  166. char buf[64];
  167. char *cmp;
  168. int neg = 0;
  169. int i;
  170. if (cnt > 63)
  171. cnt = 63;
  172. if (copy_from_user(&buf, ubuf, cnt))
  173. return -EFAULT;
  174. buf[cnt] = 0;
  175. cmp = strstrip(buf);
  176. if (strncmp(cmp, "NO_", 3) == 0) {
  177. neg = 1;
  178. cmp += 3;
  179. }
  180. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  181. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  182. if (neg) {
  183. sysctl_sched_features &= ~(1UL << i);
  184. sched_feat_disable(i);
  185. } else {
  186. sysctl_sched_features |= (1UL << i);
  187. sched_feat_enable(i);
  188. }
  189. break;
  190. }
  191. }
  192. if (i == __SCHED_FEAT_NR)
  193. return -EINVAL;
  194. *ppos += cnt;
  195. return cnt;
  196. }
  197. static int sched_feat_open(struct inode *inode, struct file *filp)
  198. {
  199. return single_open(filp, sched_feat_show, NULL);
  200. }
  201. static const struct file_operations sched_feat_fops = {
  202. .open = sched_feat_open,
  203. .write = sched_feat_write,
  204. .read = seq_read,
  205. .llseek = seq_lseek,
  206. .release = single_release,
  207. };
  208. static __init int sched_init_debug(void)
  209. {
  210. debugfs_create_file("sched_features", 0644, NULL, NULL,
  211. &sched_feat_fops);
  212. return 0;
  213. }
  214. late_initcall(sched_init_debug);
  215. #endif /* CONFIG_SCHED_DEBUG */
  216. /*
  217. * Number of tasks to iterate in a single balance run.
  218. * Limited because this is done with IRQs disabled.
  219. */
  220. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  221. /*
  222. * period over which we average the RT time consumption, measured
  223. * in ms.
  224. *
  225. * default: 1s
  226. */
  227. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  228. /*
  229. * period over which we measure -rt task cpu usage in us.
  230. * default: 1s
  231. */
  232. unsigned int sysctl_sched_rt_period = 1000000;
  233. __read_mostly int scheduler_running;
  234. /*
  235. * part of the period that we allow rt tasks to run in us.
  236. * default: 0.95s
  237. */
  238. int sysctl_sched_rt_runtime = 950000;
  239. /*
  240. * __task_rq_lock - lock the rq @p resides on.
  241. */
  242. static inline struct rq *__task_rq_lock(struct task_struct *p)
  243. __acquires(rq->lock)
  244. {
  245. struct rq *rq;
  246. lockdep_assert_held(&p->pi_lock);
  247. for (;;) {
  248. rq = task_rq(p);
  249. raw_spin_lock(&rq->lock);
  250. if (likely(rq == task_rq(p)))
  251. return rq;
  252. raw_spin_unlock(&rq->lock);
  253. }
  254. }
  255. /*
  256. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  257. */
  258. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  259. __acquires(p->pi_lock)
  260. __acquires(rq->lock)
  261. {
  262. struct rq *rq;
  263. for (;;) {
  264. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  265. rq = task_rq(p);
  266. raw_spin_lock(&rq->lock);
  267. if (likely(rq == task_rq(p)))
  268. return rq;
  269. raw_spin_unlock(&rq->lock);
  270. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  271. }
  272. }
  273. static void __task_rq_unlock(struct rq *rq)
  274. __releases(rq->lock)
  275. {
  276. raw_spin_unlock(&rq->lock);
  277. }
  278. static inline void
  279. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  280. __releases(rq->lock)
  281. __releases(p->pi_lock)
  282. {
  283. raw_spin_unlock(&rq->lock);
  284. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  285. }
  286. /*
  287. * this_rq_lock - lock this runqueue and disable interrupts.
  288. */
  289. static struct rq *this_rq_lock(void)
  290. __acquires(rq->lock)
  291. {
  292. struct rq *rq;
  293. local_irq_disable();
  294. rq = this_rq();
  295. raw_spin_lock(&rq->lock);
  296. return rq;
  297. }
  298. #ifdef CONFIG_SCHED_HRTICK
  299. /*
  300. * Use HR-timers to deliver accurate preemption points.
  301. *
  302. * Its all a bit involved since we cannot program an hrt while holding the
  303. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  304. * reschedule event.
  305. *
  306. * When we get rescheduled we reprogram the hrtick_timer outside of the
  307. * rq->lock.
  308. */
  309. static void hrtick_clear(struct rq *rq)
  310. {
  311. if (hrtimer_active(&rq->hrtick_timer))
  312. hrtimer_cancel(&rq->hrtick_timer);
  313. }
  314. /*
  315. * High-resolution timer tick.
  316. * Runs from hardirq context with interrupts disabled.
  317. */
  318. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  319. {
  320. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  321. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  322. raw_spin_lock(&rq->lock);
  323. update_rq_clock(rq);
  324. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  325. raw_spin_unlock(&rq->lock);
  326. return HRTIMER_NORESTART;
  327. }
  328. #ifdef CONFIG_SMP
  329. /*
  330. * called from hardirq (IPI) context
  331. */
  332. static void __hrtick_start(void *arg)
  333. {
  334. struct rq *rq = arg;
  335. raw_spin_lock(&rq->lock);
  336. hrtimer_restart(&rq->hrtick_timer);
  337. rq->hrtick_csd_pending = 0;
  338. raw_spin_unlock(&rq->lock);
  339. }
  340. /*
  341. * Called to set the hrtick timer state.
  342. *
  343. * called with rq->lock held and irqs disabled
  344. */
  345. void hrtick_start(struct rq *rq, u64 delay)
  346. {
  347. struct hrtimer *timer = &rq->hrtick_timer;
  348. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  349. hrtimer_set_expires(timer, time);
  350. if (rq == this_rq()) {
  351. hrtimer_restart(timer);
  352. } else if (!rq->hrtick_csd_pending) {
  353. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  354. rq->hrtick_csd_pending = 1;
  355. }
  356. }
  357. static int
  358. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  359. {
  360. int cpu = (int)(long)hcpu;
  361. switch (action) {
  362. case CPU_UP_CANCELED:
  363. case CPU_UP_CANCELED_FROZEN:
  364. case CPU_DOWN_PREPARE:
  365. case CPU_DOWN_PREPARE_FROZEN:
  366. case CPU_DEAD:
  367. case CPU_DEAD_FROZEN:
  368. hrtick_clear(cpu_rq(cpu));
  369. return NOTIFY_OK;
  370. }
  371. return NOTIFY_DONE;
  372. }
  373. static __init void init_hrtick(void)
  374. {
  375. hotcpu_notifier(hotplug_hrtick, 0);
  376. }
  377. #else
  378. /*
  379. * Called to set the hrtick timer state.
  380. *
  381. * called with rq->lock held and irqs disabled
  382. */
  383. void hrtick_start(struct rq *rq, u64 delay)
  384. {
  385. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  386. HRTIMER_MODE_REL_PINNED, 0);
  387. }
  388. static inline void init_hrtick(void)
  389. {
  390. }
  391. #endif /* CONFIG_SMP */
  392. static void init_rq_hrtick(struct rq *rq)
  393. {
  394. #ifdef CONFIG_SMP
  395. rq->hrtick_csd_pending = 0;
  396. rq->hrtick_csd.flags = 0;
  397. rq->hrtick_csd.func = __hrtick_start;
  398. rq->hrtick_csd.info = rq;
  399. #endif
  400. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  401. rq->hrtick_timer.function = hrtick;
  402. }
  403. #else /* CONFIG_SCHED_HRTICK */
  404. static inline void hrtick_clear(struct rq *rq)
  405. {
  406. }
  407. static inline void init_rq_hrtick(struct rq *rq)
  408. {
  409. }
  410. static inline void init_hrtick(void)
  411. {
  412. }
  413. #endif /* CONFIG_SCHED_HRTICK */
  414. /*
  415. * resched_task - mark a task 'to be rescheduled now'.
  416. *
  417. * On UP this means the setting of the need_resched flag, on SMP it
  418. * might also involve a cross-CPU call to trigger the scheduler on
  419. * the target CPU.
  420. */
  421. #ifdef CONFIG_SMP
  422. #ifndef tsk_is_polling
  423. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  424. #endif
  425. void resched_task(struct task_struct *p)
  426. {
  427. int cpu;
  428. assert_raw_spin_locked(&task_rq(p)->lock);
  429. if (test_tsk_need_resched(p))
  430. return;
  431. set_tsk_need_resched(p);
  432. cpu = task_cpu(p);
  433. if (cpu == smp_processor_id())
  434. return;
  435. /* NEED_RESCHED must be visible before we test polling */
  436. smp_mb();
  437. if (!tsk_is_polling(p))
  438. smp_send_reschedule(cpu);
  439. }
  440. void resched_cpu(int cpu)
  441. {
  442. struct rq *rq = cpu_rq(cpu);
  443. unsigned long flags;
  444. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  445. return;
  446. resched_task(cpu_curr(cpu));
  447. raw_spin_unlock_irqrestore(&rq->lock, flags);
  448. }
  449. #ifdef CONFIG_NO_HZ
  450. /*
  451. * In the semi idle case, use the nearest busy cpu for migrating timers
  452. * from an idle cpu. This is good for power-savings.
  453. *
  454. * We don't do similar optimization for completely idle system, as
  455. * selecting an idle cpu will add more delays to the timers than intended
  456. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  457. */
  458. int get_nohz_timer_target(void)
  459. {
  460. int cpu = smp_processor_id();
  461. int i;
  462. struct sched_domain *sd;
  463. rcu_read_lock();
  464. for_each_domain(cpu, sd) {
  465. for_each_cpu(i, sched_domain_span(sd)) {
  466. if (!idle_cpu(i)) {
  467. cpu = i;
  468. goto unlock;
  469. }
  470. }
  471. }
  472. unlock:
  473. rcu_read_unlock();
  474. return cpu;
  475. }
  476. /*
  477. * When add_timer_on() enqueues a timer into the timer wheel of an
  478. * idle CPU then this timer might expire before the next timer event
  479. * which is scheduled to wake up that CPU. In case of a completely
  480. * idle system the next event might even be infinite time into the
  481. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  482. * leaves the inner idle loop so the newly added timer is taken into
  483. * account when the CPU goes back to idle and evaluates the timer
  484. * wheel for the next timer event.
  485. */
  486. void wake_up_idle_cpu(int cpu)
  487. {
  488. struct rq *rq = cpu_rq(cpu);
  489. if (cpu == smp_processor_id())
  490. return;
  491. /*
  492. * This is safe, as this function is called with the timer
  493. * wheel base lock of (cpu) held. When the CPU is on the way
  494. * to idle and has not yet set rq->curr to idle then it will
  495. * be serialized on the timer wheel base lock and take the new
  496. * timer into account automatically.
  497. */
  498. if (rq->curr != rq->idle)
  499. return;
  500. /*
  501. * We can set TIF_RESCHED on the idle task of the other CPU
  502. * lockless. The worst case is that the other CPU runs the
  503. * idle task through an additional NOOP schedule()
  504. */
  505. set_tsk_need_resched(rq->idle);
  506. /* NEED_RESCHED must be visible before we test polling */
  507. smp_mb();
  508. if (!tsk_is_polling(rq->idle))
  509. smp_send_reschedule(cpu);
  510. }
  511. static inline bool got_nohz_idle_kick(void)
  512. {
  513. int cpu = smp_processor_id();
  514. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  515. }
  516. #else /* CONFIG_NO_HZ */
  517. static inline bool got_nohz_idle_kick(void)
  518. {
  519. return false;
  520. }
  521. #endif /* CONFIG_NO_HZ */
  522. void sched_avg_update(struct rq *rq)
  523. {
  524. s64 period = sched_avg_period();
  525. while ((s64)(rq->clock - rq->age_stamp) > period) {
  526. /*
  527. * Inline assembly required to prevent the compiler
  528. * optimising this loop into a divmod call.
  529. * See __iter_div_u64_rem() for another example of this.
  530. */
  531. asm("" : "+rm" (rq->age_stamp));
  532. rq->age_stamp += period;
  533. rq->rt_avg /= 2;
  534. }
  535. }
  536. #else /* !CONFIG_SMP */
  537. void resched_task(struct task_struct *p)
  538. {
  539. assert_raw_spin_locked(&task_rq(p)->lock);
  540. set_tsk_need_resched(p);
  541. }
  542. #endif /* CONFIG_SMP */
  543. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  544. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  545. /*
  546. * Iterate task_group tree rooted at *from, calling @down when first entering a
  547. * node and @up when leaving it for the final time.
  548. *
  549. * Caller must hold rcu_lock or sufficient equivalent.
  550. */
  551. int walk_tg_tree_from(struct task_group *from,
  552. tg_visitor down, tg_visitor up, void *data)
  553. {
  554. struct task_group *parent, *child;
  555. int ret;
  556. parent = from;
  557. down:
  558. ret = (*down)(parent, data);
  559. if (ret)
  560. goto out;
  561. list_for_each_entry_rcu(child, &parent->children, siblings) {
  562. parent = child;
  563. goto down;
  564. up:
  565. continue;
  566. }
  567. ret = (*up)(parent, data);
  568. if (ret || parent == from)
  569. goto out;
  570. child = parent;
  571. parent = parent->parent;
  572. if (parent)
  573. goto up;
  574. out:
  575. return ret;
  576. }
  577. int tg_nop(struct task_group *tg, void *data)
  578. {
  579. return 0;
  580. }
  581. #endif
  582. void update_cpu_load(struct rq *this_rq);
  583. static void set_load_weight(struct task_struct *p)
  584. {
  585. int prio = p->static_prio - MAX_RT_PRIO;
  586. struct load_weight *load = &p->se.load;
  587. /*
  588. * SCHED_IDLE tasks get minimal weight:
  589. */
  590. if (p->policy == SCHED_IDLE) {
  591. load->weight = scale_load(WEIGHT_IDLEPRIO);
  592. load->inv_weight = WMULT_IDLEPRIO;
  593. return;
  594. }
  595. load->weight = scale_load(prio_to_weight[prio]);
  596. load->inv_weight = prio_to_wmult[prio];
  597. }
  598. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  599. {
  600. update_rq_clock(rq);
  601. sched_info_queued(p);
  602. p->sched_class->enqueue_task(rq, p, flags);
  603. }
  604. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  605. {
  606. update_rq_clock(rq);
  607. sched_info_dequeued(p);
  608. p->sched_class->dequeue_task(rq, p, flags);
  609. }
  610. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  611. {
  612. if (task_contributes_to_load(p))
  613. rq->nr_uninterruptible--;
  614. enqueue_task(rq, p, flags);
  615. }
  616. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  617. {
  618. if (task_contributes_to_load(p))
  619. rq->nr_uninterruptible++;
  620. dequeue_task(rq, p, flags);
  621. }
  622. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  623. /*
  624. * There are no locks covering percpu hardirq/softirq time.
  625. * They are only modified in account_system_vtime, on corresponding CPU
  626. * with interrupts disabled. So, writes are safe.
  627. * They are read and saved off onto struct rq in update_rq_clock().
  628. * This may result in other CPU reading this CPU's irq time and can
  629. * race with irq/account_system_vtime on this CPU. We would either get old
  630. * or new value with a side effect of accounting a slice of irq time to wrong
  631. * task when irq is in progress while we read rq->clock. That is a worthy
  632. * compromise in place of having locks on each irq in account_system_time.
  633. */
  634. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  635. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  636. static DEFINE_PER_CPU(u64, irq_start_time);
  637. static int sched_clock_irqtime;
  638. void enable_sched_clock_irqtime(void)
  639. {
  640. sched_clock_irqtime = 1;
  641. }
  642. void disable_sched_clock_irqtime(void)
  643. {
  644. sched_clock_irqtime = 0;
  645. }
  646. #ifndef CONFIG_64BIT
  647. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  648. static inline void irq_time_write_begin(void)
  649. {
  650. __this_cpu_inc(irq_time_seq.sequence);
  651. smp_wmb();
  652. }
  653. static inline void irq_time_write_end(void)
  654. {
  655. smp_wmb();
  656. __this_cpu_inc(irq_time_seq.sequence);
  657. }
  658. static inline u64 irq_time_read(int cpu)
  659. {
  660. u64 irq_time;
  661. unsigned seq;
  662. do {
  663. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  664. irq_time = per_cpu(cpu_softirq_time, cpu) +
  665. per_cpu(cpu_hardirq_time, cpu);
  666. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  667. return irq_time;
  668. }
  669. #else /* CONFIG_64BIT */
  670. static inline void irq_time_write_begin(void)
  671. {
  672. }
  673. static inline void irq_time_write_end(void)
  674. {
  675. }
  676. static inline u64 irq_time_read(int cpu)
  677. {
  678. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  679. }
  680. #endif /* CONFIG_64BIT */
  681. /*
  682. * Called before incrementing preempt_count on {soft,}irq_enter
  683. * and before decrementing preempt_count on {soft,}irq_exit.
  684. */
  685. void account_system_vtime(struct task_struct *curr)
  686. {
  687. unsigned long flags;
  688. s64 delta;
  689. int cpu;
  690. if (!sched_clock_irqtime)
  691. return;
  692. local_irq_save(flags);
  693. cpu = smp_processor_id();
  694. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  695. __this_cpu_add(irq_start_time, delta);
  696. irq_time_write_begin();
  697. /*
  698. * We do not account for softirq time from ksoftirqd here.
  699. * We want to continue accounting softirq time to ksoftirqd thread
  700. * in that case, so as not to confuse scheduler with a special task
  701. * that do not consume any time, but still wants to run.
  702. */
  703. if (hardirq_count())
  704. __this_cpu_add(cpu_hardirq_time, delta);
  705. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  706. __this_cpu_add(cpu_softirq_time, delta);
  707. irq_time_write_end();
  708. local_irq_restore(flags);
  709. }
  710. EXPORT_SYMBOL_GPL(account_system_vtime);
  711. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  712. #ifdef CONFIG_PARAVIRT
  713. static inline u64 steal_ticks(u64 steal)
  714. {
  715. if (unlikely(steal > NSEC_PER_SEC))
  716. return div_u64(steal, TICK_NSEC);
  717. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  718. }
  719. #endif
  720. static void update_rq_clock_task(struct rq *rq, s64 delta)
  721. {
  722. /*
  723. * In theory, the compile should just see 0 here, and optimize out the call
  724. * to sched_rt_avg_update. But I don't trust it...
  725. */
  726. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  727. s64 steal = 0, irq_delta = 0;
  728. #endif
  729. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  730. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  731. /*
  732. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  733. * this case when a previous update_rq_clock() happened inside a
  734. * {soft,}irq region.
  735. *
  736. * When this happens, we stop ->clock_task and only update the
  737. * prev_irq_time stamp to account for the part that fit, so that a next
  738. * update will consume the rest. This ensures ->clock_task is
  739. * monotonic.
  740. *
  741. * It does however cause some slight miss-attribution of {soft,}irq
  742. * time, a more accurate solution would be to update the irq_time using
  743. * the current rq->clock timestamp, except that would require using
  744. * atomic ops.
  745. */
  746. if (irq_delta > delta)
  747. irq_delta = delta;
  748. rq->prev_irq_time += irq_delta;
  749. delta -= irq_delta;
  750. #endif
  751. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  752. if (static_branch((&paravirt_steal_rq_enabled))) {
  753. u64 st;
  754. steal = paravirt_steal_clock(cpu_of(rq));
  755. steal -= rq->prev_steal_time_rq;
  756. if (unlikely(steal > delta))
  757. steal = delta;
  758. st = steal_ticks(steal);
  759. steal = st * TICK_NSEC;
  760. rq->prev_steal_time_rq += steal;
  761. delta -= steal;
  762. }
  763. #endif
  764. rq->clock_task += delta;
  765. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  766. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  767. sched_rt_avg_update(rq, irq_delta + steal);
  768. #endif
  769. }
  770. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  771. static int irqtime_account_hi_update(void)
  772. {
  773. u64 *cpustat = kcpustat_this_cpu->cpustat;
  774. unsigned long flags;
  775. u64 latest_ns;
  776. int ret = 0;
  777. local_irq_save(flags);
  778. latest_ns = this_cpu_read(cpu_hardirq_time);
  779. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  780. ret = 1;
  781. local_irq_restore(flags);
  782. return ret;
  783. }
  784. static int irqtime_account_si_update(void)
  785. {
  786. u64 *cpustat = kcpustat_this_cpu->cpustat;
  787. unsigned long flags;
  788. u64 latest_ns;
  789. int ret = 0;
  790. local_irq_save(flags);
  791. latest_ns = this_cpu_read(cpu_softirq_time);
  792. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  793. ret = 1;
  794. local_irq_restore(flags);
  795. return ret;
  796. }
  797. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  798. #define sched_clock_irqtime (0)
  799. #endif
  800. void sched_set_stop_task(int cpu, struct task_struct *stop)
  801. {
  802. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  803. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  804. if (stop) {
  805. /*
  806. * Make it appear like a SCHED_FIFO task, its something
  807. * userspace knows about and won't get confused about.
  808. *
  809. * Also, it will make PI more or less work without too
  810. * much confusion -- but then, stop work should not
  811. * rely on PI working anyway.
  812. */
  813. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  814. stop->sched_class = &stop_sched_class;
  815. }
  816. cpu_rq(cpu)->stop = stop;
  817. if (old_stop) {
  818. /*
  819. * Reset it back to a normal scheduling class so that
  820. * it can die in pieces.
  821. */
  822. old_stop->sched_class = &rt_sched_class;
  823. }
  824. }
  825. /*
  826. * __normal_prio - return the priority that is based on the static prio
  827. */
  828. static inline int __normal_prio(struct task_struct *p)
  829. {
  830. return p->static_prio;
  831. }
  832. /*
  833. * Calculate the expected normal priority: i.e. priority
  834. * without taking RT-inheritance into account. Might be
  835. * boosted by interactivity modifiers. Changes upon fork,
  836. * setprio syscalls, and whenever the interactivity
  837. * estimator recalculates.
  838. */
  839. static inline int normal_prio(struct task_struct *p)
  840. {
  841. int prio;
  842. if (task_has_rt_policy(p))
  843. prio = MAX_RT_PRIO-1 - p->rt_priority;
  844. else
  845. prio = __normal_prio(p);
  846. return prio;
  847. }
  848. /*
  849. * Calculate the current priority, i.e. the priority
  850. * taken into account by the scheduler. This value might
  851. * be boosted by RT tasks, or might be boosted by
  852. * interactivity modifiers. Will be RT if the task got
  853. * RT-boosted. If not then it returns p->normal_prio.
  854. */
  855. static int effective_prio(struct task_struct *p)
  856. {
  857. p->normal_prio = normal_prio(p);
  858. /*
  859. * If we are RT tasks or we were boosted to RT priority,
  860. * keep the priority unchanged. Otherwise, update priority
  861. * to the normal priority:
  862. */
  863. if (!rt_prio(p->prio))
  864. return p->normal_prio;
  865. return p->prio;
  866. }
  867. /**
  868. * task_curr - is this task currently executing on a CPU?
  869. * @p: the task in question.
  870. */
  871. inline int task_curr(const struct task_struct *p)
  872. {
  873. return cpu_curr(task_cpu(p)) == p;
  874. }
  875. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  876. const struct sched_class *prev_class,
  877. int oldprio)
  878. {
  879. if (prev_class != p->sched_class) {
  880. if (prev_class->switched_from)
  881. prev_class->switched_from(rq, p);
  882. p->sched_class->switched_to(rq, p);
  883. } else if (oldprio != p->prio)
  884. p->sched_class->prio_changed(rq, p, oldprio);
  885. }
  886. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  887. {
  888. const struct sched_class *class;
  889. if (p->sched_class == rq->curr->sched_class) {
  890. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  891. } else {
  892. for_each_class(class) {
  893. if (class == rq->curr->sched_class)
  894. break;
  895. if (class == p->sched_class) {
  896. resched_task(rq->curr);
  897. break;
  898. }
  899. }
  900. }
  901. /*
  902. * A queue event has occurred, and we're going to schedule. In
  903. * this case, we can save a useless back to back clock update.
  904. */
  905. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  906. rq->skip_clock_update = 1;
  907. }
  908. #ifdef CONFIG_SMP
  909. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  910. {
  911. #ifdef CONFIG_SCHED_DEBUG
  912. /*
  913. * We should never call set_task_cpu() on a blocked task,
  914. * ttwu() will sort out the placement.
  915. */
  916. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  917. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  918. #ifdef CONFIG_LOCKDEP
  919. /*
  920. * The caller should hold either p->pi_lock or rq->lock, when changing
  921. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  922. *
  923. * sched_move_task() holds both and thus holding either pins the cgroup,
  924. * see set_task_rq().
  925. *
  926. * Furthermore, all task_rq users should acquire both locks, see
  927. * task_rq_lock().
  928. */
  929. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  930. lockdep_is_held(&task_rq(p)->lock)));
  931. #endif
  932. #endif
  933. trace_sched_migrate_task(p, new_cpu);
  934. if (task_cpu(p) != new_cpu) {
  935. p->se.nr_migrations++;
  936. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  937. }
  938. __set_task_cpu(p, new_cpu);
  939. }
  940. struct migration_arg {
  941. struct task_struct *task;
  942. int dest_cpu;
  943. };
  944. static int migration_cpu_stop(void *data);
  945. /*
  946. * wait_task_inactive - wait for a thread to unschedule.
  947. *
  948. * If @match_state is nonzero, it's the @p->state value just checked and
  949. * not expected to change. If it changes, i.e. @p might have woken up,
  950. * then return zero. When we succeed in waiting for @p to be off its CPU,
  951. * we return a positive number (its total switch count). If a second call
  952. * a short while later returns the same number, the caller can be sure that
  953. * @p has remained unscheduled the whole time.
  954. *
  955. * The caller must ensure that the task *will* unschedule sometime soon,
  956. * else this function might spin for a *long* time. This function can't
  957. * be called with interrupts off, or it may introduce deadlock with
  958. * smp_call_function() if an IPI is sent by the same process we are
  959. * waiting to become inactive.
  960. */
  961. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  962. {
  963. unsigned long flags;
  964. int running, on_rq;
  965. unsigned long ncsw;
  966. struct rq *rq;
  967. for (;;) {
  968. /*
  969. * We do the initial early heuristics without holding
  970. * any task-queue locks at all. We'll only try to get
  971. * the runqueue lock when things look like they will
  972. * work out!
  973. */
  974. rq = task_rq(p);
  975. /*
  976. * If the task is actively running on another CPU
  977. * still, just relax and busy-wait without holding
  978. * any locks.
  979. *
  980. * NOTE! Since we don't hold any locks, it's not
  981. * even sure that "rq" stays as the right runqueue!
  982. * But we don't care, since "task_running()" will
  983. * return false if the runqueue has changed and p
  984. * is actually now running somewhere else!
  985. */
  986. while (task_running(rq, p)) {
  987. if (match_state && unlikely(p->state != match_state))
  988. return 0;
  989. cpu_relax();
  990. }
  991. /*
  992. * Ok, time to look more closely! We need the rq
  993. * lock now, to be *sure*. If we're wrong, we'll
  994. * just go back and repeat.
  995. */
  996. rq = task_rq_lock(p, &flags);
  997. trace_sched_wait_task(p);
  998. running = task_running(rq, p);
  999. on_rq = p->on_rq;
  1000. ncsw = 0;
  1001. if (!match_state || p->state == match_state)
  1002. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1003. task_rq_unlock(rq, p, &flags);
  1004. /*
  1005. * If it changed from the expected state, bail out now.
  1006. */
  1007. if (unlikely(!ncsw))
  1008. break;
  1009. /*
  1010. * Was it really running after all now that we
  1011. * checked with the proper locks actually held?
  1012. *
  1013. * Oops. Go back and try again..
  1014. */
  1015. if (unlikely(running)) {
  1016. cpu_relax();
  1017. continue;
  1018. }
  1019. /*
  1020. * It's not enough that it's not actively running,
  1021. * it must be off the runqueue _entirely_, and not
  1022. * preempted!
  1023. *
  1024. * So if it was still runnable (but just not actively
  1025. * running right now), it's preempted, and we should
  1026. * yield - it could be a while.
