nv50_pm.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. /*
  2. * Copyright 2010 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #include "drmP.h"
  25. #include "nouveau_drv.h"
  26. #include "nouveau_bios.h"
  27. #include "nouveau_hw.h"
  28. #include "nouveau_pm.h"
  29. #include "nouveau_hwsq.h"
  30. enum clk_src {
  31. clk_src_crystal,
  32. clk_src_href,
  33. clk_src_hclk,
  34. clk_src_hclkm3,
  35. clk_src_hclkm3d2,
  36. clk_src_host,
  37. clk_src_nvclk,
  38. clk_src_sclk,
  39. clk_src_mclk,
  40. clk_src_vdec,
  41. clk_src_dom6
  42. };
  43. static u32 read_clk(struct drm_device *, enum clk_src);
  44. static u32
  45. read_div(struct drm_device *dev)
  46. {
  47. struct drm_nouveau_private *dev_priv = dev->dev_private;
  48. switch (dev_priv->chipset) {
  49. case 0x50: /* it exists, but only has bit 31, not the dividers.. */
  50. case 0x84:
  51. case 0x86:
  52. case 0x98:
  53. case 0xa0:
  54. return nv_rd32(dev, 0x004700);
  55. case 0x92:
  56. case 0x94:
  57. case 0x96:
  58. return nv_rd32(dev, 0x004800);
  59. default:
  60. return 0x00000000;
  61. }
  62. }
  63. static u32
  64. read_pll_src(struct drm_device *dev, u32 base)
  65. {
  66. struct drm_nouveau_private *dev_priv = dev->dev_private;
  67. u32 coef, ref = read_clk(dev, clk_src_crystal);
  68. u32 rsel = nv_rd32(dev, 0x00e18c);
  69. int P, N, M, id;
  70. switch (dev_priv->chipset) {
  71. case 0x50:
  72. case 0xa0:
  73. switch (base) {
  74. case 0x4020:
  75. case 0x4028: id = !!(rsel & 0x00000004); break;
  76. case 0x4008: id = !!(rsel & 0x00000008); break;
  77. case 0x4030: id = 0; break;
  78. default:
  79. NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
  80. return 0;
  81. }
  82. coef = nv_rd32(dev, 0x00e81c + (id * 0x0c));
  83. ref *= (coef & 0x01000000) ? 2 : 4;
  84. P = (coef & 0x00070000) >> 16;
  85. N = ((coef & 0x0000ff00) >> 8) + 1;
  86. M = ((coef & 0x000000ff) >> 0) + 1;
  87. break;
  88. case 0x84:
  89. case 0x86:
  90. case 0x92:
  91. coef = nv_rd32(dev, 0x00e81c);
  92. P = (coef & 0x00070000) >> 16;
  93. N = (coef & 0x0000ff00) >> 8;
  94. M = (coef & 0x000000ff) >> 0;
  95. break;
  96. case 0x94:
  97. case 0x96:
  98. case 0x98:
  99. rsel = nv_rd32(dev, 0x00c050);
  100. switch (base) {
  101. case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
  102. case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
  103. case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
  104. case 0x4030: rsel = 3; break;
  105. default:
  106. NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
  107. return 0;
  108. }
  109. switch (rsel) {
  110. case 0: id = 1; break;
  111. case 1: return read_clk(dev, clk_src_crystal);
  112. case 2: return read_clk(dev, clk_src_href);
  113. case 3: id = 0; break;
  114. }
  115. coef = nv_rd32(dev, 0x00e81c + (id * 0x28));
  116. P = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7;
  117. P += (coef & 0x00070000) >> 16;
  118. N = (coef & 0x0000ff00) >> 8;
  119. M = (coef & 0x000000ff) >> 0;
  120. break;
  121. default:
  122. BUG_ON(1);
  123. }
  124. if (M)
  125. return (ref * N / M) >> P;
  126. return 0;
  127. }
  128. static u32
  129. read_pll_ref(struct drm_device *dev, u32 base)
  130. {
  131. u32 src, mast = nv_rd32(dev, 0x00c040);
  132. switch (base) {
  133. case 0x004028:
  134. src = !!(mast & 0x00200000);
  135. break;
  136. case 0x004020:
  137. src = !!(mast & 0x00400000);
  138. break;
  139. case 0x004008:
  140. src = !!(mast & 0x00010000);
  141. break;
  142. case 0x004030:
  143. src = !!(mast & 0x02000000);
  144. break;
  145. case 0x00e810:
  146. return read_clk(dev, clk_src_crystal);
  147. default:
  148. NV_ERROR(dev, "bad pll 0x%06x\n", base);
  149. return 0;
  150. }
  151. if (src)
  152. return read_clk(dev, clk_src_href);
  153. return read_pll_src(dev, base);
  154. }
  155. static u32
