zd_mac.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. /* ZD1211 USB-WLAN driver for Linux
  2. *
  3. * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
  4. * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
  5. * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
  6. * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/slab.h>
  25. #include <linux/usb.h>
  26. #include <linux/jiffies.h>
  27. #include <net/ieee80211_radiotap.h>
  28. #include "zd_def.h"
  29. #include "zd_chip.h"
  30. #include "zd_mac.h"
  31. #include "zd_rf.h"
  32. struct zd_reg_alpha2_map {
  33. u32 reg;
  34. char alpha2[2];
  35. };
  36. static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  37. { ZD_REGDOMAIN_FCC, "US" },
  38. { ZD_REGDOMAIN_IC, "CA" },
  39. { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  40. { ZD_REGDOMAIN_JAPAN, "JP" },
  41. { ZD_REGDOMAIN_JAPAN_2, "JP" },
  42. { ZD_REGDOMAIN_JAPAN_3, "JP" },
  43. { ZD_REGDOMAIN_SPAIN, "ES" },
  44. { ZD_REGDOMAIN_FRANCE, "FR" },
  45. };
  46. /* This table contains the hardware specific values for the modulation rates. */
  47. static const struct ieee80211_rate zd_rates[] = {
  48. { .bitrate = 10,
  49. .hw_value = ZD_CCK_RATE_1M, },
  50. { .bitrate = 20,
  51. .hw_value = ZD_CCK_RATE_2M,
  52. .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  53. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  54. { .bitrate = 55,
  55. .hw_value = ZD_CCK_RATE_5_5M,
  56. .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  57. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  58. { .bitrate = 110,
  59. .hw_value = ZD_CCK_RATE_11M,
  60. .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  61. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  62. { .bitrate = 60,
  63. .hw_value = ZD_OFDM_RATE_6M,
  64. .flags = 0 },
  65. { .bitrate = 90,
  66. .hw_value = ZD_OFDM_RATE_9M,
  67. .flags = 0 },
  68. { .bitrate = 120,
  69. .hw_value = ZD_OFDM_RATE_12M,
  70. .flags = 0 },
  71. { .bitrate = 180,
  72. .hw_value = ZD_OFDM_RATE_18M,
  73. .flags = 0 },
  74. { .bitrate = 240,
  75. .hw_value = ZD_OFDM_RATE_24M,
  76. .flags = 0 },
  77. { .bitrate = 360,
  78. .hw_value = ZD_OFDM_RATE_36M,
  79. .flags = 0 },
  80. { .bitrate = 480,
  81. .hw_value = ZD_OFDM_RATE_48M,
  82. .flags = 0 },
  83. { .bitrate = 540,
  84. .hw_value = ZD_OFDM_RATE_54M,
  85. .flags = 0 },
  86. };
  87. /*
  88. * Zydas retry rates table. Each line is listed in the same order as
  89. * in zd_rates[] and contains all the rate used when a packet is sent
  90. * starting with a given rates. Let's consider an example :
  91. *
  92. * "11 Mbits : 4, 3, 2, 1, 0" means :
  93. * - packet is sent using 4 different rates
  94. * - 1st rate is index 3 (ie 11 Mbits)
  95. * - 2nd rate is index 2 (ie 5.5 Mbits)
  96. * - 3rd rate is index 1 (ie 2 Mbits)
  97. * - 4th rate is index 0 (ie 1 Mbits)
  98. */
  99. static const struct tx_retry_rate zd_retry_rates[] = {
  100. { /* 1 Mbits */ 1, { 0 }},
  101. { /* 2 Mbits */ 2, { 1, 0 }},
  102. { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
  103. { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
  104. { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
  105. { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
  106. { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
  107. { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
  108. { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
  109. { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
  110. { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
  111. { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
  112. };
  113. static const struct ieee80211_channel zd_channels[] = {
  114. { .center_freq = 2412, .hw_value = 1 },
  115. { .center_freq = 2417, .hw_value = 2 },
  116. { .center_freq = 2422, .hw_value = 3 },
  117. { .center_freq = 2427, .hw_value = 4 },
  118. { .center_freq = 2432, .hw_value = 5 },
  119. { .center_freq = 2437, .hw_value = 6 },
  120. { .center_freq = 2442, .hw_value = 7 },
  121. { .center_freq = 2447, .hw_value = 8 },
  122. { .center_freq = 2452, .hw_value = 9 },
  123. { .center_freq = 2457, .hw_value = 10 },
  124. { .center_freq = 2462, .hw_value = 11 },
  125. { .center_freq = 2467, .hw_value = 12 },
  126. { .center_freq = 2472, .hw_value = 13 },
  127. { .center_freq = 2484, .hw_value = 14 },
  128. };
  129. static void housekeeping_init(struct zd_mac *mac);
  130. static void housekeeping_enable(struct zd_mac *mac);
  131. static void housekeeping_disable(struct zd_mac *mac);
  132. static void beacon_init(struct zd_mac *mac);
  133. static void beacon_enable(struct zd_mac *mac);
  134. static void beacon_disable(struct zd_mac *mac);
  135. static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
