af9013.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. *
  6. * Thanks to Afatech who kindly provided information.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/string.h>
  29. #include <linux/slab.h>
  30. #include <linux/firmware.h>
  31. #include "dvb_frontend.h"
  32. #include "af9013_priv.h"
  33. #include "af9013.h"
  34. int af9013_debug;
  35. struct af9013_state {
  36. struct i2c_adapter *i2c;
  37. struct dvb_frontend frontend;
  38. struct af9013_config config;
  39. u16 signal_strength;
  40. u32 ber;
  41. u32 ucblocks;
  42. u16 snr;
  43. u32 frequency;
  44. unsigned long next_statistics_check;
  45. };
  46. static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
  47. static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg,
  48. u8 *val, u8 len)
  49. {
  50. u8 buf[3+len];
  51. struct i2c_msg msg = {
  52. .addr = state->config.demod_address,
  53. .flags = 0,
  54. .len = sizeof(buf),
  55. .buf = buf };
  56. buf[0] = reg >> 8;
  57. buf[1] = reg & 0xff;
  58. buf[2] = mbox;
  59. memcpy(&buf[3], val, len);
  60. if (i2c_transfer(state->i2c, &msg, 1) != 1) {
  61. warn("I2C write failed reg:%04x len:%d", reg, len);
  62. return -EREMOTEIO;
  63. }
  64. return 0;
  65. }
  66. static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val,
  67. u8 len)
  68. {
  69. u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7);
  70. return af9013_write_regs(state, mbox, reg, val, len);
  71. }
  72. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  73. u8 len)
  74. {
  75. u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7);
  76. return af9013_write_regs(state, mbox, reg, val, len);
  77. }
  78. /* write single register */
  79. static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val)
  80. {
  81. return af9013_write_ofdm_regs(state, reg, &val, 1);
  82. }
  83. /* read single register */
  84. static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val)
  85. {
  86. u8 obuf[3] = { reg >> 8, reg & 0xff, 0 };
  87. u8 ibuf[1];
  88. struct i2c_msg msg[2] = {
  89. {
  90. .addr = state->config.demod_address,
  91. .flags = 0,
  92. .len = sizeof(obuf),
  93. .buf = obuf
  94. }, {
  95. .addr = state->config.demod_address,
  96. .flags = I2C_M_RD,
  97. .len = sizeof(ibuf),
  98. .buf = ibuf
  99. }
  100. };
  101. if (i2c_transfer(state->i2c, msg, 2) != 2) {
  102. warn("I2C read failed reg:%04x", reg);
  103. return -EREMOTEIO;
  104. }
  105. *val = ibuf[0];
  106. return 0;
  107. }
  108. static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
  109. u8 len, u8 val)
  110. {
  111. int ret;
  112. u8 tmp, mask;
  113. ret = af9013_read_reg(state, reg, &tmp);
  114. if (ret)
  115. return ret;
  116. mask = regmask[len - 1] << pos;
  117. tmp = (tmp & ~mask) | ((val << pos) & mask);
  118. return af9013_write_reg(state, reg, tmp);
  119. }
  120. static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
  121. u8 len, u8 *val)
  122. {
  123. int ret;
  124. u8 tmp;
  125. ret = af9013_read_reg(state, reg, &tmp);
  126. if (ret)
  127. return ret;
  128. *val = (tmp >> pos) & regmask[len - 1];
  129. return 0;
  130. }
  131. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  132. {
  133. int ret;
  134. u8 pos;
  135. u16 addr;
  136. deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval);
  137. /* GPIO0 & GPIO1 0xd735
  138. GPIO2 & GPIO3 0xd736 */
  139. switch (gpio) {
  140. case 0:
  141. case 1:
  142. addr = 0xd735;
  143. break;
  144. case 2:
  145. case 3:
  146. addr = 0xd736;
  147. break;
  148. default:
  149. err("invalid gpio:%d\n", gpio);
  150. ret = -EINVAL;
  151. goto error;
  152. };
  153. switch (gpio) {
  154. case 0:
  155. case 2:
  156. pos = 0;
  157. break;
  158. case 1:
  159. case 3:
  160. default:
  161. pos = 4;
  162. break;
  163. };
  164. ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval);
  165. error:
  166. return ret;
  167. }
  168. static u32 af913_div(u32 a, u32 b, u32 x)
  169. {
  170. u32 r = 0, c = 0, i;
  171. deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x);
  172. if (a > b) {
  173. c = a / b;
  174. a = a - c * b;
  175. }
  176. for (i = 0; i < x; i++) {
  177. if (a >= b) {
  178. r += 1;
  179. a -= b;
  180. }
  181. a <<= 1;
  182. r <<= 1;
  183. }
  184. r = (c << (u32)x) + r;
  185. deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r);
  186. return r;
  187. }
  188. static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw)
  189. {
  190. int ret = 0;
  191. u8 i = 0;
  192. u8 buf[24];
  193. u32 uninitialized_var(ns_coeff1_2048nu);
  194. u32 uninitialized_var(ns_coeff1_8191nu);
  195. u32 uninitialized_var(ns_coeff1_8192nu);
  196. u32 uninitialized_var(ns_coeff1_8193nu);
  197. u32 uninitialized_var(ns_coeff2_2k);
  198. u32 uninitialized_var(ns_coeff2_8k);
  199. deb_info("%s: adc_clock:%d bw:%d\n", __func__,
  200. state->config.adc_clock, bw);
  201. switch (state->config.adc_clock) {
  202. case 28800: /* 28.800 MHz */
  203. switch (bw) {
  204. case BANDWIDTH_6_MHZ:
  205. ns_coeff1_2048nu = 0x01e79e7a;
  206. ns_coeff1_8191nu = 0x0079eb6e;
  207. ns_coeff1_8192nu = 0x0079e79e;
  208. ns_coeff1_8193nu = 0x0079e3cf;
  209. ns_coeff2_2k = 0x00f3cf3d;
  210. ns_coeff2_8k = 0x003cf3cf;
  211. break;
  212. case BANDWIDTH_7_MHZ:
  213. ns_coeff1_2048nu = 0x0238e38e;
  214. ns_coeff1_8191nu = 0x008e3d55;
  215. ns_coeff1_8192nu = 0x008e38e4;
  216. ns_coeff1_8193nu = 0x008e3472;
  217. ns_coeff2_2k = 0x011c71c7;
  218. ns_coeff2_8k = 0x00471c72;
  219. break;
  220. case BANDWIDTH_8_MHZ:
  221. ns_coeff1_2048nu = 0x028a28a3;
  222. ns_coeff1_8191nu = 0x00a28f3d;
  223. ns_coeff1_8192nu = 0x00a28a29;
  224. ns_coeff1_8193nu = 0x00a28514;
  225. ns_coeff2_2k = 0x01451451;
  226. ns_coeff2_8k = 0x00514514;
  227. break;
