iwl-eeprom.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/kernel.h>
  63. #include <linux/module.h>
  64. #include <linux/slab.h>
  65. #include <linux/init.h>
  66. #include <net/mac80211.h>
  67. #include "iwl-commands.h"
  68. #include "iwl-dev.h"
  69. #include "iwl-core.h"
  70. #include "iwl-debug.h"
  71. #include "iwl-agn.h"
  72. #include "iwl-eeprom.h"
  73. #include "iwl-io.h"
  74. /************************** EEPROM BANDS ****************************
  75. *
  76. * The iwl_eeprom_band definitions below provide the mapping from the
  77. * EEPROM contents to the specific channel number supported for each
  78. * band.
  79. *
  80. * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
  81. * definition below maps to physical channel 42 in the 5.2GHz spectrum.
  82. * The specific geography and calibration information for that channel
  83. * is contained in the eeprom map itself.
  84. *
  85. * During init, we copy the eeprom information and channel map
  86. * information into priv->channel_info_24/52 and priv->channel_map_24/52
  87. *
  88. * channel_map_24/52 provides the index in the channel_info array for a
  89. * given channel. We have to have two separate maps as there is channel
  90. * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
  91. * band_2
  92. *
  93. * A value of 0xff stored in the channel_map indicates that the channel
  94. * is not supported by the hardware at all.
  95. *
  96. * A value of 0xfe in the channel_map indicates that the channel is not
  97. * valid for Tx with the current hardware. This means that
  98. * while the system can tune and receive on a given channel, it may not
  99. * be able to associate or transmit any frames on that
  100. * channel. There is no corresponding channel information for that
  101. * entry.
  102. *
  103. *********************************************************************/
  104. /* 2.4 GHz */
  105. const u8 iwl_eeprom_band_1[14] = {
  106. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  107. };
  108. /* 5.2 GHz bands */
  109. static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
  110. 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  111. };
  112. static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
  113. 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
  114. };
  115. static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
  116. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
  117. };
  118. static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
  119. 145, 149, 153, 157, 161, 165
  120. };
  121. static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
  122. 1, 2, 3, 4, 5, 6, 7
  123. };
  124. static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
  125. 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
  126. };
  127. /******************************************************************************
  128. *
  129. * generic NVM functions
  130. *
  131. ******************************************************************************/
  132. /*
  133. * The device's EEPROM semaphore prevents conflicts between driver and uCode
  134. * when accessing the EEPROM; each access is a series of pulses to/from the
  135. * EEPROM chip, not a single event, so even reads could conflict if they
  136. * weren't arbitrated by the semaphore.
  137. */
  138. static int iwl_eeprom_acquire_semaphore(struct iwl_bus *bus)
  139. {
  140. u16 count;
  141. int ret;
  142. for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
  143. /* Request semaphore */
  144. iwl_set_bit(bus, CSR_HW_IF_CONFIG_REG,
  145. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  146. /* See if we got it */
  147. ret = iwl_poll_bit(bus, CSR_HW_IF_CONFIG_REG,
  148. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  149. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  150. EEPROM_SEM_TIMEOUT);
  151. if (ret >= 0) {
  152. IWL_DEBUG_EEPROM(bus,
  153. "Acquired semaphore after %d tries.\n",
  154. count+1);
  155. return ret;
  156. }
  157. }
  158. return ret;
  159. }
  160. static void iwl_eeprom_release_semaphore(struct iwl_bus *bus)
  161. {
  162. iwl_clear_bit(bus, CSR_HW_IF_CONFIG_REG,
  163. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  164. }
  165. static int iwl_eeprom_verify_signature(struct iwl_trans *trans)
