kvm_main.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/mman.h>
  44. #include <asm/processor.h>
  45. #include <asm/msr.h>
  46. #include <asm/io.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/desc.h>
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. static DEFINE_SPINLOCK(kvm_lock);
  52. static LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kvm_x86_ops *kvm_x86_ops;
  55. struct kmem_cache *kvm_vcpu_cache;
  56. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  57. static __read_mostly struct preempt_ops kvm_preempt_ops;
  58. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  59. static struct kvm_stats_debugfs_item {
  60. const char *name;
  61. int offset;
  62. struct dentry *dentry;
  63. } debugfs_entries[] = {
  64. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  65. { "pf_guest", STAT_OFFSET(pf_guest) },
  66. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  67. { "invlpg", STAT_OFFSET(invlpg) },
  68. { "exits", STAT_OFFSET(exits) },
  69. { "io_exits", STAT_OFFSET(io_exits) },
  70. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  71. { "signal_exits", STAT_OFFSET(signal_exits) },
  72. { "irq_window", STAT_OFFSET(irq_window_exits) },
  73. { "halt_exits", STAT_OFFSET(halt_exits) },
  74. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  75. { "request_irq", STAT_OFFSET(request_irq_exits) },
  76. { "irq_exits", STAT_OFFSET(irq_exits) },
  77. { "light_exits", STAT_OFFSET(light_exits) },
  78. { "efer_reload", STAT_OFFSET(efer_reload) },
  79. { NULL }
  80. };
  81. static struct dentry *debugfs_dir;
  82. #define CR0_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  84. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  85. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  86. #define CR4_RESERVED_BITS \
  87. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  88. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  89. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  90. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  91. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  92. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  93. #ifdef CONFIG_X86_64
  94. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  95. struct segment_descriptor_64 {
  96. struct segment_descriptor s;
  97. u32 base_higher;
  98. u32 pad_zero;
  99. };
  100. #endif
  101. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  102. unsigned long arg);
  103. unsigned long segment_base(u16 selector)
  104. {
  105. struct descriptor_table gdt;
  106. struct segment_descriptor *d;
  107. unsigned long table_base;
  108. unsigned long v;
  109. if (selector == 0)
  110. return 0;
  111. asm("sgdt %0" : "=m"(gdt));
  112. table_base = gdt.base;
  113. if (selector & 4) { /* from ldt */
  114. u16 ldt_selector;
  115. asm("sldt %0" : "=g"(ldt_selector));
  116. table_base = segment_base(ldt_selector);
  117. }
  118. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  119. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  120. ((unsigned long)d->base_high << 24);
  121. #ifdef CONFIG_X86_64
  122. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  123. v |= ((unsigned long) \
  124. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  125. #endif
  126. return v;
  127. }
  128. EXPORT_SYMBOL_GPL(segment_base);
  129. static inline int valid_vcpu(int n)
  130. {
  131. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  132. }
  133. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  134. {
  135. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  136. return;
  137. vcpu->guest_fpu_loaded = 1;
  138. fx_save(&vcpu->host_fx_image);
  139. fx_restore(&vcpu->guest_fx_image);
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  142. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  143. {
  144. if (!vcpu->guest_fpu_loaded)
  145. return;
  146. vcpu->guest_fpu_loaded = 0;
  147. fx_save(&vcpu->guest_fx_image);
  148. fx_restore(&vcpu->host_fx_image);
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  151. /*
  152. * Switches to specified vcpu, until a matching vcpu_put()
  153. */
  154. void vcpu_load(struct kvm_vcpu *vcpu)
  155. {
  156. int cpu;
  157. mutex_lock(&vcpu->mutex);
  158. cpu = get_cpu();
  159. preempt_notifier_register(&vcpu->preempt_notifier);
  160. kvm_arch_vcpu_load(vcpu, cpu);
  161. put_cpu();
  162. }
  163. void vcpu_put(struct kvm_vcpu *vcpu)
  164. {
  165. preempt_disable();
  166. kvm_arch_vcpu_put(vcpu);
  167. preempt_notifier_unregister(&vcpu->preempt_notifier);
  168. preempt_enable();
  169. mutex_unlock(&vcpu->mutex);
  170. }
  171. static void ack_flush(void *_completed)
  172. {
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int i, cpu;
  177. cpumask_t cpus;
  178. struct kvm_vcpu *vcpu;
  179. cpus_clear(cpus);
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. cpu_set(cpu, cpus);
  189. }
  190. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  191. }
  192. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  193. {
  194. struct page *page;
  195. int r;
  196. mutex_init(&vcpu->mutex);
  197. vcpu->cpu = -1;
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. vcpu->kvm = kvm;
  200. vcpu->vcpu_id = id;
  201. if (!irqchip_in_kernel(kvm) || id == 0)
  202. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  203. else
  204. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  205. init_waitqueue_head(&vcpu->wq);
  206. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  207. if (!page) {
  208. r = -ENOMEM;
  209. goto fail;
  210. }
  211. vcpu->run = page_address(page);
  212. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  213. if (!page) {
  214. r = -ENOMEM;
  215. goto fail_free_run;
  216. }
  217. vcpu->pio_data = page_address(page);
  218. r = kvm_mmu_create(vcpu);
  219. if (r < 0)
  220. goto fail_free_pio_data;
  221. if (irqchip_in_kernel(kvm)) {
  222. r = kvm_create_lapic(vcpu);
  223. if (r < 0)
  224. goto fail_mmu_destroy;
  225. }
  226. return 0;
  227. fail_mmu_destroy:
  228. kvm_mmu_destroy(vcpu);
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return r;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_free_lapic(vcpu);
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. /*
  260. * Free any memory in @free but not in @dont.
  261. */
  262. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  263. struct kvm_memory_slot *dont)
  264. {
  265. if (!dont || free->rmap != dont->rmap)
  266. vfree(free->rmap);
  267. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  268. vfree(free->dirty_bitmap);
  269. free->npages = 0;
  270. free->dirty_bitmap = NULL;
  271. free->rmap = NULL;
  272. }
  273. static void kvm_free_physmem(struct kvm *kvm)
  274. {
  275. int i;
  276. for (i = 0; i < kvm->nmemslots; ++i)
  277. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  278. }
  279. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  280. {
  281. int i;
  282. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  283. if (vcpu->pio.guest_pages[i]) {
  284. kvm_release_page(vcpu->pio.guest_pages[i]);
  285. vcpu->pio.guest_pages[i] = NULL;
  286. }
  287. }
  288. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  289. {
  290. vcpu_load(vcpu);
  291. kvm_mmu_unload(vcpu);
  292. vcpu_put(vcpu);
  293. }
  294. static void kvm_free_vcpus(struct kvm *kvm)
  295. {
  296. unsigned int i;
  297. /*
  298. * Unpin any mmu pages first.