  228. default:
  229. ret = -EINVAL;
  230. }
  231. break;
  232. case 20480: /* 20.480 MHz */
  233. switch (bw) {
  234. case BANDWIDTH_6_MHZ:
  235. ns_coeff1_2048nu = 0x02adb6dc;
  236. ns_coeff1_8191nu = 0x00ab7313;
  237. ns_coeff1_8192nu = 0x00ab6db7;
  238. ns_coeff1_8193nu = 0x00ab685c;
  239. ns_coeff2_2k = 0x0156db6e;
  240. ns_coeff2_8k = 0x0055b6dc;
  241. break;
  242. case BANDWIDTH_7_MHZ:
  243. ns_coeff1_2048nu = 0x03200001;
  244. ns_coeff1_8191nu = 0x00c80640;
  245. ns_coeff1_8192nu = 0x00c80000;
  246. ns_coeff1_8193nu = 0x00c7f9c0;
  247. ns_coeff2_2k = 0x01900000;
  248. ns_coeff2_8k = 0x00640000;
  249. break;
  250. case BANDWIDTH_8_MHZ:
  251. ns_coeff1_2048nu = 0x03924926;
  252. ns_coeff1_8191nu = 0x00e4996e;
  253. ns_coeff1_8192nu = 0x00e49249;
  254. ns_coeff1_8193nu = 0x00e48b25;
  255. ns_coeff2_2k = 0x01c92493;
  256. ns_coeff2_8k = 0x00724925;
  257. break;
  258. default:
  259. ret = -EINVAL;
  260. }
  261. break;
  262. case 28000: /* 28.000 MHz */
  263. switch (bw) {
  264. case BANDWIDTH_6_MHZ:
  265. ns_coeff1_2048nu = 0x01f58d10;
  266. ns_coeff1_8191nu = 0x007d672f;
  267. ns_coeff1_8192nu = 0x007d6344;
  268. ns_coeff1_8193nu = 0x007d5f59;
  269. ns_coeff2_2k = 0x00fac688;
  270. ns_coeff2_8k = 0x003eb1a2;
  271. break;
  272. case BANDWIDTH_7_MHZ:
  273. ns_coeff1_2048nu = 0x02492492;
  274. ns_coeff1_8191nu = 0x00924db7;
  275. ns_coeff1_8192nu = 0x00924925;
  276. ns_coeff1_8193nu = 0x00924492;
  277. ns_coeff2_2k = 0x01249249;
  278. ns_coeff2_8k = 0x00492492;
  279. break;
  280. case BANDWIDTH_8_MHZ:
  281. ns_coeff1_2048nu = 0x029cbc15;
  282. ns_coeff1_8191nu = 0x00a7343f;
  283. ns_coeff1_8192nu = 0x00a72f05;
  284. ns_coeff1_8193nu = 0x00a729cc;
  285. ns_coeff2_2k = 0x014e5e0a;
  286. ns_coeff2_8k = 0x00539783;
  287. break;
  288. default:
  289. ret = -EINVAL;
  290. }
  291. break;
  292. case 25000: /* 25.000 MHz */
  293. switch (bw) {
  294. case BANDWIDTH_6_MHZ:
  295. ns_coeff1_2048nu = 0x0231bcb5;
  296. ns_coeff1_8191nu = 0x008c7391;
  297. ns_coeff1_8192nu = 0x008c6f2d;
  298. ns_coeff1_8193nu = 0x008c6aca;
  299. ns_coeff2_2k = 0x0118de5b;
  300. ns_coeff2_8k = 0x00463797;
  301. break;
  302. case BANDWIDTH_7_MHZ:
  303. ns_coeff1_2048nu = 0x028f5c29;
  304. ns_coeff1_8191nu = 0x00a3dc29;
  305. ns_coeff1_8192nu = 0x00a3d70a;
  306. ns_coeff1_8193nu = 0x00a3d1ec;
  307. ns_coeff2_2k = 0x0147ae14;
  308. ns_coeff2_8k = 0x0051eb85;
  309. break;
  310. case BANDWIDTH_8_MHZ:
  311. ns_coeff1_2048nu = 0x02ecfb9d;
  312. ns_coeff1_8191nu = 0x00bb44c1;
  313. ns_coeff1_8192nu = 0x00bb3ee7;
  314. ns_coeff1_8193nu = 0x00bb390d;
  315. ns_coeff2_2k = 0x01767dce;
  316. ns_coeff2_8k = 0x005d9f74;
  317. break;
  318. default:
  319. ret = -EINVAL;
  320. }
  321. break;
  322. default:
  323. err("invalid xtal");
  324. return -EINVAL;
  325. }
  326. if (ret) {
  327. err("invalid bandwidth");
  328. return ret;
  329. }
  330. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x03000000) >> 24);
  331. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x00ff0000) >> 16);
  332. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x0000ff00) >> 8);
  333. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x000000ff));
  334. buf[i++] = (u8) ((ns_coeff2_2k & 0x01c00000) >> 22);
  335. buf[i++] = (u8) ((ns_coeff2_2k & 0x003fc000) >> 14);
  336. buf[i++] = (u8) ((ns_coeff2_2k & 0x00003fc0) >> 6);
  337. buf[i++] = (u8) ((ns_coeff2_2k & 0x0000003f));
  338. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x03000000) >> 24);
  339. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x00ffc000) >> 16);
  340. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x0000ff00) >> 8);
  341. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x000000ff));
  342. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x03000000) >> 24);
  343. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x00ffc000) >> 16);
  344. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x0000ff00) >> 8);
  345. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x000000ff));
  346. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x03000000) >> 24);
  347. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x00ffc000) >> 16);
  348. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x0000ff00) >> 8);
  349. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x000000ff));
  350. buf[i++] = (u8) ((ns_coeff2_8k & 0x01c00000) >> 22);
  351. buf[i++] = (u8) ((ns_coeff2_8k & 0x003fc000) >> 14);
  352. buf[i++] = (u8) ((ns_coeff2_8k & 0x00003fc0) >> 6);
  353. buf[i++] = (u8) ((ns_coeff2_8k & 0x0000003f));
  354. deb_info("%s: coeff:", __func__);
  355. debug_dump(buf, sizeof(buf), deb_info);
  356. /* program */
  357. for (i = 0; i < sizeof(buf); i++) {
  358. ret = af9013_write_reg(state, 0xae00 + i, buf[i]);
  359. if (ret)
  360. break;
  361. }
  362. return ret;
  363. }
  364. static int af9013_set_adc_ctrl(struct af9013_state *state)
  365. {
  366. int ret;
  367. u8 buf[3], tmp, i;
  368. u32 adc_cw;
  369. deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock);
  370. /* adc frequency type */
  371. switch (state->config.adc_clock) {
  372. case 28800: /* 28.800 MHz */
  373. tmp = 0;
  374. break;
  375. case 20480: /* 20.480 MHz */
  376. tmp = 1;
  377. break;
  378. case 28000: /* 28.000 MHz */
  379. tmp = 2;
  380. break;
  381. case 25000: /* 25.000 MHz */
  382. tmp = 3;
  383. break;
  384. default:
  385. err("invalid xtal");
  386. return -EINVAL;
  387. }
  388. adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul);
  389. buf[0] = (u8) ((adc_cw & 0x000000ff));
  390. buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8);
  391. buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16);
  392. deb_info("%s: adc_cw:", __func__);