  1027. */
  1028. if (unlikely(on_rq)) {
  1029. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1030. set_current_state(TASK_UNINTERRUPTIBLE);
  1031. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1032. continue;
  1033. }
  1034. /*
  1035. * Ahh, all good. It wasn't running, and it wasn't
  1036. * runnable, which means that it will never become
  1037. * running in the future either. We're all done!
  1038. */
  1039. break;
  1040. }
  1041. return ncsw;
  1042. }
  1043. /***
  1044. * kick_process - kick a running thread to enter/exit the kernel
  1045. * @p: the to-be-kicked thread
  1046. *
  1047. * Cause a process which is running on another CPU to enter
  1048. * kernel-mode, without any delay. (to get signals handled.)
  1049. *
  1050. * NOTE: this function doesn't have to take the runqueue lock,
  1051. * because all it wants to ensure is that the remote task enters
  1052. * the kernel. If the IPI races and the task has been migrated
  1053. * to another CPU then no harm is done and the purpose has been
  1054. * achieved as well.
  1055. */
  1056. void kick_process(struct task_struct *p)
  1057. {
  1058. int cpu;
  1059. preempt_disable();
  1060. cpu = task_cpu(p);
  1061. if ((cpu != smp_processor_id()) && task_curr(p))
  1062. smp_send_reschedule(cpu);
  1063. preempt_enable();
  1064. }
  1065. EXPORT_SYMBOL_GPL(kick_process);
  1066. #endif /* CONFIG_SMP */
  1067. #ifdef CONFIG_SMP
  1068. /*
  1069. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1070. */
  1071. static int select_fallback_rq(int cpu, struct task_struct *p)
  1072. {
  1073. int dest_cpu;
  1074. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1075. /* Look for allowed, online CPU in same node. */
  1076. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1077. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1078. return dest_cpu;
  1079. /* Any allowed, online CPU? */
  1080. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  1081. if (dest_cpu < nr_cpu_ids)
  1082. return dest_cpu;
  1083. /* No more Mr. Nice Guy. */
  1084. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1085. /*
  1086. * Don't tell them about moving exiting tasks or
  1087. * kernel threads (both mm NULL), since they never
  1088. * leave kernel.
  1089. */
  1090. if (p->mm && printk_ratelimit()) {
  1091. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1092. task_pid_nr(p), p->comm, cpu);
  1093. }
  1094. return dest_cpu;
  1095. }
  1096. /*
  1097. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1098. */
  1099. static inline
  1100. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1101. {
  1102. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1103. /*
  1104. * In order not to call set_task_cpu() on a blocking task we need
  1105. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1106. * cpu.
  1107. *
  1108. * Since this is common to all placement strategies, this lives here.
  1109. *
  1110. * [ this allows ->select_task() to simply return task_cpu(p) and
  1111. * not worry about this generic constraint ]
  1112. */
  1113. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1114. !cpu_online(cpu)))
  1115. cpu = select_fallback_rq(task_cpu(p), p);
  1116. return cpu;
  1117. }
  1118. static void update_avg(u64 *avg, u64 sample)
  1119. {
  1120. s64 diff = sample - *avg;
  1121. *avg += diff >> 3;
  1122. }
  1123. #endif
  1124. static void
  1125. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1126. {
  1127. #ifdef CONFIG_SCHEDSTATS
  1128. struct rq *rq = this_rq();
  1129. #ifdef CONFIG_SMP
  1130. int this_cpu = smp_processor_id();
  1131. if (cpu == this_cpu) {
  1132. schedstat_inc(rq, ttwu_local);
  1133. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1134. } else {
  1135. struct sched_domain *sd;
  1136. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1137. rcu_read_lock();
  1138. for_each_domain(this_cpu, sd) {
  1139. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1140. schedstat_inc(sd, ttwu_wake_remote);
  1141. break;
  1142. }
  1143. }
  1144. rcu_read_unlock();
  1145. }
  1146. if (wake_flags & WF_MIGRATED)
  1147. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1148. #endif /* CONFIG_SMP */
  1149. schedstat_inc(rq, ttwu_count);
  1150. schedstat_inc(p, se.statistics.nr_wakeups);
  1151. if (wake_flags & WF_SYNC)
  1152. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1153. #endif /* CONFIG_SCHEDSTATS */
  1154. }
  1155. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1156. {
  1157. activate_task(rq, p, en_flags);
  1158. p->on_rq = 1;
  1159. /* if a worker is waking up, notify workqueue */
  1160. if (p->flags & PF_WQ_WORKER)
  1161. wq_worker_waking_up(p, cpu_of(rq));
  1162. }
  1163. /*
  1164. * Mark the task runnable and perform wakeup-preemption.
  1165. */
  1166. static void
  1167. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1168. {
  1169. trace_sched_wakeup(p, true);
  1170. check_preempt_curr(rq, p, wake_flags);
  1171. p->state = TASK_RUNNING;
  1172. #ifdef CONFIG_SMP
  1173. if (p->sched_class->task_woken)
  1174. p->sched_class->task_woken(rq, p);
  1175. if (rq->idle_stamp) {
  1176. u64 delta = rq->clock - rq->idle_stamp;
  1177. u64 max = 2*sysctl_sched_migration_cost;
  1178. if (delta > max)
  1179. rq->avg_idle = max;
  1180. else
  1181. update_avg(&rq->avg_idle, delta);
  1182. rq->idle_stamp = 0;
  1183. }
  1184. #endif
  1185. }
  1186. static void
  1187. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1188. {
  1189. #ifdef CONFIG_SMP
  1190. if (p->sched_contributes_to_load)
  1191. rq->nr_uninterruptible--;
  1192. #endif
  1193. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1194. ttwu_do_wakeup(rq, p, wake_flags);
  1195. }
  1196. /*
  1197. * Called in case the task @p isn't fully descheduled from its runqueue,
  1198. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1199. * since all we need to do is flip p->state to TASK_RUNNING, since
  1200. * the task is still ->on_rq.
  1201. */
  1202. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1203. {
  1204. struct rq *rq;
  1205. int ret = 0;
  1206. rq = __task_rq_lock(p);
  1207. if (p->on_rq) {
  1208. ttwu_do_wakeup(rq, p, wake_flags);
  1209. ret = 1;
  1210. }
  1211. __task_rq_unlock(rq);
  1212. return ret;
  1213. }
  1214. #ifdef CONFIG_SMP
  1215. static void sched_ttwu_pending(void)
  1216. {
  1217. struct rq *rq = this_rq();
  1218. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1219. struct task_struct *p;
  1220. raw_spin_lock(&rq->lock);
  1221. while (llist) {
  1222. p = llist_entry(llist, struct task_struct, wake_entry);
  1223. llist = llist_next(llist);
  1224. ttwu_do_activate(rq, p, 0);
  1225. }
  1226. raw_spin_unlock(&rq->lock);
  1227. }
  1228. void scheduler_ipi(void)
  1229. {
  1230. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1231. return;
  1232. /*
  1233. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1234. * traditionally all their work was done from the interrupt return
  1235. * path. Now that we actually do some work, we need to make sure
  1236. * we do call them.
  1237. *
  1238. * Some archs already do call them, luckily irq_enter/exit nest
  1239. * properly.
  1240. *
  1241. * Arguably we should visit all archs and update all handlers,
  1242. * however a fair share of IPIs are still resched only so this would
  1243. * somewhat pessimize the simple resched case.
  1244. */
  1245. irq_enter();
  1246. sched_ttwu_pending();
  1247. /*
  1248. * Check if someone kicked us for doing the nohz idle load balance.
  1249. */
  1250. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1251. this_rq()->idle_balance = 1;
  1252. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1253. }
  1254. irq_exit();
  1255. }
  1256. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1257. {
  1258. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1259. smp_send_reschedule(cpu);
  1260. }
  1261. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1262. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1263. {
  1264. struct rq *rq;
  1265. int ret = 0;
  1266. rq = __task_rq_lock(p);
  1267. if (p->on_cpu) {
  1268. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1269. ttwu_do_wakeup(rq, p, wake_flags);
  1270. ret = 1;
  1271. }
  1272. __task_rq_unlock(rq);
  1273. return ret;
  1274. }
  1275. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1276. static inline int ttwu_share_cache(int this_cpu, int that_cpu)
  1277. {
  1278. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1279. }
  1280. #endif /* CONFIG_SMP */
  1281. static void ttwu_queue(struct task_struct *p, int cpu)
  1282. {
  1283. struct rq *rq = cpu_rq(cpu);
  1284. #if defined(CONFIG_SMP)
  1285. if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
  1286. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1287. ttwu_queue_remote(p, cpu);
  1288. return;
  1289. }
  1290. #endif
  1291. raw_spin_lock(&rq->lock);
  1292. ttwu_do_activate(rq, p, 0);
  1293. raw_spin_unlock(&rq->lock);
  1294. }
  1295. /**
  1296. * try_to_wake_up - wake up a thread
  1297. * @p: the thread to be awakened
  1298. * @state: the mask of task states that can be woken
  1299. * @wake_flags: wake modifier flags (WF_*)
  1300. *
  1301. * Put it on the run-queue if it's not already there. The "current"
  1302. * thread is always on the run-queue (except when the actual
  1303. * re-schedule is in progress), and as such you're allowed to do
  1304. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1305. * runnable without the overhead of this.
  1306. *
  1307. * Returns %true if @p was woken up, %false if it was already running
  1308. * or @state didn't match @p's state.
  1309. */
  1310. static int
  1311. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1312. {
  1313. unsigned long flags;
  1314. int cpu, success = 0;
  1315. smp_wmb();
  1316. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1317. if (!(p->state & state))
  1318. goto out;
  1319. success = 1; /* we're going to change ->state */
  1320. cpu = task_cpu(p);
  1321. if (p->on_rq && ttwu_remote(p, wake_flags))
  1322. goto stat;
  1323. #ifdef CONFIG_SMP
  1324. /*
  1325. * If the owning (remote) cpu is still in the middle of schedule() with
  1326. * this task as prev, wait until its done referencing the task.
  1327. */
  1328. while (p->on_cpu) {
  1329. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1330. /*
  1331. * In case the architecture enables interrupts in
  1332. * context_switch(), we cannot busy wait, since that
  1333. * would lead to deadlocks when an interrupt hits and
  1334. * tries to wake up @prev. So bail and do a complete
  1335. * remote wakeup.
  1336. */
  1337. if (ttwu_activate_remote(p, wake_flags))
  1338. goto stat;
  1339. #else
  1340. cpu_relax();
  1341. #endif
  1342. }
  1343. /*
  1344. * Pairs with the smp_wmb() in finish_lock_switch().
  1345. */
  1346. smp_rmb();
  1347. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1348. p->state = TASK_WAKING;
  1349. if (p->sched_class->task_waking)
  1350. p->sched_class->task_waking(p);
  1351. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1352. if (task_cpu(p) != cpu) {
  1353. wake_flags |= WF_MIGRATED;
  1354. set_task_cpu(p, cpu);
  1355. }
  1356. #endif /* CONFIG_SMP */
  1357. ttwu_queue(p, cpu);
  1358. stat:
  1359. ttwu_stat(p, cpu, wake_flags);
  1360. out:
  1361. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1362. return success;
  1363. }
  1364. /**
  1365. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1366. * @p: the thread to be awakened
  1367. *
  1368. * Put @p on the run-queue if it's not already there. The caller must
  1369. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1370. * the current task.
  1371. */
  1372. static void try_to_wake_up_local(struct task_struct *p)
  1373. {
  1374. struct rq *rq = task_rq(p);
  1375. BUG_ON(rq != this_rq());
  1376. BUG_ON(p == current);
  1377. lockdep_assert_held(&rq->lock);
  1378. if (!raw_spin_trylock(&p->pi_lock)) {
  1379. raw_spin_unlock(&rq->lock);
  1380. raw_spin_lock(&p->pi_lock);
  1381. raw_spin_lock(&rq->lock);
  1382. }
  1383. if (!(p->state & TASK_NORMAL))
  1384. goto out;
  1385. if (!p->on_rq)
  1386. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1387. ttwu_do_wakeup(rq, p, 0);
  1388. ttwu_stat(p, smp_processor_id(), 0);
  1389. out:
  1390. raw_spin_unlock(&p->pi_lock);
  1391. }
  1392. /**
  1393. * wake_up_process - Wake up a specific process
  1394. * @p: The process to be woken up.
  1395. *
  1396. * Attempt to wake up the nominated process and move it to the set of runnable
  1397. * processes. Returns 1 if the process was woken up, 0 if it was already
  1398. * running.
  1399. *
  1400. * It may be assumed that this function implies a write memory barrier before
  1401. * changing the task state if and only if any tasks are woken up.
  1402. */
  1403. int wake_up_process(struct task_struct *p)
  1404. {
  1405. return try_to_wake_up(p, TASK_ALL, 0);
  1406. }
  1407. EXPORT_SYMBOL(wake_up_process);
  1408. int wake_up_state(struct task_struct *p, unsigned int state)
  1409. {
  1410. return try_to_wake_up(p, state, 0);
  1411. }
  1412. /*
  1413. * Perform scheduler related setup for a newly forked process p.
  1414. * p is forked by current.
  1415. *
  1416. * __sched_fork() is basic setup used by init_idle() too:
  1417. */
  1418. static void __sched_fork(struct task_struct *p)
  1419. {
  1420. p->on_rq = 0;
  1421. p->se.on_rq = 0;
  1422. p->se.exec_start = 0;
  1423. p->se.sum_exec_runtime = 0;
  1424. p->se.prev_sum_exec_runtime = 0;
  1425. p->se.nr_migrations = 0;
  1426. p->se.vruntime = 0;
  1427. INIT_LIST_HEAD(&p->se.group_node);
  1428. #ifdef CONFIG_SCHEDSTATS
  1429. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1430. #endif
  1431. INIT_LIST_HEAD(&p->rt.run_list);
  1432. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1433. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1434. #endif
  1435. }
  1436. /*
  1437. * fork()/clone()-time setup:
  1438. */
  1439. void sched_fork(struct task_struct *p)
  1440. {
  1441. unsigned long flags;
  1442. int cpu = get_cpu();
  1443. __sched_fork(p);
  1444. /*
  1445. * We mark the process as running here. This guarantees that
  1446. * nobody will actually run it, and a signal or other external
  1447. * event cannot wake it up and insert it on the runqueue either.
  1448. */
  1449. p->state = TASK_RUNNING;
  1450. /*
  1451. * Make sure we do not leak PI boosting priority to the child.
  1452. */
  1453. p->prio = current->normal_prio;
  1454. /*
  1455. * Revert to default priority/policy on fork if requested.
  1456. */
  1457. if (unlikely(p->sched_reset_on_fork)) {
  1458. if (task_has_rt_policy(p)) {
  1459. p->policy = SCHED_NORMAL;
  1460. p->static_prio = NICE_TO_PRIO(0);
  1461. p->rt_priority = 0;
  1462. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1463. p->static_prio = NICE_TO_PRIO(0);
  1464. p->prio = p->normal_prio = __normal_prio(p);
  1465. set_load_weight(p);
  1466. /*
  1467. * We don't need the reset flag anymore after the fork. It has
  1468. * fulfilled its duty:
  1469. */
  1470. p->sched_reset_on_fork = 0;
  1471. }
  1472. if (!rt_prio(p->prio))
  1473. p->sched_class = &fair_sched_class;
  1474. if (p->sched_class->task_fork)
  1475. p->sched_class->task_fork(p);
  1476. /*
  1477. * The child is not yet in the pid-hash so no cgroup attach races,
  1478. * and the cgroup is pinned to this child due to cgroup_fork()
  1479. * is ran before sched_fork().
  1480. *
  1481. * Silence PROVE_RCU.
  1482. */
  1483. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1484. set_task_cpu(p, cpu);
  1485. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1486. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1487. if (likely(sched_info_on()))
  1488. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1489. #endif
  1490. #if defined(CONFIG_SMP)
  1491. p->on_cpu = 0;
  1492. #endif
  1493. #ifdef CONFIG_PREEMPT_COUNT
  1494. /* Want to start with kernel preemption disabled. */
  1495. task_thread_info(p)->preempt_count = 1;
  1496. #endif
  1497. #ifdef CONFIG_SMP
  1498. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1499. #endif
  1500. put_cpu();
  1501. }
  1502. /*
  1503. * wake_up_new_task - wake up a newly created task for the first time.
  1504. *
  1505. * This function will do some initial scheduler statistics housekeeping
  1506. * that must be done for every newly created context, then puts the task
  1507. * on the runqueue and wakes it.
  1508. */
  1509. void wake_up_new_task(struct task_struct *p)
  1510. {
  1511. unsigned long flags;
  1512. struct rq *rq;
  1513. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1514. #ifdef CONFIG_SMP
  1515. /*
  1516. * Fork balancing, do it here and not earlier because:
  1517. * - cpus_allowed can change in the fork path
  1518. * - any previously selected cpu might disappear through hotplug
  1519. */
  1520. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1521. #endif
  1522. rq = __task_rq_lock(p);
  1523. activate_task(rq, p, 0);
  1524. p->on_rq = 1;
  1525. trace_sched_wakeup_new(p, true);
  1526. check_preempt_curr(rq, p, WF_FORK);
  1527. #ifdef CONFIG_SMP
  1528. if (p->sched_class->task_woken)
  1529. p->sched_class->task_woken(rq, p);
  1530. #endif
  1531. task_rq_unlock(rq, p, &flags);
  1532. }
  1533. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1534. /**
  1535. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1536. * @notifier: notifier struct to register
  1537. */
  1538. void preempt_notifier_register(struct preempt_notifier *notifier)
  1539. {
  1540. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1541. }
  1542. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1543. /**
  1544. * preempt_notifier_unregister - no longer interested in preemption notifications
  1545. * @notifier: notifier struct to unregister
  1546. *
  1547. * This is safe to call from within a preemption notifier.
  1548. */
  1549. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1550. {
  1551. hlist_del(&notifier->link);
  1552. }
  1553. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1554. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1555. {
  1556. struct preempt_notifier *notifier;
  1557. struct hlist_node *node;
  1558. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1559. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1560. }
  1561. static void
  1562. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1563. struct task_struct *next)
  1564. {
  1565. struct preempt_notifier *notifier;
  1566. struct hlist_node *node;
  1567. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1568. notifier->ops->sched_out(notifier, next);
  1569. }
  1570. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1571. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1572. {
  1573. }
  1574. static void
  1575. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1576. struct task_struct *next)
  1577. {
  1578. }
  1579. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1580. /**
  1581. * prepare_task_switch - prepare to switch tasks
  1582. * @rq: the runqueue preparing to switch
  1583. * @prev: the current task that is being switched out
  1584. * @next: the task we are going to switch to.
  1585. *
  1586. * This is called with the rq lock held and interrupts off. It must
  1587. * be paired with a subsequent finish_task_switch after the context
  1588. * switch.
  1589. *
  1590. * prepare_task_switch sets up locking and calls architecture specific
  1591. * hooks.
  1592. */
  1593. static inline void
  1594. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1595. struct task_struct *next)
  1596. {
  1597. sched_info_switch(prev, next);
  1598. perf_event_task_sched_out(prev, next);
  1599. fire_sched_out_preempt_notifiers(prev, next);
  1600. prepare_lock_switch(rq, next);
  1601. prepare_arch_switch(next);
  1602. trace_sched_switch(prev, next);
  1603. }
  1604. /**
  1605. * finish_task_switch - clean up after a task-switch
  1606. * @rq: runqueue associated with task-switch
  1607. * @prev: the thread we just switched away from.
  1608. *
  1609. * finish_task_switch must be called after the context switch, paired
  1610. * with a prepare_task_switch call before the context switch.
  1611. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1612. * and do any other architecture-specific cleanup actions.
  1613. *
  1614. * Note that we may have delayed dropping an mm in context_switch(). If
  1615. * so, we finish that here outside of the runqueue lock. (Doing it
  1616. * with the lock held can cause deadlocks; see schedule() for
  1617. * details.)
  1618. */
  1619. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1620. __releases(rq->lock)
  1621. {
  1622. struct mm_struct *mm = rq->prev_mm;
  1623. long prev_state;
  1624. rq->prev_mm = NULL;
  1625. /*
  1626. * A task struct has one reference for the use as "current".
  1627. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1628. * schedule one last time. The schedule call will never return, and
  1629. * the scheduled task must drop that reference.
  1630. * The test for TASK_DEAD must occur while the runqueue locks are
  1631. * still held, otherwise prev could be scheduled on another cpu, die
  1632. * there before we look at prev->state, and then the reference would
  1633. * be dropped twice.
  1634. * Manfred Spraul <manfred@colorfullife.com>
  1635. */
  1636. prev_state = prev->state;
  1637. finish_arch_switch(prev);
  1638. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1639. local_irq_disable();
  1640. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1641. perf_event_task_sched_in(prev, current);
  1642. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1643. local_irq_enable();
  1644. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1645. finish_lock_switch(rq, prev);
  1646. fire_sched_in_preempt_notifiers(current);
  1647. if (mm)
  1648. mmdrop(mm);
  1649. if (unlikely(prev_state == TASK_DEAD)) {
  1650. /*
  1651. * Remove function-return probe instances associated with this
  1652. * task and put them back on the free list.
  1653. */
  1654. kprobe_flush_task(prev);
  1655. put_task_struct(prev);
  1656. }
  1657. }
  1658. #ifdef CONFIG_SMP
  1659. /* assumes rq->lock is held */
  1660. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1661. {
  1662. if (prev->sched_class->pre_schedule)
  1663. prev->sched_class->pre_schedule(rq, prev);
  1664. }
  1665. /* rq->lock is NOT held, but preemption is disabled */
  1666. static inline void post_schedule(struct rq *rq)
  1667. {
  1668. if (rq->post_schedule) {
  1669. unsigned long flags;
  1670. raw_spin_lock_irqsave(&rq->lock, flags);
  1671. if (rq->curr->sched_class->post_schedule)
  1672. rq->curr->sched_class->post_schedule(rq);
  1673. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1674. rq->post_schedule = 0;
  1675. }
  1676. }
  1677. #else
  1678. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1679. {
  1680. }
  1681. static inline void post_schedule(struct rq *rq)
  1682. {
  1683. }
  1684. #endif
  1685. /**
  1686. * schedule_tail - first thing a freshly forked thread must call.
  1687. * @prev: the thread we just switched away from.
  1688. */
  1689. asmlinkage void schedule_tail(struct task_struct *prev)
  1690. __releases(rq->lock)
  1691. {
  1692. struct rq *rq = this_rq();
  1693. finish_task_switch(rq, prev);
  1694. /*
  1695. * FIXME: do we need to worry about rq being invalidated by the
  1696. * task_switch?
  1697. */
  1698. post_schedule(rq);
  1699. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1700. /* In this case, finish_task_switch does not reenable preemption */
  1701. preempt_enable();
  1702. #endif
  1703. if (current->set_child_tid)
  1704. put_user(task_pid_vnr(current), current->set_child_tid);
  1705. }
  1706. /*
  1707. * context_switch - switch to the new MM and the new
  1708. * thread's register state.
  1709. */
  1710. static inline void
  1711. context_switch(struct rq *rq, struct task_struct *prev,
  1712. struct task_struct *next)
  1713. {
  1714. struct mm_struct *mm, *oldmm;
  1715. prepare_task_switch(rq, prev, next);
  1716. mm = next->mm;
  1717. oldmm = prev->active_mm;
  1718. /*
  1719. * For paravirt, this is coupled with an exit in switch_to to
  1720. * combine the page table reload and the switch backend into
  1721. * one hypercall.
  1722. */
  1723. arch_start_context_switch(prev);
  1724. if (!mm) {
  1725. next->active_mm = oldmm;
  1726. atomic_inc(&oldmm->mm_count);
  1727. enter_lazy_tlb(oldmm, next);
  1728. } else
  1729. switch_mm(oldmm, mm, next);
  1730. if (!prev->mm) {
  1731. prev->active_mm = NULL;
  1732. rq->prev_mm = oldmm;
  1733. }
  1734. /*
  1735. * Since the runqueue lock will be released by the next
  1736. * task (which is an invalid locking op but in the case
  1737. * of the scheduler it's an obvious special-case), so we
  1738. * do an early lockdep release here:
  1739. */
  1740. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1741. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1742. #endif
  1743. /* Here we just switch the register state and the stack. */
  1744. switch_to(prev, next, prev);
  1745. barrier();
  1746. /*
  1747. * this_rq must be evaluated again because prev may have moved
  1748. * CPUs since it called schedule(), thus the 'rq' on its stack
  1749. * frame will be invalid.
  1750. */
  1751. finish_task_switch(this_rq(), prev);
  1752. }
  1753. /*
  1754. * nr_running, nr_uninterruptible and nr_context_switches:
  1755. *
  1756. * externally visible scheduler statistics: current number of runnable
  1757. * threads, current number of uninterruptible-sleeping threads, total
  1758. * number of context switches performed since bootup.
  1759. */
  1760. unsigned long nr_running(void)
  1761. {
  1762. unsigned long i, sum = 0;
  1763. for_each_online_cpu(i)
  1764. sum += cpu_rq(i)->nr_running;
  1765. return sum;
  1766. }
  1767. unsigned long nr_uninterruptible(void)
  1768. {
  1769. unsigned long i, sum = 0;
  1770. for_each_possible_cpu(i)
  1771. sum += cpu_rq(i)->nr_uninterruptible;
  1772. /*
  1773. * Since we read the counters lockless, it might be slightly
  1774. * inaccurate. Do not allow it to go below zero though:
  1775. */
  1776. if (unlikely((long)sum < 0))
  1777. sum = 0;
  1778. return sum;
  1779. }
  1780. unsigned long long nr_context_switches(void)
  1781. {
  1782. int i;
  1783. unsigned long long sum = 0;
  1784. for_each_possible_cpu(i)
  1785. sum += cpu_rq(i)->nr_switches;
  1786. return sum;
  1787. }
  1788. unsigned long nr_iowait(void)
  1789. {
  1790. unsigned long i, sum = 0;
  1791. for_each_possible_cpu(i)
  1792. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1793. return sum;
  1794. }
  1795. unsigned long nr_iowait_cpu(int cpu)
  1796. {
  1797. struct rq *this = cpu_rq(cpu);
  1798. return atomic_read(&this->nr_iowait);
  1799. }
  1800. unsigned long this_cpu_load(void)
  1801. {
  1802. struct rq *this = this_rq();
  1803. return this->cpu_load[0];
  1804. }
  1805. /* Variables and functions for calc_load */
  1806. static atomic_long_t calc_load_tasks;
  1807. static unsigned long calc_load_update;
  1808. unsigned long avenrun[3];
  1809. EXPORT_SYMBOL(avenrun);
  1810. static long calc_load_fold_active(struct rq *this_rq)
  1811. {
  1812. long nr_active, delta = 0;
  1813. nr_active = this_rq->nr_running;
  1814. nr_active += (long) this_rq->nr_uninterruptible;
  1815. if (nr_active != this_rq->calc_load_active) {
  1816. delta = nr_active - this_rq->calc_load_active;
  1817. this_rq->calc_load_active = nr_active;
  1818. }
  1819. return delta;
  1820. }
  1821. static unsigned long
  1822. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1823. {
  1824. load *= exp;
  1825. load += active * (FIXED_1 - exp);
  1826. load += 1UL << (FSHIFT - 1);
  1827. return load >> FSHIFT;
  1828. }
  1829. #ifdef CONFIG_NO_HZ
  1830. /*
  1831. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1832. *
  1833. * When making the ILB scale, we should try to pull this in as well.
  1834. */
  1835. static atomic_long_t calc_load_tasks_idle;
  1836. void calc_load_account_idle(struct rq *this_rq)
  1837. {
  1838. long delta;
  1839. delta = calc_load_fold_active(this_rq);
  1840. if (delta)
  1841. atomic_long_add(delta, &calc_load_tasks_idle);
  1842. }
  1843. static long calc_load_fold_idle(void)
  1844. {
  1845. long delta = 0;
  1846. /*
  1847. * Its got a race, we don't care...
