vmscan.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/file.h>
  22. #include <linux/writeback.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/buffer_head.h> /* for try_to_release_page(),
  25. buffer_heads_over_limit */
  26. #include <linux/mm_inline.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/rmap.h>
  30. #include <linux/topology.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/notifier.h>
  34. #include <linux/rwsem.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/div64.h>
  37. #include <linux/swapops.h>
  38. /* possible outcome of pageout() */
  39. typedef enum {
  40. /* failed to write page out, page is locked */
  41. PAGE_KEEP,
  42. /* move page to the active list, page is locked */
  43. PAGE_ACTIVATE,
  44. /* page has been sent to the disk successfully, page is unlocked */
  45. PAGE_SUCCESS,
  46. /* page is clean and locked */
  47. PAGE_CLEAN,
  48. } pageout_t;
  49. struct scan_control {
  50. /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
  51. unsigned long nr_to_scan;
  52. /* Incremented by the number of inactive pages that were scanned */
  53. unsigned long nr_scanned;
  54. /* Incremented by the number of pages reclaimed */
  55. unsigned long nr_reclaimed;
  56. unsigned long nr_mapped; /* From page_state */
  57. /* Ask shrink_caches, or shrink_zone to scan at this priority */
  58. unsigned int priority;
  59. /* This context's GFP mask */
  60. gfp_t gfp_mask;
  61. int may_writepage;
  62. /* This context's SWAP_CLUSTER_MAX. If freeing memory for
  63. * suspend, we effectively ignore SWAP_CLUSTER_MAX.
  64. * In this context, it doesn't matter that we scan the
  65. * whole list at once. */
  66. int swap_cluster_max;
  67. };
  68. /*
  69. * The list of shrinker callbacks used by to apply pressure to
  70. * ageable caches.
  71. */
  72. struct shrinker {
  73. shrinker_t shrinker;
  74. struct list_head list;
  75. int seeks; /* seeks to recreate an obj */
  76. long nr; /* objs pending delete */
  77. };
  78. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  79. #ifdef ARCH_HAS_PREFETCH
  80. #define prefetch_prev_lru_page(_page, _base, _field) \
  81. do { \
  82. if ((_page)->lru.prev != _base) { \
  83. struct page *prev; \
  84. \
  85. prev = lru_to_page(&(_page->lru)); \
  86. prefetch(&prev->_field); \
  87. } \
  88. } while (0)
  89. #else
  90. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  91. #endif
  92. #ifdef ARCH_HAS_PREFETCHW
  93. #define prefetchw_prev_lru_page(_page, _base, _field) \
  94. do { \
  95. if ((_page)->lru.prev != _base) { \
  96. struct page *prev; \
  97. \
  98. prev = lru_to_page(&(_page->lru)); \
  99. prefetchw(&prev->_field); \
  100. } \
  101. } while (0)
  102. #else
  103. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  104. #endif
  105. /*
  106. * From 0 .. 100. Higher means more swappy.
  107. */
  108. int vm_swappiness = 60;
  109. static long total_memory;
  110. static LIST_HEAD(shrinker_list);
  111. static DECLARE_RWSEM(shrinker_rwsem);
  112. /*
  113. * Add a shrinker callback to be called from the vm
  114. */
  115. struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
  116. {
  117. struct shrinker *shrinker;
  118. shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
  119. if (shrinker) {
  120. shrinker->shrinker = theshrinker;
  121. shrinker->seeks = seeks;
  122. shrinker->nr = 0;
  123. down_write(&shrinker_rwsem);
  124. list_add_tail(&shrinker->list, &shrinker_list);
  125. up_write(&shrinker_rwsem);
  126. }
  127. return shrinker;
  128. }
  129. EXPORT_SYMBOL(set_shrinker);
  130. /*
  131. * Remove one
  132. */
  133. void remove_shrinker(struct shrinker *shrinker)
  134. {
  135. down_write(&shrinker_rwsem);
  136. list_del(&shrinker->list);
  137. up_write(&shrinker_rwsem);
  138. kfree(shrinker);
  139. }
  140. EXPORT_SYMBOL(remove_shrinker);
  141. #define SHRINK_BATCH 128
  142. /*
  143. * Call the shrink functions to age shrinkable caches
  144. *
  145. * Here we assume it costs one seek to replace a lru page and that it also
  146. * takes a seek to recreate a cache object. With this in mind we age equal
  147. * percentages of the lru and ageable caches. This should balance the seeks
  148. * generated by these structures.
  149. *
  150. * If the vm encounted mapped pages on the LRU it increase the pressure on
  151. * slab to avoid swapping.
  152. *
  153. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  154. *
  155. * `lru_pages' represents the number of on-LRU pages in all the zones which
  156. * are eligible for the caller's allocation attempt. It is used for balancing
  157. * slab reclaim versus page reclaim.
  158. *
  159. * Returns the number of slab objects which we shrunk.
  160. */
  161. static int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  162. unsigned long lru_pages)
  163. {
  164. struct shrinker *shrinker;
  165. int ret = 0;
  166. if (scanned == 0)
  167. scanned = SWAP_CLUSTER_MAX;
  168. if (!down_read_trylock(&shrinker_rwsem))
  169. return 1; /* Assume we'll be able to shrink next time */
  170. list_for_each_entry(shrinker, &shrinker_list, list) {
  171. unsigned long long delta;
  172. unsigned long total_scan;
  173. unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
  174. delta = (4 * scanned) / shrinker->seeks;
  175. delta *= max_pass;
  176. do_div(delta, lru_pages + 1);
  177. shrinker->nr += delta;
  178. if (shrinker->nr < 0) {
  179. printk(KERN_ERR "%s: nr=%ld\n",
  180. __FUNCTION__, shrinker->nr);
  181. shrinker->nr = max_pass;
  182. }
  183. /*
  184. * Avoid risking looping forever due to too large nr value:
  185. * never try to free more than twice the estimate number of
  186. * freeable entries.