  393. debug_dump(buf, sizeof(buf), deb_info);
  394. /* program */
  395. for (i = 0; i < sizeof(buf); i++) {
  396. ret = af9013_write_reg(state, 0xd180 + i, buf[i]);
  397. if (ret)
  398. goto error;
  399. }
  400. ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp);
  401. error:
  402. return ret;
  403. }
  404. static int af9013_set_freq_ctrl(struct af9013_state *state, fe_bandwidth_t bw)
  405. {
  406. int ret;
  407. u16 addr;
  408. u8 buf[3], i, j;
  409. u32 adc_freq, freq_cw;
  410. s8 bfs_spec_inv;
  411. int if_sample_freq;
  412. for (j = 0; j < 3; j++) {
  413. if (j == 0) {
  414. addr = 0xd140; /* fcw normal */
  415. bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
  416. } else if (j == 1) {
  417. addr = 0x9be7; /* fcw dummy ram */
  418. bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
  419. } else {
  420. addr = 0x9bea; /* fcw inverted */
  421. bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1;
  422. }
  423. adc_freq = state->config.adc_clock * 1000;
  424. if_sample_freq = state->config.tuner_if * 1000;
  425. /* TDA18271 uses different sampling freq for every bw */
  426. if (state->config.tuner == AF9013_TUNER_TDA18271) {
  427. switch (bw) {
  428. case BANDWIDTH_6_MHZ:
  429. if_sample_freq = 3300000; /* 3.3 MHz */
  430. break;
  431. case BANDWIDTH_7_MHZ:
  432. if_sample_freq = 3800000; /* 3.8 MHz */
  433. break;
  434. case BANDWIDTH_8_MHZ:
  435. default:
  436. if_sample_freq = 4300000; /* 4.3 MHz */
  437. break;
  438. }
  439. } else if (state->config.tuner == AF9013_TUNER_TDA18218) {
  440. switch (bw) {
  441. case BANDWIDTH_6_MHZ:
  442. if_sample_freq = 3000000; /* 3 MHz */
  443. break;
  444. case BANDWIDTH_7_MHZ:
  445. if_sample_freq = 3500000; /* 3.5 MHz */
  446. break;
  447. case BANDWIDTH_8_MHZ:
  448. default:
  449. if_sample_freq = 4000000; /* 4 MHz */
  450. break;
  451. }
  452. }
  453. while (if_sample_freq > (adc_freq / 2))
  454. if_sample_freq = if_sample_freq - adc_freq;
  455. if (if_sample_freq >= 0)
  456. bfs_spec_inv = bfs_spec_inv * (-1);
  457. else
  458. if_sample_freq = if_sample_freq * (-1);
  459. freq_cw = af913_div(if_sample_freq, adc_freq, 23ul);
  460. if (bfs_spec_inv == -1)
  461. freq_cw = 0x00800000 - freq_cw;
  462. buf[0] = (u8) ((freq_cw & 0x000000ff));
  463. buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8);
  464. buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16);
  465. deb_info("%s: freq_cw:", __func__);
  466. debug_dump(buf, sizeof(buf), deb_info);
  467. /* program */
  468. for (i = 0; i < sizeof(buf); i++) {
  469. ret = af9013_write_reg(state, addr++, buf[i]);
  470. if (ret)
  471. goto error;
  472. }
  473. }
  474. error:
  475. return ret;
  476. }
  477. static int af9013_set_ofdm_params(struct af9013_state *state,
  478. struct dvb_ofdm_parameters *params, u8 *auto_mode)
  479. {
  480. int ret;
  481. u8 i, buf[3] = {0, 0, 0};
  482. *auto_mode = 0; /* set if parameters are requested to auto set */
  483. /* Try auto-detect transmission parameters in case of AUTO requested or
  484. garbage parameters given by application for compatibility.
  485. MPlayer seems to provide garbage parameters currently. */
  486. switch (params->transmission_mode) {
  487. case TRANSMISSION_MODE_AUTO:
  488. *auto_mode = 1;
  489. case TRANSMISSION_MODE_2K:
  490. break;
  491. case TRANSMISSION_MODE_8K:
  492. buf[0] |= (1 << 0);
  493. break;
  494. default:
  495. deb_info("%s: invalid transmission_mode\n", __func__);
  496. *auto_mode = 1;
  497. }
  498. switch (params->guard_interval) {
  499. case GUARD_INTERVAL_AUTO:
  500. *auto_mode = 1;
  501. case GUARD_INTERVAL_1_32:
  502. break;
  503. case GUARD_INTERVAL_1_16:
  504. buf[0] |= (1 << 2);
  505. break;
  506. case GUARD_INTERVAL_1_8:
  507. buf[0] |= (2 << 2);
  508. break;
  509. case GUARD_INTERVAL_1_4:
  510. buf[0] |= (3 << 2);
  511. break;
  512. default:
  513. deb_info("%s: invalid guard_interval\n", __func__);
  514. *auto_mode = 1;
  515. }
  516. switch (params->hierarchy_information) {
  517. case HIERARCHY_AUTO:
  518. *auto_mode = 1;
  519. case HIERARCHY_NONE:
  520. break;
  521. case HIERARCHY_1:
  522. buf[0] |= (1 << 4);
  523. break;
  524. case HIERARCHY_2:
  525. buf[0] |= (2 << 4);
  526. break;
  527. case HIERARCHY_4:
  528. buf[0] |= (3 << 4);
  529. break;
  530. default:
  531. deb_info("%s: invalid hierarchy_information\n", __func__);
  532. *auto_mode = 1;
  533. };
  534. switch (params->constellation) {
  535. case QAM_AUTO:
  536. *auto_mode = 1;
  537. case QPSK:
  538. break;
  539. case QAM_16:
  540. buf[1] |= (1 << 6);
  541. break;
  542. case QAM_64:
  543. buf[1] |= (2 << 6);
  544. break;
  545. default:
  546. deb_info("%s: invalid constellation\n", __func__);
  547. *auto_mode = 1;
  548. }
  549. /* Use HP. How and which case we can switch to LP? */
  550. buf[1] |= (1 << 4);
  551. switch (params->code_rate_HP) {
  552. case FEC_AUTO:
  553. *auto_mode = 1;
  554. case FEC_1_2:
  555. break;
  556. case FEC_2_3:
  557. buf[2] |= (1 << 0);
  558. break;
  559. case FEC_3_4:
  560. buf[2] |= (2 << 0);
  561. break;
  562. case FEC_5_6:
  563. buf[2] |= (3 << 0);
  564. break;
  565. case FEC_7_8:
  566. buf[2] |= (4 << 0);
  567. break;
  568. default:
  569. deb_info("%s: invalid code_rate_HP\n", __func__);
  570. *auto_mode = 1;
  571. }
  572. switch (params->code_rate_LP) {
  573. case FEC_AUTO:
  574. /* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
  575. by dvb_frontend.c for compatibility */
  576. if (params->hierarchy_information != HIERARCHY_NONE)
  577. *auto_mode = 1;
  578. case FEC_1_2:
  579. break;
  580. case FEC_2_3:
  581. buf[2] |= (1 << 3);
  582. break;
  583. case FEC_3_4:
  584. buf[2] |= (2 << 3);
  585. break;
  586. case FEC_5_6:
