vpdma.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846
  1. /*
  2. * VPDMA helper library
  3. *
  4. * Copyright (c) 2013 Texas Instruments Inc.
  5. *
  6. * David Griego, <dagriego@biglakesoftware.com>
  7. * Dale Farnsworth, <dale@farnsworth.org>
  8. * Archit Taneja, <archit@ti.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/err.h>
  17. #include <linux/firmware.h>
  18. #include <linux/io.h>
  19. #include <linux/module.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/videodev2.h>
  24. #include "vpdma.h"
  25. #include "vpdma_priv.h"
  26. #define VPDMA_FIRMWARE "vpdma-1b8.bin"
  27. const struct vpdma_data_format vpdma_yuv_fmts[] = {
  28. [VPDMA_DATA_FMT_Y444] = {
  29. .data_type = DATA_TYPE_Y444,
  30. .depth = 8,
  31. },
  32. [VPDMA_DATA_FMT_Y422] = {
  33. .data_type = DATA_TYPE_Y422,
  34. .depth = 8,
  35. },
  36. [VPDMA_DATA_FMT_Y420] = {
  37. .data_type = DATA_TYPE_Y420,
  38. .depth = 8,
  39. },
  40. [VPDMA_DATA_FMT_C444] = {
  41. .data_type = DATA_TYPE_C444,
  42. .depth = 8,
  43. },
  44. [VPDMA_DATA_FMT_C422] = {
  45. .data_type = DATA_TYPE_C422,
  46. .depth = 8,
  47. },
  48. [VPDMA_DATA_FMT_C420] = {
  49. .data_type = DATA_TYPE_C420,
  50. .depth = 4,
  51. },
  52. [VPDMA_DATA_FMT_YC422] = {
  53. .data_type = DATA_TYPE_YC422,
  54. .depth = 16,
  55. },
  56. [VPDMA_DATA_FMT_YC444] = {
  57. .data_type = DATA_TYPE_YC444,
  58. .depth = 24,
  59. },
  60. [VPDMA_DATA_FMT_CY422] = {
  61. .data_type = DATA_TYPE_CY422,
  62. .depth = 16,
  63. },
  64. };
  65. const struct vpdma_data_format vpdma_rgb_fmts[] = {
  66. [VPDMA_DATA_FMT_RGB565] = {
  67. .data_type = DATA_TYPE_RGB16_565,
  68. .depth = 16,
  69. },
  70. [VPDMA_DATA_FMT_ARGB16_1555] = {
  71. .data_type = DATA_TYPE_ARGB_1555,
  72. .depth = 16,
  73. },
  74. [VPDMA_DATA_FMT_ARGB16] = {
  75. .data_type = DATA_TYPE_ARGB_4444,
  76. .depth = 16,
  77. },
  78. [VPDMA_DATA_FMT_RGBA16_5551] = {
  79. .data_type = DATA_TYPE_RGBA_5551,
  80. .depth = 16,
  81. },
  82. [VPDMA_DATA_FMT_RGBA16] = {
  83. .data_type = DATA_TYPE_RGBA_4444,
  84. .depth = 16,
  85. },
  86. [VPDMA_DATA_FMT_ARGB24] = {
  87. .data_type = DATA_TYPE_ARGB24_6666,
  88. .depth = 24,
  89. },
  90. [VPDMA_DATA_FMT_RGB24] = {
  91. .data_type = DATA_TYPE_RGB24_888,
  92. .depth = 24,
  93. },
  94. [VPDMA_DATA_FMT_ARGB32] = {
  95. .data_type = DATA_TYPE_ARGB32_8888,
  96. .depth = 32,
  97. },
  98. [VPDMA_DATA_FMT_RGBA24] = {
  99. .data_type = DATA_TYPE_RGBA24_6666,
  100. .depth = 24,
  101. },
  102. [VPDMA_DATA_FMT_RGBA32] = {
  103. .data_type = DATA_TYPE_RGBA32_8888,
  104. .depth = 32,
  105. },
  106. [VPDMA_DATA_FMT_BGR565] = {
  107. .data_type = DATA_TYPE_BGR16_565,
  108. .depth = 16,
  109. },
  110. [VPDMA_DATA_FMT_ABGR16_1555] = {
  111. .data_type = DATA_TYPE_ABGR_1555,
  112. .depth = 16,
  113. },
  114. [VPDMA_DATA_FMT_ABGR16] = {
  115. .data_type = DATA_TYPE_ABGR_4444,
  116. .depth = 16,
  117. },
  118. [VPDMA_DATA_FMT_BGRA16_5551] = {
  119. .data_type = DATA_TYPE_BGRA_5551,
  120. .depth = 16,
  121. },
  122. [VPDMA_DATA_FMT_BGRA16] = {
  123. .data_type = DATA_TYPE_BGRA_4444,
  124. .depth = 16,
  125. },
  126. [VPDMA_DATA_FMT_ABGR24] = {
  127. .data_type = DATA_TYPE_ABGR24_6666,
  128. .depth = 24,
  129. },
  130. [VPDMA_DATA_FMT_BGR24] = {
  131. .data_type = DATA_TYPE_BGR24_888,
  132. .depth = 24,
  133. },
  134. [VPDMA_DATA_FMT_ABGR32] = {
  135. .data_type = DATA_TYPE_ABGR32_8888,
  136. .depth = 32,