  187. */
  188. if (shrinker->nr > max_pass * 2)
  189. shrinker->nr = max_pass * 2;
  190. total_scan = shrinker->nr;
  191. shrinker->nr = 0;
  192. while (total_scan >= SHRINK_BATCH) {
  193. long this_scan = SHRINK_BATCH;
  194. int shrink_ret;
  195. int nr_before;
  196. nr_before = (*shrinker->shrinker)(0, gfp_mask);
  197. shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
  198. if (shrink_ret == -1)
  199. break;
  200. if (shrink_ret < nr_before)
  201. ret += nr_before - shrink_ret;
  202. mod_page_state(slabs_scanned, this_scan);
  203. total_scan -= this_scan;
  204. cond_resched();
  205. }
  206. shrinker->nr += total_scan;
  207. }
  208. up_read(&shrinker_rwsem);
  209. return ret;
  210. }
  211. /* Called without lock on whether page is mapped, so answer is unstable */
  212. static inline int page_mapping_inuse(struct page *page)
  213. {
  214. struct address_space *mapping;
  215. /* Page is in somebody's page tables. */
  216. if (page_mapped(page))
  217. return 1;
  218. /* Be more reluctant to reclaim swapcache than pagecache */
  219. if (PageSwapCache(page))
  220. return 1;
  221. mapping = page_mapping(page);
  222. if (!mapping)
  223. return 0;
  224. /* File is mmap'd by somebody? */
  225. return mapping_mapped(mapping);
  226. }
  227. static inline int is_page_cache_freeable(struct page *page)
  228. {
  229. return page_count(page) - !!PagePrivate(page) == 2;
  230. }
  231. static int may_write_to_queue(struct backing_dev_info *bdi)
  232. {
  233. if (current_is_kswapd())
  234. return 1;
  235. if (current_is_pdflush()) /* This is unlikely, but why not... */
  236. return 1;
  237. if (!bdi_write_congested(bdi))
  238. return 1;
  239. if (bdi == current->backing_dev_info)
  240. return 1;
  241. return 0;
  242. }
  243. /*
  244. * We detected a synchronous write error writing a page out. Probably
  245. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  246. * fsync(), msync() or close().
  247. *
  248. * The tricky part is that after writepage we cannot touch the mapping: nothing
  249. * prevents it from being freed up. But we have a ref on the page and once
  250. * that page is locked, the mapping is pinned.
  251. *
  252. * We're allowed to run sleeping lock_page() here because we know the caller has
  253. * __GFP_FS.
  254. */
  255. static void handle_write_error(struct address_space *mapping,
  256. struct page *page, int error)
  257. {
  258. lock_page(page);
  259. if (page_mapping(page) == mapping) {
  260. if (error == -ENOSPC)
  261. set_bit(AS_ENOSPC, &mapping->flags);
  262. else
  263. set_bit(AS_EIO, &mapping->flags);
  264. }
  265. unlock_page(page);
  266. }
  267. /*
  268. * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
  269. */
  270. static pageout_t pageout(struct page *page, struct address_space *mapping)
  271. {
  272. /*
  273. * If the page is dirty, only perform writeback if that write
  274. * will be non-blocking. To prevent this allocation from being
  275. * stalled by pagecache activity. But note that there may be
  276. * stalls if we need to run get_block(). We could test
  277. * PagePrivate for that.
  278. *
  279. * If this process is currently in generic_file_write() against
  280. * this page's queue, we can perform writeback even if that
  281. * will block.
  282. *
  283. * If the page is swapcache, write it back even if that would
  284. * block, for some throttling. This happens by accident, because
  285. * swap_backing_dev_info is bust: it doesn't reflect the
  286. * congestion state of the swapdevs. Easy to fix, if needed.
  287. * See swapfile.c:page_queue_congested().
  288. */
  289. if (!is_page_cache_freeable(page))
  290. return PAGE_KEEP;
  291. if (!mapping) {
  292. /*
  293. * Some data journaling orphaned pages can have
  294. * page->mapping == NULL while being dirty with clean buffers.
