perf_event_intel.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #include <linux/stddef.h>
  8. #include <linux/types.h>
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <asm/hardirq.h>
  13. #include <asm/apic.h>
  14. #include "perf_event.h"
  15. /*
  16. * Intel PerfMon, used on Core and later.
  17. */
  18. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  19. {
  20. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  21. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  22. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  23. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  24. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  25. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  26. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  27. [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
  28. };
  29. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  30. {
  31. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  32. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  33. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  34. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  35. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  36. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  37. EVENT_CONSTRAINT_END
  38. };
  39. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  40. {
  41. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  42. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  43. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  44. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  45. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  46. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  47. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  48. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  49. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  50. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  51. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  52. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  53. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  54. EVENT_CONSTRAINT_END
  55. };
  56. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  57. {
  58. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  59. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  60. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  61. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  62. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  63. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  64. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  65. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  66. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  67. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  68. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  69. EVENT_CONSTRAINT_END
  70. };
  71. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  72. {
  73. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  74. EVENT_EXTRA_END
  75. };
  76. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  77. {
  78. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  79. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  80. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  81. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  82. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  83. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  84. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  85. EVENT_CONSTRAINT_END
  86. };
  87. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  88. {
  89. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  90. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  91. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  92. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  93. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  94. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  95. EVENT_CONSTRAINT_END
  96. };
  97. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  98. {
  99. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  100. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  101. EVENT_EXTRA_END
  102. };
  103. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  104. {
  105. EVENT_CONSTRAINT_END
  106. };
  107. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  108. {
  109. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  110. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  111. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  112. EVENT_CONSTRAINT_END
  113. };
  114. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  115. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  116. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  117. EVENT_EXTRA_END
  118. };
  119. static u64 intel_pmu_event_map(int hw_event)
  120. {
  121. return intel_perfmon_event_map[hw_event];
  122. }
  123. static __initconst const u64 snb_hw_cache_event_ids
  124. [PERF_COUNT_HW_CACHE_MAX]
  125. [PERF_COUNT_HW_CACHE_OP_MAX]
  126. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  127. {
  128. [ C(L1D) ] = {
  129. [ C(OP_READ) ] = {
  130. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  131. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  132. },
  133. [ C(OP_WRITE) ] = {
  134. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  135. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  136. },
  137. [ C(OP_PREFETCH) ] = {
  138. [ C(RESULT_ACCESS) ] = 0x0,
  139. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  140. },
  141. },
  142. [ C(L1I ) ] = {
  143. [ C(OP_READ) ] = {
  144. [ C(RESULT_ACCESS) ] = 0x0,
  145. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  146. },
  147. [ C(OP_WRITE) ] = {
  148. [ C(RESULT_ACCESS) ] = -1,
  149. [ C(RESULT_MISS) ] = -1,
  150. },
  151. [ C(OP_PREFETCH) ] = {
  152. [ C(RESULT_ACCESS) ] = 0x0,
  153. [ C(RESULT_MISS) ] = 0x0,
  154. },
  155. },
  156. [ C(LL ) ] = {
  157. [ C(OP_READ) ] = {
  158. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  159. [ C(RESULT_ACCESS) ] = 0x01b7,
  160. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  161. [ C(RESULT_MISS) ] = 0x01b7,
  162. },
  163. [ C(OP_WRITE) ] = {
  164. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  165. [ C(RESULT_ACCESS) ] = 0x01b7,
  166. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  167. [ C(RESULT_MISS) ] = 0x01b7,
  168. },
  169. [ C(OP_PREFETCH) ] = {
  170. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  171. [ C(RESULT_ACCESS) ] = 0x01b7,
  172. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  173. [ C(RESULT_MISS) ] = 0x01b7,
  174. },
  175. },
  176. [ C(DTLB) ] = {
  177. [ C(OP_READ) ] = {
  178. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  179. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  180. },
  181. [ C(OP_WRITE) ] = {
  182. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  183. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  184. },
  185. [ C(OP_PREFETCH) ] = {
  186. [ C(RESULT_ACCESS) ] = 0x0,
  187. [ C(RESULT_MISS) ] = 0x0,
  188. },
  189. },
  190. [ C(ITLB) ] = {
  191. [ C(OP_READ) ] = {
  192. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  193. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  194. },
  195. [ C(OP_WRITE) ] = {
  196. [ C(RESULT_ACCESS) ] = -1,
  197. [ C(RESULT_MISS) ] = -1,
  198. },
  199. [ C(OP_PREFETCH) ] = {
  200. [ C(RESULT_ACCESS) ] = -1,
  201. [ C(RESULT_MISS) ] = -1,
  202. },
  203. },
  204. [ C(BPU ) ] = {
  205. [ C(OP_READ) ] = {
  206. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  207. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  208. },
  209. [ C(OP_WRITE) ] = {
  210. [ C(RESULT_ACCESS) ] = -1,
  211. [ C(RESULT_MISS) ] = -1,
  212. },
  213. [ C(OP_PREFETCH) ] = {
  214. [ C(RESULT_ACCESS) ] = -1,
  215. [ C(RESULT_MISS) ] = -1,
  216. },
  217. },
  218. [ C(NODE) ] = {
  219. [ C(OP_READ) ] = {
  220. [ C(RESULT_ACCESS) ] = -1,
  221. [ C(RESULT_MISS) ] = -1,
  222. },
  223. [ C(OP_WRITE) ] = {
  224. [ C(RESULT_ACCESS) ] = -1,
  225. [ C(RESULT_MISS) ] = -1,
  226. },
  227. [ C(OP_PREFETCH) ] = {
  228. [ C(RESULT_ACCESS) ] = -1,
  229. [ C(RESULT_MISS) ] = -1,
  230. },
  231. },
  232. };
  233. static __initconst const u64 westmere_hw_cache_event_ids
  234. [PERF_COUNT_HW_CACHE_MAX]
  235. [PERF_COUNT_HW_CACHE_OP_MAX]
  236. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  237. {
  238. [ C(L1D) ] = {
  239. [ C(OP_READ) ] = {
  240. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  241. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  242. },
  243. [ C(OP_WRITE) ] = {
  244. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  245. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  246. },
  247. [ C(OP_PREFETCH) ] = {
  248. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  249. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  250. },
  251. },
  252. [ C(L1I ) ] = {
  253. [ C(OP_READ) ] = {
  254. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  255. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  256. },
  257. [ C(OP_WRITE) ] = {
  258. [ C(RESULT_ACCESS) ] = -1,
  259. [ C(RESULT_MISS) ] = -1,
  260. },
  261. [ C(OP_PREFETCH) ] = {
  262. [ C(RESULT_ACCESS) ] = 0x0,
  263. [ C(RESULT_MISS) ] = 0x0,
  264. },
  265. },
  266. [ C(LL ) ] = {
  267. [ C(OP_READ) ] = {
  268. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  269. [ C(RESULT_ACCESS) ] = 0x01b7,
  270. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  271. [ C(RESULT_MISS) ] = 0x01b7,
  272. },
  273. /*
  274. * Use RFO, not WRITEBACK, because a write miss would typically occur
  275. * on RFO.