  137. },
  138. [VPDMA_DATA_FMT_BGRA24] = {
  139. .data_type = DATA_TYPE_BGRA24_6666,
  140. .depth = 24,
  141. },
  142. [VPDMA_DATA_FMT_BGRA32] = {
  143. .data_type = DATA_TYPE_BGRA32_8888,
  144. .depth = 32,
  145. },
  146. };
  147. const struct vpdma_data_format vpdma_misc_fmts[] = {
  148. [VPDMA_DATA_FMT_MV] = {
  149. .data_type = DATA_TYPE_MV,
  150. .depth = 4,
  151. },
  152. };
  153. struct vpdma_channel_info {
  154. int num; /* VPDMA channel number */
  155. int cstat_offset; /* client CSTAT register offset */
  156. };
  157. static const struct vpdma_channel_info chan_info[] = {
  158. [VPE_CHAN_LUMA1_IN] = {
  159. .num = VPE_CHAN_NUM_LUMA1_IN,
  160. .cstat_offset = VPDMA_DEI_LUMA1_CSTAT,
  161. },
  162. [VPE_CHAN_CHROMA1_IN] = {
  163. .num = VPE_CHAN_NUM_CHROMA1_IN,
  164. .cstat_offset = VPDMA_DEI_CHROMA1_CSTAT,
  165. },
  166. [VPE_CHAN_LUMA2_IN] = {
  167. .num = VPE_CHAN_NUM_LUMA2_IN,
  168. .cstat_offset = VPDMA_DEI_LUMA2_CSTAT,
  169. },
  170. [VPE_CHAN_CHROMA2_IN] = {
  171. .num = VPE_CHAN_NUM_CHROMA2_IN,
  172. .cstat_offset = VPDMA_DEI_CHROMA2_CSTAT,
  173. },
  174. [VPE_CHAN_LUMA3_IN] = {
  175. .num = VPE_CHAN_NUM_LUMA3_IN,
  176. .cstat_offset = VPDMA_DEI_LUMA3_CSTAT,
  177. },
  178. [VPE_CHAN_CHROMA3_IN] = {
  179. .num = VPE_CHAN_NUM_CHROMA3_IN,
  180. .cstat_offset = VPDMA_DEI_CHROMA3_CSTAT,
  181. },
  182. [VPE_CHAN_MV_IN] = {
  183. .num = VPE_CHAN_NUM_MV_IN,
  184. .cstat_offset = VPDMA_DEI_MV_IN_CSTAT,
  185. },
  186. [VPE_CHAN_MV_OUT] = {
  187. .num = VPE_CHAN_NUM_MV_OUT,
  188. .cstat_offset = VPDMA_DEI_MV_OUT_CSTAT,
  189. },
  190. [VPE_CHAN_LUMA_OUT] = {
  191. .num = VPE_CHAN_NUM_LUMA_OUT,
  192. .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
  193. },
  194. [VPE_CHAN_CHROMA_OUT] = {
  195. .num = VPE_CHAN_NUM_CHROMA_OUT,
  196. .cstat_offset = VPDMA_VIP_UP_UV_CSTAT,
  197. },
  198. [VPE_CHAN_RGB_OUT] = {
  199. .num = VPE_CHAN_NUM_RGB_OUT,
  200. .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
  201. },
  202. };
  203. static u32 read_reg(struct vpdma_data *vpdma, int offset)
  204. {
  205. return ioread32(vpdma->base + offset);
  206. }
  207. static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
  208. {
  209. iowrite32(value, vpdma->base + offset);
  210. }
  211. static int read_field_reg(struct vpdma_data *vpdma, int offset,
  212. u32 mask, int shift)
  213. {
  214. return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
  215. }
  216. static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
  217. u32 mask, int shift)
  218. {
  219. u32 val = read_reg(vpdma, offset);
  220. val &= ~(mask << shift);
  221. val |= (field & mask) << shift;
  222. write_reg(vpdma, offset, val);
  223. }
  224. void vpdma_dump_regs(struct vpdma_data *vpdma)
  225. {
  226. struct device *dev = &vpdma->pdev->dev;
  227. #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
  228. dev_dbg(dev, "VPDMA Registers:\n");
  229. DUMPREG(PID);
  230. DUMPREG(LIST_ADDR);
  231. DUMPREG(LIST_ATTR);
  232. DUMPREG(LIST_STAT_SYNC);
  233. DUMPREG(BG_RGB);
  234. DUMPREG(BG_YUV);
  235. DUMPREG(SETUP);
  236. DUMPREG(MAX_SIZE1);
  237. DUMPREG(MAX_SIZE2);
  238. DUMPREG(MAX_SIZE3);
  239. /*
  240. * dumping registers of only group0 and group3, because VPE channels
  241. * lie within group0 and group3 registers
  242. */
  243. DUMPREG(INT_CHAN_STAT(0));
  244. DUMPREG(INT_CHAN_MASK(0));
  245. DUMPREG(INT_CHAN_STAT(3));
  246. DUMPREG(INT_CHAN_MASK(3));
