kvm_main.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/mm.h>
  24. #include <linux/miscdevice.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/reboot.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/highmem.h>
  29. #include <linux/file.h>
  30. #include <linux/sysdev.h>
  31. #include <linux/cpu.h>
  32. #include <linux/sched.h>
  33. #include <linux/cpumask.h>
  34. #include <linux/smp.h>
  35. #include <linux/anon_inodes.h>
  36. #include <linux/profile.h>
  37. #include <linux/kvm_para.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/bitops.h>
  42. #include <linux/spinlock.h>
  43. #include <linux/compat.h>
  44. #include <linux/srcu.h>
  45. #include <linux/hugetlb.h>
  46. #include <linux/slab.h>
  47. #include <asm/processor.h>
  48. #include <asm/io.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/pgtable.h>
  51. #include <asm-generic/bitops/le.h>
  52. #include "coalesced_mmio.h"
  53. #define CREATE_TRACE_POINTS
  54. #include <trace/events/kvm.h>
  55. MODULE_AUTHOR("Qumranet");
  56. MODULE_LICENSE("GPL");
  57. /*
  58. * Ordering of locks:
  59. *
  60. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  61. */
  62. DEFINE_SPINLOCK(kvm_lock);
  63. LIST_HEAD(vm_list);
  64. static cpumask_var_t cpus_hardware_enabled;
  65. static int kvm_usage_count = 0;
  66. static atomic_t hardware_enable_failed;
  67. struct kmem_cache *kvm_vcpu_cache;
  68. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  69. static __read_mostly struct preempt_ops kvm_preempt_ops;
  70. struct dentry *kvm_debugfs_dir;
  71. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  72. unsigned long arg);
  73. static int hardware_enable_all(void);
  74. static void hardware_disable_all(void);
  75. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  76. static bool kvm_rebooting;
  77. static bool largepages_enabled = true;
  78. struct page *hwpoison_page;
  79. pfn_t hwpoison_pfn;
  80. inline int kvm_is_mmio_pfn(pfn_t pfn)
  81. {
  82. if (pfn_valid(pfn)) {
  83. struct page *page = compound_head(pfn_to_page(pfn));
  84. return PageReserved(page);
  85. }
  86. return true;
  87. }
  88. /*
  89. * Switches to specified vcpu, until a matching vcpu_put()
  90. */
  91. void vcpu_load(struct kvm_vcpu *vcpu)
  92. {
  93. int cpu;
  94. mutex_lock(&vcpu->mutex);
  95. cpu = get_cpu();
  96. preempt_notifier_register(&vcpu->preempt_notifier);
  97. kvm_arch_vcpu_load(vcpu, cpu);
  98. put_cpu();
  99. }
  100. void vcpu_put(struct kvm_vcpu *vcpu)
  101. {
  102. preempt_disable();
  103. kvm_arch_vcpu_put(vcpu);
  104. preempt_notifier_unregister(&vcpu->preempt_notifier);
  105. preempt_enable();
  106. mutex_unlock(&vcpu->mutex);
  107. }
  108. static void ack_flush(void *_completed)
  109. {
  110. }
  111. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  112. {
  113. int i, cpu, me;
  114. cpumask_var_t cpus;
  115. bool called = true;
  116. struct kvm_vcpu *vcpu;
  117. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  118. raw_spin_lock(&kvm->requests_lock);
  119. me = smp_processor_id();
  120. kvm_for_each_vcpu(i, vcpu, kvm) {
  121. if (test_and_set_bit(req, &vcpu->requests))
  122. continue;
  123. cpu = vcpu->cpu;
  124. if (cpus != NULL && cpu != -1 && cpu != me)
  125. cpumask_set_cpu(cpu, cpus);
  126. }
  127. if (unlikely(cpus == NULL))
  128. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  129. else if (!cpumask_empty(cpus))
  130. smp_call_function_many(cpus, ack_flush, NULL, 1);
  131. else
  132. called = false;
  133. raw_spin_unlock(&kvm->requests_lock);
  134. free_cpumask_var(cpus);
  135. return called;
  136. }
  137. void kvm_flush_remote_tlbs(struct kvm *kvm)
  138. {
  139. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  140. ++kvm->stat.remote_tlb_flush;
  141. }
  142. void kvm_reload_remote_mmus(struct kvm *kvm)
  143. {
  144. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  145. }
  146. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  147. {
  148. struct page *page;
  149. int r;
  150. mutex_init(&vcpu->mutex);
  151. vcpu->cpu = -1;
  152. vcpu->kvm = kvm;
  153. vcpu->vcpu_id = id;
  154. init_waitqueue_head(&vcpu->wq);
  155. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  156. if (!page) {
  157. r = -ENOMEM;
  158. goto fail;
  159. }
  160. vcpu->run = page_address(page);
  161. r = kvm_arch_vcpu_init(vcpu);
  162. if (r < 0)
  163. goto fail_free_run;
  164. return 0;
  165. fail_free_run:
  166. free_page((unsigned long)vcpu->run);
  167. fail:
  168. return r;
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  171. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  172. {
  173. kvm_arch_vcpu_uninit(vcpu);
  174. free_page((unsigned long)vcpu->run);
  175. }
  176. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  177. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  178. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  179. {
  180. return container_of(mn, struct kvm, mmu_notifier);
  181. }
  182. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  183. struct mm_struct *mm,
  184. unsigned long address)
  185. {
  186. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  187. int need_tlb_flush, idx;
  188. /*
  189. * When ->invalidate_page runs, the linux pte has been zapped
  190. * already but the page is still allocated until
  191. * ->invalidate_page returns. So if we increase the sequence
  192. * here the kvm page fault will notice if the spte can't be
  193. * established because the page is going to be freed. If
  194. * instead the kvm page fault establishes the spte before
  195. * ->invalidate_page runs, kvm_unmap_hva will release it
  196. * before returning.
  197. *
  198. * The sequence increase only need to be seen at spin_unlock
  199. * time, and not at spin_lock time.
  200. *
  201. * Increasing the sequence after the spin_unlock would be
  202. * unsafe because the kvm page fault could then establish the
  203. * pte after kvm_unmap_hva returned, without noticing the page
  204. * is going to be freed.
  205. */
  206. idx = srcu_read_lock(&kvm->srcu);
  207. spin_lock(&kvm->mmu_lock);
  208. kvm->mmu_notifier_seq++;
  209. need_tlb_flush = kvm_unmap_hva(kvm, address);
  210. spin_unlock(&kvm->mmu_lock);
  211. srcu_read_unlock(&kvm->srcu, idx);
  212. /* we've to flush the tlb before the pages can be freed */
  213. if (need_tlb_flush)
  214. kvm_flush_remote_tlbs(kvm);
  215. }
  216. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  217. struct mm_struct *mm,
  218. unsigned long address,
  219. pte_t pte)
  220. {
  221. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  222. int idx;
  223. idx = srcu_read_lock(&kvm->srcu);
  224. spin_lock(&kvm->mmu_lock);
  225. kvm->mmu_notifier_seq++;
  226. kvm_set_spte_hva(kvm, address, pte);
  227. spin_unlock(&kvm->mmu_lock);
  228. srcu_read_unlock(&kvm->srcu, idx);
  229. }
  230. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  231. struct mm_struct *mm,
  232. unsigned long start,
  233. unsigned long end)
  234. {
  235. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  236. int need_tlb_flush = 0, idx;
  237. idx = srcu_read_lock(&kvm->srcu);
  238. spin_lock(&kvm->mmu_lock);
  239. /*
  240. * The count increase must become visible at unlock time as no
  241. * spte can be established without taking the mmu_lock and
  242. * count is also read inside the mmu_lock critical section.
  243. */
  244. kvm->mmu_notifier_count++;
  245. for (; start < end; start += PAGE_SIZE)
  246. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  247. spin_unlock(&kvm->mmu_lock);
  248. srcu_read_unlock(&kvm->srcu, idx);
  249. /* we've to flush the tlb before the pages can be freed */
  250. if (need_tlb_flush)
  251. kvm_flush_remote_tlbs(kvm);
  252. }
  253. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  254. struct mm_struct *mm,
  255. unsigned long start,
  256. unsigned long end)
  257. {
  258. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  259. spin_lock(&kvm->mmu_lock);
  260. /*
  261. * This sequence increase will notify the kvm page fault that
  262. * the page that is going to be mapped in the spte could have
  263. * been freed.
