perf_event_amd.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. #include <linux/perf_event.h>
  2. #include <linux/export.h>
  3. #include <linux/types.h>
  4. #include <linux/init.h>
  5. #include <linux/slab.h>
  6. #include <asm/apicdef.h>
  7. #include "perf_event.h"
  8. static __initconst const u64 amd_hw_cache_event_ids
  9. [PERF_COUNT_HW_CACHE_MAX]
  10. [PERF_COUNT_HW_CACHE_OP_MAX]
  11. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  12. {
  13. [ C(L1D) ] = {
  14. [ C(OP_READ) ] = {
  15. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  16. [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
  17. },
  18. [ C(OP_WRITE) ] = {
  19. [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
  20. [ C(RESULT_MISS) ] = 0,
  21. },
  22. [ C(OP_PREFETCH) ] = {
  23. [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
  24. [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
  25. },
  26. },
  27. [ C(L1I ) ] = {
  28. [ C(OP_READ) ] = {
  29. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
  30. [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
  31. },
  32. [ C(OP_WRITE) ] = {
  33. [ C(RESULT_ACCESS) ] = -1,
  34. [ C(RESULT_MISS) ] = -1,
  35. },
  36. [ C(OP_PREFETCH) ] = {
  37. [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
  38. [ C(RESULT_MISS) ] = 0,
  39. },
  40. },
  41. [ C(LL ) ] = {
  42. [ C(OP_READ) ] = {
  43. [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
  44. [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
  45. },
  46. [ C(OP_WRITE) ] = {
  47. [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
  48. [ C(RESULT_MISS) ] = 0,
  49. },
  50. [ C(OP_PREFETCH) ] = {
  51. [ C(RESULT_ACCESS) ] = 0,
  52. [ C(RESULT_MISS) ] = 0,
  53. },
  54. },
  55. [ C(DTLB) ] = {
  56. [ C(OP_READ) ] = {
  57. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  58. [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
  59. },
  60. [ C(OP_WRITE) ] = {
  61. [ C(RESULT_ACCESS) ] = 0,
  62. [ C(RESULT_MISS) ] = 0,
  63. },
  64. [ C(OP_PREFETCH) ] = {
  65. [ C(RESULT_ACCESS) ] = 0,
  66. [ C(RESULT_MISS) ] = 0,
  67. },
  68. },
  69. [ C(ITLB) ] = {
  70. [ C(OP_READ) ] = {
  71. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
  72. [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
  73. },
  74. [ C(OP_WRITE) ] = {
  75. [ C(RESULT_ACCESS) ] = -1,
  76. [ C(RESULT_MISS) ] = -1,
  77. },
  78. [ C(OP_PREFETCH) ] = {
  79. [ C(RESULT_ACCESS) ] = -1,
  80. [ C(RESULT_MISS) ] = -1,
  81. },
  82. },
  83. [ C(BPU ) ] = {
  84. [ C(OP_READ) ] = {
  85. [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
  86. [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
  87. },
  88. [ C(OP_WRITE) ] = {
  89. [ C(RESULT_ACCESS) ] = -1,
  90. [ C(RESULT_MISS) ] = -1,
  91. },
  92. [ C(OP_PREFETCH) ] = {
  93. [ C(RESULT_ACCESS) ] = -1,
  94. [ C(RESULT_MISS) ] = -1,
  95. },
  96. },
  97. [ C(NODE) ] = {
  98. [ C(OP_READ) ] = {
  99. [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
  100. [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
  101. },
  102. [ C(OP_WRITE) ] = {
  103. [ C(RESULT_ACCESS) ] = -1,
  104. [ C(RESULT_MISS) ] = -1,
  105. },
  106. [ C(OP_PREFETCH) ] = {
  107. [ C(RESULT_ACCESS) ] = -1,
  108. [ C(RESULT_MISS) ] = -1,
  109. },
  110. },
  111. };
  112. /*
  113. * AMD Performance Monitor K7 and later.
  114. */
  115. static const u64 amd_perfmon_event_map[] =
  116. {
  117. [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
  118. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  119. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
  120. [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
  121. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
  122. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
  123. [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
  124. [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
  125. };
  126. static u64 amd_pmu_event_map(int hw_event)
  127. {
  128. return amd_perfmon_event_map[hw_event];
  129. }
  130. static int amd_pmu_hw_config(struct perf_event *event)
  131. {
  132. int ret = x86_pmu_hw_config(event);
  133. if (ret)
  134. return ret;
  135. if (event->attr.exclude_host && event->attr.exclude_guest)
  136. /*
  137. * When HO == GO == 1 the hardware treats that as GO == HO == 0
  138. * and will count in both modes. We don't want to count in that
  139. * case so we emulate no-counting by setting US = OS = 0.