  247. DUMPREG(INT_CLIENT0_STAT);
  248. DUMPREG(INT_CLIENT0_MASK);
  249. DUMPREG(INT_CLIENT1_STAT);
  250. DUMPREG(INT_CLIENT1_MASK);
  251. DUMPREG(INT_LIST0_STAT);
  252. DUMPREG(INT_LIST0_MASK);
  253. /*
  254. * these are registers specific to VPE clients, we can make this
  255. * function dump client registers specific to VPE or VIP based on
  256. * who is using it
  257. */
  258. DUMPREG(DEI_CHROMA1_CSTAT);
  259. DUMPREG(DEI_LUMA1_CSTAT);
  260. DUMPREG(DEI_CHROMA2_CSTAT);
  261. DUMPREG(DEI_LUMA2_CSTAT);
  262. DUMPREG(DEI_CHROMA3_CSTAT);
  263. DUMPREG(DEI_LUMA3_CSTAT);
  264. DUMPREG(DEI_MV_IN_CSTAT);
  265. DUMPREG(DEI_MV_OUT_CSTAT);
  266. DUMPREG(VIP_UP_Y_CSTAT);
  267. DUMPREG(VIP_UP_UV_CSTAT);
  268. DUMPREG(VPI_CTL_CSTAT);
  269. }
  270. /*
  271. * Allocate a DMA buffer
  272. */
  273. int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
  274. {
  275. buf->size = size;
  276. buf->mapped = false;
  277. buf->addr = kzalloc(size, GFP_KERNEL);
  278. if (!buf->addr)
  279. return -ENOMEM;
  280. WARN_ON((u32) buf->addr & VPDMA_DESC_ALIGN);
  281. return 0;
  282. }
  283. void vpdma_free_desc_buf(struct vpdma_buf *buf)
  284. {
  285. WARN_ON(buf->mapped);
  286. kfree(buf->addr);
  287. buf->addr = NULL;
  288. buf->size = 0;
  289. }
  290. /*
  291. * map descriptor/payload DMA buffer, enabling DMA access
  292. */
  293. int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
  294. {
  295. struct device *dev = &vpdma->pdev->dev;
  296. WARN_ON(buf->mapped);
  297. buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
  298. DMA_TO_DEVICE);
  299. if (dma_mapping_error(dev, buf->dma_addr)) {
  300. dev_err(dev, "failed to map buffer\n");
  301. return -EINVAL;
  302. }
  303. buf->mapped = true;
  304. return 0;
  305. }
  306. /*
  307. * unmap descriptor/payload DMA buffer, disabling DMA access and
  308. * allowing the main processor to acces the data
  309. */
  310. void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
  311. {
  312. struct device *dev = &vpdma->pdev->dev;
  313. if (buf->mapped)
  314. dma_unmap_single(dev, buf->dma_addr, buf->size, DMA_TO_DEVICE);
  315. buf->mapped = false;
  316. }
  317. /*
  318. * create a descriptor list, the user of this list will append configuration,
  319. * control and data descriptors to this list, this list will be submitted to
  320. * VPDMA. VPDMA's list parser will go through each descriptor and perform the
  321. * required DMA operations
  322. */
  323. int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
  324. {
  325. int r;
  326. r = vpdma_alloc_desc_buf(&list->buf, size);
  327. if (r)
  328. return r;
  329. list->next = list->buf.addr;
  330. list->type = type;
  331. return 0;
  332. }
  333. /*
  334. * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
  335. * to allow new descriptors to be added to the list.
  336. */
  337. void vpdma_reset_desc_list(struct vpdma_desc_list *list)
  338. {
  339. list->next = list->buf.addr;
  340. }
  341. /*
  342. * free the buffer allocated fot the VPDMA descriptor list, this should be
  343. * called when the user doesn't want to use VPDMA any more.
  344. */
  345. void vpdma_free_desc_list(struct vpdma_desc_list *list)
  346. {
  347. vpdma_free_desc_buf(&list->buf);
  348. list->next = NULL;
  349. }
  350. static bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
  351. {
  352. return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
