sh-sci.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464
  1. /*
  2. * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
  3. *
  4. * Copyright (C) 2002 - 2011 Paul Mundt
  5. * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
  6. *
  7. * based off of the old drivers/char/sh-sci.c by:
  8. *
  9. * Copyright (C) 1999, 2000 Niibe Yutaka
  10. * Copyright (C) 2000 Sugioka Toshinobu
  11. * Modified to support multiple serial ports. Stuart Menefy (May 2000).
  12. * Modified to support SecureEdge. David McCullough (2002)
  13. * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  14. * Removed SH7300 support (Jul 2007).
  15. *
  16. * This file is subject to the terms and conditions of the GNU General Public
  17. * License. See the file "COPYING" in the main directory of this archive
  18. * for more details.
  19. */
  20. #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21. #define SUPPORT_SYSRQ
  22. #endif
  23. #undef DEBUG
  24. #include <linux/module.h>
  25. #include <linux/errno.h>
  26. #include <linux/timer.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/tty.h>
  29. #include <linux/tty_flip.h>
  30. #include <linux/serial.h>
  31. #include <linux/major.h>
  32. #include <linux/string.h>
  33. #include <linux/sysrq.h>
  34. #include <linux/ioport.h>
  35. #include <linux/mm.h>
  36. #include <linux/init.h>
  37. #include <linux/delay.h>
  38. #include <linux/console.h>
  39. #include <linux/platform_device.h>
  40. #include <linux/serial_sci.h>
  41. #include <linux/notifier.h>
  42. #include <linux/pm_runtime.h>
  43. #include <linux/cpufreq.h>
  44. #include <linux/clk.h>
  45. #include <linux/ctype.h>
  46. #include <linux/err.h>
  47. #include <linux/dmaengine.h>
  48. #include <linux/dma-mapping.h>
  49. #include <linux/scatterlist.h>
  50. #include <linux/slab.h>
  51. #include <linux/gpio.h>
  52. #ifdef CONFIG_SUPERH
  53. #include <asm/sh_bios.h>
  54. #endif
  55. #include "sh-sci.h"
  56. struct sci_port {
  57. struct uart_port port;
  58. /* Platform configuration */
  59. struct plat_sci_port *cfg;
  60. /* Break timer */
  61. struct timer_list break_timer;
  62. int break_flag;
  63. /* Interface clock */
  64. struct clk *iclk;
  65. /* Function clock */
  66. struct clk *fclk;
  67. char *irqstr[SCIx_NR_IRQS];
  68. char *gpiostr[SCIx_NR_FNS];
  69. struct dma_chan *chan_tx;
  70. struct dma_chan *chan_rx;
  71. #ifdef CONFIG_SERIAL_SH_SCI_DMA
  72. struct dma_async_tx_descriptor *desc_tx;
  73. struct dma_async_tx_descriptor *desc_rx[2];
  74. dma_cookie_t cookie_tx;
  75. dma_cookie_t cookie_rx[2];
  76. dma_cookie_t active_rx;
  77. struct scatterlist sg_tx;
  78. unsigned int sg_len_tx;
  79. struct scatterlist sg_rx[2];
  80. size_t buf_len_rx;
  81. struct sh_dmae_slave param_tx;
  82. struct sh_dmae_slave param_rx;
  83. struct work_struct work_tx;
  84. struct work_struct work_rx;
  85. struct timer_list rx_timer;
  86. unsigned int rx_timeout;
  87. #endif
  88. struct notifier_block freq_transition;
  89. #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
  90. unsigned short saved_smr;
  91. unsigned short saved_fcr;
  92. unsigned char saved_brr;
  93. #endif
  94. };
  95. /* Function prototypes */
  96. static void sci_start_tx(struct uart_port *port);
  97. static void sci_stop_tx(struct uart_port *port);
  98. static void sci_start_rx(struct uart_port *port);
  99. #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
  100. static struct sci_port sci_ports[SCI_NPORTS];
  101. static struct uart_driver sci_uart_driver;
  102. static inline struct sci_port *
  103. to_sci_port(struct uart_port *uart)
  104. {
  105. return container_of(uart, struct sci_port, port);
  106. }
  107. struct plat_sci_reg {
  108. u8 offset, size;
  109. };
  110. /* Helper for invalidating specific entries of an inherited map. */
  111. #define sci_reg_invalid { .offset = 0, .size = 0 }
  112. static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
  113. [SCIx_PROBE_REGTYPE] = {
  114. [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
  115. },
  116. /*
  117. * Common SCI definitions, dependent on the port's regshift
  118. * value.
  119. */
  120. [SCIx_SCI_REGTYPE] = {
  121. [SCSMR] = { 0x00, 8 },
  122. [SCBRR] = { 0x01, 8 },
  123. [SCSCR] = { 0x02, 8 },
  124. [SCxTDR] = { 0x03, 8 },
  125. [SCxSR] = { 0x04, 8 },
  126. [SCxRDR] = { 0x05, 8 },
  127. [SCFCR] = sci_reg_invalid,
  128. [SCFDR] = sci_reg_invalid,
  129. [SCTFDR] = sci_reg_invalid,
  130. [SCRFDR] = sci_reg_invalid,
  131. [SCSPTR] = sci_reg_invalid,
  132. [SCLSR] = sci_reg_invalid,
  133. },
  134. /*
  135. * Common definitions for legacy IrDA ports, dependent on
  136. * regshift value.
  137. */
  138. [SCIx_IRDA_REGTYPE] = {
  139. [SCSMR] = { 0x00, 8 },
  140. [SCBRR] = { 0x01, 8 },
  141. [SCSCR] = { 0x02, 8 },
  142. [SCxTDR] = { 0x03, 8 },
  143. [SCxSR] = { 0x04, 8 },
  144. [SCxRDR] = { 0x05, 8 },
  145. [SCFCR] = { 0x06, 8 },
  146. [SCFDR] = { 0x07, 16 },
  147. [SCTFDR] = sci_reg_invalid,
  148. [SCRFDR] = sci_reg_invalid,
  149. [SCSPTR] = sci_reg_invalid,
  150. [SCLSR] = sci_reg_invalid,
  151. },
  152. /*
  153. * Common SCIFA definitions.
  154. */
  155. [SCIx_SCIFA_REGTYPE] = {
  156. [SCSMR] = { 0x00, 16 },
  157. [SCBRR] = { 0x04, 8 },
  158. [SCSCR] = { 0x08, 16 },
  159. [SCxTDR] = { 0x20, 8 },
  160. [SCxSR] = { 0x14, 16 },
  161. [SCxRDR] = { 0x24, 8 },
  162. [SCFCR] = { 0x18, 16 },
  163. [SCFDR] = { 0x1c, 16 },
  164. [SCTFDR] = sci_reg_invalid,
  165. [SCRFDR] = sci_reg_invalid,
  166. [SCSPTR] = sci_reg_invalid,
  167. [SCLSR] = sci_reg_invalid,
  168. },
  169. /*
  170. * Common SCIFB definitions.
  171. */
  172. [SCIx_SCIFB_REGTYPE] = {
  173. [SCSMR] = { 0x00, 16 },
  174. [SCBRR] = { 0x04, 8 },
  175. [SCSCR] = { 0x08, 16 },
  176. [SCxTDR] = { 0x40, 8 },
  177. [SCxSR] = { 0x14, 16 },
  178. [SCxRDR] = { 0x60, 8 },
  179. [SCFCR] = { 0x18, 16 },
  180. [SCFDR] = { 0x1c, 16 },
  181. [SCTFDR] = sci_reg_invalid,
  182. [SCRFDR] = sci_reg_invalid,
  183. [SCSPTR] = sci_reg_invalid,
  184. [SCLSR] = sci_reg_invalid,
  185. },
  186. /*
  187. * Common SH-2(A) SCIF definitions for ports with FIFO data
  188. * count registers.
  189. */
  190. [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
  191. [SCSMR] = { 0x00, 16 },
  192. [SCBRR] = { 0x04, 8 },
  193. [SCSCR] = { 0x08, 16 },
  194. [SCxTDR] = { 0x0c, 8 },
  195. [SCxSR] = { 0x10, 16 },
  196. [SCxRDR] = { 0x14, 8 },
  197. [SCFCR] = { 0x18, 16 },
  198. [SCFDR] = { 0x1c, 16 },
  199. [SCTFDR] = sci_reg_invalid,
  200. [SCRFDR] = sci_reg_invalid,
  201. [SCSPTR] = { 0x20, 16 },
  202. [SCLSR] = { 0x24, 16 },
  203. },
  204. /*
  205. * Common SH-3 SCIF definitions.
  206. */
  207. [SCIx_SH3_SCIF_REGTYPE] = {
  208. [SCSMR] = { 0x00, 8 },
  209. [SCBRR] = { 0x02, 8 },
  210. [SCSCR] = { 0x04, 8 },
  211. [SCxTDR] = { 0x06, 8 },
  212. [SCxSR] = { 0x08, 16 },
  213. [SCxRDR] = { 0x0a, 8 },
  214. [SCFCR] = { 0x0c, 8 },
  215. [SCFDR] = { 0x0e, 16 },
  216. [SCTFDR] = sci_reg_invalid,
  217. [SCRFDR] = sci_reg_invalid,
  218. [SCSPTR] = sci_reg_invalid,
  219. [SCLSR] = sci_reg_invalid,
  220. },
  221. /*
  222. * Common SH-4(A) SCIF(B) definitions.