  166. {
  167. u32 gp = iwl_read32(bus(trans), CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
  168. int ret = 0;
  169. IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp);
  170. switch (gp) {
  171. case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
  172. if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
  173. IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
  174. gp);
  175. ret = -ENOENT;
  176. }
  177. break;
  178. case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
  179. case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
  180. if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
  181. IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
  182. ret = -ENOENT;
  183. }
  184. break;
  185. case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
  186. default:
  187. IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, "
  188. "EEPROM_GP=0x%08x\n",
  189. (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  190. ? "OTP" : "EEPROM", gp);
  191. ret = -ENOENT;
  192. break;
  193. }
  194. return ret;
  195. }
  196. u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset)
  197. {
  198. if (!shrd->eeprom)
  199. return 0;
  200. return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8);
  201. }
  202. int iwl_eeprom_check_version(struct iwl_priv *priv)
  203. {
  204. u16 eeprom_ver;
  205. u16 calib_ver;
  206. eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION);
  207. calib_ver = iwl_eeprom_calib_version(priv->shrd);
  208. if (eeprom_ver < cfg(priv)->eeprom_ver ||
  209. calib_ver < cfg(priv)->eeprom_calib_ver)
  210. goto err;
  211. IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
  212. eeprom_ver, calib_ver);
  213. return 0;
  214. err:
  215. IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
  216. "CALIB=0x%x < 0x%x\n",
  217. eeprom_ver, cfg(priv)->eeprom_ver,
  218. calib_ver, cfg(priv)->eeprom_calib_ver);
  219. return -EINVAL;
  220. }
  221. int iwl_eeprom_check_sku(struct iwl_priv *priv)
  222. {
  223. struct iwl_shared *shrd = priv->shrd;
  224. u16 radio_cfg;
  225. if (!cfg(priv)->sku) {
  226. /* not using sku overwrite */
  227. cfg(priv)->sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP);
  228. if (cfg(priv)->sku & EEPROM_SKU_CAP_11N_ENABLE &&
  229. !cfg(priv)->ht_params) {
  230. IWL_ERR(priv, "Invalid 11n configuration\n");
  231. return -EINVAL;
  232. }
  233. }
  234. if (!cfg(priv)->sku) {
  235. IWL_ERR(priv, "Invalid device sku\n");
  236. return -EINVAL;
  237. }
  238. IWL_INFO(priv, "Device SKU: 0x%X\n", cfg(priv)->sku);
  239. if (!cfg(priv)->valid_tx_ant && !cfg(priv)->valid_rx_ant) {
  240. /* not using .cfg overwrite */
  241. radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG);
  242. cfg(priv)->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
  243. cfg(priv)->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
  244. if (!cfg(priv)->valid_tx_ant || !cfg(priv)->valid_rx_ant) {
  245. IWL_ERR(priv, "Invalid chain (0x%X, 0x%X)\n",
  246. cfg(priv)->valid_tx_ant,
  247. cfg(priv)->valid_rx_ant);
  248. return -EINVAL;
  249. }
  250. IWL_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
  251. cfg(priv)->valid_tx_ant, cfg(priv)->valid_rx_ant);
  252. }
  253. /*
  254. * for some special cases,
  255. * EEPROM did not reflect the correct antenna setting
  256. * so overwrite the valid tx/rx antenna from .cfg
  257. */
  258. return 0;
  259. }
  260. void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac)
  261. {
  262. const u8 *addr = iwl_eeprom_query_addr(shrd,
  263. EEPROM_MAC_ADDRESS);
  264. memcpy(mac, addr, ETH_ALEN);
  265. }
  266. /******************************************************************************
  267. *
  268. * OTP related functions
  269. *
  270. ******************************************************************************/
  271. static void iwl_set_otp_access(struct iwl_bus *bus, enum iwl_access_mode mode)
  272. {
  273. iwl_read32(bus, CSR_OTP_GP_REG);
  274. if (mode == IWL_OTP_ACCESS_ABSOLUTE)
  275. iwl_clear_bit(bus, CSR_OTP_GP_REG,
  276. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  277. else
  278. iwl_set_bit(bus, CSR_OTP_GP_REG,
  279. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  280. }