  276. */
  277. [ C(OP_WRITE) ] = {
  278. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  279. [ C(RESULT_ACCESS) ] = 0x01b7,
  280. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  281. [ C(RESULT_MISS) ] = 0x01b7,
  282. },
  283. [ C(OP_PREFETCH) ] = {
  284. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  285. [ C(RESULT_ACCESS) ] = 0x01b7,
  286. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  287. [ C(RESULT_MISS) ] = 0x01b7,
  288. },
  289. },
  290. [ C(DTLB) ] = {
  291. [ C(OP_READ) ] = {
  292. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  293. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  294. },
  295. [ C(OP_WRITE) ] = {
  296. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  297. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  298. },
  299. [ C(OP_PREFETCH) ] = {
  300. [ C(RESULT_ACCESS) ] = 0x0,
  301. [ C(RESULT_MISS) ] = 0x0,
  302. },
  303. },
  304. [ C(ITLB) ] = {
  305. [ C(OP_READ) ] = {
  306. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  307. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  308. },
  309. [ C(OP_WRITE) ] = {
  310. [ C(RESULT_ACCESS) ] = -1,
  311. [ C(RESULT_MISS) ] = -1,
  312. },
  313. [ C(OP_PREFETCH) ] = {
  314. [ C(RESULT_ACCESS) ] = -1,
  315. [ C(RESULT_MISS) ] = -1,
  316. },
  317. },
  318. [ C(BPU ) ] = {
  319. [ C(OP_READ) ] = {
  320. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  321. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  322. },
  323. [ C(OP_WRITE) ] = {
  324. [ C(RESULT_ACCESS) ] = -1,
  325. [ C(RESULT_MISS) ] = -1,
  326. },
  327. [ C(OP_PREFETCH) ] = {
  328. [ C(RESULT_ACCESS) ] = -1,
  329. [ C(RESULT_MISS) ] = -1,
  330. },
  331. },
  332. [ C(NODE) ] = {
  333. [ C(OP_READ) ] = {
  334. [ C(RESULT_ACCESS) ] = 0x01b7,
  335. [ C(RESULT_MISS) ] = 0x01b7,
  336. },
  337. [ C(OP_WRITE) ] = {
  338. [ C(RESULT_ACCESS) ] = 0x01b7,
  339. [ C(RESULT_MISS) ] = 0x01b7,
  340. },
  341. [ C(OP_PREFETCH) ] = {
  342. [ C(RESULT_ACCESS) ] = 0x01b7,
  343. [ C(RESULT_MISS) ] = 0x01b7,
  344. },
  345. },
  346. };
  347. /*
  348. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  349. * See IA32 SDM Vol 3B 30.6.1.3
  350. */
  351. #define NHM_DMND_DATA_RD (1 << 0)
  352. #define NHM_DMND_RFO (1 << 1)
  353. #define NHM_DMND_IFETCH (1 << 2)
  354. #define NHM_DMND_WB (1 << 3)
  355. #define NHM_PF_DATA_RD (1 << 4)
  356. #define NHM_PF_DATA_RFO (1 << 5)
  357. #define NHM_PF_IFETCH (1 << 6)
  358. #define NHM_OFFCORE_OTHER (1 << 7)
  359. #define NHM_UNCORE_HIT (1 << 8)
  360. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  361. #define NHM_OTHER_CORE_HITM (1 << 10)
  362. /* reserved */
  363. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  364. #define NHM_REMOTE_DRAM (1 << 13)
  365. #define NHM_LOCAL_DRAM (1 << 14)
  366. #define NHM_NON_DRAM (1 << 15)
  367. #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
  368. #define NHM_REMOTE (NHM_REMOTE_DRAM)
  369. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  370. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  371. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  372. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  373. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
  374. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  375. static __initconst const u64 nehalem_hw_cache_extra_regs
  376. [PERF_COUNT_HW_CACHE_MAX]
  377. [PERF_COUNT_HW_CACHE_OP_MAX]
  378. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  379. {
  380. [ C(LL ) ] = {
  381. [ C(OP_READ) ] = {
  382. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  383. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  384. },
  385. [ C(OP_WRITE) ] = {
  386. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  387. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  388. },
  389. [ C(OP_PREFETCH) ] = {
  390. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  391. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  392. },
  393. },
  394. [ C(NODE) ] = {
  395. [ C(OP_READ) ] = {
  396. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
  397. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
  398. },
  399. [ C(OP_WRITE) ] = {
  400. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
  401. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
  402. },
  403. [ C(OP_PREFETCH) ] = {
  404. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
  405. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
  406. },
  407. },
  408. };
  409. static __initconst const u64 nehalem_hw_cache_event_ids
  410. [PERF_COUNT_HW_CACHE_MAX]
  411. [PERF_COUNT_HW_CACHE_OP_MAX]
  412. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  413. {
  414. [ C(L1D) ] = {
  415. [ C(OP_READ) ] = {
  416. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  417. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  418. },
  419. [ C(OP_WRITE) ] = {
  420. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  421. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  422. },
  423. [ C(OP_PREFETCH) ] = {
  424. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  425. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  426. },
  427. },
  428. [ C(L1I ) ] = {
  429. [ C(OP_READ) ] = {
  430. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  431. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  432. },
  433. [ C(OP_WRITE) ] = {
  434. [ C(RESULT_ACCESS) ] = -1,
  435. [ C(RESULT_MISS) ] = -1,
  436. },
  437. [ C(OP_PREFETCH) ] = {
  438. [ C(RESULT_ACCESS) ] = 0x0,
  439. [ C(RESULT_MISS) ] = 0x0,
  440. },
  441. },
  442. [ C(LL ) ] = {
  443. [ C(OP_READ) ] = {
  444. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  445. [ C(RESULT_ACCESS) ] = 0x01b7,
  446. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  447. [ C(RESULT_MISS) ] = 0x01b7,
  448. },
  449. /*
  450. * Use RFO, not WRITEBACK, because a write miss would typically occur
  451. * on RFO.