  223. */
  224. [SCIx_SH4_SCIF_REGTYPE] = {
  225. [SCSMR] = { 0x00, 16 },
  226. [SCBRR] = { 0x04, 8 },
  227. [SCSCR] = { 0x08, 16 },
  228. [SCxTDR] = { 0x0c, 8 },
  229. [SCxSR] = { 0x10, 16 },
  230. [SCxRDR] = { 0x14, 8 },
  231. [SCFCR] = { 0x18, 16 },
  232. [SCFDR] = { 0x1c, 16 },
  233. [SCTFDR] = sci_reg_invalid,
  234. [SCRFDR] = sci_reg_invalid,
  235. [SCSPTR] = { 0x20, 16 },
  236. [SCLSR] = { 0x24, 16 },
  237. },
  238. /*
  239. * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
  240. * register.
  241. */
  242. [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
  243. [SCSMR] = { 0x00, 16 },
  244. [SCBRR] = { 0x04, 8 },
  245. [SCSCR] = { 0x08, 16 },
  246. [SCxTDR] = { 0x0c, 8 },
  247. [SCxSR] = { 0x10, 16 },
  248. [SCxRDR] = { 0x14, 8 },
  249. [SCFCR] = { 0x18, 16 },
  250. [SCFDR] = { 0x1c, 16 },
  251. [SCTFDR] = sci_reg_invalid,
  252. [SCRFDR] = sci_reg_invalid,
  253. [SCSPTR] = sci_reg_invalid,
  254. [SCLSR] = { 0x24, 16 },
  255. },
  256. /*
  257. * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
  258. * count registers.
  259. */
  260. [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
  261. [SCSMR] = { 0x00, 16 },
  262. [SCBRR] = { 0x04, 8 },
  263. [SCSCR] = { 0x08, 16 },
  264. [SCxTDR] = { 0x0c, 8 },
  265. [SCxSR] = { 0x10, 16 },
  266. [SCxRDR] = { 0x14, 8 },
  267. [SCFCR] = { 0x18, 16 },
  268. [SCFDR] = { 0x1c, 16 },
  269. [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
  270. [SCRFDR] = { 0x20, 16 },
  271. [SCSPTR] = { 0x24, 16 },
  272. [SCLSR] = { 0x28, 16 },
  273. },
  274. /*
  275. * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
  276. * registers.
  277. */
  278. [SCIx_SH7705_SCIF_REGTYPE] = {
  279. [SCSMR] = { 0x00, 16 },
  280. [SCBRR] = { 0x04, 8 },
  281. [SCSCR] = { 0x08, 16 },
  282. [SCxTDR] = { 0x20, 8 },
  283. [SCxSR] = { 0x14, 16 },
  284. [SCxRDR] = { 0x24, 8 },
  285. [SCFCR] = { 0x18, 16 },
  286. [SCFDR] = { 0x1c, 16 },
  287. [SCTFDR] = sci_reg_invalid,
  288. [SCRFDR] = sci_reg_invalid,
  289. [SCSPTR] = sci_reg_invalid,
  290. [SCLSR] = sci_reg_invalid,
  291. },
  292. };
  293. #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
  294. /*
  295. * The "offset" here is rather misleading, in that it refers to an enum
  296. * value relative to the port mapping rather than the fixed offset
  297. * itself, which needs to be manually retrieved from the platform's
  298. * register map for the given port.
  299. */
  300. static unsigned int sci_serial_in(struct uart_port *p, int offset)
  301. {
  302. struct plat_sci_reg *reg = sci_getreg(p, offset);
  303. if (reg->size == 8)
  304. return ioread8(p->membase + (reg->offset << p->regshift));
  305. else if (reg->size == 16)
  306. return ioread16(p->membase + (reg->offset << p->regshift));
  307. else
  308. WARN(1, "Invalid register access\n");
  309. return 0;
  310. }
  311. static void sci_serial_out(struct uart_port *p, int offset, int value)
  312. {
  313. struct plat_sci_reg *reg = sci_getreg(p, offset);
  314. if (reg->size == 8)
  315. iowrite8(value, p->membase + (reg->offset << p->regshift));
  316. else if (reg->size == 16)
  317. iowrite16(value, p->membase + (reg->offset << p->regshift));
  318. else
  319. WARN(1, "Invalid register access\n");
  320. }
  321. #define sci_in(up, offset) (up->serial_in(up, offset))
  322. #define sci_out(up, offset, value) (up->serial_out(up, offset, value))
  323. static int sci_probe_regmap(struct plat_sci_port *cfg)
  324. {
  325. switch (cfg->type) {
  326. case PORT_SCI:
  327. cfg->regtype = SCIx_SCI_REGTYPE;
  328. break;
  329. case PORT_IRDA:
  330. cfg->regtype = SCIx_IRDA_REGTYPE;
  331. break;
  332. case PORT_SCIFA:
  333. cfg->regtype = SCIx_SCIFA_REGTYPE;
  334. break;
  335. case PORT_SCIFB:
  336. cfg->regtype = SCIx_SCIFB_REGTYPE;
  337. break;
  338. case PORT_SCIF:
  339. /*
  340. * The SH-4 is a bit of a misnomer here, although that's
  341. * where this particular port layout originated. This
  342. * configuration (or some slight variation thereof)
  343. * remains the dominant model for all SCIFs.
  344. */
  345. cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
  346. break;
  347. default:
  348. printk(KERN_ERR "Can't probe register map for given port\n");
  349. return -EINVAL;
  350. }
  351. return 0;
  352. }
  353. static void sci_port_enable(struct sci_port *sci_port)
  354. {
  355. if (!sci_port->port.dev)
  356. return;
  357. pm_runtime_get_sync(sci_port->port.dev);
  358. clk_enable(sci_port->iclk);
  359. sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
  360. clk_enable(sci_port->fclk);
  361. }
  362. static void sci_port_disable(struct sci_port *sci_port)
  363. {
  364. if (!sci_port->port.dev)
  365. return;
  366. clk_disable(sci_port->fclk);
  367. clk_disable(sci_port->iclk);
  368. pm_runtime_put_sync(sci_port->port.dev);
  369. }
  370. #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
  371. #ifdef CONFIG_CONSOLE_POLL
  372. static int sci_poll_get_char(struct uart_port *port)
  373. {
  374. unsigned short status;
  375. int c;
  376. do {
  377. status = sci_in(port, SCxSR);
  378. if (status & SCxSR_ERRORS(port)) {
  379. sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
  380. continue;
  381. }
  382. break;
  383. } while (1);
  384. if (!(status & SCxSR_RDxF(port)))
  385. return NO_POLL_CHAR;
  386. c = sci_in(port, SCxRDR);
  387. /* Dummy read */
  388. sci_in(port, SCxSR);
  389. sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
  390. return c;
  391. }
  392. #endif
  393. static void sci_poll_put_char(struct uart_port *port, unsigned char c)
  394. {
  395. unsigned short status;
  396. do {
  397. status = sci_in(port, SCxSR);
  398. } while (!(status & SCxSR_TDxE(port)));
  399. sci_out(port, SCxTDR, c);
  400. sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
  401. }
  402. #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
  403. static void sci_init_pins(struct uart_port *port, unsigned int cflag)
  404. {
  405. struct sci_port *s = to_sci_port(port);
  406. struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
  407. /*
  408. * Use port-specific handler if provided.
  409. */
  410. if (s->cfg->ops && s->cfg->ops->init_pins) {
  411. s->cfg->ops->init_pins(port, cflag);
  412. return;
  413. }
  414. /*
  415. * For the generic path SCSPTR is necessary. Bail out if that's
  416. * unavailable, too.
  417. */
  418. if (!reg->size)
  419. return;
  420. if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
  421. ((!(cflag & CRTSCTS)))) {
  422. unsigned short status;
  423. status = sci_in(port, SCSPTR);
  424. status &= ~SCSPTR_CTSIO;
  425. status |= SCSPTR_RTSIO;
  426. sci_out(port, SCSPTR, status); /* Set RTS = 1 */
  427. }
  428. }
  429. static int sci_txfill(struct uart_port *port)
  430. {
  431. struct plat_sci_reg *reg;
  432. reg = sci_getreg(port, SCTFDR);
  433. if (reg->size)
  434. return sci_in(port, SCTFDR) & 0xff;
  435. reg = sci_getreg(port, SCFDR);
  436. if (reg->size)
  437. return sci_in(port, SCFDR) >> 8;
  438. return !(sci_in(port, SCxSR) & SCI_TDRE);
  439. }
  440. static int sci_txroom(struct uart_port *port)
  441. {
  442. return port->fifosize - sci_txfill(port);
  443. }
  444. static int sci_rxfill(struct uart_port *port)
  445. {
  446. struct plat_sci_reg *reg;
  447. reg = sci_getreg(port, SCRFDR);
  448. if (reg->size)
  449. return sci_in(port, SCRFDR) & 0xff;
  450. reg = sci_getreg(port, SCFDR);
  451. if (reg->size)
  452. return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
  453. return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
  454. }
  455. /*
  456. * SCI helper for checking the state of the muxed port/RXD pins.