  353. }
  354. /*
  355. * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
  356. */
  357. int vpdma_submit_descs(struct vpdma_data *vpdma, struct vpdma_desc_list *list)
  358. {
  359. /* we always use the first list */
  360. int list_num = 0;
  361. int list_size;
  362. if (vpdma_list_busy(vpdma, list_num))
  363. return -EBUSY;
  364. /* 16-byte granularity */
  365. list_size = (list->next - list->buf.addr) >> 4;
  366. write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
  367. write_reg(vpdma, VPDMA_LIST_ATTR,
  368. (list_num << VPDMA_LIST_NUM_SHFT) |
  369. (list->type << VPDMA_LIST_TYPE_SHFT) |
  370. list_size);
  371. return 0;
  372. }
  373. static void dump_cfd(struct vpdma_cfd *cfd)
  374. {
  375. int class;
  376. class = cfd_get_class(cfd);
  377. pr_debug("config descriptor of payload class: %s\n",
  378. class == CFD_CLS_BLOCK ? "simple block" :
  379. "address data block");
  380. if (class == CFD_CLS_BLOCK)
  381. pr_debug("word0: dst_addr_offset = 0x%08x\n",
  382. cfd->dest_addr_offset);
  383. if (class == CFD_CLS_BLOCK)
  384. pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
  385. pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
  386. pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, "
  387. "payload_len = %d\n", cfd_get_pkt_type(cfd),
  388. cfd_get_direct(cfd), class, cfd_get_dest(cfd),
  389. cfd_get_payload_len(cfd));
  390. }
  391. /*
  392. * append a configuration descriptor to the given descriptor list, where the
  393. * payload is in the form of a simple data block specified in the descriptor
  394. * header, this is used to upload scaler coefficients to the scaler module
  395. */
  396. void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
  397. struct vpdma_buf *blk, u32 dest_offset)
  398. {
  399. struct vpdma_cfd *cfd;
  400. int len = blk->size;
  401. WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
  402. cfd = list->next;
  403. WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
  404. cfd->dest_addr_offset = dest_offset;
  405. cfd->block_len = len;
  406. cfd->payload_addr = (u32) blk->dma_addr;
  407. cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
  408. client, len >> 4);
  409. list->next = cfd + 1;
  410. dump_cfd(cfd);
  411. }
  412. /*
  413. * append a configuration descriptor to the given descriptor list, where the
  414. * payload is in the address data block format, this is used to a configure a
  415. * discontiguous set of MMRs
  416. */
  417. void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
  418. struct vpdma_buf *adb)
  419. {
  420. struct vpdma_cfd *cfd;
  421. unsigned int len = adb->size;
  422. WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
  423. WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
  424. cfd = list->next;
  425. BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
  426. cfd->w0 = 0;
  427. cfd->w1 = 0;
  428. cfd->payload_addr = (u32) adb->dma_addr;
  429. cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
  430. client, len >> 4);
  431. list->next = cfd + 1;
  432. dump_cfd(cfd);
  433. };
  434. /*
  435. * control descriptor format change based on what type of control descriptor it
  436. * is, we only use 'sync on channel' control descriptors for now, so assume it's
  437. * that
  438. */
  439. static void dump_ctd(struct vpdma_ctd *ctd)
  440. {
  441. pr_debug("control descriptor\n");
  442. pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