  295. */
  296. if (PagePrivate(page)) {
  297. if (try_to_free_buffers(page)) {
  298. ClearPageDirty(page);
  299. printk("%s: orphaned page\n", __FUNCTION__);
  300. return PAGE_CLEAN;
  301. }
  302. }
  303. return PAGE_KEEP;
  304. }
  305. if (mapping->a_ops->writepage == NULL)
  306. return PAGE_ACTIVATE;
  307. if (!may_write_to_queue(mapping->backing_dev_info))
  308. return PAGE_KEEP;
  309. if (clear_page_dirty_for_io(page)) {
  310. int res;
  311. struct writeback_control wbc = {
  312. .sync_mode = WB_SYNC_NONE,
  313. .nr_to_write = SWAP_CLUSTER_MAX,
  314. .nonblocking = 1,
  315. .for_reclaim = 1,
  316. };
  317. SetPageReclaim(page);
  318. res = mapping->a_ops->writepage(page, &wbc);
  319. if (res < 0)
  320. handle_write_error(mapping, page, res);
  321. if (res == AOP_WRITEPAGE_ACTIVATE) {
  322. ClearPageReclaim(page);
  323. return PAGE_ACTIVATE;
  324. }
  325. if (!PageWriteback(page)) {
  326. /* synchronous write or broken a_ops? */
  327. ClearPageReclaim(page);
  328. }
  329. return PAGE_SUCCESS;
  330. }
  331. return PAGE_CLEAN;
  332. }
  333. /*
  334. * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
  335. */
  336. static int shrink_list(struct list_head *page_list, struct scan_control *sc)
  337. {
  338. LIST_HEAD(ret_pages);
  339. struct pagevec freed_pvec;
  340. int pgactivate = 0;
  341. int reclaimed = 0;
  342. cond_resched();
  343. pagevec_init(&freed_pvec, 1);
  344. while (!list_empty(page_list)) {
  345. struct address_space *mapping;
  346. struct page *page;
  347. int may_enter_fs;
  348. int referenced;
  349. cond_resched();
  350. page = lru_to_page(page_list);
  351. list_del(&page->lru);
  352. if (TestSetPageLocked(page))
  353. goto keep;
  354. BUG_ON(PageActive(page));
  355. sc->nr_scanned++;
  356. /* Double the slab pressure for mapped and swapcache pages */
  357. if (page_mapped(page) || PageSwapCache(page))
  358. sc->nr_scanned++;
  359. if (PageWriteback(page))
  360. goto keep_locked;
  361. referenced = page_referenced(page, 1);
  362. /* In active use or really unfreeable? Activate it. */
  363. if (referenced && page_mapping_inuse(page))
  364. goto activate_locked;
  365. #ifdef CONFIG_SWAP
  366. /*
  367. * Anonymous process memory has backing store?
  368. * Try to allocate it some swap space here.
  369. */
  370. if (PageAnon(page) && !PageSwapCache(page)) {
  371. if (!add_to_swap(page))
  372. goto activate_locked;
  373. }
  374. #endif /* CONFIG_SWAP */
  375. mapping = page_mapping(page);
  376. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  377. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  378. /*
  379. * The page is mapped into the page tables of one or more
  380. * processes. Try to unmap it here.
  381. */
  382. if (page_mapped(page) && mapping) {
  383. switch (try_to_unmap(page)) {
  384. case SWAP_FAIL:
  385. goto activate_locked;
  386. case SWAP_AGAIN:
  387. goto keep_locked;
  388. case SWAP_SUCCESS:
  389. ; /* try to free the page below */
  390. }
  391. }
  392. if (PageDirty(page)) {
  393. if (referenced)
  394. goto keep_locked;
  395. if (!may_enter_fs)
  396. goto keep_locked;
  397. if (laptop_mode && !sc->may_writepage)
  398. goto keep_locked;
  399. /* Page is dirty, try to write it out here */
  400. switch(pageout(page, mapping)) {
  401. case PAGE_KEEP:
  402. goto keep_locked;
  403. case PAGE_ACTIVATE:
  404. goto activate_locked;
  405. case PAGE_SUCCESS:
  406. if (PageWriteback(page) || PageDirty(page))
  407. goto keep;
  408. /*
  409. * A synchronous write - probably a ramdisk. Go
  410. * ahead and try to reclaim the page.
  411. */
  412. if (TestSetPageLocked(page))
  413. goto keep;
  414. if (PageDirty(page) || PageWriteback(page))
  415. goto keep_locked;
  416. mapping = page_mapping(page);
  417. case PAGE_CLEAN:
  418. ; /* try to free the page below */
  419. }
  420. }
  421. /*
  422. * If the page has buffers, try to free the buffer mappings
  423. * associated with this page. If we succeed we try to free
  424. * the page as well.
  425. *
  426. * We do this even if the page is PageDirty().
  427. * try_to_release_page() does not perform I/O, but it is
  428. * possible for a page to have PageDirty set, but it is actually
  429. * clean (all its buffers are clean). This happens if the
  430. * buffers were written out directly, with submit_bh(). ext3
  431. * will do this, as well as the blockdev mapping.
  432. * try_to_release_page() will discover that cleanness and will
  433. * drop the buffers and mark the page clean - it can be freed.
  434. *
  435. * Rarely, pages can have buffers and no ->mapping. These are
  436. * the pages which were not successfully invalidated in
  437. * truncate_complete_page(). We try to drop those buffers here
  438. * and if that worked, and the page is no longer mapped into
  439. * process address space (page_count == 1) it can be freed.
  440. * Otherwise, leave the page on the LRU so it is swappable.