  457. */
  458. static inline int sci_rxd_in(struct uart_port *port)
  459. {
  460. struct sci_port *s = to_sci_port(port);
  461. if (s->cfg->port_reg <= 0)
  462. return 1;
  463. return !!__raw_readb(s->cfg->port_reg);
  464. }
  465. /* ********************************************************************** *
  466. * the interrupt related routines *
  467. * ********************************************************************** */
  468. static void sci_transmit_chars(struct uart_port *port)
  469. {
  470. struct circ_buf *xmit = &port->state->xmit;
  471. unsigned int stopped = uart_tx_stopped(port);
  472. unsigned short status;
  473. unsigned short ctrl;
  474. int count;
  475. status = sci_in(port, SCxSR);
  476. if (!(status & SCxSR_TDxE(port))) {
  477. ctrl = sci_in(port, SCSCR);
  478. if (uart_circ_empty(xmit))
  479. ctrl &= ~SCSCR_TIE;
  480. else
  481. ctrl |= SCSCR_TIE;
  482. sci_out(port, SCSCR, ctrl);
  483. return;
  484. }
  485. count = sci_txroom(port);
  486. do {
  487. unsigned char c;
  488. if (port->x_char) {
  489. c = port->x_char;
  490. port->x_char = 0;
  491. } else if (!uart_circ_empty(xmit) && !stopped) {
  492. c = xmit->buf[xmit->tail];
  493. xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
  494. } else {
  495. break;
  496. }
  497. sci_out(port, SCxTDR, c);
  498. port->icount.tx++;
  499. } while (--count > 0);
  500. sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
  501. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  502. uart_write_wakeup(port);
  503. if (uart_circ_empty(xmit)) {
  504. sci_stop_tx(port);
  505. } else {
  506. ctrl = sci_in(port, SCSCR);
  507. if (port->type != PORT_SCI) {
  508. sci_in(port, SCxSR); /* Dummy read */
  509. sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
  510. }
  511. ctrl |= SCSCR_TIE;
  512. sci_out(port, SCSCR, ctrl);
  513. }
  514. }
  515. /* On SH3, SCIF may read end-of-break as a space->mark char */
  516. #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
  517. static void sci_receive_chars(struct uart_port *port)
  518. {
  519. struct sci_port *sci_port = to_sci_port(port);
  520. struct tty_struct *tty = port->state->port.tty;
  521. int i, count, copied = 0;
  522. unsigned short status;
  523. unsigned char flag;
  524. status = sci_in(port, SCxSR);
  525. if (!(status & SCxSR_RDxF(port)))
  526. return;
  527. while (1) {
  528. /* Don't copy more bytes than there is room for in the buffer */
  529. count = tty_buffer_request_room(tty, sci_rxfill(port));
  530. /* If for any reason we can't copy more data, we're done! */
  531. if (count == 0)
  532. break;
  533. if (port->type == PORT_SCI) {
  534. char c = sci_in(port, SCxRDR);
  535. if (uart_handle_sysrq_char(port, c) ||
  536. sci_port->break_flag)
  537. count = 0;
  538. else
  539. tty_insert_flip_char(tty, c, TTY_NORMAL);
  540. } else {
  541. for (i = 0; i < count; i++) {
  542. char c = sci_in(port, SCxRDR);
  543. status = sci_in(port, SCxSR);
  544. #if defined(CONFIG_CPU_SH3)
  545. /* Skip "chars" during break */
  546. if (sci_port->break_flag) {
  547. if ((c == 0) &&
  548. (status & SCxSR_FER(port))) {
  549. count--; i--;
  550. continue;
  551. }
  552. /* Nonzero => end-of-break */
  553. dev_dbg(port->dev, "debounce<%02x>\n", c);
  554. sci_port->break_flag = 0;
  555. if (STEPFN(c)) {
  556. count--; i--;
  557. continue;
  558. }
  559. }
  560. #endif /* CONFIG_CPU_SH3 */
  561. if (uart_handle_sysrq_char(port, c)) {
  562. count--; i--;
  563. continue;
  564. }
  565. /* Store data and status */
  566. if (status & SCxSR_FER(port)) {
  567. flag = TTY_FRAME;
  568. port->icount.frame++;
  569. dev_notice(port->dev, "frame error\n");
  570. } else if (status & SCxSR_PER(port)) {
  571. flag = TTY_PARITY;
  572. port->icount.parity++;
  573. dev_notice(port->dev, "parity error\n");
  574. } else
  575. flag = TTY_NORMAL;
  576. tty_insert_flip_char(tty, c, flag);
  577. }
  578. }
  579. sci_in(port, SCxSR); /* dummy read */
  580. sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
  581. copied += count;
  582. port->icount.rx += count;
  583. }
  584. if (copied) {
  585. /* Tell the rest of the system the news. New characters! */
  586. tty_flip_buffer_push(tty);
  587. } else {
  588. sci_in(port, SCxSR); /* dummy read */
  589. sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
  590. }
  591. }
  592. #define SCI_BREAK_JIFFIES (HZ/20)
  593. /*
  594. * The sci generates interrupts during the break,
  595. * 1 per millisecond or so during the break period, for 9600 baud.
  596. * So dont bother disabling interrupts.
  597. * But dont want more than 1 break event.
  598. * Use a kernel timer to periodically poll the rx line until
  599. * the break is finished.
  600. */
  601. static inline void sci_schedule_break_timer(struct sci_port *port)
  602. {
  603. mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
  604. }
  605. /* Ensure that two consecutive samples find the break over. */
  606. static void sci_break_timer(unsigned long data)
  607. {
  608. struct sci_port *port = (struct sci_port *)data;
  609. sci_port_enable(port);
  610. if (sci_rxd_in(&port->port) == 0) {
  611. port->break_flag = 1;
  612. sci_schedule_break_timer(port);
  613. } else if (port->break_flag == 1) {
  614. /* break is over. */
  615. port->break_flag = 2;
  616. sci_schedule_break_timer(port);
  617. } else
  618. port->break_flag = 0;
  619. sci_port_disable(port);
  620. }
  621. static int sci_handle_errors(struct uart_port *port)
  622. {
  623. int copied = 0;
  624. unsigned short status = sci_in(port, SCxSR);
  625. struct tty_struct *tty = port->state->port.tty;
  626. struct sci_port *s = to_sci_port(port);
  627. /*
  628. * Handle overruns, if supported.
  629. */
  630. if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
  631. if (status & (1 << s->cfg->overrun_bit)) {
  632. port->icount.overrun++;
  633. /* overrun error */
  634. if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
  635. copied++;
  636. dev_notice(port->dev, "overrun error");
  637. }
  638. }
  639. if (status & SCxSR_FER(port)) {
  640. if (sci_rxd_in(port) == 0) {
  641. /* Notify of BREAK */
  642. struct sci_port *sci_port = to_sci_port(port);
  643. if (!sci_port->break_flag) {
  644. port->icount.brk++;
  645. sci_port->break_flag = 1;
  646. sci_schedule_break_timer(sci_port);
  647. /* Do sysrq handling. */
  648. if (uart_handle_break(port))
  649. return 0;
  650. dev_dbg(port->dev, "BREAK detected\n");
  651. if (tty_insert_flip_char(tty, 0, TTY_BREAK))
  652. copied++;
  653. }
  654. } else {
  655. /* frame error */
  656. port->icount.frame++;
  657. if (tty_insert_flip_char(tty, 0, TTY_FRAME))
  658. copied++;
  659. dev_notice(port->dev, "frame error\n");
  660. }
  661. }
  662. if (status & SCxSR_PER(port)) {
  663. /* parity error */
  664. port->icount.parity++;
  665. if (tty_insert_flip_char(tty, 0, TTY_PARITY))
  666. copied++;
  667. dev_notice(port->dev, "parity error");
  668. }
  669. if (copied)
  670. tty_flip_buffer_push(tty);
  671. return copied;
  672. }
  673. static int sci_handle_fifo_overrun(struct uart_port *port)
  674. {
  675. struct tty_struct *tty = port->state->port.tty;
  676. struct sci_port *s = to_sci_port(port);
  677. struct plat_sci_reg *reg;
  678. int copied = 0;
  679. reg = sci_getreg(port, SCLSR);
  680. if (!reg->size)
  681. return 0;
  682. if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
  683. sci_out(port, SCLSR, 0);
  684. port->icount.overrun++;
  685. tty_insert_flip_char(tty, 0, TTY_OVERRUN);
  686. tty_flip_buffer_push(tty);
  687. dev_notice(port->dev, "overrun error\n");
  688. copied++;
  689. }
  690. return copied;
  691. }
  692. static int sci_handle_breaks(struct uart_port *port)
  693. {
  694. int copied = 0;
  695. unsigned short status = sci_in(port, SCxSR);
  696. struct tty_struct *tty = port->state->port.tty;
  697. struct sci_port *s = to_sci_port(port);
  698. if (uart_handle_break(port))
  699. return 0;
  700. if (!s->break_flag && status & SCxSR_BRK(port)) {
  701. #if defined(CONFIG_CPU_SH3)
  702. /* Debounce break */
  703. s->break_flag = 1;
  704. #endif
  705. port->icount.brk++;
  706. /* Notify of BREAK */
  707. if (tty_insert_flip_char(tty, 0, TTY_BREAK))
  708. copied++;
  709. dev_dbg(port->dev, "BREAK detected\n");
  710. }
  711. if (copied)
  712. tty_flip_buffer_push(tty);
  713. copied += sci_handle_fifo_overrun(port);
  714. return copied;
  715. }
  716. static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
  717. {
  718. #ifdef CONFIG_SERIAL_SH_SCI_DMA
  719. struct uart_port *port = ptr;
  720. struct sci_port *s = to_sci_port(port);
  721. if (s->chan_rx) {
  722. u16 scr = sci_in(port, SCSCR);
  723. u16 ssr = sci_in(port, SCxSR);
  724. /* Disable future Rx interrupts */
  725. if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
  726. disable_irq_nosync(irq);
  727. scr |= 0x4000;
  728. } else {
  729. scr &= ~SCSCR_RIE;
  730. }
  731. sci_out(port, SCSCR, scr);
  732. /* Clear current interrupt */
  733. sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
  734. dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
  735. jiffies, s->rx_timeout);
  736. mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
  737. return IRQ_HANDLED;
  738. }
  739. #endif
  740. /* I think sci_receive_chars has to be called irrespective
  741. * of whether the I_IXOFF is set, otherwise, how is the interrupt
  742. * to be disabled?