  281. static int iwl_get_nvm_type(struct iwl_bus *bus, u32 hw_rev)
  282. {
  283. u32 otpgp;
  284. int nvm_type;
  285. /* OTP only valid for CP/PP and after */
  286. switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
  287. case CSR_HW_REV_TYPE_NONE:
  288. IWL_ERR(bus, "Unknown hardware type\n");
  289. return -ENOENT;
  290. case CSR_HW_REV_TYPE_5300:
  291. case CSR_HW_REV_TYPE_5350:
  292. case CSR_HW_REV_TYPE_5100:
  293. case CSR_HW_REV_TYPE_5150:
  294. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  295. break;
  296. default:
  297. otpgp = iwl_read32(bus, CSR_OTP_GP_REG);
  298. if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
  299. nvm_type = NVM_DEVICE_TYPE_OTP;
  300. else
  301. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  302. break;
  303. }
  304. return nvm_type;
  305. }
  306. static int iwl_init_otp_access(struct iwl_bus *bus)
  307. {
  308. int ret;
  309. /* Enable 40MHz radio clock */
  310. iwl_write32(bus, CSR_GP_CNTRL,
  311. iwl_read32(bus, CSR_GP_CNTRL) |
  312. CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  313. /* wait for clock to be ready */
  314. ret = iwl_poll_bit(bus, CSR_GP_CNTRL,
  315. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  316. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  317. 25000);
  318. if (ret < 0)
  319. IWL_ERR(bus, "Time out access OTP\n");
  320. else {
  321. iwl_set_bits_prph(bus, APMG_PS_CTRL_REG,
  322. APMG_PS_CTRL_VAL_RESET_REQ);
  323. udelay(5);
  324. iwl_clear_bits_prph(bus, APMG_PS_CTRL_REG,
  325. APMG_PS_CTRL_VAL_RESET_REQ);
  326. /*
  327. * CSR auto clock gate disable bit -
  328. * this is only applicable for HW with OTP shadow RAM
  329. */
  330. if (cfg(bus)->base_params->shadow_ram_support)
  331. iwl_set_bit(bus, CSR_DBG_LINK_PWR_MGMT_REG,
  332. CSR_RESET_LINK_PWR_MGMT_DISABLED);
  333. }
  334. return ret;
  335. }
  336. static int iwl_read_otp_word(struct iwl_bus *bus, u16 addr, __le16 *eeprom_data)
  337. {
  338. int ret = 0;
  339. u32 r;
  340. u32 otpgp;
  341. iwl_write32(bus, CSR_EEPROM_REG,
  342. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  343. ret = iwl_poll_bit(bus, CSR_EEPROM_REG,
  344. CSR_EEPROM_REG_READ_VALID_MSK,
  345. CSR_EEPROM_REG_READ_VALID_MSK,
  346. IWL_EEPROM_ACCESS_TIMEOUT);
  347. if (ret < 0) {
  348. IWL_ERR(bus, "Time out reading OTP[%d]\n", addr);
  349. return ret;
  350. }
  351. r = iwl_read32(bus, CSR_EEPROM_REG);
  352. /* check for ECC errors: */
  353. otpgp = iwl_read32(bus, CSR_OTP_GP_REG);
  354. if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
  355. /* stop in this case */
  356. /* set the uncorrectable OTP ECC bit for acknowledgement */
  357. iwl_set_bit(bus, CSR_OTP_GP_REG,
  358. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  359. IWL_ERR(bus, "Uncorrectable OTP ECC error, abort OTP read\n");
  360. return -EINVAL;
  361. }
  362. if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
  363. /* continue in this case */
  364. /* set the correctable OTP ECC bit for acknowledgement */
  365. iwl_set_bit(bus, CSR_OTP_GP_REG,
  366. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
  367. IWL_ERR(bus, "Correctable OTP ECC error, continue read\n");
  368. }
  369. *eeprom_data = cpu_to_le16(r >> 16);
  370. return 0;
  371. }
  372. /*
  373. * iwl_is_otp_empty: check for empty OTP
  374. */
  375. static bool iwl_is_otp_empty(struct iwl_bus *bus)
  376. {
  377. u16 next_link_addr = 0;
  378. __le16 link_value;
  379. bool is_empty = false;
  380. /* locate the beginning of OTP link list */
  381. if (!iwl_read_otp_word(bus, next_link_addr, &link_value)) {
  382. if (!link_value) {
  383. IWL_ERR(bus, "OTP is empty\n");
  384. is_empty = true;
  385. }
  386. } else {
  387. IWL_ERR(bus, "Unable to read first block of OTP list.\n");
  388. is_empty = true;
  389. }
  390. return is_empty;
  391. }
  392. /*
  393. * iwl_find_otp_image: find EEPROM image in OTP
  394. * finding the OTP block that contains the EEPROM image.
  395. * the last valid block on the link list (the block _before_ the last block)
  396. * is the block we should read and used to configure the device.
  397. * If all the available OTP blocks are full, the last block will be the block
  398. * we should read and used to configure the device.