  441. */
  442. if (PagePrivate(page)) {
  443. if (!try_to_release_page(page, sc->gfp_mask))
  444. goto activate_locked;
  445. if (!mapping && page_count(page) == 1)
  446. goto free_it;
  447. }
  448. if (!mapping)
  449. goto keep_locked; /* truncate got there first */
  450. write_lock_irq(&mapping->tree_lock);
  451. /*
  452. * The non-racy check for busy page. It is critical to check
  453. * PageDirty _after_ making sure that the page is freeable and
  454. * not in use by anybody. (pagecache + us == 2)
  455. */
  456. if (unlikely(page_count(page) != 2))
  457. goto cannot_free;
  458. smp_rmb();
  459. if (unlikely(PageDirty(page)))
  460. goto cannot_free;
  461. #ifdef CONFIG_SWAP
  462. if (PageSwapCache(page)) {
  463. swp_entry_t swap = { .val = page_private(page) };
  464. __delete_from_swap_cache(page);
  465. write_unlock_irq(&mapping->tree_lock);
  466. swap_free(swap);
  467. __put_page(page); /* The pagecache ref */
  468. goto free_it;
  469. }
  470. #endif /* CONFIG_SWAP */
  471. __remove_from_page_cache(page);
  472. write_unlock_irq(&mapping->tree_lock);
  473. __put_page(page);
  474. free_it:
  475. unlock_page(page);
  476. reclaimed++;
  477. if (!pagevec_add(&freed_pvec, page))
  478. __pagevec_release_nonlru(&freed_pvec);
  479. continue;
  480. cannot_free:
  481. write_unlock_irq(&mapping->tree_lock);
  482. goto keep_locked;
  483. activate_locked:
  484. SetPageActive(page);
  485. pgactivate++;
  486. keep_locked:
  487. unlock_page(page);
  488. keep:
  489. list_add(&page->lru, &ret_pages);
  490. BUG_ON(PageLRU(page));
  491. }
  492. list_splice(&ret_pages, page_list);
  493. if (pagevec_count(&freed_pvec))
  494. __pagevec_release_nonlru(&freed_pvec);
  495. mod_page_state(pgactivate, pgactivate);
  496. sc->nr_reclaimed += reclaimed;
  497. return reclaimed;
  498. }
  499. /*
  500. * zone->lru_lock is heavily contended. Some of the functions that
  501. * shrink the lists perform better by taking out a batch of pages
  502. * and working on them outside the LRU lock.
  503. *
  504. * For pagecache intensive workloads, this function is the hottest
  505. * spot in the kernel (apart from copy_*_user functions).
  506. *
  507. * Appropriate locks must be held before calling this function.
  508. *
  509. * @nr_to_scan: The number of pages to look through on the list.
  510. * @src: The LRU list to pull pages off.
  511. * @dst: The temp list to put pages on to.
  512. * @scanned: The number of pages that were scanned.
  513. *
  514. * returns how many pages were moved onto *@dst.
  515. */
  516. static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
  517. struct list_head *dst, int *scanned)
  518. {
  519. int nr_taken = 0;
  520. struct page *page;
  521. int scan = 0;
  522. while (scan++ < nr_to_scan && !list_empty(src)) {
  523. page = lru_to_page(src);
  524. prefetchw_prev_lru_page(page, src, flags);
  525. if (!TestClearPageLRU(page))
  526. BUG();
  527. list_del(&page->lru);
  528. if (get_page_testone(page)) {
  529. /*
  530. * It is being freed elsewhere
  531. */
  532. __put_page(page);
  533. SetPageLRU(page);
  534. list_add(&page->lru, src);
  535. continue;
  536. } else {
  537. list_add(&page->lru, dst);
  538. nr_taken++;
  539. }
  540. }
  541. *scanned = scan;
  542. return nr_taken;
  543. }
  544. /*
  545. * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
  546. */
  547. static void shrink_cache(struct zone *zone, struct scan_control *sc)
  548. {
  549. LIST_HEAD(page_list);
  550. struct pagevec pvec;
  551. int max_scan = sc->nr_to_scan;
  552. pagevec_init(&pvec, 1);
  553. lru_add_drain();
  554. spin_lock_irq(&zone->lru_lock);
  555. while (max_scan > 0) {
  556. struct page *page;
  557. int nr_taken;
  558. int nr_scan;
  559. int nr_freed;
  560. nr_taken = isolate_lru_pages(sc->swap_cluster_max,
  561. &zone->inactive_list,
  562. &page_list, &nr_scan);
  563. zone->nr_inactive -= nr_taken;
  564. zone->pages_scanned += nr_scan;
  565. spin_unlock_irq(&zone->lru_lock);
  566. if (nr_taken == 0)
  567. goto done;
  568. max_scan -= nr_scan;
  569. if (current_is_kswapd())
  570. mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
  571. else
  572. mod_page_state_zone(zone, pgscan_direct, nr_scan);
  573. nr_freed = shrink_list(&page_list, sc);
  574. if (current_is_kswapd())
  575. mod_page_state(kswapd_steal, nr_freed);
  576. mod_page_state_zone(zone, pgsteal, nr_freed);
  577. spin_lock_irq(&zone->lru_lock);
  578. /*
  579. * Put back any unfreeable pages.
  580. */
  581. while (!list_empty(&page_list)) {
  582. page = lru_to_page(&page_list);
  583. if (TestSetPageLRU(page))
  584. BUG();
  585. list_del(&page->lru);
  586. if (PageActive(page))
  587. add_page_to_active_list(zone, page);
  588. else
  589. add_page_to_inactive_list(zone, page);
  590. if (!pagevec_add(&pvec, page)) {
  591. spin_unlock_irq(&zone->lru_lock);
  592. __pagevec_release(&pvec);
  593. spin_lock_irq(&zone->lru_lock);
  594. }
  595. }
  596. }
  597. spin_unlock_irq(&zone->lru_lock);
  598. done:
  599. pagevec_release(&pvec);
  600. }
  601. /*
  602. * This moves pages from the active list to the inactive list.
  603. *
  604. * We move them the other way if the page is referenced by one or more
  605. * processes, from rmap.
  606. *
  607. * If the pages are mostly unmapped, the processing is fast and it is
  608. * appropriate to hold zone->lru_lock across the whole operation. But if
  609. * the pages are mapped, the processing is slow (page_referenced()) so we
  610. * should drop zone->lru_lock around each page. It's impossible to balance
  611. * this, so instead we remove the pages from the LRU while processing them.
  612. * It is safe to rely on PG_active against the non-LRU pages in here because
  613. * nobody will play with that bit on a non-LRU page.
  614. *
  615. * The downside is that we have to touch page->_count against each page.