  587. buf[2] |= (3 << 3);
  588. break;
  589. case FEC_7_8:
  590. buf[2] |= (4 << 3);
  591. break;
  592. case FEC_NONE:
  593. if (params->hierarchy_information == HIERARCHY_AUTO)
  594. break;
  595. default:
  596. deb_info("%s: invalid code_rate_LP\n", __func__);
  597. *auto_mode = 1;
  598. }
  599. switch (params->bandwidth) {
  600. case BANDWIDTH_6_MHZ:
  601. break;
  602. case BANDWIDTH_7_MHZ:
  603. buf[1] |= (1 << 2);
  604. break;
  605. case BANDWIDTH_8_MHZ:
  606. buf[1] |= (2 << 2);
  607. break;
  608. default:
  609. deb_info("%s: invalid bandwidth\n", __func__);
  610. buf[1] |= (2 << 2); /* cannot auto-detect BW, try 8 MHz */
  611. }
  612. /* program */
  613. for (i = 0; i < sizeof(buf); i++) {
  614. ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]);
  615. if (ret)
  616. break;
  617. }
  618. return ret;
  619. }
  620. static int af9013_reset(struct af9013_state *state, u8 sleep)
  621. {
  622. int ret;
  623. u8 tmp, i;
  624. deb_info("%s\n", __func__);
  625. /* enable OFDM reset */
  626. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1);
  627. if (ret)
  628. goto error;
  629. /* start reset mechanism */
  630. ret = af9013_write_reg(state, 0xaeff, 1);
  631. if (ret)
  632. goto error;
  633. /* reset is done when bit 1 is set */
  634. for (i = 0; i < 150; i++) {
  635. ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp);
  636. if (ret)
  637. goto error;
  638. if (tmp)
  639. break; /* reset done */
  640. msleep(10);
  641. }
  642. if (!tmp)
  643. return -ETIMEDOUT;
  644. /* don't clear reset when going to sleep */
  645. if (!sleep) {
  646. /* clear OFDM reset */
  647. ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
  648. if (ret)
  649. goto error;
  650. /* disable OFDM reset */
  651. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
  652. }
  653. error:
  654. return ret;
  655. }
  656. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  657. {
  658. int ret;
  659. deb_info("%s: onoff:%d\n", __func__, onoff);
  660. if (onoff) {
  661. /* power on */
  662. ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0);
  663. if (ret)
  664. goto error;
  665. ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
  666. if (ret)
  667. goto error;
  668. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
  669. } else {
  670. /* power off */
  671. ret = af9013_reset(state, 1);
  672. if (ret)
  673. goto error;
  674. ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1);
  675. }
  676. error:
  677. return ret;
  678. }
  679. static int af9013_lock_led(struct af9013_state *state, u8 onoff)
  680. {
  681. deb_info("%s: onoff:%d\n", __func__, onoff);
  682. return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff);
  683. }
  684. static int af9013_set_frontend(struct dvb_frontend *fe,
  685. struct dvb_frontend_parameters *params)
  686. {
  687. struct af9013_state *state = fe->demodulator_priv;
  688. int ret;
  689. u8 auto_mode; /* auto set TPS */
  690. deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency,
  691. params->u.ofdm.bandwidth);
  692. state->frequency = params->frequency;
  693. /* program tuner */
  694. if (fe->ops.tuner_ops.set_params)
  695. fe->ops.tuner_ops.set_params(fe, params);
  696. /* program CFOE coefficients */
  697. ret = af9013_set_coeff(state, params->u.ofdm.bandwidth);
  698. if (ret)
  699. goto error;
  700. /* program frequency control */
  701. ret = af9013_set_freq_ctrl(state, params->u.ofdm.bandwidth);
  702. if (ret)
  703. goto error;
  704. /* clear TPS lock flag (inverted flag) */
  705. ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1);
  706. if (ret)
  707. goto error;
  708. /* clear MPEG2 lock flag */
  709. ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0);
  710. if (ret)
  711. goto error;
  712. /* empty channel function */
  713. ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0);
  714. if (ret)
  715. goto error;
  716. /* empty DVB-T channel function */
  717. ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0);
  718. if (ret)
  719. goto error;
  720. /* program TPS and bandwidth, check if auto mode needed */
  721. ret = af9013_set_ofdm_params(state, &params->u.ofdm, &auto_mode);
  722. if (ret)
  723. goto error;
  724. if (auto_mode) {
  725. /* clear easy mode flag */
  726. ret = af9013_write_reg(state, 0xaefd, 0);
  727. deb_info("%s: auto TPS\n", __func__);
  728. } else {
  729. /* set easy mode flag */
  730. ret = af9013_write_reg(state, 0xaefd, 1);
  731. if (ret)
  732. goto error;
  733. ret = af9013_write_reg(state, 0xaefe, 0);
  734. deb_info("%s: manual TPS\n", __func__);
  735. }
  736. if (ret)
  737. goto error;
  738. /* everything is set, lets try to receive channel - OFSM GO! */
  739. ret = af9013_write_reg(state, 0xffff, 0);
  740. if (ret)
  741. goto error;
  742. error:
  743. return ret;
  744. }
  745. static int af9013_get_frontend(struct dvb_frontend *fe,
  746. struct dvb_frontend_parameters *p)
  747. {
  748. struct af9013_state *state = fe->demodulator_priv;
  749. int ret;
  750. u8 i, buf[3];
  751. deb_info("%s\n", __func__);
  752. /* read TPS registers */
  753. for (i = 0; i < 3; i++) {
  754. ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]);
  755. if (ret)
  756. goto error;
  757. }
  758. switch ((buf[1] >> 6) & 3) {
  759. case 0:
  760. p->u.ofdm.constellation = QPSK;
  761. break;
  762. case 1:
  763. p->u.ofdm.constellation = QAM_16;
  764. break;
  765. case 2:
  766. p->u.ofdm.constellation = QAM_64;
  767. break;
  768. }
  769. switch ((buf[0] >> 0) & 3) {
  770. case 0:
  771. p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
  772. break;
  773. case 1:
  774. p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
  775. }