  399. * only perform this operation if shadow RAM is disabled
  400. */
  401. static int iwl_find_otp_image(struct iwl_bus *bus,
  402. u16 *validblockaddr)
  403. {
  404. u16 next_link_addr = 0, valid_addr;
  405. __le16 link_value = 0;
  406. int usedblocks = 0;
  407. /* set addressing mode to absolute to traverse the link list */
  408. iwl_set_otp_access(bus, IWL_OTP_ACCESS_ABSOLUTE);
  409. /* checking for empty OTP or error */
  410. if (iwl_is_otp_empty(bus))
  411. return -EINVAL;
  412. /*
  413. * start traverse link list
  414. * until reach the max number of OTP blocks
  415. * different devices have different number of OTP blocks
  416. */
  417. do {
  418. /* save current valid block address
  419. * check for more block on the link list
  420. */
  421. valid_addr = next_link_addr;
  422. next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
  423. IWL_DEBUG_EEPROM(bus, "OTP blocks %d addr 0x%x\n",
  424. usedblocks, next_link_addr);
  425. if (iwl_read_otp_word(bus, next_link_addr, &link_value))
  426. return -EINVAL;
  427. if (!link_value) {
  428. /*
  429. * reach the end of link list, return success and
  430. * set address point to the starting address
  431. * of the image
  432. */
  433. *validblockaddr = valid_addr;
  434. /* skip first 2 bytes (link list pointer) */
  435. *validblockaddr += 2;
  436. return 0;
  437. }
  438. /* more in the link list, continue */
  439. usedblocks++;
  440. } while (usedblocks <= cfg(bus)->base_params->max_ll_items);
  441. /* OTP has no valid blocks */
  442. IWL_DEBUG_EEPROM(bus, "OTP has no valid blocks\n");
  443. return -EINVAL;
  444. }
  445. /******************************************************************************
  446. *
  447. * Tx Power related functions
  448. *
  449. ******************************************************************************/
  450. /**
  451. * iwl_get_max_txpower_avg - get the highest tx power from all chains.
  452. * find the highest tx power from all chains for the channel
  453. */
  454. static s8 iwl_get_max_txpower_avg(struct iwl_cfg *cfg,
  455. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  456. int element, s8 *max_txpower_in_half_dbm)
  457. {
  458. s8 max_txpower_avg = 0; /* (dBm) */
  459. /* Take the highest tx power from any valid chains */
  460. if ((cfg->valid_tx_ant & ANT_A) &&
  461. (enhanced_txpower[element].chain_a_max > max_txpower_avg))
  462. max_txpower_avg = enhanced_txpower[element].chain_a_max;
  463. if ((cfg->valid_tx_ant & ANT_B) &&
  464. (enhanced_txpower[element].chain_b_max > max_txpower_avg))
  465. max_txpower_avg = enhanced_txpower[element].chain_b_max;
  466. if ((cfg->valid_tx_ant & ANT_C) &&
  467. (enhanced_txpower[element].chain_c_max > max_txpower_avg))
  468. max_txpower_avg = enhanced_txpower[element].chain_c_max;
  469. if (((cfg->valid_tx_ant == ANT_AB) |
  470. (cfg->valid_tx_ant == ANT_BC) |
  471. (cfg->valid_tx_ant == ANT_AC)) &&
  472. (enhanced_txpower[element].mimo2_max > max_txpower_avg))
  473. max_txpower_avg = enhanced_txpower[element].mimo2_max;
  474. if ((cfg->valid_tx_ant == ANT_ABC) &&
  475. (enhanced_txpower[element].mimo3_max > max_txpower_avg))
  476. max_txpower_avg = enhanced_txpower[element].mimo3_max;
  477. /*
  478. * max. tx power in EEPROM is in 1/2 dBm format
  479. * convert from 1/2 dBm to dBm (round-up convert)
  480. * but we also do not want to loss 1/2 dBm resolution which
  481. * will impact performance
  482. */
  483. *max_txpower_in_half_dbm = max_txpower_avg;
  484. return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
  485. }
  486. static void
  487. iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
  488. struct iwl_eeprom_enhanced_txpwr *txp,
  489. s8 max_txpower_avg)
  490. {
  491. int ch_idx;
  492. bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
  493. enum ieee80211_band band;
  494. band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
  495. IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
  496. for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
  497. struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];
  498. /* update matching channel or from common data only */
  499. if (txp->channel != 0 && ch_info->channel != txp->channel)
  500. continue;
  501. /* update matching band only */
  502. if (band != ch_info->band)
  503. continue;
  504. if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
  505. ch_info->max_power_avg = max_txpower_avg;
  506. ch_info->curr_txpow = max_txpower_avg;
  507. ch_info->scan_power = max_txpower_avg;
  508. }
  509. if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
  510. ch_info->ht40_max_power_avg = max_txpower_avg;
  511. }
  512. }
  513. #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
  514. #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
  515. #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
  516. #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
  517. ? # x " " : "")
  518. void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
  519. {
  520. struct iwl_shared *shrd = priv->shrd;
  521. struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
  522. int idx, entries;
  523. __le16 *txp_len;
  524. s8 max_txp_avg, max_txp_avg_halfdbm;
  525. BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
  526. /* the length is in 16-bit words, but we want entries */
  527. txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS);
  528. entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
  529. txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS);
  530. for (idx = 0; idx < entries; idx++) {
  531. txp = &txp_array[idx];
  532. /* skip invalid entries */
  533. if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
  534. continue;
  535. IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
  536. (txp->channel && (txp->flags &
  537. IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
  538. "Common " : (txp->channel) ?
