smsc9420.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. /***************************************************************************
  2. *
  3. * Copyright (C) 2007,2008 SMSC
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. ***************************************************************************
  20. */
  21. #include <linux/interrupt.h>
  22. #include <linux/kernel.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/phy.h>
  25. #include <linux/pci.h>
  26. #include <linux/if_vlan.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/crc32.h>
  29. #include <linux/slab.h>
  30. #include <linux/module.h>
  31. #include <asm/unaligned.h>
  32. #include "smsc9420.h"
  33. #define DRV_NAME "smsc9420"
  34. #define PFX DRV_NAME ": "
  35. #define DRV_MDIONAME "smsc9420-mdio"
  36. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  37. #define DRV_VERSION "1.01"
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_VERSION);
  40. struct smsc9420_dma_desc {
  41. u32 status;
  42. u32 length;
  43. u32 buffer1;
  44. u32 buffer2;
  45. };
  46. struct smsc9420_ring_info {
  47. struct sk_buff *skb;
  48. dma_addr_t mapping;
  49. };
  50. struct smsc9420_pdata {
  51. void __iomem *base_addr;
  52. struct pci_dev *pdev;
  53. struct net_device *dev;
  54. struct smsc9420_dma_desc *rx_ring;
  55. struct smsc9420_dma_desc *tx_ring;
  56. struct smsc9420_ring_info *tx_buffers;
  57. struct smsc9420_ring_info *rx_buffers;
  58. dma_addr_t rx_dma_addr;
  59. dma_addr_t tx_dma_addr;
  60. int tx_ring_head, tx_ring_tail;
  61. int rx_ring_head, rx_ring_tail;
  62. spinlock_t int_lock;
  63. spinlock_t phy_lock;
  64. struct napi_struct napi;
  65. bool software_irq_signal;
  66. bool rx_csum;
  67. u32 msg_enable;
  68. struct phy_device *phy_dev;
  69. struct mii_bus *mii_bus;
  70. int phy_irq[PHY_MAX_ADDR];
  71. int last_duplex;
  72. int last_carrier;
  73. };
  74. static DEFINE_PCI_DEVICE_TABLE(smsc9420_id_table) = {
  75. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  76. { 0, }
  77. };
  78. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  79. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  80. static uint smsc_debug;
  81. static uint debug = -1;
  82. module_param(debug, uint, 0);
  83. MODULE_PARM_DESC(debug, "debug level");
  84. #define smsc_dbg(TYPE, f, a...) \
  85. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  86. printk(KERN_DEBUG PFX f "\n", ## a); \
  87. } while (0)
  88. #define smsc_info(TYPE, f, a...) \
  89. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  90. printk(KERN_INFO PFX f "\n", ## a); \
  91. } while (0)
  92. #define smsc_warn(TYPE, f, a...) \
  93. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  94. printk(KERN_WARNING PFX f "\n", ## a); \
  95. } while (0)
  96. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  97. {
  98. return ioread32(pd->base_addr + offset);
  99. }
  100. static inline void
  101. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  102. {
  103. iowrite32(value, pd->base_addr + offset);
  104. }
  105. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  106. {
  107. /* to ensure PCI write completion, we must perform a PCI read */
  108. smsc9420_reg_read(pd, ID_REV);
  109. }
  110. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  111. {
  112. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  113. unsigned long flags;
  114. u32 addr;
  115. int i, reg = -EIO;
  116. spin_lock_irqsave(&pd->phy_lock, flags);
  117. /* confirm MII not busy */
  118. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  119. smsc_warn(DRV, "MII is busy???");
  120. goto out;
  121. }
  122. /* set the address, index & direction (read from PHY) */
  123. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  124. MII_ACCESS_MII_READ_;
  125. smsc9420_reg_write(pd, MII_ACCESS, addr);
  126. /* wait for read to complete with 50us timeout */
  127. for (i = 0; i < 5; i++) {
  128. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  129. MII_ACCESS_MII_BUSY_)) {
  130. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  131. goto out;
  132. }
  133. udelay(10);
  134. }
  135. smsc_warn(DRV, "MII busy timeout!");
  136. out:
  137. spin_unlock_irqrestore(&pd->phy_lock, flags);
  138. return reg;
  139. }
  140. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  141. u16 val)
  142. {
  143. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  144. unsigned long flags;
  145. u32 addr;
  146. int i, reg = -EIO;
  147. spin_lock_irqsave(&pd->phy_lock, flags);
  148. /* confirm MII not busy */
  149. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  150. smsc_warn(DRV, "MII is busy???");
  151. goto out;
  152. }
  153. /* put the data to write in the MAC */
  154. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  155. /* set the address, index & direction (write to PHY) */
  156. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  157. MII_ACCESS_MII_WRITE_;
  158. smsc9420_reg_write(pd, MII_ACCESS, addr);
  159. /* wait for write to complete with 50us timeout */
  160. for (i = 0; i < 5; i++) {
  161. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  162. MII_ACCESS_MII_BUSY_)) {
  163. reg = 0;
  164. goto out;
  165. }
  166. udelay(10);
  167. }
  168. smsc_warn(DRV, "MII busy timeout!");
  169. out:
  170. spin_unlock_irqrestore(&pd->phy_lock, flags);
  171. return reg;
  172. }
  173. /* Returns hash bit number for given MAC address
  174. * Example:
  175. * 01 00 5E 00 00 01 -> returns bit number 31 */
  176. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  177. {
  178. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  179. }
  180. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  181. {
  182. int timeout = 100000;
  183. BUG_ON(!pd);
  184. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  185. smsc_dbg(DRV, "smsc9420_eeprom_reload: Eeprom busy");
  186. return -EIO;
  187. }
  188. smsc9420_reg_write(pd, E2P_CMD,
  189. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  190. do {
  191. udelay(10);
  192. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  193. return 0;
  194. } while (timeout--);
  195. smsc_warn(DRV, "smsc9420_eeprom_reload: Eeprom timed out");
  196. return -EIO;
  197. }
  198. /* Standard ioctls for mii-tool */
  199. static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  200. {
  201. struct smsc9420_pdata *pd = netdev_priv(dev);