  776. switch ((buf[0] >> 2) & 3) {
  777. case 0:
  778. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
  779. break;
  780. case 1:
  781. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
  782. break;
  783. case 2:
  784. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
  785. break;
  786. case 3:
  787. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
  788. break;
  789. }
  790. switch ((buf[0] >> 4) & 7) {
  791. case 0:
  792. p->u.ofdm.hierarchy_information = HIERARCHY_NONE;
  793. break;
  794. case 1:
  795. p->u.ofdm.hierarchy_information = HIERARCHY_1;
  796. break;
  797. case 2:
  798. p->u.ofdm.hierarchy_information = HIERARCHY_2;
  799. break;
  800. case 3:
  801. p->u.ofdm.hierarchy_information = HIERARCHY_4;
  802. break;
  803. }
  804. switch ((buf[2] >> 0) & 7) {
  805. case 0:
  806. p->u.ofdm.code_rate_HP = FEC_1_2;
  807. break;
  808. case 1:
  809. p->u.ofdm.code_rate_HP = FEC_2_3;
  810. break;
  811. case 2:
  812. p->u.ofdm.code_rate_HP = FEC_3_4;
  813. break;
  814. case 3:
  815. p->u.ofdm.code_rate_HP = FEC_5_6;
  816. break;
  817. case 4:
  818. p->u.ofdm.code_rate_HP = FEC_7_8;
  819. break;
  820. }
  821. switch ((buf[2] >> 3) & 7) {
  822. case 0:
  823. p->u.ofdm.code_rate_LP = FEC_1_2;
  824. break;
  825. case 1:
  826. p->u.ofdm.code_rate_LP = FEC_2_3;
  827. break;
  828. case 2:
  829. p->u.ofdm.code_rate_LP = FEC_3_4;
  830. break;
  831. case 3:
  832. p->u.ofdm.code_rate_LP = FEC_5_6;
  833. break;
  834. case 4:
  835. p->u.ofdm.code_rate_LP = FEC_7_8;
  836. break;
  837. }
  838. switch ((buf[1] >> 2) & 3) {
  839. case 0:
  840. p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
  841. break;
  842. case 1:
  843. p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
  844. break;
  845. case 2:
  846. p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
  847. break;
  848. }
  849. p->inversion = INVERSION_AUTO;
  850. p->frequency = state->frequency;
  851. error:
  852. return ret;
  853. }
  854. static int af9013_update_ber_unc(struct dvb_frontend *fe)
  855. {
  856. struct af9013_state *state = fe->demodulator_priv;
  857. int ret;
  858. u8 buf[3], i;
  859. u32 error_bit_count = 0;
  860. u32 total_bit_count = 0;
  861. u32 abort_packet_count = 0;
  862. state->ber = 0;
  863. /* check if error bit count is ready */
  864. ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  865. if (ret)
  866. goto error;
  867. if (!buf[0])
  868. goto exit;
  869. /* get RSD packet abort count */
  870. for (i = 0; i < 2; i++) {
  871. ret = af9013_read_reg(state, 0xd38a + i, &buf[i]);
  872. if (ret)
  873. goto error;
  874. }
  875. abort_packet_count = (buf[1] << 8) + buf[0];
  876. /* get error bit count */
  877. for (i = 0; i < 3; i++) {
  878. ret = af9013_read_reg(state, 0xd387 + i, &buf[i]);
  879. if (ret)
  880. goto error;
  881. }
  882. error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0];
  883. error_bit_count = error_bit_count - abort_packet_count * 8 * 8;
  884. /* get used RSD counting period (10000 RSD packets used) */
  885. for (i = 0; i < 2; i++) {
  886. ret = af9013_read_reg(state, 0xd385 + i, &buf[i]);
  887. if (ret)
  888. goto error;
  889. }
  890. total_bit_count = (buf[1] << 8) + buf[0];
  891. total_bit_count = total_bit_count - abort_packet_count;
  892. total_bit_count = total_bit_count * 204 * 8;
  893. if (total_bit_count)
  894. state->ber = error_bit_count * 1000000000 / total_bit_count;
  895. state->ucblocks += abort_packet_count;
  896. deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__,
  897. error_bit_count, total_bit_count, abort_packet_count);
  898. /* set BER counting range */
  899. ret = af9013_write_reg(state, 0xd385, 10000 & 0xff);
  900. if (ret)
  901. goto error;
  902. ret = af9013_write_reg(state, 0xd386, 10000 >> 8);
  903. if (ret)
  904. goto error;
  905. /* reset and start BER counter */
  906. ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1);
  907. if (ret)
  908. goto error;
  909. exit:
  910. error:
  911. return ret;
  912. }
  913. static int af9013_update_snr(struct dvb_frontend *fe)
  914. {
  915. struct af9013_state *state = fe->demodulator_priv;
  916. int ret;
  917. u8 buf[3], i, len;
  918. u32 quant = 0;
  919. struct snr_table *uninitialized_var(snr_table);
  920. /* check if quantizer ready (for snr) */
  921. ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]);
  922. if (ret)
  923. goto error;
  924. if (buf[0]) {
  925. /* quantizer ready - read it */
  926. for (i = 0; i < 3; i++) {
  927. ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]);
  928. if (ret)
  929. goto error;
  930. }
  931. quant = (buf[2] << 16) + (buf[1] << 8) + buf[0];
  932. /* read current constellation */
  933. ret = af9013_read_reg(state, 0xd3c1, &buf[0]);
  934. if (ret)
  935. goto error;
  936. switch ((buf[0] >> 6) & 3) {
  937. case 0:
  938. len = ARRAY_SIZE(qpsk_snr_table);
  939. snr_table = qpsk_snr_table;
  940. break;
  941. case 1:
  942. len = ARRAY_SIZE(qam16_snr_table);
  943. snr_table = qam16_snr_table;
  944. break;
  945. case 2:
  946. len = ARRAY_SIZE(qam64_snr_table);
  947. snr_table = qam64_snr_table;
  948. break;
  949. default:
  950. len = 0;
  951. break;
  952. }
  953. if (len) {
  954. for (i = 0; i < len; i++) {
  955. if (quant < snr_table[i].val) {
  956. state->snr = snr_table[i].snr * 10;
  957. break;
  958. }
  959. }
  960. }
  961. /* set quantizer super frame count */
  962. ret = af9013_write_reg(state, 0xd2e2, 1);
  963. if (ret)
  964. goto error;
  965. /* check quantizer availability */
  966. for (i = 0; i < 10; i++) {
  967. msleep(10);
  968. ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1,
  969. &buf[0]);
  970. if (ret)
  971. goto error;
  972. if (!buf[0])
  973. break;
  974. }