  616. * But we had to alter page->flags anyway.
  617. */
  618. static void
  619. refill_inactive_zone(struct zone *zone, struct scan_control *sc)
  620. {
  621. int pgmoved;
  622. int pgdeactivate = 0;
  623. int pgscanned;
  624. int nr_pages = sc->nr_to_scan;
  625. LIST_HEAD(l_hold); /* The pages which were snipped off */
  626. LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
  627. LIST_HEAD(l_active); /* Pages to go onto the active_list */
  628. struct page *page;
  629. struct pagevec pvec;
  630. int reclaim_mapped = 0;
  631. long mapped_ratio;
  632. long distress;
  633. long swap_tendency;
  634. lru_add_drain();
  635. spin_lock_irq(&zone->lru_lock);
  636. pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
  637. &l_hold, &pgscanned);
  638. zone->pages_scanned += pgscanned;
  639. zone->nr_active -= pgmoved;
  640. spin_unlock_irq(&zone->lru_lock);
  641. /*
  642. * `distress' is a measure of how much trouble we're having reclaiming
  643. * pages. 0 -> no problems. 100 -> great trouble.
  644. */
  645. distress = 100 >> zone->prev_priority;
  646. /*
  647. * The point of this algorithm is to decide when to start reclaiming
  648. * mapped memory instead of just pagecache. Work out how much memory
  649. * is mapped.
  650. */
  651. mapped_ratio = (sc->nr_mapped * 100) / total_memory;
  652. /*
  653. * Now decide how much we really want to unmap some pages. The mapped
  654. * ratio is downgraded - just because there's a lot of mapped memory
  655. * doesn't necessarily mean that page reclaim isn't succeeding.
  656. *
  657. * The distress ratio is important - we don't want to start going oom.
  658. *
  659. * A 100% value of vm_swappiness overrides this algorithm altogether.
  660. */
  661. swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
  662. /*
  663. * Now use this metric to decide whether to start moving mapped memory
  664. * onto the inactive list.
  665. */
  666. if (swap_tendency >= 100)
  667. reclaim_mapped = 1;
  668. while (!list_empty(&l_hold)) {
  669. cond_resched();
  670. page = lru_to_page(&l_hold);
  671. list_del(&page->lru);
  672. if (page_mapped(page)) {
  673. if (!reclaim_mapped ||
  674. (total_swap_pages == 0 && PageAnon(page)) ||
  675. page_referenced(page, 0)) {
  676. list_add(&page->lru, &l_active);
  677. continue;
  678. }
  679. }
  680. list_add(&page->lru, &l_inactive);
  681. }
  682. pagevec_init(&pvec, 1);
  683. pgmoved = 0;
  684. spin_lock_irq(&zone->lru_lock);
  685. while (!list_empty(&l_inactive)) {
  686. page = lru_to_page(&l_inactive);
  687. prefetchw_prev_lru_page(page, &l_inactive, flags);
  688. if (TestSetPageLRU(page))
  689. BUG();
  690. if (!TestClearPageActive(page))
  691. BUG();
  692. list_move(&page->lru, &zone->inactive_list);
  693. pgmoved++;
  694. if (!pagevec_add(&pvec, page)) {
  695. zone->nr_inactive += pgmoved;
  696. spin_unlock_irq(&zone->lru_lock);
  697. pgdeactivate += pgmoved;
  698. pgmoved = 0;
  699. if (buffer_heads_over_limit)
  700. pagevec_strip(&pvec);
  701. __pagevec_release(&pvec);
  702. spin_lock_irq(&zone->lru_lock);
  703. }
  704. }
  705. zone->nr_inactive += pgmoved;
  706. pgdeactivate += pgmoved;
  707. if (buffer_heads_over_limit) {
  708. spin_unlock_irq(&zone->lru_lock);
  709. pagevec_strip(&pvec);
  710. spin_lock_irq(&zone->lru_lock);
  711. }
  712. pgmoved = 0;
  713. while (!list_empty(&l_active)) {
  714. page = lru_to_page(&l_active);
  715. prefetchw_prev_lru_page(page, &l_active, flags);
  716. if (TestSetPageLRU(page))
  717. BUG();
  718. BUG_ON(!PageActive(page));
  719. list_move(&page->lru, &zone->active_list);
  720. pgmoved++;
  721. if (!pagevec_add(&pvec, page)) {
  722. zone->nr_active += pgmoved;
  723. pgmoved = 0;
  724. spin_unlock_irq(&zone->lru_lock);
  725. __pagevec_release(&pvec);
  726. spin_lock_irq(&zone->lru_lock);
  727. }
  728. }
  729. zone->nr_active += pgmoved;
  730. spin_unlock_irq(&zone->lru_lock);
  731. pagevec_release(&pvec);
  732. mod_page_state_zone(zone, pgrefill, pgscanned);
  733. mod_page_state(pgdeactivate, pgdeactivate);
  734. }
  735. /*
  736. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  737. */
  738. static void
  739. shrink_zone(struct zone *zone, struct scan_control *sc)
  740. {
  741. unsigned long nr_active;
  742. unsigned long nr_inactive;
  743. atomic_inc(&zone->reclaim_in_progress);
  744. /*
  745. * Add one to `nr_to_scan' just to make sure that the kernel will
  746. * slowly sift through the active list.