  1848. */
  1849. if (atomic_long_read(&calc_load_tasks_idle))
  1850. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1851. return delta;
  1852. }
  1853. /**
  1854. * fixed_power_int - compute: x^n, in O(log n) time
  1855. *
  1856. * @x: base of the power
  1857. * @frac_bits: fractional bits of @x
  1858. * @n: power to raise @x to.
  1859. *
  1860. * By exploiting the relation between the definition of the natural power
  1861. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1862. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1863. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1864. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1865. * of course trivially computable in O(log_2 n), the length of our binary
  1866. * vector.
  1867. */
  1868. static unsigned long
  1869. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1870. {
  1871. unsigned long result = 1UL << frac_bits;
  1872. if (n) for (;;) {
  1873. if (n & 1) {
  1874. result *= x;
  1875. result += 1UL << (frac_bits - 1);
  1876. result >>= frac_bits;
  1877. }
  1878. n >>= 1;
  1879. if (!n)
  1880. break;
  1881. x *= x;
  1882. x += 1UL << (frac_bits - 1);
  1883. x >>= frac_bits;
  1884. }
  1885. return result;
  1886. }
  1887. /*
  1888. * a1 = a0 * e + a * (1 - e)
  1889. *
  1890. * a2 = a1 * e + a * (1 - e)
  1891. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1892. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1893. *
  1894. * a3 = a2 * e + a * (1 - e)
  1895. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1896. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1897. *
  1898. * ...
  1899. *
  1900. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1901. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1902. * = a0 * e^n + a * (1 - e^n)
  1903. *
  1904. * [1] application of the geometric series:
  1905. *
  1906. * n 1 - x^(n+1)
  1907. * S_n := \Sum x^i = -------------
  1908. * i=0 1 - x
  1909. */
  1910. static unsigned long
  1911. calc_load_n(unsigned long load, unsigned long exp,
  1912. unsigned long active, unsigned int n)
  1913. {
  1914. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1915. }
  1916. /*
  1917. * NO_HZ can leave us missing all per-cpu ticks calling
  1918. * calc_load_account_active(), but since an idle CPU folds its delta into
  1919. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1920. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1921. *
  1922. * Once we've updated the global active value, we need to apply the exponential
  1923. * weights adjusted to the number of cycles missed.
  1924. */
  1925. static void calc_global_nohz(unsigned long ticks)
  1926. {
  1927. long delta, active, n;
  1928. if (time_before(jiffies, calc_load_update))
  1929. return;
  1930. /*
  1931. * If we crossed a calc_load_update boundary, make sure to fold
  1932. * any pending idle changes, the respective CPUs might have
  1933. * missed the tick driven calc_load_account_active() update
  1934. * due to NO_HZ.
  1935. */
  1936. delta = calc_load_fold_idle();
  1937. if (delta)
  1938. atomic_long_add(delta, &calc_load_tasks);
  1939. /*
  1940. * If we were idle for multiple load cycles, apply them.
  1941. */
  1942. if (ticks >= LOAD_FREQ) {
  1943. n = ticks / LOAD_FREQ;
  1944. active = atomic_long_read(&calc_load_tasks);
  1945. active = active > 0 ? active * FIXED_1 : 0;
  1946. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1947. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1948. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1949. calc_load_update += n * LOAD_FREQ;
  1950. }
  1951. /*
  1952. * Its possible the remainder of the above division also crosses
  1953. * a LOAD_FREQ period, the regular check in calc_global_load()
  1954. * which comes after this will take care of that.
  1955. *
  1956. * Consider us being 11 ticks before a cycle completion, and us
  1957. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  1958. * age us 4 cycles, and the test in calc_global_load() will
  1959. * pick up the final one.
  1960. */
  1961. }
  1962. #else
  1963. void calc_load_account_idle(struct rq *this_rq)
  1964. {
  1965. }
  1966. static inline long calc_load_fold_idle(void)
  1967. {
  1968. return 0;
  1969. }
  1970. static void calc_global_nohz(unsigned long ticks)
  1971. {
  1972. }
  1973. #endif
  1974. /**
  1975. * get_avenrun - get the load average array
  1976. * @loads: pointer to dest load array
  1977. * @offset: offset to add
  1978. * @shift: shift count to shift the result left
  1979. *
  1980. * These values are estimates at best, so no need for locking.
  1981. */
  1982. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1983. {
  1984. loads[0] = (avenrun[0] + offset) << shift;
  1985. loads[1] = (avenrun[1] + offset) << shift;
  1986. loads[2] = (avenrun[2] + offset) << shift;
  1987. }
  1988. /*
  1989. * calc_load - update the avenrun load estimates 10 ticks after the
  1990. * CPUs have updated calc_load_tasks.
  1991. */
  1992. void calc_global_load(unsigned long ticks)
  1993. {
  1994. long active;
  1995. calc_global_nohz(ticks);
  1996. if (time_before(jiffies, calc_load_update + 10))
  1997. return;
  1998. active = atomic_long_read(&calc_load_tasks);
  1999. active = active > 0 ? active * FIXED_1 : 0;
  2000. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2001. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2002. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2003. calc_load_update += LOAD_FREQ;
  2004. }
  2005. /*
  2006. * Called from update_cpu_load() to periodically update this CPU's
  2007. * active count.
  2008. */
  2009. static void calc_load_account_active(struct rq *this_rq)
  2010. {
  2011. long delta;
  2012. if (time_before(jiffies, this_rq->calc_load_update))
  2013. return;
  2014. delta = calc_load_fold_active(this_rq);
  2015. delta += calc_load_fold_idle();
  2016. if (delta)
  2017. atomic_long_add(delta, &calc_load_tasks);
  2018. this_rq->calc_load_update += LOAD_FREQ;
  2019. }
  2020. /*
  2021. * The exact cpuload at various idx values, calculated at every tick would be
  2022. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2023. *
  2024. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2025. * on nth tick when cpu may be busy, then we have:
  2026. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2027. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2028. *
  2029. * decay_load_missed() below does efficient calculation of
  2030. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2031. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2032. *
  2033. * The calculation is approximated on a 128 point scale.
  2034. * degrade_zero_ticks is the number of ticks after which load at any
  2035. * particular idx is approximated to be zero.
  2036. * degrade_factor is a precomputed table, a row for each load idx.
  2037. * Each column corresponds to degradation factor for a power of two ticks,
  2038. * based on 128 point scale.
  2039. * Example:
  2040. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2041. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2042. *
  2043. * With this power of 2 load factors, we can degrade the load n times
  2044. * by looking at 1 bits in n and doing as many mult/shift instead of
  2045. * n mult/shifts needed by the exact degradation.
  2046. */
  2047. #define DEGRADE_SHIFT 7
  2048. static const unsigned char
  2049. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2050. static const unsigned char
  2051. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2052. {0, 0, 0, 0, 0, 0, 0, 0},
  2053. {64, 32, 8, 0, 0, 0, 0, 0},
  2054. {96, 72, 40, 12, 1, 0, 0},
  2055. {112, 98, 75, 43, 15, 1, 0},
  2056. {120, 112, 98, 76, 45, 16, 2} };
  2057. /*
  2058. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2059. * would be when CPU is idle and so we just decay the old load without
  2060. * adding any new load.
  2061. */
  2062. static unsigned long
  2063. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2064. {
  2065. int j = 0;
  2066. if (!missed_updates)
  2067. return load;
  2068. if (missed_updates >= degrade_zero_ticks[idx])
  2069. return 0;
  2070. if (idx == 1)
  2071. return load >> missed_updates;
  2072. while (missed_updates) {
  2073. if (missed_updates % 2)
  2074. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2075. missed_updates >>= 1;
  2076. j++;
  2077. }
  2078. return load;
  2079. }
  2080. /*
  2081. * Update rq->cpu_load[] statistics. This function is usually called every
  2082. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2083. * every tick. We fix it up based on jiffies.
  2084. */
  2085. void update_cpu_load(struct rq *this_rq)
  2086. {
  2087. unsigned long this_load = this_rq->load.weight;
  2088. unsigned long curr_jiffies = jiffies;
  2089. unsigned long pending_updates;
  2090. int i, scale;
  2091. this_rq->nr_load_updates++;
  2092. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2093. if (curr_jiffies == this_rq->last_load_update_tick)
  2094. return;
  2095. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2096. this_rq->last_load_update_tick = curr_jiffies;
  2097. /* Update our load: */
  2098. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2099. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2100. unsigned long old_load, new_load;
  2101. /* scale is effectively 1 << i now, and >> i divides by scale */
  2102. old_load = this_rq->cpu_load[i];
  2103. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2104. new_load = this_load;
  2105. /*
  2106. * Round up the averaging division if load is increasing. This
  2107. * prevents us from getting stuck on 9 if the load is 10, for
  2108. * example.
  2109. */
  2110. if (new_load > old_load)
  2111. new_load += scale - 1;
  2112. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2113. }
  2114. sched_avg_update(this_rq);
  2115. }
  2116. static void update_cpu_load_active(struct rq *this_rq)
  2117. {
  2118. update_cpu_load(this_rq);
  2119. calc_load_account_active(this_rq);
  2120. }
  2121. #ifdef CONFIG_SMP
  2122. /*
  2123. * sched_exec - execve() is a valuable balancing opportunity, because at
  2124. * this point the task has the smallest effective memory and cache footprint.
  2125. */
  2126. void sched_exec(void)
  2127. {
  2128. struct task_struct *p = current;
  2129. unsigned long flags;
  2130. int dest_cpu;
  2131. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2132. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2133. if (dest_cpu == smp_processor_id())
  2134. goto unlock;
  2135. if (likely(cpu_active(dest_cpu))) {
  2136. struct migration_arg arg = { p, dest_cpu };
  2137. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2138. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2139. return;
  2140. }
  2141. unlock:
  2142. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2143. }
  2144. #endif
  2145. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2146. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2147. EXPORT_PER_CPU_SYMBOL(kstat);
  2148. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2149. /*
  2150. * Return any ns on the sched_clock that have not yet been accounted in
  2151. * @p in case that task is currently running.
  2152. *
  2153. * Called with task_rq_lock() held on @rq.
  2154. */
  2155. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2156. {
  2157. u64 ns = 0;
  2158. if (task_current(rq, p)) {
  2159. update_rq_clock(rq);
  2160. ns = rq->clock_task - p->se.exec_start;
  2161. if ((s64)ns < 0)
  2162. ns = 0;
  2163. }
  2164. return ns;
  2165. }
  2166. unsigned long long task_delta_exec(struct task_struct *p)
  2167. {
  2168. unsigned long flags;
  2169. struct rq *rq;
  2170. u64 ns = 0;
  2171. rq = task_rq_lock(p, &flags);
  2172. ns = do_task_delta_exec(p, rq);
  2173. task_rq_unlock(rq, p, &flags);
  2174. return ns;
  2175. }
  2176. /*
  2177. * Return accounted runtime for the task.
  2178. * In case the task is currently running, return the runtime plus current's
  2179. * pending runtime that have not been accounted yet.
  2180. */
  2181. unsigned long long task_sched_runtime(struct task_struct *p)
  2182. {
  2183. unsigned long flags;
  2184. struct rq *rq;
  2185. u64 ns = 0;
  2186. rq = task_rq_lock(p, &flags);
  2187. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2188. task_rq_unlock(rq, p, &flags);
  2189. return ns;
  2190. }
  2191. #ifdef CONFIG_CGROUP_CPUACCT
  2192. struct cgroup_subsys cpuacct_subsys;
  2193. struct cpuacct root_cpuacct;
  2194. #endif
  2195. static inline void task_group_account_field(struct task_struct *p, int index,
  2196. u64 tmp)
  2197. {
  2198. #ifdef CONFIG_CGROUP_CPUACCT
  2199. struct kernel_cpustat *kcpustat;
  2200. struct cpuacct *ca;
  2201. #endif
  2202. /*
  2203. * Since all updates are sure to touch the root cgroup, we
  2204. * get ourselves ahead and touch it first. If the root cgroup
  2205. * is the only cgroup, then nothing else should be necessary.
  2206. *
  2207. */
  2208. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2209. #ifdef CONFIG_CGROUP_CPUACCT
  2210. if (unlikely(!cpuacct_subsys.active))
  2211. return;
  2212. rcu_read_lock();
  2213. ca = task_ca(p);
  2214. while (ca && (ca != &root_cpuacct)) {
  2215. kcpustat = this_cpu_ptr(ca->cpustat);
  2216. kcpustat->cpustat[index] += tmp;
  2217. ca = parent_ca(ca);
  2218. }
  2219. rcu_read_unlock();
  2220. #endif
  2221. }
  2222. /*
  2223. * Account user cpu time to a process.
  2224. * @p: the process that the cpu time gets accounted to
  2225. * @cputime: the cpu time spent in user space since the last update
  2226. * @cputime_scaled: cputime scaled by cpu frequency
  2227. */
  2228. void account_user_time(struct task_struct *p, cputime_t cputime,
  2229. cputime_t cputime_scaled)
  2230. {
  2231. int index;
  2232. /* Add user time to process. */
  2233. p->utime += cputime;
  2234. p->utimescaled += cputime_scaled;
  2235. account_group_user_time(p, cputime);
  2236. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2237. /* Add user time to cpustat. */
  2238. task_group_account_field(p, index, (__force u64) cputime);
  2239. /* Account for user time used */
  2240. acct_update_integrals(p);
  2241. }
  2242. /*
  2243. * Account guest cpu time to a process.
  2244. * @p: the process that the cpu time gets accounted to
  2245. * @cputime: the cpu time spent in virtual machine since the last update
  2246. * @cputime_scaled: cputime scaled by cpu frequency
  2247. */
  2248. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2249. cputime_t cputime_scaled)
  2250. {
  2251. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2252. /* Add guest time to process. */
  2253. p->utime += cputime;
  2254. p->utimescaled += cputime_scaled;
  2255. account_group_user_time(p, cputime);
  2256. p->gtime += cputime;
  2257. /* Add guest time to cpustat. */
  2258. if (TASK_NICE(p) > 0) {
  2259. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2260. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2261. } else {
  2262. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2263. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2264. }
  2265. }
  2266. /*
  2267. * Account system cpu time to a process and desired cpustat field
  2268. * @p: the process that the cpu time gets accounted to
  2269. * @cputime: the cpu time spent in kernel space since the last update
  2270. * @cputime_scaled: cputime scaled by cpu frequency
  2271. * @target_cputime64: pointer to cpustat field that has to be updated
  2272. */
  2273. static inline
  2274. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2275. cputime_t cputime_scaled, int index)
  2276. {
  2277. /* Add system time to process. */
  2278. p->stime += cputime;
  2279. p->stimescaled += cputime_scaled;
  2280. account_group_system_time(p, cputime);
  2281. /* Add system time to cpustat. */
  2282. task_group_account_field(p, index, (__force u64) cputime);
  2283. /* Account for system time used */
  2284. acct_update_integrals(p);
  2285. }
  2286. /*
  2287. * Account system cpu time to a process.
  2288. * @p: the process that the cpu time gets accounted to
  2289. * @hardirq_offset: the offset to subtract from hardirq_count()
  2290. * @cputime: the cpu time spent in kernel space since the last update
  2291. * @cputime_scaled: cputime scaled by cpu frequency
  2292. */
  2293. void account_system_time(struct task_struct *p, int hardirq_offset,
  2294. cputime_t cputime, cputime_t cputime_scaled)
  2295. {
  2296. int index;
  2297. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2298. account_guest_time(p, cputime, cputime_scaled);
  2299. return;
  2300. }
  2301. if (hardirq_count() - hardirq_offset)
  2302. index = CPUTIME_IRQ;
  2303. else if (in_serving_softirq())
  2304. index = CPUTIME_SOFTIRQ;
  2305. else
  2306. index = CPUTIME_SYSTEM;
  2307. __account_system_time(p, cputime, cputime_scaled, index);
  2308. }
  2309. /*
  2310. * Account for involuntary wait time.
  2311. * @cputime: the cpu time spent in involuntary wait
  2312. */
  2313. void account_steal_time(cputime_t cputime)
  2314. {
  2315. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2316. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2317. }
  2318. /*
  2319. * Account for idle time.
  2320. * @cputime: the cpu time spent in idle wait
  2321. */
  2322. void account_idle_time(cputime_t cputime)
  2323. {
  2324. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2325. struct rq *rq = this_rq();
  2326. if (atomic_read(&rq->nr_iowait) > 0)
  2327. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2328. else
  2329. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2330. }
  2331. static __always_inline bool steal_account_process_tick(void)
  2332. {
  2333. #ifdef CONFIG_PARAVIRT
  2334. if (static_branch(&paravirt_steal_enabled)) {
  2335. u64 steal, st = 0;
  2336. steal = paravirt_steal_clock(smp_processor_id());
  2337. steal -= this_rq()->prev_steal_time;
  2338. st = steal_ticks(steal);
  2339. this_rq()->prev_steal_time += st * TICK_NSEC;
  2340. account_steal_time(st);
  2341. return st;
  2342. }
  2343. #endif
  2344. return false;
  2345. }
  2346. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2347. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2348. /*
  2349. * Account a tick to a process and cpustat
  2350. * @p: the process that the cpu time gets accounted to
  2351. * @user_tick: is the tick from userspace
  2352. * @rq: the pointer to rq
  2353. *
  2354. * Tick demultiplexing follows the order
  2355. * - pending hardirq update
  2356. * - pending softirq update
  2357. * - user_time
  2358. * - idle_time
  2359. * - system time
  2360. * - check for guest_time
  2361. * - else account as system_time
  2362. *
  2363. * Check for hardirq is done both for system and user time as there is
  2364. * no timer going off while we are on hardirq and hence we may never get an
  2365. * opportunity to update it solely in system time.
  2366. * p->stime and friends are only updated on system time and not on irq
  2367. * softirq as those do not count in task exec_runtime any more.
  2368. */
  2369. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2370. struct rq *rq)
  2371. {
  2372. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2373. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2374. if (steal_account_process_tick())
  2375. return;
  2376. if (irqtime_account_hi_update()) {
  2377. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2378. } else if (irqtime_account_si_update()) {
  2379. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2380. } else if (this_cpu_ksoftirqd() == p) {
  2381. /*
  2382. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2383. * So, we have to handle it separately here.
  2384. * Also, p->stime needs to be updated for ksoftirqd.
  2385. */
  2386. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2387. CPUTIME_SOFTIRQ);
  2388. } else if (user_tick) {
  2389. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2390. } else if (p == rq->idle) {
  2391. account_idle_time(cputime_one_jiffy);
  2392. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2393. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2394. } else {
  2395. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2396. CPUTIME_SYSTEM);
  2397. }
  2398. }
  2399. static void irqtime_account_idle_ticks(int ticks)
  2400. {
  2401. int i;
  2402. struct rq *rq = this_rq();
  2403. for (i = 0; i < ticks; i++)
  2404. irqtime_account_process_tick(current, 0, rq);
  2405. }
  2406. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2407. static void irqtime_account_idle_ticks(int ticks) {}
  2408. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2409. struct rq *rq) {}
  2410. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2411. /*
  2412. * Account a single tick of cpu time.
  2413. * @p: the process that the cpu time gets accounted to
  2414. * @user_tick: indicates if the tick is a user or a system tick
  2415. */
  2416. void account_process_tick(struct task_struct *p, int user_tick)
  2417. {
  2418. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2419. struct rq *rq = this_rq();
  2420. if (sched_clock_irqtime) {
  2421. irqtime_account_process_tick(p, user_tick, rq);
  2422. return;
  2423. }
  2424. if (steal_account_process_tick())
  2425. return;
  2426. if (user_tick)
  2427. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2428. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2429. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2430. one_jiffy_scaled);
  2431. else
  2432. account_idle_time(cputime_one_jiffy);
  2433. }
  2434. /*
  2435. * Account multiple ticks of steal time.
  2436. * @p: the process from which the cpu time has been stolen
  2437. * @ticks: number of stolen ticks
  2438. */
  2439. void account_steal_ticks(unsigned long ticks)
  2440. {
  2441. account_steal_time(jiffies_to_cputime(ticks));
  2442. }
  2443. /*
  2444. * Account multiple ticks of idle time.
  2445. * @ticks: number of stolen ticks
  2446. */
  2447. void account_idle_ticks(unsigned long ticks)
  2448. {
  2449. if (sched_clock_irqtime) {
  2450. irqtime_account_idle_ticks(ticks);
  2451. return;
  2452. }
  2453. account_idle_time(jiffies_to_cputime(ticks));
  2454. }
  2455. #endif
  2456. /*
  2457. * Use precise platform statistics if available:
  2458. */
  2459. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2460. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2461. {
  2462. *ut = p->utime;
  2463. *st = p->stime;
  2464. }
  2465. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2466. {
  2467. struct task_cputime cputime;
  2468. thread_group_cputime(p, &cputime);
  2469. *ut = cputime.utime;
  2470. *st = cputime.stime;
  2471. }
  2472. #else
  2473. #ifndef nsecs_to_cputime
  2474. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2475. #endif
  2476. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2477. {
  2478. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2479. /*
  2480. * Use CFS's precise accounting:
  2481. */
  2482. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2483. if (total) {
  2484. u64 temp = (__force u64) rtime;
  2485. temp *= (__force u64) utime;
  2486. do_div(temp, (__force u32) total);
  2487. utime = (__force cputime_t) temp;
  2488. } else
  2489. utime = rtime;
  2490. /*
  2491. * Compare with previous values, to keep monotonicity:
  2492. */
  2493. p->prev_utime = max(p->prev_utime, utime);
  2494. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2495. *ut = p->prev_utime;
  2496. *st = p->prev_stime;
  2497. }
  2498. /*
  2499. * Must be called with siglock held.
  2500. */
  2501. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2502. {
  2503. struct signal_struct *sig = p->signal;
  2504. struct task_cputime cputime;
  2505. cputime_t rtime, utime, total;
  2506. thread_group_cputime(p, &cputime);
  2507. total = cputime.utime + cputime.stime;
  2508. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2509. if (total) {
  2510. u64 temp = (__force u64) rtime;
  2511. temp *= (__force u64) cputime.utime;
  2512. do_div(temp, (__force u32) total);
  2513. utime = (__force cputime_t) temp;
  2514. } else
  2515. utime = rtime;
  2516. sig->prev_utime = max(sig->prev_utime, utime);
  2517. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2518. *ut = sig->prev_utime;
  2519. *st = sig->prev_stime;
  2520. }
  2521. #endif
  2522. /*
  2523. * This function gets called by the timer code, with HZ frequency.
  2524. * We call it with interrupts disabled.
  2525. */
  2526. void scheduler_tick(void)
  2527. {
  2528. int cpu = smp_processor_id();
  2529. struct rq *rq = cpu_rq(cpu);
  2530. struct task_struct *curr = rq->curr;
  2531. sched_clock_tick();
  2532. raw_spin_lock(&rq->lock);
  2533. update_rq_clock(rq);
  2534. update_cpu_load_active(rq);
  2535. curr->sched_class->task_tick(rq, curr, 0);
  2536. raw_spin_unlock(&rq->lock);
  2537. perf_event_task_tick();
  2538. #ifdef CONFIG_SMP
  2539. rq->idle_balance = idle_cpu(cpu);
  2540. trigger_load_balance(rq, cpu);
  2541. #endif
  2542. }
  2543. notrace unsigned long get_parent_ip(unsigned long addr)
  2544. {
  2545. if (in_lock_functions(addr)) {
  2546. addr = CALLER_ADDR2;
  2547. if (in_lock_functions(addr))
  2548. addr = CALLER_ADDR3;
  2549. }
  2550. return addr;
  2551. }
  2552. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2553. defined(CONFIG_PREEMPT_TRACER))
  2554. void __kprobes add_preempt_count(int val)
  2555. {
  2556. #ifdef CONFIG_DEBUG_PREEMPT
  2557. /*
  2558. * Underflow?
  2559. */
  2560. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2561. return;
  2562. #endif
  2563. preempt_count() += val;
  2564. #ifdef CONFIG_DEBUG_PREEMPT
  2565. /*
  2566. * Spinlock count overflowing soon?
  2567. */
  2568. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2569. PREEMPT_MASK - 10);
  2570. #endif
  2571. if (preempt_count() == val)
  2572. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2573. }
  2574. EXPORT_SYMBOL(add_preempt_count);
  2575. void __kprobes sub_preempt_count(int val)
  2576. {
  2577. #ifdef CONFIG_DEBUG_PREEMPT
  2578. /*
  2579. * Underflow?
  2580. */
  2581. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2582. return;
  2583. /*
  2584. * Is the spinlock portion underflowing?
  2585. */
  2586. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2587. !(preempt_count() & PREEMPT_MASK)))
  2588. return;
  2589. #endif
  2590. if (preempt_count() == val)
  2591. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2592. preempt_count() -= val;
  2593. }
  2594. EXPORT_SYMBOL(sub_preempt_count);
  2595. #endif
  2596. /*
  2597. * Print scheduling while atomic bug:
  2598. */
  2599. static noinline void __schedule_bug(struct task_struct *prev)
  2600. {
  2601. struct pt_regs *regs = get_irq_regs();
  2602. if (oops_in_progress)
  2603. return;
  2604. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2605. prev->comm, prev->pid, preempt_count());
  2606. debug_show_held_locks(prev);
  2607. print_modules();
  2608. if (irqs_disabled())
  2609. print_irqtrace_events(prev);
  2610. if (regs)
  2611. show_regs(regs);
  2612. else
  2613. dump_stack();
  2614. }
  2615. /*
  2616. * Various schedule()-time debugging checks and statistics:
  2617. */
  2618. static inline void schedule_debug(struct task_struct *prev)
  2619. {
  2620. /*
  2621. * Test if we are atomic. Since do_exit() needs to call into
  2622. * schedule() atomically, we ignore that path for now.
  2623. * Otherwise, whine if we are scheduling when we should not be.
  2624. */
  2625. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2626. __schedule_bug(prev);
  2627. rcu_sleep_check();
  2628. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2629. schedstat_inc(this_rq(), sched_count);
  2630. }
  2631. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2632. {
  2633. if (prev->on_rq || rq->skip_clock_update < 0)
  2634. update_rq_clock(rq);
  2635. prev->sched_class->put_prev_task(rq, prev);
  2636. }
  2637. /*
  2638. * Pick up the highest-prio task:
  2639. */
  2640. static inline struct task_struct *
  2641. pick_next_task(struct rq *rq)
  2642. {
  2643. const struct sched_class *class;
  2644. struct task_struct *p;
  2645. /*
  2646. * Optimization: we know that if all tasks are in
  2647. * the fair class we can call that function directly:
  2648. */
  2649. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2650. p = fair_sched_class.pick_next_task(rq);
  2651. if (likely(p))
  2652. return p;
  2653. }
  2654. for_each_class(class) {
  2655. p = class->pick_next_task(rq);
  2656. if (p)
  2657. return p;
  2658. }
  2659. BUG(); /* the idle class will always have a runnable task */
  2660. }
  2661. /*
  2662. * __schedule() is the main scheduler function.
  2663. */
  2664. static void __sched __schedule(void)
  2665. {
  2666. struct task_struct *prev, *next;
  2667. unsigned long *switch_count;
  2668. struct rq *rq;
  2669. int cpu;
  2670. need_resched:
  2671. preempt_disable();
  2672. cpu = smp_processor_id();
  2673. rq = cpu_rq(cpu);
  2674. rcu_note_context_switch(cpu);
  2675. prev = rq->curr;
  2676. schedule_debug(prev);
  2677. if (sched_feat(HRTICK))
  2678. hrtick_clear(rq);
  2679. raw_spin_lock_irq(&rq->lock);
  2680. switch_count = &prev->nivcsw;
  2681. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2682. if (unlikely(signal_pending_state(prev->state, prev))) {
  2683. prev->state = TASK_RUNNING;
  2684. } else {
  2685. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2686. prev->on_rq = 0;
  2687. /*
  2688. * If a worker went to sleep, notify and ask workqueue
  2689. * whether it wants to wake up a task to maintain
  2690. * concurrency.
