smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/exception.h>
  33. #include <asm/idmap.h>
  34. #include <asm/topology.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sections.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/ptrace.h>
  42. #include <asm/localtimer.h>
  43. #include <asm/smp_plat.h>
  44. /*
  45. * as from 2.5, kernels no longer have an init_tasks structure
  46. * so we need some other way of telling a new secondary core
  47. * where to place its SVC stack
  48. */
  49. struct secondary_data secondary_data;
  50. enum ipi_msg_type {
  51. IPI_TIMER = 2,
  52. IPI_RESCHEDULE,
  53. IPI_CALL_FUNC,
  54. IPI_CALL_FUNC_SINGLE,
  55. IPI_CPU_STOP,
  56. };
  57. int __cpuinit __cpu_up(unsigned int cpu)
  58. {
  59. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  60. struct task_struct *idle = ci->idle;
  61. int ret;
  62. /*
  63. * Spawn a new process manually, if not already done.
  64. * Grab a pointer to its task struct so we can mess with it
  65. */
  66. if (!idle) {
  67. idle = fork_idle(cpu);
  68. if (IS_ERR(idle)) {
  69. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  70. return PTR_ERR(idle);
  71. }
  72. ci->idle = idle;
  73. } else {
  74. /*
  75. * Since this idle thread is being re-used, call
  76. * init_idle() to reinitialize the thread structure.
  77. */
  78. init_idle(idle, cpu);
  79. }
  80. /*
  81. * We need to tell the secondary core where to find
  82. * its stack and the page tables.
  83. */
  84. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  85. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  86. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  87. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  88. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  89. /*
  90. * Now bring the CPU into our world.
  91. */
  92. ret = boot_secondary(cpu, idle);
  93. if (ret == 0) {
  94. unsigned long timeout;
  95. /*
  96. * CPU was successfully started, wait for it
  97. * to come online or time out.
  98. */
  99. timeout = jiffies + HZ;
  100. while (time_before(jiffies, timeout)) {
  101. if (cpu_online(cpu))
  102. break;
  103. udelay(10);
  104. barrier();
  105. }
  106. if (!cpu_online(cpu)) {
  107. pr_crit("CPU%u: failed to come online\n", cpu);
  108. ret = -EIO;
  109. }
  110. } else {
  111. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  112. }
  113. secondary_data.stack = NULL;
  114. secondary_data.pgdir = 0;
  115. return ret;
  116. }
  117. #ifdef CONFIG_HOTPLUG_CPU
  118. static void percpu_timer_stop(void);
  119. /*
  120. * __cpu_disable runs on the processor to be shutdown.
  121. */
  122. int __cpu_disable(void)
  123. {
  124. unsigned int cpu = smp_processor_id();
  125. struct task_struct *p;
  126. int ret;
  127. ret = platform_cpu_disable(cpu);
  128. if (ret)
  129. return ret;
  130. /*
  131. * Take this CPU offline. Once we clear this, we can't return,
  132. * and we must not schedule until we're ready to give up the cpu.
  133. */
  134. set_cpu_online(cpu, false);
  135. /*
  136. * OK - migrate IRQs away from this CPU
  137. */
  138. migrate_irqs();
  139. /*
  140. * Stop the local timer for this CPU.
  141. */
  142. percpu_timer_stop();
  143. /*
  144. * Flush user cache and TLB mappings, and then remove this CPU
  145. * from the vm mask set of all processes.
  146. */
  147. flush_cache_all();
  148. local_flush_tlb_all();
  149. read_lock(&tasklist_lock);
  150. for_each_process(p) {
  151. if (p->mm)
  152. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  153. }
  154. read_unlock(&tasklist_lock);
  155. return 0;
  156. }
  157. static DECLARE_COMPLETION(cpu_died);
  158. /*
  159. * called on the thread which is asking for a CPU to be shutdown -
  160. * waits until shutdown has completed, or it is timed out.
  161. */
  162. void __cpu_die(unsigned int cpu)
  163. {
  164. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  165. pr_err("CPU%u: cpu didn't die\n", cpu);
  166. return;
  167. }
  168. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  169. if (!platform_cpu_kill(cpu))
  170. printk("CPU%u: unable to kill\n", cpu);
  171. }
  172. /*
  173. * Called from the idle thread for the CPU which has been shutdown.
  174. *
  175. * Note that we disable IRQs here, but do not re-enable them
  176. * before returning to the caller. This is also the behaviour
  177. * of the other hotplug-cpu capable cores, so presumably coming
  178. * out of idle fixes this.
  179. */
  180. void __ref cpu_die(void)
  181. {
  182. unsigned int cpu = smp_processor_id();
  183. idle_task_exit();
  184. local_irq_disable();
  185. mb();
  186. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  187. complete(&cpu_died);
  188. /*
  189. * actual CPU shutdown procedure is at least platform (if not
  190. * CPU) specific.
  191. */
  192. platform_cpu_die(cpu);
  193. /*
  194. * Do not return to the idle loop - jump back to the secondary
  195. * cpu initialisation. There's some initialisation which needs
  196. * to be repeated to undo the effects of taking the CPU offline.