  136. static int zd_mac_config_beacon(struct ieee80211_hw *hw,
  137. struct sk_buff *beacon);
  138. static int zd_reg2alpha2(u8 regdomain, char *alpha2)
  139. {
  140. unsigned int i;
  141. struct zd_reg_alpha2_map *reg_map;
  142. for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
  143. reg_map = &reg_alpha2_map[i];
  144. if (regdomain == reg_map->reg) {
  145. alpha2[0] = reg_map->alpha2[0];
  146. alpha2[1] = reg_map->alpha2[1];
  147. return 0;
  148. }
  149. }
  150. return 1;
  151. }
  152. int zd_mac_preinit_hw(struct ieee80211_hw *hw)
  153. {
  154. int r;
  155. u8 addr[ETH_ALEN];
  156. struct zd_mac *mac = zd_hw_mac(hw);
  157. r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
  158. if (r)
  159. return r;
  160. SET_IEEE80211_PERM_ADDR(hw, addr);
  161. return 0;
  162. }
  163. int zd_mac_init_hw(struct ieee80211_hw *hw)
  164. {
  165. int r;
  166. struct zd_mac *mac = zd_hw_mac(hw);
  167. struct zd_chip *chip = &mac->chip;
  168. char alpha2[2];
  169. u8 default_regdomain;
  170. r = zd_chip_enable_int(chip);
  171. if (r)
  172. goto out;
  173. r = zd_chip_init_hw(chip);
  174. if (r)
  175. goto disable_int;
  176. ZD_ASSERT(!irqs_disabled());
  177. r = zd_read_regdomain(chip, &default_regdomain);
  178. if (r)
  179. goto disable_int;
  180. spin_lock_irq(&mac->lock);
  181. mac->regdomain = mac->default_regdomain = default_regdomain;
  182. spin_unlock_irq(&mac->lock);
  183. /* We must inform the device that we are doing encryption/decryption in
  184. * software at the moment. */
  185. r = zd_set_encryption_type(chip, ENC_SNIFFER);
  186. if (r)
  187. goto disable_int;
  188. r = zd_reg2alpha2(mac->regdomain, alpha2);
  189. if (r)
  190. goto disable_int;
  191. r = regulatory_hint(hw->wiphy, alpha2);
  192. disable_int:
  193. zd_chip_disable_int(chip);
  194. out:
  195. return r;
  196. }
  197. void zd_mac_clear(struct zd_mac *mac)
  198. {
  199. flush_workqueue(zd_workqueue);
  200. zd_chip_clear(&mac->chip);
  201. ZD_ASSERT(!spin_is_locked(&mac->lock));
  202. ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
  203. }
  204. static int set_rx_filter(struct zd_mac *mac)
  205. {
  206. unsigned long flags;
  207. u32 filter = STA_RX_FILTER;
  208. spin_lock_irqsave(&mac->lock, flags);
  209. if (mac->pass_ctrl)
  210. filter |= RX_FILTER_CTRL;
  211. spin_unlock_irqrestore(&mac->lock, flags);
  212. return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
  213. }
  214. static int set_mac_and_bssid(struct zd_mac *mac)
  215. {
  216. int r;
  217. if (!mac->vif)
  218. return -1;
  219. r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
  220. if (r)
  221. return r;
  222. /* Vendor driver after setting MAC either sets BSSID for AP or
  223. * filter for other modes.
  224. */
  225. if (mac->type != NL80211_IFTYPE_AP)
  226. return set_rx_filter(mac);
  227. else
  228. return zd_write_bssid(&mac->chip, mac->vif->addr);
  229. }
  230. static int set_mc_hash(struct zd_mac *mac)
  231. {
  232. struct zd_mc_hash hash;
  233. zd_mc_clear(&hash);
  234. return zd_chip_set_multicast_hash(&mac->chip, &hash);
  235. }
  236. static int zd_op_start(struct ieee80211_hw *hw)
  237. {
  238. struct zd_mac *mac = zd_hw_mac(hw);
  239. struct zd_chip *chip = &mac->chip;
  240. struct zd_usb *usb = &chip->usb;
  241. int r;
  242. if (!usb->initialized) {
  243. r = zd_usb_init_hw(usb);
  244. if (r)
  245. goto out;
  246. }
  247. r = zd_chip_enable_int(chip);
  248. if (r < 0)
  249. goto out;
  250. r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
  251. if (r < 0)
  252. goto disable_int;
  253. r = set_rx_filter(mac);
  254. if (r)
  255. goto disable_int;
  256. r = set_mc_hash(mac);
  257. if (r)
  258. goto disable_int;
  259. r = zd_chip_switch_radio_on(chip);
  260. if (r < 0)
  261. goto disable_int;
  262. r = zd_chip_enable_rxtx(chip);
  263. if (r < 0)
  264. goto disable_radio;
  265. r = zd_chip_enable_hwint(chip);
  266. if (r < 0)
  267. goto disable_rxtx;
  268. housekeeping_enable(mac);
  269. beacon_enable(mac);
  270. set_bit(ZD_DEVICE_RUNNING, &mac->flags);
  271. return 0;
  272. disable_rxtx:
  273. zd_chip_disable_rxtx(chip);
  274. disable_radio:
  275. zd_chip_switch_radio_off(chip);
  276. disable_int:
  277. zd_chip_disable_int(chip);
  278. out:
  279. return r;
  280. }
  281. static void zd_op_stop(struct ieee80211_hw *hw)
  282. {
  283. struct zd_mac *mac = zd_hw_mac(hw);
  284. struct zd_chip *chip = &mac->chip;
  285. struct sk_buff *skb;
  286. struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
  287. clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
  288. /* The order here deliberately is a little different from the open()
  289. * method, since we need to make sure there is no opportunity for RX
  290. * frames to be processed by mac80211 after we have stopped it.