  299. */
  300. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  301. if (kvm->vcpus[i])
  302. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  303. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  304. if (kvm->vcpus[i]) {
  305. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  306. kvm->vcpus[i] = NULL;
  307. }
  308. }
  309. }
  310. static void kvm_destroy_vm(struct kvm *kvm)
  311. {
  312. spin_lock(&kvm_lock);
  313. list_del(&kvm->vm_list);
  314. spin_unlock(&kvm_lock);
  315. kvm_io_bus_destroy(&kvm->pio_bus);
  316. kvm_io_bus_destroy(&kvm->mmio_bus);
  317. kfree(kvm->vpic);
  318. kfree(kvm->vioapic);
  319. kvm_free_vcpus(kvm);
  320. kvm_free_physmem(kvm);
  321. kfree(kvm);
  322. }
  323. static int kvm_vm_release(struct inode *inode, struct file *filp)
  324. {
  325. struct kvm *kvm = filp->private_data;
  326. kvm_destroy_vm(kvm);
  327. return 0;
  328. }
  329. static void inject_gp(struct kvm_vcpu *vcpu)
  330. {
  331. kvm_x86_ops->inject_gp(vcpu, 0);
  332. }
  333. /*
  334. * Load the pae pdptrs. Return true is they are all valid.
  335. */
  336. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  337. {
  338. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  339. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  340. int i;
  341. int ret;
  342. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  343. mutex_lock(&vcpu->kvm->lock);
  344. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  345. offset * sizeof(u64), sizeof(pdpte));
  346. if (ret < 0) {
  347. ret = 0;
  348. goto out;
  349. }
  350. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  351. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  352. ret = 0;
  353. goto out;
  354. }
  355. }
  356. ret = 1;
  357. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  358. out:
  359. mutex_unlock(&vcpu->kvm->lock);
  360. return ret;
  361. }
  362. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  363. {
  364. if (cr0 & CR0_RESERVED_BITS) {
  365. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  366. cr0, vcpu->cr0);
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  371. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  372. inject_gp(vcpu);
  373. return;
  374. }
  375. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  376. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  377. "and a clear PE flag\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  382. #ifdef CONFIG_X86_64
  383. if ((vcpu->shadow_efer & EFER_LME)) {
  384. int cs_db, cs_l;
  385. if (!is_pae(vcpu)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  387. "in long mode while PAE is disabled\n");
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  392. if (cs_l) {
  393. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  394. "in long mode while CS.L == 1\n");
  395. inject_gp(vcpu);
  396. return;
  397. }
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  402. "reserved bits\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. }
  407. kvm_x86_ops->set_cr0(vcpu, cr0);
  408. vcpu->cr0 = cr0;
  409. mutex_lock(&vcpu->kvm->lock);
  410. kvm_mmu_reset_context(vcpu);
  411. mutex_unlock(&vcpu->kvm->lock);
  412. return;
  413. }
  414. EXPORT_SYMBOL_GPL(set_cr0);
  415. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  416. {
  417. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  418. }
  419. EXPORT_SYMBOL_GPL(lmsw);
  420. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  421. {
  422. if (cr4 & CR4_RESERVED_BITS) {
  423. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  424. inject_gp(vcpu);
  425. return;
  426. }
  427. if (is_long_mode(vcpu)) {
  428. if (!(cr4 & X86_CR4_PAE)) {
  429. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  430. "in long mode\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  435. && !load_pdptrs(vcpu, vcpu->cr3)) {
  436. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. if (cr4 & X86_CR4_VMXE) {
  441. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  442. inject_gp(vcpu);
  443. return;
  444. }
  445. kvm_x86_ops->set_cr4(vcpu, cr4);
  446. vcpu->cr4 = cr4;
  447. mutex_lock(&vcpu->kvm->lock);
  448. kvm_mmu_reset_context(vcpu);
  449. mutex_unlock(&vcpu->kvm->lock);
  450. }
  451. EXPORT_SYMBOL_GPL(set_cr4);
  452. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  453. {
  454. if (is_long_mode(vcpu)) {
  455. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  456. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. } else {
  461. if (is_pae(vcpu)) {
  462. if (cr3 & CR3_PAE_RESERVED_BITS) {
  463. printk(KERN_DEBUG
  464. "set_cr3: #GP, reserved bits\n");
  465. inject_gp(vcpu);
  466. return;
  467. }
  468. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  469. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  470. "reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. }
  475. /*
  476. * We don't check reserved bits in nonpae mode, because
  477. * this isn't enforced, and VMware depends on this.
  478. */
  479. }
  480. mutex_lock(&vcpu->kvm->lock);
  481. /*
  482. * Does the new cr3 value map to physical memory? (Note, we
  483. * catch an invalid cr3 even in real-mode, because it would
  484. * cause trouble later on when we turn on paging anyway.)
  485. *
  486. * A real CPU would silently accept an invalid cr3 and would
  487. * attempt to use it - with largely undefined (and often hard
  488. * to debug) behavior on the guest side.
  489. */
  490. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  491. inject_gp(vcpu);
  492. else {
  493. vcpu->cr3 = cr3;
  494. vcpu->mmu.new_cr3(vcpu);
  495. }
  496. mutex_unlock(&vcpu->kvm->lock);
  497. }
  498. EXPORT_SYMBOL_GPL(set_cr3);
  499. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  500. {
  501. if (cr8 & CR8_RESERVED_BITS) {
  502. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  503. inject_gp(vcpu);
  504. return;
  505. }
  506. if (irqchip_in_kernel(vcpu->kvm))
  507. kvm_lapic_set_tpr(vcpu, cr8);
  508. else
  509. vcpu->cr8 = cr8;
  510. }
  511. EXPORT_SYMBOL_GPL(set_cr8);
  512. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  513. {
  514. if (irqchip_in_kernel(vcpu->kvm))
  515. return kvm_lapic_get_cr8(vcpu);
  516. else
  517. return vcpu->cr8;
  518. }
  519. EXPORT_SYMBOL_GPL(get_cr8);
  520. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  521. {
  522. if (irqchip_in_kernel(vcpu->kvm))
  523. return vcpu->apic_base;
  524. else
  525. return vcpu->apic_base;
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  528. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  529. {
  530. /* TODO: reserve bits check */
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. kvm_lapic_set_base(vcpu, data);
  533. else
  534. vcpu->apic_base = data;
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  537. void fx_init(struct kvm_vcpu *vcpu)
  538. {
  539. unsigned after_mxcsr_mask;
  540. /* Initialize guest FPU by resetting ours and saving into guest's */
  541. preempt_disable();
  542. fx_save(&vcpu->host_fx_image);
  543. fpu_init();
  544. fx_save(&vcpu->guest_fx_image);
  545. fx_restore(&vcpu->host_fx_image);
  546. preempt_enable();
  547. vcpu->cr0 |= X86_CR0_ET;
  548. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  549. vcpu->guest_fx_image.mxcsr = 0x1f80;
  550. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  551. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  552. }
  553. EXPORT_SYMBOL_GPL(fx_init);
  554. /*
  555. * Allocate some memory and give it an address in the guest physical address
  556. * space.