  2691. */
  2692. if (prev->flags & PF_WQ_WORKER) {
  2693. struct task_struct *to_wakeup;
  2694. to_wakeup = wq_worker_sleeping(prev, cpu);
  2695. if (to_wakeup)
  2696. try_to_wake_up_local(to_wakeup);
  2697. }
  2698. }
  2699. switch_count = &prev->nvcsw;
  2700. }
  2701. pre_schedule(rq, prev);
  2702. if (unlikely(!rq->nr_running))
  2703. idle_balance(cpu, rq);
  2704. put_prev_task(rq, prev);
  2705. next = pick_next_task(rq);
  2706. clear_tsk_need_resched(prev);
  2707. rq->skip_clock_update = 0;
  2708. if (likely(prev != next)) {
  2709. rq->nr_switches++;
  2710. rq->curr = next;
  2711. ++*switch_count;
  2712. context_switch(rq, prev, next); /* unlocks the rq */
  2713. /*
  2714. * The context switch have flipped the stack from under us
  2715. * and restored the local variables which were saved when
  2716. * this task called schedule() in the past. prev == current
  2717. * is still correct, but it can be moved to another cpu/rq.
  2718. */
  2719. cpu = smp_processor_id();
  2720. rq = cpu_rq(cpu);
  2721. } else
  2722. raw_spin_unlock_irq(&rq->lock);
  2723. post_schedule(rq);
  2724. preempt_enable_no_resched();
  2725. if (need_resched())
  2726. goto need_resched;
  2727. }
  2728. static inline void sched_submit_work(struct task_struct *tsk)
  2729. {
  2730. if (!tsk->state)
  2731. return;
  2732. /*
  2733. * If we are going to sleep and we have plugged IO queued,
  2734. * make sure to submit it to avoid deadlocks.
  2735. */
  2736. if (blk_needs_flush_plug(tsk))
  2737. blk_schedule_flush_plug(tsk);
  2738. }
  2739. asmlinkage void __sched schedule(void)
  2740. {
  2741. struct task_struct *tsk = current;
  2742. sched_submit_work(tsk);
  2743. __schedule();
  2744. }
  2745. EXPORT_SYMBOL(schedule);
  2746. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2747. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2748. {
  2749. if (lock->owner != owner)
  2750. return false;
  2751. /*
  2752. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2753. * lock->owner still matches owner, if that fails, owner might
  2754. * point to free()d memory, if it still matches, the rcu_read_lock()
  2755. * ensures the memory stays valid.
  2756. */
  2757. barrier();
  2758. return owner->on_cpu;
  2759. }
  2760. /*
  2761. * Look out! "owner" is an entirely speculative pointer
  2762. * access and not reliable.
  2763. */
  2764. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2765. {
  2766. if (!sched_feat(OWNER_SPIN))
  2767. return 0;
  2768. rcu_read_lock();
  2769. while (owner_running(lock, owner)) {
  2770. if (need_resched())
  2771. break;
  2772. arch_mutex_cpu_relax();
  2773. }
  2774. rcu_read_unlock();
  2775. /*
  2776. * We break out the loop above on need_resched() and when the
  2777. * owner changed, which is a sign for heavy contention. Return
  2778. * success only when lock->owner is NULL.
  2779. */
  2780. return lock->owner == NULL;
  2781. }
  2782. #endif
  2783. #ifdef CONFIG_PREEMPT
  2784. /*
  2785. * this is the entry point to schedule() from in-kernel preemption
  2786. * off of preempt_enable. Kernel preemptions off return from interrupt
  2787. * occur there and call schedule directly.
  2788. */
  2789. asmlinkage void __sched notrace preempt_schedule(void)
  2790. {
  2791. struct thread_info *ti = current_thread_info();
  2792. /*
  2793. * If there is a non-zero preempt_count or interrupts are disabled,
  2794. * we do not want to preempt the current task. Just return..
  2795. */
  2796. if (likely(ti->preempt_count || irqs_disabled()))
  2797. return;
  2798. do {
  2799. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2800. __schedule();
  2801. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2802. /*
  2803. * Check again in case we missed a preemption opportunity
  2804. * between schedule and now.
  2805. */
  2806. barrier();
  2807. } while (need_resched());
  2808. }
  2809. EXPORT_SYMBOL(preempt_schedule);
  2810. /*
  2811. * this is the entry point to schedule() from kernel preemption
  2812. * off of irq context.
  2813. * Note, that this is called and return with irqs disabled. This will
  2814. * protect us against recursive calling from irq.
  2815. */
  2816. asmlinkage void __sched preempt_schedule_irq(void)
  2817. {
  2818. struct thread_info *ti = current_thread_info();
  2819. /* Catch callers which need to be fixed */
  2820. BUG_ON(ti->preempt_count || !irqs_disabled());
  2821. do {
  2822. add_preempt_count(PREEMPT_ACTIVE);
  2823. local_irq_enable();
  2824. __schedule();
  2825. local_irq_disable();
  2826. sub_preempt_count(PREEMPT_ACTIVE);
  2827. /*
  2828. * Check again in case we missed a preemption opportunity
  2829. * between schedule and now.
  2830. */
  2831. barrier();
  2832. } while (need_resched());
  2833. }
  2834. #endif /* CONFIG_PREEMPT */
  2835. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2836. void *key)
  2837. {
  2838. return try_to_wake_up(curr->private, mode, wake_flags);
  2839. }
  2840. EXPORT_SYMBOL(default_wake_function);
  2841. /*
  2842. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2843. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2844. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2845. *
  2846. * There are circumstances in which we can try to wake a task which has already
  2847. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2848. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2849. */
  2850. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2851. int nr_exclusive, int wake_flags, void *key)
  2852. {
  2853. wait_queue_t *curr, *next;
  2854. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2855. unsigned flags = curr->flags;
  2856. if (curr->func(curr, mode, wake_flags, key) &&
  2857. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2858. break;
  2859. }
  2860. }
  2861. /**
  2862. * __wake_up - wake up threads blocked on a waitqueue.
  2863. * @q: the waitqueue
  2864. * @mode: which threads
  2865. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2866. * @key: is directly passed to the wakeup function
  2867. *
  2868. * It may be assumed that this function implies a write memory barrier before
  2869. * changing the task state if and only if any tasks are woken up.
  2870. */
  2871. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2872. int nr_exclusive, void *key)
  2873. {
  2874. unsigned long flags;
  2875. spin_lock_irqsave(&q->lock, flags);
  2876. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2877. spin_unlock_irqrestore(&q->lock, flags);
  2878. }
  2879. EXPORT_SYMBOL(__wake_up);
  2880. /*
  2881. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2882. */
  2883. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2884. {
  2885. __wake_up_common(q, mode, 1, 0, NULL);
  2886. }
  2887. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2888. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2889. {
  2890. __wake_up_common(q, mode, 1, 0, key);
  2891. }
  2892. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2893. /**
  2894. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2895. * @q: the waitqueue
  2896. * @mode: which threads
  2897. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2898. * @key: opaque value to be passed to wakeup targets
  2899. *
  2900. * The sync wakeup differs that the waker knows that it will schedule
  2901. * away soon, so while the target thread will be woken up, it will not
  2902. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2903. * with each other. This can prevent needless bouncing between CPUs.
  2904. *
  2905. * On UP it can prevent extra preemption.
  2906. *
  2907. * It may be assumed that this function implies a write memory barrier before
  2908. * changing the task state if and only if any tasks are woken up.
  2909. */
  2910. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2911. int nr_exclusive, void *key)
  2912. {
  2913. unsigned long flags;
  2914. int wake_flags = WF_SYNC;
  2915. if (unlikely(!q))
  2916. return;
  2917. if (unlikely(!nr_exclusive))
  2918. wake_flags = 0;
  2919. spin_lock_irqsave(&q->lock, flags);
  2920. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2921. spin_unlock_irqrestore(&q->lock, flags);
  2922. }
  2923. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2924. /*
  2925. * __wake_up_sync - see __wake_up_sync_key()
  2926. */
  2927. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2928. {
  2929. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2930. }
  2931. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2932. /**
  2933. * complete: - signals a single thread waiting on this completion
  2934. * @x: holds the state of this particular completion
  2935. *
  2936. * This will wake up a single thread waiting on this completion. Threads will be
  2937. * awakened in the same order in which they were queued.
  2938. *
  2939. * See also complete_all(), wait_for_completion() and related routines.
  2940. *
  2941. * It may be assumed that this function implies a write memory barrier before
  2942. * changing the task state if and only if any tasks are woken up.
  2943. */
  2944. void complete(struct completion *x)
  2945. {
  2946. unsigned long flags;
  2947. spin_lock_irqsave(&x->wait.lock, flags);
  2948. x->done++;
  2949. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2950. spin_unlock_irqrestore(&x->wait.lock, flags);
  2951. }
  2952. EXPORT_SYMBOL(complete);
  2953. /**
  2954. * complete_all: - signals all threads waiting on this completion
  2955. * @x: holds the state of this particular completion
  2956. *
  2957. * This will wake up all threads waiting on this particular completion event.
  2958. *
  2959. * It may be assumed that this function implies a write memory barrier before
  2960. * changing the task state if and only if any tasks are woken up.
  2961. */
  2962. void complete_all(struct completion *x)
  2963. {
  2964. unsigned long flags;
  2965. spin_lock_irqsave(&x->wait.lock, flags);
  2966. x->done += UINT_MAX/2;
  2967. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2968. spin_unlock_irqrestore(&x->wait.lock, flags);
  2969. }
  2970. EXPORT_SYMBOL(complete_all);
  2971. static inline long __sched
  2972. do_wait_for_common(struct completion *x, long timeout, int state)
  2973. {
  2974. if (!x->done) {
  2975. DECLARE_WAITQUEUE(wait, current);
  2976. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2977. do {
  2978. if (signal_pending_state(state, current)) {
  2979. timeout = -ERESTARTSYS;
  2980. break;
  2981. }
  2982. __set_current_state(state);
  2983. spin_unlock_irq(&x->wait.lock);
  2984. timeout = schedule_timeout(timeout);
  2985. spin_lock_irq(&x->wait.lock);
  2986. } while (!x->done && timeout);
  2987. __remove_wait_queue(&x->wait, &wait);
  2988. if (!x->done)
  2989. return timeout;
  2990. }
  2991. x->done--;
  2992. return timeout ?: 1;
  2993. }
  2994. static long __sched
  2995. wait_for_common(struct completion *x, long timeout, int state)
  2996. {
  2997. might_sleep();
  2998. spin_lock_irq(&x->wait.lock);
  2999. timeout = do_wait_for_common(x, timeout, state);
  3000. spin_unlock_irq(&x->wait.lock);
  3001. return timeout;
  3002. }
  3003. /**
  3004. * wait_for_completion: - waits for completion of a task
  3005. * @x: holds the state of this particular completion
  3006. *
  3007. * This waits to be signaled for completion of a specific task. It is NOT
  3008. * interruptible and there is no timeout.
  3009. *
  3010. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3011. * and interrupt capability. Also see complete().
  3012. */
  3013. void __sched wait_for_completion(struct completion *x)
  3014. {
  3015. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3016. }
  3017. EXPORT_SYMBOL(wait_for_completion);
  3018. /**
  3019. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3020. * @x: holds the state of this particular completion
  3021. * @timeout: timeout value in jiffies
  3022. *
  3023. * This waits for either a completion of a specific task to be signaled or for a
  3024. * specified timeout to expire. The timeout is in jiffies. It is not
  3025. * interruptible.
  3026. *
  3027. * The return value is 0 if timed out, and positive (at least 1, or number of
  3028. * jiffies left till timeout) if completed.
  3029. */
  3030. unsigned long __sched
  3031. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3032. {
  3033. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3034. }
  3035. EXPORT_SYMBOL(wait_for_completion_timeout);
  3036. /**
  3037. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3038. * @x: holds the state of this particular completion
  3039. *
  3040. * This waits for completion of a specific task to be signaled. It is
  3041. * interruptible.
  3042. *
  3043. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3044. */
  3045. int __sched wait_for_completion_interruptible(struct completion *x)
  3046. {
  3047. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3048. if (t == -ERESTARTSYS)
  3049. return t;
  3050. return 0;
  3051. }
  3052. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3053. /**
  3054. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3055. * @x: holds the state of this particular completion
  3056. * @timeout: timeout value in jiffies
  3057. *
  3058. * This waits for either a completion of a specific task to be signaled or for a
  3059. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3060. *
  3061. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3062. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3063. */
  3064. long __sched
  3065. wait_for_completion_interruptible_timeout(struct completion *x,
  3066. unsigned long timeout)
  3067. {
  3068. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3069. }
  3070. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3071. /**
  3072. * wait_for_completion_killable: - waits for completion of a task (killable)
  3073. * @x: holds the state of this particular completion
  3074. *
  3075. * This waits to be signaled for completion of a specific task. It can be
  3076. * interrupted by a kill signal.
  3077. *
  3078. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3079. */
  3080. int __sched wait_for_completion_killable(struct completion *x)
  3081. {
  3082. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3083. if (t == -ERESTARTSYS)
  3084. return t;
  3085. return 0;
  3086. }
  3087. EXPORT_SYMBOL(wait_for_completion_killable);
  3088. /**
  3089. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3090. * @x: holds the state of this particular completion
  3091. * @timeout: timeout value in jiffies
  3092. *
  3093. * This waits for either a completion of a specific task to be
  3094. * signaled or for a specified timeout to expire. It can be
  3095. * interrupted by a kill signal. The timeout is in jiffies.
  3096. *
  3097. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3098. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3099. */
  3100. long __sched
  3101. wait_for_completion_killable_timeout(struct completion *x,
  3102. unsigned long timeout)
  3103. {
  3104. return wait_for_common(x, timeout, TASK_KILLABLE);
  3105. }
  3106. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3107. /**
  3108. * try_wait_for_completion - try to decrement a completion without blocking
  3109. * @x: completion structure
  3110. *
  3111. * Returns: 0 if a decrement cannot be done without blocking
  3112. * 1 if a decrement succeeded.
  3113. *
  3114. * If a completion is being used as a counting completion,
  3115. * attempt to decrement the counter without blocking. This
  3116. * enables us to avoid waiting if the resource the completion
  3117. * is protecting is not available.
  3118. */
  3119. bool try_wait_for_completion(struct completion *x)
  3120. {
  3121. unsigned long flags;
  3122. int ret = 1;
  3123. spin_lock_irqsave(&x->wait.lock, flags);
  3124. if (!x->done)
  3125. ret = 0;
  3126. else
  3127. x->done--;
  3128. spin_unlock_irqrestore(&x->wait.lock, flags);
  3129. return ret;
  3130. }
  3131. EXPORT_SYMBOL(try_wait_for_completion);
  3132. /**
  3133. * completion_done - Test to see if a completion has any waiters
  3134. * @x: completion structure
  3135. *
  3136. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3137. * 1 if there are no waiters.
  3138. *
  3139. */
  3140. bool completion_done(struct completion *x)
  3141. {
  3142. unsigned long flags;
  3143. int ret = 1;
  3144. spin_lock_irqsave(&x->wait.lock, flags);
  3145. if (!x->done)
  3146. ret = 0;
  3147. spin_unlock_irqrestore(&x->wait.lock, flags);
  3148. return ret;
  3149. }
  3150. EXPORT_SYMBOL(completion_done);
  3151. static long __sched
  3152. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3153. {
  3154. unsigned long flags;
  3155. wait_queue_t wait;
  3156. init_waitqueue_entry(&wait, current);
  3157. __set_current_state(state);
  3158. spin_lock_irqsave(&q->lock, flags);
  3159. __add_wait_queue(q, &wait);
  3160. spin_unlock(&q->lock);
  3161. timeout = schedule_timeout(timeout);
  3162. spin_lock_irq(&q->lock);
  3163. __remove_wait_queue(q, &wait);
  3164. spin_unlock_irqrestore(&q->lock, flags);
  3165. return timeout;
  3166. }
  3167. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3168. {
  3169. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3170. }
  3171. EXPORT_SYMBOL(interruptible_sleep_on);
  3172. long __sched
  3173. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3174. {
  3175. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3176. }
  3177. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3178. void __sched sleep_on(wait_queue_head_t *q)
  3179. {
  3180. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3181. }
  3182. EXPORT_SYMBOL(sleep_on);
  3183. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3184. {
  3185. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3186. }
  3187. EXPORT_SYMBOL(sleep_on_timeout);
  3188. #ifdef CONFIG_RT_MUTEXES
  3189. /*
  3190. * rt_mutex_setprio - set the current priority of a task
  3191. * @p: task
  3192. * @prio: prio value (kernel-internal form)
  3193. *
  3194. * This function changes the 'effective' priority of a task. It does
  3195. * not touch ->normal_prio like __setscheduler().
  3196. *
  3197. * Used by the rt_mutex code to implement priority inheritance logic.
  3198. */
  3199. void rt_mutex_setprio(struct task_struct *p, int prio)
  3200. {
  3201. int oldprio, on_rq, running;
  3202. struct rq *rq;
  3203. const struct sched_class *prev_class;
  3204. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3205. rq = __task_rq_lock(p);
  3206. trace_sched_pi_setprio(p, prio);
  3207. oldprio = p->prio;
  3208. prev_class = p->sched_class;
  3209. on_rq = p->on_rq;
  3210. running = task_current(rq, p);
  3211. if (on_rq)
  3212. dequeue_task(rq, p, 0);
  3213. if (running)
  3214. p->sched_class->put_prev_task(rq, p);
  3215. if (rt_prio(prio))
  3216. p->sched_class = &rt_sched_class;
  3217. else
  3218. p->sched_class = &fair_sched_class;
  3219. p->prio = prio;
  3220. if (running)
  3221. p->sched_class->set_curr_task(rq);
  3222. if (on_rq)
  3223. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3224. check_class_changed(rq, p, prev_class, oldprio);
  3225. __task_rq_unlock(rq);
  3226. }
  3227. #endif
  3228. void set_user_nice(struct task_struct *p, long nice)
  3229. {
  3230. int old_prio, delta, on_rq;
  3231. unsigned long flags;
  3232. struct rq *rq;
  3233. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3234. return;
  3235. /*
  3236. * We have to be careful, if called from sys_setpriority(),
  3237. * the task might be in the middle of scheduling on another CPU.
  3238. */
  3239. rq = task_rq_lock(p, &flags);
  3240. /*
  3241. * The RT priorities are set via sched_setscheduler(), but we still
  3242. * allow the 'normal' nice value to be set - but as expected
  3243. * it wont have any effect on scheduling until the task is
  3244. * SCHED_FIFO/SCHED_RR:
  3245. */
  3246. if (task_has_rt_policy(p)) {
  3247. p->static_prio = NICE_TO_PRIO(nice);
  3248. goto out_unlock;
  3249. }
  3250. on_rq = p->on_rq;
  3251. if (on_rq)
  3252. dequeue_task(rq, p, 0);
  3253. p->static_prio = NICE_TO_PRIO(nice);
  3254. set_load_weight(p);
  3255. old_prio = p->prio;
  3256. p->prio = effective_prio(p);
  3257. delta = p->prio - old_prio;
  3258. if (on_rq) {
  3259. enqueue_task(rq, p, 0);
  3260. /*
  3261. * If the task increased its priority or is running and
  3262. * lowered its priority, then reschedule its CPU:
  3263. */
  3264. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3265. resched_task(rq->curr);
  3266. }
  3267. out_unlock:
  3268. task_rq_unlock(rq, p, &flags);
  3269. }
  3270. EXPORT_SYMBOL(set_user_nice);
  3271. /*
  3272. * can_nice - check if a task can reduce its nice value
  3273. * @p: task
  3274. * @nice: nice value
  3275. */
  3276. int can_nice(const struct task_struct *p, const int nice)
  3277. {
  3278. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3279. int nice_rlim = 20 - nice;
  3280. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3281. capable(CAP_SYS_NICE));
  3282. }
  3283. #ifdef __ARCH_WANT_SYS_NICE
  3284. /*
  3285. * sys_nice - change the priority of the current process.
  3286. * @increment: priority increment
  3287. *
  3288. * sys_setpriority is a more generic, but much slower function that
  3289. * does similar things.
  3290. */
  3291. SYSCALL_DEFINE1(nice, int, increment)
  3292. {
  3293. long nice, retval;
  3294. /*
  3295. * Setpriority might change our priority at the same moment.
  3296. * We don't have to worry. Conceptually one call occurs first
  3297. * and we have a single winner.
  3298. */
  3299. if (increment < -40)
  3300. increment = -40;
  3301. if (increment > 40)
  3302. increment = 40;
  3303. nice = TASK_NICE(current) + increment;
  3304. if (nice < -20)
  3305. nice = -20;
  3306. if (nice > 19)
  3307. nice = 19;
  3308. if (increment < 0 && !can_nice(current, nice))
  3309. return -EPERM;
  3310. retval = security_task_setnice(current, nice);
  3311. if (retval)
  3312. return retval;
  3313. set_user_nice(current, nice);
  3314. return 0;
  3315. }
  3316. #endif
  3317. /**
  3318. * task_prio - return the priority value of a given task.
  3319. * @p: the task in question.
  3320. *
  3321. * This is the priority value as seen by users in /proc.
  3322. * RT tasks are offset by -200. Normal tasks are centered
  3323. * around 0, value goes from -16 to +15.
  3324. */
  3325. int task_prio(const struct task_struct *p)
  3326. {
  3327. return p->prio - MAX_RT_PRIO;
  3328. }
  3329. /**
  3330. * task_nice - return the nice value of a given task.
  3331. * @p: the task in question.
  3332. */
  3333. int task_nice(const struct task_struct *p)
  3334. {
  3335. return TASK_NICE(p);
  3336. }
  3337. EXPORT_SYMBOL(task_nice);
  3338. /**
  3339. * idle_cpu - is a given cpu idle currently?
  3340. * @cpu: the processor in question.
  3341. */
  3342. int idle_cpu(int cpu)
  3343. {
  3344. struct rq *rq = cpu_rq(cpu);
  3345. if (rq->curr != rq->idle)
  3346. return 0;
  3347. if (rq->nr_running)
  3348. return 0;
  3349. #ifdef CONFIG_SMP
  3350. if (!llist_empty(&rq->wake_list))
  3351. return 0;
  3352. #endif
  3353. return 1;
  3354. }
  3355. /**
  3356. * idle_task - return the idle task for a given cpu.
  3357. * @cpu: the processor in question.
  3358. */
  3359. struct task_struct *idle_task(int cpu)
  3360. {
  3361. return cpu_rq(cpu)->idle;
  3362. }
  3363. /**
  3364. * find_process_by_pid - find a process with a matching PID value.
  3365. * @pid: the pid in question.
  3366. */
  3367. static struct task_struct *find_process_by_pid(pid_t pid)
  3368. {
  3369. return pid ? find_task_by_vpid(pid) : current;
  3370. }
  3371. /* Actually do priority change: must hold rq lock. */
  3372. static void
  3373. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3374. {
  3375. p->policy = policy;
  3376. p->rt_priority = prio;
  3377. p->normal_prio = normal_prio(p);
  3378. /* we are holding p->pi_lock already */
  3379. p->prio = rt_mutex_getprio(p);
  3380. if (rt_prio(p->prio))
  3381. p->sched_class = &rt_sched_class;
  3382. else
  3383. p->sched_class = &fair_sched_class;
  3384. set_load_weight(p);
  3385. }
  3386. /*
  3387. * check the target process has a UID that matches the current process's
  3388. */
  3389. static bool check_same_owner(struct task_struct *p)
  3390. {
  3391. const struct cred *cred = current_cred(), *pcred;
  3392. bool match;
  3393. rcu_read_lock();
  3394. pcred = __task_cred(p);
  3395. if (cred->user->user_ns == pcred->user->user_ns)
  3396. match = (cred->euid == pcred->euid ||
  3397. cred->euid == pcred->uid);
  3398. else
  3399. match = false;
  3400. rcu_read_unlock();
  3401. return match;
  3402. }
  3403. static int __sched_setscheduler(struct task_struct *p, int policy,
  3404. const struct sched_param *param, bool user)
  3405. {
  3406. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3407. unsigned long flags;
  3408. const struct sched_class *prev_class;
  3409. struct rq *rq;
  3410. int reset_on_fork;
  3411. /* may grab non-irq protected spin_locks */
  3412. BUG_ON(in_interrupt());
  3413. recheck:
  3414. /* double check policy once rq lock held */
  3415. if (policy < 0) {
  3416. reset_on_fork = p->sched_reset_on_fork;
  3417. policy = oldpolicy = p->policy;
  3418. } else {
  3419. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3420. policy &= ~SCHED_RESET_ON_FORK;
  3421. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3422. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3423. policy != SCHED_IDLE)
  3424. return -EINVAL;
  3425. }
  3426. /*
  3427. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3428. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3429. * SCHED_BATCH and SCHED_IDLE is 0.
  3430. */
  3431. if (param->sched_priority < 0 ||
  3432. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3433. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3434. return -EINVAL;
  3435. if (rt_policy(policy) != (param->sched_priority != 0))
  3436. return -EINVAL;
  3437. /*
  3438. * Allow unprivileged RT tasks to decrease priority:
  3439. */
  3440. if (user && !capable(CAP_SYS_NICE)) {
  3441. if (rt_policy(policy)) {
  3442. unsigned long rlim_rtprio =
  3443. task_rlimit(p, RLIMIT_RTPRIO);
  3444. /* can't set/change the rt policy */
  3445. if (policy != p->policy && !rlim_rtprio)
  3446. return -EPERM;
  3447. /* can't increase priority */
  3448. if (param->sched_priority > p->rt_priority &&
  3449. param->sched_priority > rlim_rtprio)
  3450. return -EPERM;
  3451. }
  3452. /*
  3453. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3454. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3455. */
  3456. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3457. if (!can_nice(p, TASK_NICE(p)))
  3458. return -EPERM;
  3459. }
  3460. /* can't change other user's priorities */
  3461. if (!check_same_owner(p))
  3462. return -EPERM;
  3463. /* Normal users shall not reset the sched_reset_on_fork flag */
  3464. if (p->sched_reset_on_fork && !reset_on_fork)
  3465. return -EPERM;
  3466. }
  3467. if (user) {
  3468. retval = security_task_setscheduler(p);
  3469. if (retval)
  3470. return retval;
  3471. }
  3472. /*
  3473. * make sure no PI-waiters arrive (or leave) while we are
  3474. * changing the priority of the task:
  3475. *
  3476. * To be able to change p->policy safely, the appropriate
  3477. * runqueue lock must be held.
  3478. */
  3479. rq = task_rq_lock(p, &flags);
  3480. /*
  3481. * Changing the policy of the stop threads its a very bad idea
  3482. */
  3483. if (p == rq->stop) {
  3484. task_rq_unlock(rq, p, &flags);
  3485. return -EINVAL;
  3486. }
  3487. /*
  3488. * If not changing anything there's no need to proceed further:
  3489. */
  3490. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3491. param->sched_priority == p->rt_priority))) {
  3492. __task_rq_unlock(rq);
  3493. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3494. return 0;
  3495. }
  3496. #ifdef CONFIG_RT_GROUP_SCHED
  3497. if (user) {
  3498. /*
  3499. * Do not allow realtime tasks into groups that have no runtime
  3500. * assigned.
  3501. */
  3502. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3503. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3504. !task_group_is_autogroup(task_group(p))) {
  3505. task_rq_unlock(rq, p, &flags);
  3506. return -EPERM;
  3507. }
  3508. }
  3509. #endif
  3510. /* recheck policy now with rq lock held */
  3511. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3512. policy = oldpolicy = -1;
  3513. task_rq_unlock(rq, p, &flags);
  3514. goto recheck;
  3515. }
  3516. on_rq = p->on_rq;
  3517. running = task_current(rq, p);
  3518. if (on_rq)
  3519. dequeue_task(rq, p, 0);
  3520. if (running)
  3521. p->sched_class->put_prev_task(rq, p);
  3522. p->sched_reset_on_fork = reset_on_fork;
  3523. oldprio = p->prio;
  3524. prev_class = p->sched_class;
  3525. __setscheduler(rq, p, policy, param->sched_priority);
  3526. if (running)
  3527. p->sched_class->set_curr_task(rq);
  3528. if (on_rq)
  3529. enqueue_task(rq, p, 0);
  3530. check_class_changed(rq, p, prev_class, oldprio);
  3531. task_rq_unlock(rq, p, &flags);
  3532. rt_mutex_adjust_pi(p);
  3533. return 0;
  3534. }
  3535. /**
  3536. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3537. * @p: the task in question.