  747. */
  748. zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
  749. nr_active = zone->nr_scan_active;
  750. if (nr_active >= sc->swap_cluster_max)
  751. zone->nr_scan_active = 0;
  752. else
  753. nr_active = 0;
  754. zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
  755. nr_inactive = zone->nr_scan_inactive;
  756. if (nr_inactive >= sc->swap_cluster_max)
  757. zone->nr_scan_inactive = 0;
  758. else
  759. nr_inactive = 0;
  760. while (nr_active || nr_inactive) {
  761. if (nr_active) {
  762. sc->nr_to_scan = min(nr_active,
  763. (unsigned long)sc->swap_cluster_max);
  764. nr_active -= sc->nr_to_scan;
  765. refill_inactive_zone(zone, sc);
  766. }
  767. if (nr_inactive) {
  768. sc->nr_to_scan = min(nr_inactive,
  769. (unsigned long)sc->swap_cluster_max);
  770. nr_inactive -= sc->nr_to_scan;
  771. shrink_cache(zone, sc);
  772. }
  773. }
  774. throttle_vm_writeout();
  775. atomic_dec(&zone->reclaim_in_progress);
  776. }
  777. /*
  778. * This is the direct reclaim path, for page-allocating processes. We only
  779. * try to reclaim pages from zones which will satisfy the caller's allocation
  780. * request.
  781. *
  782. * We reclaim from a zone even if that zone is over pages_high. Because:
  783. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  784. * allocation or
  785. * b) The zones may be over pages_high but they must go *over* pages_high to
  786. * satisfy the `incremental min' zone defense algorithm.
  787. *
  788. * Returns the number of reclaimed pages.
  789. *
  790. * If a zone is deemed to be full of pinned pages then just give it a light
  791. * scan then give up on it.
  792. */
  793. static void
  794. shrink_caches(struct zone **zones, struct scan_control *sc)
  795. {
  796. int i;
  797. for (i = 0; zones[i] != NULL; i++) {
  798. struct zone *zone = zones[i];
  799. if (zone->present_pages == 0)
  800. continue;
  801. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  802. continue;
  803. zone->temp_priority = sc->priority;
  804. if (zone->prev_priority > sc->priority)
  805. zone->prev_priority = sc->priority;
  806. if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
  807. continue; /* Let kswapd poll it */
  808. shrink_zone(zone, sc);
  809. }
  810. }
  811. /*
  812. * This is the main entry point to direct page reclaim.
  813. *
  814. * If a full scan of the inactive list fails to free enough memory then we
  815. * are "out of memory" and something needs to be killed.
  816. *
  817. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  818. * high - the zone may be full of dirty or under-writeback pages, which this
  819. * caller can't do much about. We kick pdflush and take explicit naps in the
  820. * hope that some of these pages can be written. But if the allocating task
  821. * holds filesystem locks which prevent writeout this might not work, and the
  822. * allocation attempt will fail.
  823. */
  824. int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
  825. {
  826. int priority;
  827. int ret = 0;
  828. int total_scanned = 0, total_reclaimed = 0;
  829. struct reclaim_state *reclaim_state = current->reclaim_state;
  830. struct scan_control sc;
  831. unsigned long lru_pages = 0;
  832. int i;
  833. sc.gfp_mask = gfp_mask;
  834. sc.may_writepage = 0;
  835. inc_page_state(allocstall);
  836. for (i = 0; zones[i] != NULL; i++) {
  837. struct zone *zone = zones[i];
  838. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  839. continue;
  840. zone->temp_priority = DEF_PRIORITY;
  841. lru_pages += zone->nr_active + zone->nr_inactive;
  842. }
  843. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  844. sc.nr_mapped = read_page_state(nr_mapped);
  845. sc.nr_scanned = 0;
  846. sc.nr_reclaimed = 0;
  847. sc.priority = priority;
  848. sc.swap_cluster_max = SWAP_CLUSTER_MAX;
  849. if (!priority)
  850. disable_swap_token();
  851. shrink_caches(zones, &sc);
  852. shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
  853. if (reclaim_state) {
  854. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  855. reclaim_state->reclaimed_slab = 0;
  856. }
  857. total_scanned += sc.nr_scanned;
  858. total_reclaimed += sc.nr_reclaimed;
  859. if (total_reclaimed >= sc.swap_cluster_max) {
  860. ret = 1;
  861. goto out;
  862. }
  863. /*
  864. * Try to write back as many pages as we just scanned. This
  865. * tends to cause slow streaming writers to write data to the
  866. * disk smoothly, at the dirtying rate, which is nice. But
  867. * that's undesirable in laptop mode, where we *want* lumpy
  868. * writeout. So in laptop mode, write out the whole world.
  869. */
  870. if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
  871. wakeup_pdflush(laptop_mode ? 0 : total_scanned);
  872. sc.may_writepage = 1;
  873. }
  874. /* Take a nap, wait for some writeback to complete */
  875. if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
  876. blk_congestion_wait(WRITE, HZ/10);
  877. }
  878. out:
  879. for (i = 0; zones[i] != 0; i++) {
  880. struct zone *zone = zones[i];
  881. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  882. continue;
  883. zone->prev_priority = zone->temp_priority;
  884. }
  885. return ret;
  886. }
  887. /*
  888. * For kswapd, balance_pgdat() will work across all this node's zones until
  889. * they are all at pages_high.
  890. *
  891. * If `nr_pages' is non-zero then it is the number of pages which are to be
  892. * reclaimed, regardless of the zone occupancies. This is a software suspend
  893. * special.
  894. *
  895. * Returns the number of pages which were actually freed.
  896. *
  897. * There is special handling here for zones which are full of pinned pages.
  898. * This can happen if the pages are all mlocked, or if they are all used by
  899. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  900. * What we do is to detect the case where all pages in the zone have been
  901. * scanned twice and there has been zero successful reclaim. Mark the zone as
  902. * dead and from now on, only perform a short scan. Basically we're polling
  903. * the zone for when the problem goes away.