  557. *
  558. * Discontiguous memory is allowed, mostly for framebuffers.
  559. */
  560. int kvm_set_memory_region(struct kvm *kvm,
  561. struct kvm_userspace_memory_region *mem,
  562. int user_alloc)
  563. {
  564. int r;
  565. gfn_t base_gfn;
  566. unsigned long npages;
  567. unsigned long i;
  568. struct kvm_memory_slot *memslot;
  569. struct kvm_memory_slot old, new;
  570. r = -EINVAL;
  571. /* General sanity checks */
  572. if (mem->memory_size & (PAGE_SIZE - 1))
  573. goto out;
  574. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  575. goto out;
  576. if (mem->slot >= KVM_MEMORY_SLOTS)
  577. goto out;
  578. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  579. goto out;
  580. memslot = &kvm->memslots[mem->slot];
  581. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  582. npages = mem->memory_size >> PAGE_SHIFT;
  583. if (!npages)
  584. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  585. mutex_lock(&kvm->lock);
  586. new = old = *memslot;
  587. new.base_gfn = base_gfn;
  588. new.npages = npages;
  589. new.flags = mem->flags;
  590. /* Disallow changing a memory slot's size. */
  591. r = -EINVAL;
  592. if (npages && old.npages && npages != old.npages)
  593. goto out_unlock;
  594. /* Check for overlaps */
  595. r = -EEXIST;
  596. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  597. struct kvm_memory_slot *s = &kvm->memslots[i];
  598. if (s == memslot)
  599. continue;
  600. if (!((base_gfn + npages <= s->base_gfn) ||
  601. (base_gfn >= s->base_gfn + s->npages)))
  602. goto out_unlock;
  603. }
  604. /* Free page dirty bitmap if unneeded */
  605. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  606. new.dirty_bitmap = NULL;
  607. r = -ENOMEM;
  608. /* Allocate if a slot is being created */
  609. if (npages && !new.rmap) {
  610. new.rmap = vmalloc(npages * sizeof(struct page *));
  611. if (!new.rmap)
  612. goto out_unlock;
  613. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  614. new.user_alloc = user_alloc;
  615. if (user_alloc)
  616. new.userspace_addr = mem->userspace_addr;
  617. else {
  618. down_write(&current->mm->mmap_sem);
  619. new.userspace_addr = do_mmap(NULL, 0,
  620. npages * PAGE_SIZE,
  621. PROT_READ | PROT_WRITE,
  622. MAP_SHARED | MAP_ANONYMOUS,
  623. 0);
  624. up_write(&current->mm->mmap_sem);
  625. if (IS_ERR((void *)new.userspace_addr))
  626. goto out_unlock;
  627. }
  628. } else {
  629. if (!old.user_alloc && old.rmap) {
  630. int ret;
  631. down_write(&current->mm->mmap_sem);
  632. ret = do_munmap(current->mm, old.userspace_addr,
  633. old.npages * PAGE_SIZE);
  634. up_write(&current->mm->mmap_sem);
  635. if (ret < 0)
  636. printk(KERN_WARNING
  637. "kvm_vm_ioctl_set_memory_region: "
  638. "failed to munmap memory\n");
  639. }
  640. }
  641. /* Allocate page dirty bitmap if needed */
  642. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  643. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  644. new.dirty_bitmap = vmalloc(dirty_bytes);
  645. if (!new.dirty_bitmap)
  646. goto out_unlock;
  647. memset(new.dirty_bitmap, 0, dirty_bytes);
  648. }
  649. if (mem->slot >= kvm->nmemslots)
  650. kvm->nmemslots = mem->slot + 1;
  651. if (!kvm->n_requested_mmu_pages) {
  652. unsigned int n_pages;
  653. if (npages) {
  654. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  655. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  656. n_pages);
  657. } else {
  658. unsigned int nr_mmu_pages;
  659. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  660. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  661. nr_mmu_pages = max(nr_mmu_pages,
  662. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  663. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  664. }
  665. }
  666. *memslot = new;
  667. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  668. kvm_flush_remote_tlbs(kvm);
  669. mutex_unlock(&kvm->lock);
  670. kvm_free_physmem_slot(&old, &new);
  671. return 0;
  672. out_unlock:
  673. mutex_unlock(&kvm->lock);
  674. kvm_free_physmem_slot(&new, &old);
  675. out:
  676. return r;
  677. }
  678. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  679. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  680. struct
  681. kvm_userspace_memory_region *mem,
  682. int user_alloc)
  683. {
  684. return kvm_set_memory_region(kvm, mem, user_alloc);
  685. }
  686. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  687. u32 kvm_nr_mmu_pages)
  688. {
  689. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  690. return -EINVAL;
  691. mutex_lock(&kvm->lock);
  692. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  693. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  694. mutex_unlock(&kvm->lock);
  695. return 0;
  696. }
  697. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  698. {
  699. return kvm->n_alloc_mmu_pages;
  700. }
  701. /*
  702. * Get (and clear) the dirty memory log for a memory slot.
  703. */
  704. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  705. struct kvm_dirty_log *log)
  706. {
  707. struct kvm_memory_slot *memslot;
  708. int r, i;
  709. int n;
  710. unsigned long any = 0;
  711. mutex_lock(&kvm->lock);
  712. r = -EINVAL;
  713. if (log->slot >= KVM_MEMORY_SLOTS)
  714. goto out;
  715. memslot = &kvm->memslots[log->slot];
  716. r = -ENOENT;
  717. if (!memslot->dirty_bitmap)
  718. goto out;
  719. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  720. for (i = 0; !any && i < n/sizeof(long); ++i)
  721. any = memslot->dirty_bitmap[i];
  722. r = -EFAULT;
  723. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  724. goto out;
  725. /* If nothing is dirty, don't bother messing with page tables. */
  726. if (any) {
  727. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  728. kvm_flush_remote_tlbs(kvm);
  729. memset(memslot->dirty_bitmap, 0, n);
  730. }
  731. r = 0;
  732. out:
  733. mutex_unlock(&kvm->lock);
  734. return r;
  735. }
  736. /*
  737. * Set a new alias region. Aliases map a portion of physical memory into
  738. * another portion. This is useful for memory windows, for example the PC
  739. * VGA region.