  197. */
  198. __asm__("mov sp, %0\n"
  199. " mov fp, #0\n"
  200. " b secondary_start_kernel"
  201. :
  202. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  203. }
  204. #endif /* CONFIG_HOTPLUG_CPU */
  205. /*
  206. * Called by both boot and secondaries to move global data into
  207. * per-processor storage.
  208. */
  209. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  210. {
  211. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  212. cpu_info->loops_per_jiffy = loops_per_jiffy;
  213. store_cpu_topology(cpuid);
  214. }
  215. /*
  216. * This is the secondary CPU boot entry. We're using this CPUs
  217. * idle thread stack, but a set of temporary page tables.
  218. */
  219. asmlinkage void __cpuinit secondary_start_kernel(void)
  220. {
  221. struct mm_struct *mm = &init_mm;
  222. unsigned int cpu = smp_processor_id();
  223. printk("CPU%u: Booted secondary processor\n", cpu);
  224. /*
  225. * All kernel threads share the same mm context; grab a
  226. * reference and switch to it.
  227. */
  228. atomic_inc(&mm->mm_count);
  229. current->active_mm = mm;
  230. cpumask_set_cpu(cpu, mm_cpumask(mm));
  231. cpu_switch_mm(mm->pgd, mm);
  232. enter_lazy_tlb(mm, current);
  233. local_flush_tlb_all();
  234. cpu_init();
  235. preempt_disable();
  236. trace_hardirqs_off();
  237. /*
  238. * Give the platform a chance to do its own initialisation.
  239. */
  240. platform_secondary_init(cpu);
  241. notify_cpu_starting(cpu);
  242. calibrate_delay();
  243. smp_store_cpu_info(cpu);
  244. /*
  245. * OK, now it's safe to let the boot CPU continue. Wait for
  246. * the CPU migration code to notice that the CPU is online
  247. * before we continue.
  248. */
  249. set_cpu_online(cpu, true);
  250. /*
  251. * Setup the percpu timer for this CPU.
  252. */
  253. percpu_timer_setup();
  254. while (!cpu_active(cpu))
  255. cpu_relax();
  256. /*
  257. * cpu_active bit is set, so it's safe to enalbe interrupts
  258. * now.
  259. */
  260. local_irq_enable();
  261. local_fiq_enable();
  262. /*
  263. * OK, it's off to the idle thread for us
  264. */
  265. cpu_idle();
  266. }
  267. void __init smp_cpus_done(unsigned int max_cpus)
  268. {
  269. int cpu;
  270. unsigned long bogosum = 0;
  271. for_each_online_cpu(cpu)
  272. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  273. printk(KERN_INFO "SMP: Total of %d processors activated "
  274. "(%lu.%02lu BogoMIPS).\n",
  275. num_online_cpus(),
  276. bogosum / (500000/HZ),
  277. (bogosum / (5000/HZ)) % 100);
  278. }
  279. void __init smp_prepare_boot_cpu(void)
  280. {
  281. unsigned int cpu = smp_processor_id();
  282. per_cpu(cpu_data, cpu).idle = current;
  283. }
  284. void __init smp_prepare_cpus(unsigned int max_cpus)
  285. {
  286. unsigned int ncores = num_possible_cpus();
  287. init_cpu_topology();
  288. smp_store_cpu_info(smp_processor_id());
  289. /*
  290. * are we trying to boot more cores than exist?
  291. */
  292. if (max_cpus > ncores)
  293. max_cpus = ncores;
  294. if (ncores > 1 && max_cpus) {
  295. /*
  296. * Enable the local timer or broadcast device for the
  297. * boot CPU, but only if we have more than one CPU.
  298. */
  299. percpu_timer_setup();
  300. /*
  301. * Initialise the present map, which describes the set of CPUs
  302. * actually populated at the present time. A platform should
  303. * re-initialize the map in platform_smp_prepare_cpus() if
  304. * present != possible (e.g. physical hotplug).
  305. */
  306. init_cpu_present(&cpu_possible_map);
  307. /*
  308. * Initialise the SCU if there are more than one CPU
  309. * and let them know where to start.