  443. ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
  444. }
  445. /*
  446. * append a 'sync on channel' type control descriptor to the given descriptor
  447. * list, this descriptor stalls the VPDMA list till the time DMA is completed
  448. * on the specified channel
  449. */
  450. void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
  451. enum vpdma_channel chan)
  452. {
  453. struct vpdma_ctd *ctd;
  454. ctd = list->next;
  455. WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
  456. ctd->w0 = 0;
  457. ctd->w1 = 0;
  458. ctd->w2 = 0;
  459. ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
  460. CTD_TYPE_SYNC_ON_CHANNEL);
  461. list->next = ctd + 1;
  462. dump_ctd(ctd);
  463. }
  464. static void dump_dtd(struct vpdma_dtd *dtd)
  465. {
  466. int dir, chan;
  467. dir = dtd_get_dir(dtd);
  468. chan = dtd_get_chan(dtd);
  469. pr_debug("%s data transfer descriptor for channel %d\n",
  470. dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
  471. pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, "
  472. "even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
  473. dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
  474. dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
  475. dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
  476. if (dir == DTD_DIR_IN)
  477. pr_debug("word1: line_length = %d, xfer_height = %d\n",
  478. dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
  479. pr_debug("word2: start_addr = 0x%08x\n", dtd->start_addr);
  480. pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, "
  481. "pri = %d, next_chan = %d\n", dtd_get_pkt_type(dtd),
  482. dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
  483. dtd_get_next_chan(dtd));
  484. if (dir == DTD_DIR_IN)
  485. pr_debug("word4: frame_width = %d, frame_height = %d\n",
  486. dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
  487. else
  488. pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, "
  489. "drp_data = %d, use_desc_reg = %d\n",
  490. dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
  491. dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
  492. if (dir == DTD_DIR_IN)
  493. pr_debug("word5: hor_start = %d, ver_start = %d\n",
  494. dtd_get_h_start(dtd), dtd_get_v_start(dtd));
  495. else
  496. pr_debug("word5: max_width %d, max_height %d\n",
  497. dtd_get_max_width(dtd), dtd_get_max_height(dtd));
  498. pr_debug("word6: client specfic attr0 = 0x%08x\n", dtd->client_attr0);
  499. pr_debug("word7: client specfic attr1 = 0x%08x\n", dtd->client_attr1);
  500. }
  501. /*
  502. * append an outbound data transfer descriptor to the given descriptor list,
  503. * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
  504. */
  505. void vpdma_add_out_dtd(struct vpdma_desc_list *list, struct v4l2_rect *c_rect,
  506. const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
  507. enum vpdma_channel chan, u32 flags)
  508. {
  509. int priority = 0;
  510. int field = 0;
  511. int notify = 1;
  512. int channel, next_chan;
  513. int depth = fmt->depth;
  514. int stride;
  515. struct vpdma_dtd *dtd;
  516. channel = next_chan = chan_info[chan].num;
  517. if (fmt->data_type == DATA_TYPE_C420)
  518. depth = 8;
  519. stride = (depth * c_rect->width) >> 3;
  520. dma_addr += (c_rect->left * depth) >> 3;
  521. dtd = list->next;
  522. WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
  523. dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