  156. read_pll(struct drm_device *dev, u32 base)
  157. {
  158. struct drm_nouveau_private *dev_priv = dev->dev_private;
  159. u32 mast = nv_rd32(dev, 0x00c040);
  160. u32 ctrl = nv_rd32(dev, base + 0);
  161. u32 coef = nv_rd32(dev, base + 4);
  162. u32 ref = read_pll_ref(dev, base);
  163. u32 clk = 0;
  164. int N1, N2, M1, M2;
  165. if (base == 0x004028 && (mast & 0x00100000)) {
  166. /* wtf, appears to only disable post-divider on nva0 */
  167. if (dev_priv->chipset != 0xa0)
  168. return read_clk(dev, clk_src_dom6);
  169. }
  170. N2 = (coef & 0xff000000) >> 24;
  171. M2 = (coef & 0x00ff0000) >> 16;
  172. N1 = (coef & 0x0000ff00) >> 8;
  173. M1 = (coef & 0x000000ff);
  174. if ((ctrl & 0x80000000) && M1) {
  175. clk = ref * N1 / M1;
  176. if ((ctrl & 0x40000100) == 0x40000000) {
  177. if (M2)
  178. clk = clk * N2 / M2;
  179. else
  180. clk = 0;
  181. }
  182. }
  183. return clk;
  184. }
  185. static u32
  186. read_clk(struct drm_device *dev, enum clk_src src)
  187. {
  188. struct drm_nouveau_private *dev_priv = dev->dev_private;
  189. u32 mast = nv_rd32(dev, 0x00c040);
  190. u32 P = 0;
  191. switch (src) {
  192. case clk_src_crystal:
  193. return dev_priv->crystal;
  194. case clk_src_href:
  195. return 100000; /* PCIE reference clock */
  196. case clk_src_hclk:
  197. return read_clk(dev, clk_src_href) * 27778 / 10000;
  198. case clk_src_hclkm3:
  199. return read_clk(dev, clk_src_hclk) * 3;
  200. case clk_src_hclkm3d2:
  201. return read_clk(dev, clk_src_hclk) * 3 / 2;
  202. case clk_src_host:
  203. switch (mast & 0x30000000) {
  204. case 0x00000000: return read_clk(dev, clk_src_href);
  205. case 0x10000000: break;
  206. case 0x20000000: /* !0x50 */
  207. case 0x30000000: return read_clk(dev, clk_src_hclk);
  208. }
  209. break;
  210. case clk_src_nvclk:
  211. if (!(mast & 0x00100000))
  212. P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16;
  213. switch (mast & 0x00000003) {
  214. case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
  215. case 0x00000001: return read_clk(dev, clk_src_dom6);
  216. case 0x00000002: return read_pll(dev, 0x004020) >> P;
  217. case 0x00000003: return read_pll(dev, 0x004028) >> P;
  218. }
  219. break;
  220. case clk_src_sclk:
  221. P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16;
  222. switch (mast & 0x00000030) {
  223. case 0x00000000:
  224. if (mast & 0x00000080)
  225. return read_clk(dev, clk_src_host) >> P;
  226. return read_clk(dev, clk_src_crystal) >> P;
  227. case 0x00000010: break;
  228. case 0x00000020: return read_pll(dev, 0x004028) >> P;
  229. case 0x00000030: return read_pll(dev, 0x004020) >> P;
  230. }
  231. break;
  232. case clk_src_mclk:
  233. P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16;
  234. if (nv_rd32(dev, 0x004008) & 0x00000200) {
  235. switch (mast & 0x0000c000) {
  236. case 0x00000000:
  237. return read_clk(dev, clk_src_crystal) >> P;
  238. case 0x00008000:
  239. case 0x0000c000:
  240. return read_clk(dev, clk_src_href) >> P;
  241. }
  242. } else {
  243. return read_pll(dev, 0x004008) >> P;
  244. }
  245. break;
  246. case clk_src_vdec:
  247. P = (read_div(dev) & 0x00000700) >> 8;
  248. switch (dev_priv->chipset) {
  249. case 0x84:
  250. case 0x86:
  251. case 0x92:
  252. case 0x94:
  253. case 0x96:
  254. case 0xa0:
  255. switch (mast & 0x00000c00) {
  256. case 0x00000000:
  257. if (dev_priv->chipset == 0xa0) /* wtf?? */
  258. return read_clk(dev, clk_src_nvclk) >> P;
  259. return read_clk(dev, clk_src_crystal) >> P;
  260. case 0x00000400:
  261. return 0;
  262. case 0x00000800:
  263. if (mast & 0x01000000)
  264. return read_pll(dev, 0x004028) >> P;
  265. return read_pll(dev, 0x004030) >> P;
  266. case 0x00000c00:
  267. return read_clk(dev, clk_src_nvclk) >> P;
  268. }
  269. break;
  270. case 0x98:
  271. switch (mast & 0x00000c00) {
  272. case 0x00000000:
  273. return read_clk(dev, clk_src_nvclk) >> P;
  274. case 0x00000400:
  275. return 0;
  276. case 0x00000800:
  277. return read_clk(dev, clk_src_hclkm3d2) >> P;
  278. case 0x00000c00:
  279. return read_clk(dev, clk_src_mclk) >> P;
  280. }
  281. break;
  282. }
  283. break;
  284. case clk_src_dom6:
  285. switch (dev_priv->chipset) {
  286. case 0x50:
  287. case 0xa0:
  288. return read_pll(dev, 0x00e810) >> 2;
  289. case 0x84:
  290. case 0x86:
  291. case 0x92:
  292. case 0x94:
  293. case 0x96:
  294. case 0x98:
  295. P = (read_div(dev) & 0x00000007) >> 0;
  296. switch (mast & 0x0c000000) {
  297. case 0x00000000: return read_clk(dev, clk_src_href);
  298. case 0x04000000: break;
  299. case 0x08000000: return read_clk(dev, clk_src_hclk);
  300. case 0x0c000000:
  301. return read_clk(dev, clk_src_hclkm3) >> P;
  302. }
  303. break;
  304. default:
  305. break;
  306. }
  307. default:
  308. break;
  309. }
  310. NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast);
  311. return 0;
  312. }
  313. int
  314. nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
  315. {
  316. struct drm_nouveau_private *dev_priv = dev->dev_private;
  317. if (dev_priv->chipset == 0xaa ||
  318. dev_priv->chipset == 0xac)
  319. return 0;
  320. perflvl->core = read_clk(dev, clk_src_nvclk);
  321. perflvl->shader = read_clk(dev, clk_src_sclk);
  322. perflvl->memory = read_clk(dev, clk_src_mclk);
  323. if (dev_priv->chipset != 0x50) {
  324. perflvl->vdec = read_clk(dev, clk_src_vdec);
  325. perflvl->dom6 = read_clk(dev, clk_src_dom6);
  326. }
  327. return 0;
  328. }
  329. struct nv50_pm_state {
  330. struct hwsq_ucode mclk_hwsq;
  331. u32 mscript;
  332. u32 emast;
  333. u32 nctrl;
  334. u32 ncoef;
  335. u32 sctrl;
  336. u32 scoef;
  337. u32 amast;
  338. u32 pdivs;
  339. };
  340. static u32
  341. calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
  342. u32 clk, int *N1, int *M1, int *log2P)
  343. {
  344. struct nouveau_pll_vals coef;
  345. int ret;
  346. ret = get_pll_limits(dev, reg, pll);
  347. if (ret)
  348. return 0;
  349. pll->vco2.maxfreq = 0;
  350. pll->refclk = read_pll_ref(dev, reg);
  351. if (!pll->refclk)
  352. return 0;
  353. ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
  354. if (ret == 0)
  355. return 0;
  356. *N1 = coef.N1;
  357. *M1 = coef.M1;
  358. *log2P = coef.log2P;
  359. return ret;
  360. }
  361. static inline u32
  362. calc_div(u32 src, u32 target, int *div)
  363. {
  364. u32 clk0 = src, clk1 = src;
  365. for (*div = 0; *div <= 7; (*div)++) {
  366. if (clk0 <= target) {
  367. clk1 = clk0 << (*div ? 1 : 0);
  368. break;
  369. }
  370. clk0 >>= 1;
  371. }
  372. if (target - clk0 <= clk1 - target)
  373. return clk0;
  374. (*div)--;
  375. return clk1;
  376. }
  377. static inline u32
  378. clk_same(u32 a, u32 b)
  379. {
  380. return ((a / 1000) == (b / 1000));
  381. }
  382. static int
  383. calc_mclk(struct drm_device *dev, u32 freq, struct hwsq_ucode *hwsq)
  384. {
  385. struct drm_nouveau_private *dev_priv = dev->dev_private;
  386. struct pll_lims pll;
  387. u32 mast = nv_rd32(dev, 0x00c040);
  388. u32 ctrl = nv_rd32(dev, 0x004008);
  389. u32 coef = nv_rd32(dev, 0x00400c);
  390. u32 orig = ctrl;
  391. u32 crtc_mask = 0;
  392. int N, M, P;
  393. int ret, i;
  394. /* use pcie refclock if possible, otherwise use mpll */
  395. ctrl &= ~0x81ff0200;
  396. if (clk_same(freq, read_clk(dev, clk_src_href))) {
  397. ctrl |= 0x00000200 | (pll.log2p_bias << 19);
  398. } else {
  399. ret = calc_pll(dev, 0x4008, &pll, freq, &N, &M, &P);
  400. if (ret == 0)
  401. return -EINVAL;
  402. ctrl |= 0x80000000 | (P << 22) | (P << 16);
  403. ctrl |= pll.log2p_bias << 19;
  404. coef = (N << 8) | M;
  405. }
  406. mast &= ~0xc0000000; /* get MCLK_2 from HREF */
  407. mast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
  408. /* determine active crtcs */