  740. */
  741. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  742. struct kvm_memory_alias *alias)
  743. {
  744. int r, n;
  745. struct kvm_mem_alias *p;
  746. r = -EINVAL;
  747. /* General sanity checks */
  748. if (alias->memory_size & (PAGE_SIZE - 1))
  749. goto out;
  750. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  751. goto out;
  752. if (alias->slot >= KVM_ALIAS_SLOTS)
  753. goto out;
  754. if (alias->guest_phys_addr + alias->memory_size
  755. < alias->guest_phys_addr)
  756. goto out;
  757. if (alias->target_phys_addr + alias->memory_size
  758. < alias->target_phys_addr)
  759. goto out;
  760. mutex_lock(&kvm->lock);
  761. p = &kvm->aliases[alias->slot];
  762. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  763. p->npages = alias->memory_size >> PAGE_SHIFT;
  764. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  765. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  766. if (kvm->aliases[n - 1].npages)
  767. break;
  768. kvm->naliases = n;
  769. kvm_mmu_zap_all(kvm);
  770. mutex_unlock(&kvm->lock);
  771. return 0;
  772. out:
  773. return r;
  774. }
  775. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  776. {
  777. int r;
  778. r = 0;
  779. switch (chip->chip_id) {
  780. case KVM_IRQCHIP_PIC_MASTER:
  781. memcpy(&chip->chip.pic,
  782. &pic_irqchip(kvm)->pics[0],
  783. sizeof(struct kvm_pic_state));
  784. break;
  785. case KVM_IRQCHIP_PIC_SLAVE:
  786. memcpy(&chip->chip.pic,
  787. &pic_irqchip(kvm)->pics[1],
  788. sizeof(struct kvm_pic_state));
  789. break;
  790. case KVM_IRQCHIP_IOAPIC:
  791. memcpy(&chip->chip.ioapic,
  792. ioapic_irqchip(kvm),
  793. sizeof(struct kvm_ioapic_state));
  794. break;
  795. default:
  796. r = -EINVAL;
  797. break;
  798. }
  799. return r;
  800. }
  801. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  802. {
  803. int r;
  804. r = 0;
  805. switch (chip->chip_id) {
  806. case KVM_IRQCHIP_PIC_MASTER:
  807. memcpy(&pic_irqchip(kvm)->pics[0],
  808. &chip->chip.pic,
  809. sizeof(struct kvm_pic_state));
  810. break;
  811. case KVM_IRQCHIP_PIC_SLAVE:
  812. memcpy(&pic_irqchip(kvm)->pics[1],
  813. &chip->chip.pic,
  814. sizeof(struct kvm_pic_state));
  815. break;
  816. case KVM_IRQCHIP_IOAPIC:
  817. memcpy(ioapic_irqchip(kvm),
  818. &chip->chip.ioapic,
  819. sizeof(struct kvm_ioapic_state));
  820. break;
  821. default:
  822. r = -EINVAL;
  823. break;
  824. }
  825. kvm_pic_update_irq(pic_irqchip(kvm));
  826. return r;
  827. }
  828. int is_error_page(struct page *page)
  829. {
  830. return page == bad_page;
  831. }
  832. EXPORT_SYMBOL_GPL(is_error_page);
  833. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  834. {
  835. int i;
  836. struct kvm_mem_alias *alias;
  837. for (i = 0; i < kvm->naliases; ++i) {
  838. alias = &kvm->aliases[i];
  839. if (gfn >= alias->base_gfn
  840. && gfn < alias->base_gfn + alias->npages)
  841. return alias->target_gfn + gfn - alias->base_gfn;
  842. }
  843. return gfn;
  844. }
  845. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  846. {
  847. int i;
  848. for (i = 0; i < kvm->nmemslots; ++i) {
  849. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  850. if (gfn >= memslot->base_gfn
  851. && gfn < memslot->base_gfn + memslot->npages)
  852. return memslot;
  853. }
  854. return NULL;
  855. }
  856. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  857. {
  858. gfn = unalias_gfn(kvm, gfn);
  859. return __gfn_to_memslot(kvm, gfn);
  860. }
  861. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  862. {
  863. struct kvm_memory_slot *slot;
  864. struct page *page[1];
  865. int npages;
  866. might_sleep();
  867. gfn = unalias_gfn(kvm, gfn);
  868. slot = __gfn_to_memslot(kvm, gfn);
  869. if (!slot) {
  870. get_page(bad_page);
  871. return bad_page;
  872. }
  873. down_read(&current->mm->mmap_sem);
  874. npages = get_user_pages(current, current->mm,
  875. slot->userspace_addr
  876. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  877. 1, 1, page, NULL);
  878. up_read(&current->mm->mmap_sem);
  879. if (npages != 1) {
  880. get_page(bad_page);
  881. return bad_page;
  882. }
  883. return page[0];
  884. }
  885. EXPORT_SYMBOL_GPL(gfn_to_page);
  886. void kvm_release_page(struct page *page)
  887. {
  888. if (!PageReserved(page))
  889. SetPageDirty(page);
  890. put_page(page);
  891. }
  892. EXPORT_SYMBOL_GPL(kvm_release_page);
  893. static int next_segment(unsigned long len, int offset)
  894. {
  895. if (len > PAGE_SIZE - offset)
  896. return PAGE_SIZE - offset;
  897. else
  898. return len;
  899. }
  900. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  901. int len)
  902. {
  903. void *page_virt;
  904. struct page *page;
  905. page = gfn_to_page(kvm, gfn);
  906. if (is_error_page(page)) {
  907. kvm_release_page(page);
  908. return -EFAULT;
  909. }
  910. page_virt = kmap_atomic(page, KM_USER0);
  911. memcpy(data, page_virt + offset, len);
  912. kunmap_atomic(page_virt, KM_USER0);
  913. kvm_release_page(page);
  914. return 0;
  915. }
  916. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  917. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  918. {
  919. gfn_t gfn = gpa >> PAGE_SHIFT;
  920. int seg;
  921. int offset = offset_in_page(gpa);
  922. int ret;
  923. while ((seg = next_segment(len, offset)) != 0) {
  924. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  925. if (ret < 0)
  926. return ret;
  927. offset = 0;
  928. len -= seg;
  929. data += seg;
  930. ++gfn;
  931. }
  932. return 0;
  933. }
  934. EXPORT_SYMBOL_GPL(kvm_read_guest);
  935. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  936. int offset, int len)
  937. {
  938. void *page_virt;
  939. struct page *page;
  940. page = gfn_to_page(kvm, gfn);
  941. if (is_error_page(page)) {
  942. kvm_release_page(page);
  943. return -EFAULT;
  944. }