  291. */
  292. zd_chip_disable_rxtx(chip);
  293. beacon_disable(mac);
  294. housekeeping_disable(mac);
  295. flush_workqueue(zd_workqueue);
  296. zd_chip_disable_hwint(chip);
  297. zd_chip_switch_radio_off(chip);
  298. zd_chip_disable_int(chip);
  299. while ((skb = skb_dequeue(ack_wait_queue)))
  300. dev_kfree_skb_any(skb);
  301. }
  302. int zd_restore_settings(struct zd_mac *mac)
  303. {
  304. struct sk_buff *beacon;
  305. struct zd_mc_hash multicast_hash;
  306. unsigned int short_preamble;
  307. int r, beacon_interval, beacon_period;
  308. u8 channel;
  309. dev_dbg_f(zd_mac_dev(mac), "\n");
  310. spin_lock_irq(&mac->lock);
  311. multicast_hash = mac->multicast_hash;
  312. short_preamble = mac->short_preamble;
  313. beacon_interval = mac->beacon.interval;
  314. beacon_period = mac->beacon.period;
  315. channel = mac->channel;
  316. spin_unlock_irq(&mac->lock);
  317. r = set_mac_and_bssid(mac);
  318. if (r < 0) {
  319. dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
  320. return r;
  321. }
  322. r = zd_chip_set_channel(&mac->chip, channel);
  323. if (r < 0) {
  324. dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
  325. r);
  326. return r;
  327. }
  328. set_rts_cts(mac, short_preamble);
  329. r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
  330. if (r < 0) {
  331. dev_dbg_f(zd_mac_dev(mac),
  332. "zd_chip_set_multicast_hash failed, %d\n", r);
  333. return r;
  334. }
  335. if (mac->type == NL80211_IFTYPE_MESH_POINT ||
  336. mac->type == NL80211_IFTYPE_ADHOC ||
  337. mac->type == NL80211_IFTYPE_AP) {
  338. if (mac->vif != NULL) {
  339. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  340. if (beacon) {
  341. zd_mac_config_beacon(mac->hw, beacon);
  342. kfree_skb(beacon);
  343. }
  344. }
  345. zd_set_beacon_interval(&mac->chip, beacon_interval,
  346. beacon_period, mac->type);
  347. spin_lock_irq(&mac->lock);
  348. mac->beacon.last_update = jiffies;
  349. spin_unlock_irq(&mac->lock);
  350. }
  351. return 0;
  352. }
  353. /**
  354. * zd_mac_tx_status - reports tx status of a packet if required
  355. * @hw - a &struct ieee80211_hw pointer
  356. * @skb - a sk-buffer
  357. * @flags: extra flags to set in the TX status info
  358. * @ackssi: ACK signal strength
  359. * @success - True for successful transmission of the frame
  360. *
  361. * This information calls ieee80211_tx_status_irqsafe() if required by the
  362. * control information. It copies the control information into the status
  363. * information.
  364. *
  365. * If no status information has been requested, the skb is freed.
  366. */
  367. static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
  368. int ackssi, struct tx_status *tx_status)
  369. {
  370. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  371. int i;
  372. int success = 1, retry = 1;
  373. int first_idx;
  374. const struct tx_retry_rate *retries;
  375. ieee80211_tx_info_clear_status(info);
  376. if (tx_status) {
  377. success = !tx_status->failure;
  378. retry = tx_status->retry + success;
  379. }
  380. if (success) {
  381. /* success */
  382. info->flags |= IEEE80211_TX_STAT_ACK;
  383. } else {
  384. /* failure */
  385. info->flags &= ~IEEE80211_TX_STAT_ACK;
  386. }
  387. first_idx = info->status.rates[0].idx;
  388. ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
  389. retries = &zd_retry_rates[first_idx];
  390. ZD_ASSERT(1 <= retry && retry <= retries->count);
  391. info->status.rates[0].idx = retries->rate[0];
  392. info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
  393. for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
  394. info->status.rates[i].idx = retries->rate[i];
  395. info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
  396. }
  397. for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
  398. info->status.rates[i].idx = retries->rate[retry - 1];
  399. info->status.rates[i].count = 1; // (success ? 1:2);
  400. }
  401. if (i<IEEE80211_TX_MAX_RATES)
  402. info->status.rates[i].idx = -1; /* terminate */
  403. info->status.ack_signal = ackssi;
  404. ieee80211_tx_status_irqsafe(hw, skb);
  405. }
  406. /**
  407. * zd_mac_tx_failed - callback for failed frames
  408. * @dev: the mac80211 wireless device
  409. *
  410. * This function is called if a frame couldn't be successfully
  411. * transferred. The first frame from the tx queue, will be selected and
  412. * reported as error to the upper layers.
  413. */
  414. void zd_mac_tx_failed(struct urb *urb)
  415. {
  416. struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
  417. struct zd_mac *mac = zd_hw_mac(hw);
  418. struct sk_buff_head *q = &mac->ack_wait_queue;
  419. struct sk_buff *skb;
  420. struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
  421. unsigned long flags;
  422. int success = !tx_status->failure;
  423. int retry = tx_status->retry + success;
  424. int found = 0;
  425. int i, position = 0;
  426. q = &mac->ack_wait_queue;
  427. spin_lock_irqsave(&q->lock, flags);
  428. skb_queue_walk(q, skb) {
  429. struct ieee80211_hdr *tx_hdr;
  430. struct ieee80211_tx_info *info;
  431. int first_idx, final_idx;
  432. const struct tx_retry_rate *retries;
  433. u8 final_rate;
  434. position ++;
  435. /* if the hardware reports a failure and we had a 802.11 ACK
  436. * pending, then we skip the first skb when searching for a
  437. * matching frame */
  438. if (tx_status->failure && mac->ack_pending &&
  439. skb_queue_is_first(q, skb)) {
  440. continue;
  441. }
  442. tx_hdr = (struct ieee80211_hdr *)skb->data;
  443. /* we skip all frames not matching the reported destination */
  444. if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
  445. continue;
  446. }
  447. /* we skip all frames not matching the reported final rate */
  448. info = IEEE80211_SKB_CB(skb);
  449. first_idx = info->status.rates[0].idx;
  450. ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
  451. retries = &zd_retry_rates[first_idx];
  452. if (retry <= 0 || retry > retries->count)
  453. continue;
  454. final_idx = retries->rate[retry - 1];
  455. final_rate = zd_rates[final_idx].hw_value;
  456. if (final_rate != tx_status->rate) {
  457. continue;
  458. }
  459. found = 1;
  460. break;
  461. }
  462. if (found) {
  463. for (i=1; i<=position; i++) {
  464. skb = __skb_dequeue(q);
  465. zd_mac_tx_status(hw, skb,
  466. mac->ack_pending ? mac->ack_signal : 0,
  467. i == position ? tx_status : NULL);
  468. mac->ack_pending = 0;
  469. }
  470. }
  471. spin_unlock_irqrestore(&q->lock, flags);
  472. }
  473. /**
  474. * zd_mac_tx_to_dev - callback for USB layer
  475. * @skb: a &sk_buff pointer
  476. * @error: error value, 0 if transmission successful
  477. *
  478. * Informs the MAC layer that the frame has successfully transferred to the
  479. * device. If an ACK is required and the transfer to the device has been
  480. * successful, the packets are put on the @ack_wait_queue with
  481. * the control set removed.