  452. */
  453. [ C(OP_WRITE) ] = {
  454. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  455. [ C(RESULT_ACCESS) ] = 0x01b7,
  456. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  457. [ C(RESULT_MISS) ] = 0x01b7,
  458. },
  459. [ C(OP_PREFETCH) ] = {
  460. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  461. [ C(RESULT_ACCESS) ] = 0x01b7,
  462. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  463. [ C(RESULT_MISS) ] = 0x01b7,
  464. },
  465. },
  466. [ C(DTLB) ] = {
  467. [ C(OP_READ) ] = {
  468. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  469. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  470. },
  471. [ C(OP_WRITE) ] = {
  472. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  473. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  474. },
  475. [ C(OP_PREFETCH) ] = {
  476. [ C(RESULT_ACCESS) ] = 0x0,
  477. [ C(RESULT_MISS) ] = 0x0,
  478. },
  479. },
  480. [ C(ITLB) ] = {
  481. [ C(OP_READ) ] = {
  482. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  483. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  484. },
  485. [ C(OP_WRITE) ] = {
  486. [ C(RESULT_ACCESS) ] = -1,
  487. [ C(RESULT_MISS) ] = -1,
  488. },
  489. [ C(OP_PREFETCH) ] = {
  490. [ C(RESULT_ACCESS) ] = -1,
  491. [ C(RESULT_MISS) ] = -1,
  492. },
  493. },
  494. [ C(BPU ) ] = {
  495. [ C(OP_READ) ] = {
  496. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  497. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  498. },
  499. [ C(OP_WRITE) ] = {
  500. [ C(RESULT_ACCESS) ] = -1,
  501. [ C(RESULT_MISS) ] = -1,
  502. },
  503. [ C(OP_PREFETCH) ] = {
  504. [ C(RESULT_ACCESS) ] = -1,
  505. [ C(RESULT_MISS) ] = -1,
  506. },
  507. },
  508. [ C(NODE) ] = {
  509. [ C(OP_READ) ] = {
  510. [ C(RESULT_ACCESS) ] = 0x01b7,
  511. [ C(RESULT_MISS) ] = 0x01b7,
  512. },
  513. [ C(OP_WRITE) ] = {
  514. [ C(RESULT_ACCESS) ] = 0x01b7,
  515. [ C(RESULT_MISS) ] = 0x01b7,
  516. },
  517. [ C(OP_PREFETCH) ] = {
  518. [ C(RESULT_ACCESS) ] = 0x01b7,
  519. [ C(RESULT_MISS) ] = 0x01b7,
  520. },
  521. },
  522. };
  523. static __initconst const u64 core2_hw_cache_event_ids
  524. [PERF_COUNT_HW_CACHE_MAX]
  525. [PERF_COUNT_HW_CACHE_OP_MAX]
  526. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  527. {
  528. [ C(L1D) ] = {
  529. [ C(OP_READ) ] = {
  530. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  531. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  532. },
  533. [ C(OP_WRITE) ] = {
  534. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  535. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  536. },
  537. [ C(OP_PREFETCH) ] = {
  538. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  539. [ C(RESULT_MISS) ] = 0,
  540. },
  541. },
  542. [ C(L1I ) ] = {
  543. [ C(OP_READ) ] = {
  544. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  545. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  546. },
  547. [ C(OP_WRITE) ] = {
  548. [ C(RESULT_ACCESS) ] = -1,
  549. [ C(RESULT_MISS) ] = -1,
  550. },
  551. [ C(OP_PREFETCH) ] = {
  552. [ C(RESULT_ACCESS) ] = 0,
  553. [ C(RESULT_MISS) ] = 0,
  554. },
  555. },
  556. [ C(LL ) ] = {
  557. [ C(OP_READ) ] = {
  558. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  559. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  560. },
  561. [ C(OP_WRITE) ] = {
  562. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  563. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  564. },
  565. [ C(OP_PREFETCH) ] = {
  566. [ C(RESULT_ACCESS) ] = 0,
  567. [ C(RESULT_MISS) ] = 0,
  568. },
  569. },
  570. [ C(DTLB) ] = {
  571. [ C(OP_READ) ] = {
  572. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  573. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  574. },
  575. [ C(OP_WRITE) ] = {
  576. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  577. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  578. },
  579. [ C(OP_PREFETCH) ] = {
  580. [ C(RESULT_ACCESS) ] = 0,
  581. [ C(RESULT_MISS) ] = 0,
  582. },
  583. },
  584. [ C(ITLB) ] = {
  585. [ C(OP_READ) ] = {
  586. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  587. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  588. },
  589. [ C(OP_WRITE) ] = {
  590. [ C(RESULT_ACCESS) ] = -1,
  591. [ C(RESULT_MISS) ] = -1,
  592. },
  593. [ C(OP_PREFETCH) ] = {
  594. [ C(RESULT_ACCESS) ] = -1,
  595. [ C(RESULT_MISS) ] = -1,
  596. },
  597. },
  598. [ C(BPU ) ] = {
  599. [ C(OP_READ) ] = {
  600. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  601. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  602. },
  603. [ C(OP_WRITE) ] = {
  604. [ C(RESULT_ACCESS) ] = -1,
  605. [ C(RESULT_MISS) ] = -1,
  606. },
  607. [ C(OP_PREFETCH) ] = {
  608. [ C(RESULT_ACCESS) ] = -1,
  609. [ C(RESULT_MISS) ] = -1,
  610. },
  611. },
  612. };
  613. static __initconst const u64 atom_hw_cache_event_ids
  614. [PERF_COUNT_HW_CACHE_MAX]
  615. [PERF_COUNT_HW_CACHE_OP_MAX]
  616. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  617. {