  945. page_virt = kmap_atomic(page, KM_USER0);
  946. memcpy(page_virt + offset, data, len);
  947. kunmap_atomic(page_virt, KM_USER0);
  948. mark_page_dirty(kvm, gfn);
  949. kvm_release_page(page);
  950. return 0;
  951. }
  952. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  953. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  954. unsigned long len)
  955. {
  956. gfn_t gfn = gpa >> PAGE_SHIFT;
  957. int seg;
  958. int offset = offset_in_page(gpa);
  959. int ret;
  960. while ((seg = next_segment(len, offset)) != 0) {
  961. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  962. if (ret < 0)
  963. return ret;
  964. offset = 0;
  965. len -= seg;
  966. data += seg;
  967. ++gfn;
  968. }
  969. return 0;
  970. }
  971. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  972. {
  973. void *page_virt;
  974. struct page *page;
  975. page = gfn_to_page(kvm, gfn);
  976. if (is_error_page(page)) {
  977. kvm_release_page(page);
  978. return -EFAULT;
  979. }
  980. page_virt = kmap_atomic(page, KM_USER0);
  981. memset(page_virt + offset, 0, len);
  982. kunmap_atomic(page_virt, KM_USER0);
  983. kvm_release_page(page);
  984. return 0;
  985. }
  986. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  987. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  988. {
  989. gfn_t gfn = gpa >> PAGE_SHIFT;
  990. int seg;
  991. int offset = offset_in_page(gpa);
  992. int ret;
  993. while ((seg = next_segment(len, offset)) != 0) {
  994. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  995. if (ret < 0)
  996. return ret;
  997. offset = 0;
  998. len -= seg;
  999. ++gfn;
  1000. }
  1001. return 0;
  1002. }
  1003. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1004. /* WARNING: Does not work on aliased pages. */
  1005. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1006. {
  1007. struct kvm_memory_slot *memslot;
  1008. memslot = __gfn_to_memslot(kvm, gfn);
  1009. if (memslot && memslot->dirty_bitmap) {
  1010. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1011. /* avoid RMW */
  1012. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1013. set_bit(rel_gfn, memslot->dirty_bitmap);
  1014. }
  1015. }
  1016. int emulator_read_std(unsigned long addr,
  1017. void *val,
  1018. unsigned int bytes,
  1019. struct kvm_vcpu *vcpu)
  1020. {
  1021. void *data = val;
  1022. while (bytes) {
  1023. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1024. unsigned offset = addr & (PAGE_SIZE-1);
  1025. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1026. int ret;
  1027. if (gpa == UNMAPPED_GVA)
  1028. return X86EMUL_PROPAGATE_FAULT;
  1029. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1030. if (ret < 0)
  1031. return X86EMUL_UNHANDLEABLE;
  1032. bytes -= tocopy;
  1033. data += tocopy;
  1034. addr += tocopy;
  1035. }
  1036. return X86EMUL_CONTINUE;
  1037. }
  1038. EXPORT_SYMBOL_GPL(emulator_read_std);
  1039. static int emulator_write_std(unsigned long addr,
  1040. const void *val,
  1041. unsigned int bytes,
  1042. struct kvm_vcpu *vcpu)
  1043. {
  1044. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1045. return X86EMUL_UNHANDLEABLE;
  1046. }
  1047. /*
  1048. * Only apic need an MMIO device hook, so shortcut now..
  1049. */
  1050. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1051. gpa_t addr)
  1052. {
  1053. struct kvm_io_device *dev;
  1054. if (vcpu->apic) {
  1055. dev = &vcpu->apic->dev;
  1056. if (dev->in_range(dev, addr))
  1057. return dev;
  1058. }
  1059. return NULL;
  1060. }
  1061. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1062. gpa_t addr)
  1063. {
  1064. struct kvm_io_device *dev;
  1065. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1066. if (dev == NULL)
  1067. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1068. return dev;
  1069. }
  1070. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1071. gpa_t addr)
  1072. {
  1073. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1074. }
  1075. static int emulator_read_emulated(unsigned long addr,
  1076. void *val,
  1077. unsigned int bytes,
  1078. struct kvm_vcpu *vcpu)
  1079. {
  1080. struct kvm_io_device *mmio_dev;
  1081. gpa_t gpa;
  1082. if (vcpu->mmio_read_completed) {
  1083. memcpy(val, vcpu->mmio_data, bytes);
  1084. vcpu->mmio_read_completed = 0;
  1085. return X86EMUL_CONTINUE;
  1086. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1087. == X86EMUL_CONTINUE)
  1088. return X86EMUL_CONTINUE;
  1089. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1090. if (gpa == UNMAPPED_GVA)
  1091. return X86EMUL_PROPAGATE_FAULT;
  1092. /*
  1093. * Is this MMIO handled locally?
  1094. */
  1095. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1096. if (mmio_dev) {
  1097. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1098. return X86EMUL_CONTINUE;
  1099. }
  1100. vcpu->mmio_needed = 1;
  1101. vcpu->mmio_phys_addr = gpa;
  1102. vcpu->mmio_size = bytes;
  1103. vcpu->mmio_is_write = 0;
  1104. return X86EMUL_UNHANDLEABLE;
  1105. }
  1106. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1107. const void *val, int bytes)
  1108. {
  1109. int ret;
  1110. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1111. if (ret < 0)
  1112. return 0;
  1113. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1114. return 1;
  1115. }
  1116. static int emulator_write_emulated_onepage(unsigned long addr,
  1117. const void *val,
  1118. unsigned int bytes,
  1119. struct kvm_vcpu *vcpu)
  1120. {
  1121. struct kvm_io_device *mmio_dev;
  1122. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1123. if (gpa == UNMAPPED_GVA) {
  1124. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1125. return X86EMUL_PROPAGATE_FAULT;
  1126. }
  1127. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1128. return X86EMUL_CONTINUE;
  1129. /*
  1130. * Is this MMIO handled locally?