  482. */
  483. void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
  484. {
  485. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  486. struct ieee80211_hw *hw = info->rate_driver_data[0];
  487. struct zd_mac *mac = zd_hw_mac(hw);
  488. ieee80211_tx_info_clear_status(info);
  489. skb_pull(skb, sizeof(struct zd_ctrlset));
  490. if (unlikely(error ||
  491. (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
  492. /*
  493. * FIXME : do we need to fill in anything ?
  494. */
  495. ieee80211_tx_status_irqsafe(hw, skb);
  496. } else {
  497. struct sk_buff_head *q = &mac->ack_wait_queue;
  498. skb_queue_tail(q, skb);
  499. while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
  500. zd_mac_tx_status(hw, skb_dequeue(q),
  501. mac->ack_pending ? mac->ack_signal : 0,
  502. NULL);
  503. mac->ack_pending = 0;
  504. }
  505. }
  506. }
  507. static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
  508. {
  509. /* ZD_PURE_RATE() must be used to remove the modulation type flag of
  510. * the zd-rate values.
  511. */
  512. static const u8 rate_divisor[] = {
  513. [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
  514. [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
  515. /* Bits must be doubled. */
  516. [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
  517. [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
  518. [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
  519. [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
  520. [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
  521. [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
  522. [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
  523. [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
  524. [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
  525. [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
  526. };
  527. u32 bits = (u32)tx_length * 8;
  528. u32 divisor;
  529. divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
  530. if (divisor == 0)
  531. return -EINVAL;
  532. switch (zd_rate) {
  533. case ZD_CCK_RATE_5_5M:
  534. bits = (2*bits) + 10; /* round up to the next integer */
  535. break;
  536. case ZD_CCK_RATE_11M:
  537. if (service) {
  538. u32 t = bits % 11;
  539. *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
  540. if (0 < t && t <= 3) {
  541. *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
  542. }
  543. }
  544. bits += 10; /* round up to the next integer */
  545. break;
  546. }
  547. return bits/divisor;
  548. }
  549. static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
  550. struct ieee80211_hdr *header,
  551. struct ieee80211_tx_info *info)
  552. {
  553. /*
  554. * CONTROL TODO:
  555. * - if backoff needed, enable bit 0
  556. * - if burst (backoff not needed) disable bit 0
  557. */
  558. cs->control = 0;
  559. /* First fragment */
  560. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  561. cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
  562. /* No ACK expected (multicast, etc.) */
  563. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  564. cs->control |= ZD_CS_NO_ACK;
  565. /* PS-POLL */
  566. if (ieee80211_is_pspoll(header->frame_control))
  567. cs->control |= ZD_CS_PS_POLL_FRAME;
  568. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
  569. cs->control |= ZD_CS_RTS;
  570. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
  571. cs->control |= ZD_CS_SELF_CTS;
  572. /* FIXME: Management frame? */
  573. }
  574. static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
  575. {
  576. struct zd_mac *mac = zd_hw_mac(hw);
  577. int r, ret, num_cmds, req_pos = 0;
  578. u32 tmp, j = 0;
  579. /* 4 more bytes for tail CRC */
  580. u32 full_len = beacon->len + 4;
  581. unsigned long end_jiffies, message_jiffies;
  582. struct zd_ioreq32 *ioreqs;
  583. /* Alloc memory for full beacon write at once. */
  584. num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
  585. ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
  586. if (!ioreqs)
  587. return -ENOMEM;
  588. mutex_lock(&mac->chip.mutex);
  589. r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
  590. if (r < 0)
  591. goto out;
  592. r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
  593. if (r < 0)
  594. goto release_sema;
  595. end_jiffies = jiffies + HZ / 2; /*~500ms*/
  596. message_jiffies = jiffies + HZ / 10; /*~100ms*/
  597. while (tmp & 0x2) {
  598. r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
  599. if (r < 0)
  600. goto release_sema;
  601. if (time_is_before_eq_jiffies(message_jiffies)) {
  602. message_jiffies = jiffies + HZ / 10;
  603. dev_err(zd_mac_dev(mac),
  604. "CR_BCN_FIFO_SEMAPHORE not ready\n");
  605. if (time_is_before_eq_jiffies(end_jiffies)) {
  606. dev_err(zd_mac_dev(mac),
  607. "Giving up beacon config.\n");
  608. r = -ETIMEDOUT;
  609. goto release_sema;
  610. }
  611. }
  612. msleep(20);
  613. }
  614. ioreqs[req_pos].addr = CR_BCN_FIFO;
  615. ioreqs[req_pos].value = full_len - 1;
  616. req_pos++;
  617. if (zd_chip_is_zd1211b(&mac->chip)) {
  618. ioreqs[req_pos].addr = CR_BCN_LENGTH;
  619. ioreqs[req_pos].value = full_len - 1;
  620. req_pos++;
  621. }
  622. for (j = 0 ; j < beacon->len; j++) {
  623. ioreqs[req_pos].addr = CR_BCN_FIFO;
  624. ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
  625. req_pos++;
  626. }
  627. for (j = 0; j < 4; j++) {
  628. ioreqs[req_pos].addr = CR_BCN_FIFO;
  629. ioreqs[req_pos].value = 0x0;
  630. req_pos++;
  631. }
  632. BUG_ON(req_pos != num_cmds);
  633. r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
  634. release_sema:
  635. /*
  636. * Try very hard to release device beacon semaphore, as otherwise
  637. * device/driver can be left in unusable state.