  539. "Channel" : "Common",
  540. (txp->channel),
  541. TXP_CHECK_AND_PRINT(VALID),
  542. TXP_CHECK_AND_PRINT(BAND_52G),
  543. TXP_CHECK_AND_PRINT(OFDM),
  544. TXP_CHECK_AND_PRINT(40MHZ),
  545. TXP_CHECK_AND_PRINT(HT_AP),
  546. TXP_CHECK_AND_PRINT(RES1),
  547. TXP_CHECK_AND_PRINT(RES2),
  548. TXP_CHECK_AND_PRINT(COMMON_TYPE),
  549. txp->flags);
  550. IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
  551. "chain_B: 0X%02x chain_C: 0X%02x\n",
  552. txp->chain_a_max, txp->chain_b_max,
  553. txp->chain_c_max);
  554. IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
  555. "MIMO3: 0x%02x High 20_on_40: 0x%02x "
  556. "Low 20_on_40: 0x%02x\n",
  557. txp->mimo2_max, txp->mimo3_max,
  558. ((txp->delta_20_in_40 & 0xf0) >> 4),
  559. (txp->delta_20_in_40 & 0x0f));
  560. max_txp_avg = iwl_get_max_txpower_avg(cfg(priv), txp_array, idx,
  561. &max_txp_avg_halfdbm);
  562. /*
  563. * Update the user limit values values to the highest
  564. * power supported by any channel
  565. */
  566. if (max_txp_avg > priv->tx_power_user_lmt)
  567. priv->tx_power_user_lmt = max_txp_avg;
  568. if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
  569. priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;
  570. iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
  571. }
  572. }
  573. /**
  574. * iwl_eeprom_init - read EEPROM contents
  575. *
  576. * Load the EEPROM contents from adapter into shrd->eeprom
  577. *
  578. * NOTE: This routine uses the non-debug IO access functions.
  579. */
  580. int iwl_eeprom_init(struct iwl_priv *priv, u32 hw_rev)
  581. {
  582. struct iwl_shared *shrd = priv->shrd;
  583. __le16 *e;
  584. u32 gp = iwl_read32(bus(priv), CSR_EEPROM_GP);
  585. int sz;
  586. int ret;
  587. u16 addr;
  588. u16 validblockaddr = 0;
  589. u16 cache_addr = 0;
  590. trans(priv)->nvm_device_type = iwl_get_nvm_type(bus(priv), hw_rev);
  591. if (trans(priv)->nvm_device_type == -ENOENT)
  592. return -ENOENT;
  593. /* allocate eeprom */
  594. sz = cfg(priv)->base_params->eeprom_size;
  595. IWL_DEBUG_EEPROM(priv, "NVM size = %d\n", sz);
  596. shrd->eeprom = kzalloc(sz, GFP_KERNEL);
  597. if (!shrd->eeprom) {
  598. ret = -ENOMEM;
  599. goto alloc_err;
  600. }
  601. e = (__le16 *)shrd->eeprom;
  602. iwl_apm_init(priv);
  603. ret = iwl_eeprom_verify_signature(trans(priv));
  604. if (ret < 0) {
  605. IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
  606. ret = -ENOENT;
  607. goto err;
  608. }
  609. /* Make sure driver (instead of uCode) is allowed to read EEPROM */
  610. ret = iwl_eeprom_acquire_semaphore(bus(priv));
  611. if (ret < 0) {
  612. IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
  613. ret = -ENOENT;
  614. goto err;
  615. }
  616. if (trans(priv)->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  617. ret = iwl_init_otp_access(bus(priv));
  618. if (ret) {
  619. IWL_ERR(priv, "Failed to initialize OTP access.\n");
  620. ret = -ENOENT;
  621. goto done;
  622. }
  623. iwl_write32(bus(priv), CSR_EEPROM_GP,
  624. iwl_read32(bus(priv), CSR_EEPROM_GP) &
  625. ~CSR_EEPROM_GP_IF_OWNER_MSK);
  626. iwl_set_bit(bus(priv), CSR_OTP_GP_REG,
  627. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
  628. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  629. /* traversing the linked list if no shadow ram supported */
  630. if (!cfg(priv)->base_params->shadow_ram_support) {
  631. if (iwl_find_otp_image(bus(priv), &validblockaddr)) {
  632. ret = -ENOENT;
  633. goto done;
  634. }
  635. }
  636. for (addr = validblockaddr; addr < validblockaddr + sz;
  637. addr += sizeof(u16)) {
  638. __le16 eeprom_data;
  639. ret = iwl_read_otp_word(bus(priv), addr, &eeprom_data);
  640. if (ret)
  641. goto done;