  1131. */
  1132. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1133. if (mmio_dev) {
  1134. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1135. return X86EMUL_CONTINUE;
  1136. }
  1137. vcpu->mmio_needed = 1;
  1138. vcpu->mmio_phys_addr = gpa;
  1139. vcpu->mmio_size = bytes;
  1140. vcpu->mmio_is_write = 1;
  1141. memcpy(vcpu->mmio_data, val, bytes);
  1142. return X86EMUL_CONTINUE;
  1143. }
  1144. int emulator_write_emulated(unsigned long addr,
  1145. const void *val,
  1146. unsigned int bytes,
  1147. struct kvm_vcpu *vcpu)
  1148. {
  1149. /* Crossing a page boundary? */
  1150. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1151. int rc, now;
  1152. now = -addr & ~PAGE_MASK;
  1153. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1154. if (rc != X86EMUL_CONTINUE)
  1155. return rc;
  1156. addr += now;
  1157. val += now;
  1158. bytes -= now;
  1159. }
  1160. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1161. }
  1162. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1163. static int emulator_cmpxchg_emulated(unsigned long addr,
  1164. const void *old,
  1165. const void *new,
  1166. unsigned int bytes,
  1167. struct kvm_vcpu *vcpu)
  1168. {
  1169. static int reported;
  1170. if (!reported) {
  1171. reported = 1;
  1172. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1173. }
  1174. return emulator_write_emulated(addr, new, bytes, vcpu);
  1175. }
  1176. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1177. {
  1178. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1179. }
  1180. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1181. {
  1182. return X86EMUL_CONTINUE;
  1183. }
  1184. int emulate_clts(struct kvm_vcpu *vcpu)
  1185. {
  1186. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1187. return X86EMUL_CONTINUE;
  1188. }
  1189. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1190. {
  1191. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1192. switch (dr) {
  1193. case 0 ... 3:
  1194. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1195. return X86EMUL_CONTINUE;
  1196. default:
  1197. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1198. return X86EMUL_UNHANDLEABLE;
  1199. }
  1200. }
  1201. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1202. {
  1203. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1204. int exception;
  1205. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1206. if (exception) {
  1207. /* FIXME: better handling */
  1208. return X86EMUL_UNHANDLEABLE;
  1209. }
  1210. return X86EMUL_CONTINUE;
  1211. }
  1212. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1213. {
  1214. static int reported;
  1215. u8 opcodes[4];
  1216. unsigned long rip = vcpu->rip;
  1217. unsigned long rip_linear;
  1218. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1219. if (reported)
  1220. return;
  1221. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1222. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1223. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1224. reported = 1;
  1225. }
  1226. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1227. struct x86_emulate_ops emulate_ops = {
  1228. .read_std = emulator_read_std,
  1229. .write_std = emulator_write_std,
  1230. .read_emulated = emulator_read_emulated,
  1231. .write_emulated = emulator_write_emulated,
  1232. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1233. };
  1234. int emulate_instruction(struct kvm_vcpu *vcpu,
  1235. struct kvm_run *run,
  1236. unsigned long cr2,
  1237. u16 error_code,
  1238. int no_decode)
  1239. {
  1240. int r;
  1241. vcpu->mmio_fault_cr2 = cr2;
  1242. kvm_x86_ops->cache_regs(vcpu);
  1243. vcpu->mmio_is_write = 0;
  1244. vcpu->pio.string = 0;
  1245. if (!no_decode) {
  1246. int cs_db, cs_l;
  1247. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1248. vcpu->emulate_ctxt.vcpu = vcpu;
  1249. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1250. vcpu->emulate_ctxt.cr2 = cr2;
  1251. vcpu->emulate_ctxt.mode =
  1252. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1253. ? X86EMUL_MODE_REAL : cs_l
  1254. ? X86EMUL_MODE_PROT64 : cs_db
  1255. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1256. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1257. vcpu->emulate_ctxt.cs_base = 0;
  1258. vcpu->emulate_ctxt.ds_base = 0;
  1259. vcpu->emulate_ctxt.es_base = 0;
  1260. vcpu->emulate_ctxt.ss_base = 0;
  1261. } else {
  1262. vcpu->emulate_ctxt.cs_base =
  1263. get_segment_base(vcpu, VCPU_SREG_CS);
  1264. vcpu->emulate_ctxt.ds_base =
  1265. get_segment_base(vcpu, VCPU_SREG_DS);
  1266. vcpu->emulate_ctxt.es_base =
  1267. get_segment_base(vcpu, VCPU_SREG_ES);
  1268. vcpu->emulate_ctxt.ss_base =
  1269. get_segment_base(vcpu, VCPU_SREG_SS);
  1270. }
  1271. vcpu->emulate_ctxt.gs_base =
  1272. get_segment_base(vcpu, VCPU_SREG_GS);
  1273. vcpu->emulate_ctxt.fs_base =
  1274. get_segment_base(vcpu, VCPU_SREG_FS);
  1275. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1276. if (r) {
  1277. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1278. return EMULATE_DONE;
  1279. return EMULATE_FAIL;
  1280. }
  1281. }
  1282. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1283. if (vcpu->pio.string)
  1284. return EMULATE_DO_MMIO;
  1285. if ((r || vcpu->mmio_is_write) && run) {
  1286. run->exit_reason = KVM_EXIT_MMIO;
  1287. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1288. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1289. run->mmio.len = vcpu->mmio_size;
  1290. run->mmio.is_write = vcpu->mmio_is_write;
  1291. }
  1292. if (r) {
  1293. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1294. return EMULATE_DONE;
  1295. if (!vcpu->mmio_needed) {
  1296. kvm_report_emulation_failure(vcpu, "mmio");
  1297. return EMULATE_FAIL;
  1298. }
  1299. return EMULATE_DO_MMIO;
  1300. }
  1301. kvm_x86_ops->decache_regs(vcpu);
  1302. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1303. if (vcpu->mmio_is_write) {
  1304. vcpu->mmio_needed = 0;
  1305. return EMULATE_DO_MMIO;
  1306. }
  1307. return EMULATE_DONE;
  1308. }
  1309. EXPORT_SYMBOL_GPL(emulate_instruction);
  1310. /*
  1311. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1312. */
  1313. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1314. {
  1315. DECLARE_WAITQUEUE(wait, current);
  1316. add_wait_queue(&vcpu->wq, &wait);
  1317. /*
  1318. * We will block until either an interrupt or a signal wakes us up
  1319. */
  1320. while (!kvm_cpu_has_interrupt(vcpu)
  1321. && !signal_pending(current)
  1322. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1323. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1324. set_current_state(TASK_INTERRUPTIBLE);
  1325. vcpu_put(vcpu);
  1326. schedule();
  1327. vcpu_load(vcpu);
  1328. }
  1329. __set_current_state(TASK_RUNNING);
  1330. remove_wait_queue(&vcpu->wq, &wait);
  1331. }
  1332. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1333. {
  1334. ++vcpu->stat.halt_exits;
  1335. if (irqchip_in_kernel(vcpu->kvm)) {
  1336. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1337. kvm_vcpu_block(vcpu);
  1338. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1339. return -EINTR;
  1340. return 1;
  1341. } else {
  1342. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1343. return 0;
  1344. }
  1345. }
  1346. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1347. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1348. {
  1349. unsigned long nr, a0, a1, a2, a3, ret;
  1350. kvm_x86_ops->cache_regs(vcpu);
  1351. nr = vcpu->regs[VCPU_REGS_RAX];
  1352. a0 = vcpu->regs[VCPU_REGS_RBX];
  1353. a1 = vcpu->regs[VCPU_REGS_RCX];
  1354. a2 = vcpu->regs[VCPU_REGS_RDX];
  1355. a3 = vcpu->regs[VCPU_REGS_RSI];
  1356. if (!is_long_mode(vcpu)) {
  1357. nr &= 0xFFFFFFFF;
  1358. a0 &= 0xFFFFFFFF;
  1359. a1 &= 0xFFFFFFFF;
  1360. a2 &= 0xFFFFFFFF;
  1361. a3 &= 0xFFFFFFFF;
  1362. }
  1363. switch (nr) {
  1364. default:
  1365. ret = -KVM_ENOSYS;
  1366. break;
  1367. }
  1368. vcpu->regs[VCPU_REGS_RAX] = ret;
  1369. kvm_x86_ops->decache_regs(vcpu);
  1370. return 0;
  1371. }
  1372. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1373. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1374. {
  1375. char instruction[3];
  1376. int ret = 0;
  1377. mutex_lock(&vcpu->kvm->lock);
  1378. /*
  1379. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1380. * to ensure that the updated hypercall appears atomically across all
  1381. * VCPUs.