  638. */
  639. end_jiffies = jiffies + HZ / 2; /*~500ms*/
  640. ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
  641. while (ret < 0) {
  642. if (time_is_before_eq_jiffies(end_jiffies)) {
  643. ret = -ETIMEDOUT;
  644. break;
  645. }
  646. msleep(20);
  647. ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
  648. }
  649. if (ret < 0)
  650. dev_err(zd_mac_dev(mac), "Could not release "
  651. "CR_BCN_FIFO_SEMAPHORE!\n");
  652. if (r < 0 || ret < 0) {
  653. if (r >= 0)
  654. r = ret;
  655. goto out;
  656. }
  657. /* 802.11b/g 2.4G CCK 1Mb
  658. * 802.11a, not yet implemented, uses different values (see GPL vendor
  659. * driver)
  660. */
  661. r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
  662. CR_BCN_PLCP_CFG);
  663. out:
  664. mutex_unlock(&mac->chip.mutex);
  665. kfree(ioreqs);
  666. return r;
  667. }
  668. static int fill_ctrlset(struct zd_mac *mac,
  669. struct sk_buff *skb)
  670. {
  671. int r;
  672. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  673. unsigned int frag_len = skb->len + FCS_LEN;
  674. unsigned int packet_length;
  675. struct ieee80211_rate *txrate;
  676. struct zd_ctrlset *cs = (struct zd_ctrlset *)
  677. skb_push(skb, sizeof(struct zd_ctrlset));
  678. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  679. ZD_ASSERT(frag_len <= 0xffff);
  680. txrate = ieee80211_get_tx_rate(mac->hw, info);
  681. cs->modulation = txrate->hw_value;
  682. if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  683. cs->modulation = txrate->hw_value_short;
  684. cs->tx_length = cpu_to_le16(frag_len);
  685. cs_set_control(mac, cs, hdr, info);
  686. packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
  687. ZD_ASSERT(packet_length <= 0xffff);
  688. /* ZD1211B: Computing the length difference this way, gives us
  689. * flexibility to compute the packet length.
  690. */
  691. cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
  692. packet_length - frag_len : packet_length);
  693. /*
  694. * CURRENT LENGTH:
  695. * - transmit frame length in microseconds
  696. * - seems to be derived from frame length
  697. * - see Cal_Us_Service() in zdinlinef.h
  698. * - if macp->bTxBurstEnable is enabled, then multiply by 4
  699. * - bTxBurstEnable is never set in the vendor driver
  700. *
  701. * SERVICE:
  702. * - "for PLCP configuration"
  703. * - always 0 except in some situations at 802.11b 11M
  704. * - see line 53 of zdinlinef.h
  705. */
  706. cs->service = 0;
  707. r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
  708. le16_to_cpu(cs->tx_length));
  709. if (r < 0)
  710. return r;
  711. cs->current_length = cpu_to_le16(r);
  712. cs->next_frame_length = 0;
  713. return 0;
  714. }
  715. /**
  716. * zd_op_tx - transmits a network frame to the device
  717. *
  718. * @dev: mac80211 hardware device
  719. * @skb: socket buffer
  720. * @control: the control structure
  721. *
  722. * This function transmit an IEEE 802.11 network frame to the device. The
  723. * control block of the skbuff will be initialized. If necessary the incoming
  724. * mac80211 queues will be stopped.
  725. */
  726. static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
  727. {
  728. struct zd_mac *mac = zd_hw_mac(hw);
  729. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  730. int r;
  731. r = fill_ctrlset(mac, skb);
  732. if (r)
  733. goto fail;
  734. info->rate_driver_data[0] = hw;
  735. r = zd_usb_tx(&mac->chip.usb, skb);
  736. if (r)
  737. goto fail;
  738. return 0;
  739. fail:
  740. dev_kfree_skb(skb);
  741. return 0;
  742. }
  743. /**
  744. * filter_ack - filters incoming packets for acknowledgements
  745. * @dev: the mac80211 device
  746. * @rx_hdr: received header
  747. * @stats: the status for the received packet
  748. *
  749. * This functions looks for ACK packets and tries to match them with the
  750. * frames in the tx queue. If a match is found the frame will be dequeued and
  751. * the upper layers is informed about the successful transmission. If
  752. * mac80211 queues have been stopped and the number of frames still to be
  753. * transmitted is low the queues will be opened again.
  754. *
  755. * Returns 1 if the frame was an ACK, 0 if it was ignored.