  202. if (!netif_running(dev) || !pd->phy_dev)
  203. return -EINVAL;
  204. return phy_mii_ioctl(pd->phy_dev, ifr, cmd);
  205. }
  206. static int smsc9420_ethtool_get_settings(struct net_device *dev,
  207. struct ethtool_cmd *cmd)
  208. {
  209. struct smsc9420_pdata *pd = netdev_priv(dev);
  210. if (!pd->phy_dev)
  211. return -ENODEV;
  212. cmd->maxtxpkt = 1;
  213. cmd->maxrxpkt = 1;
  214. return phy_ethtool_gset(pd->phy_dev, cmd);
  215. }
  216. static int smsc9420_ethtool_set_settings(struct net_device *dev,
  217. struct ethtool_cmd *cmd)
  218. {
  219. struct smsc9420_pdata *pd = netdev_priv(dev);
  220. if (!pd->phy_dev)
  221. return -ENODEV;
  222. return phy_ethtool_sset(pd->phy_dev, cmd);
  223. }
  224. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  225. struct ethtool_drvinfo *drvinfo)
  226. {
  227. struct smsc9420_pdata *pd = netdev_priv(netdev);
  228. strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
  229. strlcpy(drvinfo->bus_info, pci_name(pd->pdev),
  230. sizeof(drvinfo->bus_info));
  231. strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
  232. }
  233. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  234. {
  235. struct smsc9420_pdata *pd = netdev_priv(netdev);
  236. return pd->msg_enable;
  237. }
  238. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  239. {
  240. struct smsc9420_pdata *pd = netdev_priv(netdev);
  241. pd->msg_enable = data;
  242. }
  243. static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
  244. {
  245. struct smsc9420_pdata *pd = netdev_priv(netdev);
  246. if (!pd->phy_dev)
  247. return -ENODEV;
  248. return phy_start_aneg(pd->phy_dev);
  249. }
  250. static int smsc9420_ethtool_getregslen(struct net_device *dev)
  251. {
  252. /* all smsc9420 registers plus all phy registers */
  253. return 0x100 + (32 * sizeof(u32));
  254. }
  255. static void
  256. smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
  257. void *buf)
  258. {
  259. struct smsc9420_pdata *pd = netdev_priv(dev);
  260. struct phy_device *phy_dev = pd->phy_dev;
  261. unsigned int i, j = 0;
  262. u32 *data = buf;
  263. regs->version = smsc9420_reg_read(pd, ID_REV);
  264. for (i = 0; i < 0x100; i += (sizeof(u32)))
  265. data[j++] = smsc9420_reg_read(pd, i);
  266. // cannot read phy registers if the net device is down
  267. if (!phy_dev)
  268. return;
  269. for (i = 0; i <= 31; i++)
  270. data[j++] = smsc9420_mii_read(phy_dev->bus, phy_dev->addr, i);
  271. }
  272. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  273. {
  274. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  275. temp &= ~GPIO_CFG_EEPR_EN_;
  276. smsc9420_reg_write(pd, GPIO_CFG, temp);
  277. msleep(1);
  278. }
  279. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  280. {
  281. int timeout = 100;
  282. u32 e2cmd;
  283. smsc_dbg(HW, "op 0x%08x", op);
  284. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  285. smsc_warn(HW, "Busy at start");
  286. return -EBUSY;
  287. }
  288. e2cmd = op | E2P_CMD_EPC_BUSY_;
  289. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  290. do {
  291. msleep(1);
  292. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  293. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
  294. if (!timeout) {
  295. smsc_info(HW, "TIMED OUT");
  296. return -EAGAIN;
  297. }
  298. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  299. smsc_info(HW, "Error occurred during eeprom operation");
  300. return -EINVAL;
  301. }
  302. return 0;
  303. }
  304. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  305. u8 address, u8 *data)
  306. {
  307. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  308. int ret;
  309. smsc_dbg(HW, "address 0x%x", address);
  310. ret = smsc9420_eeprom_send_cmd(pd, op);
  311. if (!ret)
  312. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  313. return ret;
  314. }
  315. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  316. u8 address, u8 data)
  317. {
  318. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  319. int ret;
  320. smsc_dbg(HW, "address 0x%x, data 0x%x", address, data);
  321. ret = smsc9420_eeprom_send_cmd(pd, op);
  322. if (!ret) {
  323. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  324. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  325. ret = smsc9420_eeprom_send_cmd(pd, op);
  326. }
  327. return ret;
  328. }
  329. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  330. {
  331. return SMSC9420_EEPROM_SIZE;
  332. }
  333. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  334. struct ethtool_eeprom *eeprom, u8 *data)
  335. {
  336. struct smsc9420_pdata *pd = netdev_priv(dev);
  337. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  338. int len, i;
  339. smsc9420_eeprom_enable_access(pd);
  340. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  341. for (i = 0; i < len; i++) {
  342. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  343. if (ret < 0) {
  344. eeprom->len = 0;
  345. return ret;
  346. }
  347. }
  348. memcpy(data, &eeprom_data[eeprom->offset], len);
  349. eeprom->magic = SMSC9420_EEPROM_MAGIC;
  350. eeprom->len = len;
  351. return 0;
  352. }
  353. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  354. struct ethtool_eeprom *eeprom, u8 *data)
  355. {
  356. struct smsc9420_pdata *pd = netdev_priv(dev);
  357. int ret;
  358. if (eeprom->magic != SMSC9420_EEPROM_MAGIC)
  359. return -EINVAL;
  360. smsc9420_eeprom_enable_access(pd);
  361. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  362. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  363. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  364. /* Single byte write, according to man page */
  365. eeprom->len = 1;
  366. return ret;
  367. }
  368. static const struct ethtool_ops smsc9420_ethtool_ops = {
  369. .get_settings = smsc9420_ethtool_get_settings,
  370. .set_settings = smsc9420_ethtool_set_settings,
  371. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  372. .get_msglevel = smsc9420_ethtool_get_msglevel,
  373. .set_msglevel = smsc9420_ethtool_set_msglevel,
  374. .nway_reset = smsc9420_ethtool_nway_reset,
  375. .get_link = ethtool_op_get_link,
  376. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  377. .get_eeprom = smsc9420_ethtool_get_eeprom,
  378. .set_eeprom = smsc9420_ethtool_set_eeprom,
  379. .get_regs_len = smsc9420_ethtool_getregslen,
  380. .get_regs = smsc9420_ethtool_getregs,
  381. };