  1382. */
  1383. kvm_mmu_zap_all(vcpu->kvm);
  1384. kvm_x86_ops->cache_regs(vcpu);
  1385. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1386. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1387. != X86EMUL_CONTINUE)
  1388. ret = -EFAULT;
  1389. mutex_unlock(&vcpu->kvm->lock);
  1390. return ret;
  1391. }
  1392. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1393. {
  1394. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1395. }
  1396. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1397. {
  1398. struct descriptor_table dt = { limit, base };
  1399. kvm_x86_ops->set_gdt(vcpu, &dt);
  1400. }
  1401. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1402. {
  1403. struct descriptor_table dt = { limit, base };
  1404. kvm_x86_ops->set_idt(vcpu, &dt);
  1405. }
  1406. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1407. unsigned long *rflags)
  1408. {
  1409. lmsw(vcpu, msw);
  1410. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1411. }
  1412. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1413. {
  1414. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1415. switch (cr) {
  1416. case 0:
  1417. return vcpu->cr0;
  1418. case 2:
  1419. return vcpu->cr2;
  1420. case 3:
  1421. return vcpu->cr3;
  1422. case 4:
  1423. return vcpu->cr4;
  1424. default:
  1425. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1426. return 0;
  1427. }
  1428. }
  1429. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1430. unsigned long *rflags)
  1431. {
  1432. switch (cr) {
  1433. case 0:
  1434. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1435. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1436. break;
  1437. case 2:
  1438. vcpu->cr2 = val;
  1439. break;
  1440. case 3:
  1441. set_cr3(vcpu, val);
  1442. break;
  1443. case 4:
  1444. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1445. break;
  1446. default:
  1447. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1448. }
  1449. }
  1450. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1451. {
  1452. u64 data;
  1453. switch (msr) {
  1454. case 0xc0010010: /* SYSCFG */
  1455. case 0xc0010015: /* HWCR */
  1456. case MSR_IA32_PLATFORM_ID:
  1457. case MSR_IA32_P5_MC_ADDR:
  1458. case MSR_IA32_P5_MC_TYPE:
  1459. case MSR_IA32_MC0_CTL:
  1460. case MSR_IA32_MCG_STATUS:
  1461. case MSR_IA32_MCG_CAP:
  1462. case MSR_IA32_MC0_MISC:
  1463. case MSR_IA32_MC0_MISC+4:
  1464. case MSR_IA32_MC0_MISC+8:
  1465. case MSR_IA32_MC0_MISC+12:
  1466. case MSR_IA32_MC0_MISC+16:
  1467. case MSR_IA32_UCODE_REV:
  1468. case MSR_IA32_PERF_STATUS:
  1469. case MSR_IA32_EBL_CR_POWERON:
  1470. /* MTRR registers */
  1471. case 0xfe:
  1472. case 0x200 ... 0x2ff:
  1473. data = 0;
  1474. break;
  1475. case 0xcd: /* fsb frequency */
  1476. data = 3;
  1477. break;
  1478. case MSR_IA32_APICBASE:
  1479. data = kvm_get_apic_base(vcpu);
  1480. break;
  1481. case MSR_IA32_MISC_ENABLE:
  1482. data = vcpu->ia32_misc_enable_msr;
  1483. break;
  1484. #ifdef CONFIG_X86_64
  1485. case MSR_EFER:
  1486. data = vcpu->shadow_efer;
  1487. break;
  1488. #endif
  1489. default:
  1490. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1491. return 1;
  1492. }
  1493. *pdata = data;
  1494. return 0;
  1495. }
  1496. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1497. /*
  1498. * Reads an msr value (of 'msr_index') into 'pdata'.
  1499. * Returns 0 on success, non-0 otherwise.
  1500. * Assumes vcpu_load() was already called.
  1501. */
  1502. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1503. {
  1504. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1505. }
  1506. #ifdef CONFIG_X86_64
  1507. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1508. {
  1509. if (efer & EFER_RESERVED_BITS) {
  1510. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1511. efer);
  1512. inject_gp(vcpu);
  1513. return;
  1514. }
  1515. if (is_paging(vcpu)
  1516. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1517. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1518. inject_gp(vcpu);
  1519. return;
  1520. }
  1521. kvm_x86_ops->set_efer(vcpu, efer);
  1522. efer &= ~EFER_LMA;
  1523. efer |= vcpu->shadow_efer & EFER_LMA;
  1524. vcpu->shadow_efer = efer;
  1525. }
  1526. #endif
  1527. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1528. {
  1529. switch (msr) {
  1530. #ifdef CONFIG_X86_64
  1531. case MSR_EFER:
  1532. set_efer(vcpu, data);
  1533. break;
  1534. #endif
  1535. case MSR_IA32_MC0_STATUS:
  1536. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1537. __FUNCTION__, data);
  1538. break;
  1539. case MSR_IA32_MCG_STATUS:
  1540. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1541. __FUNCTION__, data);
  1542. break;
  1543. case MSR_IA32_UCODE_REV:
  1544. case MSR_IA32_UCODE_WRITE:
  1545. case 0x200 ... 0x2ff: /* MTRRs */
  1546. break;
  1547. case MSR_IA32_APICBASE:
  1548. kvm_set_apic_base(vcpu, data);
  1549. break;
  1550. case MSR_IA32_MISC_ENABLE:
  1551. vcpu->ia32_misc_enable_msr = data;
  1552. break;
  1553. default:
  1554. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1555. return 1;
  1556. }
  1557. return 0;
  1558. }
  1559. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1560. /*
  1561. * Writes msr value into into the appropriate "register".
  1562. * Returns 0 on success, non-0 otherwise.
  1563. * Assumes vcpu_load() was already called.