  756. */
  757. static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
  758. struct ieee80211_rx_status *stats)
  759. {
  760. struct zd_mac *mac = zd_hw_mac(hw);
  761. struct sk_buff *skb;
  762. struct sk_buff_head *q;
  763. unsigned long flags;
  764. int found = 0;
  765. int i, position = 0;
  766. if (!ieee80211_is_ack(rx_hdr->frame_control))
  767. return 0;
  768. q = &mac->ack_wait_queue;
  769. spin_lock_irqsave(&q->lock, flags);
  770. skb_queue_walk(q, skb) {
  771. struct ieee80211_hdr *tx_hdr;
  772. position ++;
  773. if (mac->ack_pending && skb_queue_is_first(q, skb))
  774. continue;
  775. tx_hdr = (struct ieee80211_hdr *)skb->data;
  776. if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
  777. {
  778. found = 1;
  779. break;
  780. }
  781. }
  782. if (found) {
  783. for (i=1; i<position; i++) {
  784. skb = __skb_dequeue(q);
  785. zd_mac_tx_status(hw, skb,
  786. mac->ack_pending ? mac->ack_signal : 0,
  787. NULL);
  788. mac->ack_pending = 0;
  789. }
  790. mac->ack_pending = 1;
  791. mac->ack_signal = stats->signal;
  792. /* Prevent pending tx-packet on AP-mode */
  793. if (mac->type == NL80211_IFTYPE_AP) {
  794. skb = __skb_dequeue(q);
  795. zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
  796. mac->ack_pending = 0;
  797. }
  798. }
  799. spin_unlock_irqrestore(&q->lock, flags);
  800. return 1;
  801. }
  802. int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
  803. {
  804. struct zd_mac *mac = zd_hw_mac(hw);
  805. struct ieee80211_rx_status stats;
  806. const struct rx_status *status;
  807. struct sk_buff *skb;
  808. int bad_frame = 0;
  809. __le16 fc;
  810. int need_padding;
  811. int i;
  812. u8 rate;
  813. if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
  814. FCS_LEN + sizeof(struct rx_status))
  815. return -EINVAL;
  816. memset(&stats, 0, sizeof(stats));
  817. /* Note about pass_failed_fcs and pass_ctrl access below:
  818. * mac locking intentionally omitted here, as this is the only unlocked
  819. * reader and the only writer is configure_filter. Plus, if there were
  820. * any races accessing these variables, it wouldn't really matter.
  821. * If mac80211 ever provides a way for us to access filter flags
  822. * from outside configure_filter, we could improve on this. Also, this
  823. * situation may change once we implement some kind of DMA-into-skb
  824. * RX path. */
  825. /* Caller has to ensure that length >= sizeof(struct rx_status). */
  826. status = (struct rx_status *)
  827. (buffer + (length - sizeof(struct rx_status)));
  828. if (status->frame_status & ZD_RX_ERROR) {
  829. if (mac->pass_failed_fcs &&
  830. (status->frame_status & ZD_RX_CRC32_ERROR)) {
  831. stats.flag |= RX_FLAG_FAILED_FCS_CRC;
  832. bad_frame = 1;
  833. } else {
  834. return -EINVAL;
  835. }
  836. }
  837. stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
  838. stats.band = IEEE80211_BAND_2GHZ;
  839. stats.signal = status->signal_strength;
  840. rate = zd_rx_rate(buffer, status);
  841. /* todo: return index in the big switches in zd_rx_rate instead */
  842. for (i = 0; i < mac->band.n_bitrates; i++)
  843. if (rate == mac->band.bitrates[i].hw_value)
  844. stats.rate_idx = i;
  845. length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
  846. buffer += ZD_PLCP_HEADER_SIZE;
  847. /* Except for bad frames, filter each frame to see if it is an ACK, in
  848. * which case our internal TX tracking is updated. Normally we then
  849. * bail here as there's no need to pass ACKs on up to the stack, but
  850. * there is also the case where the stack has requested us to pass
  851. * control frames on up (pass_ctrl) which we must consider. */
  852. if (!bad_frame &&
  853. filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
  854. && !mac->pass_ctrl)
  855. return 0;
  856. fc = get_unaligned((__le16*)buffer);
  857. need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
  858. skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
  859. if (skb == NULL)
  860. return -ENOMEM;
  861. if (need_padding) {
  862. /* Make sure the payload data is 4 byte aligned. */
  863. skb_reserve(skb, 2);
  864. }
  865. /* FIXME : could we avoid this big memcpy ? */
  866. memcpy(skb_put(skb, length), buffer, length);
  867. memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
  868. ieee80211_rx_irqsafe(hw, skb);
  869. return 0;
  870. }
  871. static int zd_op_add_interface(struct ieee80211_hw *hw,
  872. struct ieee80211_vif *vif)
  873. {
  874. struct zd_mac *mac = zd_hw_mac(hw);
  875. /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
  876. if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
  877. return -EOPNOTSUPP;
  878. switch (vif->type) {
  879. case NL80211_IFTYPE_MONITOR:
  880. case NL80211_IFTYPE_MESH_POINT:
  881. case NL80211_IFTYPE_STATION:
  882. case NL80211_IFTYPE_ADHOC:
  883. mac->type = vif->type;
  884. break;
  885. default:
  886. return -EOPNOTSUPP;
  887. }
  888. mac->vif = vif;
  889. return set_mac_and_bssid(mac);
  890. }
  891. static void zd_op_remove_interface(struct ieee80211_hw *hw,
  892. struct ieee80211_vif *vif)
  893. {
  894. struct zd_mac *mac = zd_hw_mac(hw);
  895. mac->type = NL80211_IFTYPE_UNSPECIFIED;
  896. mac->vif = NULL;
  897. zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
  898. zd_write_mac_addr(&mac->chip, NULL);
  899. }
  900. static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
  901. {
  902. struct zd_mac *mac = zd_hw_mac(hw);
  903. struct ieee80211_conf *conf = &hw->conf;
  904. spin_lock_irq(&mac->lock);
  905. mac->channel = conf->channel->hw_value;
  906. spin_unlock_irq(&mac->lock);
  907. return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
  908. }
  909. static void zd_beacon_done(struct zd_mac *mac)
  910. {
  911. struct sk_buff *skb, *beacon;
  912. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  913. return;
  914. if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
  915. return;
  916. /*
  917. * Send out buffered broad- and multicast frames.
  918. */
  919. while (!ieee80211_queue_stopped(mac->hw, 0)) {
  920. skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
  921. if (!skb)
  922. break;
  923. zd_op_tx(mac->hw, skb);
  924. }
  925. /*
  926. * Fetch next beacon so that tim_count is updated.