  382. /* Sets the device MAC address to dev_addr */
  383. static void smsc9420_set_mac_address(struct net_device *dev)
  384. {
  385. struct smsc9420_pdata *pd = netdev_priv(dev);
  386. u8 *dev_addr = dev->dev_addr;
  387. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  388. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  389. (dev_addr[1] << 8) | dev_addr[0];
  390. smsc9420_reg_write(pd, ADDRH, mac_high16);
  391. smsc9420_reg_write(pd, ADDRL, mac_low32);
  392. }
  393. static void smsc9420_check_mac_address(struct net_device *dev)
  394. {
  395. struct smsc9420_pdata *pd = netdev_priv(dev);
  396. /* Check if mac address has been specified when bringing interface up */
  397. if (is_valid_ether_addr(dev->dev_addr)) {
  398. smsc9420_set_mac_address(dev);
  399. smsc_dbg(PROBE, "MAC Address is specified by configuration");
  400. } else {
  401. /* Try reading mac address from device. if EEPROM is present
  402. * it will already have been set */
  403. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  404. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  405. dev->dev_addr[0] = (u8)(mac_low32);
  406. dev->dev_addr[1] = (u8)(mac_low32 >> 8);
  407. dev->dev_addr[2] = (u8)(mac_low32 >> 16);
  408. dev->dev_addr[3] = (u8)(mac_low32 >> 24);
  409. dev->dev_addr[4] = (u8)(mac_high16);
  410. dev->dev_addr[5] = (u8)(mac_high16 >> 8);
  411. if (is_valid_ether_addr(dev->dev_addr)) {
  412. /* eeprom values are valid so use them */
  413. smsc_dbg(PROBE, "Mac Address is read from EEPROM");
  414. } else {
  415. /* eeprom values are invalid, generate random MAC */
  416. random_ether_addr(dev->dev_addr);
  417. smsc9420_set_mac_address(dev);
  418. smsc_dbg(PROBE,
  419. "MAC Address is set to random_ether_addr");
  420. }
  421. }
  422. }
  423. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  424. {
  425. u32 dmac_control, mac_cr, dma_intr_ena;
  426. int timeout = 1000;
  427. /* disable TX DMAC */
  428. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  429. dmac_control &= (~DMAC_CONTROL_ST_);
  430. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  431. /* Wait max 10ms for transmit process to stop */
  432. while (--timeout) {
  433. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  434. break;
  435. udelay(10);
  436. }
  437. if (!timeout)
  438. smsc_warn(IFDOWN, "TX DMAC failed to stop");
  439. /* ACK Tx DMAC stop bit */
  440. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  441. /* mask TX DMAC interrupts */
  442. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  443. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  444. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  445. smsc9420_pci_flush_write(pd);
  446. /* stop MAC TX */
  447. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  448. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  449. smsc9420_pci_flush_write(pd);
  450. }
  451. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  452. {
  453. int i;
  454. BUG_ON(!pd->tx_ring);
  455. if (!pd->tx_buffers)
  456. return;
  457. for (i = 0; i < TX_RING_SIZE; i++) {
  458. struct sk_buff *skb = pd->tx_buffers[i].skb;
  459. if (skb) {
  460. BUG_ON(!pd->tx_buffers[i].mapping);
  461. pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
  462. skb->len, PCI_DMA_TODEVICE);
  463. dev_kfree_skb_any(skb);
  464. }
  465. pd->tx_ring[i].status = 0;
  466. pd->tx_ring[i].length = 0;
  467. pd->tx_ring[i].buffer1 = 0;
  468. pd->tx_ring[i].buffer2 = 0;
  469. }
  470. wmb();
  471. kfree(pd->tx_buffers);
  472. pd->tx_buffers = NULL;
  473. pd->tx_ring_head = 0;
  474. pd->tx_ring_tail = 0;
  475. }
  476. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  477. {
  478. int i;
  479. BUG_ON(!pd->rx_ring);
  480. if (!pd->rx_buffers)
  481. return;
  482. for (i = 0; i < RX_RING_SIZE; i++) {
  483. if (pd->rx_buffers[i].skb)
  484. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  485. if (pd->rx_buffers[i].mapping)
  486. pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
  487. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  488. pd->rx_ring[i].status = 0;
  489. pd->rx_ring[i].length = 0;
  490. pd->rx_ring[i].buffer1 = 0;
  491. pd->rx_ring[i].buffer2 = 0;
  492. }
  493. wmb();
  494. kfree(pd->rx_buffers);
  495. pd->rx_buffers = NULL;
  496. pd->rx_ring_head = 0;
  497. pd->rx_ring_tail = 0;
  498. }
  499. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  500. {
  501. int timeout = 1000;
  502. u32 mac_cr, dmac_control, dma_intr_ena;
  503. /* mask RX DMAC interrupts */
  504. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  505. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  506. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  507. smsc9420_pci_flush_write(pd);
  508. /* stop RX MAC prior to stoping DMA */
  509. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  510. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  511. smsc9420_pci_flush_write(pd);
  512. /* stop RX DMAC */
  513. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  514. dmac_control &= (~DMAC_CONTROL_SR_);
  515. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  516. smsc9420_pci_flush_write(pd);
  517. /* wait up to 10ms for receive to stop */
  518. while (--timeout) {
  519. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  520. break;
  521. udelay(10);
  522. }
  523. if (!timeout)
  524. smsc_warn(IFDOWN, "RX DMAC did not stop! timeout.");
  525. /* ACK the Rx DMAC stop bit */
  526. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  527. }
  528. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  529. {
  530. struct smsc9420_pdata *pd = dev_id;
  531. u32 int_cfg, int_sts, int_ctl;
  532. irqreturn_t ret = IRQ_NONE;
  533. ulong flags;
  534. BUG_ON(!pd);
  535. BUG_ON(!pd->base_addr);
  536. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  537. /* check if it's our interrupt */
  538. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  539. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  540. return IRQ_NONE;
  541. int_sts = smsc9420_reg_read(pd, INT_STAT);
  542. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  543. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  544. u32 ints_to_clear = 0;
  545. if (status & DMAC_STS_TX_) {
  546. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  547. netif_wake_queue(pd->dev);
  548. }
  549. if (status & DMAC_STS_RX_) {