  409. for (i = 0; i < 2; i++) {
  410. if (nv_rd32(dev, NV50_PDISPLAY_CRTC_C(i, CLOCK)))
  411. crtc_mask |= (1 << i);
  412. }
  413. /* build the ucode which will reclock the memory for us */
  414. hwsq_init(hwsq);
  415. if (crtc_mask) {
  416. hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
  417. hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
  418. }
  419. if (dev_priv->chipset >= 0x92)
  420. hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
  421. hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
  422. hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
  423. /* prepare memory controller */
  424. hwsq_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge banks and idle */
  425. hwsq_wr32(hwsq, 0x1002d0, 0x00000001); /* force refresh */
  426. hwsq_wr32(hwsq, 0x100210, 0x00000000); /* stop the automatic refresh */
  427. hwsq_wr32(hwsq, 0x1002dc, 0x00000001); /* start self refresh mode */
  428. /* reclock memory */
  429. hwsq_wr32(hwsq, 0xc040, mast);
  430. hwsq_wr32(hwsq, 0x4008, orig | 0x00000200); /* bypass MPLL */
  431. hwsq_wr32(hwsq, 0x400c, coef);
  432. hwsq_wr32(hwsq, 0x4008, ctrl);
  433. /* restart memory controller */
  434. hwsq_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge banks and idle */
  435. hwsq_wr32(hwsq, 0x1002dc, 0x00000000); /* stop self refresh mode */
  436. hwsq_wr32(hwsq, 0x100210, 0x80000000); /* restart automatic refresh */
  437. hwsq_usec(hwsq, 12); /* wait for the PLL to stabilize */
  438. hwsq_usec(hwsq, 48); /* may be unnecessary: causes flickering */
  439. hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
  440. hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
  441. if (dev_priv->chipset >= 0x92)
  442. hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
  443. hwsq_fini(hwsq);
  444. return 0;
  445. }
  446. void *
  447. nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
  448. {
  449. struct drm_nouveau_private *dev_priv = dev->dev_private;
  450. struct nv50_pm_state *info;
  451. struct pll_lims pll;
  452. int clk, ret = -EINVAL;
  453. int N, M, P1, P2;
  454. u32 out;
  455. if (dev_priv->chipset == 0xaa ||
  456. dev_priv->chipset == 0xac)
  457. return ERR_PTR(-ENODEV);
  458. info = kmalloc(sizeof(*info), GFP_KERNEL);
  459. if (!info)
  460. return ERR_PTR(-ENOMEM);
  461. /* core: for the moment at least, always use nvpll */
  462. clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
  463. if (clk == 0)
  464. goto error;
  465. info->emast = 0x00000003;
  466. info->nctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
  467. info->ncoef = (N << 8) | M;
  468. /* shader: tie to nvclk if possible, otherwise use spll. have to be
  469. * very careful that the shader clock is at least twice the core, or
  470. * some chipsets will be very unhappy. i expect most or all of these
  471. * cases will be handled by tying to nvclk, but it's possible there's
  472. * corners
  473. */
  474. if (P1-- && perflvl->shader == (perflvl->core << 1)) {
  475. info->emast |= 0x00000020;
  476. info->sctrl = 0x00000000 | (P1 << 19) | (P1 << 16);
  477. info->scoef = nv_rd32(dev, 0x004024);
  478. } else {
  479. clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
  480. if (clk == 0)
  481. goto error;
  482. info->emast |= 0x00000030;
  483. info->sctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
  484. info->scoef = (N << 8) | M;
  485. }
  486. /* memory: build hwsq ucode which we'll use to reclock memory */
  487. info->mclk_hwsq.len = 0;
  488. if (perflvl->memory) {
  489. clk = calc_mclk(dev, perflvl->memory, &info->mclk_hwsq);
  490. if (clk < 0) {
  491. ret = clk;
  492. goto error;
  493. }
  494. info->mscript = perflvl->memscript;
  495. }
  496. /* vdec: avoid modifying xpll until we know exactly how the other
  497. * clock domains work, i suspect at least some of them can also be
  498. * tied to xpll...