  642. e[cache_addr / 2] = eeprom_data;
  643. cache_addr += sizeof(u16);
  644. }
  645. } else {
  646. /* eeprom is an array of 16bit values */
  647. for (addr = 0; addr < sz; addr += sizeof(u16)) {
  648. u32 r;
  649. iwl_write32(bus(priv), CSR_EEPROM_REG,
  650. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  651. ret = iwl_poll_bit(bus(priv), CSR_EEPROM_REG,
  652. CSR_EEPROM_REG_READ_VALID_MSK,
  653. CSR_EEPROM_REG_READ_VALID_MSK,
  654. IWL_EEPROM_ACCESS_TIMEOUT);
  655. if (ret < 0) {
  656. IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
  657. goto done;
  658. }
  659. r = iwl_read32(bus(priv), CSR_EEPROM_REG);
  660. e[addr / 2] = cpu_to_le16(r >> 16);
  661. }
  662. }
  663. IWL_DEBUG_EEPROM(priv, "NVM Type: %s, version: 0x%x\n",
  664. (trans(priv)->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  665. ? "OTP" : "EEPROM",
  666. iwl_eeprom_query16(shrd, EEPROM_VERSION));
  667. ret = 0;
  668. done:
  669. iwl_eeprom_release_semaphore(bus(priv));
  670. err:
  671. if (ret)
  672. iwl_eeprom_free(priv->shrd);
  673. /* Reset chip to save power until we load uCode during "up". */
  674. iwl_apm_stop(priv);
  675. alloc_err:
  676. return ret;
  677. }
  678. void iwl_eeprom_free(struct iwl_shared *shrd)
  679. {
  680. kfree(shrd->eeprom);
  681. shrd->eeprom = NULL;
  682. }
  683. static void iwl_init_band_reference(const struct iwl_priv *priv,
  684. int eep_band, int *eeprom_ch_count,
  685. const struct iwl_eeprom_channel **eeprom_ch_info,
  686. const u8 **eeprom_ch_index)
  687. {
  688. struct iwl_shared *shrd = priv->shrd;
  689. u32 offset = cfg(priv)->lib->
  690. eeprom_ops.regulatory_bands[eep_band - 1];
  691. switch (eep_band) {
  692. case 1: /* 2.4GHz band */
  693. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
  694. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  695. iwl_eeprom_query_addr(shrd, offset);
  696. *eeprom_ch_index = iwl_eeprom_band_1;
  697. break;
  698. case 2: /* 4.9GHz band */
  699. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
  700. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  701. iwl_eeprom_query_addr(shrd, offset);
  702. *eeprom_ch_index = iwl_eeprom_band_2;
  703. break;
  704. case 3: /* 5.2GHz band */
  705. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
  706. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  707. iwl_eeprom_query_addr(shrd, offset);
  708. *eeprom_ch_index = iwl_eeprom_band_3;
  709. break;
  710. case 4: /* 5.5GHz band */
  711. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
  712. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  713. iwl_eeprom_query_addr(shrd, offset);
  714. *eeprom_ch_index = iwl_eeprom_band_4;
  715. break;
  716. case 5: /* 5.7GHz band */
  717. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
  718. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  719. iwl_eeprom_query_addr(shrd, offset);
  720. *eeprom_ch_index = iwl_eeprom_band_5;
  721. break;
  722. case 6: /* 2.4GHz ht40 channels */
  723. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
  724. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  725. iwl_eeprom_query_addr(shrd, offset);
  726. *eeprom_ch_index = iwl_eeprom_band_6;
  727. break;
  728. case 7: /* 5 GHz ht40 channels */
  729. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
  730. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  731. iwl_eeprom_query_addr(shrd, offset);
  732. *eeprom_ch_index = iwl_eeprom_band_7;
  733. break;
  734. default:
  735. BUG();
  736. return;
  737. }
  738. }
  739. #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
  740. ? # x " " : "")
  741. /**
  742. * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
  743. *
  744. * Does not set up a command, or touch hardware.