  975. /* reset quantizer */
  976. ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1);
  977. if (ret)
  978. goto error;
  979. }
  980. error:
  981. return ret;
  982. }
  983. static int af9013_update_signal_strength(struct dvb_frontend *fe)
  984. {
  985. struct af9013_state *state = fe->demodulator_priv;
  986. int ret;
  987. u8 tmp0;
  988. u8 rf_gain, rf_50, rf_80, if_gain, if_50, if_80;
  989. int signal_strength;
  990. deb_info("%s\n", __func__);
  991. state->signal_strength = 0;
  992. ret = af9013_read_reg_bits(state, 0x9bee, 0, 1, &tmp0);
  993. if (ret)
  994. goto error;
  995. if (tmp0) {
  996. ret = af9013_read_reg(state, 0x9bbd, &rf_50);
  997. if (ret)
  998. goto error;
  999. ret = af9013_read_reg(state, 0x9bd0, &rf_80);
  1000. if (ret)
  1001. goto error;
  1002. ret = af9013_read_reg(state, 0x9be2, &if_50);
  1003. if (ret)
  1004. goto error;
  1005. ret = af9013_read_reg(state, 0x9be4, &if_80);
  1006. if (ret)
  1007. goto error;
  1008. ret = af9013_read_reg(state, 0xd07c, &rf_gain);
  1009. if (ret)
  1010. goto error;
  1011. ret = af9013_read_reg(state, 0xd07d, &if_gain);
  1012. if (ret)
  1013. goto error;
  1014. signal_strength = (0xffff / (9 * (rf_50 + if_50) - \
  1015. 11 * (rf_80 + if_80))) * (10 * (rf_gain + if_gain) - \
  1016. 11 * (rf_80 + if_80));
  1017. if (signal_strength < 0)
  1018. signal_strength = 0;
  1019. else if (signal_strength > 0xffff)
  1020. signal_strength = 0xffff;
  1021. state->signal_strength = signal_strength;
  1022. }
  1023. error:
  1024. return ret;
  1025. }
  1026. static int af9013_update_statistics(struct dvb_frontend *fe)
  1027. {
  1028. struct af9013_state *state = fe->demodulator_priv;
  1029. int ret;
  1030. if (time_before(jiffies, state->next_statistics_check))
  1031. return 0;
  1032. /* set minimum statistic update interval */
  1033. state->next_statistics_check = jiffies + msecs_to_jiffies(1200);
  1034. ret = af9013_update_signal_strength(fe);
  1035. if (ret)
  1036. goto error;
  1037. ret = af9013_update_snr(fe);
  1038. if (ret)
  1039. goto error;
  1040. ret = af9013_update_ber_unc(fe);
  1041. if (ret)
  1042. goto error;
  1043. error:
  1044. return ret;
  1045. }
  1046. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  1047. struct dvb_frontend_tune_settings *fesettings)
  1048. {
  1049. fesettings->min_delay_ms = 800;
  1050. fesettings->step_size = 0;
  1051. fesettings->max_drift = 0;
  1052. return 0;
  1053. }
  1054. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  1055. {
  1056. struct af9013_state *state = fe->demodulator_priv;
  1057. int ret = 0;
  1058. u8 tmp;
  1059. *status = 0;
  1060. /* MPEG2 lock */
  1061. ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp);
  1062. if (ret)
  1063. goto error;
  1064. if (tmp)
  1065. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  1066. FE_HAS_SYNC | FE_HAS_LOCK;
  1067. if (!*status) {
  1068. /* TPS lock */
  1069. ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp);
  1070. if (ret)
  1071. goto error;
  1072. if (tmp)
  1073. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  1074. FE_HAS_VITERBI;
  1075. }
  1076. if (!*status) {
  1077. /* CFO lock */
  1078. ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp);
  1079. if (ret)
  1080. goto error;
  1081. if (tmp)
  1082. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  1083. }
  1084. if (!*status) {
  1085. /* SFOE lock */
  1086. ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp);
  1087. if (ret)
  1088. goto error;
  1089. if (tmp)
  1090. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  1091. }
  1092. if (!*status) {
  1093. /* AGC lock */
  1094. ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp);
  1095. if (ret)
  1096. goto error;
  1097. if (tmp)
  1098. *status |= FE_HAS_SIGNAL;
  1099. }
  1100. ret = af9013_update_statistics(fe);
  1101. error:
  1102. return ret;
  1103. }
  1104. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  1105. {
  1106. struct af9013_state *state = fe->demodulator_priv;
  1107. int ret;
  1108. ret = af9013_update_statistics(fe);
  1109. *ber = state->ber;
  1110. return ret;
  1111. }
  1112. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  1113. {
  1114. struct af9013_state *state = fe->demodulator_priv;
  1115. int ret;
  1116. ret = af9013_update_statistics(fe);
  1117. *strength = state->signal_strength;
  1118. return ret;
  1119. }
  1120. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  1121. {
  1122. struct af9013_state *state = fe->demodulator_priv;
  1123. int ret;
  1124. ret = af9013_update_statistics(fe);
  1125. *snr = state->snr;
  1126. return ret;
  1127. }
  1128. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  1129. {
  1130. struct af9013_state *state = fe->demodulator_priv;
  1131. int ret;
  1132. ret = af9013_update_statistics(fe);
  1133. *ucblocks = state->ucblocks;
  1134. return ret;
  1135. }
  1136. static int af9013_sleep(struct dvb_frontend *fe)
  1137. {
  1138. struct af9013_state *state = fe->demodulator_priv;
  1139. int ret;
  1140. deb_info("%s\n", __func__);
  1141. ret = af9013_lock_led(state, 0);
  1142. if (ret)
  1143. goto error;
  1144. ret = af9013_power_ctrl(state, 0);
  1145. error:
  1146. return ret;
  1147. }
  1148. static int af9013_init(struct dvb_frontend *fe)
  1149. {
  1150. struct af9013_state *state = fe->demodulator_priv;
  1151. int ret, i, len;
  1152. u8 tmp0, tmp1;
  1153. struct regdesc *init;
  1154. deb_info("%s\n", __func__);
  1155. /* reset OFDM */
  1156. ret = af9013_reset(state, 0);
  1157. if (ret)
  1158. goto error;
  1159. /* power on */
  1160. ret = af9013_power_ctrl(state, 1);
  1161. if (ret)
  1162. goto error;
  1163. /* enable ADC */
  1164. ret = af9013_write_reg(state, 0xd73a, 0xa4);