  264. */
  265. kvm->mmu_notifier_seq++;
  266. /*
  267. * The above sequence increase must be visible before the
  268. * below count decrease but both values are read by the kvm
  269. * page fault under mmu_lock spinlock so we don't need to add
  270. * a smb_wmb() here in between the two.
  271. */
  272. kvm->mmu_notifier_count--;
  273. spin_unlock(&kvm->mmu_lock);
  274. BUG_ON(kvm->mmu_notifier_count < 0);
  275. }
  276. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  277. struct mm_struct *mm,
  278. unsigned long address)
  279. {
  280. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  281. int young, idx;
  282. idx = srcu_read_lock(&kvm->srcu);
  283. spin_lock(&kvm->mmu_lock);
  284. young = kvm_age_hva(kvm, address);
  285. spin_unlock(&kvm->mmu_lock);
  286. srcu_read_unlock(&kvm->srcu, idx);
  287. if (young)
  288. kvm_flush_remote_tlbs(kvm);
  289. return young;
  290. }
  291. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  292. struct mm_struct *mm)
  293. {
  294. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  295. int idx;
  296. idx = srcu_read_lock(&kvm->srcu);
  297. kvm_arch_flush_shadow(kvm);
  298. srcu_read_unlock(&kvm->srcu, idx);
  299. }
  300. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  301. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  302. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  303. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  304. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  305. .change_pte = kvm_mmu_notifier_change_pte,
  306. .release = kvm_mmu_notifier_release,
  307. };
  308. static int kvm_init_mmu_notifier(struct kvm *kvm)
  309. {
  310. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  311. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  312. }
  313. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  314. static int kvm_init_mmu_notifier(struct kvm *kvm)
  315. {
  316. return 0;
  317. }
  318. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  319. static struct kvm *kvm_create_vm(void)
  320. {
  321. int r = 0, i;
  322. struct kvm *kvm = kvm_arch_create_vm();
  323. if (IS_ERR(kvm))
  324. goto out;
  325. r = hardware_enable_all();
  326. if (r)
  327. goto out_err_nodisable;
  328. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  329. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  330. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  331. #endif
  332. r = -ENOMEM;
  333. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  334. if (!kvm->memslots)
  335. goto out_err;
  336. if (init_srcu_struct(&kvm->srcu))
  337. goto out_err;
  338. for (i = 0; i < KVM_NR_BUSES; i++) {
  339. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  340. GFP_KERNEL);
  341. if (!kvm->buses[i]) {
  342. cleanup_srcu_struct(&kvm->srcu);
  343. goto out_err;
  344. }
  345. }
  346. r = kvm_init_mmu_notifier(kvm);
  347. if (r) {
  348. cleanup_srcu_struct(&kvm->srcu);
  349. goto out_err;
  350. }
  351. kvm->mm = current->mm;
  352. atomic_inc(&kvm->mm->mm_count);
  353. spin_lock_init(&kvm->mmu_lock);
  354. raw_spin_lock_init(&kvm->requests_lock);
  355. kvm_eventfd_init(kvm);
  356. mutex_init(&kvm->lock);
  357. mutex_init(&kvm->irq_lock);
  358. mutex_init(&kvm->slots_lock);
  359. atomic_set(&kvm->users_count, 1);
  360. spin_lock(&kvm_lock);
  361. list_add(&kvm->vm_list, &vm_list);
  362. spin_unlock(&kvm_lock);
  363. out:
  364. return kvm;
  365. out_err:
  366. hardware_disable_all();
  367. out_err_nodisable:
  368. for (i = 0; i < KVM_NR_BUSES; i++)
  369. kfree(kvm->buses[i]);
  370. kfree(kvm->memslots);
  371. kfree(kvm);
  372. return ERR_PTR(r);
  373. }
  374. /*
  375. * Free any memory in @free but not in @dont.
  376. */
  377. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  378. struct kvm_memory_slot *dont)
  379. {
  380. int i;
  381. if (!dont || free->rmap != dont->rmap)
  382. vfree(free->rmap);
  383. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  384. vfree(free->dirty_bitmap);
  385. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  386. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  387. vfree(free->lpage_info[i]);
  388. free->lpage_info[i] = NULL;
  389. }
  390. }
  391. free->npages = 0;
  392. free->dirty_bitmap = NULL;
  393. free->rmap = NULL;
  394. }
  395. void kvm_free_physmem(struct kvm *kvm)
  396. {
  397. int i;
  398. struct kvm_memslots *slots = kvm->memslots;
  399. for (i = 0; i < slots->nmemslots; ++i)
  400. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  401. kfree(kvm->memslots);
  402. }
  403. static void kvm_destroy_vm(struct kvm *kvm)
  404. {
  405. int i;
  406. struct mm_struct *mm = kvm->mm;
  407. kvm_arch_sync_events(kvm);
  408. spin_lock(&kvm_lock);
  409. list_del(&kvm->vm_list);
  410. spin_unlock(&kvm_lock);
  411. kvm_free_irq_routing(kvm);
  412. for (i = 0; i < KVM_NR_BUSES; i++)
  413. kvm_io_bus_destroy(kvm->buses[i]);
  414. kvm_coalesced_mmio_free(kvm);
  415. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  416. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  417. #else
  418. kvm_arch_flush_shadow(kvm);
  419. #endif
  420. kvm_arch_destroy_vm(kvm);
  421. hardware_disable_all();
  422. mmdrop(mm);
  423. }
  424. void kvm_get_kvm(struct kvm *kvm)
  425. {
  426. atomic_inc(&kvm->users_count);
  427. }
  428. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  429. void kvm_put_kvm(struct kvm *kvm)
  430. {
  431. if (atomic_dec_and_test(&kvm->users_count))
  432. kvm_destroy_vm(kvm);
  433. }
  434. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  435. static int kvm_vm_release(struct inode *inode, struct file *filp)
  436. {
  437. struct kvm *kvm = filp->private_data;
  438. kvm_irqfd_release(kvm);
  439. kvm_put_kvm(kvm);
  440. return 0;
  441. }
  442. /*
  443. * Allocate some memory and give it an address in the guest physical address
  444. * space.
  445. *
  446. * Discontiguous memory is allowed, mostly for framebuffers.
  447. *
  448. * Must be called holding mmap_sem for write.