  743. */
  744. sci_receive_chars(ptr);
  745. return IRQ_HANDLED;
  746. }
  747. static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
  748. {
  749. struct uart_port *port = ptr;
  750. unsigned long flags;
  751. spin_lock_irqsave(&port->lock, flags);
  752. sci_transmit_chars(port);
  753. spin_unlock_irqrestore(&port->lock, flags);
  754. return IRQ_HANDLED;
  755. }
  756. static irqreturn_t sci_er_interrupt(int irq, void *ptr)
  757. {
  758. struct uart_port *port = ptr;
  759. /* Handle errors */
  760. if (port->type == PORT_SCI) {
  761. if (sci_handle_errors(port)) {
  762. /* discard character in rx buffer */
  763. sci_in(port, SCxSR);
  764. sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
  765. }
  766. } else {
  767. sci_handle_fifo_overrun(port);
  768. sci_rx_interrupt(irq, ptr);
  769. }
  770. sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
  771. /* Kick the transmission */
  772. sci_tx_interrupt(irq, ptr);
  773. return IRQ_HANDLED;
  774. }
  775. static irqreturn_t sci_br_interrupt(int irq, void *ptr)
  776. {
  777. struct uart_port *port = ptr;
  778. /* Handle BREAKs */
  779. sci_handle_breaks(port);
  780. sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
  781. return IRQ_HANDLED;
  782. }
  783. static inline unsigned long port_rx_irq_mask(struct uart_port *port)
  784. {
  785. /*
  786. * Not all ports (such as SCIFA) will support REIE. Rather than
  787. * special-casing the port type, we check the port initialization
  788. * IRQ enable mask to see whether the IRQ is desired at all. If
  789. * it's unset, it's logically inferred that there's no point in
  790. * testing for it.
  791. */
  792. return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
  793. }
  794. static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
  795. {
  796. unsigned short ssr_status, scr_status, err_enabled;
  797. struct uart_port *port = ptr;
  798. struct sci_port *s = to_sci_port(port);
  799. irqreturn_t ret = IRQ_NONE;
  800. ssr_status = sci_in(port, SCxSR);
  801. scr_status = sci_in(port, SCSCR);
  802. err_enabled = scr_status & port_rx_irq_mask(port);
  803. /* Tx Interrupt */
  804. if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
  805. !s->chan_tx)
  806. ret = sci_tx_interrupt(irq, ptr);
  807. /*
  808. * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
  809. * DR flags
  810. */
  811. if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
  812. (scr_status & SCSCR_RIE))
  813. ret = sci_rx_interrupt(irq, ptr);
  814. /* Error Interrupt */
  815. if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
  816. ret = sci_er_interrupt(irq, ptr);
  817. /* Break Interrupt */
  818. if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
  819. ret = sci_br_interrupt(irq, ptr);
  820. return ret;
  821. }
  822. /*
  823. * Here we define a transition notifier so that we can update all of our
  824. * ports' baud rate when the peripheral clock changes.
  825. */
  826. static int sci_notifier(struct notifier_block *self,
  827. unsigned long phase, void *p)
  828. {
  829. struct sci_port *sci_port;
  830. unsigned long flags;
  831. sci_port = container_of(self, struct sci_port, freq_transition);
  832. if ((phase == CPUFREQ_POSTCHANGE) ||
  833. (phase == CPUFREQ_RESUMECHANGE)) {
  834. struct uart_port *port = &sci_port->port;
  835. spin_lock_irqsave(&port->lock, flags);
  836. port->uartclk = clk_get_rate(sci_port->iclk);
  837. spin_unlock_irqrestore(&port->lock, flags);
  838. }
  839. return NOTIFY_OK;
  840. }
  841. static struct sci_irq_desc {
  842. const char *desc;
  843. irq_handler_t handler;
  844. } sci_irq_desc[] = {
  845. /*
  846. * Split out handlers, the default case.
  847. */
  848. [SCIx_ERI_IRQ] = {
  849. .desc = "rx err",
  850. .handler = sci_er_interrupt,
  851. },
  852. [SCIx_RXI_IRQ] = {
  853. .desc = "rx full",
  854. .handler = sci_rx_interrupt,
  855. },
  856. [SCIx_TXI_IRQ] = {
  857. .desc = "tx empty",
  858. .handler = sci_tx_interrupt,
  859. },
  860. [SCIx_BRI_IRQ] = {
  861. .desc = "break",
  862. .handler = sci_br_interrupt,
  863. },
  864. /*
  865. * Special muxed handler.
  866. */
  867. [SCIx_MUX_IRQ] = {
  868. .desc = "mux",
  869. .handler = sci_mpxed_interrupt,
  870. },
  871. };
  872. static int sci_request_irq(struct sci_port *port)
  873. {
  874. struct uart_port *up = &port->port;
  875. int i, j, ret = 0;
  876. for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
  877. struct sci_irq_desc *desc;
  878. unsigned int irq;
  879. if (SCIx_IRQ_IS_MUXED(port)) {
  880. i = SCIx_MUX_IRQ;
  881. irq = up->irq;
  882. } else
  883. irq = port->cfg->irqs[i];
  884. desc = sci_irq_desc + i;
  885. port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
  886. dev_name(up->dev), desc->desc);
  887. if (!port->irqstr[j]) {
  888. dev_err(up->dev, "Failed to allocate %s IRQ string\n",
  889. desc->desc);
  890. goto out_nomem;
  891. }
  892. ret = request_irq(irq, desc->handler, up->irqflags,
  893. port->irqstr[j], port);
  894. if (unlikely(ret)) {
  895. dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
  896. goto out_noirq;
  897. }
  898. }
  899. return 0;
  900. out_noirq:
  901. while (--i >= 0)
  902. free_irq(port->cfg->irqs[i], port);
  903. out_nomem:
  904. while (--j >= 0)
  905. kfree(port->irqstr[j]);
  906. return ret;
  907. }
  908. static void sci_free_irq(struct sci_port *port)
  909. {
  910. int i;
  911. /*
  912. * Intentionally in reverse order so we iterate over the muxed
  913. * IRQ first.
  914. */
  915. for (i = 0; i < SCIx_NR_IRQS; i++) {
  916. free_irq(port->cfg->irqs[i], port);
  917. kfree(port->irqstr[i]);
  918. if (SCIx_IRQ_IS_MUXED(port)) {
  919. /* If there's only one IRQ, we're done. */
  920. return;
  921. }
  922. }
  923. }
  924. static const char *sci_gpio_names[SCIx_NR_FNS] = {
  925. "sck", "rxd", "txd", "cts", "rts",
  926. };
  927. static const char *sci_gpio_str(unsigned int index)
  928. {
  929. return sci_gpio_names[index];
  930. }
  931. static void __devinit sci_init_gpios(struct sci_port *port)
  932. {
  933. struct uart_port *up = &port->port;
  934. int i;
  935. if (!port->cfg)
  936. return;
  937. for (i = 0; i < SCIx_NR_FNS; i++) {
  938. const char *desc;
  939. int ret;
  940. if (!port->cfg->gpios[i])
  941. continue;
  942. desc = sci_gpio_str(i);
  943. port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
  944. dev_name(up->dev), desc);
  945. /*
  946. * If we've failed the allocation, we can still continue
  947. * on with a NULL string.
  948. */
  949. if (!port->gpiostr[i])
  950. dev_notice(up->dev, "%s string allocation failure\n",
  951. desc);
  952. ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
  953. if (unlikely(ret != 0)) {
  954. dev_notice(up->dev, "failed %s gpio request\n", desc);
  955. /*
  956. * If we can't get the GPIO for whatever reason,
  957. * no point in keeping the verbose string around.
  958. */
  959. kfree(port->gpiostr[i]);
  960. }
  961. }
  962. }
  963. static void sci_free_gpios(struct sci_port *port)
  964. {
  965. int i;
  966. for (i = 0; i < SCIx_NR_FNS; i++)
  967. if (port->cfg->gpios[i]) {
  968. gpio_free(port->cfg->gpios[i]);
  969. kfree(port->gpiostr[i]);
  970. }
  971. }
  972. static unsigned int sci_tx_empty(struct uart_port *port)
  973. {
  974. unsigned short status = sci_in(port, SCxSR);
  975. unsigned short in_tx_fifo = sci_txfill(port);
  976. return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
  977. }
  978. /*
  979. * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
  980. * CTS/RTS is supported in hardware by at least one port and controlled
  981. * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
  982. * handled via the ->init_pins() op, which is a bit of a one-way street,
  983. * lacking any ability to defer pin control -- this will later be
  984. * converted over to the GPIO framework).
  985. *
  986. * Other modes (such as loopback) are supported generically on certain
  987. * port types, but not others. For these it's sufficient to test for the
  988. * existence of the support register and simply ignore the port type.
  989. */
  990. static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
  991. {
  992. if (mctrl & TIOCM_LOOP) {
  993. struct plat_sci_reg *reg;
  994. /*
  995. * Standard loopback mode for SCFCR ports.
  996. */
  997. reg = sci_getreg(port, SCFCR);
  998. if (reg->size)
  999. sci_out(port, SCFCR, sci_in(port, SCFCR) | 1);
  1000. }
  1001. }
  1002. static unsigned int sci_get_mctrl(struct uart_port *port)
  1003. {
  1004. /*
  1005. * CTS/RTS is handled in hardware when supported, while nothing
  1006. * else is wired up. Keep it simple and simply assert DSR/CAR.