  550. /* mask RX DMAC interrupts */
  551. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  552. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  553. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  554. smsc9420_pci_flush_write(pd);
  555. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  556. napi_schedule(&pd->napi);
  557. }
  558. if (ints_to_clear)
  559. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  560. ret = IRQ_HANDLED;
  561. }
  562. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  563. /* mask software interrupt */
  564. spin_lock_irqsave(&pd->int_lock, flags);
  565. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  566. int_ctl &= (~INT_CTL_SW_INT_EN_);
  567. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  568. spin_unlock_irqrestore(&pd->int_lock, flags);
  569. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  570. pd->software_irq_signal = true;
  571. smp_wmb();
  572. ret = IRQ_HANDLED;
  573. }
  574. /* to ensure PCI write completion, we must perform a PCI read */
  575. smsc9420_pci_flush_write(pd);
  576. return ret;
  577. }
  578. #ifdef CONFIG_NET_POLL_CONTROLLER
  579. static void smsc9420_poll_controller(struct net_device *dev)
  580. {
  581. disable_irq(dev->irq);
  582. smsc9420_isr(0, dev);
  583. enable_irq(dev->irq);
  584. }
  585. #endif /* CONFIG_NET_POLL_CONTROLLER */
  586. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  587. {
  588. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  589. smsc9420_reg_read(pd, BUS_MODE);
  590. udelay(2);
  591. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  592. smsc_warn(DRV, "Software reset not cleared");
  593. }
  594. static int smsc9420_stop(struct net_device *dev)
  595. {
  596. struct smsc9420_pdata *pd = netdev_priv(dev);
  597. u32 int_cfg;
  598. ulong flags;
  599. BUG_ON(!pd);
  600. BUG_ON(!pd->phy_dev);
  601. /* disable master interrupt */
  602. spin_lock_irqsave(&pd->int_lock, flags);
  603. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  604. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  605. spin_unlock_irqrestore(&pd->int_lock, flags);
  606. netif_tx_disable(dev);
  607. napi_disable(&pd->napi);
  608. smsc9420_stop_tx(pd);
  609. smsc9420_free_tx_ring(pd);
  610. smsc9420_stop_rx(pd);
  611. smsc9420_free_rx_ring(pd);
  612. free_irq(dev->irq, pd);
  613. smsc9420_dmac_soft_reset(pd);
  614. phy_stop(pd->phy_dev);
  615. phy_disconnect(pd->phy_dev);
  616. pd->phy_dev = NULL;
  617. mdiobus_unregister(pd->mii_bus);
  618. mdiobus_free(pd->mii_bus);
  619. return 0;
  620. }
  621. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  622. {
  623. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  624. dev->stats.rx_errors++;
  625. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  626. dev->stats.rx_over_errors++;
  627. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  628. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  629. dev->stats.rx_frame_errors++;
  630. else if (desc_status & RDES0_CRC_ERROR_)
  631. dev->stats.rx_crc_errors++;
  632. }
  633. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  634. dev->stats.rx_length_errors++;
  635. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  636. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  637. dev->stats.rx_length_errors++;
  638. if (desc_status & RDES0_MULTICAST_FRAME_)
  639. dev->stats.multicast++;
  640. }
  641. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  642. const u32 status)
  643. {
  644. struct net_device *dev = pd->dev;
  645. struct sk_buff *skb;
  646. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  647. >> RDES0_FRAME_LENGTH_SHFT_;
  648. /* remove crc from packet lendth */
  649. packet_length -= 4;
  650. if (pd->rx_csum)
  651. packet_length -= 2;
  652. dev->stats.rx_packets++;
  653. dev->stats.rx_bytes += packet_length;
  654. pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
  655. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  656. pd->rx_buffers[index].mapping = 0;
  657. skb = pd->rx_buffers[index].skb;
  658. pd->rx_buffers[index].skb = NULL;
  659. if (pd->rx_csum) {
  660. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  661. NET_IP_ALIGN + packet_length + 4);
  662. put_unaligned_le16(hw_csum, &skb->csum);
  663. skb->ip_summed = CHECKSUM_COMPLETE;
  664. }
  665. skb_reserve(skb, NET_IP_ALIGN);
  666. skb_put(skb, packet_length);
  667. skb->protocol = eth_type_trans(skb, dev);
  668. netif_receive_skb(skb);
  669. }
  670. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  671. {
  672. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  673. dma_addr_t mapping;
  674. BUG_ON(pd->rx_buffers[index].skb);
  675. BUG_ON(pd->rx_buffers[index].mapping);
  676. if (unlikely(!skb)) {
  677. smsc_warn(RX_ERR, "Failed to allocate new skb!");
  678. return -ENOMEM;
  679. }
  680. skb->dev = pd->dev;
  681. mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
  682. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  683. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  684. dev_kfree_skb_any(skb);
  685. smsc_warn(RX_ERR, "pci_map_single failed!");
  686. return -ENOMEM;
  687. }
  688. pd->rx_buffers[index].skb = skb;
  689. pd->rx_buffers[index].mapping = mapping;
  690. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  691. pd->rx_ring[index].status = RDES0_OWN_;
  692. wmb();
  693. return 0;
  694. }
  695. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  696. {
  697. while (pd->rx_ring_tail != pd->rx_ring_head) {
  698. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  699. break;
  700. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  701. }
  702. }
  703. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  704. {
  705. struct smsc9420_pdata *pd =
  706. container_of(napi, struct smsc9420_pdata, napi);
  707. struct net_device *dev = pd->dev;
  708. u32 drop_frame_cnt, dma_intr_ena, status;
  709. int work_done;
  710. for (work_done = 0; work_done < budget; work_done++) {
  711. rmb();
  712. status = pd->rx_ring[pd->rx_ring_head].status;
  713. /* stop if DMAC owns this dma descriptor */
  714. if (status & RDES0_OWN_)
  715. break;
  716. smsc9420_rx_count_stats(dev, status);
  717. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  718. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  719. smsc9420_alloc_new_rx_buffers(pd);
  720. }