  3538. * @policy: new policy.
  3539. * @param: structure containing the new RT priority.
  3540. *
  3541. * NOTE that the task may be already dead.
  3542. */
  3543. int sched_setscheduler(struct task_struct *p, int policy,
  3544. const struct sched_param *param)
  3545. {
  3546. return __sched_setscheduler(p, policy, param, true);
  3547. }
  3548. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3549. /**
  3550. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3551. * @p: the task in question.
  3552. * @policy: new policy.
  3553. * @param: structure containing the new RT priority.
  3554. *
  3555. * Just like sched_setscheduler, only don't bother checking if the
  3556. * current context has permission. For example, this is needed in
  3557. * stop_machine(): we create temporary high priority worker threads,
  3558. * but our caller might not have that capability.
  3559. */
  3560. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3561. const struct sched_param *param)
  3562. {
  3563. return __sched_setscheduler(p, policy, param, false);
  3564. }
  3565. static int
  3566. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3567. {
  3568. struct sched_param lparam;
  3569. struct task_struct *p;
  3570. int retval;
  3571. if (!param || pid < 0)
  3572. return -EINVAL;
  3573. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3574. return -EFAULT;
  3575. rcu_read_lock();
  3576. retval = -ESRCH;
  3577. p = find_process_by_pid(pid);
  3578. if (p != NULL)
  3579. retval = sched_setscheduler(p, policy, &lparam);
  3580. rcu_read_unlock();
  3581. return retval;
  3582. }
  3583. /**
  3584. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3585. * @pid: the pid in question.
  3586. * @policy: new policy.
  3587. * @param: structure containing the new RT priority.
  3588. */
  3589. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3590. struct sched_param __user *, param)
  3591. {
  3592. /* negative values for policy are not valid */
  3593. if (policy < 0)
  3594. return -EINVAL;
  3595. return do_sched_setscheduler(pid, policy, param);
  3596. }
  3597. /**
  3598. * sys_sched_setparam - set/change the RT priority of a thread
  3599. * @pid: the pid in question.
  3600. * @param: structure containing the new RT priority.
  3601. */
  3602. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3603. {
  3604. return do_sched_setscheduler(pid, -1, param);
  3605. }
  3606. /**
  3607. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3608. * @pid: the pid in question.
  3609. */
  3610. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3611. {
  3612. struct task_struct *p;
  3613. int retval;
  3614. if (pid < 0)
  3615. return -EINVAL;
  3616. retval = -ESRCH;
  3617. rcu_read_lock();
  3618. p = find_process_by_pid(pid);
  3619. if (p) {
  3620. retval = security_task_getscheduler(p);
  3621. if (!retval)
  3622. retval = p->policy
  3623. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3624. }
  3625. rcu_read_unlock();
  3626. return retval;
  3627. }
  3628. /**
  3629. * sys_sched_getparam - get the RT priority of a thread
  3630. * @pid: the pid in question.
  3631. * @param: structure containing the RT priority.
  3632. */
  3633. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3634. {
  3635. struct sched_param lp;
  3636. struct task_struct *p;
  3637. int retval;
  3638. if (!param || pid < 0)
  3639. return -EINVAL;
  3640. rcu_read_lock();
  3641. p = find_process_by_pid(pid);
  3642. retval = -ESRCH;
  3643. if (!p)
  3644. goto out_unlock;
  3645. retval = security_task_getscheduler(p);
  3646. if (retval)
  3647. goto out_unlock;
  3648. lp.sched_priority = p->rt_priority;
  3649. rcu_read_unlock();
  3650. /*
  3651. * This one might sleep, we cannot do it with a spinlock held ...
  3652. */
  3653. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3654. return retval;
  3655. out_unlock:
  3656. rcu_read_unlock();
  3657. return retval;
  3658. }
  3659. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3660. {
  3661. cpumask_var_t cpus_allowed, new_mask;
  3662. struct task_struct *p;
  3663. int retval;
  3664. get_online_cpus();
  3665. rcu_read_lock();
  3666. p = find_process_by_pid(pid);
  3667. if (!p) {
  3668. rcu_read_unlock();
  3669. put_online_cpus();
  3670. return -ESRCH;
  3671. }
  3672. /* Prevent p going away */
  3673. get_task_struct(p);
  3674. rcu_read_unlock();
  3675. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3676. retval = -ENOMEM;
  3677. goto out_put_task;
  3678. }
  3679. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3680. retval = -ENOMEM;
  3681. goto out_free_cpus_allowed;
  3682. }
  3683. retval = -EPERM;
  3684. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3685. goto out_unlock;
  3686. retval = security_task_setscheduler(p);
  3687. if (retval)
  3688. goto out_unlock;
  3689. cpuset_cpus_allowed(p, cpus_allowed);
  3690. cpumask_and(new_mask, in_mask, cpus_allowed);
  3691. again:
  3692. retval = set_cpus_allowed_ptr(p, new_mask);
  3693. if (!retval) {
  3694. cpuset_cpus_allowed(p, cpus_allowed);
  3695. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3696. /*
  3697. * We must have raced with a concurrent cpuset
  3698. * update. Just reset the cpus_allowed to the
  3699. * cpuset's cpus_allowed
  3700. */
  3701. cpumask_copy(new_mask, cpus_allowed);
  3702. goto again;
  3703. }
  3704. }
  3705. out_unlock:
  3706. free_cpumask_var(new_mask);
  3707. out_free_cpus_allowed:
  3708. free_cpumask_var(cpus_allowed);
  3709. out_put_task:
  3710. put_task_struct(p);
  3711. put_online_cpus();
  3712. return retval;
  3713. }
  3714. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3715. struct cpumask *new_mask)
  3716. {
  3717. if (len < cpumask_size())
  3718. cpumask_clear(new_mask);
  3719. else if (len > cpumask_size())
  3720. len = cpumask_size();
  3721. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3722. }
  3723. /**
  3724. * sys_sched_setaffinity - set the cpu affinity of a process
  3725. * @pid: pid of the process
  3726. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3727. * @user_mask_ptr: user-space pointer to the new cpu mask
  3728. */
  3729. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3730. unsigned long __user *, user_mask_ptr)
  3731. {
  3732. cpumask_var_t new_mask;
  3733. int retval;
  3734. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3735. return -ENOMEM;
  3736. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3737. if (retval == 0)
  3738. retval = sched_setaffinity(pid, new_mask);
  3739. free_cpumask_var(new_mask);
  3740. return retval;
  3741. }
  3742. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3743. {
  3744. struct task_struct *p;
  3745. unsigned long flags;
  3746. int retval;
  3747. get_online_cpus();
  3748. rcu_read_lock();
  3749. retval = -ESRCH;
  3750. p = find_process_by_pid(pid);
  3751. if (!p)
  3752. goto out_unlock;
  3753. retval = security_task_getscheduler(p);
  3754. if (retval)
  3755. goto out_unlock;
  3756. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3757. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3758. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3759. out_unlock:
  3760. rcu_read_unlock();
  3761. put_online_cpus();
  3762. return retval;
  3763. }
  3764. /**
  3765. * sys_sched_getaffinity - get the cpu affinity of a process
  3766. * @pid: pid of the process
  3767. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3768. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3769. */
  3770. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3771. unsigned long __user *, user_mask_ptr)
  3772. {
  3773. int ret;
  3774. cpumask_var_t mask;
  3775. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3776. return -EINVAL;
  3777. if (len & (sizeof(unsigned long)-1))
  3778. return -EINVAL;
  3779. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3780. return -ENOMEM;
  3781. ret = sched_getaffinity(pid, mask);
  3782. if (ret == 0) {
  3783. size_t retlen = min_t(size_t, len, cpumask_size());
  3784. if (copy_to_user(user_mask_ptr, mask, retlen))
  3785. ret = -EFAULT;
  3786. else
  3787. ret = retlen;
  3788. }
  3789. free_cpumask_var(mask);
  3790. return ret;
  3791. }
  3792. /**
  3793. * sys_sched_yield - yield the current processor to other threads.
  3794. *
  3795. * This function yields the current CPU to other tasks. If there are no
  3796. * other threads running on this CPU then this function will return.
  3797. */
  3798. SYSCALL_DEFINE0(sched_yield)
  3799. {
  3800. struct rq *rq = this_rq_lock();
  3801. schedstat_inc(rq, yld_count);
  3802. current->sched_class->yield_task(rq);
  3803. /*
  3804. * Since we are going to call schedule() anyway, there's
  3805. * no need to preempt or enable interrupts:
  3806. */
  3807. __release(rq->lock);
  3808. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3809. do_raw_spin_unlock(&rq->lock);
  3810. preempt_enable_no_resched();
  3811. schedule();
  3812. return 0;
  3813. }
  3814. static inline int should_resched(void)
  3815. {
  3816. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3817. }
  3818. static void __cond_resched(void)
  3819. {
  3820. add_preempt_count(PREEMPT_ACTIVE);
  3821. __schedule();
  3822. sub_preempt_count(PREEMPT_ACTIVE);
  3823. }
  3824. int __sched _cond_resched(void)
  3825. {
  3826. if (should_resched()) {
  3827. __cond_resched();
  3828. return 1;
  3829. }
  3830. return 0;
  3831. }
  3832. EXPORT_SYMBOL(_cond_resched);
  3833. /*
  3834. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3835. * call schedule, and on return reacquire the lock.
  3836. *
  3837. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3838. * operations here to prevent schedule() from being called twice (once via
  3839. * spin_unlock(), once by hand).
  3840. */
  3841. int __cond_resched_lock(spinlock_t *lock)
  3842. {
  3843. int resched = should_resched();
  3844. int ret = 0;
  3845. lockdep_assert_held(lock);
  3846. if (spin_needbreak(lock) || resched) {
  3847. spin_unlock(lock);
  3848. if (resched)
  3849. __cond_resched();
  3850. else
  3851. cpu_relax();
  3852. ret = 1;
  3853. spin_lock(lock);
  3854. }
  3855. return ret;
  3856. }
  3857. EXPORT_SYMBOL(__cond_resched_lock);
  3858. int __sched __cond_resched_softirq(void)
  3859. {
  3860. BUG_ON(!in_softirq());
  3861. if (should_resched()) {
  3862. local_bh_enable();
  3863. __cond_resched();
  3864. local_bh_disable();
  3865. return 1;
  3866. }
  3867. return 0;
  3868. }
  3869. EXPORT_SYMBOL(__cond_resched_softirq);
  3870. /**
  3871. * yield - yield the current processor to other threads.
  3872. *
  3873. * This is a shortcut for kernel-space yielding - it marks the
  3874. * thread runnable and calls sys_sched_yield().
  3875. */
  3876. void __sched yield(void)
  3877. {
  3878. set_current_state(TASK_RUNNING);
  3879. sys_sched_yield();
  3880. }
  3881. EXPORT_SYMBOL(yield);
  3882. /**
  3883. * yield_to - yield the current processor to another thread in
  3884. * your thread group, or accelerate that thread toward the
  3885. * processor it's on.
  3886. * @p: target task
  3887. * @preempt: whether task preemption is allowed or not
  3888. *
  3889. * It's the caller's job to ensure that the target task struct
  3890. * can't go away on us before we can do any checks.
  3891. *
  3892. * Returns true if we indeed boosted the target task.
  3893. */
  3894. bool __sched yield_to(struct task_struct *p, bool preempt)
  3895. {
  3896. struct task_struct *curr = current;
  3897. struct rq *rq, *p_rq;
  3898. unsigned long flags;
  3899. bool yielded = 0;
  3900. local_irq_save(flags);
  3901. rq = this_rq();
  3902. again:
  3903. p_rq = task_rq(p);
  3904. double_rq_lock(rq, p_rq);
  3905. while (task_rq(p) != p_rq) {
  3906. double_rq_unlock(rq, p_rq);
  3907. goto again;
  3908. }
  3909. if (!curr->sched_class->yield_to_task)
  3910. goto out;
  3911. if (curr->sched_class != p->sched_class)
  3912. goto out;
  3913. if (task_running(p_rq, p) || p->state)
  3914. goto out;
  3915. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3916. if (yielded) {
  3917. schedstat_inc(rq, yld_count);
  3918. /*
  3919. * Make p's CPU reschedule; pick_next_entity takes care of
  3920. * fairness.
  3921. */
  3922. if (preempt && rq != p_rq)
  3923. resched_task(p_rq->curr);
  3924. } else {
  3925. /*
  3926. * We might have set it in task_yield_fair(), but are
  3927. * not going to schedule(), so don't want to skip
  3928. * the next update.
  3929. */
  3930. rq->skip_clock_update = 0;
  3931. }
  3932. out:
  3933. double_rq_unlock(rq, p_rq);
  3934. local_irq_restore(flags);
  3935. if (yielded)
  3936. schedule();
  3937. return yielded;
  3938. }
  3939. EXPORT_SYMBOL_GPL(yield_to);
  3940. /*
  3941. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3942. * that process accounting knows that this is a task in IO wait state.
  3943. */
  3944. void __sched io_schedule(void)
  3945. {
  3946. struct rq *rq = raw_rq();
  3947. delayacct_blkio_start();
  3948. atomic_inc(&rq->nr_iowait);
  3949. blk_flush_plug(current);
  3950. current->in_iowait = 1;
  3951. schedule();
  3952. current->in_iowait = 0;
  3953. atomic_dec(&rq->nr_iowait);
  3954. delayacct_blkio_end();
  3955. }
  3956. EXPORT_SYMBOL(io_schedule);
  3957. long __sched io_schedule_timeout(long timeout)
  3958. {
  3959. struct rq *rq = raw_rq();
  3960. long ret;
  3961. delayacct_blkio_start();
  3962. atomic_inc(&rq->nr_iowait);
  3963. blk_flush_plug(current);
  3964. current->in_iowait = 1;
  3965. ret = schedule_timeout(timeout);
  3966. current->in_iowait = 0;
  3967. atomic_dec(&rq->nr_iowait);
  3968. delayacct_blkio_end();
  3969. return ret;
  3970. }
  3971. /**
  3972. * sys_sched_get_priority_max - return maximum RT priority.
  3973. * @policy: scheduling class.
  3974. *
  3975. * this syscall returns the maximum rt_priority that can be used
  3976. * by a given scheduling class.
  3977. */
  3978. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3979. {
  3980. int ret = -EINVAL;
  3981. switch (policy) {
  3982. case SCHED_FIFO:
  3983. case SCHED_RR:
  3984. ret = MAX_USER_RT_PRIO-1;
  3985. break;
  3986. case SCHED_NORMAL:
  3987. case SCHED_BATCH:
  3988. case SCHED_IDLE:
  3989. ret = 0;
  3990. break;
  3991. }
  3992. return ret;
  3993. }
  3994. /**
  3995. * sys_sched_get_priority_min - return minimum RT priority.
  3996. * @policy: scheduling class.
  3997. *
  3998. * this syscall returns the minimum rt_priority that can be used
  3999. * by a given scheduling class.
  4000. */
  4001. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4002. {
  4003. int ret = -EINVAL;
  4004. switch (policy) {
  4005. case SCHED_FIFO:
  4006. case SCHED_RR:
  4007. ret = 1;
  4008. break;
  4009. case SCHED_NORMAL:
  4010. case SCHED_BATCH:
  4011. case SCHED_IDLE:
  4012. ret = 0;
  4013. }
  4014. return ret;
  4015. }
  4016. /**
  4017. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4018. * @pid: pid of the process.
  4019. * @interval: userspace pointer to the timeslice value.
  4020. *
  4021. * this syscall writes the default timeslice value of a given process
  4022. * into the user-space timespec buffer. A value of '0' means infinity.
  4023. */
  4024. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4025. struct timespec __user *, interval)
  4026. {
  4027. struct task_struct *p;
  4028. unsigned int time_slice;
  4029. unsigned long flags;
  4030. struct rq *rq;
  4031. int retval;
  4032. struct timespec t;
  4033. if (pid < 0)
  4034. return -EINVAL;
  4035. retval = -ESRCH;
  4036. rcu_read_lock();
  4037. p = find_process_by_pid(pid);
  4038. if (!p)
  4039. goto out_unlock;
  4040. retval = security_task_getscheduler(p);
  4041. if (retval)
  4042. goto out_unlock;
  4043. rq = task_rq_lock(p, &flags);
  4044. time_slice = p->sched_class->get_rr_interval(rq, p);
  4045. task_rq_unlock(rq, p, &flags);
  4046. rcu_read_unlock();
  4047. jiffies_to_timespec(time_slice, &t);
  4048. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4049. return retval;
  4050. out_unlock:
  4051. rcu_read_unlock();
  4052. return retval;
  4053. }
  4054. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4055. void sched_show_task(struct task_struct *p)
  4056. {
  4057. unsigned long free = 0;
  4058. unsigned state;
  4059. state = p->state ? __ffs(p->state) + 1 : 0;
  4060. printk(KERN_INFO "%-15.15s %c", p->comm,
  4061. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4062. #if BITS_PER_LONG == 32
  4063. if (state == TASK_RUNNING)
  4064. printk(KERN_CONT " running ");
  4065. else
  4066. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4067. #else
  4068. if (state == TASK_RUNNING)
  4069. printk(KERN_CONT " running task ");
  4070. else
  4071. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4072. #endif
  4073. #ifdef CONFIG_DEBUG_STACK_USAGE
  4074. free = stack_not_used(p);
  4075. #endif
  4076. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4077. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4078. (unsigned long)task_thread_info(p)->flags);
  4079. show_stack(p, NULL);
  4080. }
  4081. void show_state_filter(unsigned long state_filter)
  4082. {
  4083. struct task_struct *g, *p;
  4084. #if BITS_PER_LONG == 32
  4085. printk(KERN_INFO
  4086. " task PC stack pid father\n");
  4087. #else
  4088. printk(KERN_INFO
  4089. " task PC stack pid father\n");
  4090. #endif
  4091. rcu_read_lock();
  4092. do_each_thread(g, p) {
  4093. /*
  4094. * reset the NMI-timeout, listing all files on a slow
  4095. * console might take a lot of time:
  4096. */
  4097. touch_nmi_watchdog();
  4098. if (!state_filter || (p->state & state_filter))
  4099. sched_show_task(p);
  4100. } while_each_thread(g, p);
  4101. touch_all_softlockup_watchdogs();
  4102. #ifdef CONFIG_SCHED_DEBUG
  4103. sysrq_sched_debug_show();
  4104. #endif
  4105. rcu_read_unlock();
  4106. /*
  4107. * Only show locks if all tasks are dumped:
  4108. */
  4109. if (!state_filter)
  4110. debug_show_all_locks();
  4111. }
  4112. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4113. {
  4114. idle->sched_class = &idle_sched_class;
  4115. }
  4116. /**
  4117. * init_idle - set up an idle thread for a given CPU
  4118. * @idle: task in question
  4119. * @cpu: cpu the idle task belongs to
  4120. *
  4121. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4122. * flag, to make booting more robust.
  4123. */
  4124. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4125. {
  4126. struct rq *rq = cpu_rq(cpu);
  4127. unsigned long flags;
  4128. raw_spin_lock_irqsave(&rq->lock, flags);
  4129. __sched_fork(idle);
  4130. idle->state = TASK_RUNNING;
  4131. idle->se.exec_start = sched_clock();
  4132. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4133. /*
  4134. * We're having a chicken and egg problem, even though we are
  4135. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4136. * lockdep check in task_group() will fail.
  4137. *
  4138. * Similar case to sched_fork(). / Alternatively we could
  4139. * use task_rq_lock() here and obtain the other rq->lock.
  4140. *
  4141. * Silence PROVE_RCU
  4142. */
  4143. rcu_read_lock();
  4144. __set_task_cpu(idle, cpu);
  4145. rcu_read_unlock();
  4146. rq->curr = rq->idle = idle;
  4147. #if defined(CONFIG_SMP)
  4148. idle->on_cpu = 1;
  4149. #endif
  4150. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4151. /* Set the preempt count _outside_ the spinlocks! */
  4152. task_thread_info(idle)->preempt_count = 0;
  4153. /*
  4154. * The idle tasks have their own, simple scheduling class:
  4155. */
  4156. idle->sched_class = &idle_sched_class;
  4157. ftrace_graph_init_idle_task(idle, cpu);
  4158. #if defined(CONFIG_SMP)
  4159. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4160. #endif
  4161. }
  4162. #ifdef CONFIG_SMP
  4163. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4164. {
  4165. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4166. p->sched_class->set_cpus_allowed(p, new_mask);
  4167. cpumask_copy(&p->cpus_allowed, new_mask);
  4168. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4169. }
  4170. /*
  4171. * This is how migration works:
  4172. *
  4173. * 1) we invoke migration_cpu_stop() on the target CPU using
  4174. * stop_one_cpu().
  4175. * 2) stopper starts to run (implicitly forcing the migrated thread
  4176. * off the CPU)
  4177. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4178. * 4) if it's in the wrong runqueue then the migration thread removes
  4179. * it and puts it into the right queue.
  4180. * 5) stopper completes and stop_one_cpu() returns and the migration
  4181. * is done.
  4182. */
  4183. /*
  4184. * Change a given task's CPU affinity. Migrate the thread to a
  4185. * proper CPU and schedule it away if the CPU it's executing on
  4186. * is removed from the allowed bitmask.
  4187. *
  4188. * NOTE: the caller must have a valid reference to the task, the
  4189. * task must not exit() & deallocate itself prematurely. The
  4190. * call is not atomic; no spinlocks may be held.
  4191. */
  4192. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4193. {
  4194. unsigned long flags;
  4195. struct rq *rq;
  4196. unsigned int dest_cpu;
  4197. int ret = 0;
  4198. rq = task_rq_lock(p, &flags);
  4199. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4200. goto out;
  4201. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4202. ret = -EINVAL;
  4203. goto out;
  4204. }
  4205. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4206. ret = -EINVAL;
  4207. goto out;
  4208. }
  4209. do_set_cpus_allowed(p, new_mask);
  4210. /* Can the task run on the task's current CPU? If so, we're done */
  4211. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4212. goto out;
  4213. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4214. if (p->on_rq) {
  4215. struct migration_arg arg = { p, dest_cpu };
  4216. /* Need help from migration thread: drop lock and wait. */
  4217. task_rq_unlock(rq, p, &flags);
  4218. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4219. tlb_migrate_finish(p->mm);
  4220. return 0;
  4221. }
  4222. out:
  4223. task_rq_unlock(rq, p, &flags);
  4224. return ret;
  4225. }
  4226. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4227. /*
  4228. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4229. * this because either it can't run here any more (set_cpus_allowed()
  4230. * away from this CPU, or CPU going down), or because we're
  4231. * attempting to rebalance this task on exec (sched_exec).
  4232. *
  4233. * So we race with normal scheduler movements, but that's OK, as long
  4234. * as the task is no longer on this CPU.
  4235. *
  4236. * Returns non-zero if task was successfully migrated.
  4237. */
  4238. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4239. {
  4240. struct rq *rq_dest, *rq_src;
  4241. int ret = 0;
  4242. if (unlikely(!cpu_active(dest_cpu)))
  4243. return ret;
  4244. rq_src = cpu_rq(src_cpu);
  4245. rq_dest = cpu_rq(dest_cpu);
  4246. raw_spin_lock(&p->pi_lock);
  4247. double_rq_lock(rq_src, rq_dest);
  4248. /* Already moved. */
  4249. if (task_cpu(p) != src_cpu)
  4250. goto done;
  4251. /* Affinity changed (again). */
  4252. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4253. goto fail;
  4254. /*
  4255. * If we're not on a rq, the next wake-up will ensure we're
  4256. * placed properly.
  4257. */
  4258. if (p->on_rq) {
  4259. dequeue_task(rq_src, p, 0);
  4260. set_task_cpu(p, dest_cpu);
  4261. enqueue_task(rq_dest, p, 0);
  4262. check_preempt_curr(rq_dest, p, 0);
  4263. }
  4264. done:
  4265. ret = 1;
  4266. fail:
  4267. double_rq_unlock(rq_src, rq_dest);
  4268. raw_spin_unlock(&p->pi_lock);
  4269. return ret;
  4270. }
  4271. /*
  4272. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4273. * and performs thread migration by bumping thread off CPU then
  4274. * 'pushing' onto another runqueue.
  4275. */
  4276. static int migration_cpu_stop(void *data)
  4277. {
  4278. struct migration_arg *arg = data;
  4279. /*
  4280. * The original target cpu might have gone down and we might
  4281. * be on another cpu but it doesn't matter.
  4282. */
  4283. local_irq_disable();
  4284. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4285. local_irq_enable();
  4286. return 0;
  4287. }
  4288. #ifdef CONFIG_HOTPLUG_CPU
  4289. /*
  4290. * Ensures that the idle task is using init_mm right before its cpu goes
  4291. * offline.
  4292. */
  4293. void idle_task_exit(void)
  4294. {
  4295. struct mm_struct *mm = current->active_mm;
  4296. BUG_ON(cpu_online(smp_processor_id()));
  4297. if (mm != &init_mm)
  4298. switch_mm(mm, &init_mm, current);
  4299. mmdrop(mm);
  4300. }
  4301. /*
  4302. * While a dead CPU has no uninterruptible tasks queued at this point,
  4303. * it might still have a nonzero ->nr_uninterruptible counter, because
  4304. * for performance reasons the counter is not stricly tracking tasks to
  4305. * their home CPUs. So we just add the counter to another CPU's counter,
  4306. * to keep the global sum constant after CPU-down:
  4307. */
  4308. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4309. {
  4310. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4311. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4312. rq_src->nr_uninterruptible = 0;
  4313. }
  4314. /*
  4315. * remove the tasks which were accounted by rq from calc_load_tasks.
  4316. */
  4317. static void calc_global_load_remove(struct rq *rq)
  4318. {
  4319. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4320. rq->calc_load_active = 0;
  4321. }
  4322. /*
  4323. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4324. * try_to_wake_up()->select_task_rq().
  4325. *
  4326. * Called with rq->lock held even though we'er in stop_machine() and
  4327. * there's no concurrency possible, we hold the required locks anyway
  4328. * because of lock validation efforts.
  4329. */
  4330. static void migrate_tasks(unsigned int dead_cpu)
  4331. {
  4332. struct rq *rq = cpu_rq(dead_cpu);
  4333. struct task_struct *next, *stop = rq->stop;
  4334. int dest_cpu;
  4335. /*
  4336. * Fudge the rq selection such that the below task selection loop
  4337. * doesn't get stuck on the currently eligible stop task.
  4338. *
  4339. * We're currently inside stop_machine() and the rq is either stuck
  4340. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4341. * either way we should never end up calling schedule() until we're
  4342. * done here.
  4343. */
  4344. rq->stop = NULL;
  4345. /* Ensure any throttled groups are reachable by pick_next_task */
  4346. unthrottle_offline_cfs_rqs(rq);
  4347. for ( ; ; ) {
  4348. /*
  4349. * There's this thread running, bail when that's the only
  4350. * remaining thread.
  4351. */
  4352. if (rq->nr_running == 1)
  4353. break;
  4354. next = pick_next_task(rq);
  4355. BUG_ON(!next);
  4356. next->sched_class->put_prev_task(rq, next);
  4357. /* Find suitable destination for @next, with force if needed. */
  4358. dest_cpu = select_fallback_rq(dead_cpu, next);
  4359. raw_spin_unlock(&rq->lock);
  4360. __migrate_task(next, dead_cpu, dest_cpu);
  4361. raw_spin_lock(&rq->lock);
  4362. }
  4363. rq->stop = stop;
  4364. }
  4365. #endif /* CONFIG_HOTPLUG_CPU */
  4366. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4367. static struct ctl_table sd_ctl_dir[] = {
  4368. {
  4369. .procname = "sched_domain",
  4370. .mode = 0555,
  4371. },
  4372. {}
  4373. };
  4374. static struct ctl_table sd_ctl_root[] = {
  4375. {
  4376. .procname = "kernel",
  4377. .mode = 0555,
  4378. .child = sd_ctl_dir,
  4379. },
  4380. {}
  4381. };
  4382. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4383. {
  4384. struct ctl_table *entry =
  4385. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4386. return entry;
  4387. }
  4388. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4389. {
  4390. struct ctl_table *entry;
  4391. /*
  4392. * In the intermediate directories, both the child directory and
  4393. * procname are dynamically allocated and could fail but the mode
  4394. * will always be set. In the lowest directory the names are
  4395. * static strings and all have proc handlers.