  1165. if (ret)
  1166. goto error;
  1167. /* write API version to firmware */
  1168. for (i = 0; i < sizeof(state->config.api_version); i++) {
  1169. ret = af9013_write_reg(state, 0x9bf2 + i,
  1170. state->config.api_version[i]);
  1171. if (ret)
  1172. goto error;
  1173. }
  1174. /* program ADC control */
  1175. ret = af9013_set_adc_ctrl(state);
  1176. if (ret)
  1177. goto error;
  1178. /* set I2C master clock */
  1179. ret = af9013_write_reg(state, 0xd416, 0x14);
  1180. if (ret)
  1181. goto error;
  1182. /* set 16 embx */
  1183. ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1);
  1184. if (ret)
  1185. goto error;
  1186. /* set no trigger */
  1187. ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0);
  1188. if (ret)
  1189. goto error;
  1190. /* set read-update bit for constellation */
  1191. ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1);
  1192. if (ret)
  1193. goto error;
  1194. /* enable FEC monitor */
  1195. ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1);
  1196. if (ret)
  1197. goto error;
  1198. /* load OFSM settings */
  1199. deb_info("%s: load ofsm settings\n", __func__);
  1200. len = ARRAY_SIZE(ofsm_init);
  1201. init = ofsm_init;
  1202. for (i = 0; i < len; i++) {
  1203. ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
  1204. init[i].len, init[i].val);
  1205. if (ret)
  1206. goto error;
  1207. }
  1208. /* load tuner specific settings */
  1209. deb_info("%s: load tuner specific settings\n", __func__);
  1210. switch (state->config.tuner) {
  1211. case AF9013_TUNER_MXL5003D:
  1212. len = ARRAY_SIZE(tuner_init_mxl5003d);
  1213. init = tuner_init_mxl5003d;
  1214. break;
  1215. case AF9013_TUNER_MXL5005D:
  1216. case AF9013_TUNER_MXL5005R:
  1217. len = ARRAY_SIZE(tuner_init_mxl5005);
  1218. init = tuner_init_mxl5005;
  1219. break;
  1220. case AF9013_TUNER_ENV77H11D5:
  1221. len = ARRAY_SIZE(tuner_init_env77h11d5);
  1222. init = tuner_init_env77h11d5;
  1223. break;
  1224. case AF9013_TUNER_MT2060:
  1225. len = ARRAY_SIZE(tuner_init_mt2060);
  1226. init = tuner_init_mt2060;
  1227. break;
  1228. case AF9013_TUNER_MC44S803:
  1229. len = ARRAY_SIZE(tuner_init_mc44s803);
  1230. init = tuner_init_mc44s803;
  1231. break;
  1232. case AF9013_TUNER_QT1010:
  1233. case AF9013_TUNER_QT1010A:
  1234. len = ARRAY_SIZE(tuner_init_qt1010);
  1235. init = tuner_init_qt1010;
  1236. break;
  1237. case AF9013_TUNER_MT2060_2:
  1238. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1239. init = tuner_init_mt2060_2;
  1240. break;
  1241. case AF9013_TUNER_TDA18271:
  1242. case AF9013_TUNER_TDA18218:
  1243. len = ARRAY_SIZE(tuner_init_tda18271);
  1244. init = tuner_init_tda18271;
  1245. break;
  1246. case AF9013_TUNER_UNKNOWN:
  1247. default:
  1248. len = ARRAY_SIZE(tuner_init_unknown);
  1249. init = tuner_init_unknown;
  1250. break;
  1251. }
  1252. for (i = 0; i < len; i++) {
  1253. ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
  1254. init[i].len, init[i].val);
  1255. if (ret)
  1256. goto error;
  1257. }
  1258. /* set TS mode */
  1259. deb_info("%s: setting ts mode\n", __func__);
  1260. tmp0 = 0; /* parallel mode */
  1261. tmp1 = 0; /* serial mode */
  1262. switch (state->config.output_mode) {
  1263. case AF9013_OUTPUT_MODE_PARALLEL:
  1264. tmp0 = 1;
  1265. break;
  1266. case AF9013_OUTPUT_MODE_SERIAL:
  1267. tmp1 = 1;
  1268. break;
  1269. case AF9013_OUTPUT_MODE_USB:
  1270. /* usb mode for AF9015 */
  1271. default:
  1272. break;
  1273. }
  1274. ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */
  1275. if (ret)
  1276. goto error;
  1277. ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */
  1278. if (ret)
  1279. goto error;
  1280. /* enable lock led */
  1281. ret = af9013_lock_led(state, 1);
  1282. if (ret)
  1283. goto error;
  1284. error:
  1285. return ret;
  1286. }
  1287. static struct dvb_frontend_ops af9013_ops;
  1288. static int af9013_download_firmware(struct af9013_state *state)
  1289. {
  1290. int i, len, packets, remainder, ret;
  1291. const struct firmware *fw;
  1292. u16 addr = 0x5100; /* firmware start address */
  1293. u16 checksum = 0;
  1294. u8 val;
  1295. u8 fw_params[4];
  1296. u8 *data;
  1297. u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
  1298. msleep(100);
  1299. /* check whether firmware is already running */
  1300. ret = af9013_read_reg(state, 0x98be, &val);
  1301. if (ret)
  1302. goto error;
  1303. else
  1304. deb_info("%s: firmware status:%02x\n", __func__, val);
  1305. if (val == 0x0c) /* fw is running, no need for download */
  1306. goto exit;
  1307. info("found a '%s' in cold state, will try to load a firmware",
  1308. af9013_ops.info.name);
  1309. /* request the firmware, this will block and timeout */
  1310. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1311. if (ret) {
  1312. err("did not find the firmware file. (%s) "
  1313. "Please see linux/Documentation/dvb/ for more details" \
  1314. " on firmware-problems. (%d)",
  1315. fw_file, ret);
  1316. goto error;
  1317. }
  1318. info("downloading firmware from file '%s'", fw_file);
  1319. /* calc checksum */
  1320. for (i = 0; i < fw->size; i++)
  1321. checksum += fw->data[i];
  1322. fw_params[0] = checksum >> 8;
  1323. fw_params[1] = checksum & 0xff;
  1324. fw_params[2] = fw->size >> 8;
  1325. fw_params[3] = fw->size & 0xff;
  1326. /* write fw checksum & size */
  1327. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1328. fw_params, sizeof(fw_params));
  1329. if (ret)
  1330. goto error_release;
  1331. #define FW_PACKET_MAX_DATA 16
  1332. packets = fw->size / FW_PACKET_MAX_DATA;
  1333. remainder = fw->size % FW_PACKET_MAX_DATA;
  1334. len = FW_PACKET_MAX_DATA;
  1335. for (i = 0; i <= packets; i++) {