  721. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  722. dev->stats.rx_dropped +=
  723. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  724. /* Kick RXDMA */
  725. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  726. smsc9420_pci_flush_write(pd);
  727. if (work_done < budget) {
  728. napi_complete(&pd->napi);
  729. /* re-enable RX DMA interrupts */
  730. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  731. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  732. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  733. smsc9420_pci_flush_write(pd);
  734. }
  735. return work_done;
  736. }
  737. static void
  738. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  739. {
  740. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  741. dev->stats.tx_errors++;
  742. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  743. TDES0_EXCESSIVE_COLLISIONS_))
  744. dev->stats.tx_aborted_errors++;
  745. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  746. dev->stats.tx_carrier_errors++;
  747. } else {
  748. dev->stats.tx_packets++;
  749. dev->stats.tx_bytes += (length & 0x7FF);
  750. }
  751. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  752. dev->stats.collisions += 16;
  753. } else {
  754. dev->stats.collisions +=
  755. (status & TDES0_COLLISION_COUNT_MASK_) >>
  756. TDES0_COLLISION_COUNT_SHFT_;
  757. }
  758. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  759. dev->stats.tx_heartbeat_errors++;
  760. }
  761. /* Check for completed dma transfers, update stats and free skbs */
  762. static void smsc9420_complete_tx(struct net_device *dev)
  763. {
  764. struct smsc9420_pdata *pd = netdev_priv(dev);
  765. while (pd->tx_ring_tail != pd->tx_ring_head) {
  766. int index = pd->tx_ring_tail;
  767. u32 status, length;
  768. rmb();
  769. status = pd->tx_ring[index].status;
  770. length = pd->tx_ring[index].length;
  771. /* Check if DMA still owns this descriptor */
  772. if (unlikely(TDES0_OWN_ & status))
  773. break;
  774. smsc9420_tx_update_stats(dev, status, length);
  775. BUG_ON(!pd->tx_buffers[index].skb);
  776. BUG_ON(!pd->tx_buffers[index].mapping);
  777. pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
  778. pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
  779. pd->tx_buffers[index].mapping = 0;
  780. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  781. pd->tx_buffers[index].skb = NULL;
  782. pd->tx_ring[index].buffer1 = 0;
  783. wmb();
  784. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  785. }
  786. }
  787. static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb,
  788. struct net_device *dev)
  789. {
  790. struct smsc9420_pdata *pd = netdev_priv(dev);
  791. dma_addr_t mapping;
  792. int index = pd->tx_ring_head;
  793. u32 tmp_desc1;
  794. bool about_to_take_last_desc =
  795. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  796. smsc9420_complete_tx(dev);
  797. rmb();
  798. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  799. BUG_ON(pd->tx_buffers[index].skb);
  800. BUG_ON(pd->tx_buffers[index].mapping);
  801. mapping = pci_map_single(pd->pdev, skb->data,
  802. skb->len, PCI_DMA_TODEVICE);
  803. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  804. smsc_warn(TX_ERR, "pci_map_single failed, dropping packet");
  805. return NETDEV_TX_BUSY;
  806. }
  807. pd->tx_buffers[index].skb = skb;
  808. pd->tx_buffers[index].mapping = mapping;
  809. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  810. if (unlikely(about_to_take_last_desc)) {
  811. tmp_desc1 |= TDES1_IC_;
  812. netif_stop_queue(pd->dev);
  813. }
  814. /* check if we are at the last descriptor and need to set EOR */
  815. if (unlikely(index == (TX_RING_SIZE - 1)))
  816. tmp_desc1 |= TDES1_TER_;
  817. pd->tx_ring[index].buffer1 = mapping;
  818. pd->tx_ring[index].length = tmp_desc1;
  819. wmb();
  820. /* increment head */
  821. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  822. /* assign ownership to DMAC */
  823. pd->tx_ring[index].status = TDES0_OWN_;
  824. wmb();
  825. skb_tx_timestamp(skb);
  826. /* kick the DMA */
  827. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  828. smsc9420_pci_flush_write(pd);
  829. return NETDEV_TX_OK;
  830. }
  831. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  832. {
  833. struct smsc9420_pdata *pd = netdev_priv(dev);
  834. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  835. dev->stats.rx_dropped +=
  836. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  837. return &dev->stats;
  838. }
  839. static void smsc9420_set_multicast_list(struct net_device *dev)
  840. {
  841. struct smsc9420_pdata *pd = netdev_priv(dev);
  842. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  843. if (dev->flags & IFF_PROMISC) {
  844. smsc_dbg(HW, "Promiscuous Mode Enabled");
  845. mac_cr |= MAC_CR_PRMS_;
  846. mac_cr &= (~MAC_CR_MCPAS_);
  847. mac_cr &= (~MAC_CR_HPFILT_);
  848. } else if (dev->flags & IFF_ALLMULTI) {
  849. smsc_dbg(HW, "Receive all Multicast Enabled");
  850. mac_cr &= (~MAC_CR_PRMS_);
  851. mac_cr |= MAC_CR_MCPAS_;
  852. mac_cr &= (~MAC_CR_HPFILT_);
  853. } else if (!netdev_mc_empty(dev)) {
  854. struct netdev_hw_addr *ha;
  855. u32 hash_lo = 0, hash_hi = 0;
  856. smsc_dbg(HW, "Multicast filter enabled");
  857. netdev_for_each_mc_addr(ha, dev) {
  858. u32 bit_num = smsc9420_hash(ha->addr);
  859. u32 mask = 1 << (bit_num & 0x1F);
  860. if (bit_num & 0x20)
  861. hash_hi |= mask;
  862. else
  863. hash_lo |= mask;
  864. }
  865. smsc9420_reg_write(pd, HASHH, hash_hi);
  866. smsc9420_reg_write(pd, HASHL, hash_lo);
  867. mac_cr &= (~MAC_CR_PRMS_);
  868. mac_cr &= (~MAC_CR_MCPAS_);
  869. mac_cr |= MAC_CR_HPFILT_;
  870. } else {
  871. smsc_dbg(HW, "Receive own packets only.");
  872. smsc9420_reg_write(pd, HASHH, 0);
  873. smsc9420_reg_write(pd, HASHL, 0);
  874. mac_cr &= (~MAC_CR_PRMS_);
  875. mac_cr &= (~MAC_CR_MCPAS_);
  876. mac_cr &= (~MAC_CR_HPFILT_);
  877. }
  878. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  879. smsc9420_pci_flush_write(pd);
  880. }
  881. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  882. {
  883. struct phy_device *phy_dev = pd->phy_dev;
  884. u32 flow;
  885. if (phy_dev->duplex == DUPLEX_FULL) {
  886. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  887. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  888. u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  889. if (cap & FLOW_CTRL_RX)