  904. *
  905. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  906. * zones which have free_pages > pages_high, but once a zone is found to have
  907. * free_pages <= pages_high, we scan that zone and the lower zones regardless
  908. * of the number of free pages in the lower zones. This interoperates with
  909. * the page allocator fallback scheme to ensure that aging of pages is balanced
  910. * across the zones.
  911. */
  912. static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
  913. {
  914. int to_free = nr_pages;
  915. int all_zones_ok;
  916. int priority;
  917. int i;
  918. int total_scanned, total_reclaimed;
  919. struct reclaim_state *reclaim_state = current->reclaim_state;
  920. struct scan_control sc;
  921. loop_again:
  922. total_scanned = 0;
  923. total_reclaimed = 0;
  924. sc.gfp_mask = GFP_KERNEL;
  925. sc.may_writepage = 0;
  926. sc.nr_mapped = read_page_state(nr_mapped);
  927. inc_page_state(pageoutrun);
  928. for (i = 0; i < pgdat->nr_zones; i++) {
  929. struct zone *zone = pgdat->node_zones + i;
  930. zone->temp_priority = DEF_PRIORITY;
  931. }
  932. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  933. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  934. unsigned long lru_pages = 0;
  935. /* The swap token gets in the way of swapout... */
  936. if (!priority)
  937. disable_swap_token();
  938. all_zones_ok = 1;
  939. if (nr_pages == 0) {
  940. /*
  941. * Scan in the highmem->dma direction for the highest
  942. * zone which needs scanning
  943. */
  944. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  945. struct zone *zone = pgdat->node_zones + i;
  946. if (zone->present_pages == 0)
  947. continue;
  948. if (zone->all_unreclaimable &&
  949. priority != DEF_PRIORITY)
  950. continue;
  951. if (!zone_watermark_ok(zone, order,
  952. zone->pages_high, 0, 0)) {
  953. end_zone = i;
  954. goto scan;
  955. }
  956. }
  957. goto out;
  958. } else {
  959. end_zone = pgdat->nr_zones - 1;
  960. }
  961. scan:
  962. for (i = 0; i <= end_zone; i++) {
  963. struct zone *zone = pgdat->node_zones + i;
  964. lru_pages += zone->nr_active + zone->nr_inactive;
  965. }
  966. /*
  967. * Now scan the zone in the dma->highmem direction, stopping
  968. * at the last zone which needs scanning.
  969. *
  970. * We do this because the page allocator works in the opposite
  971. * direction. This prevents the page allocator from allocating
  972. * pages behind kswapd's direction of progress, which would
  973. * cause too much scanning of the lower zones.
  974. */
  975. for (i = 0; i <= end_zone; i++) {
  976. struct zone *zone = pgdat->node_zones + i;
  977. int nr_slab;
  978. if (zone->present_pages == 0)
  979. continue;
  980. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  981. continue;
  982. if (nr_pages == 0) { /* Not software suspend */
  983. if (!zone_watermark_ok(zone, order,
  984. zone->pages_high, end_zone, 0))
  985. all_zones_ok = 0;
  986. }
  987. zone->temp_priority = priority;
  988. if (zone->prev_priority > priority)
  989. zone->prev_priority = priority;
  990. sc.nr_scanned = 0;
  991. sc.nr_reclaimed = 0;
  992. sc.priority = priority;
  993. sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
  994. atomic_inc(&zone->reclaim_in_progress);
  995. shrink_zone(zone, &sc);
  996. atomic_dec(&zone->reclaim_in_progress);
  997. reclaim_state->reclaimed_slab = 0;
  998. nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
  999. lru_pages);
  1000. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  1001. total_reclaimed += sc.nr_reclaimed;
  1002. total_scanned += sc.nr_scanned;
  1003. if (zone->all_unreclaimable)
  1004. continue;
  1005. if (nr_slab == 0 && zone->pages_scanned >=
  1006. (zone->nr_active + zone->nr_inactive) * 4)
  1007. zone->all_unreclaimable = 1;
  1008. /*
  1009. * If we've done a decent amount of scanning and
  1010. * the reclaim ratio is low, start doing writepage
  1011. * even in laptop mode
  1012. */
  1013. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  1014. total_scanned > total_reclaimed+total_reclaimed/2)
  1015. sc.may_writepage = 1;
  1016. }
  1017. if (nr_pages && to_free > total_reclaimed)
  1018. continue; /* swsusp: need to do more work */
  1019. if (all_zones_ok)
  1020. break; /* kswapd: all done */
  1021. /*
  1022. * OK, kswapd is getting into trouble. Take a nap, then take
  1023. * another pass across the zones.
  1024. */
  1025. if (total_scanned && priority < DEF_PRIORITY - 2)
  1026. blk_congestion_wait(WRITE, HZ/10);
  1027. /*
  1028. * We do this so kswapd doesn't build up large priorities for
  1029. * example when it is freeing in parallel with allocators. It
  1030. * matches the direct reclaim path behaviour in terms of impact
  1031. * on zone->*_priority.
  1032. */
  1033. if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
  1034. break;
  1035. }
  1036. out:
  1037. for (i = 0; i < pgdat->nr_zones; i++) {
  1038. struct zone *zone = pgdat->node_zones + i;
  1039. zone->prev_priority = zone->temp_priority;
  1040. }
  1041. if (!all_zones_ok) {
  1042. cond_resched();
  1043. goto loop_again;
  1044. }
  1045. return total_reclaimed;
  1046. }
  1047. /*
  1048. * The background pageout daemon, started as a kernel thread
  1049. * from the init process.