  449. */
  450. int __kvm_set_memory_region(struct kvm *kvm,
  451. struct kvm_userspace_memory_region *mem,
  452. int user_alloc)
  453. {
  454. int r, flush_shadow = 0;
  455. gfn_t base_gfn;
  456. unsigned long npages;
  457. unsigned long i;
  458. struct kvm_memory_slot *memslot;
  459. struct kvm_memory_slot old, new;
  460. struct kvm_memslots *slots, *old_memslots;
  461. r = -EINVAL;
  462. /* General sanity checks */
  463. if (mem->memory_size & (PAGE_SIZE - 1))
  464. goto out;
  465. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  466. goto out;
  467. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  468. goto out;
  469. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  470. goto out;
  471. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  472. goto out;
  473. memslot = &kvm->memslots->memslots[mem->slot];
  474. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  475. npages = mem->memory_size >> PAGE_SHIFT;
  476. r = -EINVAL;
  477. if (npages > KVM_MEM_MAX_NR_PAGES)
  478. goto out;
  479. if (!npages)
  480. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  481. new = old = *memslot;
  482. new.base_gfn = base_gfn;
  483. new.npages = npages;
  484. new.flags = mem->flags;
  485. /* Disallow changing a memory slot's size. */
  486. r = -EINVAL;
  487. if (npages && old.npages && npages != old.npages)
  488. goto out_free;
  489. /* Check for overlaps */
  490. r = -EEXIST;
  491. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  492. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  493. if (s == memslot || !s->npages)
  494. continue;
  495. if (!((base_gfn + npages <= s->base_gfn) ||
  496. (base_gfn >= s->base_gfn + s->npages)))
  497. goto out_free;
  498. }
  499. /* Free page dirty bitmap if unneeded */
  500. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  501. new.dirty_bitmap = NULL;
  502. r = -ENOMEM;
  503. /* Allocate if a slot is being created */
  504. #ifndef CONFIG_S390
  505. if (npages && !new.rmap) {
  506. new.rmap = vmalloc(npages * sizeof(struct page *));
  507. if (!new.rmap)
  508. goto out_free;
  509. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  510. new.user_alloc = user_alloc;
  511. new.userspace_addr = mem->userspace_addr;
  512. }
  513. if (!npages)
  514. goto skip_lpage;
  515. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  516. unsigned long ugfn;
  517. unsigned long j;
  518. int lpages;
  519. int level = i + 2;
  520. /* Avoid unused variable warning if no large pages */
  521. (void)level;
  522. if (new.lpage_info[i])
  523. continue;
  524. lpages = 1 + (base_gfn + npages - 1) /
  525. KVM_PAGES_PER_HPAGE(level);
  526. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  527. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  528. if (!new.lpage_info[i])
  529. goto out_free;
  530. memset(new.lpage_info[i], 0,
  531. lpages * sizeof(*new.lpage_info[i]));
  532. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  533. new.lpage_info[i][0].write_count = 1;
  534. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  535. new.lpage_info[i][lpages - 1].write_count = 1;
  536. ugfn = new.userspace_addr >> PAGE_SHIFT;
  537. /*
  538. * If the gfn and userspace address are not aligned wrt each
  539. * other, or if explicitly asked to, disable large page
  540. * support for this slot
  541. */
  542. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  543. !largepages_enabled)
  544. for (j = 0; j < lpages; ++j)
  545. new.lpage_info[i][j].write_count = 1;
  546. }
  547. skip_lpage:
  548. /* Allocate page dirty bitmap if needed */
  549. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  550. unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
  551. new.dirty_bitmap = vmalloc(dirty_bytes);
  552. if (!new.dirty_bitmap)
  553. goto out_free;
  554. memset(new.dirty_bitmap, 0, dirty_bytes);
  555. /* destroy any largepage mappings for dirty tracking */
  556. if (old.npages)
  557. flush_shadow = 1;
  558. }
  559. #else /* not defined CONFIG_S390 */
  560. new.user_alloc = user_alloc;
  561. if (user_alloc)
  562. new.userspace_addr = mem->userspace_addr;
  563. #endif /* not defined CONFIG_S390 */
  564. if (!npages) {
  565. r = -ENOMEM;
  566. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  567. if (!slots)
  568. goto out_free;
  569. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  570. if (mem->slot >= slots->nmemslots)
  571. slots->nmemslots = mem->slot + 1;
  572. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  573. old_memslots = kvm->memslots;
  574. rcu_assign_pointer(kvm->memslots, slots);
  575. synchronize_srcu_expedited(&kvm->srcu);
  576. /* From this point no new shadow pages pointing to a deleted
  577. * memslot will be created.
  578. *
  579. * validation of sp->gfn happens in:
  580. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  581. * - kvm_is_visible_gfn (mmu_check_roots)
  582. */
  583. kvm_arch_flush_shadow(kvm);
  584. kfree(old_memslots);
  585. }
  586. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  587. if (r)
  588. goto out_free;
  589. #ifdef CONFIG_DMAR
  590. /* map the pages in iommu page table */
  591. if (npages) {
  592. r = kvm_iommu_map_pages(kvm, &new);
  593. if (r)
  594. goto out_free;
  595. }
  596. #endif
  597. r = -ENOMEM;
  598. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  599. if (!slots)
  600. goto out_free;
  601. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  602. if (mem->slot >= slots->nmemslots)
  603. slots->nmemslots = mem->slot + 1;
  604. /* actual memory is freed via old in kvm_free_physmem_slot below */
  605. if (!npages) {
  606. new.rmap = NULL;
  607. new.dirty_bitmap = NULL;
  608. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  609. new.lpage_info[i] = NULL;
  610. }
  611. slots->memslots[mem->slot] = new;
  612. old_memslots = kvm->memslots;
  613. rcu_assign_pointer(kvm->memslots, slots);
  614. synchronize_srcu_expedited(&kvm->srcu);
  615. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  616. kvm_free_physmem_slot(&old, &new);
  617. kfree(old_memslots);
  618. if (flush_shadow)
  619. kvm_arch_flush_shadow(kvm);
  620. return 0;
  621. out_free:
  622. kvm_free_physmem_slot(&new, &old);
  623. out:
  624. return r;
  625. }
  626. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  627. int kvm_set_memory_region(struct kvm *kvm,
  628. struct kvm_userspace_memory_region *mem,
  629. int user_alloc)
  630. {
  631. int r;
  632. mutex_lock(&kvm->slots_lock);
  633. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  634. mutex_unlock(&kvm->slots_lock);
  635. return r;
  636. }
  637. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  638. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  639. struct
  640. kvm_userspace_memory_region *mem,
  641. int user_alloc)
  642. {
  643. if (mem->slot >= KVM_MEMORY_SLOTS)
  644. return -EINVAL;
  645. return kvm_set_memory_region(kvm, mem, user_alloc);
  646. }
  647. int kvm_get_dirty_log(struct kvm *kvm,
  648. struct kvm_dirty_log *log, int *is_dirty)
  649. {
  650. struct kvm_memory_slot *memslot;
  651. int r, i;
  652. unsigned long n;
  653. unsigned long any = 0;
  654. r = -EINVAL;
  655. if (log->slot >= KVM_MEMORY_SLOTS)
  656. goto out;
  657. memslot = &kvm->memslots->memslots[log->slot];
  658. r = -ENOENT;
  659. if (!memslot->dirty_bitmap)
  660. goto out;
  661. n = kvm_dirty_bitmap_bytes(memslot);
  662. for (i = 0; !any && i < n/sizeof(long); ++i)
  663. any = memslot->dirty_bitmap[i];
  664. r = -EFAULT;
  665. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  666. goto out;
  667. if (any)