  890. flow = 0xFFFF0002;
  891. else
  892. flow = 0;
  893. smsc_info(LINK, "rx pause %s, tx pause %s",
  894. (cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
  895. (cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
  896. } else {
  897. smsc_info(LINK, "half duplex");
  898. flow = 0;
  899. }
  900. smsc9420_reg_write(pd, FLOW, flow);
  901. }
  902. /* Update link mode if anything has changed. Called periodically when the
  903. * PHY is in polling mode, even if nothing has changed. */
  904. static void smsc9420_phy_adjust_link(struct net_device *dev)
  905. {
  906. struct smsc9420_pdata *pd = netdev_priv(dev);
  907. struct phy_device *phy_dev = pd->phy_dev;
  908. int carrier;
  909. if (phy_dev->duplex != pd->last_duplex) {
  910. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  911. if (phy_dev->duplex) {
  912. smsc_dbg(LINK, "full duplex mode");
  913. mac_cr |= MAC_CR_FDPX_;
  914. } else {
  915. smsc_dbg(LINK, "half duplex mode");
  916. mac_cr &= ~MAC_CR_FDPX_;
  917. }
  918. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  919. smsc9420_phy_update_flowcontrol(pd);
  920. pd->last_duplex = phy_dev->duplex;
  921. }
  922. carrier = netif_carrier_ok(dev);
  923. if (carrier != pd->last_carrier) {
  924. if (carrier)
  925. smsc_dbg(LINK, "carrier OK");
  926. else
  927. smsc_dbg(LINK, "no carrier");
  928. pd->last_carrier = carrier;
  929. }
  930. }
  931. static int smsc9420_mii_probe(struct net_device *dev)
  932. {
  933. struct smsc9420_pdata *pd = netdev_priv(dev);
  934. struct phy_device *phydev = NULL;
  935. BUG_ON(pd->phy_dev);
  936. /* Device only supports internal PHY at address 1 */
  937. if (!pd->mii_bus->phy_map[1]) {
  938. pr_err("%s: no PHY found at address 1\n", dev->name);
  939. return -ENODEV;
  940. }
  941. phydev = pd->mii_bus->phy_map[1];
  942. smsc_info(PROBE, "PHY addr %d, phy_id 0x%08X", phydev->addr,
  943. phydev->phy_id);
  944. phydev = phy_connect(dev, dev_name(&phydev->dev),
  945. smsc9420_phy_adjust_link, 0, PHY_INTERFACE_MODE_MII);
  946. if (IS_ERR(phydev)) {
  947. pr_err("%s: Could not attach to PHY\n", dev->name);
  948. return PTR_ERR(phydev);
  949. }
  950. pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
  951. dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
  952. /* mask with MAC supported features */
  953. phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
  954. SUPPORTED_Asym_Pause);
  955. phydev->advertising = phydev->supported;
  956. pd->phy_dev = phydev;
  957. pd->last_duplex = -1;
  958. pd->last_carrier = -1;
  959. return 0;
  960. }
  961. static int smsc9420_mii_init(struct net_device *dev)
  962. {
  963. struct smsc9420_pdata *pd = netdev_priv(dev);
  964. int err = -ENXIO, i;
  965. pd->mii_bus = mdiobus_alloc();
  966. if (!pd->mii_bus) {
  967. err = -ENOMEM;
  968. goto err_out_1;
  969. }
  970. pd->mii_bus->name = DRV_MDIONAME;
  971. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  972. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  973. pd->mii_bus->priv = pd;
  974. pd->mii_bus->read = smsc9420_mii_read;
  975. pd->mii_bus->write = smsc9420_mii_write;
  976. pd->mii_bus->irq = pd->phy_irq;
  977. for (i = 0; i < PHY_MAX_ADDR; ++i)
  978. pd->mii_bus->irq[i] = PHY_POLL;
  979. /* Mask all PHYs except ID 1 (internal) */
  980. pd->mii_bus->phy_mask = ~(1 << 1);
  981. if (mdiobus_register(pd->mii_bus)) {
  982. smsc_warn(PROBE, "Error registering mii bus");
  983. goto err_out_free_bus_2;
  984. }
  985. if (smsc9420_mii_probe(dev) < 0) {
  986. smsc_warn(PROBE, "Error probing mii bus");
  987. goto err_out_unregister_bus_3;
  988. }
  989. return 0;
  990. err_out_unregister_bus_3:
  991. mdiobus_unregister(pd->mii_bus);
  992. err_out_free_bus_2:
  993. mdiobus_free(pd->mii_bus);
  994. err_out_1:
  995. return err;
  996. }
  997. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  998. {
  999. int i;
  1000. BUG_ON(!pd->tx_ring);
  1001. pd->tx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1002. TX_RING_SIZE), GFP_KERNEL);
  1003. if (!pd->tx_buffers) {
  1004. smsc_warn(IFUP, "Failed to allocated tx_buffers");
  1005. return -ENOMEM;
  1006. }
  1007. /* Initialize the TX Ring */
  1008. for (i = 0; i < TX_RING_SIZE; i++) {
  1009. pd->tx_buffers[i].skb = NULL;
  1010. pd->tx_buffers[i].mapping = 0;
  1011. pd->tx_ring[i].status = 0;
  1012. pd->tx_ring[i].length = 0;
  1013. pd->tx_ring[i].buffer1 = 0;
  1014. pd->tx_ring[i].buffer2 = 0;
  1015. }
  1016. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  1017. wmb();
  1018. pd->tx_ring_head = 0;
  1019. pd->tx_ring_tail = 0;
  1020. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  1021. smsc9420_pci_flush_write(pd);
  1022. return 0;
  1023. }
  1024. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  1025. {
  1026. int i;
  1027. BUG_ON(!pd->rx_ring);
  1028. pd->rx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1029. RX_RING_SIZE), GFP_KERNEL);
  1030. if (pd->rx_buffers == NULL) {
  1031. smsc_warn(IFUP, "Failed to allocated rx_buffers");
  1032. goto out;
  1033. }
  1034. /* initialize the rx ring */
  1035. for (i = 0; i < RX_RING_SIZE; i++) {
  1036. pd->rx_ring[i].status = 0;
  1037. pd->rx_ring[i].length = PKT_BUF_SZ;
  1038. pd->rx_ring[i].buffer2 = 0;
  1039. pd->rx_buffers[i].skb = NULL;
  1040. pd->rx_buffers[i].mapping = 0;
  1041. }
  1042. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  1043. /* now allocate the entire ring of skbs */
  1044. for (i = 0; i < RX_RING_SIZE; i++) {
  1045. if (smsc9420_alloc_rx_buffer(pd, i)) {
  1046. smsc_warn(IFUP, "failed to allocate rx skb %d", i);
  1047. goto out_free_rx_skbs;
  1048. }
  1049. }
  1050. pd->rx_ring_head = 0;
  1051. pd->rx_ring_tail = 0;
  1052. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  1053. smsc_dbg(IFUP, "VLAN1 = 0x%08x", smsc9420_reg_read(pd, VLAN1));
  1054. if (pd->rx_csum) {
  1055. /* Enable RX COE */
  1056. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1057. smsc9420_reg_write(pd, COE_CR, coe);
  1058. smsc_dbg(IFUP, "COE_CR = 0x%08x", coe);
  1059. }
  1060. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1061. smsc9420_pci_flush_write(pd);
  1062. return 0;
  1063. out_free_rx_skbs:
  1064. smsc9420_free_rx_ring(pd);
  1065. out:
  1066. return -ENOMEM;
  1067. }
  1068. static int smsc9420_open(struct net_device *dev)
  1069. {
  1070. struct smsc9420_pdata *pd;