  618. [ C(L1D) ] = {
  619. [ C(OP_READ) ] = {
  620. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  621. [ C(RESULT_MISS) ] = 0,
  622. },
  623. [ C(OP_WRITE) ] = {
  624. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  625. [ C(RESULT_MISS) ] = 0,
  626. },
  627. [ C(OP_PREFETCH) ] = {
  628. [ C(RESULT_ACCESS) ] = 0x0,
  629. [ C(RESULT_MISS) ] = 0,
  630. },
  631. },
  632. [ C(L1I ) ] = {
  633. [ C(OP_READ) ] = {
  634. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  635. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  636. },
  637. [ C(OP_WRITE) ] = {
  638. [ C(RESULT_ACCESS) ] = -1,
  639. [ C(RESULT_MISS) ] = -1,
  640. },
  641. [ C(OP_PREFETCH) ] = {
  642. [ C(RESULT_ACCESS) ] = 0,
  643. [ C(RESULT_MISS) ] = 0,
  644. },
  645. },
  646. [ C(LL ) ] = {
  647. [ C(OP_READ) ] = {
  648. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  649. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  650. },
  651. [ C(OP_WRITE) ] = {
  652. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  653. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  654. },
  655. [ C(OP_PREFETCH) ] = {
  656. [ C(RESULT_ACCESS) ] = 0,
  657. [ C(RESULT_MISS) ] = 0,
  658. },
  659. },
  660. [ C(DTLB) ] = {
  661. [ C(OP_READ) ] = {
  662. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  663. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  664. },
  665. [ C(OP_WRITE) ] = {
  666. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  667. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  668. },
  669. [ C(OP_PREFETCH) ] = {
  670. [ C(RESULT_ACCESS) ] = 0,
  671. [ C(RESULT_MISS) ] = 0,
  672. },
  673. },
  674. [ C(ITLB) ] = {
  675. [ C(OP_READ) ] = {
  676. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  677. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  678. },
  679. [ C(OP_WRITE) ] = {
  680. [ C(RESULT_ACCESS) ] = -1,
  681. [ C(RESULT_MISS) ] = -1,
  682. },
  683. [ C(OP_PREFETCH) ] = {
  684. [ C(RESULT_ACCESS) ] = -1,
  685. [ C(RESULT_MISS) ] = -1,
  686. },
  687. },
  688. [ C(BPU ) ] = {
  689. [ C(OP_READ) ] = {
  690. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  691. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  692. },
  693. [ C(OP_WRITE) ] = {
  694. [ C(RESULT_ACCESS) ] = -1,
  695. [ C(RESULT_MISS) ] = -1,
  696. },
  697. [ C(OP_PREFETCH) ] = {
  698. [ C(RESULT_ACCESS) ] = -1,
  699. [ C(RESULT_MISS) ] = -1,
  700. },
  701. },
  702. };
  703. static void intel_pmu_disable_all(void)
  704. {
  705. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  706. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  707. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  708. intel_pmu_disable_bts();
  709. intel_pmu_pebs_disable_all();
  710. intel_pmu_lbr_disable_all();
  711. }
  712. static void intel_pmu_enable_all(int added)
  713. {
  714. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  715. intel_pmu_pebs_enable_all();
  716. intel_pmu_lbr_enable_all();
  717. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  718. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  719. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  720. struct perf_event *event =
  721. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  722. if (WARN_ON_ONCE(!event))
  723. return;
  724. intel_pmu_enable_bts(event->hw.config);
  725. }
  726. }
  727. /*
  728. * Workaround for:
  729. * Intel Errata AAK100 (model 26)
  730. * Intel Errata AAP53 (model 30)
  731. * Intel Errata BD53 (model 44)
  732. *
  733. * The official story:
  734. * These chips need to be 'reset' when adding counters by programming the
  735. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  736. * in sequence on the same PMC or on different PMCs.
  737. *
  738. * In practise it appears some of these events do in fact count, and
  739. * we need to programm all 4 events.
  740. */
  741. static void intel_pmu_nhm_workaround(void)
  742. {
  743. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  744. static const unsigned long nhm_magic[4] = {
  745. 0x4300B5,
  746. 0x4300D2,
  747. 0x4300B1,
  748. 0x4300B1
  749. };
  750. struct perf_event *event;
  751. int i;
  752. /*
  753. * The Errata requires below steps:
  754. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  755. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  756. * the corresponding PMCx;
  757. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  758. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  759. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  760. */
  761. /*
  762. * The real steps we choose are a little different from above.
  763. * A) To reduce MSR operations, we don't run step 1) as they
  764. * are already cleared before this function is called;
  765. * B) Call x86_perf_event_update to save PMCx before configuring
  766. * PERFEVTSELx with magic number;
  767. * C) With step 5), we do clear only when the PERFEVTSELx is
  768. * not used currently.