  668. *is_dirty = 1;
  669. r = 0;
  670. out:
  671. return r;
  672. }
  673. void kvm_disable_largepages(void)
  674. {
  675. largepages_enabled = false;
  676. }
  677. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  678. int is_error_page(struct page *page)
  679. {
  680. return page == bad_page || page == hwpoison_page;
  681. }
  682. EXPORT_SYMBOL_GPL(is_error_page);
  683. int is_error_pfn(pfn_t pfn)
  684. {
  685. return pfn == bad_pfn || pfn == hwpoison_pfn;
  686. }
  687. EXPORT_SYMBOL_GPL(is_error_pfn);
  688. int is_hwpoison_pfn(pfn_t pfn)
  689. {
  690. return pfn == hwpoison_pfn;
  691. }
  692. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  693. static inline unsigned long bad_hva(void)
  694. {
  695. return PAGE_OFFSET;
  696. }
  697. int kvm_is_error_hva(unsigned long addr)
  698. {
  699. return addr == bad_hva();
  700. }
  701. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  702. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  703. {
  704. int i;
  705. struct kvm_memslots *slots = kvm_memslots(kvm);
  706. for (i = 0; i < slots->nmemslots; ++i) {
  707. struct kvm_memory_slot *memslot = &slots->memslots[i];
  708. if (gfn >= memslot->base_gfn
  709. && gfn < memslot->base_gfn + memslot->npages)
  710. return memslot;
  711. }
  712. return NULL;
  713. }
  714. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  715. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  716. {
  717. gfn = unalias_gfn(kvm, gfn);
  718. return gfn_to_memslot_unaliased(kvm, gfn);
  719. }
  720. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  721. {
  722. int i;
  723. struct kvm_memslots *slots = kvm_memslots(kvm);
  724. gfn = unalias_gfn_instantiation(kvm, gfn);
  725. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  726. struct kvm_memory_slot *memslot = &slots->memslots[i];
  727. if (memslot->flags & KVM_MEMSLOT_INVALID)
  728. continue;
  729. if (gfn >= memslot->base_gfn
  730. && gfn < memslot->base_gfn + memslot->npages)
  731. return 1;
  732. }
  733. return 0;
  734. }
  735. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  736. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  737. {
  738. struct vm_area_struct *vma;
  739. unsigned long addr, size;
  740. size = PAGE_SIZE;
  741. addr = gfn_to_hva(kvm, gfn);
  742. if (kvm_is_error_hva(addr))
  743. return PAGE_SIZE;
  744. down_read(&current->mm->mmap_sem);
  745. vma = find_vma(current->mm, addr);
  746. if (!vma)
  747. goto out;
  748. size = vma_kernel_pagesize(vma);
  749. out:
  750. up_read(&current->mm->mmap_sem);
  751. return size;
  752. }
  753. int memslot_id(struct kvm *kvm, gfn_t gfn)
  754. {
  755. int i;
  756. struct kvm_memslots *slots = kvm_memslots(kvm);
  757. struct kvm_memory_slot *memslot = NULL;
  758. gfn = unalias_gfn(kvm, gfn);
  759. for (i = 0; i < slots->nmemslots; ++i) {
  760. memslot = &slots->memslots[i];
  761. if (gfn >= memslot->base_gfn
  762. && gfn < memslot->base_gfn + memslot->npages)
  763. break;
  764. }
  765. return memslot - slots->memslots;
  766. }
  767. static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  768. {
  769. return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
  770. }
  771. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  772. {
  773. struct kvm_memory_slot *slot;
  774. gfn = unalias_gfn_instantiation(kvm, gfn);
  775. slot = gfn_to_memslot_unaliased(kvm, gfn);
  776. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  777. return bad_hva();
  778. return gfn_to_hva_memslot(slot, gfn);
  779. }
  780. EXPORT_SYMBOL_GPL(gfn_to_hva);
  781. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
  782. {
  783. struct page *page[1];
  784. int npages;
  785. pfn_t pfn;
  786. might_sleep();
  787. npages = get_user_pages_fast(addr, 1, 1, page);
  788. if (unlikely(npages != 1)) {
  789. struct vm_area_struct *vma;
  790. if (is_hwpoison_address(addr)) {
  791. get_page(hwpoison_page);
  792. return page_to_pfn(hwpoison_page);
  793. }
  794. down_read(&current->mm->mmap_sem);
  795. vma = find_vma(current->mm, addr);
  796. if (vma == NULL || addr < vma->vm_start ||
  797. !(vma->vm_flags & VM_PFNMAP)) {
  798. up_read(&current->mm->mmap_sem);
  799. get_page(bad_page);
  800. return page_to_pfn(bad_page);
  801. }
  802. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  803. up_read(&current->mm->mmap_sem);
  804. BUG_ON(!kvm_is_mmio_pfn(pfn));
  805. } else
  806. pfn = page_to_pfn(page[0]);
  807. return pfn;
  808. }
  809. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  810. {
  811. unsigned long addr;
  812. addr = gfn_to_hva(kvm, gfn);
  813. if (kvm_is_error_hva(addr)) {
  814. get_page(bad_page);
  815. return page_to_pfn(bad_page);
  816. }
  817. return hva_to_pfn(kvm, addr);
  818. }
  819. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  820. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  821. struct kvm_memory_slot *slot, gfn_t gfn)
  822. {
  823. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  824. return hva_to_pfn(kvm, addr);
  825. }
  826. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  827. {
  828. pfn_t pfn;
  829. pfn = gfn_to_pfn(kvm, gfn);
  830. if (!kvm_is_mmio_pfn(pfn))
  831. return pfn_to_page(pfn);
  832. WARN_ON(kvm_is_mmio_pfn(pfn));
  833. get_page(bad_page);
  834. return bad_page;
  835. }
  836. EXPORT_SYMBOL_GPL(gfn_to_page);
  837. void kvm_release_page_clean(struct page *page)
  838. {
  839. kvm_release_pfn_clean(page_to_pfn(page));
  840. }
  841. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  842. void kvm_release_pfn_clean(pfn_t pfn)
  843. {
  844. if (!kvm_is_mmio_pfn(pfn))
  845. put_page(pfn_to_page(pfn));
  846. }
  847. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  848. void kvm_release_page_dirty(struct page *page)
  849. {
  850. kvm_release_pfn_dirty(page_to_pfn(page));
  851. }
  852. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  853. void kvm_release_pfn_dirty(pfn_t pfn)
  854. {
  855. kvm_set_pfn_dirty(pfn);
  856. kvm_release_pfn_clean(pfn);
  857. }
  858. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  859. void kvm_set_page_dirty(struct page *page)
  860. {
  861. kvm_set_pfn_dirty(page_to_pfn(page));
  862. }
  863. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  864. void kvm_set_pfn_dirty(pfn_t pfn)
  865. {
  866. if (!kvm_is_mmio_pfn(pfn)) {
  867. struct page *page = pfn_to_page(pfn);
  868. if (!PageReserved(page))
  869. SetPageDirty(page);
  870. }
  871. }
  872. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  873. void kvm_set_pfn_accessed(pfn_t pfn)
  874. {
  875. if (!kvm_is_mmio_pfn(pfn))
  876. mark_page_accessed(pfn_to_page(pfn));
  877. }
  878. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  879. void kvm_get_pfn(pfn_t pfn)
  880. {
  881. if (!kvm_is_mmio_pfn(pfn))
  882. get_page(pfn_to_page(pfn));
  883. }
  884. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  885. static int next_segment(unsigned long len, int offset)
  886. {
  887. if (len > PAGE_SIZE - offset)
  888. return PAGE_SIZE - offset;
  889. else
  890. return len;
  891. }
  892. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  893. int len)
  894. {
  895. int r;
  896. unsigned long addr;
  897. addr = gfn_to_hva(kvm, gfn);
  898. if (kvm_is_error_hva(addr))
  899. return -EFAULT;
  900. r = copy_from_user(data, (void __user *)addr + offset, len);
  901. if (r)
  902. return -EFAULT;
  903. return 0;
  904. }
  905. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  906. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  907. {
  908. gfn_t gfn = gpa >> PAGE_SHIFT;
  909. int seg;