  1050. *
  1051. * This basically trickles out pages so that we have _some_
  1052. * free memory available even if there is no other activity
  1053. * that frees anything up. This is needed for things like routing
  1054. * etc, where we otherwise might have all activity going on in
  1055. * asynchronous contexts that cannot page things out.
  1056. *
  1057. * If there are applications that are active memory-allocators
  1058. * (most normal use), this basically shouldn't matter.
  1059. */
  1060. static int kswapd(void *p)
  1061. {
  1062. unsigned long order;
  1063. pg_data_t *pgdat = (pg_data_t*)p;
  1064. struct task_struct *tsk = current;
  1065. DEFINE_WAIT(wait);
  1066. struct reclaim_state reclaim_state = {
  1067. .reclaimed_slab = 0,
  1068. };
  1069. cpumask_t cpumask;
  1070. daemonize("kswapd%d", pgdat->node_id);
  1071. cpumask = node_to_cpumask(pgdat->node_id);
  1072. if (!cpus_empty(cpumask))
  1073. set_cpus_allowed(tsk, cpumask);
  1074. current->reclaim_state = &reclaim_state;
  1075. /*
  1076. * Tell the memory management that we're a "memory allocator",
  1077. * and that if we need more memory we should get access to it
  1078. * regardless (see "__alloc_pages()"). "kswapd" should
  1079. * never get caught in the normal page freeing logic.
  1080. *
  1081. * (Kswapd normally doesn't need memory anyway, but sometimes
  1082. * you need a small amount of memory in order to be able to
  1083. * page out something else, and this flag essentially protects
  1084. * us from recursively trying to free more memory as we're
  1085. * trying to free the first piece of memory in the first place).
  1086. */
  1087. tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
  1088. order = 0;
  1089. for ( ; ; ) {
  1090. unsigned long new_order;
  1091. try_to_freeze();
  1092. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  1093. new_order = pgdat->kswapd_max_order;
  1094. pgdat->kswapd_max_order = 0;
  1095. if (order < new_order) {
  1096. /*
  1097. * Don't sleep if someone wants a larger 'order'
  1098. * allocation
  1099. */
  1100. order = new_order;
  1101. } else {
  1102. schedule();
  1103. order = pgdat->kswapd_max_order;
  1104. }
  1105. finish_wait(&pgdat->kswapd_wait, &wait);
  1106. balance_pgdat(pgdat, 0, order);
  1107. }
  1108. return 0;
  1109. }
  1110. /*
  1111. * A zone is low on free memory, so wake its kswapd task to service it.
  1112. */
  1113. void wakeup_kswapd(struct zone *zone, int order)
  1114. {
  1115. pg_data_t *pgdat;
  1116. if (zone->present_pages == 0)
  1117. return;
  1118. pgdat = zone->zone_pgdat;
  1119. if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
  1120. return;
  1121. if (pgdat->kswapd_max_order < order)
  1122. pgdat->kswapd_max_order = order;
  1123. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  1124. return;
  1125. if (!waitqueue_active(&pgdat->kswapd_wait))
  1126. return;
  1127. wake_up_interruptible(&pgdat->kswapd_wait);
  1128. }
  1129. #ifdef CONFIG_PM
  1130. /*
  1131. * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
  1132. * pages.
  1133. */
  1134. int shrink_all_memory(int nr_pages)
  1135. {
  1136. pg_data_t *pgdat;
  1137. int nr_to_free = nr_pages;
  1138. int ret = 0;
  1139. struct reclaim_state reclaim_state = {
  1140. .reclaimed_slab = 0,
  1141. };
  1142. current->reclaim_state = &reclaim_state;
  1143. for_each_pgdat(pgdat) {
  1144. int freed;
  1145. freed = balance_pgdat(pgdat, nr_to_free, 0);
  1146. ret += freed;
  1147. nr_to_free -= freed;
  1148. if (nr_to_free <= 0)
  1149. break;
  1150. }
  1151. current->reclaim_state = NULL;
  1152. return ret;
  1153. }
  1154. #endif
  1155. #ifdef CONFIG_HOTPLUG_CPU
  1156. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  1157. not required for correctness. So if the last cpu in a node goes
  1158. away, we get changed to run anywhere: as the first one comes back,
  1159. restore their cpu bindings. */
  1160. static int __devinit cpu_callback(struct notifier_block *nfb,
  1161. unsigned long action,
  1162. void *hcpu)
  1163. {
  1164. pg_data_t *pgdat;
  1165. cpumask_t mask;
  1166. if (action == CPU_ONLINE) {
  1167. for_each_pgdat(pgdat) {
  1168. mask = node_to_cpumask(pgdat->node_id);
  1169. if (any_online_cpu(mask) != NR_CPUS)
  1170. /* One of our CPUs online: restore mask */
  1171. set_cpus_allowed(pgdat->kswapd, mask);
  1172. }
  1173. }
  1174. return NOTIFY_OK;
  1175. }
  1176. #endif /* CONFIG_HOTPLUG_CPU */
  1177. static int __init kswapd_init(void)
  1178. {
  1179. pg_data_t *pgdat;
  1180. swap_setup();
  1181. for_each_pgdat(pgdat)
  1182. pgdat->kswapd
  1183. = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
  1184. total_memory = nr_free_pagecache_pages();
  1185. hotcpu_notifier(cpu_callback, 0);
  1186. return 0;
  1187. }
  1188. module_init(kswapd_init)