  769. * D) Call x86_perf_event_set_period to restore PMCx;
  770. */
  771. /* We always operate 4 pairs of PERF Counters */
  772. for (i = 0; i < 4; i++) {
  773. event = cpuc->events[i];
  774. if (event)
  775. x86_perf_event_update(event);
  776. }
  777. for (i = 0; i < 4; i++) {
  778. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  779. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  780. }
  781. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  782. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  783. for (i = 0; i < 4; i++) {
  784. event = cpuc->events[i];
  785. if (event) {
  786. x86_perf_event_set_period(event);
  787. __x86_pmu_enable_event(&event->hw,
  788. ARCH_PERFMON_EVENTSEL_ENABLE);
  789. } else
  790. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  791. }
  792. }
  793. static void intel_pmu_nhm_enable_all(int added)
  794. {
  795. if (added)
  796. intel_pmu_nhm_workaround();
  797. intel_pmu_enable_all(added);
  798. }
  799. static inline u64 intel_pmu_get_status(void)
  800. {
  801. u64 status;
  802. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  803. return status;
  804. }
  805. static inline void intel_pmu_ack_status(u64 ack)
  806. {
  807. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  808. }
  809. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  810. {
  811. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  812. u64 ctrl_val, mask;
  813. mask = 0xfULL << (idx * 4);
  814. rdmsrl(hwc->config_base, ctrl_val);
  815. ctrl_val &= ~mask;
  816. wrmsrl(hwc->config_base, ctrl_val);
  817. }
  818. static void intel_pmu_disable_event(struct perf_event *event)
  819. {
  820. struct hw_perf_event *hwc = &event->hw;
  821. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  822. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  823. intel_pmu_disable_bts();
  824. intel_pmu_drain_bts_buffer();
  825. return;
  826. }
  827. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  828. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  829. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  830. intel_pmu_disable_fixed(hwc);
  831. return;
  832. }
  833. x86_pmu_disable_event(event);
  834. if (unlikely(event->attr.precise_ip))
  835. intel_pmu_pebs_disable(event);
  836. }
  837. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  838. {
  839. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  840. u64 ctrl_val, bits, mask;
  841. /*
  842. * Enable IRQ generation (0x8),
  843. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  844. * if requested:
  845. */
  846. bits = 0x8ULL;
  847. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  848. bits |= 0x2;
  849. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  850. bits |= 0x1;
  851. /*
  852. * ANY bit is supported in v3 and up
  853. */
  854. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  855. bits |= 0x4;
  856. bits <<= (idx * 4);
  857. mask = 0xfULL << (idx * 4);
  858. rdmsrl(hwc->config_base, ctrl_val);
  859. ctrl_val &= ~mask;
  860. ctrl_val |= bits;
  861. wrmsrl(hwc->config_base, ctrl_val);
  862. }
  863. static void intel_pmu_enable_event(struct perf_event *event)
  864. {
  865. struct hw_perf_event *hwc = &event->hw;
  866. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  867. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  868. if (!__this_cpu_read(cpu_hw_events.enabled))
  869. return;
  870. intel_pmu_enable_bts(hwc->config);
  871. return;
  872. }
  873. if (event->attr.exclude_host)
  874. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  875. if (event->attr.exclude_guest)
  876. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  877. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  878. intel_pmu_enable_fixed(hwc);
  879. return;
  880. }
  881. if (unlikely(event->attr.precise_ip))
  882. intel_pmu_pebs_enable(event);
  883. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  884. }
  885. /*
  886. * Save and restart an expired event. Called by NMI contexts,
  887. * so it has to be careful about preempting normal event ops:
  888. */
  889. int intel_pmu_save_and_restart(struct perf_event *event)
  890. {
  891. x86_perf_event_update(event);
  892. return x86_perf_event_set_period(event);
  893. }
  894. static void intel_pmu_reset(void)
  895. {
  896. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  897. unsigned long flags;
  898. int idx;
  899. if (!x86_pmu.num_counters)
  900. return;
  901. local_irq_save(flags);
  902. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  903. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  904. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  905. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  906. }
  907. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  908. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  909. if (ds)
  910. ds->bts_index = ds->bts_buffer_base;
  911. local_irq_restore(flags);
  912. }
  913. /*
  914. * This handler is triggered by the local APIC, so the APIC IRQ handling
  915. * rules apply:
  916. */
  917. static int intel_pmu_handle_irq(struct pt_regs *regs)
  918. {
  919. struct perf_sample_data data;
  920. struct cpu_hw_events *cpuc;
  921. int bit, loops;
  922. u64 status;
  923. int handled;
  924. perf_sample_data_init(&data, 0);
  925. cpuc = &__get_cpu_var(cpu_hw_events);
  926. /*
  927. * Some chipsets need to unmask the LVTPC in a particular spot
  928. * inside the nmi handler. As a result, the unmasking was pushed
  929. * into all the nmi handlers.
  930. *
  931. * This handler doesn't seem to have any issues with the unmasking
  932. * so it was left at the top.
  933. */
  934. apic_write(APIC_LVTPC, APIC_DM_NMI);
  935. intel_pmu_disable_all();
  936. handled = intel_pmu_drain_bts_buffer();
  937. status = intel_pmu_get_status();
  938. if (!status) {
  939. intel_pmu_enable_all(0);
  940. return handled;
  941. }
  942. loops = 0;
  943. again:
  944. intel_pmu_ack_status(status);
  945. if (++loops > 100) {
  946. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  947. perf_event_print_debug();
  948. intel_pmu_reset();
  949. goto done;
  950. }
  951. inc_irq_stat(apic_perf_irqs);
  952. intel_pmu_lbr_read();
  953. /*
  954. * PEBS overflow sets bit 62 in the global status register
  955. */
  956. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  957. handled++;
  958. x86_pmu.drain_pebs(regs);
  959. }
  960. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  961. struct perf_event *event = cpuc->events[bit];
  962. handled++;
  963. if (!test_bit(bit, cpuc->active_mask))
  964. continue;
  965. if (!intel_pmu_save_and_restart(event))
  966. continue;
  967. data.period = event->hw.last_period;
  968. if (perf_event_overflow(event, &data, regs))
  969. x86_pmu_stop(event, 0);
  970. }
  971. /*
  972. * Repeat if there is more work to be done:
  973. */
  974. status = intel_pmu_get_status();
  975. if (status)
  976. goto again;
  977. done:
  978. intel_pmu_enable_all(0);
  979. return handled;
  980. }
  981. static struct event_constraint *
  982. intel_bts_constraints(struct perf_event *event)
  983. {
  984. struct hw_perf_event *hwc = &event->hw;
  985. unsigned int hw_event, bts_event;
  986. if (event->attr.freq)
  987. return NULL;
  988. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  989. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  990. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  991. return &bts_constraint;
  992. return NULL;
  993. }
  994. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  995. {
  996. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  997. return false;
  998. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  999. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1000. event->hw.config |= 0x01bb;
  1001. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  1002. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  1003. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  1004. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1005. event->hw.config |= 0x01b7;
  1006. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  1007. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1008. }
  1009. if (event->hw.extra_reg.idx == orig_idx)
  1010. return false;
  1011. return true;
  1012. }
  1013. /*
  1014. * manage allocation of shared extra msr for certain events
  1015. *
  1016. * sharing can be:
  1017. * per-cpu: to be shared between the various events on a single PMU
  1018. * per-core: per-cpu + shared by HT threads
  1019. */
  1020. static struct event_constraint *
  1021. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1022. struct perf_event *event)
  1023. {
  1024. struct event_constraint *c = &emptyconstraint;
  1025. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1026. struct er_account *era;
  1027. unsigned long flags;
  1028. int orig_idx = reg->idx;
  1029. /* already allocated shared msr */
  1030. if (reg->alloc)
  1031. return &unconstrained;
  1032. again:
  1033. era = &cpuc->shared_regs->regs[reg->idx];
  1034. /*
  1035. * we use spin_lock_irqsave() to avoid lockdep issues when
  1036. * passing a fake cpuc
  1037. */
  1038. raw_spin_lock_irqsave(&era->lock, flags);
  1039. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1040. /* lock in msr value */
  1041. era->config = reg->config;
  1042. era->reg = reg->reg;
  1043. /* one more user */
  1044. atomic_inc(&era->ref);
  1045. /* no need to reallocate during incremental event scheduling */
  1046. reg->alloc = 1;
  1047. /*
  1048. * All events using extra_reg are unconstrained.