  524. notify,
  525. field,
  526. !!(flags & VPDMA_DATA_FRAME_1D),
  527. !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
  528. !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
  529. stride);
  530. dtd->w1 = 0;
  531. dtd->start_addr = (u32) dma_addr;
  532. dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
  533. DTD_DIR_OUT, channel, priority, next_chan);
  534. dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
  535. dtd->max_width_height = dtd_max_width_height(MAX_OUT_WIDTH_1920,
  536. MAX_OUT_HEIGHT_1080);
  537. dtd->client_attr0 = 0;
  538. dtd->client_attr1 = 0;
  539. list->next = dtd + 1;
  540. dump_dtd(dtd);
  541. }
  542. /*
  543. * append an inbound data transfer descriptor to the given descriptor list,
  544. * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
  545. */
  546. void vpdma_add_in_dtd(struct vpdma_desc_list *list, int frame_width,
  547. int frame_height, struct v4l2_rect *c_rect,
  548. const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
  549. enum vpdma_channel chan, int field, u32 flags)
  550. {
  551. int priority = 0;
  552. int notify = 1;
  553. int depth = fmt->depth;
  554. int channel, next_chan;
  555. int stride;
  556. int height = c_rect->height;
  557. struct vpdma_dtd *dtd;
  558. channel = next_chan = chan_info[chan].num;
  559. if (fmt->data_type == DATA_TYPE_C420) {
  560. height >>= 1;
  561. frame_height >>= 1;
  562. depth = 8;
  563. }
  564. stride = (depth * c_rect->width) >> 3;
  565. dma_addr += (c_rect->left * depth) >> 3;
  566. dtd = list->next;
  567. WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
  568. dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
  569. notify,
  570. field,
  571. !!(flags & VPDMA_DATA_FRAME_1D),
  572. !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
  573. !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
  574. stride);
  575. dtd->xfer_length_height = dtd_xfer_length_height(c_rect->width, height);
  576. dtd->start_addr = (u32) dma_addr;
  577. dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
  578. DTD_DIR_IN, channel, priority, next_chan);
  579. dtd->frame_width_height = dtd_frame_width_height(frame_width,
  580. frame_height);
  581. dtd->start_h_v = dtd_start_h_v(c_rect->left, c_rect->top);
  582. dtd->client_attr0 = 0;
  583. dtd->client_attr1 = 0;
  584. list->next = dtd + 1;
  585. dump_dtd(dtd);
  586. }
  587. /* set or clear the mask for list complete interrupt */
  588. void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int list_num,
  589. bool enable)
  590. {
  591. u32 val;
  592. val = read_reg(vpdma, VPDMA_INT_LIST0_MASK);
  593. if (enable)
  594. val |= (1 << (list_num * 2));
  595. else
  596. val &= ~(1 << (list_num * 2));
  597. write_reg(vpdma, VPDMA_INT_LIST0_MASK, val);
  598. }
  599. /* clear previosuly occured list intterupts in the LIST_STAT register */
  600. void vpdma_clear_list_stat(struct vpdma_data *vpdma)
  601. {
  602. write_reg(vpdma, VPDMA_INT_LIST0_STAT,
  603. read_reg(vpdma, VPDMA_INT_LIST0_STAT));
  604. }
  605. /*
  606. * configures the output mode of the line buffer for the given client, the
  607. * line buffer content can either be mirrored(each line repeated twice) or
  608. * passed to the client as is
  609. */
  610. void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
  611. enum vpdma_channel chan)
  612. {
  613. int client_cstat = chan_info[chan].cstat_offset;