  927. */
  928. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  929. if (beacon) {
  930. zd_mac_config_beacon(mac->hw, beacon);
  931. kfree_skb(beacon);
  932. }
  933. spin_lock_irq(&mac->lock);
  934. mac->beacon.last_update = jiffies;
  935. spin_unlock_irq(&mac->lock);
  936. }
  937. static void zd_process_intr(struct work_struct *work)
  938. {
  939. u16 int_status;
  940. unsigned long flags;
  941. struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
  942. spin_lock_irqsave(&mac->lock, flags);
  943. int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
  944. spin_unlock_irqrestore(&mac->lock, flags);
  945. if (int_status & INT_CFG_NEXT_BCN) {
  946. /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
  947. zd_beacon_done(mac);
  948. } else {
  949. dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
  950. }
  951. zd_chip_enable_hwint(&mac->chip);
  952. }
  953. static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
  954. struct netdev_hw_addr_list *mc_list)
  955. {
  956. struct zd_mac *mac = zd_hw_mac(hw);
  957. struct zd_mc_hash hash;
  958. struct netdev_hw_addr *ha;
  959. zd_mc_clear(&hash);
  960. netdev_hw_addr_list_for_each(ha, mc_list) {
  961. dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
  962. zd_mc_add_addr(&hash, ha->addr);
  963. }
  964. return hash.low | ((u64)hash.high << 32);
  965. }
  966. #define SUPPORTED_FIF_FLAGS \
  967. (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
  968. FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
  969. static void zd_op_configure_filter(struct ieee80211_hw *hw,
  970. unsigned int changed_flags,
  971. unsigned int *new_flags,
  972. u64 multicast)
  973. {
  974. struct zd_mc_hash hash = {
  975. .low = multicast,
  976. .high = multicast >> 32,
  977. };
  978. struct zd_mac *mac = zd_hw_mac(hw);
  979. unsigned long flags;
  980. int r;
  981. /* Only deal with supported flags */
  982. changed_flags &= SUPPORTED_FIF_FLAGS;
  983. *new_flags &= SUPPORTED_FIF_FLAGS;
  984. /*
  985. * If multicast parameter (as returned by zd_op_prepare_multicast)
  986. * has changed, no bit in changed_flags is set. To handle this
  987. * situation, we do not return if changed_flags is 0. If we do so,
  988. * we will have some issue with IPv6 which uses multicast for link
  989. * layer address resolution.
  990. */
  991. if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
  992. zd_mc_add_all(&hash);
  993. spin_lock_irqsave(&mac->lock, flags);
  994. mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
  995. mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
  996. mac->multicast_hash = hash;
  997. spin_unlock_irqrestore(&mac->lock, flags);
  998. zd_chip_set_multicast_hash(&mac->chip, &hash);
  999. if (changed_flags & FIF_CONTROL) {
  1000. r = set_rx_filter(mac);
  1001. if (r)
  1002. dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
  1003. }
  1004. /* no handling required for FIF_OTHER_BSS as we don't currently
  1005. * do BSSID filtering */
  1006. /* FIXME: in future it would be nice to enable the probe response
  1007. * filter (so that the driver doesn't see them) until
  1008. * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
  1009. * have to schedule work to enable prbresp reception, which might
  1010. * happen too late. For now we'll just listen and forward them all the
  1011. * time. */
  1012. }
  1013. static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
  1014. {
  1015. mutex_lock(&mac->chip.mutex);
  1016. zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
  1017. mutex_unlock(&mac->chip.mutex);
  1018. }
  1019. static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
  1020. struct ieee80211_vif *vif,
  1021. struct ieee80211_bss_conf *bss_conf,
  1022. u32 changes)
  1023. {
  1024. struct zd_mac *mac = zd_hw_mac(hw);
  1025. int associated;
  1026. dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
  1027. if (mac->type == NL80211_IFTYPE_MESH_POINT ||
  1028. mac->type == NL80211_IFTYPE_ADHOC) {
  1029. associated = true;
  1030. if (changes & BSS_CHANGED_BEACON) {
  1031. struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
  1032. if (beacon) {
  1033. zd_chip_disable_hwint(&mac->chip);
  1034. zd_mac_config_beacon(hw, beacon);
  1035. zd_chip_enable_hwint(&mac->chip);
  1036. kfree_skb(beacon);
  1037. }
  1038. }
  1039. if (changes & BSS_CHANGED_BEACON_ENABLED) {
  1040. u16 interval = 0;
  1041. u8 period = 0;
  1042. if (bss_conf->enable_beacon) {
  1043. period = bss_conf->dtim_period;
  1044. interval = bss_conf->beacon_int;
  1045. }
  1046. spin_lock_irq(&mac->lock);
  1047. mac->beacon.period = period;
  1048. mac->beacon.interval = interval;
  1049. mac->beacon.last_update = jiffies;
  1050. spin_unlock_irq(&mac->lock);
  1051. zd_set_beacon_interval(&mac->chip, interval, period,
  1052. mac->type);
  1053. }
  1054. } else
  1055. associated = is_valid_ether_addr(bss_conf->bssid);
  1056. spin_lock_irq(&mac->lock);
  1057. mac->associated = associated;
  1058. spin_unlock_irq(&mac->lock);
  1059. /* TODO: do hardware bssid filtering */
  1060. if (changes & BSS_CHANGED_ERP_PREAMBLE) {
  1061. spin_lock_irq(&mac->lock);
  1062. mac->short_preamble = bss_conf->use_short_preamble;
  1063. spin_unlock_irq(&mac->lock);
  1064. set_rts_cts(mac, bss_conf->use_short_preamble);
  1065. }
  1066. }
  1067. static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
  1068. {
  1069. struct zd_mac *mac = zd_hw_mac(hw);
  1070. return zd_chip_get_tsf(&mac->chip);
  1071. }
  1072. static const struct ieee80211_ops zd_ops = {