  140. */
  141. event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
  142. ARCH_PERFMON_EVENTSEL_OS);
  143. else if (event->attr.exclude_host)
  144. event->hw.config |= AMD_PERFMON_EVENTSEL_GUESTONLY;
  145. else if (event->attr.exclude_guest)
  146. event->hw.config |= AMD_PERFMON_EVENTSEL_HOSTONLY;
  147. if (event->attr.type != PERF_TYPE_RAW)
  148. return 0;
  149. event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
  150. return 0;
  151. }
  152. /*
  153. * AMD64 events are detected based on their event codes.
  154. */
  155. static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
  156. {
  157. return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
  158. }
  159. static inline int amd_is_nb_event(struct hw_perf_event *hwc)
  160. {
  161. return (hwc->config & 0xe0) == 0xe0;
  162. }
  163. static inline int amd_has_nb(struct cpu_hw_events *cpuc)
  164. {
  165. struct amd_nb *nb = cpuc->amd_nb;
  166. return nb && nb->nb_id != -1;
  167. }
  168. static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
  169. struct perf_event *event)
  170. {
  171. struct hw_perf_event *hwc = &event->hw;
  172. struct amd_nb *nb = cpuc->amd_nb;
  173. int i;
  174. /*
  175. * only care about NB events
  176. */
  177. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  178. return;
  179. /*
  180. * need to scan whole list because event may not have
  181. * been assigned during scheduling
  182. *
  183. * no race condition possible because event can only
  184. * be removed on one CPU at a time AND PMU is disabled
  185. * when we come here
  186. */
  187. for (i = 0; i < x86_pmu.num_counters; i++) {
  188. if (nb->owners[i] == event) {
  189. cmpxchg(nb->owners+i, event, NULL);
  190. break;
  191. }
  192. }
  193. }
  194. /*
  195. * AMD64 NorthBridge events need special treatment because
  196. * counter access needs to be synchronized across all cores
  197. * of a package. Refer to BKDG section 3.12
  198. *
  199. * NB events are events measuring L3 cache, Hypertransport
  200. * traffic. They are identified by an event code >= 0xe00.
  201. * They measure events on the NorthBride which is shared
  202. * by all cores on a package. NB events are counted on a
  203. * shared set of counters. When a NB event is programmed
  204. * in a counter, the data actually comes from a shared
  205. * counter. Thus, access to those counters needs to be
  206. * synchronized.
  207. *
  208. * We implement the synchronization such that no two cores
  209. * can be measuring NB events using the same counters. Thus,
  210. * we maintain a per-NB allocation table. The available slot
  211. * is propagated using the event_constraint structure.
  212. *
  213. * We provide only one choice for each NB event based on
  214. * the fact that only NB events have restrictions. Consequently,
  215. * if a counter is available, there is a guarantee the NB event
  216. * will be assigned to it. If no slot is available, an empty
  217. * constraint is returned and scheduling will eventually fail
  218. * for this event.
  219. *
  220. * Note that all cores attached the same NB compete for the same
  221. * counters to host NB events, this is why we use atomic ops. Some
  222. * multi-chip CPUs may have more than one NB.
  223. *
  224. * Given that resources are allocated (cmpxchg), they must be
  225. * eventually freed for others to use. This is accomplished by
  226. * calling amd_put_event_constraints().
  227. *
  228. * Non NB events are not impacted by this restriction.