  1071. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1072. unsigned long flags;
  1073. int result = 0, timeout;
  1074. BUG_ON(!dev);
  1075. pd = netdev_priv(dev);
  1076. BUG_ON(!pd);
  1077. if (!is_valid_ether_addr(dev->dev_addr)) {
  1078. smsc_warn(IFUP, "dev_addr is not a valid MAC address");
  1079. result = -EADDRNOTAVAIL;
  1080. goto out_0;
  1081. }
  1082. netif_carrier_off(dev);
  1083. /* disable, mask and acknowledge all interrupts */
  1084. spin_lock_irqsave(&pd->int_lock, flags);
  1085. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1086. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1087. smsc9420_reg_write(pd, INT_CTL, 0);
  1088. spin_unlock_irqrestore(&pd->int_lock, flags);
  1089. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1090. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1091. smsc9420_pci_flush_write(pd);
  1092. if (request_irq(dev->irq, smsc9420_isr, IRQF_SHARED | IRQF_DISABLED,
  1093. DRV_NAME, pd)) {
  1094. smsc_warn(IFUP, "Unable to use IRQ = %d", dev->irq);
  1095. result = -ENODEV;
  1096. goto out_0;
  1097. }
  1098. smsc9420_dmac_soft_reset(pd);
  1099. /* make sure MAC_CR is sane */
  1100. smsc9420_reg_write(pd, MAC_CR, 0);
  1101. smsc9420_set_mac_address(dev);
  1102. /* Configure GPIO pins to drive LEDs */
  1103. smsc9420_reg_write(pd, GPIO_CFG,
  1104. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1105. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1106. #ifdef __BIG_ENDIAN
  1107. bus_mode |= BUS_MODE_DBO_;
  1108. #endif
  1109. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1110. smsc9420_pci_flush_write(pd);
  1111. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1112. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1113. smsc9420_reg_write(pd, DMAC_CONTROL,
  1114. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1115. smsc9420_pci_flush_write(pd);
  1116. /* test the IRQ connection to the ISR */
  1117. smsc_dbg(IFUP, "Testing ISR using IRQ %d", dev->irq);
  1118. pd->software_irq_signal = false;
  1119. spin_lock_irqsave(&pd->int_lock, flags);
  1120. /* configure interrupt deassertion timer and enable interrupts */
  1121. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1122. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1123. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1124. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1125. /* unmask software interrupt */
  1126. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1127. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1128. spin_unlock_irqrestore(&pd->int_lock, flags);
  1129. smsc9420_pci_flush_write(pd);
  1130. timeout = 1000;
  1131. while (timeout--) {
  1132. if (pd->software_irq_signal)
  1133. break;
  1134. msleep(1);
  1135. }
  1136. /* disable interrupts */
  1137. spin_lock_irqsave(&pd->int_lock, flags);
  1138. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1139. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1140. spin_unlock_irqrestore(&pd->int_lock, flags);
  1141. if (!pd->software_irq_signal) {
  1142. smsc_warn(IFUP, "ISR failed signaling test");
  1143. result = -ENODEV;
  1144. goto out_free_irq_1;
  1145. }
  1146. smsc_dbg(IFUP, "ISR passed test using IRQ %d", dev->irq);
  1147. result = smsc9420_alloc_tx_ring(pd);
  1148. if (result) {
  1149. smsc_warn(IFUP, "Failed to Initialize tx dma ring");
  1150. result = -ENOMEM;
  1151. goto out_free_irq_1;
  1152. }
  1153. result = smsc9420_alloc_rx_ring(pd);
  1154. if (result) {
  1155. smsc_warn(IFUP, "Failed to Initialize rx dma ring");
  1156. result = -ENOMEM;
  1157. goto out_free_tx_ring_2;
  1158. }
  1159. result = smsc9420_mii_init(dev);
  1160. if (result) {
  1161. smsc_warn(IFUP, "Failed to initialize Phy");
  1162. result = -ENODEV;
  1163. goto out_free_rx_ring_3;
  1164. }
  1165. /* Bring the PHY up */
  1166. phy_start(pd->phy_dev);
  1167. napi_enable(&pd->napi);
  1168. /* start tx and rx */
  1169. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1170. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1171. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1172. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1173. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1174. smsc9420_pci_flush_write(pd);
  1175. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1176. dma_intr_ena |=
  1177. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1178. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1179. smsc9420_pci_flush_write(pd);
  1180. netif_wake_queue(dev);
  1181. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1182. /* enable interrupts */
  1183. spin_lock_irqsave(&pd->int_lock, flags);
  1184. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1185. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1186. spin_unlock_irqrestore(&pd->int_lock, flags);
  1187. return 0;
  1188. out_free_rx_ring_3:
  1189. smsc9420_free_rx_ring(pd);
  1190. out_free_tx_ring_2:
  1191. smsc9420_free_tx_ring(pd);
  1192. out_free_irq_1:
  1193. free_irq(dev->irq, pd);
  1194. out_0:
  1195. return result;
  1196. }
  1197. #ifdef CONFIG_PM
  1198. static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
  1199. {
  1200. struct net_device *dev = pci_get_drvdata(pdev);
  1201. struct smsc9420_pdata *pd = netdev_priv(dev);
  1202. u32 int_cfg;
  1203. ulong flags;
  1204. /* disable interrupts */
  1205. spin_lock_irqsave(&pd->int_lock, flags);
  1206. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1207. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1208. spin_unlock_irqrestore(&pd->int_lock, flags);
  1209. if (netif_running(dev)) {
  1210. netif_tx_disable(dev);
  1211. smsc9420_stop_tx(pd);
  1212. smsc9420_free_tx_ring(pd);
  1213. napi_disable(&pd->napi);
  1214. smsc9420_stop_rx(pd);
  1215. smsc9420_free_rx_ring(pd);
  1216. free_irq(dev->irq, pd);
  1217. netif_device_detach(dev);
  1218. }
  1219. pci_save_state(pdev);
  1220. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1221. pci_disable_device(pdev);
  1222. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1223. return 0;
  1224. }
  1225. static int smsc9420_resume(struct pci_dev *pdev)
  1226. {
  1227. struct net_device *dev = pci_get_drvdata(pdev);
  1228. struct smsc9420_pdata *pd = netdev_priv(dev);
  1229. int err;
  1230. pci_set_power_state(pdev, PCI_D0);
  1231. pci_restore_state(pdev);
  1232. err = pci_enable_device(pdev);
  1233. if (err)