  910. int offset = offset_in_page(gpa);
  911. int ret;
  912. while ((seg = next_segment(len, offset)) != 0) {
  913. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  914. if (ret < 0)
  915. return ret;
  916. offset = 0;
  917. len -= seg;
  918. data += seg;
  919. ++gfn;
  920. }
  921. return 0;
  922. }
  923. EXPORT_SYMBOL_GPL(kvm_read_guest);
  924. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  925. unsigned long len)
  926. {
  927. int r;
  928. unsigned long addr;
  929. gfn_t gfn = gpa >> PAGE_SHIFT;
  930. int offset = offset_in_page(gpa);
  931. addr = gfn_to_hva(kvm, gfn);
  932. if (kvm_is_error_hva(addr))
  933. return -EFAULT;
  934. pagefault_disable();
  935. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  936. pagefault_enable();
  937. if (r)
  938. return -EFAULT;
  939. return 0;
  940. }
  941. EXPORT_SYMBOL(kvm_read_guest_atomic);
  942. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  943. int offset, int len)
  944. {
  945. int r;
  946. unsigned long addr;
  947. addr = gfn_to_hva(kvm, gfn);
  948. if (kvm_is_error_hva(addr))
  949. return -EFAULT;
  950. r = copy_to_user((void __user *)addr + offset, data, len);
  951. if (r)
  952. return -EFAULT;
  953. mark_page_dirty(kvm, gfn);
  954. return 0;
  955. }
  956. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  957. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  958. unsigned long len)
  959. {
  960. gfn_t gfn = gpa >> PAGE_SHIFT;
  961. int seg;
  962. int offset = offset_in_page(gpa);
  963. int ret;
  964. while ((seg = next_segment(len, offset)) != 0) {
  965. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  966. if (ret < 0)
  967. return ret;
  968. offset = 0;
  969. len -= seg;
  970. data += seg;
  971. ++gfn;
  972. }
  973. return 0;
  974. }
  975. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  976. {
  977. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  978. }
  979. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  980. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  981. {
  982. gfn_t gfn = gpa >> PAGE_SHIFT;
  983. int seg;
  984. int offset = offset_in_page(gpa);
  985. int ret;
  986. while ((seg = next_segment(len, offset)) != 0) {
  987. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  988. if (ret < 0)
  989. return ret;
  990. offset = 0;
  991. len -= seg;
  992. ++gfn;
  993. }
  994. return 0;
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  997. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  998. {
  999. struct kvm_memory_slot *memslot;
  1000. gfn = unalias_gfn(kvm, gfn);
  1001. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1002. if (memslot && memslot->dirty_bitmap) {
  1003. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1004. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1005. }
  1006. }
  1007. /*
  1008. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1009. */
  1010. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1011. {
  1012. DEFINE_WAIT(wait);
  1013. for (;;) {
  1014. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1015. if (kvm_arch_vcpu_runnable(vcpu)) {
  1016. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1017. break;
  1018. }
  1019. if (kvm_cpu_has_pending_timer(vcpu))
  1020. break;
  1021. if (signal_pending(current))
  1022. break;
  1023. schedule();
  1024. }
  1025. finish_wait(&vcpu->wq, &wait);
  1026. }
  1027. void kvm_resched(struct kvm_vcpu *vcpu)
  1028. {
  1029. if (!need_resched())
  1030. return;
  1031. cond_resched();
  1032. }
  1033. EXPORT_SYMBOL_GPL(kvm_resched);
  1034. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1035. {
  1036. ktime_t expires;
  1037. DEFINE_WAIT(wait);
  1038. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1039. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1040. expires = ktime_add_ns(ktime_get(), 100000UL);
  1041. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1042. finish_wait(&vcpu->wq, &wait);
  1043. }
  1044. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1045. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1046. {
  1047. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1048. struct page *page;
  1049. if (vmf->pgoff == 0)
  1050. page = virt_to_page(vcpu->run);
  1051. #ifdef CONFIG_X86
  1052. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1053. page = virt_to_page(vcpu->arch.pio_data);
  1054. #endif
  1055. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1056. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1057. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1058. #endif
  1059. else
  1060. return VM_FAULT_SIGBUS;
  1061. get_page(page);
  1062. vmf->page = page;
  1063. return 0;
  1064. }
  1065. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1066. .fault = kvm_vcpu_fault,
  1067. };
  1068. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1069. {
  1070. vma->vm_ops = &kvm_vcpu_vm_ops;
  1071. return 0;
  1072. }
  1073. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1074. {
  1075. struct kvm_vcpu *vcpu = filp->private_data;
  1076. kvm_put_kvm(vcpu->kvm);
  1077. return 0;
  1078. }
  1079. static struct file_operations kvm_vcpu_fops = {
  1080. .release = kvm_vcpu_release,
  1081. .unlocked_ioctl = kvm_vcpu_ioctl,
  1082. .compat_ioctl = kvm_vcpu_ioctl,
  1083. .mmap = kvm_vcpu_mmap,
  1084. };
  1085. /*
  1086. * Allocates an inode for the vcpu.
  1087. */
  1088. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1089. {
  1090. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1091. }
  1092. /*
  1093. * Creates some virtual cpus. Good luck creating more than one.
  1094. */
  1095. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1096. {
  1097. int r;
  1098. struct kvm_vcpu *vcpu, *v;
  1099. vcpu = kvm_arch_vcpu_create(kvm, id);
  1100. if (IS_ERR(vcpu))
  1101. return PTR_ERR(vcpu);
  1102. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1103. r = kvm_arch_vcpu_setup(vcpu);
  1104. if (r)
  1105. return r;
  1106. mutex_lock(&kvm->lock);
  1107. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1108. r = -EINVAL;
  1109. goto vcpu_destroy;
  1110. }
  1111. kvm_for_each_vcpu(r, v, kvm)
  1112. if (v->vcpu_id == id) {
  1113. r = -EEXIST;
  1114. goto vcpu_destroy;
  1115. }
  1116. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1117. /* Now it's all set up, let userspace reach it */
  1118. kvm_get_kvm(kvm);
  1119. r = create_vcpu_fd(vcpu);
  1120. if (r < 0) {
  1121. kvm_put_kvm(kvm);
  1122. goto vcpu_destroy;
  1123. }
  1124. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1125. smp_wmb();
  1126. atomic_inc(&kvm->online_vcpus);
  1127. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1128. if (kvm->bsp_vcpu_id == id)
  1129. kvm->bsp_vcpu = vcpu;
  1130. #endif
  1131. mutex_unlock(&kvm->lock);
  1132. return r;
  1133. vcpu_destroy:
  1134. mutex_unlock(&kvm->lock);
  1135. kvm_arch_vcpu_destroy(vcpu);
  1136. return r;
  1137. }
  1138. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1139. {
  1140. if (sigset) {
  1141. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1142. vcpu->sigset_active = 1;
  1143. vcpu->sigset = *sigset;
  1144. } else
  1145. vcpu->sigset_active = 0;
  1146. return 0;
  1147. }
  1148. static long kvm_vcpu_ioctl(struct file *filp,
  1149. unsigned int ioctl, unsigned long arg)
  1150. {
  1151. struct kvm_vcpu *vcpu = filp->private_data;
  1152. void __user *argp = (void __user *)arg;
  1153. int r;
  1154. struct kvm_fpu *fpu = NULL;
  1155. struct kvm_sregs *kvm_sregs = NULL;
  1156. if (vcpu->kvm->mm != current->mm)
  1157. return -EIO;
  1158. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1159. /*