  1049. * Avoids calling x86_get_event_constraints()
  1050. *
  1051. * Must revisit if extra_reg controlling events
  1052. * ever have constraints. Worst case we go through
  1053. * the regular event constraint table.
  1054. */
  1055. c = &unconstrained;
  1056. } else if (intel_try_alt_er(event, orig_idx)) {
  1057. raw_spin_unlock_irqrestore(&era->lock, flags);
  1058. goto again;
  1059. }
  1060. raw_spin_unlock_irqrestore(&era->lock, flags);
  1061. return c;
  1062. }
  1063. static void
  1064. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1065. struct hw_perf_event_extra *reg)
  1066. {
  1067. struct er_account *era;
  1068. /*
  1069. * only put constraint if extra reg was actually
  1070. * allocated. Also takes care of event which do
  1071. * not use an extra shared reg
  1072. */
  1073. if (!reg->alloc)
  1074. return;
  1075. era = &cpuc->shared_regs->regs[reg->idx];
  1076. /* one fewer user */
  1077. atomic_dec(&era->ref);
  1078. /* allocate again next time */
  1079. reg->alloc = 0;
  1080. }
  1081. static struct event_constraint *
  1082. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1083. struct perf_event *event)
  1084. {
  1085. struct event_constraint *c = NULL;
  1086. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1087. c = __intel_shared_reg_get_constraints(cpuc, event);
  1088. return c;
  1089. }
  1090. struct event_constraint *
  1091. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1092. {
  1093. struct event_constraint *c;
  1094. if (x86_pmu.event_constraints) {
  1095. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1096. if ((event->hw.config & c->cmask) == c->code)
  1097. return c;
  1098. }
  1099. }
  1100. return &unconstrained;
  1101. }
  1102. static struct event_constraint *
  1103. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1104. {
  1105. struct event_constraint *c;
  1106. c = intel_bts_constraints(event);
  1107. if (c)
  1108. return c;
  1109. c = intel_pebs_constraints(event);
  1110. if (c)
  1111. return c;
  1112. c = intel_shared_regs_constraints(cpuc, event);
  1113. if (c)
  1114. return c;
  1115. return x86_get_event_constraints(cpuc, event);
  1116. }
  1117. static void
  1118. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1119. struct perf_event *event)
  1120. {
  1121. struct hw_perf_event_extra *reg;
  1122. reg = &event->hw.extra_reg;
  1123. if (reg->idx != EXTRA_REG_NONE)
  1124. __intel_shared_reg_put_constraints(cpuc, reg);
  1125. }
  1126. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1127. struct perf_event *event)
  1128. {
  1129. intel_put_shared_regs_event_constraints(cpuc, event);
  1130. }
  1131. static int intel_pmu_hw_config(struct perf_event *event)
  1132. {
  1133. int ret = x86_pmu_hw_config(event);
  1134. if (ret)
  1135. return ret;
  1136. if (event->attr.precise_ip &&
  1137. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1138. /*
  1139. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1140. * (0x003c) so that we can use it with PEBS.
  1141. *
  1142. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1143. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1144. * (0x00c0), which is a PEBS capable event, to get the same
  1145. * count.
  1146. *
  1147. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1148. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1149. * larger than the maximum number of instructions that can be
  1150. * retired per cycle (4) and then inverting the condition, we
  1151. * count all cycles that retire 16 or less instructions, which
  1152. * is every cycle.
  1153. *
  1154. * Thereby we gain a PEBS capable cycle counter.