  499. */
  500. info->amast = nv_rd32(dev, 0x00c040);
  501. info->pdivs = read_div(dev);
  502. if (perflvl->vdec) {
  503. /* see how close we can get using nvclk as a source */
  504. clk = calc_div(perflvl->core, perflvl->vdec, &P1);
  505. /* see how close we can get using xpll/hclk as a source */
  506. if (dev_priv->chipset != 0x98)
  507. out = read_pll(dev, 0x004030);
  508. else
  509. out = read_clk(dev, clk_src_hclkm3d2);
  510. out = calc_div(out, perflvl->vdec, &P2);
  511. /* select whichever gets us closest */
  512. info->amast &= ~0x00000c00;
  513. info->pdivs &= ~0x00000700;
  514. if (abs((int)perflvl->vdec - clk) <=
  515. abs((int)perflvl->vdec - out)) {
  516. if (dev_priv->chipset != 0x98)
  517. info->amast |= 0x00000c00;
  518. info->pdivs |= P1 << 8;
  519. } else {
  520. info->amast |= 0x00000800;
  521. info->pdivs |= P2 << 8;
  522. }
  523. }
  524. /* dom6: nfi what this is, but we're limited to various combinations
  525. * of the host clock frequency
  526. */
  527. if (perflvl->dom6) {
  528. info->amast &= ~0x0c000000;
  529. if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
  530. info->amast |= 0x00000000;
  531. } else
  532. if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
  533. info->amast |= 0x08000000;
  534. } else {
  535. clk = read_clk(dev, clk_src_hclk) * 3;
  536. clk = calc_div(clk, perflvl->dom6, &P1);
  537. info->amast |= 0x0c000000;
  538. info->pdivs = (info->pdivs & ~0x00000007) | P1;
  539. }
  540. }
  541. return info;
  542. error:
  543. kfree(info);
  544. return ERR_PTR(ret);
  545. }
  546. static int
  547. prog_mclk(struct drm_device *dev, struct hwsq_ucode *hwsq)
  548. {
  549. struct drm_nouveau_private *dev_priv = dev->dev_private;
  550. u32 hwsq_data, hwsq_kick;
  551. int i;
  552. if (dev_priv->chipset < 0x90) {
  553. hwsq_data = 0x001400;
  554. hwsq_kick = 0x00000003;
  555. } else {
  556. hwsq_data = 0x080000;
  557. hwsq_kick = 0x00000001;
  558. }
  559. /* upload hwsq ucode */
  560. nv_mask(dev, 0x001098, 0x00000008, 0x00000000);
  561. nv_wr32(dev, 0x001304, 0x00000000);
  562. for (i = 0; i < hwsq->len / 4; i++)
  563. nv_wr32(dev, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
  564. nv_mask(dev, 0x001098, 0x00000018, 0x00000018);
  565. /* launch, and wait for completion */
  566. nv_wr32(dev, 0x00130c, hwsq_kick);
  567. if (!nv_wait(dev, 0x001308, 0x00000100, 0x00000000)) {
  568. NV_ERROR(dev, "hwsq ucode exec timed out\n");
  569. NV_ERROR(dev, "0x001308: 0x%08x\n", nv_rd32(dev, 0x001308));
  570. for (i = 0; i < hwsq->len / 4; i++) {
  571. NV_ERROR(dev, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
  572. nv_rd32(dev, 0x001400 + (i * 4)));
  573. }
  574. return -EIO;
  575. }
  576. return 0;
  577. }
  578. int
  579. nv50_pm_clocks_set(struct drm_device *dev, void *data)
  580. {
  581. struct drm_nouveau_private *dev_priv = dev->dev_private;
  582. struct nv50_pm_state *info = data;
  583. struct bit_entry M;
  584. int ret = 0;
  585. /* halt and idle execution engines */
  586. nv_mask(dev, 0x002504, 0x00000001, 0x00000001);
  587. if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010))
  588. goto error;
  589. /* memory: it is *very* important we change this first, the ucode
  590. * we build in pre() now has hardcoded 0xc040 values, which can't
  591. * change before we execute it or the engine clocks may end up
  592. * messed up.