  1007. */
  1008. return TIOCM_DSR | TIOCM_CAR;
  1009. }
  1010. #ifdef CONFIG_SERIAL_SH_SCI_DMA
  1011. static void sci_dma_tx_complete(void *arg)
  1012. {
  1013. struct sci_port *s = arg;
  1014. struct uart_port *port = &s->port;
  1015. struct circ_buf *xmit = &port->state->xmit;
  1016. unsigned long flags;
  1017. dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
  1018. spin_lock_irqsave(&port->lock, flags);
  1019. xmit->tail += sg_dma_len(&s->sg_tx);
  1020. xmit->tail &= UART_XMIT_SIZE - 1;
  1021. port->icount.tx += sg_dma_len(&s->sg_tx);
  1022. async_tx_ack(s->desc_tx);
  1023. s->cookie_tx = -EINVAL;
  1024. s->desc_tx = NULL;
  1025. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  1026. uart_write_wakeup(port);
  1027. if (!uart_circ_empty(xmit)) {
  1028. schedule_work(&s->work_tx);
  1029. } else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
  1030. u16 ctrl = sci_in(port, SCSCR);
  1031. sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
  1032. }
  1033. spin_unlock_irqrestore(&port->lock, flags);
  1034. }
  1035. /* Locking: called with port lock held */
  1036. static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
  1037. size_t count)
  1038. {
  1039. struct uart_port *port = &s->port;
  1040. int i, active, room;
  1041. room = tty_buffer_request_room(tty, count);
  1042. if (s->active_rx == s->cookie_rx[0]) {
  1043. active = 0;
  1044. } else if (s->active_rx == s->cookie_rx[1]) {
  1045. active = 1;
  1046. } else {
  1047. dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
  1048. return 0;
  1049. }
  1050. if (room < count)
  1051. dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
  1052. count - room);
  1053. if (!room)
  1054. return room;
  1055. for (i = 0; i < room; i++)
  1056. tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
  1057. TTY_NORMAL);
  1058. port->icount.rx += room;
  1059. return room;
  1060. }
  1061. static void sci_dma_rx_complete(void *arg)
  1062. {
  1063. struct sci_port *s = arg;
  1064. struct uart_port *port = &s->port;
  1065. struct tty_struct *tty = port->state->port.tty;
  1066. unsigned long flags;
  1067. int count;
  1068. dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
  1069. spin_lock_irqsave(&port->lock, flags);
  1070. count = sci_dma_rx_push(s, tty, s->buf_len_rx);
  1071. mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
  1072. spin_unlock_irqrestore(&port->lock, flags);
  1073. if (count)
  1074. tty_flip_buffer_push(tty);
  1075. schedule_work(&s->work_rx);
  1076. }
  1077. static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
  1078. {
  1079. struct dma_chan *chan = s->chan_rx;
  1080. struct uart_port *port = &s->port;
  1081. s->chan_rx = NULL;
  1082. s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
  1083. dma_release_channel(chan);
  1084. if (sg_dma_address(&s->sg_rx[0]))
  1085. dma_free_coherent(port->dev, s->buf_len_rx * 2,
  1086. sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
  1087. if (enable_pio)
  1088. sci_start_rx(port);
  1089. }
  1090. static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
  1091. {
  1092. struct dma_chan *chan = s->chan_tx;
  1093. struct uart_port *port = &s->port;
  1094. s->chan_tx = NULL;
  1095. s->cookie_tx = -EINVAL;
  1096. dma_release_channel(chan);
  1097. if (enable_pio)
  1098. sci_start_tx(port);
  1099. }
  1100. static void sci_submit_rx(struct sci_port *s)
  1101. {
  1102. struct dma_chan *chan = s->chan_rx;
  1103. int i;
  1104. for (i = 0; i < 2; i++) {
  1105. struct scatterlist *sg = &s->sg_rx[i];
  1106. struct dma_async_tx_descriptor *desc;
  1107. desc = chan->device->device_prep_slave_sg(chan,
  1108. sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
  1109. if (desc) {
  1110. s->desc_rx[i] = desc;
  1111. desc->callback = sci_dma_rx_complete;
  1112. desc->callback_param = s;
  1113. s->cookie_rx[i] = desc->tx_submit(desc);
  1114. }
  1115. if (!desc || s->cookie_rx[i] < 0) {
  1116. if (i) {
  1117. async_tx_ack(s->desc_rx[0]);
  1118. s->cookie_rx[0] = -EINVAL;
  1119. }
  1120. if (desc) {
  1121. async_tx_ack(desc);
  1122. s->cookie_rx[i] = -EINVAL;
  1123. }
  1124. dev_warn(s->port.dev,
  1125. "failed to re-start DMA, using PIO\n");
  1126. sci_rx_dma_release(s, true);
  1127. return;
  1128. }
  1129. dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
  1130. s->cookie_rx[i], i);
  1131. }
  1132. s->active_rx = s->cookie_rx[0];
  1133. dma_async_issue_pending(chan);
  1134. }
  1135. static void work_fn_rx(struct work_struct *work)
  1136. {
  1137. struct sci_port *s = container_of(work, struct sci_port, work_rx);
  1138. struct uart_port *port = &s->port;
  1139. struct dma_async_tx_descriptor *desc;
  1140. int new;
  1141. if (s->active_rx == s->cookie_rx[0]) {
  1142. new = 0;
  1143. } else if (s->active_rx == s->cookie_rx[1]) {
  1144. new = 1;
  1145. } else {
  1146. dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
  1147. return;
  1148. }
  1149. desc = s->desc_rx[new];
  1150. if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
  1151. DMA_SUCCESS) {
  1152. /* Handle incomplete DMA receive */
  1153. struct tty_struct *tty = port->state->port.tty;
  1154. struct dma_chan *chan = s->chan_rx;
  1155. struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
  1156. async_tx);
  1157. unsigned long flags;
  1158. int count;
  1159. chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
  1160. dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
  1161. sh_desc->partial, sh_desc->cookie);
  1162. spin_lock_irqsave(&port->lock, flags);
  1163. count = sci_dma_rx_push(s, tty, sh_desc->partial);
  1164. spin_unlock_irqrestore(&port->lock, flags);
  1165. if (count)
  1166. tty_flip_buffer_push(tty);
  1167. sci_submit_rx(s);
  1168. return;
  1169. }
  1170. s->cookie_rx[new] = desc->tx_submit(desc);
  1171. if (s->cookie_rx[new] < 0) {
  1172. dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
  1173. sci_rx_dma_release(s, true);
  1174. return;
  1175. }
  1176. s->active_rx = s->cookie_rx[!new];
  1177. dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
  1178. s->cookie_rx[new], new, s->active_rx);
  1179. }
  1180. static void work_fn_tx(struct work_struct *work)
  1181. {
  1182. struct sci_port *s = container_of(work, struct sci_port, work_tx);
  1183. struct dma_async_tx_descriptor *desc;
  1184. struct dma_chan *chan = s->chan_tx;
  1185. struct uart_port *port = &s->port;
  1186. struct circ_buf *xmit = &port->state->xmit;
  1187. struct scatterlist *sg = &s->sg_tx;
  1188. /*
  1189. * DMA is idle now.
  1190. * Port xmit buffer is already mapped, and it is one page... Just adjust
  1191. * offsets and lengths. Since it is a circular buffer, we have to
  1192. * transmit till the end, and then the rest. Take the port lock to get a
  1193. * consistent xmit buffer state.
  1194. */
  1195. spin_lock_irq(&port->lock);
  1196. sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
  1197. sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
  1198. sg->offset;
  1199. sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
  1200. CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
  1201. spin_unlock_irq(&port->lock);
  1202. BUG_ON(!sg_dma_len(sg));
  1203. desc = chan->device->device_prep_slave_sg(chan,
  1204. sg, s->sg_len_tx, DMA_MEM_TO_DEV,
  1205. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1206. if (!desc) {
  1207. /* switch to PIO */
  1208. sci_tx_dma_release(s, true);
  1209. return;
  1210. }
  1211. dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
  1212. spin_lock_irq(&port->lock);
  1213. s->desc_tx = desc;
  1214. desc->callback = sci_dma_tx_complete;
  1215. desc->callback_param = s;
  1216. spin_unlock_irq(&port->lock);
  1217. s->cookie_tx = desc->tx_submit(desc);
  1218. if (s->cookie_tx < 0) {
  1219. dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
  1220. /* switch to PIO */
  1221. sci_tx_dma_release(s, true);
  1222. return;
  1223. }
  1224. dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
  1225. xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
  1226. dma_async_issue_pending(chan);
  1227. }
  1228. #endif
  1229. static void sci_start_tx(struct uart_port *port)
  1230. {
  1231. struct sci_port *s = to_sci_port(port);
  1232. unsigned short ctrl;
  1233. #ifdef CONFIG_SERIAL_SH_SCI_DMA
  1234. if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
  1235. u16 new, scr = sci_in(port, SCSCR);
  1236. if (s->chan_tx)
  1237. new = scr | 0x8000;
  1238. else
  1239. new = scr & ~0x8000;
  1240. if (new != scr)
  1241. sci_out(port, SCSCR, new);
  1242. }
  1243. if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
  1244. s->cookie_tx < 0)
  1245. schedule_work(&s->work_tx);
  1246. #endif
  1247. if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
  1248. /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
  1249. ctrl = sci_in(port, SCSCR);
  1250. sci_out(port, SCSCR, ctrl | SCSCR_TIE);
  1251. }
  1252. }
  1253. static void sci_stop_tx(struct uart_port *port)
  1254. {
  1255. unsigned short ctrl;
  1256. /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
  1257. ctrl = sci_in(port, SCSCR);
  1258. if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
  1259. ctrl &= ~0x8000;
  1260. ctrl &= ~SCSCR_TIE;
  1261. sci_out(port, SCSCR, ctrl);
  1262. }
  1263. static void sci_start_rx(struct uart_port *port)
  1264. {
  1265. unsigned short ctrl;
  1266. ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
  1267. if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
  1268. ctrl &= ~0x4000;
  1269. sci_out(port, SCSCR, ctrl);
  1270. }
  1271. static void sci_stop_rx(struct uart_port *port)
  1272. {
  1273. unsigned short ctrl;
  1274. ctrl = sci_in(port, SCSCR);
  1275. if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
  1276. ctrl &= ~0x4000;
  1277. ctrl &= ~port_rx_irq_mask(port);
  1278. sci_out(port, SCSCR, ctrl);
  1279. }
  1280. static void sci_enable_ms(struct uart_port *port)
  1281. {
  1282. /*
  1283. * Not supported by hardware, always a nop.