  1155. */
  1156. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1157. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1158. event->hw.config = alt_config;
  1159. }
  1160. if (event->attr.type != PERF_TYPE_RAW)
  1161. return 0;
  1162. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1163. return 0;
  1164. if (x86_pmu.version < 3)
  1165. return -EINVAL;
  1166. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1167. return -EACCES;
  1168. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1169. return 0;
  1170. }
  1171. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  1172. {
  1173. if (x86_pmu.guest_get_msrs)
  1174. return x86_pmu.guest_get_msrs(nr);
  1175. *nr = 0;
  1176. return NULL;
  1177. }
  1178. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  1179. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  1180. {
  1181. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1182. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1183. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  1184. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  1185. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  1186. *nr = 1;
  1187. return arr;
  1188. }
  1189. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  1190. {
  1191. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1192. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1193. int idx;
  1194. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1195. struct perf_event *event = cpuc->events[idx];
  1196. arr[idx].msr = x86_pmu_config_addr(idx);
  1197. arr[idx].host = arr[idx].guest = 0;
  1198. if (!test_bit(idx, cpuc->active_mask))
  1199. continue;
  1200. arr[idx].host = arr[idx].guest =
  1201. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  1202. if (event->attr.exclude_host)
  1203. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1204. else if (event->attr.exclude_guest)
  1205. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1206. }
  1207. *nr = x86_pmu.num_counters;
  1208. return arr;
  1209. }
  1210. static void core_pmu_enable_event(struct perf_event *event)
  1211. {
  1212. if (!event->attr.exclude_host)
  1213. x86_pmu_enable_event(event);
  1214. }
  1215. static void core_pmu_enable_all(int added)
  1216. {
  1217. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1218. int idx;
  1219. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1220. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  1221. if (!test_bit(idx, cpuc->active_mask) ||
  1222. cpuc->events[idx]->attr.exclude_host)
  1223. continue;
  1224. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1225. }
  1226. }
  1227. static __initconst const struct x86_pmu core_pmu = {
  1228. .name = "core",
  1229. .handle_irq = x86_pmu_handle_irq,
  1230. .disable_all = x86_pmu_disable_all,
  1231. .enable_all = core_pmu_enable_all,
  1232. .enable = core_pmu_enable_event,
  1233. .disable = x86_pmu_disable_event,
  1234. .hw_config = x86_pmu_hw_config,
  1235. .schedule_events = x86_schedule_events,
  1236. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1237. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1238. .event_map = intel_pmu_event_map,
  1239. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1240. .apic = 1,
  1241. /*
  1242. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1243. * so we install an artificial 1<<31 period regardless of
  1244. * the generic event period:
  1245. */
  1246. .max_period = (1ULL << 31) - 1,
  1247. .get_event_constraints = intel_get_event_constraints,
  1248. .put_event_constraints = intel_put_event_constraints,
  1249. .event_constraints = intel_core_event_constraints,
  1250. .guest_get_msrs = core_guest_get_msrs,
  1251. };
  1252. struct intel_shared_regs *allocate_shared_regs(int cpu)
  1253. {
  1254. struct intel_shared_regs *regs;
  1255. int i;
  1256. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1257. GFP_KERNEL, cpu_to_node(cpu));
  1258. if (regs) {
  1259. /*
  1260. * initialize the locks to keep lockdep happy
  1261. */
  1262. for (i = 0; i < EXTRA_REG_MAX; i++)
  1263. raw_spin_lock_init(&regs->regs[i].lock);
  1264. regs->core_id = -1;
  1265. }
  1266. return regs;
  1267. }
  1268. static int intel_pmu_cpu_prepare(int cpu)
  1269. {
  1270. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1271. if (!x86_pmu.extra_regs)
  1272. return NOTIFY_OK;
  1273. cpuc->shared_regs = allocate_shared_regs(cpu);
  1274. if (!cpuc->shared_regs)
  1275. return NOTIFY_BAD;
  1276. return NOTIFY_OK;
  1277. }
  1278. static void intel_pmu_cpu_starting(int cpu)
  1279. {
  1280. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1281. int core_id = topology_core_id(cpu);
  1282. int i;
  1283. init_debug_store_on_cpu(cpu);
  1284. /*
  1285. * Deal with CPUs that don't clear their LBRs on power-up.
  1286. */
  1287. intel_pmu_lbr_reset();
  1288. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1289. return;
  1290. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1291. struct intel_shared_regs *pc;
  1292. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1293. if (pc && pc->core_id == core_id) {
  1294. cpuc->kfree_on_online = cpuc->shared_regs;
  1295. cpuc->shared_regs = pc;
  1296. break;
  1297. }
  1298. }
  1299. cpuc->shared_regs->core_id = core_id;
  1300. cpuc->shared_regs->refcnt++;
  1301. }
  1302. static void intel_pmu_cpu_dying(int cpu)
  1303. {
  1304. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1305. struct intel_shared_regs *pc;
  1306. pc = cpuc->shared_regs;
  1307. if (pc) {
  1308. if (pc->core_id == -1 || --pc->refcnt == 0)
  1309. kfree(pc);
  1310. cpuc->shared_regs = NULL;
  1311. }
  1312. fini_debug_store_on_cpu(cpu);
  1313. }
  1314. static __initconst const struct x86_pmu intel_pmu = {
  1315. .name = "Intel",
  1316. .handle_irq = intel_pmu_handle_irq,
  1317. .disable_all = intel_pmu_disable_all,
  1318. .enable_all = intel_pmu_enable_all,
  1319. .enable = intel_pmu_enable_event,
  1320. .disable = intel_pmu_disable_event,
  1321. .hw_config = intel_pmu_hw_config,
  1322. .schedule_events = x86_schedule_events,
  1323. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1324. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1325. .event_map = intel_pmu_event_map,
  1326. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1327. .apic = 1,
  1328. /*
  1329. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1330. * so we install an artificial 1<<31 period regardless of
  1331. * the generic event period:
  1332. */
  1333. .max_period = (1ULL << 31) - 1,
  1334. .get_event_constraints = intel_get_event_constraints,
  1335. .put_event_constraints = intel_put_event_constraints,
  1336. .cpu_prepare = intel_pmu_cpu_prepare,
  1337. .cpu_starting = intel_pmu_cpu_starting,
  1338. .cpu_dying = intel_pmu_cpu_dying,
  1339. .guest_get_msrs = intel_guest_get_msrs,
  1340. };
  1341. static __init void intel_clovertown_quirk(void)
  1342. {
  1343. /*
  1344. * PEBS is unreliable due to:
  1345. *
  1346. * AJ67 - PEBS may experience CPL leaks
  1347. * AJ68 - PEBS PMI may be delayed by one event
  1348. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1349. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1350. *
  1351. * AJ67 could be worked around by restricting the OS/USR flags.
  1352. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1353. *
  1354. * AJ106 could possibly be worked around by not allowing LBR
  1355. * usage from PEBS, including the fixup.
  1356. * AJ68 could possibly be worked around by always programming
  1357. * a pebs_event_reset[0] value and coping with the lost events.
  1358. *
  1359. * But taken together it might just make sense to not enable PEBS on
  1360. * these chips.