  614. write_field_reg(vpdma, client_cstat, line_mode,
  615. VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
  616. }
  617. /*
  618. * configures the event which should trigger VPDMA transfer for the given
  619. * client
  620. */
  621. void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
  622. enum vpdma_frame_start_event fs_event,
  623. enum vpdma_channel chan)
  624. {
  625. int client_cstat = chan_info[chan].cstat_offset;
  626. write_field_reg(vpdma, client_cstat, fs_event,
  627. VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
  628. }
  629. static void vpdma_firmware_cb(const struct firmware *f, void *context)
  630. {
  631. struct vpdma_data *vpdma = context;
  632. struct vpdma_buf fw_dma_buf;
  633. int i, r;
  634. dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
  635. if (!f || !f->data) {
  636. dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
  637. return;
  638. }
  639. /* already initialized */
  640. if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
  641. VPDMA_LIST_RDY_SHFT)) {
  642. vpdma->ready = true;
  643. return;
  644. }
  645. r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
  646. if (r) {
  647. dev_err(&vpdma->pdev->dev,
  648. "failed to allocate dma buffer for firmware\n");
  649. goto rel_fw;
  650. }
  651. memcpy(fw_dma_buf.addr, f->data, f->size);
  652. vpdma_map_desc_buf(vpdma, &fw_dma_buf);
  653. write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
  654. for (i = 0; i < 100; i++) { /* max 1 second */
  655. msleep_interruptible(10);
  656. if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
  657. VPDMA_LIST_RDY_SHFT))
  658. break;
  659. }
  660. if (i == 100) {
  661. dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
  662. goto free_buf;
  663. }
  664. vpdma->ready = true;
  665. free_buf:
  666. vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
  667. vpdma_free_desc_buf(&fw_dma_buf);
  668. rel_fw:
  669. release_firmware(f);
  670. }
  671. static int vpdma_load_firmware(struct vpdma_data *vpdma)
  672. {
  673. int r;
  674. struct device *dev = &vpdma->pdev->dev;
  675. r = request_firmware_nowait(THIS_MODULE, 1,
  676. (const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
  677. vpdma_firmware_cb);
  678. if (r) {
  679. dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
  680. return r;
  681. } else {
  682. dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
  683. }
  684. return 0;
  685. }
  686. struct vpdma_data *vpdma_create(struct platform_device *pdev)
  687. {
  688. struct resource *res;
  689. struct vpdma_data *vpdma;
  690. int r;
  691. dev_dbg(&pdev->dev, "vpdma_create\n");
  692. vpdma = devm_kzalloc(&pdev->dev, sizeof(*vpdma), GFP_KERNEL);
  693. if (!vpdma) {
  694. dev_err(&pdev->dev, "couldn't alloc vpdma_dev\n");
  695. return ERR_PTR(-ENOMEM);
  696. }
  697. vpdma->pdev = pdev;
  698. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
  699. if (res == NULL) {
  700. dev_err(&pdev->dev, "missing platform resources data\n");
  701. return ERR_PTR(-ENODEV);
  702. }
  703. vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  704. if (!vpdma->base) {
  705. dev_err(&pdev->dev, "failed to ioremap\n");
  706. return ERR_PTR(-ENOMEM);
  707. }
  708. r = vpdma_load_firmware(vpdma);
  709. if (r) {
  710. pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
  711. return ERR_PTR(r);
  712. }
  713. return vpdma;
  714. }
  715. MODULE_FIRMWARE(VPDMA_FIRMWARE);