  1234. return err;
  1235. pci_set_master(pdev);
  1236. err = pci_enable_wake(pdev, 0, 0);
  1237. if (err)
  1238. smsc_warn(IFUP, "pci_enable_wake failed: %d", err);
  1239. if (netif_running(dev)) {
  1240. err = smsc9420_open(dev);
  1241. netif_device_attach(dev);
  1242. }
  1243. return err;
  1244. }
  1245. #endif /* CONFIG_PM */
  1246. static const struct net_device_ops smsc9420_netdev_ops = {
  1247. .ndo_open = smsc9420_open,
  1248. .ndo_stop = smsc9420_stop,
  1249. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1250. .ndo_get_stats = smsc9420_get_stats,
  1251. .ndo_set_rx_mode = smsc9420_set_multicast_list,
  1252. .ndo_do_ioctl = smsc9420_do_ioctl,
  1253. .ndo_validate_addr = eth_validate_addr,
  1254. .ndo_set_mac_address = eth_mac_addr,
  1255. #ifdef CONFIG_NET_POLL_CONTROLLER
  1256. .ndo_poll_controller = smsc9420_poll_controller,
  1257. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1258. };
  1259. static int __devinit
  1260. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1261. {
  1262. struct net_device *dev;
  1263. struct smsc9420_pdata *pd;
  1264. void __iomem *virt_addr;
  1265. int result = 0;
  1266. u32 id_rev;
  1267. printk(KERN_INFO DRV_DESCRIPTION " version " DRV_VERSION "\n");
  1268. /* First do the PCI initialisation */
  1269. result = pci_enable_device(pdev);
  1270. if (unlikely(result)) {
  1271. printk(KERN_ERR "Cannot enable smsc9420\n");
  1272. goto out_0;
  1273. }
  1274. pci_set_master(pdev);
  1275. dev = alloc_etherdev(sizeof(*pd));
  1276. if (!dev) {
  1277. printk(KERN_ERR "ether device alloc failed\n");
  1278. goto out_disable_pci_device_1;
  1279. }
  1280. SET_NETDEV_DEV(dev, &pdev->dev);
  1281. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1282. printk(KERN_ERR "Cannot find PCI device base address\n");
  1283. goto out_free_netdev_2;
  1284. }
  1285. if ((pci_request_regions(pdev, DRV_NAME))) {
  1286. printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n");
  1287. goto out_free_netdev_2;
  1288. }
  1289. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1290. printk(KERN_ERR "No usable DMA configuration, aborting.\n");
  1291. goto out_free_regions_3;
  1292. }
  1293. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1294. pci_resource_len(pdev, SMSC_BAR));
  1295. if (!virt_addr) {
  1296. printk(KERN_ERR "Cannot map device registers, aborting.\n");
  1297. goto out_free_regions_3;
  1298. }
  1299. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1300. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1301. dev->base_addr = (ulong)virt_addr;
  1302. pd = netdev_priv(dev);
  1303. /* pci descriptors are created in the PCI consistent area */
  1304. pd->rx_ring = pci_alloc_consistent(pdev,
  1305. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
  1306. sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
  1307. &pd->rx_dma_addr);
  1308. if (!pd->rx_ring)
  1309. goto out_free_io_4;
  1310. /* descriptors are aligned due to the nature of pci_alloc_consistent */
  1311. pd->tx_ring = (struct smsc9420_dma_desc *)
  1312. (pd->rx_ring + RX_RING_SIZE);
  1313. pd->tx_dma_addr = pd->rx_dma_addr +
  1314. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1315. pd->pdev = pdev;
  1316. pd->dev = dev;
  1317. pd->base_addr = virt_addr;
  1318. pd->msg_enable = smsc_debug;
  1319. pd->rx_csum = true;
  1320. smsc_dbg(PROBE, "lan_base=0x%08lx", (ulong)virt_addr);
  1321. id_rev = smsc9420_reg_read(pd, ID_REV);
  1322. switch (id_rev & 0xFFFF0000) {
  1323. case 0x94200000:
  1324. smsc_info(PROBE, "LAN9420 identified, ID_REV=0x%08X", id_rev);
  1325. break;
  1326. default:
  1327. smsc_warn(PROBE, "LAN9420 NOT identified");
  1328. smsc_warn(PROBE, "ID_REV=0x%08X", id_rev);
  1329. goto out_free_dmadesc_5;
  1330. }
  1331. smsc9420_dmac_soft_reset(pd);
  1332. smsc9420_eeprom_reload(pd);
  1333. smsc9420_check_mac_address(dev);
  1334. dev->netdev_ops = &smsc9420_netdev_ops;
  1335. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1336. dev->irq = pdev->irq;
  1337. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
  1338. result = register_netdev(dev);
  1339. if (result) {
  1340. smsc_warn(PROBE, "error %i registering device", result);
  1341. goto out_free_dmadesc_5;
  1342. }
  1343. pci_set_drvdata(pdev, dev);
  1344. spin_lock_init(&pd->int_lock);
  1345. spin_lock_init(&pd->phy_lock);
  1346. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1347. return 0;
  1348. out_free_dmadesc_5:
  1349. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1350. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1351. out_free_io_4:
  1352. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1353. out_free_regions_3:
  1354. pci_release_regions(pdev);
  1355. out_free_netdev_2:
  1356. free_netdev(dev);
  1357. out_disable_pci_device_1:
  1358. pci_disable_device(pdev);
  1359. out_0:
  1360. return -ENODEV;
  1361. }
  1362. static void __devexit smsc9420_remove(struct pci_dev *pdev)
  1363. {
  1364. struct net_device *dev;
  1365. struct smsc9420_pdata *pd;
  1366. dev = pci_get_drvdata(pdev);
  1367. if (!dev)
  1368. return;
  1369. pci_set_drvdata(pdev, NULL);
  1370. pd = netdev_priv(dev);
  1371. unregister_netdev(dev);
  1372. /* tx_buffers and rx_buffers are freed in stop */
  1373. BUG_ON(pd->tx_buffers);
  1374. BUG_ON(pd->rx_buffers);
  1375. BUG_ON(!pd->tx_ring);
  1376. BUG_ON(!pd->rx_ring);
  1377. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1378. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1379. iounmap(pd->base_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1380. pci_release_regions(pdev);
  1381. free_netdev(dev);
  1382. pci_disable_device(pdev);
  1383. }
  1384. static struct pci_driver smsc9420_driver = {
  1385. .name = DRV_NAME,
  1386. .id_table = smsc9420_id_table,
  1387. .probe = smsc9420_probe,
  1388. .remove = __devexit_p(smsc9420_remove),
  1389. #ifdef CONFIG_PM
  1390. .suspend = smsc9420_suspend,
  1391. .resume = smsc9420_resume,
  1392. #endif /* CONFIG_PM */
  1393. };
  1394. static int __init smsc9420_init_module(void)
  1395. {
  1396. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1397. return pci_register_driver(&smsc9420_driver);
  1398. }
  1399. static void __exit smsc9420_exit_module(void)
  1400. {
  1401. pci_unregister_driver(&smsc9420_driver);
  1402. }
  1403. module_init(smsc9420_init_module);
  1404. module_exit(smsc9420_exit_module);