  1284. */
  1285. }
  1286. static void sci_break_ctl(struct uart_port *port, int break_state)
  1287. {
  1288. /*
  1289. * Not supported by hardware. Most parts couple break and rx
  1290. * interrupts together, with break detection always enabled.
  1291. */
  1292. }
  1293. #ifdef CONFIG_SERIAL_SH_SCI_DMA
  1294. static bool filter(struct dma_chan *chan, void *slave)
  1295. {
  1296. struct sh_dmae_slave *param = slave;
  1297. dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
  1298. param->slave_id);
  1299. chan->private = param;
  1300. return true;
  1301. }
  1302. static void rx_timer_fn(unsigned long arg)
  1303. {
  1304. struct sci_port *s = (struct sci_port *)arg;
  1305. struct uart_port *port = &s->port;
  1306. u16 scr = sci_in(port, SCSCR);
  1307. if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
  1308. scr &= ~0x4000;
  1309. enable_irq(s->cfg->irqs[1]);
  1310. }
  1311. sci_out(port, SCSCR, scr | SCSCR_RIE);
  1312. dev_dbg(port->dev, "DMA Rx timed out\n");
  1313. schedule_work(&s->work_rx);
  1314. }
  1315. static void sci_request_dma(struct uart_port *port)
  1316. {
  1317. struct sci_port *s = to_sci_port(port);
  1318. struct sh_dmae_slave *param;
  1319. struct dma_chan *chan;
  1320. dma_cap_mask_t mask;
  1321. int nent;
  1322. dev_dbg(port->dev, "%s: port %d\n", __func__,
  1323. port->line);
  1324. if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
  1325. return;
  1326. dma_cap_zero(mask);
  1327. dma_cap_set(DMA_SLAVE, mask);
  1328. param = &s->param_tx;
  1329. /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
  1330. param->slave_id = s->cfg->dma_slave_tx;
  1331. s->cookie_tx = -EINVAL;
  1332. chan = dma_request_channel(mask, filter, param);
  1333. dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
  1334. if (chan) {
  1335. s->chan_tx = chan;
  1336. sg_init_table(&s->sg_tx, 1);
  1337. /* UART circular tx buffer is an aligned page. */
  1338. BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
  1339. sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
  1340. UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
  1341. nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
  1342. if (!nent)
  1343. sci_tx_dma_release(s, false);
  1344. else
  1345. dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
  1346. sg_dma_len(&s->sg_tx),
  1347. port->state->xmit.buf, sg_dma_address(&s->sg_tx));
  1348. s->sg_len_tx = nent;
  1349. INIT_WORK(&s->work_tx, work_fn_tx);
  1350. }
  1351. param = &s->param_rx;
  1352. /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
  1353. param->slave_id = s->cfg->dma_slave_rx;
  1354. chan = dma_request_channel(mask, filter, param);
  1355. dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
  1356. if (chan) {
  1357. dma_addr_t dma[2];
  1358. void *buf[2];
  1359. int i;
  1360. s->chan_rx = chan;
  1361. s->buf_len_rx = 2 * max(16, (int)port->fifosize);
  1362. buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
  1363. &dma[0], GFP_KERNEL);
  1364. if (!buf[0]) {
  1365. dev_warn(port->dev,
  1366. "failed to allocate dma buffer, using PIO\n");
  1367. sci_rx_dma_release(s, true);
  1368. return;
  1369. }
  1370. buf[1] = buf[0] + s->buf_len_rx;
  1371. dma[1] = dma[0] + s->buf_len_rx;
  1372. for (i = 0; i < 2; i++) {
  1373. struct scatterlist *sg = &s->sg_rx[i];
  1374. sg_init_table(sg, 1);
  1375. sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
  1376. (int)buf[i] & ~PAGE_MASK);
  1377. sg_dma_address(sg) = dma[i];
  1378. }
  1379. INIT_WORK(&s->work_rx, work_fn_rx);
  1380. setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
  1381. sci_submit_rx(s);
  1382. }
  1383. }
  1384. static void sci_free_dma(struct uart_port *port)
  1385. {
  1386. struct sci_port *s = to_sci_port(port);
  1387. if (s->chan_tx)
  1388. sci_tx_dma_release(s, false);
  1389. if (s->chan_rx)
  1390. sci_rx_dma_release(s, false);
  1391. }
  1392. #else
  1393. static inline void sci_request_dma(struct uart_port *port)
  1394. {
  1395. }
  1396. static inline void sci_free_dma(struct uart_port *port)
  1397. {
  1398. }
  1399. #endif
  1400. static int sci_startup(struct uart_port *port)
  1401. {
  1402. struct sci_port *s = to_sci_port(port);
  1403. int ret;
  1404. dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
  1405. pm_runtime_put_noidle(port->dev);
  1406. sci_port_enable(s);
  1407. ret = sci_request_irq(s);
  1408. if (unlikely(ret < 0))
  1409. return ret;
  1410. sci_request_dma(port);
  1411. sci_start_tx(port);
  1412. sci_start_rx(port);
  1413. return 0;
  1414. }
  1415. static void sci_shutdown(struct uart_port *port)
  1416. {
  1417. struct sci_port *s = to_sci_port(port);
  1418. dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
  1419. sci_stop_rx(port);
  1420. sci_stop_tx(port);
  1421. sci_free_dma(port);
  1422. sci_free_irq(s);
  1423. sci_port_disable(s);
  1424. pm_runtime_get_noresume(port->dev);
  1425. }
  1426. static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
  1427. unsigned long freq)
  1428. {
  1429. switch (algo_id) {
  1430. case SCBRR_ALGO_1:
  1431. return ((freq + 16 * bps) / (16 * bps) - 1);
  1432. case SCBRR_ALGO_2:
  1433. return ((freq + 16 * bps) / (32 * bps) - 1);
  1434. case SCBRR_ALGO_3:
  1435. return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
  1436. case SCBRR_ALGO_4:
  1437. return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
  1438. case SCBRR_ALGO_5:
  1439. return (((freq * 1000 / 32) / bps) - 1);
  1440. }
  1441. /* Warn, but use a safe default */
  1442. WARN_ON(1);
  1443. return ((freq + 16 * bps) / (32 * bps) - 1);
  1444. }
  1445. static void sci_reset(struct uart_port *port)
  1446. {
  1447. struct plat_sci_reg *reg;
  1448. unsigned int status;
  1449. do {
  1450. status = sci_in(port, SCxSR);
  1451. } while (!(status & SCxSR_TEND(port)));
  1452. sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
  1453. reg = sci_getreg(port, SCFCR);
  1454. if (reg->size)
  1455. sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
  1456. }
  1457. static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
  1458. struct ktermios *old)
  1459. {
  1460. struct sci_port *s = to_sci_port(port);
  1461. struct plat_sci_reg *reg;
  1462. unsigned int baud, smr_val, max_baud;
  1463. int t = -1;
  1464. /*
  1465. * earlyprintk comes here early on with port->uartclk set to zero.
  1466. * the clock framework is not up and running at this point so here
  1467. * we assume that 115200 is the maximum baud rate. please note that
  1468. * the baud rate is not programmed during earlyprintk - it is assumed
  1469. * that the previous boot loader has enabled required clocks and
  1470. * setup the baud rate generator hardware for us already.
  1471. */
  1472. max_baud = port->uartclk ? port->uartclk / 16 : 115200;
  1473. baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
  1474. if (likely(baud && port->uartclk))
  1475. t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
  1476. sci_port_enable(s);
  1477. sci_reset(port);
  1478. smr_val = sci_in(port, SCSMR) & 3;
  1479. if ((termios->c_cflag & CSIZE) == CS7)
  1480. smr_val |= 0x40;
  1481. if (termios->c_cflag & PARENB)
  1482. smr_val |= 0x20;
  1483. if (termios->c_cflag & PARODD)
  1484. smr_val |= 0x30;
  1485. if (termios->c_cflag & CSTOPB)
  1486. smr_val |= 0x08;
  1487. uart_update_timeout(port, termios->c_cflag, baud);
  1488. sci_out(port, SCSMR, smr_val);
  1489. dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
  1490. s->cfg->scscr);
  1491. if (t > 0) {
  1492. if (t >= 256) {
  1493. sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
  1494. t >>= 2;
  1495. } else
  1496. sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
  1497. sci_out(port, SCBRR, t);
  1498. udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
  1499. }
  1500. sci_init_pins(port, termios->c_cflag);
  1501. reg = sci_getreg(port, SCFCR);
  1502. if (reg->size) {
  1503. unsigned short ctrl = sci_in(port, SCFCR);
  1504. if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
  1505. if (termios->c_cflag & CRTSCTS)
  1506. ctrl |= SCFCR_MCE;
  1507. else
  1508. ctrl &= ~SCFCR_MCE;
  1509. }
  1510. /*
  1511. * As we've done a sci_reset() above, ensure we don't
  1512. * interfere with the FIFOs while toggling MCE. As the
  1513. * reset values could still be set, simply mask them out.