  4396. */
  4397. for (entry = *tablep; entry->mode; entry++) {
  4398. if (entry->child)
  4399. sd_free_ctl_entry(&entry->child);
  4400. if (entry->proc_handler == NULL)
  4401. kfree(entry->procname);
  4402. }
  4403. kfree(*tablep);
  4404. *tablep = NULL;
  4405. }
  4406. static void
  4407. set_table_entry(struct ctl_table *entry,
  4408. const char *procname, void *data, int maxlen,
  4409. umode_t mode, proc_handler *proc_handler)
  4410. {
  4411. entry->procname = procname;
  4412. entry->data = data;
  4413. entry->maxlen = maxlen;
  4414. entry->mode = mode;
  4415. entry->proc_handler = proc_handler;
  4416. }
  4417. static struct ctl_table *
  4418. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4419. {
  4420. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4421. if (table == NULL)
  4422. return NULL;
  4423. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4424. sizeof(long), 0644, proc_doulongvec_minmax);
  4425. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4426. sizeof(long), 0644, proc_doulongvec_minmax);
  4427. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4428. sizeof(int), 0644, proc_dointvec_minmax);
  4429. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4430. sizeof(int), 0644, proc_dointvec_minmax);
  4431. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4432. sizeof(int), 0644, proc_dointvec_minmax);
  4433. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4434. sizeof(int), 0644, proc_dointvec_minmax);
  4435. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4436. sizeof(int), 0644, proc_dointvec_minmax);
  4437. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4438. sizeof(int), 0644, proc_dointvec_minmax);
  4439. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4440. sizeof(int), 0644, proc_dointvec_minmax);
  4441. set_table_entry(&table[9], "cache_nice_tries",
  4442. &sd->cache_nice_tries,
  4443. sizeof(int), 0644, proc_dointvec_minmax);
  4444. set_table_entry(&table[10], "flags", &sd->flags,
  4445. sizeof(int), 0644, proc_dointvec_minmax);
  4446. set_table_entry(&table[11], "name", sd->name,
  4447. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4448. /* &table[12] is terminator */
  4449. return table;
  4450. }
  4451. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4452. {
  4453. struct ctl_table *entry, *table;
  4454. struct sched_domain *sd;
  4455. int domain_num = 0, i;
  4456. char buf[32];
  4457. for_each_domain(cpu, sd)
  4458. domain_num++;
  4459. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4460. if (table == NULL)
  4461. return NULL;
  4462. i = 0;
  4463. for_each_domain(cpu, sd) {
  4464. snprintf(buf, 32, "domain%d", i);
  4465. entry->procname = kstrdup(buf, GFP_KERNEL);
  4466. entry->mode = 0555;
  4467. entry->child = sd_alloc_ctl_domain_table(sd);
  4468. entry++;
  4469. i++;
  4470. }
  4471. return table;
  4472. }
  4473. static struct ctl_table_header *sd_sysctl_header;
  4474. static void register_sched_domain_sysctl(void)
  4475. {
  4476. int i, cpu_num = num_possible_cpus();
  4477. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4478. char buf[32];
  4479. WARN_ON(sd_ctl_dir[0].child);
  4480. sd_ctl_dir[0].child = entry;
  4481. if (entry == NULL)
  4482. return;
  4483. for_each_possible_cpu(i) {
  4484. snprintf(buf, 32, "cpu%d", i);
  4485. entry->procname = kstrdup(buf, GFP_KERNEL);
  4486. entry->mode = 0555;
  4487. entry->child = sd_alloc_ctl_cpu_table(i);
  4488. entry++;
  4489. }
  4490. WARN_ON(sd_sysctl_header);
  4491. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4492. }
  4493. /* may be called multiple times per register */
  4494. static void unregister_sched_domain_sysctl(void)
  4495. {
  4496. if (sd_sysctl_header)
  4497. unregister_sysctl_table(sd_sysctl_header);
  4498. sd_sysctl_header = NULL;
  4499. if (sd_ctl_dir[0].child)
  4500. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4501. }
  4502. #else
  4503. static void register_sched_domain_sysctl(void)
  4504. {
  4505. }
  4506. static void unregister_sched_domain_sysctl(void)
  4507. {
  4508. }
  4509. #endif
  4510. static void set_rq_online(struct rq *rq)
  4511. {
  4512. if (!rq->online) {
  4513. const struct sched_class *class;
  4514. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4515. rq->online = 1;
  4516. for_each_class(class) {
  4517. if (class->rq_online)
  4518. class->rq_online(rq);
  4519. }
  4520. }
  4521. }
  4522. static void set_rq_offline(struct rq *rq)
  4523. {
  4524. if (rq->online) {
  4525. const struct sched_class *class;
  4526. for_each_class(class) {
  4527. if (class->rq_offline)
  4528. class->rq_offline(rq);
  4529. }
  4530. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4531. rq->online = 0;
  4532. }
  4533. }
  4534. /*
  4535. * migration_call - callback that gets triggered when a CPU is added.
  4536. * Here we can start up the necessary migration thread for the new CPU.
  4537. */
  4538. static int __cpuinit
  4539. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4540. {
  4541. int cpu = (long)hcpu;
  4542. unsigned long flags;
  4543. struct rq *rq = cpu_rq(cpu);
  4544. switch (action & ~CPU_TASKS_FROZEN) {
  4545. case CPU_UP_PREPARE:
  4546. rq->calc_load_update = calc_load_update;
  4547. break;
  4548. case CPU_ONLINE:
  4549. /* Update our root-domain */
  4550. raw_spin_lock_irqsave(&rq->lock, flags);
  4551. if (rq->rd) {
  4552. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4553. set_rq_online(rq);
  4554. }
  4555. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4556. break;
  4557. #ifdef CONFIG_HOTPLUG_CPU
  4558. case CPU_DYING:
  4559. sched_ttwu_pending();
  4560. /* Update our root-domain */
  4561. raw_spin_lock_irqsave(&rq->lock, flags);
  4562. if (rq->rd) {
  4563. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4564. set_rq_offline(rq);
  4565. }
  4566. migrate_tasks(cpu);
  4567. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4568. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4569. migrate_nr_uninterruptible(rq);
  4570. calc_global_load_remove(rq);
  4571. break;
  4572. #endif
  4573. }
  4574. update_max_interval();
  4575. return NOTIFY_OK;
  4576. }
  4577. /*
  4578. * Register at high priority so that task migration (migrate_all_tasks)
  4579. * happens before everything else. This has to be lower priority than
  4580. * the notifier in the perf_event subsystem, though.
  4581. */
  4582. static struct notifier_block __cpuinitdata migration_notifier = {
  4583. .notifier_call = migration_call,
  4584. .priority = CPU_PRI_MIGRATION,
  4585. };
  4586. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4587. unsigned long action, void *hcpu)
  4588. {
  4589. switch (action & ~CPU_TASKS_FROZEN) {
  4590. case CPU_ONLINE:
  4591. case CPU_DOWN_FAILED:
  4592. set_cpu_active((long)hcpu, true);
  4593. return NOTIFY_OK;
  4594. default:
  4595. return NOTIFY_DONE;
  4596. }
  4597. }
  4598. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4599. unsigned long action, void *hcpu)
  4600. {
  4601. switch (action & ~CPU_TASKS_FROZEN) {
  4602. case CPU_DOWN_PREPARE:
  4603. set_cpu_active((long)hcpu, false);
  4604. return NOTIFY_OK;
  4605. default:
  4606. return NOTIFY_DONE;
  4607. }
  4608. }
  4609. static int __init migration_init(void)
  4610. {
  4611. void *cpu = (void *)(long)smp_processor_id();
  4612. int err;
  4613. /* Initialize migration for the boot CPU */
  4614. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4615. BUG_ON(err == NOTIFY_BAD);
  4616. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4617. register_cpu_notifier(&migration_notifier);
  4618. /* Register cpu active notifiers */
  4619. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4620. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4621. return 0;
  4622. }
  4623. early_initcall(migration_init);
  4624. #endif
  4625. #ifdef CONFIG_SMP
  4626. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4627. #ifdef CONFIG_SCHED_DEBUG
  4628. static __read_mostly int sched_domain_debug_enabled;
  4629. static int __init sched_domain_debug_setup(char *str)
  4630. {
  4631. sched_domain_debug_enabled = 1;
  4632. return 0;
  4633. }
  4634. early_param("sched_debug", sched_domain_debug_setup);
  4635. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4636. struct cpumask *groupmask)
  4637. {
  4638. struct sched_group *group = sd->groups;
  4639. char str[256];
  4640. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4641. cpumask_clear(groupmask);
  4642. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4643. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4644. printk("does not load-balance\n");
  4645. if (sd->parent)
  4646. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4647. " has parent");
  4648. return -1;
  4649. }
  4650. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4651. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4652. printk(KERN_ERR "ERROR: domain->span does not contain "
  4653. "CPU%d\n", cpu);
  4654. }
  4655. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4656. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4657. " CPU%d\n", cpu);
  4658. }
  4659. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4660. do {
  4661. if (!group) {
  4662. printk("\n");
  4663. printk(KERN_ERR "ERROR: group is NULL\n");
  4664. break;
  4665. }
  4666. if (!group->sgp->power) {
  4667. printk(KERN_CONT "\n");
  4668. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4669. "set\n");
  4670. break;
  4671. }
  4672. if (!cpumask_weight(sched_group_cpus(group))) {
  4673. printk(KERN_CONT "\n");
  4674. printk(KERN_ERR "ERROR: empty group\n");
  4675. break;
  4676. }
  4677. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4678. printk(KERN_CONT "\n");
  4679. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4680. break;
  4681. }
  4682. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4683. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4684. printk(KERN_CONT " %s", str);
  4685. if (group->sgp->power != SCHED_POWER_SCALE) {
  4686. printk(KERN_CONT " (cpu_power = %d)",
  4687. group->sgp->power);
  4688. }
  4689. group = group->next;
  4690. } while (group != sd->groups);
  4691. printk(KERN_CONT "\n");
  4692. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4693. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4694. if (sd->parent &&
  4695. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4696. printk(KERN_ERR "ERROR: parent span is not a superset "
  4697. "of domain->span\n");
  4698. return 0;
  4699. }
  4700. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4701. {
  4702. int level = 0;
  4703. if (!sched_domain_debug_enabled)
  4704. return;
  4705. if (!sd) {
  4706. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4707. return;
  4708. }
  4709. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4710. for (;;) {
  4711. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4712. break;
  4713. level++;
  4714. sd = sd->parent;
  4715. if (!sd)
  4716. break;
  4717. }
  4718. }
  4719. #else /* !CONFIG_SCHED_DEBUG */
  4720. # define sched_domain_debug(sd, cpu) do { } while (0)
  4721. #endif /* CONFIG_SCHED_DEBUG */
  4722. static int sd_degenerate(struct sched_domain *sd)
  4723. {
  4724. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4725. return 1;
  4726. /* Following flags need at least 2 groups */
  4727. if (sd->flags & (SD_LOAD_BALANCE |
  4728. SD_BALANCE_NEWIDLE |
  4729. SD_BALANCE_FORK |
  4730. SD_BALANCE_EXEC |
  4731. SD_SHARE_CPUPOWER |
  4732. SD_SHARE_PKG_RESOURCES)) {
  4733. if (sd->groups != sd->groups->next)
  4734. return 0;
  4735. }
  4736. /* Following flags don't use groups */
  4737. if (sd->flags & (SD_WAKE_AFFINE))
  4738. return 0;
  4739. return 1;
  4740. }
  4741. static int
  4742. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4743. {
  4744. unsigned long cflags = sd->flags, pflags = parent->flags;
  4745. if (sd_degenerate(parent))
  4746. return 1;
  4747. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4748. return 0;
  4749. /* Flags needing groups don't count if only 1 group in parent */
  4750. if (parent->groups == parent->groups->next) {
  4751. pflags &= ~(SD_LOAD_BALANCE |
  4752. SD_BALANCE_NEWIDLE |
  4753. SD_BALANCE_FORK |
  4754. SD_BALANCE_EXEC |
  4755. SD_SHARE_CPUPOWER |
  4756. SD_SHARE_PKG_RESOURCES);
  4757. if (nr_node_ids == 1)
  4758. pflags &= ~SD_SERIALIZE;
  4759. }
  4760. if (~cflags & pflags)
  4761. return 0;
  4762. return 1;
  4763. }
  4764. static void free_rootdomain(struct rcu_head *rcu)
  4765. {
  4766. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4767. cpupri_cleanup(&rd->cpupri);
  4768. free_cpumask_var(rd->rto_mask);
  4769. free_cpumask_var(rd->online);
  4770. free_cpumask_var(rd->span);
  4771. kfree(rd);
  4772. }
  4773. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4774. {
  4775. struct root_domain *old_rd = NULL;
  4776. unsigned long flags;
  4777. raw_spin_lock_irqsave(&rq->lock, flags);
  4778. if (rq->rd) {
  4779. old_rd = rq->rd;
  4780. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4781. set_rq_offline(rq);
  4782. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4783. /*
  4784. * If we dont want to free the old_rt yet then
  4785. * set old_rd to NULL to skip the freeing later
  4786. * in this function:
  4787. */
  4788. if (!atomic_dec_and_test(&old_rd->refcount))
  4789. old_rd = NULL;
  4790. }
  4791. atomic_inc(&rd->refcount);
  4792. rq->rd = rd;
  4793. cpumask_set_cpu(rq->cpu, rd->span);
  4794. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4795. set_rq_online(rq);
  4796. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4797. if (old_rd)
  4798. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4799. }
  4800. static int init_rootdomain(struct root_domain *rd)
  4801. {
  4802. memset(rd, 0, sizeof(*rd));
  4803. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4804. goto out;
  4805. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4806. goto free_span;
  4807. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4808. goto free_online;
  4809. if (cpupri_init(&rd->cpupri) != 0)
  4810. goto free_rto_mask;
  4811. return 0;
  4812. free_rto_mask:
  4813. free_cpumask_var(rd->rto_mask);
  4814. free_online:
  4815. free_cpumask_var(rd->online);
  4816. free_span:
  4817. free_cpumask_var(rd->span);
  4818. out:
  4819. return -ENOMEM;
  4820. }
  4821. /*
  4822. * By default the system creates a single root-domain with all cpus as
  4823. * members (mimicking the global state we have today).
  4824. */
  4825. struct root_domain def_root_domain;
  4826. static void init_defrootdomain(void)
  4827. {
  4828. init_rootdomain(&def_root_domain);
  4829. atomic_set(&def_root_domain.refcount, 1);
  4830. }
  4831. static struct root_domain *alloc_rootdomain(void)
  4832. {
  4833. struct root_domain *rd;
  4834. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4835. if (!rd)
  4836. return NULL;
  4837. if (init_rootdomain(rd) != 0) {
  4838. kfree(rd);
  4839. return NULL;
  4840. }
  4841. return rd;
  4842. }
  4843. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4844. {
  4845. struct sched_group *tmp, *first;
  4846. if (!sg)
  4847. return;
  4848. first = sg;
  4849. do {
  4850. tmp = sg->next;
  4851. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4852. kfree(sg->sgp);
  4853. kfree(sg);
  4854. sg = tmp;
  4855. } while (sg != first);
  4856. }
  4857. static void free_sched_domain(struct rcu_head *rcu)
  4858. {
  4859. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4860. /*
  4861. * If its an overlapping domain it has private groups, iterate and
  4862. * nuke them all.
  4863. */
  4864. if (sd->flags & SD_OVERLAP) {
  4865. free_sched_groups(sd->groups, 1);
  4866. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4867. kfree(sd->groups->sgp);
  4868. kfree(sd->groups);
  4869. }
  4870. kfree(sd);
  4871. }
  4872. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4873. {
  4874. call_rcu(&sd->rcu, free_sched_domain);
  4875. }
  4876. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4877. {
  4878. for (; sd; sd = sd->parent)
  4879. destroy_sched_domain(sd, cpu);
  4880. }
  4881. /*
  4882. * Keep a special pointer to the highest sched_domain that has
  4883. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4884. * allows us to avoid some pointer chasing select_idle_sibling().
  4885. *
  4886. * Also keep a unique ID per domain (we use the first cpu number in
  4887. * the cpumask of the domain), this allows us to quickly tell if
  4888. * two cpus are in the same cache domain, see ttwu_share_cache().
  4889. */
  4890. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4891. DEFINE_PER_CPU(int, sd_llc_id);
  4892. static void update_top_cache_domain(int cpu)
  4893. {
  4894. struct sched_domain *sd;
  4895. int id = cpu;
  4896. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4897. if (sd)
  4898. id = cpumask_first(sched_domain_span(sd));
  4899. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4900. per_cpu(sd_llc_id, cpu) = id;
  4901. }
  4902. /*
  4903. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4904. * hold the hotplug lock.
  4905. */
  4906. static void
  4907. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4908. {
  4909. struct rq *rq = cpu_rq(cpu);
  4910. struct sched_domain *tmp;
  4911. /* Remove the sched domains which do not contribute to scheduling. */
  4912. for (tmp = sd; tmp; ) {
  4913. struct sched_domain *parent = tmp->parent;
  4914. if (!parent)
  4915. break;
  4916. if (sd_parent_degenerate(tmp, parent)) {
  4917. tmp->parent = parent->parent;
  4918. if (parent->parent)
  4919. parent->parent->child = tmp;
  4920. destroy_sched_domain(parent, cpu);
  4921. } else
  4922. tmp = tmp->parent;
  4923. }
  4924. if (sd && sd_degenerate(sd)) {
  4925. tmp = sd;
  4926. sd = sd->parent;
  4927. destroy_sched_domain(tmp, cpu);
  4928. if (sd)
  4929. sd->child = NULL;
  4930. }
  4931. sched_domain_debug(sd, cpu);
  4932. rq_attach_root(rq, rd);
  4933. tmp = rq->sd;
  4934. rcu_assign_pointer(rq->sd, sd);
  4935. destroy_sched_domains(tmp, cpu);
  4936. update_top_cache_domain(cpu);
  4937. }
  4938. /* cpus with isolated domains */
  4939. static cpumask_var_t cpu_isolated_map;
  4940. /* Setup the mask of cpus configured for isolated domains */
  4941. static int __init isolated_cpu_setup(char *str)
  4942. {
  4943. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4944. cpulist_parse(str, cpu_isolated_map);
  4945. return 1;
  4946. }
  4947. __setup("isolcpus=", isolated_cpu_setup);
  4948. #ifdef CONFIG_NUMA
  4949. /**
  4950. * find_next_best_node - find the next node to include in a sched_domain
  4951. * @node: node whose sched_domain we're building
  4952. * @used_nodes: nodes already in the sched_domain
  4953. *
  4954. * Find the next node to include in a given scheduling domain. Simply
  4955. * finds the closest node not already in the @used_nodes map.
  4956. *
  4957. * Should use nodemask_t.
  4958. */
  4959. static int find_next_best_node(int node, nodemask_t *used_nodes)
  4960. {
  4961. int i, n, val, min_val, best_node = -1;
  4962. min_val = INT_MAX;
  4963. for (i = 0; i < nr_node_ids; i++) {
  4964. /* Start at @node */
  4965. n = (node + i) % nr_node_ids;
  4966. if (!nr_cpus_node(n))
  4967. continue;
  4968. /* Skip already used nodes */
  4969. if (node_isset(n, *used_nodes))
  4970. continue;
  4971. /* Simple min distance search */
  4972. val = node_distance(node, n);
  4973. if (val < min_val) {
  4974. min_val = val;
  4975. best_node = n;
  4976. }
  4977. }
  4978. if (best_node != -1)
  4979. node_set(best_node, *used_nodes);
  4980. return best_node;
  4981. }
  4982. /**
  4983. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4984. * @node: node whose cpumask we're constructing
  4985. * @span: resulting cpumask
  4986. *
  4987. * Given a node, construct a good cpumask for its sched_domain to span. It
  4988. * should be one that prevents unnecessary balancing, but also spreads tasks
  4989. * out optimally.
  4990. */
  4991. static void sched_domain_node_span(int node, struct cpumask *span)
  4992. {
  4993. nodemask_t used_nodes;
  4994. int i;
  4995. cpumask_clear(span);
  4996. nodes_clear(used_nodes);
  4997. cpumask_or(span, span, cpumask_of_node(node));
  4998. node_set(node, used_nodes);
  4999. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5000. int next_node = find_next_best_node(node, &used_nodes);
  5001. if (next_node < 0)
  5002. break;
  5003. cpumask_or(span, span, cpumask_of_node(next_node));
  5004. }
  5005. }
  5006. static const struct cpumask *cpu_node_mask(int cpu)
  5007. {
  5008. lockdep_assert_held(&sched_domains_mutex);
  5009. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5010. return sched_domains_tmpmask;
  5011. }
  5012. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5013. {
  5014. return cpu_possible_mask;
  5015. }
  5016. #endif /* CONFIG_NUMA */
  5017. static const struct cpumask *cpu_cpu_mask(int cpu)
  5018. {
  5019. return cpumask_of_node(cpu_to_node(cpu));
  5020. }
  5021. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5022. struct sd_data {
  5023. struct sched_domain **__percpu sd;
  5024. struct sched_group **__percpu sg;
  5025. struct sched_group_power **__percpu sgp;
  5026. };
  5027. struct s_data {
  5028. struct sched_domain ** __percpu sd;
  5029. struct root_domain *rd;
  5030. };
  5031. enum s_alloc {
  5032. sa_rootdomain,
  5033. sa_sd,
  5034. sa_sd_storage,
  5035. sa_none,
  5036. };
  5037. struct sched_domain_topology_level;
  5038. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5039. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5040. #define SDTL_OVERLAP 0x01
  5041. struct sched_domain_topology_level {
  5042. sched_domain_init_f init;
  5043. sched_domain_mask_f mask;
  5044. int flags;
  5045. struct sd_data data;
  5046. };
  5047. static int
  5048. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5049. {
  5050. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5051. const struct cpumask *span = sched_domain_span(sd);
  5052. struct cpumask *covered = sched_domains_tmpmask;
  5053. struct sd_data *sdd = sd->private;
  5054. struct sched_domain *child;
  5055. int i;
  5056. cpumask_clear(covered);
  5057. for_each_cpu(i, span) {
  5058. struct cpumask *sg_span;
  5059. if (cpumask_test_cpu(i, covered))
  5060. continue;
  5061. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5062. GFP_KERNEL, cpu_to_node(cpu));
  5063. if (!sg)
  5064. goto fail;
  5065. sg_span = sched_group_cpus(sg);
  5066. child = *per_cpu_ptr(sdd->sd, i);
  5067. if (child->child) {
  5068. child = child->child;
  5069. cpumask_copy(sg_span, sched_domain_span(child));
  5070. } else
  5071. cpumask_set_cpu(i, sg_span);
  5072. cpumask_or(covered, covered, sg_span);
  5073. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5074. atomic_inc(&sg->sgp->ref);
  5075. if (cpumask_test_cpu(cpu, sg_span))
  5076. groups = sg;
  5077. if (!first)
  5078. first = sg;
  5079. if (last)
  5080. last->next = sg;
  5081. last = sg;
  5082. last->next = first;
  5083. }
  5084. sd->groups = groups;
  5085. return 0;
  5086. fail:
  5087. free_sched_groups(first, 0);
  5088. return -ENOMEM;
  5089. }
  5090. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5091. {
  5092. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5093. struct sched_domain *child = sd->child;
  5094. if (child)
  5095. cpu = cpumask_first(sched_domain_span(child));
  5096. if (sg) {
  5097. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5098. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5099. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5100. }
  5101. return cpu;
  5102. }
  5103. /*
  5104. * build_sched_groups will build a circular linked list of the groups
  5105. * covered by the given span, and will set each group's ->cpumask correctly,
  5106. * and ->cpu_power to 0.
  5107. *
  5108. * Assumes the sched_domain tree is fully constructed
  5109. */
  5110. static int
  5111. build_sched_groups(struct sched_domain *sd, int cpu)
  5112. {
  5113. struct sched_group *first = NULL, *last = NULL;
  5114. struct sd_data *sdd = sd->private;
  5115. const struct cpumask *span = sched_domain_span(sd);
  5116. struct cpumask *covered;
  5117. int i;
  5118. get_group(cpu, sdd, &sd->groups);
  5119. atomic_inc(&sd->groups->ref);
  5120. if (cpu != cpumask_first(sched_domain_span(sd)))
  5121. return 0;
  5122. lockdep_assert_held(&sched_domains_mutex);
  5123. covered = sched_domains_tmpmask;
  5124. cpumask_clear(covered);
  5125. for_each_cpu(i, span) {
  5126. struct sched_group *sg;
  5127. int group = get_group(i, sdd, &sg);
  5128. int j;
  5129. if (cpumask_test_cpu(i, covered))
  5130. continue;
  5131. cpumask_clear(sched_group_cpus(sg));
  5132. sg->sgp->power = 0;
  5133. for_each_cpu(j, span) {
  5134. if (get_group(j, sdd, NULL) != group)
  5135. continue;
  5136. cpumask_set_cpu(j, covered);
  5137. cpumask_set_cpu(j, sched_group_cpus(sg));
  5138. }
  5139. if (!first)
  5140. first = sg;
  5141. if (last)
  5142. last->next = sg;
  5143. last = sg;
  5144. }
  5145. last->next = first;
  5146. return 0;
  5147. }
  5148. /*
  5149. * Initialize sched groups cpu_power.
  5150. *
  5151. * cpu_power indicates the capacity of sched group, which is used while
  5152. * distributing the load between different sched groups in a sched domain.
  5153. * Typically cpu_power for all the groups in a sched domain will be same unless
  5154. * there are asymmetries in the topology. If there are asymmetries, group
  5155. * having more cpu_power will pickup more load compared to the group having
  5156. * less cpu_power.
  5157. */
  5158. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5159. {
  5160. struct sched_group *sg = sd->groups;
  5161. WARN_ON(!sd || !sg);
  5162. do {
  5163. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5164. sg = sg->next;
  5165. } while (sg != sd->groups);
  5166. if (cpu != group_first_cpu(sg))
  5167. return;
  5168. update_group_power(sd, cpu);
  5169. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5170. }
  5171. int __weak arch_sd_sibling_asym_packing(void)
  5172. {
  5173. return 0*SD_ASYM_PACKING;
  5174. }
  5175. /*
  5176. * Initializers for schedule domains
  5177. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5178. */
  5179. #ifdef CONFIG_SCHED_DEBUG
  5180. # define SD_INIT_NAME(sd, type) sd->name = #type
  5181. #else
  5182. # define SD_INIT_NAME(sd, type) do { } while (0)
  5183. #endif
  5184. #define SD_INIT_FUNC(type) \
  5185. static noinline struct sched_domain * \
  5186. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5187. { \
  5188. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5189. *sd = SD_##type##_INIT; \
  5190. SD_INIT_NAME(sd, type); \
  5191. sd->private = &tl->data; \
  5192. return sd; \
  5193. }
  5194. SD_INIT_FUNC(CPU)
  5195. #ifdef CONFIG_NUMA
  5196. SD_INIT_FUNC(ALLNODES)
  5197. SD_INIT_FUNC(NODE)
  5198. #endif
  5199. #ifdef CONFIG_SCHED_SMT
  5200. SD_INIT_FUNC(SIBLING)
  5201. #endif
  5202. #ifdef CONFIG_SCHED_MC
  5203. SD_INIT_FUNC(MC)
  5204. #endif
  5205. #ifdef CONFIG_SCHED_BOOK
  5206. SD_INIT_FUNC(BOOK)
  5207. #endif
  5208. static int default_relax_domain_level = -1;
  5209. int sched_domain_level_max;
  5210. static int __init setup_relax_domain_level(char *str)
  5211. {
  5212. unsigned long val;
  5213. val = simple_strtoul(str, NULL, 0);
  5214. if (val < sched_domain_level_max)
  5215. default_relax_domain_level = val;
  5216. return 1;
  5217. }
  5218. __setup("relax_domain_level=", setup_relax_domain_level);
  5219. static void set_domain_attribute(struct sched_domain *sd,
  5220. struct sched_domain_attr *attr)
  5221. {
  5222. int request;
  5223. if (!attr || attr->relax_domain_level < 0) {
  5224. if (default_relax_domain_level < 0)
  5225. return;
  5226. else
  5227. request = default_relax_domain_level;
  5228. } else
  5229. request = attr->relax_domain_level;
  5230. if (request < sd->level) {
  5231. /* turn off idle balance on this domain */
  5232. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5233. } else {
  5234. /* turn on idle balance on this domain */
  5235. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5236. }
  5237. }
  5238. static void __sdt_free(const struct cpumask *cpu_map);
  5239. static int __sdt_alloc(const struct cpumask *cpu_map);
  5240. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5241. const struct cpumask *cpu_map)
  5242. {
  5243. switch (what) {
  5244. case sa_rootdomain:
  5245. if (!atomic_read(&d->rd->refcount))
  5246. free_rootdomain(&d->rd->rcu); /* fall through */
  5247. case sa_sd:
  5248. free_percpu(d->sd); /* fall through */
  5249. case sa_sd_storage:
  5250. __sdt_free(cpu_map); /* fall through */
  5251. case sa_none:
  5252. break;
  5253. }
  5254. }
  5255. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5256. const struct cpumask *cpu_map)
  5257. {
  5258. memset(d, 0, sizeof(*d));
  5259. if (__sdt_alloc(cpu_map))
  5260. return sa_sd_storage;
  5261. d->sd = alloc_percpu(struct sched_domain *);
  5262. if (!d->sd)
  5263. return sa_sd_storage;
  5264. d->rd = alloc_rootdomain();
  5265. if (!d->rd)
  5266. return sa_sd;
  5267. return sa_rootdomain;
  5268. }
  5269. /*
  5270. * NULL the sd_data elements we've used to build the sched_domain and
  5271. * sched_group structure so that the subsequent __free_domain_allocs()
  5272. * will not free the data we're using.