  310. */
  311. platform_smp_prepare_cpus(max_cpus);
  312. }
  313. }
  314. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  315. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  316. {
  317. smp_cross_call = fn;
  318. }
  319. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  320. {
  321. smp_cross_call(mask, IPI_CALL_FUNC);
  322. }
  323. void arch_send_call_function_single_ipi(int cpu)
  324. {
  325. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  326. }
  327. static const char *ipi_types[NR_IPI] = {
  328. #define S(x,s) [x - IPI_TIMER] = s
  329. S(IPI_TIMER, "Timer broadcast interrupts"),
  330. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  331. S(IPI_CALL_FUNC, "Function call interrupts"),
  332. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  333. S(IPI_CPU_STOP, "CPU stop interrupts"),
  334. };
  335. void show_ipi_list(struct seq_file *p, int prec)
  336. {
  337. unsigned int cpu, i;
  338. for (i = 0; i < NR_IPI; i++) {
  339. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  340. for_each_present_cpu(cpu)
  341. seq_printf(p, "%10u ",
  342. __get_irq_stat(cpu, ipi_irqs[i]));
  343. seq_printf(p, " %s\n", ipi_types[i]);
  344. }
  345. }
  346. u64 smp_irq_stat_cpu(unsigned int cpu)
  347. {
  348. u64 sum = 0;
  349. int i;
  350. for (i = 0; i < NR_IPI; i++)
  351. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  352. return sum;
  353. }
  354. /*
  355. * Timer (local or broadcast) support
  356. */
  357. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  358. static void ipi_timer(void)
  359. {
  360. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  361. evt->event_handler(evt);
  362. }
  363. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  364. static void smp_timer_broadcast(const struct cpumask *mask)
  365. {
  366. smp_cross_call(mask, IPI_TIMER);
  367. }
  368. #else
  369. #define smp_timer_broadcast NULL
  370. #endif
  371. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  372. struct clock_event_device *evt)
  373. {
  374. }
  375. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  376. {
  377. evt->name = "dummy_timer";
  378. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  379. CLOCK_EVT_FEAT_PERIODIC |
  380. CLOCK_EVT_FEAT_DUMMY;
  381. evt->rating = 400;
  382. evt->mult = 1;
  383. evt->set_mode = broadcast_timer_set_mode;
  384. clockevents_register_device(evt);
  385. }
  386. void __cpuinit percpu_timer_setup(void)
  387. {
  388. unsigned int cpu = smp_processor_id();
  389. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  390. evt->cpumask = cpumask_of(cpu);
  391. evt->broadcast = smp_timer_broadcast;
  392. if (local_timer_setup(evt))
  393. broadcast_timer_setup(evt);
  394. }
  395. #ifdef CONFIG_HOTPLUG_CPU
  396. /*
  397. * The generic clock events code purposely does not stop the local timer
  398. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  399. * manually here.
  400. */
  401. static void percpu_timer_stop(void)
  402. {
  403. unsigned int cpu = smp_processor_id();
  404. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  405. local_timer_stop(evt);
  406. }
  407. #endif
  408. static DEFINE_RAW_SPINLOCK(stop_lock);
  409. /*
  410. * ipi_cpu_stop - handle IPI from smp_send_stop()
  411. */
  412. static void ipi_cpu_stop(unsigned int cpu)
  413. {
  414. if (system_state == SYSTEM_BOOTING ||
  415. system_state == SYSTEM_RUNNING) {
  416. raw_spin_lock(&stop_lock);
  417. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  418. dump_stack();
  419. raw_spin_unlock(&stop_lock);
  420. }
  421. set_cpu_online(cpu, false);
  422. local_fiq_disable();
  423. local_irq_disable();
  424. #ifdef CONFIG_HOTPLUG_CPU
  425. platform_cpu_kill(cpu);
  426. #endif
  427. while (1)
  428. cpu_relax();
  429. }
  430. /*
  431. * Main handler for inter-processor interrupts
  432. */
  433. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  434. {
  435. handle_IPI(ipinr, regs);
  436. }
  437. void handle_IPI(int ipinr, struct pt_regs *regs)
  438. {
  439. unsigned int cpu = smp_processor_id();
  440. struct pt_regs *old_regs = set_irq_regs(regs);
  441. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  442. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  443. switch (ipinr) {
  444. case IPI_TIMER:
  445. irq_enter();
  446. ipi_timer();
  447. irq_exit();
  448. break;
  449. case IPI_RESCHEDULE:
  450. scheduler_ipi();
  451. break;
  452. case IPI_CALL_FUNC:
  453. irq_enter();
  454. generic_smp_call_function_interrupt();
  455. irq_exit();
  456. break;
  457. case IPI_CALL_FUNC_SINGLE:
  458. irq_enter();
  459. generic_smp_call_function_single_interrupt();
  460. irq_exit();
  461. break;
  462. case IPI_CPU_STOP:
  463. irq_enter();
  464. ipi_cpu_stop(cpu);
  465. irq_exit();
  466. break;
  467. default:
  468. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  469. cpu, ipinr);
  470. break;
  471. }
  472. set_irq_regs(old_regs);
  473. }
  474. void smp_send_reschedule(int cpu)
  475. {
  476. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  477. }
  478. void smp_send_stop(void)
  479. {
  480. unsigned long timeout;
  481. if (num_online_cpus() > 1) {
  482. cpumask_t mask = cpu_online_map;
  483. cpu_clear(smp_processor_id(), mask);
  484. smp_cross_call(&mask, IPI_CPU_STOP);
  485. }
  486. /* Wait up to one second for other CPUs to stop */
  487. timeout = USEC_PER_SEC;
  488. while (num_online_cpus() > 1 && timeout--)
  489. udelay(1);
  490. if (num_online_cpus() > 1)
  491. pr_warning("SMP: failed to stop secondary CPUs\n");
  492. }
  493. /*
  494. * not supported here
  495. */
  496. int setup_profiling_timer(unsigned int multiplier)
  497. {
  498. return -EINVAL;
  499. }