  1073. .tx = zd_op_tx,
  1074. .start = zd_op_start,
  1075. .stop = zd_op_stop,
  1076. .add_interface = zd_op_add_interface,
  1077. .remove_interface = zd_op_remove_interface,
  1078. .config = zd_op_config,
  1079. .prepare_multicast = zd_op_prepare_multicast,
  1080. .configure_filter = zd_op_configure_filter,
  1081. .bss_info_changed = zd_op_bss_info_changed,
  1082. .get_tsf = zd_op_get_tsf,
  1083. };
  1084. struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
  1085. {
  1086. struct zd_mac *mac;
  1087. struct ieee80211_hw *hw;
  1088. hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
  1089. if (!hw) {
  1090. dev_dbg_f(&intf->dev, "out of memory\n");
  1091. return NULL;
  1092. }
  1093. mac = zd_hw_mac(hw);
  1094. memset(mac, 0, sizeof(*mac));
  1095. spin_lock_init(&mac->lock);
  1096. mac->hw = hw;
  1097. mac->type = NL80211_IFTYPE_UNSPECIFIED;
  1098. memcpy(mac->channels, zd_channels, sizeof(zd_channels));
  1099. memcpy(mac->rates, zd_rates, sizeof(zd_rates));
  1100. mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
  1101. mac->band.bitrates = mac->rates;
  1102. mac->band.n_channels = ARRAY_SIZE(zd_channels);
  1103. mac->band.channels = mac->channels;
  1104. hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
  1105. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  1106. IEEE80211_HW_SIGNAL_UNSPEC |
  1107. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1108. hw->wiphy->interface_modes =
  1109. BIT(NL80211_IFTYPE_MESH_POINT) |
  1110. BIT(NL80211_IFTYPE_STATION) |
  1111. BIT(NL80211_IFTYPE_ADHOC);
  1112. hw->max_signal = 100;
  1113. hw->queues = 1;
  1114. hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
  1115. /*
  1116. * Tell mac80211 that we support multi rate retries
  1117. */
  1118. hw->max_rates = IEEE80211_TX_MAX_RATES;
  1119. hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
  1120. skb_queue_head_init(&mac->ack_wait_queue);
  1121. mac->ack_pending = 0;
  1122. zd_chip_init(&mac->chip, hw, intf);
  1123. housekeeping_init(mac);
  1124. beacon_init(mac);
  1125. INIT_WORK(&mac->process_intr, zd_process_intr);
  1126. SET_IEEE80211_DEV(hw, &intf->dev);
  1127. return hw;
  1128. }
  1129. #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
  1130. static void beacon_watchdog_handler(struct work_struct *work)
  1131. {
  1132. struct zd_mac *mac =
  1133. container_of(work, struct zd_mac, beacon.watchdog_work.work);
  1134. struct sk_buff *beacon;
  1135. unsigned long timeout;
  1136. int interval, period;
  1137. if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
  1138. goto rearm;
  1139. if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
  1140. goto rearm;
  1141. spin_lock_irq(&mac->lock);
  1142. interval = mac->beacon.interval;
  1143. period = mac->beacon.period;
  1144. timeout = mac->beacon.last_update + msecs_to_jiffies(interval) + HZ;
  1145. spin_unlock_irq(&mac->lock);
  1146. if (interval > 0 && time_is_before_jiffies(timeout)) {
  1147. dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
  1148. "restarting. "
  1149. "(interval: %d, dtim: %d)\n",
  1150. interval, period);
  1151. zd_chip_disable_hwint(&mac->chip);
  1152. beacon = ieee80211_beacon_get(mac->hw, mac->vif);
  1153. if (beacon) {
  1154. zd_mac_config_beacon(mac->hw, beacon);
  1155. kfree_skb(beacon);
  1156. }
  1157. zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
  1158. zd_chip_enable_hwint(&mac->chip);
  1159. spin_lock_irq(&mac->lock);
  1160. mac->beacon.last_update = jiffies;
  1161. spin_unlock_irq(&mac->lock);
  1162. }
  1163. rearm:
  1164. queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
  1165. BEACON_WATCHDOG_DELAY);
  1166. }
  1167. static void beacon_init(struct zd_mac *mac)
  1168. {
  1169. INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
  1170. }
  1171. static void beacon_enable(struct zd_mac *mac)
  1172. {
  1173. dev_dbg_f(zd_mac_dev(mac), "\n");
  1174. mac->beacon.last_update = jiffies;
  1175. queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
  1176. BEACON_WATCHDOG_DELAY);
  1177. }
  1178. static void beacon_disable(struct zd_mac *mac)
  1179. {
  1180. dev_dbg_f(zd_mac_dev(mac), "\n");
  1181. cancel_delayed_work_sync(&mac->beacon.watchdog_work);
  1182. }
  1183. #define LINK_LED_WORK_DELAY HZ
  1184. static void link_led_handler(struct work_struct *work)
  1185. {
  1186. struct zd_mac *mac =
  1187. container_of(work, struct zd_mac, housekeeping.link_led_work.work);
  1188. struct zd_chip *chip = &mac->chip;
  1189. int is_associated;
  1190. int r;
  1191. spin_lock_irq(&mac->lock);
  1192. is_associated = mac->associated;
  1193. spin_unlock_irq(&mac->lock);
  1194. r = zd_chip_control_leds(chip,
  1195. is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
  1196. if (r)
  1197. dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
  1198. queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
  1199. LINK_LED_WORK_DELAY);
  1200. }
  1201. static void housekeeping_init(struct zd_mac *mac)
  1202. {
  1203. INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
  1204. }
  1205. static void housekeeping_enable(struct zd_mac *mac)
  1206. {
  1207. dev_dbg_f(zd_mac_dev(mac), "\n");
  1208. queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
  1209. 0);
  1210. }
  1211. static void housekeeping_disable(struct zd_mac *mac)
  1212. {
  1213. dev_dbg_f(zd_mac_dev(mac), "\n");
  1214. cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
  1215. zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
  1216. }