  745. */
  746. static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
  747. enum ieee80211_band band, u16 channel,
  748. const struct iwl_eeprom_channel *eeprom_ch,
  749. u8 clear_ht40_extension_channel)
  750. {
  751. struct iwl_channel_info *ch_info;
  752. ch_info = (struct iwl_channel_info *)
  753. iwl_get_channel_info(priv, band, channel);
  754. if (!is_channel_valid(ch_info))
  755. return -1;
  756. IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
  757. " Ad-Hoc %ssupported\n",
  758. ch_info->channel,
  759. is_channel_a_band(ch_info) ?
  760. "5.2" : "2.4",
  761. CHECK_AND_PRINT(IBSS),
  762. CHECK_AND_PRINT(ACTIVE),
  763. CHECK_AND_PRINT(RADAR),
  764. CHECK_AND_PRINT(WIDE),
  765. CHECK_AND_PRINT(DFS),
  766. eeprom_ch->flags,
  767. eeprom_ch->max_power_avg,
  768. ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
  769. && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
  770. "" : "not ");
  771. ch_info->ht40_eeprom = *eeprom_ch;
  772. ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
  773. ch_info->ht40_flags = eeprom_ch->flags;
  774. if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
  775. ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
  776. return 0;
  777. }
  778. #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
  779. ? # x " " : "")
  780. /**
  781. * iwl_init_channel_map - Set up driver's info for all possible channels
  782. */
  783. int iwl_init_channel_map(struct iwl_priv *priv)
  784. {
  785. int eeprom_ch_count = 0;
  786. const u8 *eeprom_ch_index = NULL;
  787. const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
  788. int band, ch;
  789. struct iwl_channel_info *ch_info;
  790. if (priv->channel_count) {
  791. IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
  792. return 0;
  793. }
  794. IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
  795. priv->channel_count =
  796. ARRAY_SIZE(iwl_eeprom_band_1) +
  797. ARRAY_SIZE(iwl_eeprom_band_2) +
  798. ARRAY_SIZE(iwl_eeprom_band_3) +
  799. ARRAY_SIZE(iwl_eeprom_band_4) +
  800. ARRAY_SIZE(iwl_eeprom_band_5);
  801. IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
  802. priv->channel_count);
  803. priv->channel_info = kcalloc(priv->channel_count,
  804. sizeof(struct iwl_channel_info),
  805. GFP_KERNEL);
  806. if (!priv->channel_info) {
  807. IWL_ERR(priv, "Could not allocate channel_info\n");
  808. priv->channel_count = 0;
  809. return -ENOMEM;
  810. }
  811. ch_info = priv->channel_info;
  812. /* Loop through the 5 EEPROM bands adding them in order to the
  813. * channel map we maintain (that contains additional information than
  814. * what just in the EEPROM) */
  815. for (band = 1; band <= 5; band++) {
  816. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  817. &eeprom_ch_info, &eeprom_ch_index);
  818. /* Loop through each band adding each of the channels */
  819. for (ch = 0; ch < eeprom_ch_count; ch++) {
  820. ch_info->channel = eeprom_ch_index[ch];
  821. ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
  822. IEEE80211_BAND_5GHZ;
  823. /* permanently store EEPROM's channel regulatory flags
  824. * and max power in channel info database. */
  825. ch_info->eeprom = eeprom_ch_info[ch];
  826. /* Copy the run-time flags so they are there even on
  827. * invalid channels */
  828. ch_info->flags = eeprom_ch_info[ch].flags;
  829. /* First write that ht40 is not enabled, and then enable
  830. * one by one */
  831. ch_info->ht40_extension_channel =
  832. IEEE80211_CHAN_NO_HT40;
  833. if (!(is_channel_valid(ch_info))) {
  834. IWL_DEBUG_EEPROM(priv,
  835. "Ch. %d Flags %x [%sGHz] - "
  836. "No traffic\n",
  837. ch_info->channel,
  838. ch_info->flags,
  839. is_channel_a_band(ch_info) ?