  1160. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1161. * so vcpu_load() would break it.
  1162. */
  1163. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1164. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1165. #endif
  1166. vcpu_load(vcpu);
  1167. switch (ioctl) {
  1168. case KVM_RUN:
  1169. r = -EINVAL;
  1170. if (arg)
  1171. goto out;
  1172. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1173. break;
  1174. case KVM_GET_REGS: {
  1175. struct kvm_regs *kvm_regs;
  1176. r = -ENOMEM;
  1177. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1178. if (!kvm_regs)
  1179. goto out;
  1180. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1181. if (r)
  1182. goto out_free1;
  1183. r = -EFAULT;
  1184. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1185. goto out_free1;
  1186. r = 0;
  1187. out_free1:
  1188. kfree(kvm_regs);
  1189. break;
  1190. }
  1191. case KVM_SET_REGS: {
  1192. struct kvm_regs *kvm_regs;
  1193. r = -ENOMEM;
  1194. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1195. if (!kvm_regs)
  1196. goto out;
  1197. r = -EFAULT;
  1198. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1199. goto out_free2;
  1200. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1201. if (r)
  1202. goto out_free2;
  1203. r = 0;
  1204. out_free2:
  1205. kfree(kvm_regs);
  1206. break;
  1207. }
  1208. case KVM_GET_SREGS: {
  1209. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1210. r = -ENOMEM;
  1211. if (!kvm_sregs)
  1212. goto out;
  1213. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1214. if (r)
  1215. goto out;
  1216. r = -EFAULT;
  1217. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1218. goto out;
  1219. r = 0;
  1220. break;
  1221. }
  1222. case KVM_SET_SREGS: {
  1223. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1224. r = -ENOMEM;
  1225. if (!kvm_sregs)
  1226. goto out;
  1227. r = -EFAULT;
  1228. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1229. goto out;
  1230. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1231. if (r)
  1232. goto out;
  1233. r = 0;
  1234. break;
  1235. }
  1236. case KVM_GET_MP_STATE: {
  1237. struct kvm_mp_state mp_state;
  1238. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1239. if (r)
  1240. goto out;
  1241. r = -EFAULT;
  1242. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1243. goto out;
  1244. r = 0;
  1245. break;
  1246. }
  1247. case KVM_SET_MP_STATE: {
  1248. struct kvm_mp_state mp_state;
  1249. r = -EFAULT;
  1250. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1251. goto out;
  1252. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1253. if (r)
  1254. goto out;
  1255. r = 0;
  1256. break;
  1257. }
  1258. case KVM_TRANSLATE: {
  1259. struct kvm_translation tr;
  1260. r = -EFAULT;
  1261. if (copy_from_user(&tr, argp, sizeof tr))
  1262. goto out;
  1263. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1264. if (r)
  1265. goto out;
  1266. r = -EFAULT;
  1267. if (copy_to_user(argp, &tr, sizeof tr))
  1268. goto out;
  1269. r = 0;
  1270. break;
  1271. }
  1272. case KVM_SET_GUEST_DEBUG: {
  1273. struct kvm_guest_debug dbg;
  1274. r = -EFAULT;
  1275. if (copy_from_user(&dbg, argp, sizeof dbg))
  1276. goto out;
  1277. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1278. if (r)
  1279. goto out;
  1280. r = 0;
  1281. break;
  1282. }
  1283. case KVM_SET_SIGNAL_MASK: {
  1284. struct kvm_signal_mask __user *sigmask_arg = argp;
  1285. struct kvm_signal_mask kvm_sigmask;
  1286. sigset_t sigset, *p;
  1287. p = NULL;
  1288. if (argp) {
  1289. r = -EFAULT;
  1290. if (copy_from_user(&kvm_sigmask, argp,
  1291. sizeof kvm_sigmask))
  1292. goto out;
  1293. r = -EINVAL;
  1294. if (kvm_sigmask.len != sizeof sigset)
  1295. goto out;
  1296. r = -EFAULT;
  1297. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1298. sizeof sigset))
  1299. goto out;
  1300. p = &sigset;
  1301. }
  1302. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1303. break;
  1304. }
  1305. case KVM_GET_FPU: {
  1306. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1307. r = -ENOMEM;
  1308. if (!fpu)
  1309. goto out;
  1310. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1311. if (r)
  1312. goto out;
  1313. r = -EFAULT;
  1314. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1315. goto out;
  1316. r = 0;
  1317. break;
  1318. }
  1319. case KVM_SET_FPU: {
  1320. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1321. r = -ENOMEM;
  1322. if (!fpu)
  1323. goto out;
  1324. r = -EFAULT;
  1325. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1326. goto out;
  1327. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1328. if (r)
  1329. goto out;
  1330. r = 0;
  1331. break;
  1332. }
  1333. default:
  1334. vcpu_put(vcpu);
  1335. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1336. vcpu_load(vcpu);
  1337. }
  1338. out:
  1339. vcpu_put(vcpu);
  1340. kfree(fpu);
  1341. kfree(kvm_sregs);
  1342. return r;
  1343. }
  1344. static long kvm_vm_ioctl(struct file *filp,
  1345. unsigned int ioctl, unsigned long arg)
  1346. {
  1347. struct kvm *kvm = filp->private_data;
  1348. void __user *argp = (void __user *)arg;
  1349. int r;
  1350. if (kvm->mm != current->mm)
  1351. return -EIO;
  1352. switch (ioctl) {
  1353. case KVM_CREATE_VCPU:
  1354. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1355. if (r < 0)
  1356. goto out;
  1357. break;
  1358. case KVM_SET_USER_MEMORY_REGION: {
  1359. struct kvm_userspace_memory_region kvm_userspace_mem;
  1360. r = -EFAULT;
  1361. if (copy_from_user(&kvm_userspace_mem, argp,
  1362. sizeof kvm_userspace_mem))
  1363. goto out;
  1364. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1365. if (r)
  1366. goto out;
  1367. break;
  1368. }
  1369. case KVM_GET_DIRTY_LOG: {
  1370. struct kvm_dirty_log log;
  1371. r = -EFAULT;
  1372. if (copy_from_user(&log, argp, sizeof log))
  1373. goto out;
  1374. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1375. if (r)
  1376. goto out;
  1377. break;
  1378. }
  1379. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1380. case KVM_REGISTER_COALESCED_MMIO: {
  1381. struct kvm_coalesced_mmio_zone zone;
  1382. r = -EFAULT;
  1383. if (copy_from_user(&zone, argp, sizeof zone))
  1384. goto out;
  1385. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1386. if (r)
  1387. goto out;
  1388. r = 0;
  1389. break;
  1390. }
  1391. case KVM_UNREGISTER_COALESCED_MMIO: {
  1392. struct kvm_coalesced_mmio_zone zone;
  1393. r = -EFAULT;
  1394. if (copy_from_user(&zone, argp, sizeof zone))
  1395. goto out;
  1396. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1397. if (r)
  1398. goto out;
  1399. r = 0;
  1400. break;
  1401. }
  1402. #endif
  1403. case KVM_IRQFD: {
  1404. struct kvm_irqfd data;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&data, argp, sizeof data))
  1407. goto out;
  1408. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1409. break;
  1410. }
  1411. case KVM_IOEVENTFD: {
  1412. struct kvm_ioeventfd data;
  1413. r = -EFAULT;
  1414. if (copy_from_user(&data, argp, sizeof data))
  1415. goto out;
  1416. r = kvm_ioeventfd(kvm, &data);
  1417. break;
  1418. }
  1419. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1420. case KVM_SET_BOOT_CPU_ID:
  1421. r = 0;
  1422. mutex_lock(&kvm->lock);
  1423. if (atomic_read(&kvm->online_vcpus) != 0)
  1424. r = -EBUSY;
  1425. else
  1426. kvm->bsp_vcpu_id = arg;
  1427. mutex_unlock(&kvm->lock);
  1428. break;
  1429. #endif
  1430. default:
  1431. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1432. if (r == -ENOTTY)