  229. */
  230. static struct event_constraint *
  231. amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  232. {
  233. struct hw_perf_event *hwc = &event->hw;
  234. struct amd_nb *nb = cpuc->amd_nb;
  235. struct perf_event *old = NULL;
  236. int max = x86_pmu.num_counters;
  237. int i, j, k = -1;
  238. /*
  239. * if not NB event or no NB, then no constraints
  240. */
  241. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  242. return &unconstrained;
  243. /*
  244. * detect if already present, if so reuse
  245. *
  246. * cannot merge with actual allocation
  247. * because of possible holes
  248. *
  249. * event can already be present yet not assigned (in hwc->idx)
  250. * because of successive calls to x86_schedule_events() from
  251. * hw_perf_group_sched_in() without hw_perf_enable()
  252. */
  253. for (i = 0; i < max; i++) {
  254. /*
  255. * keep track of first free slot
  256. */
  257. if (k == -1 && !nb->owners[i])
  258. k = i;
  259. /* already present, reuse */
  260. if (nb->owners[i] == event)
  261. goto done;
  262. }
  263. /*
  264. * not present, so grab a new slot
  265. * starting either at:
  266. */
  267. if (hwc->idx != -1) {
  268. /* previous assignment */
  269. i = hwc->idx;
  270. } else if (k != -1) {
  271. /* start from free slot found */
  272. i = k;
  273. } else {
  274. /*
  275. * event not found, no slot found in
  276. * first pass, try again from the
  277. * beginning
  278. */
  279. i = 0;
  280. }
  281. j = i;
  282. do {
  283. old = cmpxchg(nb->owners+i, NULL, event);
  284. if (!old)
  285. break;
  286. if (++i == max)
  287. i = 0;
  288. } while (i != j);
  289. done:
  290. if (!old)
  291. return &nb->event_constraints[i];
  292. return &emptyconstraint;
  293. }
  294. static struct amd_nb *amd_alloc_nb(int cpu)
  295. {
  296. struct amd_nb *nb;
  297. int i;
  298. nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
  299. cpu_to_node(cpu));
  300. if (!nb)
  301. return NULL;
  302. nb->nb_id = -1;
  303. /*
  304. * initialize all possible NB constraints
  305. */
  306. for (i = 0; i < x86_pmu.num_counters; i++) {
  307. __set_bit(i, nb->event_constraints[i].idxmsk);
  308. nb->event_constraints[i].weight = 1;
  309. }
  310. return nb;
  311. }
  312. static int amd_pmu_cpu_prepare(int cpu)
  313. {
  314. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  315. WARN_ON_ONCE(cpuc->amd_nb);
  316. if (boot_cpu_data.x86_max_cores < 2)
  317. return NOTIFY_OK;
  318. cpuc->amd_nb = amd_alloc_nb(cpu);
  319. if (!cpuc->amd_nb)
  320. return NOTIFY_BAD;
  321. return NOTIFY_OK;
  322. }
  323. static void amd_pmu_cpu_starting(int cpu)
  324. {
  325. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  326. struct amd_nb *nb;
  327. int i, nb_id;
  328. cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
  329. if (boot_cpu_data.x86_max_cores < 2 || boot_cpu_data.x86 == 0x15)
  330. return;
  331. nb_id = amd_get_nb_id(cpu);
  332. WARN_ON_ONCE(nb_id == BAD_APICID);
  333. for_each_online_cpu(i) {
  334. nb = per_cpu(cpu_hw_events, i).amd_nb;
  335. if (WARN_ON_ONCE(!nb))
  336. continue;
  337. if (nb->nb_id == nb_id) {
  338. cpuc->kfree_on_online = cpuc->amd_nb;
  339. cpuc->amd_nb = nb;
  340. break;
  341. }
  342. }
  343. cpuc->amd_nb->nb_id = nb_id;
  344. cpuc->amd_nb->refcnt++;
  345. }
  346. static void amd_pmu_cpu_dead(int cpu)
  347. {
  348. struct cpu_hw_events *cpuhw;
  349. if (boot_cpu_data.x86_max_cores < 2)
  350. return;
  351. cpuhw = &per_cpu(cpu_hw_events, cpu);
  352. if (cpuhw->amd_nb) {
  353. struct amd_nb *nb = cpuhw->amd_nb;
  354. if (nb->nb_id == -1 || --nb->refcnt == 0)
  355. kfree(nb);
  356. cpuhw->amd_nb = NULL;
  357. }
  358. }
  359. static __initconst const struct x86_pmu amd_pmu = {
  360. .name = "AMD",
  361. .handle_irq = x86_pmu_handle_irq,
  362. .disable_all = x86_pmu_disable_all,