  840. "5.2" : "2.4");
  841. ch_info++;
  842. continue;
  843. }
  844. /* Initialize regulatory-based run-time data */
  845. ch_info->max_power_avg = ch_info->curr_txpow =
  846. eeprom_ch_info[ch].max_power_avg;
  847. ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
  848. ch_info->min_power = 0;
  849. IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
  850. "%s%s%s%s%s%s(0x%02x %ddBm):"
  851. " Ad-Hoc %ssupported\n",
  852. ch_info->channel,
  853. is_channel_a_band(ch_info) ?
  854. "5.2" : "2.4",
  855. CHECK_AND_PRINT_I(VALID),
  856. CHECK_AND_PRINT_I(IBSS),
  857. CHECK_AND_PRINT_I(ACTIVE),
  858. CHECK_AND_PRINT_I(RADAR),
  859. CHECK_AND_PRINT_I(WIDE),
  860. CHECK_AND_PRINT_I(DFS),
  861. eeprom_ch_info[ch].flags,
  862. eeprom_ch_info[ch].max_power_avg,
  863. ((eeprom_ch_info[ch].
  864. flags & EEPROM_CHANNEL_IBSS)
  865. && !(eeprom_ch_info[ch].
  866. flags & EEPROM_CHANNEL_RADAR))
  867. ? "" : "not ");
  868. ch_info++;
  869. }
  870. }
  871. /* Check if we do have HT40 channels */
  872. if (cfg(priv)->lib->eeprom_ops.regulatory_bands[5] ==
  873. EEPROM_REGULATORY_BAND_NO_HT40 &&
  874. cfg(priv)->lib->eeprom_ops.regulatory_bands[6] ==
  875. EEPROM_REGULATORY_BAND_NO_HT40)
  876. return 0;
  877. /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
  878. for (band = 6; band <= 7; band++) {
  879. enum ieee80211_band ieeeband;
  880. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  881. &eeprom_ch_info, &eeprom_ch_index);
  882. /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
  883. ieeeband =
  884. (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  885. /* Loop through each band adding each of the channels */
  886. for (ch = 0; ch < eeprom_ch_count; ch++) {
  887. /* Set up driver's info for lower half */
  888. iwl_mod_ht40_chan_info(priv, ieeeband,
  889. eeprom_ch_index[ch],
  890. &eeprom_ch_info[ch],
  891. IEEE80211_CHAN_NO_HT40PLUS);
  892. /* Set up driver's info for upper half */
  893. iwl_mod_ht40_chan_info(priv, ieeeband,
  894. eeprom_ch_index[ch] + 4,
  895. &eeprom_ch_info[ch],
  896. IEEE80211_CHAN_NO_HT40MINUS);
  897. }
  898. }
  899. /* for newer device (6000 series and up)
  900. * EEPROM contain enhanced tx power information
  901. * driver need to process addition information
  902. * to determine the max channel tx power limits
  903. */
  904. if (cfg(priv)->lib->eeprom_ops.update_enhanced_txpower)
  905. cfg(priv)->lib->eeprom_ops.update_enhanced_txpower(priv);
  906. return 0;
  907. }
  908. /*
  909. * iwl_free_channel_map - undo allocations in iwl_init_channel_map
  910. */
  911. void iwl_free_channel_map(struct iwl_priv *priv)
  912. {
  913. kfree(priv->channel_info);
  914. priv->channel_count = 0;
  915. }
  916. /**
  917. * iwl_get_channel_info - Find driver's private channel info
  918. *
  919. * Based on band and channel number.
  920. */
  921. const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
  922. enum ieee80211_band band, u16 channel)
  923. {
  924. int i;
  925. switch (band) {
  926. case IEEE80211_BAND_5GHZ:
  927. for (i = 14; i < priv->channel_count; i++) {
  928. if (priv->channel_info[i].channel == channel)
  929. return &priv->channel_info[i];
  930. }
  931. break;
  932. case IEEE80211_BAND_2GHZ:
  933. if (channel >= 1 && channel <= 14)
  934. return &priv->channel_info[channel - 1];
  935. break;
  936. default:
  937. BUG();
  938. }
  939. return NULL;
  940. }
  941. void iwl_rf_config(struct iwl_priv *priv)
  942. {
  943. u16 radio_cfg;
  944. radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG);
  945. /* write radio config values to register */
  946. if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
  947. iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
  948. EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
  949. EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
  950. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  951. IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
  952. EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
  953. EEPROM_RF_CFG_STEP_MSK(radio_cfg),
  954. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  955. } else
  956. WARN_ON(1);
  957. /* set CSR_HW_CONFIG_REG for uCode use */
  958. iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
  959. CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
  960. CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
  961. }