  1514. */
  1515. ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
  1516. sci_out(port, SCFCR, ctrl);
  1517. }
  1518. sci_out(port, SCSCR, s->cfg->scscr);
  1519. #ifdef CONFIG_SERIAL_SH_SCI_DMA
  1520. /*
  1521. * Calculate delay for 1.5 DMA buffers: see
  1522. * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
  1523. * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
  1524. * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
  1525. * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
  1526. * sizes), but it has been found out experimentally, that this is not
  1527. * enough: the driver too often needlessly runs on a DMA timeout. 20ms
  1528. * as a minimum seem to work perfectly.
  1529. */
  1530. if (s->chan_rx) {
  1531. s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
  1532. port->fifosize / 2;
  1533. dev_dbg(port->dev,
  1534. "DMA Rx t-out %ums, tty t-out %u jiffies\n",
  1535. s->rx_timeout * 1000 / HZ, port->timeout);
  1536. if (s->rx_timeout < msecs_to_jiffies(20))
  1537. s->rx_timeout = msecs_to_jiffies(20);
  1538. }
  1539. #endif
  1540. if ((termios->c_cflag & CREAD) != 0)
  1541. sci_start_rx(port);
  1542. sci_port_disable(s);
  1543. }
  1544. static const char *sci_type(struct uart_port *port)
  1545. {
  1546. switch (port->type) {
  1547. case PORT_IRDA:
  1548. return "irda";
  1549. case PORT_SCI:
  1550. return "sci";
  1551. case PORT_SCIF:
  1552. return "scif";
  1553. case PORT_SCIFA:
  1554. return "scifa";
  1555. case PORT_SCIFB:
  1556. return "scifb";
  1557. }
  1558. return NULL;
  1559. }
  1560. static inline unsigned long sci_port_size(struct uart_port *port)
  1561. {
  1562. /*
  1563. * Pick an arbitrary size that encapsulates all of the base
  1564. * registers by default. This can be optimized later, or derived
  1565. * from platform resource data at such a time that ports begin to
  1566. * behave more erratically.
  1567. */
  1568. return 64;
  1569. }
  1570. static int sci_remap_port(struct uart_port *port)
  1571. {
  1572. unsigned long size = sci_port_size(port);
  1573. /*
  1574. * Nothing to do if there's already an established membase.
  1575. */
  1576. if (port->membase)
  1577. return 0;
  1578. if (port->flags & UPF_IOREMAP) {
  1579. port->membase = ioremap_nocache(port->mapbase, size);
  1580. if (unlikely(!port->membase)) {
  1581. dev_err(port->dev, "can't remap port#%d\n", port->line);
  1582. return -ENXIO;
  1583. }
  1584. } else {
  1585. /*
  1586. * For the simple (and majority of) cases where we don't
  1587. * need to do any remapping, just cast the cookie
  1588. * directly.
  1589. */
  1590. port->membase = (void __iomem *)port->mapbase;
  1591. }
  1592. return 0;
  1593. }
  1594. static void sci_release_port(struct uart_port *port)
  1595. {
  1596. if (port->flags & UPF_IOREMAP) {
  1597. iounmap(port->membase);
  1598. port->membase = NULL;
  1599. }
  1600. release_mem_region(port->mapbase, sci_port_size(port));
  1601. }
  1602. static int sci_request_port(struct uart_port *port)
  1603. {
  1604. unsigned long size = sci_port_size(port);
  1605. struct resource *res;
  1606. int ret;
  1607. res = request_mem_region(port->mapbase, size, dev_name(port->dev));
  1608. if (unlikely(res == NULL))
  1609. return -EBUSY;
  1610. ret = sci_remap_port(port);
  1611. if (unlikely(ret != 0)) {
  1612. release_resource(res);
  1613. return ret;
  1614. }
  1615. return 0;
  1616. }
  1617. static void sci_config_port(struct uart_port *port, int flags)
  1618. {
  1619. if (flags & UART_CONFIG_TYPE) {
  1620. struct sci_port *sport = to_sci_port(port);
  1621. port->type = sport->cfg->type;
  1622. sci_request_port(port);
  1623. }
  1624. }
  1625. static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
  1626. {
  1627. struct sci_port *s = to_sci_port(port);
  1628. if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
  1629. return -EINVAL;
  1630. if (ser->baud_base < 2400)
  1631. /* No paper tape reader for Mitch.. */
  1632. return -EINVAL;
  1633. return 0;
  1634. }
  1635. static struct uart_ops sci_uart_ops = {
  1636. .tx_empty = sci_tx_empty,
  1637. .set_mctrl = sci_set_mctrl,
  1638. .get_mctrl = sci_get_mctrl,
  1639. .start_tx = sci_start_tx,
  1640. .stop_tx = sci_stop_tx,
  1641. .stop_rx = sci_stop_rx,
  1642. .enable_ms = sci_enable_ms,
  1643. .break_ctl = sci_break_ctl,
  1644. .startup = sci_startup,
  1645. .shutdown = sci_shutdown,
  1646. .set_termios = sci_set_termios,
  1647. .type = sci_type,
  1648. .release_port = sci_release_port,
  1649. .request_port = sci_request_port,
  1650. .config_port = sci_config_port,
  1651. .verify_port = sci_verify_port,
  1652. #ifdef CONFIG_CONSOLE_POLL
  1653. .poll_get_char = sci_poll_get_char,
  1654. .poll_put_char = sci_poll_put_char,
  1655. #endif
  1656. };
  1657. static int __devinit sci_init_single(struct platform_device *dev,
  1658. struct sci_port *sci_port,
  1659. unsigned int index,
  1660. struct plat_sci_port *p)
  1661. {
  1662. struct uart_port *port = &sci_port->port;
  1663. int ret;
  1664. sci_port->cfg = p;
  1665. port->ops = &sci_uart_ops;
  1666. port->iotype = UPIO_MEM;
  1667. port->line = index;
  1668. switch (p->type) {
  1669. case PORT_SCIFB:
  1670. port->fifosize = 256;
  1671. break;
  1672. case PORT_SCIFA:
  1673. port->fifosize = 64;
  1674. break;
  1675. case PORT_SCIF:
  1676. port->fifosize = 16;
  1677. break;
  1678. default:
  1679. port->fifosize = 1;
  1680. break;
  1681. }
  1682. if (p->regtype == SCIx_PROBE_REGTYPE) {
  1683. ret = sci_probe_regmap(p);
  1684. if (unlikely(ret))
  1685. return ret;
  1686. }
  1687. if (dev) {
  1688. sci_port->iclk = clk_get(&dev->dev, "sci_ick");
  1689. if (IS_ERR(sci_port->iclk)) {
  1690. sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
  1691. if (IS_ERR(sci_port->iclk)) {
  1692. dev_err(&dev->dev, "can't get iclk\n");
  1693. return PTR_ERR(sci_port->iclk);
  1694. }
  1695. }
  1696. /*
  1697. * The function clock is optional, ignore it if we can't
  1698. * find it.
  1699. */
  1700. sci_port->fclk = clk_get(&dev->dev, "sci_fck");
  1701. if (IS_ERR(sci_port->fclk))
  1702. sci_port->fclk = NULL;
  1703. port->dev = &dev->dev;
  1704. sci_init_gpios(sci_port);
  1705. pm_runtime_irq_safe(&dev->dev);
  1706. pm_runtime_get_noresume(&dev->dev);
  1707. pm_runtime_enable(&dev->dev);
  1708. }
  1709. sci_port->break_timer.data = (unsigned long)sci_port;
  1710. sci_port->break_timer.function = sci_break_timer;
  1711. init_timer(&sci_port->break_timer);
  1712. /*
  1713. * Establish some sensible defaults for the error detection.
  1714. */
  1715. if (!p->error_mask)
  1716. p->error_mask = (p->type == PORT_SCI) ?
  1717. SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
  1718. /*
  1719. * Establish sensible defaults for the overrun detection, unless
  1720. * the part has explicitly disabled support for it.
  1721. */
  1722. if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
  1723. if (p->type == PORT_SCI)
  1724. p->overrun_bit = 5;
  1725. else if (p->scbrr_algo_id == SCBRR_ALGO_4)
  1726. p->overrun_bit = 9;
  1727. else
  1728. p->overrun_bit = 0;
  1729. /*
  1730. * Make the error mask inclusive of overrun detection, if
  1731. * supported.
  1732. */
  1733. p->error_mask |= (1 << p->overrun_bit);
  1734. }
  1735. port->mapbase = p->mapbase;
  1736. port->type = p->type;
  1737. port->flags = p->flags;
  1738. port->regshift = p->regshift;
  1739. /*
  1740. * The UART port needs an IRQ value, so we peg this to the RX IRQ
  1741. * for the multi-IRQ ports, which is where we are primarily
  1742. * concerned with the shutdown path synchronization.
  1743. *
  1744. * For the muxed case there's nothing more to do.
  1745. */
  1746. port->irq = p->irqs[SCIx_RXI_IRQ];
  1747. port->irqflags = 0;
  1748. port->serial_in = sci_serial_in;
  1749. port->serial_out = sci_serial_out;
  1750. if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
  1751. dev_dbg(port->dev, "DMA tx %d, rx %d\n",
  1752. p->dma_slave_tx, p->dma_slave_rx);
  1753. return 0;
  1754. }
  1755. #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
  1756. static void serial_console_putchar(struct uart_port *port, int ch)
  1757. {
  1758. sci_poll_put_char(port, ch);
  1759. }
  1760. /*
  1761. * Print a string to the serial port trying not to disturb
  1762. * any possible real use of the port...