  1433. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1434. }
  1435. out:
  1436. return r;
  1437. }
  1438. #ifdef CONFIG_COMPAT
  1439. struct compat_kvm_dirty_log {
  1440. __u32 slot;
  1441. __u32 padding1;
  1442. union {
  1443. compat_uptr_t dirty_bitmap; /* one bit per page */
  1444. __u64 padding2;
  1445. };
  1446. };
  1447. static long kvm_vm_compat_ioctl(struct file *filp,
  1448. unsigned int ioctl, unsigned long arg)
  1449. {
  1450. struct kvm *kvm = filp->private_data;
  1451. int r;
  1452. if (kvm->mm != current->mm)
  1453. return -EIO;
  1454. switch (ioctl) {
  1455. case KVM_GET_DIRTY_LOG: {
  1456. struct compat_kvm_dirty_log compat_log;
  1457. struct kvm_dirty_log log;
  1458. r = -EFAULT;
  1459. if (copy_from_user(&compat_log, (void __user *)arg,
  1460. sizeof(compat_log)))
  1461. goto out;
  1462. log.slot = compat_log.slot;
  1463. log.padding1 = compat_log.padding1;
  1464. log.padding2 = compat_log.padding2;
  1465. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1466. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1467. if (r)
  1468. goto out;
  1469. break;
  1470. }
  1471. default:
  1472. r = kvm_vm_ioctl(filp, ioctl, arg);
  1473. }
  1474. out:
  1475. return r;
  1476. }
  1477. #endif
  1478. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1479. {
  1480. struct page *page[1];
  1481. unsigned long addr;
  1482. int npages;
  1483. gfn_t gfn = vmf->pgoff;
  1484. struct kvm *kvm = vma->vm_file->private_data;
  1485. addr = gfn_to_hva(kvm, gfn);
  1486. if (kvm_is_error_hva(addr))
  1487. return VM_FAULT_SIGBUS;
  1488. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1489. NULL);
  1490. if (unlikely(npages != 1))
  1491. return VM_FAULT_SIGBUS;
  1492. vmf->page = page[0];
  1493. return 0;
  1494. }
  1495. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1496. .fault = kvm_vm_fault,
  1497. };
  1498. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1499. {
  1500. vma->vm_ops = &kvm_vm_vm_ops;
  1501. return 0;
  1502. }
  1503. static struct file_operations kvm_vm_fops = {
  1504. .release = kvm_vm_release,
  1505. .unlocked_ioctl = kvm_vm_ioctl,
  1506. #ifdef CONFIG_COMPAT
  1507. .compat_ioctl = kvm_vm_compat_ioctl,
  1508. #endif
  1509. .mmap = kvm_vm_mmap,
  1510. };
  1511. static int kvm_dev_ioctl_create_vm(void)
  1512. {
  1513. int fd, r;
  1514. struct kvm *kvm;
  1515. kvm = kvm_create_vm();
  1516. if (IS_ERR(kvm))
  1517. return PTR_ERR(kvm);
  1518. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1519. r = kvm_coalesced_mmio_init(kvm);
  1520. if (r < 0) {
  1521. kvm_put_kvm(kvm);
  1522. return r;
  1523. }
  1524. #endif
  1525. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1526. if (fd < 0)
  1527. kvm_put_kvm(kvm);
  1528. return fd;
  1529. }
  1530. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1531. {
  1532. switch (arg) {
  1533. case KVM_CAP_USER_MEMORY:
  1534. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1535. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1536. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1537. case KVM_CAP_SET_BOOT_CPU_ID:
  1538. #endif
  1539. case KVM_CAP_INTERNAL_ERROR_DATA:
  1540. return 1;
  1541. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1542. case KVM_CAP_IRQ_ROUTING:
  1543. return KVM_MAX_IRQ_ROUTES;
  1544. #endif
  1545. default:
  1546. break;
  1547. }
  1548. return kvm_dev_ioctl_check_extension(arg);
  1549. }
  1550. static long kvm_dev_ioctl(struct file *filp,
  1551. unsigned int ioctl, unsigned long arg)
  1552. {
  1553. long r = -EINVAL;
  1554. switch (ioctl) {
  1555. case KVM_GET_API_VERSION:
  1556. r = -EINVAL;
  1557. if (arg)
  1558. goto out;
  1559. r = KVM_API_VERSION;
  1560. break;
  1561. case KVM_CREATE_VM:
  1562. r = -EINVAL;
  1563. if (arg)
  1564. goto out;
  1565. r = kvm_dev_ioctl_create_vm();
  1566. break;
  1567. case KVM_CHECK_EXTENSION:
  1568. r = kvm_dev_ioctl_check_extension_generic(arg);
  1569. break;
  1570. case KVM_GET_VCPU_MMAP_SIZE:
  1571. r = -EINVAL;
  1572. if (arg)
  1573. goto out;
  1574. r = PAGE_SIZE; /* struct kvm_run */
  1575. #ifdef CONFIG_X86
  1576. r += PAGE_SIZE; /* pio data page */
  1577. #endif
  1578. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1579. r += PAGE_SIZE; /* coalesced mmio ring page */
  1580. #endif
  1581. break;
  1582. case KVM_TRACE_ENABLE:
  1583. case KVM_TRACE_PAUSE:
  1584. case KVM_TRACE_DISABLE:
  1585. r = -EOPNOTSUPP;
  1586. break;
  1587. default:
  1588. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1589. }
  1590. out:
  1591. return r;
  1592. }
  1593. static struct file_operations kvm_chardev_ops = {
  1594. .unlocked_ioctl = kvm_dev_ioctl,
  1595. .compat_ioctl = kvm_dev_ioctl,
  1596. };
  1597. static struct miscdevice kvm_dev = {
  1598. KVM_MINOR,
  1599. "kvm",
  1600. &kvm_chardev_ops,
  1601. };
  1602. static void hardware_enable(void *junk)
  1603. {
  1604. int cpu = raw_smp_processor_id();
  1605. int r;
  1606. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1607. return;
  1608. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1609. r = kvm_arch_hardware_enable(NULL);
  1610. if (r) {
  1611. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1612. atomic_inc(&hardware_enable_failed);
  1613. printk(KERN_INFO "kvm: enabling virtualization on "
  1614. "CPU%d failed\n", cpu);
  1615. }
  1616. }
  1617. static void hardware_disable(void *junk)
  1618. {
  1619. int cpu = raw_smp_processor_id();
  1620. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1621. return;
  1622. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1623. kvm_arch_hardware_disable(NULL);
  1624. }
  1625. static void hardware_disable_all_nolock(void)
  1626. {
  1627. BUG_ON(!kvm_usage_count);
  1628. kvm_usage_count--;
  1629. if (!kvm_usage_count)
  1630. on_each_cpu(hardware_disable, NULL, 1);
  1631. }
  1632. static void hardware_disable_all(void)
  1633. {
  1634. spin_lock(&kvm_lock);
  1635. hardware_disable_all_nolock();
  1636. spin_unlock(&kvm_lock);
  1637. }
  1638. static int hardware_enable_all(void)
  1639. {
  1640. int r = 0;
  1641. spin_lock(&kvm_lock);
  1642. kvm_usage_count++;
  1643. if (kvm_usage_count == 1) {
  1644. atomic_set(&hardware_enable_failed, 0);
  1645. on_each_cpu(hardware_enable, NULL, 1);
  1646. if (atomic_read(&hardware_enable_failed)) {
  1647. hardware_disable_all_nolock();
  1648. r = -EBUSY;
  1649. }
  1650. }
  1651. spin_unlock(&kvm_lock);
  1652. return r;
  1653. }
  1654. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1655. void *v)
  1656. {
  1657. int cpu = (long)v;
  1658. if (!kvm_usage_count)
  1659. return NOTIFY_OK;
  1660. val &= ~CPU_TASKS_FROZEN;
  1661. switch (val) {
  1662. case CPU_DYING:
  1663. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1664. cpu);
  1665. hardware_disable(NULL);
  1666. break;
  1667. case CPU_ONLINE:
  1668. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1669. cpu);
  1670. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1671. break;
  1672. }
  1673. return NOTIFY_OK;
  1674. }
  1675. asmlinkage void kvm_handle_fault_on_reboot(void)
  1676. {
  1677. if (kvm_rebooting)
  1678. /* spin while reset goes on */
  1679. while (true)
  1680. ;
  1681. /* Fault while not rebooting. We want the trace. */
  1682. BUG();
  1683. }
  1684. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1685. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1686. void *v)
  1687. {
  1688. /*
  1689. * Some (well, at least mine) BIOSes hang on reboot if
  1690. * in vmx root mode.
  1691. *
  1692. * And Intel TXT required VMX off for all cpu when system shutdown.