  5273. */
  5274. static void claim_allocations(int cpu, struct sched_domain *sd)
  5275. {
  5276. struct sd_data *sdd = sd->private;
  5277. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5278. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5279. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5280. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5281. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5282. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5283. }
  5284. #ifdef CONFIG_SCHED_SMT
  5285. static const struct cpumask *cpu_smt_mask(int cpu)
  5286. {
  5287. return topology_thread_cpumask(cpu);
  5288. }
  5289. #endif
  5290. /*
  5291. * Topology list, bottom-up.
  5292. */
  5293. static struct sched_domain_topology_level default_topology[] = {
  5294. #ifdef CONFIG_SCHED_SMT
  5295. { sd_init_SIBLING, cpu_smt_mask, },
  5296. #endif
  5297. #ifdef CONFIG_SCHED_MC
  5298. { sd_init_MC, cpu_coregroup_mask, },
  5299. #endif
  5300. #ifdef CONFIG_SCHED_BOOK
  5301. { sd_init_BOOK, cpu_book_mask, },
  5302. #endif
  5303. { sd_init_CPU, cpu_cpu_mask, },
  5304. #ifdef CONFIG_NUMA
  5305. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5306. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5307. #endif
  5308. { NULL, },
  5309. };
  5310. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5311. static int __sdt_alloc(const struct cpumask *cpu_map)
  5312. {
  5313. struct sched_domain_topology_level *tl;
  5314. int j;
  5315. for (tl = sched_domain_topology; tl->init; tl++) {
  5316. struct sd_data *sdd = &tl->data;
  5317. sdd->sd = alloc_percpu(struct sched_domain *);
  5318. if (!sdd->sd)
  5319. return -ENOMEM;
  5320. sdd->sg = alloc_percpu(struct sched_group *);
  5321. if (!sdd->sg)
  5322. return -ENOMEM;
  5323. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5324. if (!sdd->sgp)
  5325. return -ENOMEM;
  5326. for_each_cpu(j, cpu_map) {
  5327. struct sched_domain *sd;
  5328. struct sched_group *sg;
  5329. struct sched_group_power *sgp;
  5330. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5331. GFP_KERNEL, cpu_to_node(j));
  5332. if (!sd)
  5333. return -ENOMEM;
  5334. *per_cpu_ptr(sdd->sd, j) = sd;
  5335. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5336. GFP_KERNEL, cpu_to_node(j));
  5337. if (!sg)
  5338. return -ENOMEM;
  5339. *per_cpu_ptr(sdd->sg, j) = sg;
  5340. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5341. GFP_KERNEL, cpu_to_node(j));
  5342. if (!sgp)
  5343. return -ENOMEM;
  5344. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5345. }
  5346. }
  5347. return 0;
  5348. }
  5349. static void __sdt_free(const struct cpumask *cpu_map)
  5350. {
  5351. struct sched_domain_topology_level *tl;
  5352. int j;
  5353. for (tl = sched_domain_topology; tl->init; tl++) {
  5354. struct sd_data *sdd = &tl->data;
  5355. for_each_cpu(j, cpu_map) {
  5356. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5357. if (sd && (sd->flags & SD_OVERLAP))
  5358. free_sched_groups(sd->groups, 0);
  5359. kfree(*per_cpu_ptr(sdd->sd, j));
  5360. kfree(*per_cpu_ptr(sdd->sg, j));
  5361. kfree(*per_cpu_ptr(sdd->sgp, j));
  5362. }
  5363. free_percpu(sdd->sd);
  5364. free_percpu(sdd->sg);
  5365. free_percpu(sdd->sgp);
  5366. }
  5367. }
  5368. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5369. struct s_data *d, const struct cpumask *cpu_map,
  5370. struct sched_domain_attr *attr, struct sched_domain *child,
  5371. int cpu)
  5372. {
  5373. struct sched_domain *sd = tl->init(tl, cpu);
  5374. if (!sd)
  5375. return child;
  5376. set_domain_attribute(sd, attr);
  5377. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5378. if (child) {
  5379. sd->level = child->level + 1;
  5380. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5381. child->parent = sd;
  5382. }
  5383. sd->child = child;
  5384. return sd;
  5385. }
  5386. /*
  5387. * Build sched domains for a given set of cpus and attach the sched domains
  5388. * to the individual cpus
  5389. */
  5390. static int build_sched_domains(const struct cpumask *cpu_map,
  5391. struct sched_domain_attr *attr)
  5392. {
  5393. enum s_alloc alloc_state = sa_none;
  5394. struct sched_domain *sd;
  5395. struct s_data d;
  5396. int i, ret = -ENOMEM;
  5397. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5398. if (alloc_state != sa_rootdomain)
  5399. goto error;
  5400. /* Set up domains for cpus specified by the cpu_map. */
  5401. for_each_cpu(i, cpu_map) {
  5402. struct sched_domain_topology_level *tl;
  5403. sd = NULL;
  5404. for (tl = sched_domain_topology; tl->init; tl++) {
  5405. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5406. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5407. sd->flags |= SD_OVERLAP;
  5408. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5409. break;
  5410. }
  5411. while (sd->child)
  5412. sd = sd->child;
  5413. *per_cpu_ptr(d.sd, i) = sd;
  5414. }
  5415. /* Build the groups for the domains */
  5416. for_each_cpu(i, cpu_map) {
  5417. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5418. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5419. if (sd->flags & SD_OVERLAP) {
  5420. if (build_overlap_sched_groups(sd, i))
  5421. goto error;
  5422. } else {
  5423. if (build_sched_groups(sd, i))
  5424. goto error;
  5425. }
  5426. }
  5427. }
  5428. /* Calculate CPU power for physical packages and nodes */
  5429. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5430. if (!cpumask_test_cpu(i, cpu_map))
  5431. continue;
  5432. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5433. claim_allocations(i, sd);
  5434. init_sched_groups_power(i, sd);
  5435. }
  5436. }
  5437. /* Attach the domains */
  5438. rcu_read_lock();
  5439. for_each_cpu(i, cpu_map) {
  5440. sd = *per_cpu_ptr(d.sd, i);
  5441. cpu_attach_domain(sd, d.rd, i);
  5442. }
  5443. rcu_read_unlock();
  5444. ret = 0;
  5445. error:
  5446. __free_domain_allocs(&d, alloc_state, cpu_map);
  5447. return ret;
  5448. }
  5449. static cpumask_var_t *doms_cur; /* current sched domains */
  5450. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5451. static struct sched_domain_attr *dattr_cur;
  5452. /* attribues of custom domains in 'doms_cur' */
  5453. /*
  5454. * Special case: If a kmalloc of a doms_cur partition (array of
  5455. * cpumask) fails, then fallback to a single sched domain,
  5456. * as determined by the single cpumask fallback_doms.
  5457. */
  5458. static cpumask_var_t fallback_doms;
  5459. /*
  5460. * arch_update_cpu_topology lets virtualized architectures update the
  5461. * cpu core maps. It is supposed to return 1 if the topology changed
  5462. * or 0 if it stayed the same.
  5463. */
  5464. int __attribute__((weak)) arch_update_cpu_topology(void)
  5465. {
  5466. return 0;
  5467. }
  5468. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5469. {
  5470. int i;
  5471. cpumask_var_t *doms;
  5472. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5473. if (!doms)
  5474. return NULL;
  5475. for (i = 0; i < ndoms; i++) {
  5476. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5477. free_sched_domains(doms, i);
  5478. return NULL;
  5479. }
  5480. }
  5481. return doms;
  5482. }
  5483. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5484. {
  5485. unsigned int i;
  5486. for (i = 0; i < ndoms; i++)
  5487. free_cpumask_var(doms[i]);
  5488. kfree(doms);
  5489. }
  5490. /*
  5491. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5492. * For now this just excludes isolated cpus, but could be used to
  5493. * exclude other special cases in the future.
  5494. */
  5495. static int init_sched_domains(const struct cpumask *cpu_map)
  5496. {
  5497. int err;
  5498. arch_update_cpu_topology();
  5499. ndoms_cur = 1;
  5500. doms_cur = alloc_sched_domains(ndoms_cur);
  5501. if (!doms_cur)
  5502. doms_cur = &fallback_doms;
  5503. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5504. dattr_cur = NULL;
  5505. err = build_sched_domains(doms_cur[0], NULL);
  5506. register_sched_domain_sysctl();
  5507. return err;
  5508. }
  5509. /*
  5510. * Detach sched domains from a group of cpus specified in cpu_map
  5511. * These cpus will now be attached to the NULL domain
  5512. */
  5513. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5514. {
  5515. int i;
  5516. rcu_read_lock();
  5517. for_each_cpu(i, cpu_map)
  5518. cpu_attach_domain(NULL, &def_root_domain, i);
  5519. rcu_read_unlock();
  5520. }
  5521. /* handle null as "default" */
  5522. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5523. struct sched_domain_attr *new, int idx_new)
  5524. {
  5525. struct sched_domain_attr tmp;
  5526. /* fast path */
  5527. if (!new && !cur)
  5528. return 1;
  5529. tmp = SD_ATTR_INIT;
  5530. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5531. new ? (new + idx_new) : &tmp,
  5532. sizeof(struct sched_domain_attr));
  5533. }
  5534. /*
  5535. * Partition sched domains as specified by the 'ndoms_new'
  5536. * cpumasks in the array doms_new[] of cpumasks. This compares
  5537. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5538. * It destroys each deleted domain and builds each new domain.
  5539. *
  5540. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5541. * The masks don't intersect (don't overlap.) We should setup one
  5542. * sched domain for each mask. CPUs not in any of the cpumasks will
  5543. * not be load balanced. If the same cpumask appears both in the
  5544. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5545. * it as it is.
  5546. *
  5547. * The passed in 'doms_new' should be allocated using
  5548. * alloc_sched_domains. This routine takes ownership of it and will
  5549. * free_sched_domains it when done with it. If the caller failed the
  5550. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5551. * and partition_sched_domains() will fallback to the single partition
  5552. * 'fallback_doms', it also forces the domains to be rebuilt.
  5553. *
  5554. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5555. * ndoms_new == 0 is a special case for destroying existing domains,
  5556. * and it will not create the default domain.
  5557. *
  5558. * Call with hotplug lock held
  5559. */
  5560. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5561. struct sched_domain_attr *dattr_new)
  5562. {
  5563. int i, j, n;
  5564. int new_topology;
  5565. mutex_lock(&sched_domains_mutex);
  5566. /* always unregister in case we don't destroy any domains */
  5567. unregister_sched_domain_sysctl();
  5568. /* Let architecture update cpu core mappings. */
  5569. new_topology = arch_update_cpu_topology();
  5570. n = doms_new ? ndoms_new : 0;
  5571. /* Destroy deleted domains */
  5572. for (i = 0; i < ndoms_cur; i++) {
  5573. for (j = 0; j < n && !new_topology; j++) {
  5574. if (cpumask_equal(doms_cur[i], doms_new[j])
  5575. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5576. goto match1;
  5577. }
  5578. /* no match - a current sched domain not in new doms_new[] */
  5579. detach_destroy_domains(doms_cur[i]);
  5580. match1:
  5581. ;
  5582. }
  5583. if (doms_new == NULL) {
  5584. ndoms_cur = 0;
  5585. doms_new = &fallback_doms;
  5586. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5587. WARN_ON_ONCE(dattr_new);
  5588. }
  5589. /* Build new domains */
  5590. for (i = 0; i < ndoms_new; i++) {
  5591. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5592. if (cpumask_equal(doms_new[i], doms_cur[j])
  5593. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5594. goto match2;
  5595. }
  5596. /* no match - add a new doms_new */
  5597. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5598. match2:
  5599. ;
  5600. }
  5601. /* Remember the new sched domains */
  5602. if (doms_cur != &fallback_doms)
  5603. free_sched_domains(doms_cur, ndoms_cur);
  5604. kfree(dattr_cur); /* kfree(NULL) is safe */
  5605. doms_cur = doms_new;
  5606. dattr_cur = dattr_new;
  5607. ndoms_cur = ndoms_new;
  5608. register_sched_domain_sysctl();
  5609. mutex_unlock(&sched_domains_mutex);
  5610. }
  5611. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5612. static void reinit_sched_domains(void)
  5613. {
  5614. get_online_cpus();
  5615. /* Destroy domains first to force the rebuild */
  5616. partition_sched_domains(0, NULL, NULL);
  5617. rebuild_sched_domains();
  5618. put_online_cpus();
  5619. }
  5620. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5621. {
  5622. unsigned int level = 0;
  5623. if (sscanf(buf, "%u", &level) != 1)
  5624. return -EINVAL;
  5625. /*
  5626. * level is always be positive so don't check for
  5627. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5628. * What happens on 0 or 1 byte write,
  5629. * need to check for count as well?
  5630. */
  5631. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5632. return -EINVAL;
  5633. if (smt)
  5634. sched_smt_power_savings = level;
  5635. else
  5636. sched_mc_power_savings = level;
  5637. reinit_sched_domains();
  5638. return count;
  5639. }
  5640. #ifdef CONFIG_SCHED_MC
  5641. static ssize_t sched_mc_power_savings_show(struct device *dev,
  5642. struct device_attribute *attr,
  5643. char *buf)
  5644. {
  5645. return sprintf(buf, "%u\n", sched_mc_power_savings);
  5646. }
  5647. static ssize_t sched_mc_power_savings_store(struct device *dev,
  5648. struct device_attribute *attr,
  5649. const char *buf, size_t count)
  5650. {
  5651. return sched_power_savings_store(buf, count, 0);
  5652. }
  5653. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  5654. sched_mc_power_savings_show,
  5655. sched_mc_power_savings_store);
  5656. #endif
  5657. #ifdef CONFIG_SCHED_SMT
  5658. static ssize_t sched_smt_power_savings_show(struct device *dev,
  5659. struct device_attribute *attr,
  5660. char *buf)
  5661. {
  5662. return sprintf(buf, "%u\n", sched_smt_power_savings);
  5663. }
  5664. static ssize_t sched_smt_power_savings_store(struct device *dev,
  5665. struct device_attribute *attr,
  5666. const char *buf, size_t count)
  5667. {
  5668. return sched_power_savings_store(buf, count, 1);
  5669. }
  5670. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  5671. sched_smt_power_savings_show,
  5672. sched_smt_power_savings_store);
  5673. #endif
  5674. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  5675. {
  5676. int err = 0;
  5677. #ifdef CONFIG_SCHED_SMT
  5678. if (smt_capable())
  5679. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  5680. #endif
  5681. #ifdef CONFIG_SCHED_MC
  5682. if (!err && mc_capable())
  5683. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  5684. #endif
  5685. return err;
  5686. }
  5687. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5688. /*
  5689. * Update cpusets according to cpu_active mask. If cpusets are
  5690. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5691. * around partition_sched_domains().
  5692. */
  5693. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5694. void *hcpu)
  5695. {
  5696. switch (action & ~CPU_TASKS_FROZEN) {
  5697. case CPU_ONLINE:
  5698. case CPU_DOWN_FAILED:
  5699. cpuset_update_active_cpus();
  5700. return NOTIFY_OK;
  5701. default:
  5702. return NOTIFY_DONE;
  5703. }
  5704. }
  5705. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5706. void *hcpu)
  5707. {
  5708. switch (action & ~CPU_TASKS_FROZEN) {
  5709. case CPU_DOWN_PREPARE:
  5710. cpuset_update_active_cpus();
  5711. return NOTIFY_OK;
  5712. default:
  5713. return NOTIFY_DONE;
  5714. }
  5715. }
  5716. void __init sched_init_smp(void)
  5717. {
  5718. cpumask_var_t non_isolated_cpus;
  5719. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5720. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5721. get_online_cpus();
  5722. mutex_lock(&sched_domains_mutex);
  5723. init_sched_domains(cpu_active_mask);
  5724. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5725. if (cpumask_empty(non_isolated_cpus))
  5726. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5727. mutex_unlock(&sched_domains_mutex);
  5728. put_online_cpus();
  5729. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5730. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5731. /* RT runtime code needs to handle some hotplug events */
  5732. hotcpu_notifier(update_runtime, 0);
  5733. init_hrtick();
  5734. /* Move init over to a non-isolated CPU */
  5735. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5736. BUG();
  5737. sched_init_granularity();
  5738. free_cpumask_var(non_isolated_cpus);
  5739. init_sched_rt_class();
  5740. }
  5741. #else
  5742. void __init sched_init_smp(void)
  5743. {
  5744. sched_init_granularity();
  5745. }
  5746. #endif /* CONFIG_SMP */
  5747. const_debug unsigned int sysctl_timer_migration = 1;
  5748. int in_sched_functions(unsigned long addr)
  5749. {
  5750. return in_lock_functions(addr) ||
  5751. (addr >= (unsigned long)__sched_text_start
  5752. && addr < (unsigned long)__sched_text_end);
  5753. }
  5754. #ifdef CONFIG_CGROUP_SCHED
  5755. struct task_group root_task_group;
  5756. #endif
  5757. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5758. void __init sched_init(void)
  5759. {
  5760. int i, j;
  5761. unsigned long alloc_size = 0, ptr;
  5762. #ifdef CONFIG_FAIR_GROUP_SCHED
  5763. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5764. #endif
  5765. #ifdef CONFIG_RT_GROUP_SCHED
  5766. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5767. #endif
  5768. #ifdef CONFIG_CPUMASK_OFFSTACK
  5769. alloc_size += num_possible_cpus() * cpumask_size();
  5770. #endif
  5771. if (alloc_size) {
  5772. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5773. #ifdef CONFIG_FAIR_GROUP_SCHED
  5774. root_task_group.se = (struct sched_entity **)ptr;
  5775. ptr += nr_cpu_ids * sizeof(void **);
  5776. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5777. ptr += nr_cpu_ids * sizeof(void **);
  5778. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5779. #ifdef CONFIG_RT_GROUP_SCHED
  5780. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5781. ptr += nr_cpu_ids * sizeof(void **);
  5782. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5783. ptr += nr_cpu_ids * sizeof(void **);
  5784. #endif /* CONFIG_RT_GROUP_SCHED */
  5785. #ifdef CONFIG_CPUMASK_OFFSTACK
  5786. for_each_possible_cpu(i) {
  5787. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5788. ptr += cpumask_size();
  5789. }
  5790. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5791. }
  5792. #ifdef CONFIG_SMP
  5793. init_defrootdomain();
  5794. #endif
  5795. init_rt_bandwidth(&def_rt_bandwidth,
  5796. global_rt_period(), global_rt_runtime());
  5797. #ifdef CONFIG_RT_GROUP_SCHED
  5798. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5799. global_rt_period(), global_rt_runtime());
  5800. #endif /* CONFIG_RT_GROUP_SCHED */
  5801. #ifdef CONFIG_CGROUP_SCHED
  5802. list_add(&root_task_group.list, &task_groups);
  5803. INIT_LIST_HEAD(&root_task_group.children);
  5804. INIT_LIST_HEAD(&root_task_group.siblings);
  5805. autogroup_init(&init_task);
  5806. #endif /* CONFIG_CGROUP_SCHED */
  5807. #ifdef CONFIG_CGROUP_CPUACCT
  5808. root_cpuacct.cpustat = &kernel_cpustat;
  5809. root_cpuacct.cpuusage = alloc_percpu(u64);
  5810. /* Too early, not expected to fail */
  5811. BUG_ON(!root_cpuacct.cpuusage);
  5812. #endif
  5813. for_each_possible_cpu(i) {
  5814. struct rq *rq;
  5815. rq = cpu_rq(i);
  5816. raw_spin_lock_init(&rq->lock);
  5817. rq->nr_running = 0;
  5818. rq->calc_load_active = 0;
  5819. rq->calc_load_update = jiffies + LOAD_FREQ;
  5820. init_cfs_rq(&rq->cfs);
  5821. init_rt_rq(&rq->rt, rq);
  5822. #ifdef CONFIG_FAIR_GROUP_SCHED
  5823. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5824. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5825. /*
  5826. * How much cpu bandwidth does root_task_group get?
  5827. *
  5828. * In case of task-groups formed thr' the cgroup filesystem, it
  5829. * gets 100% of the cpu resources in the system. This overall
  5830. * system cpu resource is divided among the tasks of
  5831. * root_task_group and its child task-groups in a fair manner,
  5832. * based on each entity's (task or task-group's) weight
  5833. * (se->load.weight).
  5834. *
  5835. * In other words, if root_task_group has 10 tasks of weight
  5836. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5837. * then A0's share of the cpu resource is:
  5838. *
  5839. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5840. *
  5841. * We achieve this by letting root_task_group's tasks sit
  5842. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5843. */
  5844. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5845. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5846. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5847. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5848. #ifdef CONFIG_RT_GROUP_SCHED
  5849. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5850. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5851. #endif
  5852. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5853. rq->cpu_load[j] = 0;
  5854. rq->last_load_update_tick = jiffies;
  5855. #ifdef CONFIG_SMP
  5856. rq->sd = NULL;
  5857. rq->rd = NULL;
  5858. rq->cpu_power = SCHED_POWER_SCALE;
  5859. rq->post_schedule = 0;
  5860. rq->active_balance = 0;
  5861. rq->next_balance = jiffies;
  5862. rq->push_cpu = 0;
  5863. rq->cpu = i;
  5864. rq->online = 0;
  5865. rq->idle_stamp = 0;
  5866. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5867. rq_attach_root(rq, &def_root_domain);
  5868. #ifdef CONFIG_NO_HZ
  5869. rq->nohz_flags = 0;
  5870. #endif
  5871. #endif
  5872. init_rq_hrtick(rq);
  5873. atomic_set(&rq->nr_iowait, 0);
  5874. }
  5875. set_load_weight(&init_task);
  5876. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5877. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5878. #endif
  5879. #ifdef CONFIG_RT_MUTEXES
  5880. plist_head_init(&init_task.pi_waiters);
  5881. #endif
  5882. /*
  5883. * The boot idle thread does lazy MMU switching as well:
  5884. */
  5885. atomic_inc(&init_mm.mm_count);
  5886. enter_lazy_tlb(&init_mm, current);
  5887. /*
  5888. * Make us the idle thread. Technically, schedule() should not be
  5889. * called from this thread, however somewhere below it might be,
  5890. * but because we are the idle thread, we just pick up running again
  5891. * when this runqueue becomes "idle".
  5892. */
  5893. init_idle(current, smp_processor_id());
  5894. calc_load_update = jiffies + LOAD_FREQ;
  5895. /*
  5896. * During early bootup we pretend to be a normal task:
  5897. */
  5898. current->sched_class = &fair_sched_class;
  5899. #ifdef CONFIG_SMP
  5900. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5901. /* May be allocated at isolcpus cmdline parse time */
  5902. if (cpu_isolated_map == NULL)
  5903. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5904. #endif
  5905. init_sched_fair_class();
  5906. scheduler_running = 1;
  5907. }
  5908. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5909. static inline int preempt_count_equals(int preempt_offset)
  5910. {
  5911. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5912. return (nested == preempt_offset);
  5913. }
  5914. void __might_sleep(const char *file, int line, int preempt_offset)
  5915. {
  5916. static unsigned long prev_jiffy; /* ratelimiting */
  5917. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5918. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5919. system_state != SYSTEM_RUNNING || oops_in_progress)
  5920. return;
  5921. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5922. return;
  5923. prev_jiffy = jiffies;
  5924. printk(KERN_ERR
  5925. "BUG: sleeping function called from invalid context at %s:%d\n",
  5926. file, line);
  5927. printk(KERN_ERR
  5928. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5929. in_atomic(), irqs_disabled(),
  5930. current->pid, current->comm);
  5931. debug_show_held_locks(current);
  5932. if (irqs_disabled())
  5933. print_irqtrace_events(current);
  5934. dump_stack();
  5935. }
  5936. EXPORT_SYMBOL(__might_sleep);
  5937. #endif
  5938. #ifdef CONFIG_MAGIC_SYSRQ
  5939. static void normalize_task(struct rq *rq, struct task_struct *p)
  5940. {
  5941. const struct sched_class *prev_class = p->sched_class;
  5942. int old_prio = p->prio;
  5943. int on_rq;
  5944. on_rq = p->on_rq;
  5945. if (on_rq)
  5946. dequeue_task(rq, p, 0);
  5947. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5948. if (on_rq) {
  5949. enqueue_task(rq, p, 0);
  5950. resched_task(rq->curr);
  5951. }
  5952. check_class_changed(rq, p, prev_class, old_prio);
  5953. }
  5954. void normalize_rt_tasks(void)
  5955. {
  5956. struct task_struct *g, *p;
  5957. unsigned long flags;
  5958. struct rq *rq;
  5959. read_lock_irqsave(&tasklist_lock, flags);
  5960. do_each_thread(g, p) {
  5961. /*
  5962. * Only normalize user tasks:
  5963. */
  5964. if (!p->mm)
  5965. continue;
  5966. p->se.exec_start = 0;
  5967. #ifdef CONFIG_SCHEDSTATS
  5968. p->se.statistics.wait_start = 0;
  5969. p->se.statistics.sleep_start = 0;
  5970. p->se.statistics.block_start = 0;
  5971. #endif
  5972. if (!rt_task(p)) {
  5973. /*
  5974. * Renice negative nice level userspace
  5975. * tasks back to 0:
  5976. */
  5977. if (TASK_NICE(p) < 0 && p->mm)
  5978. set_user_nice(p, 0);
  5979. continue;
  5980. }
  5981. raw_spin_lock(&p->pi_lock);
  5982. rq = __task_rq_lock(p);
  5983. normalize_task(rq, p);
  5984. __task_rq_unlock(rq);
  5985. raw_spin_unlock(&p->pi_lock);
  5986. } while_each_thread(g, p);
  5987. read_unlock_irqrestore(&tasklist_lock, flags);
  5988. }
  5989. #endif /* CONFIG_MAGIC_SYSRQ */
  5990. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5991. /*
  5992. * These functions are only useful for the IA64 MCA handling, or kdb.
  5993. *
  5994. * They can only be called when the whole system has been
  5995. * stopped - every CPU needs to be quiescent, and no scheduling
  5996. * activity can take place. Using them for anything else would
  5997. * be a serious bug, and as a result, they aren't even visible
  5998. * under any other configuration.