  1763. */
  1764. static void serial_console_write(struct console *co, const char *s,
  1765. unsigned count)
  1766. {
  1767. struct sci_port *sci_port = &sci_ports[co->index];
  1768. struct uart_port *port = &sci_port->port;
  1769. unsigned short bits;
  1770. sci_port_enable(sci_port);
  1771. uart_console_write(port, s, count, serial_console_putchar);
  1772. /* wait until fifo is empty and last bit has been transmitted */
  1773. bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
  1774. while ((sci_in(port, SCxSR) & bits) != bits)
  1775. cpu_relax();
  1776. sci_port_disable(sci_port);
  1777. }
  1778. static int __devinit serial_console_setup(struct console *co, char *options)
  1779. {
  1780. struct sci_port *sci_port;
  1781. struct uart_port *port;
  1782. int baud = 115200;
  1783. int bits = 8;
  1784. int parity = 'n';
  1785. int flow = 'n';
  1786. int ret;
  1787. /*
  1788. * Refuse to handle any bogus ports.
  1789. */
  1790. if (co->index < 0 || co->index >= SCI_NPORTS)
  1791. return -ENODEV;
  1792. sci_port = &sci_ports[co->index];
  1793. port = &sci_port->port;
  1794. /*
  1795. * Refuse to handle uninitialized ports.
  1796. */
  1797. if (!port->ops)
  1798. return -ENODEV;
  1799. ret = sci_remap_port(port);
  1800. if (unlikely(ret != 0))
  1801. return ret;
  1802. sci_port_enable(sci_port);
  1803. if (options)
  1804. uart_parse_options(options, &baud, &parity, &bits, &flow);
  1805. sci_port_disable(sci_port);
  1806. return uart_set_options(port, co, baud, parity, bits, flow);
  1807. }
  1808. static struct console serial_console = {
  1809. .name = "ttySC",
  1810. .device = uart_console_device,
  1811. .write = serial_console_write,
  1812. .setup = serial_console_setup,
  1813. .flags = CON_PRINTBUFFER,
  1814. .index = -1,
  1815. .data = &sci_uart_driver,
  1816. };
  1817. static struct console early_serial_console = {
  1818. .name = "early_ttySC",
  1819. .write = serial_console_write,
  1820. .flags = CON_PRINTBUFFER,
  1821. .index = -1,
  1822. };
  1823. static char early_serial_buf[32];
  1824. static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
  1825. {
  1826. struct plat_sci_port *cfg = pdev->dev.platform_data;
  1827. if (early_serial_console.data)
  1828. return -EEXIST;
  1829. early_serial_console.index = pdev->id;
  1830. sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
  1831. serial_console_setup(&early_serial_console, early_serial_buf);
  1832. if (!strstr(early_serial_buf, "keep"))
  1833. early_serial_console.flags |= CON_BOOT;
  1834. register_console(&early_serial_console);
  1835. return 0;
  1836. }
  1837. #define uart_console(port) ((port)->cons->index == (port)->line)
  1838. static int sci_runtime_suspend(struct device *dev)
  1839. {
  1840. struct sci_port *sci_port = dev_get_drvdata(dev);
  1841. struct uart_port *port = &sci_port->port;
  1842. if (uart_console(port)) {
  1843. struct plat_sci_reg *reg;
  1844. sci_port->saved_smr = sci_in(port, SCSMR);
  1845. sci_port->saved_brr = sci_in(port, SCBRR);
  1846. reg = sci_getreg(port, SCFCR);
  1847. if (reg->size)
  1848. sci_port->saved_fcr = sci_in(port, SCFCR);
  1849. else
  1850. sci_port->saved_fcr = 0;
  1851. }
  1852. return 0;
  1853. }
  1854. static int sci_runtime_resume(struct device *dev)
  1855. {
  1856. struct sci_port *sci_port = dev_get_drvdata(dev);
  1857. struct uart_port *port = &sci_port->port;
  1858. if (uart_console(port)) {
  1859. sci_reset(port);
  1860. sci_out(port, SCSMR, sci_port->saved_smr);
  1861. sci_out(port, SCBRR, sci_port->saved_brr);
  1862. if (sci_port->saved_fcr)
  1863. sci_out(port, SCFCR, sci_port->saved_fcr);
  1864. sci_out(port, SCSCR, sci_port->cfg->scscr);
  1865. }
  1866. return 0;
  1867. }
  1868. #define SCI_CONSOLE (&serial_console)
  1869. #else
  1870. static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
  1871. {
  1872. return -EINVAL;
  1873. }
  1874. #define SCI_CONSOLE NULL
  1875. #define sci_runtime_suspend NULL
  1876. #define sci_runtime_resume NULL
  1877. #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
  1878. static char banner[] __initdata =
  1879. KERN_INFO "SuperH SCI(F) driver initialized\n";
  1880. static struct uart_driver sci_uart_driver = {
  1881. .owner = THIS_MODULE,
  1882. .driver_name = "sci",
  1883. .dev_name = "ttySC",
  1884. .major = SCI_MAJOR,
  1885. .minor = SCI_MINOR_START,
  1886. .nr = SCI_NPORTS,
  1887. .cons = SCI_CONSOLE,
  1888. };
  1889. static int sci_remove(struct platform_device *dev)
  1890. {
  1891. struct sci_port *port = platform_get_drvdata(dev);
  1892. cpufreq_unregister_notifier(&port->freq_transition,
  1893. CPUFREQ_TRANSITION_NOTIFIER);
  1894. sci_free_gpios(port);
  1895. uart_remove_one_port(&sci_uart_driver, &port->port);
  1896. clk_put(port->iclk);
  1897. clk_put(port->fclk);
  1898. pm_runtime_disable(&dev->dev);
  1899. return 0;
  1900. }
  1901. static int __devinit sci_probe_single(struct platform_device *dev,
  1902. unsigned int index,
  1903. struct plat_sci_port *p,
  1904. struct sci_port *sciport)
  1905. {
  1906. int ret;
  1907. /* Sanity check */
  1908. if (unlikely(index >= SCI_NPORTS)) {
  1909. dev_notice(&dev->dev, "Attempting to register port "
  1910. "%d when only %d are available.\n",
  1911. index+1, SCI_NPORTS);
  1912. dev_notice(&dev->dev, "Consider bumping "
  1913. "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
  1914. return 0;
  1915. }
  1916. ret = sci_init_single(dev, sciport, index, p);
  1917. if (ret)
  1918. return ret;
  1919. return uart_add_one_port(&sci_uart_driver, &sciport->port);
  1920. }
  1921. static int __devinit sci_probe(struct platform_device *dev)
  1922. {
  1923. struct plat_sci_port *p = dev->dev.platform_data;
  1924. struct sci_port *sp = &sci_ports[dev->id];
  1925. int ret;
  1926. /*
  1927. * If we've come here via earlyprintk initialization, head off to
  1928. * the special early probe. We don't have sufficient device state
  1929. * to make it beyond this yet.
  1930. */
  1931. if (is_early_platform_device(dev))
  1932. return sci_probe_earlyprintk(dev);
  1933. platform_set_drvdata(dev, sp);
  1934. ret = sci_probe_single(dev, dev->id, p, sp);
  1935. if (ret)
  1936. goto err_unreg;
  1937. sp->freq_transition.notifier_call = sci_notifier;
  1938. ret = cpufreq_register_notifier(&sp->freq_transition,
  1939. CPUFREQ_TRANSITION_NOTIFIER);
  1940. if (unlikely(ret < 0))
  1941. goto err_unreg;
  1942. #ifdef CONFIG_SH_STANDARD_BIOS
  1943. sh_bios_gdb_detach();
  1944. #endif
  1945. return 0;
  1946. err_unreg:
  1947. sci_remove(dev);
  1948. return ret;
  1949. }
  1950. static int sci_suspend(struct device *dev)
  1951. {
  1952. struct sci_port *sport = dev_get_drvdata(dev);
  1953. if (sport)
  1954. uart_suspend_port(&sci_uart_driver, &sport->port);
  1955. return 0;
  1956. }
  1957. static int sci_resume(struct device *dev)
  1958. {
  1959. struct sci_port *sport = dev_get_drvdata(dev);
  1960. if (sport)
  1961. uart_resume_port(&sci_uart_driver, &sport->port);
  1962. return 0;
  1963. }
  1964. static const struct dev_pm_ops sci_dev_pm_ops = {
  1965. .runtime_suspend = sci_runtime_suspend,
  1966. .runtime_resume = sci_runtime_resume,
  1967. .suspend = sci_suspend,
  1968. .resume = sci_resume,
  1969. };
  1970. static struct platform_driver sci_driver = {
  1971. .probe = sci_probe,
  1972. .remove = sci_remove,
  1973. .driver = {
  1974. .name = "sh-sci",
  1975. .owner = THIS_MODULE,
  1976. .pm = &sci_dev_pm_ops,
  1977. },
  1978. };
  1979. static int __init sci_init(void)
  1980. {
  1981. int ret;
  1982. printk(banner);
  1983. ret = uart_register_driver(&sci_uart_driver);
  1984. if (likely(ret == 0)) {
  1985. ret = platform_driver_register(&sci_driver);
  1986. if (unlikely(ret))
  1987. uart_unregister_driver(&sci_uart_driver);
  1988. }
  1989. return ret;
  1990. }
  1991. static void __exit sci_exit(void)
  1992. {
  1993. platform_driver_unregister(&sci_driver);
  1994. uart_unregister_driver(&sci_uart_driver);
  1995. }
  1996. #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
  1997. early_platform_init_buffer("earlyprintk", &sci_driver,
  1998. early_serial_buf, ARRAY_SIZE(early_serial_buf));
  1999. #endif
  2000. module_init(sci_init);
  2001. module_exit(sci_exit);
  2002. MODULE_LICENSE("GPL");
  2003. MODULE_ALIAS("platform:sh-sci");
  2004. MODULE_AUTHOR("Paul Mundt");
  2005. MODULE_DESCRIPTION("SuperH SCI(F) serial driver");