  363. .enable_all = x86_pmu_enable_all,
  364. .enable = x86_pmu_enable_event,
  365. .disable = x86_pmu_disable_event,
  366. .hw_config = amd_pmu_hw_config,
  367. .schedule_events = x86_schedule_events,
  368. .eventsel = MSR_K7_EVNTSEL0,
  369. .perfctr = MSR_K7_PERFCTR0,
  370. .event_map = amd_pmu_event_map,
  371. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  372. .num_counters = AMD64_NUM_COUNTERS,
  373. .cntval_bits = 48,
  374. .cntval_mask = (1ULL << 48) - 1,
  375. .apic = 1,
  376. /* use highest bit to detect overflow */
  377. .max_period = (1ULL << 47) - 1,
  378. .get_event_constraints = amd_get_event_constraints,
  379. .put_event_constraints = amd_put_event_constraints,
  380. .cpu_prepare = amd_pmu_cpu_prepare,
  381. .cpu_starting = amd_pmu_cpu_starting,
  382. .cpu_dead = amd_pmu_cpu_dead,
  383. };
  384. /* AMD Family 15h */
  385. #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
  386. #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
  387. #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
  388. #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
  389. #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
  390. #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
  391. #define AMD_EVENT_EX_LS 0x000000C0ULL
  392. #define AMD_EVENT_DE 0x000000D0ULL
  393. #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
  394. /*
  395. * AMD family 15h event code/PMC mappings:
  396. *
  397. * type = event_code & 0x0F0:
  398. *
  399. * 0x000 FP PERF_CTL[5:3]
  400. * 0x010 FP PERF_CTL[5:3]
  401. * 0x020 LS PERF_CTL[5:0]
  402. * 0x030 LS PERF_CTL[5:0]
  403. * 0x040 DC PERF_CTL[5:0]
  404. * 0x050 DC PERF_CTL[5:0]
  405. * 0x060 CU PERF_CTL[2:0]
  406. * 0x070 CU PERF_CTL[2:0]
  407. * 0x080 IC/DE PERF_CTL[2:0]
  408. * 0x090 IC/DE PERF_CTL[2:0]
  409. * 0x0A0 ---
  410. * 0x0B0 ---
  411. * 0x0C0 EX/LS PERF_CTL[5:0]
  412. * 0x0D0 DE PERF_CTL[2:0]
  413. * 0x0E0 NB NB_PERF_CTL[3:0]
  414. * 0x0F0 NB NB_PERF_CTL[3:0]
  415. *
  416. * Exceptions:
  417. *
  418. * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
  419. * 0x003 FP PERF_CTL[3]
  420. * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
  421. * 0x00B FP PERF_CTL[3]
  422. * 0x00D FP PERF_CTL[3]
  423. * 0x023 DE PERF_CTL[2:0]
  424. * 0x02D LS PERF_CTL[3]
  425. * 0x02E LS PERF_CTL[3,0]
  426. * 0x043 CU PERF_CTL[2:0]
  427. * 0x045 CU PERF_CTL[2:0]
  428. * 0x046 CU PERF_CTL[2:0]
  429. * 0x054 CU PERF_CTL[2:0]
  430. * 0x055 CU PERF_CTL[2:0]
  431. * 0x08F IC PERF_CTL[0]
  432. * 0x187 DE PERF_CTL[0]
  433. * 0x188 DE PERF_CTL[0]
  434. * 0x0DB EX PERF_CTL[5:0]
  435. * 0x0DC LS PERF_CTL[5:0]
  436. * 0x0DD LS PERF_CTL[5:0]
  437. * 0x0DE LS PERF_CTL[5:0]
  438. * 0x0DF LS PERF_CTL[5:0]
  439. * 0x1D6 EX PERF_CTL[5:0]
  440. * 0x1D8 EX PERF_CTL[5:0]
  441. *
  442. * (*) depending on the umask all FPU counters may be used
  443. */
  444. static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
  445. static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
  446. static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
  447. static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
  448. static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
  449. static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
  450. static struct event_constraint *
  451. amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
  452. {
  453. struct hw_perf_event *hwc = &event->hw;
  454. unsigned int event_code = amd_get_event_code(hwc);
  455. switch (event_code & AMD_EVENT_TYPE_MASK) {
  456. case AMD_EVENT_FP:
  457. switch (event_code) {
  458. case 0x000:
  459. if (!(hwc->config & 0x0000F000ULL))
  460. break;
  461. if (!(hwc->config & 0x00000F00ULL))
  462. break;
  463. return &amd_f15_PMC3;
  464. case 0x004:
  465. if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