  1336. if (i == packets) /* set size of the last packet */
  1337. len = remainder;
  1338. data = (u8 *)(fw->data + i * FW_PACKET_MAX_DATA);
  1339. ret = af9013_write_ofsm_regs(state, addr, data, len);
  1340. addr += FW_PACKET_MAX_DATA;
  1341. if (ret) {
  1342. err("firmware download failed at %d with %d", i, ret);
  1343. goto error_release;
  1344. }
  1345. }
  1346. /* request boot firmware */
  1347. ret = af9013_write_reg(state, 0xe205, 1);
  1348. if (ret)
  1349. goto error_release;
  1350. for (i = 0; i < 15; i++) {
  1351. msleep(100);
  1352. /* check firmware status */
  1353. ret = af9013_read_reg(state, 0x98be, &val);
  1354. if (ret)
  1355. goto error_release;
  1356. deb_info("%s: firmware status:%02x\n", __func__, val);
  1357. if (val == 0x0c || val == 0x04) /* success or fail */
  1358. break;
  1359. }
  1360. if (val == 0x04) {
  1361. err("firmware did not run");
  1362. ret = -1;
  1363. } else if (val != 0x0c) {
  1364. err("firmware boot timeout");
  1365. ret = -1;
  1366. }
  1367. error_release:
  1368. release_firmware(fw);
  1369. error:
  1370. exit:
  1371. if (!ret)
  1372. info("found a '%s' in warm state.", af9013_ops.info.name);
  1373. return ret;
  1374. }
  1375. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1376. {
  1377. int ret;
  1378. struct af9013_state *state = fe->demodulator_priv;
  1379. deb_info("%s: enable:%d\n", __func__, enable);
  1380. if (state->config.output_mode == AF9013_OUTPUT_MODE_USB)
  1381. ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable);
  1382. else
  1383. ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable);
  1384. return ret;
  1385. }
  1386. static void af9013_release(struct dvb_frontend *fe)
  1387. {
  1388. struct af9013_state *state = fe->demodulator_priv;
  1389. kfree(state);
  1390. }
  1391. static struct dvb_frontend_ops af9013_ops;
  1392. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1393. struct i2c_adapter *i2c)
  1394. {
  1395. int ret;
  1396. struct af9013_state *state = NULL;
  1397. u8 buf[4], i;
  1398. /* allocate memory for the internal state */
  1399. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1400. if (state == NULL)
  1401. goto error;
  1402. /* setup the state */
  1403. state->i2c = i2c;
  1404. memcpy(&state->config, config, sizeof(struct af9013_config));
  1405. /* chip version */
  1406. ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]);
  1407. if (ret)
  1408. goto error;
  1409. /* ROM version */
  1410. for (i = 0; i < 2; i++) {
  1411. ret = af9013_read_reg(state, 0x116b + i, &buf[i]);
  1412. if (ret)
  1413. goto error;
  1414. }
  1415. deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__,
  1416. buf[2], buf[0], buf[1]);
  1417. /* download firmware */
  1418. if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) {
  1419. ret = af9013_download_firmware(state);
  1420. if (ret)
  1421. goto error;
  1422. }
  1423. /* firmware version */
  1424. for (i = 0; i < 4; i++) {
  1425. ret = af9013_read_reg(state, 0x5103 + i, &buf[i]);
  1426. if (ret)
  1427. goto error;
  1428. }
  1429. info("firmware version:%d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
  1430. /* settings for mp2if */
  1431. if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) {
  1432. /* AF9015 split PSB to 1.5k + 0.5k */
  1433. ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1);
  1434. } else {
  1435. /* AF9013 change the output bit to data7 */
  1436. ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1);
  1437. if (ret)
  1438. goto error;
  1439. /* AF9013 set mpeg to full speed */
  1440. ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1);
  1441. }
  1442. if (ret)
  1443. goto error;
  1444. ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1);
  1445. if (ret)
  1446. goto error;
  1447. /* set GPIOs */
  1448. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1449. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1450. if (ret)
  1451. goto error;
  1452. }
  1453. /* create dvb_frontend */
  1454. memcpy(&state->frontend.ops, &af9013_ops,
  1455. sizeof(struct dvb_frontend_ops));
  1456. state->frontend.demodulator_priv = state;
  1457. return &state->frontend;
  1458. error:
  1459. kfree(state);
  1460. return NULL;
  1461. }
  1462. EXPORT_SYMBOL(af9013_attach);
  1463. static struct dvb_frontend_ops af9013_ops = {
  1464. .info = {
  1465. .name = "Afatech AF9013 DVB-T",
  1466. .type = FE_OFDM,
  1467. .frequency_min = 174000000,
  1468. .frequency_max = 862000000,
  1469. .frequency_stepsize = 250000,
  1470. .frequency_tolerance = 0,
  1471. .caps =
  1472. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  1473. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  1474. FE_CAN_QPSK | FE_CAN_QAM_16 |
  1475. FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  1476. FE_CAN_TRANSMISSION_MODE_AUTO |
  1477. FE_CAN_GUARD_INTERVAL_AUTO |
  1478. FE_CAN_HIERARCHY_AUTO |
  1479. FE_CAN_RECOVER |
  1480. FE_CAN_MUTE_TS
  1481. },
  1482. .release = af9013_release,
  1483. .init = af9013_init,
  1484. .sleep = af9013_sleep,
  1485. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1486. .set_frontend = af9013_set_frontend,
  1487. .get_frontend = af9013_get_frontend,
  1488. .get_tune_settings = af9013_get_tune_settings,
  1489. .read_status = af9013_read_status,
  1490. .read_ber = af9013_read_ber,
  1491. .read_signal_strength = af9013_read_signal_strength,
  1492. .read_snr = af9013_read_snr,
  1493. .read_ucblocks = af9013_read_ucblocks,
  1494. };
  1495. module_param_named(debug, af9013_debug, int, 0644);
  1496. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  1497. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1498. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1499. MODULE_LICENSE("GPL");