  5999. */
  6000. /**
  6001. * curr_task - return the current task for a given cpu.
  6002. * @cpu: the processor in question.
  6003. *
  6004. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6005. */
  6006. struct task_struct *curr_task(int cpu)
  6007. {
  6008. return cpu_curr(cpu);
  6009. }
  6010. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6011. #ifdef CONFIG_IA64
  6012. /**
  6013. * set_curr_task - set the current task for a given cpu.
  6014. * @cpu: the processor in question.
  6015. * @p: the task pointer to set.
  6016. *
  6017. * Description: This function must only be used when non-maskable interrupts
  6018. * are serviced on a separate stack. It allows the architecture to switch the
  6019. * notion of the current task on a cpu in a non-blocking manner. This function
  6020. * must be called with all CPU's synchronized, and interrupts disabled, the
  6021. * and caller must save the original value of the current task (see
  6022. * curr_task() above) and restore that value before reenabling interrupts and
  6023. * re-starting the system.
  6024. *
  6025. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6026. */
  6027. void set_curr_task(int cpu, struct task_struct *p)
  6028. {
  6029. cpu_curr(cpu) = p;
  6030. }
  6031. #endif
  6032. #ifdef CONFIG_CGROUP_SCHED
  6033. /* task_group_lock serializes the addition/removal of task groups */
  6034. static DEFINE_SPINLOCK(task_group_lock);
  6035. static void free_sched_group(struct task_group *tg)
  6036. {
  6037. free_fair_sched_group(tg);
  6038. free_rt_sched_group(tg);
  6039. autogroup_free(tg);
  6040. kfree(tg);
  6041. }
  6042. /* allocate runqueue etc for a new task group */
  6043. struct task_group *sched_create_group(struct task_group *parent)
  6044. {
  6045. struct task_group *tg;
  6046. unsigned long flags;
  6047. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6048. if (!tg)
  6049. return ERR_PTR(-ENOMEM);
  6050. if (!alloc_fair_sched_group(tg, parent))
  6051. goto err;
  6052. if (!alloc_rt_sched_group(tg, parent))
  6053. goto err;
  6054. spin_lock_irqsave(&task_group_lock, flags);
  6055. list_add_rcu(&tg->list, &task_groups);
  6056. WARN_ON(!parent); /* root should already exist */
  6057. tg->parent = parent;
  6058. INIT_LIST_HEAD(&tg->children);
  6059. list_add_rcu(&tg->siblings, &parent->children);
  6060. spin_unlock_irqrestore(&task_group_lock, flags);
  6061. return tg;
  6062. err:
  6063. free_sched_group(tg);
  6064. return ERR_PTR(-ENOMEM);
  6065. }
  6066. /* rcu callback to free various structures associated with a task group */
  6067. static void free_sched_group_rcu(struct rcu_head *rhp)
  6068. {
  6069. /* now it should be safe to free those cfs_rqs */
  6070. free_sched_group(container_of(rhp, struct task_group, rcu));
  6071. }
  6072. /* Destroy runqueue etc associated with a task group */
  6073. void sched_destroy_group(struct task_group *tg)
  6074. {
  6075. unsigned long flags;
  6076. int i;
  6077. /* end participation in shares distribution */
  6078. for_each_possible_cpu(i)
  6079. unregister_fair_sched_group(tg, i);
  6080. spin_lock_irqsave(&task_group_lock, flags);
  6081. list_del_rcu(&tg->list);
  6082. list_del_rcu(&tg->siblings);
  6083. spin_unlock_irqrestore(&task_group_lock, flags);
  6084. /* wait for possible concurrent references to cfs_rqs complete */
  6085. call_rcu(&tg->rcu, free_sched_group_rcu);
  6086. }
  6087. /* change task's runqueue when it moves between groups.
  6088. * The caller of this function should have put the task in its new group
  6089. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6090. * reflect its new group.
  6091. */
  6092. void sched_move_task(struct task_struct *tsk)
  6093. {
  6094. int on_rq, running;
  6095. unsigned long flags;
  6096. struct rq *rq;
  6097. rq = task_rq_lock(tsk, &flags);
  6098. running = task_current(rq, tsk);
  6099. on_rq = tsk->on_rq;
  6100. if (on_rq)
  6101. dequeue_task(rq, tsk, 0);
  6102. if (unlikely(running))
  6103. tsk->sched_class->put_prev_task(rq, tsk);
  6104. #ifdef CONFIG_FAIR_GROUP_SCHED
  6105. if (tsk->sched_class->task_move_group)
  6106. tsk->sched_class->task_move_group(tsk, on_rq);
  6107. else
  6108. #endif
  6109. set_task_rq(tsk, task_cpu(tsk));
  6110. if (unlikely(running))
  6111. tsk->sched_class->set_curr_task(rq);
  6112. if (on_rq)
  6113. enqueue_task(rq, tsk, 0);
  6114. task_rq_unlock(rq, tsk, &flags);
  6115. }
  6116. #endif /* CONFIG_CGROUP_SCHED */
  6117. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6118. static unsigned long to_ratio(u64 period, u64 runtime)
  6119. {
  6120. if (runtime == RUNTIME_INF)
  6121. return 1ULL << 20;
  6122. return div64_u64(runtime << 20, period);
  6123. }
  6124. #endif
  6125. #ifdef CONFIG_RT_GROUP_SCHED
  6126. /*
  6127. * Ensure that the real time constraints are schedulable.
  6128. */
  6129. static DEFINE_MUTEX(rt_constraints_mutex);
  6130. /* Must be called with tasklist_lock held */
  6131. static inline int tg_has_rt_tasks(struct task_group *tg)
  6132. {
  6133. struct task_struct *g, *p;
  6134. do_each_thread(g, p) {
  6135. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6136. return 1;
  6137. } while_each_thread(g, p);
  6138. return 0;
  6139. }
  6140. struct rt_schedulable_data {
  6141. struct task_group *tg;
  6142. u64 rt_period;
  6143. u64 rt_runtime;
  6144. };
  6145. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6146. {
  6147. struct rt_schedulable_data *d = data;
  6148. struct task_group *child;
  6149. unsigned long total, sum = 0;
  6150. u64 period, runtime;
  6151. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6152. runtime = tg->rt_bandwidth.rt_runtime;
  6153. if (tg == d->tg) {
  6154. period = d->rt_period;
  6155. runtime = d->rt_runtime;
  6156. }
  6157. /*
  6158. * Cannot have more runtime than the period.
  6159. */
  6160. if (runtime > period && runtime != RUNTIME_INF)
  6161. return -EINVAL;
  6162. /*
  6163. * Ensure we don't starve existing RT tasks.
  6164. */
  6165. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6166. return -EBUSY;
  6167. total = to_ratio(period, runtime);
  6168. /*
  6169. * Nobody can have more than the global setting allows.
  6170. */
  6171. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6172. return -EINVAL;
  6173. /*
  6174. * The sum of our children's runtime should not exceed our own.
  6175. */
  6176. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6177. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6178. runtime = child->rt_bandwidth.rt_runtime;
  6179. if (child == d->tg) {
  6180. period = d->rt_period;
  6181. runtime = d->rt_runtime;
  6182. }
  6183. sum += to_ratio(period, runtime);
  6184. }
  6185. if (sum > total)
  6186. return -EINVAL;
  6187. return 0;
  6188. }
  6189. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6190. {
  6191. int ret;
  6192. struct rt_schedulable_data data = {
  6193. .tg = tg,
  6194. .rt_period = period,
  6195. .rt_runtime = runtime,
  6196. };
  6197. rcu_read_lock();
  6198. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6199. rcu_read_unlock();
  6200. return ret;
  6201. }
  6202. static int tg_set_rt_bandwidth(struct task_group *tg,
  6203. u64 rt_period, u64 rt_runtime)
  6204. {
  6205. int i, err = 0;
  6206. mutex_lock(&rt_constraints_mutex);
  6207. read_lock(&tasklist_lock);
  6208. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6209. if (err)
  6210. goto unlock;
  6211. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6212. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6213. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6214. for_each_possible_cpu(i) {
  6215. struct rt_rq *rt_rq = tg->rt_rq[i];
  6216. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6217. rt_rq->rt_runtime = rt_runtime;
  6218. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6219. }
  6220. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6221. unlock:
  6222. read_unlock(&tasklist_lock);
  6223. mutex_unlock(&rt_constraints_mutex);
  6224. return err;
  6225. }
  6226. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6227. {
  6228. u64 rt_runtime, rt_period;
  6229. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6230. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6231. if (rt_runtime_us < 0)
  6232. rt_runtime = RUNTIME_INF;
  6233. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6234. }
  6235. long sched_group_rt_runtime(struct task_group *tg)
  6236. {
  6237. u64 rt_runtime_us;
  6238. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6239. return -1;
  6240. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6241. do_div(rt_runtime_us, NSEC_PER_USEC);
  6242. return rt_runtime_us;
  6243. }
  6244. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6245. {
  6246. u64 rt_runtime, rt_period;
  6247. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6248. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6249. if (rt_period == 0)
  6250. return -EINVAL;
  6251. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6252. }
  6253. long sched_group_rt_period(struct task_group *tg)
  6254. {
  6255. u64 rt_period_us;
  6256. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6257. do_div(rt_period_us, NSEC_PER_USEC);
  6258. return rt_period_us;
  6259. }
  6260. static int sched_rt_global_constraints(void)
  6261. {
  6262. u64 runtime, period;
  6263. int ret = 0;
  6264. if (sysctl_sched_rt_period <= 0)
  6265. return -EINVAL;
  6266. runtime = global_rt_runtime();
  6267. period = global_rt_period();
  6268. /*
  6269. * Sanity check on the sysctl variables.
  6270. */
  6271. if (runtime > period && runtime != RUNTIME_INF)
  6272. return -EINVAL;
  6273. mutex_lock(&rt_constraints_mutex);
  6274. read_lock(&tasklist_lock);
  6275. ret = __rt_schedulable(NULL, 0, 0);
  6276. read_unlock(&tasklist_lock);
  6277. mutex_unlock(&rt_constraints_mutex);
  6278. return ret;
  6279. }
  6280. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6281. {
  6282. /* Don't accept realtime tasks when there is no way for them to run */
  6283. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6284. return 0;
  6285. return 1;
  6286. }
  6287. #else /* !CONFIG_RT_GROUP_SCHED */
  6288. static int sched_rt_global_constraints(void)
  6289. {
  6290. unsigned long flags;
  6291. int i;
  6292. if (sysctl_sched_rt_period <= 0)
  6293. return -EINVAL;
  6294. /*
  6295. * There's always some RT tasks in the root group
  6296. * -- migration, kstopmachine etc..
  6297. */
  6298. if (sysctl_sched_rt_runtime == 0)
  6299. return -EBUSY;
  6300. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6301. for_each_possible_cpu(i) {
  6302. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6303. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6304. rt_rq->rt_runtime = global_rt_runtime();
  6305. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6306. }
  6307. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6308. return 0;
  6309. }
  6310. #endif /* CONFIG_RT_GROUP_SCHED */
  6311. int sched_rt_handler(struct ctl_table *table, int write,
  6312. void __user *buffer, size_t *lenp,
  6313. loff_t *ppos)
  6314. {
  6315. int ret;
  6316. int old_period, old_runtime;
  6317. static DEFINE_MUTEX(mutex);
  6318. mutex_lock(&mutex);
  6319. old_period = sysctl_sched_rt_period;
  6320. old_runtime = sysctl_sched_rt_runtime;
  6321. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6322. if (!ret && write) {
  6323. ret = sched_rt_global_constraints();
  6324. if (ret) {
  6325. sysctl_sched_rt_period = old_period;
  6326. sysctl_sched_rt_runtime = old_runtime;
  6327. } else {
  6328. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6329. def_rt_bandwidth.rt_period =
  6330. ns_to_ktime(global_rt_period());
  6331. }
  6332. }
  6333. mutex_unlock(&mutex);
  6334. return ret;
  6335. }
  6336. #ifdef CONFIG_CGROUP_SCHED
  6337. /* return corresponding task_group object of a cgroup */
  6338. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6339. {
  6340. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6341. struct task_group, css);
  6342. }
  6343. static struct cgroup_subsys_state *
  6344. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6345. {
  6346. struct task_group *tg, *parent;
  6347. if (!cgrp->parent) {
  6348. /* This is early initialization for the top cgroup */
  6349. return &root_task_group.css;
  6350. }
  6351. parent = cgroup_tg(cgrp->parent);
  6352. tg = sched_create_group(parent);
  6353. if (IS_ERR(tg))
  6354. return ERR_PTR(-ENOMEM);
  6355. return &tg->css;
  6356. }
  6357. static void
  6358. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6359. {
  6360. struct task_group *tg = cgroup_tg(cgrp);
  6361. sched_destroy_group(tg);
  6362. }
  6363. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6364. struct cgroup_taskset *tset)
  6365. {
  6366. struct task_struct *task;
  6367. cgroup_taskset_for_each(task, cgrp, tset) {
  6368. #ifdef CONFIG_RT_GROUP_SCHED
  6369. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6370. return -EINVAL;
  6371. #else
  6372. /* We don't support RT-tasks being in separate groups */
  6373. if (task->sched_class != &fair_sched_class)
  6374. return -EINVAL;
  6375. #endif
  6376. }
  6377. return 0;
  6378. }
  6379. static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6380. struct cgroup_taskset *tset)
  6381. {
  6382. struct task_struct *task;
  6383. cgroup_taskset_for_each(task, cgrp, tset)
  6384. sched_move_task(task);
  6385. }
  6386. static void
  6387. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6388. struct cgroup *old_cgrp, struct task_struct *task)
  6389. {
  6390. /*
  6391. * cgroup_exit() is called in the copy_process() failure path.
  6392. * Ignore this case since the task hasn't ran yet, this avoids
  6393. * trying to poke a half freed task state from generic code.
  6394. */
  6395. if (!(task->flags & PF_EXITING))
  6396. return;
  6397. sched_move_task(task);
  6398. }
  6399. #ifdef CONFIG_FAIR_GROUP_SCHED
  6400. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6401. u64 shareval)
  6402. {
  6403. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6404. }
  6405. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6406. {
  6407. struct task_group *tg = cgroup_tg(cgrp);
  6408. return (u64) scale_load_down(tg->shares);
  6409. }
  6410. #ifdef CONFIG_CFS_BANDWIDTH
  6411. static DEFINE_MUTEX(cfs_constraints_mutex);
  6412. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6413. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6414. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6415. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6416. {
  6417. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6418. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6419. if (tg == &root_task_group)
  6420. return -EINVAL;
  6421. /*
  6422. * Ensure we have at some amount of bandwidth every period. This is
  6423. * to prevent reaching a state of large arrears when throttled via
  6424. * entity_tick() resulting in prolonged exit starvation.
  6425. */
  6426. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6427. return -EINVAL;
  6428. /*
  6429. * Likewise, bound things on the otherside by preventing insane quota
  6430. * periods. This also allows us to normalize in computing quota
  6431. * feasibility.
  6432. */
  6433. if (period > max_cfs_quota_period)
  6434. return -EINVAL;
  6435. mutex_lock(&cfs_constraints_mutex);
  6436. ret = __cfs_schedulable(tg, period, quota);
  6437. if (ret)
  6438. goto out_unlock;
  6439. runtime_enabled = quota != RUNTIME_INF;
  6440. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6441. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6442. raw_spin_lock_irq(&cfs_b->lock);
  6443. cfs_b->period = ns_to_ktime(period);
  6444. cfs_b->quota = quota;
  6445. __refill_cfs_bandwidth_runtime(cfs_b);
  6446. /* restart the period timer (if active) to handle new period expiry */
  6447. if (runtime_enabled && cfs_b->timer_active) {
  6448. /* force a reprogram */
  6449. cfs_b->timer_active = 0;
  6450. __start_cfs_bandwidth(cfs_b);
  6451. }
  6452. raw_spin_unlock_irq(&cfs_b->lock);
  6453. for_each_possible_cpu(i) {
  6454. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6455. struct rq *rq = cfs_rq->rq;
  6456. raw_spin_lock_irq(&rq->lock);
  6457. cfs_rq->runtime_enabled = runtime_enabled;
  6458. cfs_rq->runtime_remaining = 0;
  6459. if (cfs_rq->throttled)
  6460. unthrottle_cfs_rq(cfs_rq);
  6461. raw_spin_unlock_irq(&rq->lock);
  6462. }
  6463. out_unlock:
  6464. mutex_unlock(&cfs_constraints_mutex);
  6465. return ret;
  6466. }
  6467. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6468. {
  6469. u64 quota, period;
  6470. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6471. if (cfs_quota_us < 0)
  6472. quota = RUNTIME_INF;
  6473. else
  6474. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6475. return tg_set_cfs_bandwidth(tg, period, quota);
  6476. }
  6477. long tg_get_cfs_quota(struct task_group *tg)
  6478. {
  6479. u64 quota_us;
  6480. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6481. return -1;
  6482. quota_us = tg->cfs_bandwidth.quota;
  6483. do_div(quota_us, NSEC_PER_USEC);
  6484. return quota_us;
  6485. }
  6486. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6487. {
  6488. u64 quota, period;
  6489. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6490. quota = tg->cfs_bandwidth.quota;
  6491. return tg_set_cfs_bandwidth(tg, period, quota);
  6492. }
  6493. long tg_get_cfs_period(struct task_group *tg)
  6494. {
  6495. u64 cfs_period_us;
  6496. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6497. do_div(cfs_period_us, NSEC_PER_USEC);
  6498. return cfs_period_us;
  6499. }
  6500. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6501. {
  6502. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6503. }
  6504. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6505. s64 cfs_quota_us)
  6506. {
  6507. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6508. }
  6509. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6510. {
  6511. return tg_get_cfs_period(cgroup_tg(cgrp));
  6512. }
  6513. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6514. u64 cfs_period_us)
  6515. {
  6516. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6517. }
  6518. struct cfs_schedulable_data {
  6519. struct task_group *tg;
  6520. u64 period, quota;
  6521. };
  6522. /*
  6523. * normalize group quota/period to be quota/max_period
  6524. * note: units are usecs
  6525. */
  6526. static u64 normalize_cfs_quota(struct task_group *tg,
  6527. struct cfs_schedulable_data *d)
  6528. {
  6529. u64 quota, period;
  6530. if (tg == d->tg) {
  6531. period = d->period;
  6532. quota = d->quota;
  6533. } else {
  6534. period = tg_get_cfs_period(tg);
  6535. quota = tg_get_cfs_quota(tg);
  6536. }
  6537. /* note: these should typically be equivalent */
  6538. if (quota == RUNTIME_INF || quota == -1)
  6539. return RUNTIME_INF;
  6540. return to_ratio(period, quota);
  6541. }
  6542. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6543. {
  6544. struct cfs_schedulable_data *d = data;
  6545. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6546. s64 quota = 0, parent_quota = -1;
  6547. if (!tg->parent) {
  6548. quota = RUNTIME_INF;
  6549. } else {
  6550. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6551. quota = normalize_cfs_quota(tg, d);
  6552. parent_quota = parent_b->hierarchal_quota;
  6553. /*
  6554. * ensure max(child_quota) <= parent_quota, inherit when no
  6555. * limit is set
  6556. */
  6557. if (quota == RUNTIME_INF)
  6558. quota = parent_quota;
  6559. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6560. return -EINVAL;
  6561. }
  6562. cfs_b->hierarchal_quota = quota;
  6563. return 0;
  6564. }
  6565. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6566. {
  6567. int ret;
  6568. struct cfs_schedulable_data data = {
  6569. .tg = tg,
  6570. .period = period,
  6571. .quota = quota,
  6572. };
  6573. if (quota != RUNTIME_INF) {
  6574. do_div(data.period, NSEC_PER_USEC);
  6575. do_div(data.quota, NSEC_PER_USEC);
  6576. }
  6577. rcu_read_lock();
  6578. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6579. rcu_read_unlock();
  6580. return ret;
  6581. }
  6582. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6583. struct cgroup_map_cb *cb)
  6584. {
  6585. struct task_group *tg = cgroup_tg(cgrp);
  6586. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6587. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6588. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6589. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6590. return 0;
  6591. }
  6592. #endif /* CONFIG_CFS_BANDWIDTH */
  6593. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6594. #ifdef CONFIG_RT_GROUP_SCHED
  6595. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6596. s64 val)
  6597. {
  6598. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6599. }
  6600. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6601. {
  6602. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6603. }
  6604. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6605. u64 rt_period_us)
  6606. {
  6607. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6608. }
  6609. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6610. {
  6611. return sched_group_rt_period(cgroup_tg(cgrp));
  6612. }
  6613. #endif /* CONFIG_RT_GROUP_SCHED */
  6614. static struct cftype cpu_files[] = {
  6615. #ifdef CONFIG_FAIR_GROUP_SCHED
  6616. {
  6617. .name = "shares",
  6618. .read_u64 = cpu_shares_read_u64,
  6619. .write_u64 = cpu_shares_write_u64,
  6620. },
  6621. #endif
  6622. #ifdef CONFIG_CFS_BANDWIDTH
  6623. {
  6624. .name = "cfs_quota_us",
  6625. .read_s64 = cpu_cfs_quota_read_s64,
  6626. .write_s64 = cpu_cfs_quota_write_s64,
  6627. },
  6628. {
  6629. .name = "cfs_period_us",
  6630. .read_u64 = cpu_cfs_period_read_u64,
  6631. .write_u64 = cpu_cfs_period_write_u64,
  6632. },
  6633. {
  6634. .name = "stat",
  6635. .read_map = cpu_stats_show,
  6636. },
  6637. #endif
  6638. #ifdef CONFIG_RT_GROUP_SCHED
  6639. {
  6640. .name = "rt_runtime_us",
  6641. .read_s64 = cpu_rt_runtime_read,
  6642. .write_s64 = cpu_rt_runtime_write,
  6643. },
  6644. {
  6645. .name = "rt_period_us",
  6646. .read_u64 = cpu_rt_period_read_uint,
  6647. .write_u64 = cpu_rt_period_write_uint,
  6648. },
  6649. #endif
  6650. };
  6651. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6652. {
  6653. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6654. }
  6655. struct cgroup_subsys cpu_cgroup_subsys = {
  6656. .name = "cpu",
  6657. .create = cpu_cgroup_create,
  6658. .destroy = cpu_cgroup_destroy,
  6659. .can_attach = cpu_cgroup_can_attach,
  6660. .attach = cpu_cgroup_attach,
  6661. .exit = cpu_cgroup_exit,
  6662. .populate = cpu_cgroup_populate,
  6663. .subsys_id = cpu_cgroup_subsys_id,
  6664. .early_init = 1,
  6665. };
  6666. #endif /* CONFIG_CGROUP_SCHED */
  6667. #ifdef CONFIG_CGROUP_CPUACCT
  6668. /*
  6669. * CPU accounting code for task groups.
  6670. *
  6671. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6672. * (balbir@in.ibm.com).
  6673. */
  6674. /* create a new cpu accounting group */
  6675. static struct cgroup_subsys_state *cpuacct_create(
  6676. struct cgroup_subsys *ss, struct cgroup *cgrp)
  6677. {
  6678. struct cpuacct *ca;
  6679. if (!cgrp->parent)
  6680. return &root_cpuacct.css;
  6681. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6682. if (!ca)
  6683. goto out;
  6684. ca->cpuusage = alloc_percpu(u64);
  6685. if (!ca->cpuusage)
  6686. goto out_free_ca;
  6687. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6688. if (!ca->cpustat)
  6689. goto out_free_cpuusage;
  6690. return &ca->css;
  6691. out_free_cpuusage:
  6692. free_percpu(ca->cpuusage);
  6693. out_free_ca:
  6694. kfree(ca);
  6695. out:
  6696. return ERR_PTR(-ENOMEM);
  6697. }
  6698. /* destroy an existing cpu accounting group */
  6699. static void
  6700. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6701. {
  6702. struct cpuacct *ca = cgroup_ca(cgrp);
  6703. free_percpu(ca->cpustat);
  6704. free_percpu(ca->cpuusage);
  6705. kfree(ca);
  6706. }
  6707. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6708. {
  6709. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6710. u64 data;
  6711. #ifndef CONFIG_64BIT
  6712. /*
  6713. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6714. */
  6715. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6716. data = *cpuusage;
  6717. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6718. #else
  6719. data = *cpuusage;
  6720. #endif
  6721. return data;
  6722. }
  6723. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6724. {
  6725. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6726. #ifndef CONFIG_64BIT
  6727. /*
  6728. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6729. */
  6730. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6731. *cpuusage = val;
  6732. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6733. #else
  6734. *cpuusage = val;
  6735. #endif
  6736. }
  6737. /* return total cpu usage (in nanoseconds) of a group */
  6738. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6739. {
  6740. struct cpuacct *ca = cgroup_ca(cgrp);
  6741. u64 totalcpuusage = 0;
  6742. int i;
  6743. for_each_present_cpu(i)
  6744. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6745. return totalcpuusage;
  6746. }
  6747. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6748. u64 reset)
  6749. {
  6750. struct cpuacct *ca = cgroup_ca(cgrp);
  6751. int err = 0;
  6752. int i;
  6753. if (reset) {
  6754. err = -EINVAL;
  6755. goto out;
  6756. }
  6757. for_each_present_cpu(i)
  6758. cpuacct_cpuusage_write(ca, i, 0);
  6759. out:
  6760. return err;
  6761. }
  6762. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6763. struct seq_file *m)
  6764. {
  6765. struct cpuacct *ca = cgroup_ca(cgroup);
  6766. u64 percpu;
  6767. int i;
  6768. for_each_present_cpu(i) {
  6769. percpu = cpuacct_cpuusage_read(ca, i);
  6770. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6771. }
  6772. seq_printf(m, "\n");
  6773. return 0;
  6774. }
  6775. static const char *cpuacct_stat_desc[] = {
  6776. [CPUACCT_STAT_USER] = "user",
  6777. [CPUACCT_STAT_SYSTEM] = "system",
  6778. };
  6779. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6780. struct cgroup_map_cb *cb)
  6781. {
  6782. struct cpuacct *ca = cgroup_ca(cgrp);
  6783. int cpu;
  6784. s64 val = 0;
  6785. for_each_online_cpu(cpu) {
  6786. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6787. val += kcpustat->cpustat[CPUTIME_USER];
  6788. val += kcpustat->cpustat[CPUTIME_NICE];
  6789. }
  6790. val = cputime64_to_clock_t(val);
  6791. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6792. val = 0;
  6793. for_each_online_cpu(cpu) {
  6794. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6795. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6796. val += kcpustat->cpustat[CPUTIME_IRQ];
  6797. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6798. }
  6799. val = cputime64_to_clock_t(val);
  6800. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6801. return 0;
  6802. }
  6803. static struct cftype files[] = {
  6804. {
  6805. .name = "usage",
  6806. .read_u64 = cpuusage_read,
  6807. .write_u64 = cpuusage_write,
  6808. },
  6809. {
  6810. .name = "usage_percpu",
  6811. .read_seq_string = cpuacct_percpu_seq_read,
  6812. },
  6813. {
  6814. .name = "stat",
  6815. .read_map = cpuacct_stats_show,
  6816. },
  6817. };
  6818. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6819. {
  6820. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6821. }
  6822. /*
  6823. * charge this task's execution time to its accounting group.
  6824. *
  6825. * called with rq->lock held.
  6826. */
  6827. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6828. {
  6829. struct cpuacct *ca;
  6830. int cpu;
  6831. if (unlikely(!cpuacct_subsys.active))
  6832. return;
  6833. cpu = task_cpu(tsk);
  6834. rcu_read_lock();
  6835. ca = task_ca(tsk);
  6836. for (; ca; ca = parent_ca(ca)) {
  6837. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6838. *cpuusage += cputime;
  6839. }
  6840. rcu_read_unlock();
  6841. }
  6842. struct cgroup_subsys cpuacct_subsys = {
  6843. .name = "cpuacct",
  6844. .create = cpuacct_create,
  6845. .destroy = cpuacct_destroy,
  6846. .populate = cpuacct_populate,
  6847. .subsys_id = cpuacct_subsys_id,
  6848. };
  6849. #endif /* CONFIG_CGROUP_CPUACCT */