  466. break;
  467. return &amd_f15_PMC3;
  468. case 0x003:
  469. case 0x00B:
  470. case 0x00D:
  471. return &amd_f15_PMC3;
  472. }
  473. return &amd_f15_PMC53;
  474. case AMD_EVENT_LS:
  475. case AMD_EVENT_DC:
  476. case AMD_EVENT_EX_LS:
  477. switch (event_code) {
  478. case 0x023:
  479. case 0x043:
  480. case 0x045:
  481. case 0x046:
  482. case 0x054:
  483. case 0x055:
  484. return &amd_f15_PMC20;
  485. case 0x02D:
  486. return &amd_f15_PMC3;
  487. case 0x02E:
  488. return &amd_f15_PMC30;
  489. default:
  490. return &amd_f15_PMC50;
  491. }
  492. case AMD_EVENT_CU:
  493. case AMD_EVENT_IC_DE:
  494. case AMD_EVENT_DE:
  495. switch (event_code) {
  496. case 0x08F:
  497. case 0x187:
  498. case 0x188:
  499. return &amd_f15_PMC0;
  500. case 0x0DB ... 0x0DF:
  501. case 0x1D6:
  502. case 0x1D8:
  503. return &amd_f15_PMC50;
  504. default:
  505. return &amd_f15_PMC20;
  506. }
  507. case AMD_EVENT_NB:
  508. /* not yet implemented */
  509. return &emptyconstraint;
  510. default:
  511. return &emptyconstraint;
  512. }
  513. }
  514. static __initconst const struct x86_pmu amd_pmu_f15h = {
  515. .name = "AMD Family 15h",
  516. .handle_irq = x86_pmu_handle_irq,
  517. .disable_all = x86_pmu_disable_all,
  518. .enable_all = x86_pmu_enable_all,
  519. .enable = x86_pmu_enable_event,
  520. .disable = x86_pmu_disable_event,
  521. .hw_config = amd_pmu_hw_config,
  522. .schedule_events = x86_schedule_events,
  523. .eventsel = MSR_F15H_PERF_CTL,
  524. .perfctr = MSR_F15H_PERF_CTR,
  525. .event_map = amd_pmu_event_map,
  526. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  527. .num_counters = AMD64_NUM_COUNTERS_F15H,
  528. .cntval_bits = 48,
  529. .cntval_mask = (1ULL << 48) - 1,
  530. .apic = 1,
  531. /* use highest bit to detect overflow */
  532. .max_period = (1ULL << 47) - 1,
  533. .get_event_constraints = amd_get_event_constraints_f15h,
  534. /* nortbridge counters not yet implemented: */
  535. #if 0
  536. .put_event_constraints = amd_put_event_constraints,
  537. .cpu_prepare = amd_pmu_cpu_prepare,
  538. .cpu_dead = amd_pmu_cpu_dead,
  539. #endif
  540. .cpu_starting = amd_pmu_cpu_starting,
  541. };
  542. __init int amd_pmu_init(void)
  543. {
  544. /* Performance-monitoring supported from K7 and later: */
  545. if (boot_cpu_data.x86 < 6)
  546. return -ENODEV;
  547. /*
  548. * If core performance counter extensions exists, it must be
  549. * family 15h, otherwise fail. See x86_pmu_addr_offset().
  550. */
  551. switch (boot_cpu_data.x86) {
  552. case 0x15:
  553. if (!cpu_has_perfctr_core)
  554. return -ENODEV;
  555. x86_pmu = amd_pmu_f15h;
  556. break;
  557. default:
  558. if (cpu_has_perfctr_core)
  559. return -ENODEV;
  560. x86_pmu = amd_pmu;
  561. break;
  562. }
  563. /* Events are common for all AMDs */
  564. memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
  565. sizeof(hw_cache_event_ids));
  566. return 0;
  567. }
  568. void amd_pmu_enable_virt(void)
  569. {
  570. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  571. cpuc->perf_ctr_virt_mask = 0;
  572. /* Reload all events */
  573. x86_pmu_disable_all();
  574. x86_pmu_enable_all(0);
  575. }
  576. EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
  577. void amd_pmu_disable_virt(void)
  578. {
  579. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  580. /*
  581. * We only mask out the Host-only bit so that host-only counting works
  582. * when SVM is disabled. If someone sets up a guest-only counter when
  583. * SVM is disabled the Guest-only bits still gets set and the counter
  584. * will not count anything.
  585. */
  586. cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
  587. /* Reload all events */
  588. x86_pmu_disable_all();
  589. x86_pmu_enable_all(0);
  590. }
  591. EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);