  593. */
  594. if (info->mclk_hwsq.len) {
  595. /* execute some scripts that do ??? from the vbios.. */
  596. if (!bit_table(dev, 'M', &M) && M.version == 1) {
  597. if (M.length >= 6)
  598. nouveau_bios_init_exec(dev, ROM16(M.data[5]));
  599. if (M.length >= 8)
  600. nouveau_bios_init_exec(dev, ROM16(M.data[7]));
  601. if (M.length >= 10)
  602. nouveau_bios_init_exec(dev, ROM16(M.data[9]));
  603. nouveau_bios_init_exec(dev, info->mscript);
  604. }
  605. ret = prog_mclk(dev, &info->mclk_hwsq);
  606. if (ret)
  607. goto resume;
  608. }
  609. /* reclock vdec/dom6 */
  610. nv_mask(dev, 0x00c040, 0x00000c00, 0x00000000);
  611. switch (dev_priv->chipset) {
  612. case 0x92:
  613. case 0x94:
  614. case 0x96:
  615. nv_mask(dev, 0x004800, 0x00000707, info->pdivs);
  616. break;
  617. default:
  618. nv_mask(dev, 0x004700, 0x00000707, info->pdivs);
  619. break;
  620. }
  621. nv_mask(dev, 0x00c040, 0x0c000c00, info->amast);
  622. /* core/shader: make sure sclk/nvclk are disconnected from their
  623. * plls (nvclk to dom6, sclk to hclk), modify the plls, and
  624. * reconnect sclk/nvclk to their new clock source
  625. */
  626. if (dev_priv->chipset < 0x92)
  627. nv_mask(dev, 0x00c040, 0x001000b0, 0x00100080); /* grrr! */
  628. else
  629. nv_mask(dev, 0x00c040, 0x000000b3, 0x00000081);
  630. nv_mask(dev, 0x004020, 0xc03f0100, info->sctrl);
  631. nv_wr32(dev, 0x004024, info->scoef);
  632. nv_mask(dev, 0x004028, 0xc03f0100, info->nctrl);
  633. nv_wr32(dev, 0x00402c, info->ncoef);
  634. nv_mask(dev, 0x00c040, 0x00100033, info->emast);
  635. goto resume;
  636. error:
  637. ret = -EBUSY;
  638. resume:
  639. nv_mask(dev, 0x002504, 0x00000001, 0x00000000);
  640. kfree(info);
  641. return ret;
  642. }
  643. static int
  644. pwm_info(struct drm_device *dev, int *line, int *ctrl, int *indx)
  645. {
  646. if (*line == 0x04) {
  647. *ctrl = 0x00e100;
  648. *line = 4;
  649. *indx = 0;
  650. } else
  651. if (*line == 0x09) {
  652. *ctrl = 0x00e100;
  653. *line = 9;
  654. *indx = 1;
  655. } else
  656. if (*line == 0x10) {
  657. *ctrl = 0x00e28c;
  658. *line = 0;
  659. *indx = 0;
  660. } else {
  661. NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", *line);
  662. return -ENODEV;
  663. }
  664. return 0;
  665. }
  666. int
  667. nv50_pm_pwm_get(struct drm_device *dev, int line, u32 *divs, u32 *duty)
  668. {
  669. int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
  670. if (ret)
  671. return ret;
  672. if (nv_rd32(dev, ctrl) & (1 << line)) {
  673. *divs = nv_rd32(dev, 0x00e114 + (id * 8));
  674. *duty = nv_rd32(dev, 0x00e118 + (id * 8));
  675. return 0;
  676. }
  677. return -EINVAL;
  678. }
  679. int
  680. nv50_pm_pwm_set(struct drm_device *dev, int line, u32 divs, u32 duty)
  681. {
  682. int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
  683. if (ret)
  684. return ret;
  685. nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line);
  686. nv_wr32(dev, 0x00e114 + (id * 8), divs);
  687. nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000);
  688. return 0;
  689. }