  1693. */
  1694. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1695. kvm_rebooting = true;
  1696. on_each_cpu(hardware_disable, NULL, 1);
  1697. return NOTIFY_OK;
  1698. }
  1699. static struct notifier_block kvm_reboot_notifier = {
  1700. .notifier_call = kvm_reboot,
  1701. .priority = 0,
  1702. };
  1703. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1704. {
  1705. int i;
  1706. for (i = 0; i < bus->dev_count; i++) {
  1707. struct kvm_io_device *pos = bus->devs[i];
  1708. kvm_iodevice_destructor(pos);
  1709. }
  1710. kfree(bus);
  1711. }
  1712. /* kvm_io_bus_write - called under kvm->slots_lock */
  1713. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1714. int len, const void *val)
  1715. {
  1716. int i;
  1717. struct kvm_io_bus *bus;
  1718. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1719. for (i = 0; i < bus->dev_count; i++)
  1720. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1721. return 0;
  1722. return -EOPNOTSUPP;
  1723. }
  1724. /* kvm_io_bus_read - called under kvm->slots_lock */
  1725. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1726. int len, void *val)
  1727. {
  1728. int i;
  1729. struct kvm_io_bus *bus;
  1730. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1731. for (i = 0; i < bus->dev_count; i++)
  1732. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1733. return 0;
  1734. return -EOPNOTSUPP;
  1735. }
  1736. /* Caller must hold slots_lock. */
  1737. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1738. struct kvm_io_device *dev)
  1739. {
  1740. struct kvm_io_bus *new_bus, *bus;
  1741. bus = kvm->buses[bus_idx];
  1742. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1743. return -ENOSPC;
  1744. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1745. if (!new_bus)
  1746. return -ENOMEM;
  1747. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1748. new_bus->devs[new_bus->dev_count++] = dev;
  1749. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1750. synchronize_srcu_expedited(&kvm->srcu);
  1751. kfree(bus);
  1752. return 0;
  1753. }
  1754. /* Caller must hold slots_lock. */
  1755. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1756. struct kvm_io_device *dev)
  1757. {
  1758. int i, r;
  1759. struct kvm_io_bus *new_bus, *bus;
  1760. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1761. if (!new_bus)
  1762. return -ENOMEM;
  1763. bus = kvm->buses[bus_idx];
  1764. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1765. r = -ENOENT;
  1766. for (i = 0; i < new_bus->dev_count; i++)
  1767. if (new_bus->devs[i] == dev) {
  1768. r = 0;
  1769. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1770. break;
  1771. }
  1772. if (r) {
  1773. kfree(new_bus);
  1774. return r;
  1775. }
  1776. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1777. synchronize_srcu_expedited(&kvm->srcu);
  1778. kfree(bus);
  1779. return r;
  1780. }
  1781. static struct notifier_block kvm_cpu_notifier = {
  1782. .notifier_call = kvm_cpu_hotplug,
  1783. .priority = 20, /* must be > scheduler priority */
  1784. };
  1785. static int vm_stat_get(void *_offset, u64 *val)
  1786. {
  1787. unsigned offset = (long)_offset;
  1788. struct kvm *kvm;
  1789. *val = 0;
  1790. spin_lock(&kvm_lock);
  1791. list_for_each_entry(kvm, &vm_list, vm_list)
  1792. *val += *(u32 *)((void *)kvm + offset);
  1793. spin_unlock(&kvm_lock);
  1794. return 0;
  1795. }
  1796. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1797. static int vcpu_stat_get(void *_offset, u64 *val)
  1798. {
  1799. unsigned offset = (long)_offset;
  1800. struct kvm *kvm;
  1801. struct kvm_vcpu *vcpu;
  1802. int i;
  1803. *val = 0;
  1804. spin_lock(&kvm_lock);
  1805. list_for_each_entry(kvm, &vm_list, vm_list)
  1806. kvm_for_each_vcpu(i, vcpu, kvm)
  1807. *val += *(u32 *)((void *)vcpu + offset);
  1808. spin_unlock(&kvm_lock);
  1809. return 0;
  1810. }
  1811. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1812. static const struct file_operations *stat_fops[] = {
  1813. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1814. [KVM_STAT_VM] = &vm_stat_fops,
  1815. };
  1816. static void kvm_init_debug(void)
  1817. {
  1818. struct kvm_stats_debugfs_item *p;
  1819. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1820. for (p = debugfs_entries; p->name; ++p)
  1821. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1822. (void *)(long)p->offset,
  1823. stat_fops[p->kind]);
  1824. }
  1825. static void kvm_exit_debug(void)
  1826. {
  1827. struct kvm_stats_debugfs_item *p;
  1828. for (p = debugfs_entries; p->name; ++p)
  1829. debugfs_remove(p->dentry);
  1830. debugfs_remove(kvm_debugfs_dir);
  1831. }
  1832. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1833. {
  1834. if (kvm_usage_count)
  1835. hardware_disable(NULL);
  1836. return 0;
  1837. }
  1838. static int kvm_resume(struct sys_device *dev)
  1839. {
  1840. if (kvm_usage_count)
  1841. hardware_enable(NULL);
  1842. return 0;
  1843. }
  1844. static struct sysdev_class kvm_sysdev_class = {
  1845. .name = "kvm",
  1846. .suspend = kvm_suspend,
  1847. .resume = kvm_resume,
  1848. };
  1849. static struct sys_device kvm_sysdev = {
  1850. .id = 0,
  1851. .cls = &kvm_sysdev_class,
  1852. };
  1853. struct page *bad_page;
  1854. pfn_t bad_pfn;
  1855. static inline
  1856. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1857. {
  1858. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1859. }
  1860. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1861. {
  1862. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1863. kvm_arch_vcpu_load(vcpu, cpu);
  1864. }
  1865. static void kvm_sched_out(struct preempt_notifier *pn,
  1866. struct task_struct *next)
  1867. {
  1868. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1869. kvm_arch_vcpu_put(vcpu);
  1870. }
  1871. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  1872. struct module *module)
  1873. {
  1874. int r;
  1875. int cpu;
  1876. r = kvm_arch_init(opaque);
  1877. if (r)
  1878. goto out_fail;
  1879. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1880. if (bad_page == NULL) {
  1881. r = -ENOMEM;
  1882. goto out;
  1883. }
  1884. bad_pfn = page_to_pfn(bad_page);
  1885. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1886. if (hwpoison_page == NULL) {
  1887. r = -ENOMEM;
  1888. goto out_free_0;
  1889. }
  1890. hwpoison_pfn = page_to_pfn(hwpoison_page);
  1891. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1892. r = -ENOMEM;
  1893. goto out_free_0;
  1894. }
  1895. r = kvm_arch_hardware_setup();
  1896. if (r < 0)
  1897. goto out_free_0a;
  1898. for_each_online_cpu(cpu) {
  1899. smp_call_function_single(cpu,
  1900. kvm_arch_check_processor_compat,
  1901. &r, 1);
  1902. if (r < 0)
  1903. goto out_free_1;
  1904. }
  1905. r = register_cpu_notifier(&kvm_cpu_notifier);
  1906. if (r)
  1907. goto out_free_2;
  1908. register_reboot_notifier(&kvm_reboot_notifier);
  1909. r = sysdev_class_register(&kvm_sysdev_class);
  1910. if (r)
  1911. goto out_free_3;
  1912. r = sysdev_register(&kvm_sysdev);
  1913. if (r)
  1914. goto out_free_4;
  1915. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1916. if (!vcpu_align)
  1917. vcpu_align = __alignof__(struct kvm_vcpu);
  1918. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  1919. 0, NULL);
  1920. if (!kvm_vcpu_cache) {
  1921. r = -ENOMEM;
  1922. goto out_free_5;
  1923. }
  1924. kvm_chardev_ops.owner = module;
  1925. kvm_vm_fops.owner = module;
  1926. kvm_vcpu_fops.owner = module;
  1927. r = misc_register(&kvm_dev);
  1928. if (r) {
  1929. printk(KERN_ERR "kvm: misc device register failed\n");
  1930. goto out_free;
  1931. }
  1932. kvm_preempt_ops.sched_in = kvm_sched_in;
  1933. kvm_preempt_ops.sched_out = kvm_sched_out;
  1934. kvm_init_debug();
  1935. return 0;
  1936. out_free:
  1937. kmem_cache_destroy(kvm_vcpu_cache);
  1938. out_free_5:
  1939. sysdev_unregister(&kvm_sysdev);
  1940. out_free_4:
  1941. sysdev_class_unregister(&kvm_sysdev_class);
  1942. out_free_3:
  1943. unregister_reboot_notifier(&kvm_reboot_notifier);
  1944. unregister_cpu_notifier(&kvm_cpu_notifier);
  1945. out_free_2:
  1946. out_free_1:
  1947. kvm_arch_hardware_unsetup();
  1948. out_free_0a:
  1949. free_cpumask_var(cpus_hardware_enabled);
  1950. out_free_0:
  1951. if (hwpoison_page)
  1952. __free_page(hwpoison_page);
  1953. __free_page(bad_page);
  1954. out:
  1955. kvm_arch_exit();
  1956. out_fail:
  1957. return r;
  1958. }
  1959. EXPORT_SYMBOL_GPL(kvm_init);
  1960. void kvm_exit(void)
  1961. {
  1962. kvm_exit_debug();
  1963. misc_deregister(&kvm_dev);
  1964. kmem_cache_destroy(kvm_vcpu_cache);
  1965. sysdev_unregister(&kvm_sysdev);
  1966. sysdev_class_unregister(&kvm_sysdev_class);
  1967. unregister_reboot_notifier(&kvm_reboot_notifier);
  1968. unregister_cpu_notifier(&kvm_cpu_notifier);
  1969. on_each_cpu(hardware_disable, NULL, 1);
  1970. kvm_arch_hardware_unsetup();
  1971. kvm_arch_exit();
  1972. free_cpumask_var(cpus_hardware_enabled);
  1973. __free_page(hwpoison_page);
  1974. __free_page(bad_page);
  1975. }
  1976. EXPORT_SYMBOL_GPL(kvm_exit);