  1361. */
  1362. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1363. x86_pmu.pebs = 0;
  1364. x86_pmu.pebs_constraints = NULL;
  1365. }
  1366. static __init void intel_sandybridge_quirk(void)
  1367. {
  1368. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1369. x86_pmu.pebs = 0;
  1370. x86_pmu.pebs_constraints = NULL;
  1371. }
  1372. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  1373. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  1374. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  1375. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  1376. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  1377. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  1378. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  1379. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  1380. };
  1381. static __init void intel_arch_events_quirk(void)
  1382. {
  1383. int bit;
  1384. /* disable event that reported as not presend by cpuid */
  1385. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  1386. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  1387. printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
  1388. intel_arch_events_map[bit].name);
  1389. }
  1390. }
  1391. static __init void intel_nehalem_quirk(void)
  1392. {
  1393. union cpuid10_ebx ebx;
  1394. ebx.full = x86_pmu.events_maskl;
  1395. if (ebx.split.no_branch_misses_retired) {
  1396. /*
  1397. * Erratum AAJ80 detected, we work it around by using
  1398. * the BR_MISP_EXEC.ANY event. This will over-count
  1399. * branch-misses, but it's still much better than the
  1400. * architectural event which is often completely bogus:
  1401. */
  1402. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1403. ebx.split.no_branch_misses_retired = 0;
  1404. x86_pmu.events_maskl = ebx.full;
  1405. printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
  1406. }
  1407. }
  1408. __init int intel_pmu_init(void)
  1409. {
  1410. union cpuid10_edx edx;
  1411. union cpuid10_eax eax;
  1412. union cpuid10_ebx ebx;
  1413. unsigned int unused;
  1414. int version;
  1415. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1416. switch (boot_cpu_data.x86) {
  1417. case 0x6:
  1418. return p6_pmu_init();
  1419. case 0xf:
  1420. return p4_pmu_init();
  1421. }
  1422. return -ENODEV;
  1423. }
  1424. /*
  1425. * Check whether the Architectural PerfMon supports
  1426. * Branch Misses Retired hw_event or not.
  1427. */
  1428. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  1429. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  1430. return -ENODEV;
  1431. version = eax.split.version_id;
  1432. if (version < 2)
  1433. x86_pmu = core_pmu;
  1434. else
  1435. x86_pmu = intel_pmu;
  1436. x86_pmu.version = version;
  1437. x86_pmu.num_counters = eax.split.num_counters;
  1438. x86_pmu.cntval_bits = eax.split.bit_width;
  1439. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1440. x86_pmu.events_maskl = ebx.full;
  1441. x86_pmu.events_mask_len = eax.split.mask_length;
  1442. /*
  1443. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1444. * assume at least 3 events:
  1445. */
  1446. if (version > 1)
  1447. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1448. /*
  1449. * v2 and above have a perf capabilities MSR
  1450. */
  1451. if (version > 1) {
  1452. u64 capabilities;
  1453. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1454. x86_pmu.intel_cap.capabilities = capabilities;
  1455. }
  1456. intel_ds_init();
  1457. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  1458. /*
  1459. * Install the hw-cache-events table:
  1460. */
  1461. switch (boot_cpu_data.x86_model) {
  1462. case 14: /* 65 nm core solo/duo, "Yonah" */
  1463. pr_cont("Core events, ");
  1464. break;
  1465. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1466. x86_add_quirk(intel_clovertown_quirk);
  1467. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1468. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1469. case 29: /* six-core 45 nm xeon "Dunnington" */
  1470. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1471. sizeof(hw_cache_event_ids));
  1472. intel_pmu_lbr_init_core();
  1473. x86_pmu.event_constraints = intel_core2_event_constraints;
  1474. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1475. pr_cont("Core2 events, ");
  1476. break;
  1477. case 26: /* 45 nm nehalem, "Bloomfield" */
  1478. case 30: /* 45 nm nehalem, "Lynnfield" */
  1479. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1480. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1481. sizeof(hw_cache_event_ids));
  1482. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1483. sizeof(hw_cache_extra_regs));
  1484. intel_pmu_lbr_init_nhm();
  1485. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1486. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1487. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1488. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1489. /* UOPS_ISSUED.STALLED_CYCLES */
  1490. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1491. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1492. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1493. x86_add_quirk(intel_nehalem_quirk);
  1494. pr_cont("Nehalem events, ");
  1495. break;
  1496. case 28: /* Atom */
  1497. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1498. sizeof(hw_cache_event_ids));
  1499. intel_pmu_lbr_init_atom();
  1500. x86_pmu.event_constraints = intel_gen_event_constraints;
  1501. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1502. pr_cont("Atom events, ");
  1503. break;
  1504. case 37: /* 32 nm nehalem, "Clarkdale" */
  1505. case 44: /* 32 nm nehalem, "Gulftown" */
  1506. case 47: /* 32 nm Xeon E7 */
  1507. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1508. sizeof(hw_cache_event_ids));
  1509. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1510. sizeof(hw_cache_extra_regs));
  1511. intel_pmu_lbr_init_nhm();
  1512. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1513. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1514. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1515. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1516. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1517. /* UOPS_ISSUED.STALLED_CYCLES */
  1518. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1519. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1520. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1521. pr_cont("Westmere events, ");
  1522. break;
  1523. case 42: /* SandyBridge */
  1524. x86_add_quirk(intel_sandybridge_quirk);
  1525. case 45: /* SandyBridge, "Romely-EP" */
  1526. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1527. sizeof(hw_cache_event_ids));
  1528. intel_pmu_lbr_init_nhm();
  1529. x86_pmu.event_constraints = intel_snb_event_constraints;
  1530. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  1531. x86_pmu.extra_regs = intel_snb_extra_regs;
  1532. /* all extra regs are per-cpu when HT is on */
  1533. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1534. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1535. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1536. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1537. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1538. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1539. pr_cont("SandyBridge events, ");
  1540. break;
  1541. default:
  1542. switch (x86_pmu.version) {
  1543. case 1:
  1544. x86_pmu.event_constraints = intel_v1_event_constraints;
  1545. pr_cont("generic architected perfmon v1, ");
  1546. break;
  1547. default:
  1548. /*
  1549. * default constraints for v2 and up
  1550. */
  1551. x86_pmu.event_constraints = intel_gen_event_constraints;
  1552. pr_cont("generic architected perfmon, ");
  1553. break;
  1554. }
  1555. }
  1556. return 0;
  1557. }