  1564. */
  1565. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1566. {
  1567. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1568. }
  1569. void kvm_resched(struct kvm_vcpu *vcpu)
  1570. {
  1571. if (!need_resched())
  1572. return;
  1573. cond_resched();
  1574. }
  1575. EXPORT_SYMBOL_GPL(kvm_resched);
  1576. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1577. {
  1578. int i;
  1579. u32 function;
  1580. struct kvm_cpuid_entry *e, *best;
  1581. kvm_x86_ops->cache_regs(vcpu);
  1582. function = vcpu->regs[VCPU_REGS_RAX];
  1583. vcpu->regs[VCPU_REGS_RAX] = 0;
  1584. vcpu->regs[VCPU_REGS_RBX] = 0;
  1585. vcpu->regs[VCPU_REGS_RCX] = 0;
  1586. vcpu->regs[VCPU_REGS_RDX] = 0;
  1587. best = NULL;
  1588. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1589. e = &vcpu->cpuid_entries[i];
  1590. if (e->function == function) {
  1591. best = e;
  1592. break;
  1593. }
  1594. /*
  1595. * Both basic or both extended?
  1596. */
  1597. if (((e->function ^ function) & 0x80000000) == 0)
  1598. if (!best || e->function > best->function)
  1599. best = e;
  1600. }
  1601. if (best) {
  1602. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1603. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1604. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1605. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1606. }
  1607. kvm_x86_ops->decache_regs(vcpu);
  1608. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1609. }
  1610. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1611. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1612. {
  1613. void *p = vcpu->pio_data;
  1614. void *q;
  1615. unsigned bytes;
  1616. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1617. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1618. PAGE_KERNEL);
  1619. if (!q) {
  1620. free_pio_guest_pages(vcpu);
  1621. return -ENOMEM;
  1622. }
  1623. q += vcpu->pio.guest_page_offset;
  1624. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1625. if (vcpu->pio.in)
  1626. memcpy(q, p, bytes);
  1627. else
  1628. memcpy(p, q, bytes);
  1629. q -= vcpu->pio.guest_page_offset;
  1630. vunmap(q);
  1631. free_pio_guest_pages(vcpu);
  1632. return 0;
  1633. }
  1634. static int complete_pio(struct kvm_vcpu *vcpu)
  1635. {
  1636. struct kvm_pio_request *io = &vcpu->pio;
  1637. long delta;
  1638. int r;
  1639. kvm_x86_ops->cache_regs(vcpu);
  1640. if (!io->string) {
  1641. if (io->in)
  1642. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1643. io->size);
  1644. } else {
  1645. if (io->in) {
  1646. r = pio_copy_data(vcpu);
  1647. if (r) {
  1648. kvm_x86_ops->cache_regs(vcpu);
  1649. return r;
  1650. }
  1651. }
  1652. delta = 1;
  1653. if (io->rep) {
  1654. delta *= io->cur_count;
  1655. /*
  1656. * The size of the register should really depend on
  1657. * current address size.
  1658. */
  1659. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1660. }
  1661. if (io->down)
  1662. delta = -delta;
  1663. delta *= io->size;
  1664. if (io->in)
  1665. vcpu->regs[VCPU_REGS_RDI] += delta;
  1666. else
  1667. vcpu->regs[VCPU_REGS_RSI] += delta;
  1668. }
  1669. kvm_x86_ops->decache_regs(vcpu);
  1670. io->count -= io->cur_count;
  1671. io->cur_count = 0;
  1672. return 0;
  1673. }
  1674. static void kernel_pio(struct kvm_io_device *pio_dev,
  1675. struct kvm_vcpu *vcpu,
  1676. void *pd)
  1677. {
  1678. /* TODO: String I/O for in kernel device */
  1679. mutex_lock(&vcpu->kvm->lock);
  1680. if (vcpu->pio.in)
  1681. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1682. vcpu->pio.size,
  1683. pd);
  1684. else
  1685. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1686. vcpu->pio.size,
  1687. pd);
  1688. mutex_unlock(&vcpu->kvm->lock);
  1689. }
  1690. static void pio_string_write(struct kvm_io_device *pio_dev,
  1691. struct kvm_vcpu *vcpu)
  1692. {
  1693. struct kvm_pio_request *io = &vcpu->pio;
  1694. void *pd = vcpu->pio_data;
  1695. int i;
  1696. mutex_lock(&vcpu->kvm->lock);
  1697. for (i = 0; i < io->cur_count; i++) {
  1698. kvm_iodevice_write(pio_dev, io->port,
  1699. io->size,
  1700. pd);
  1701. pd += io->size;
  1702. }
  1703. mutex_unlock(&vcpu->kvm->lock);
  1704. }
  1705. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1706. int size, unsigned port)
  1707. {
  1708. struct kvm_io_device *pio_dev;
  1709. vcpu->run->exit_reason = KVM_EXIT_IO;
  1710. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1711. vcpu->run->io.size = vcpu->pio.size = size;
  1712. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1713. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1714. vcpu->run->io.port = vcpu->pio.port = port;
  1715. vcpu->pio.in = in;
  1716. vcpu->pio.string = 0;
  1717. vcpu->pio.down = 0;
  1718. vcpu->pio.guest_page_offset = 0;
  1719. vcpu->pio.rep = 0;
  1720. kvm_x86_ops->cache_regs(vcpu);
  1721. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1722. kvm_x86_ops->decache_regs(vcpu);
  1723. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1724. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1725. if (pio_dev) {
  1726. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1727. complete_pio(vcpu);
  1728. return 1;
  1729. }
  1730. return 0;
  1731. }
  1732. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1733. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1734. int size, unsigned long count, int down,
  1735. gva_t address, int rep, unsigned port)
  1736. {
  1737. unsigned now, in_page;
  1738. int i, ret = 0;
  1739. int nr_pages = 1;
  1740. struct page *page;
  1741. struct kvm_io_device *pio_dev;
  1742. vcpu->run->exit_reason = KVM_EXIT_IO;
  1743. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1744. vcpu->run->io.size = vcpu->pio.size = size;
  1745. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1746. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1747. vcpu->run->io.port = vcpu->pio.port = port;
  1748. vcpu->pio.in = in;
  1749. vcpu->pio.string = 1;
  1750. vcpu->pio.down = down;
  1751. vcpu->pio.guest_page_offset = offset_in_page(address);
  1752. vcpu->pio.rep = rep;
  1753. if (!count) {
  1754. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1755. return 1;
  1756. }
  1757. if (!down)
  1758. in_page = PAGE_SIZE - offset_in_page(address);
  1759. else
  1760. in_page = offset_in_page(address) + size;
  1761. now = min(count, (unsigned long)in_page / size);
  1762. if (!now) {
  1763. /*
  1764. * String I/O straddles page boundary. Pin two guest pages
  1765. * so that we satisfy atomicity constraints. Do just one
  1766. * transaction to avoid complexity.
  1767. */
  1768. nr_pages = 2;
  1769. now = 1;
  1770. }
  1771. if (down) {
  1772. /*
  1773. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1774. */
  1775. pr_unimpl(vcpu, "guest string pio down\n");
  1776. inject_gp(vcpu);
  1777. return 1;
  1778. }
  1779. vcpu->run->io.count = now;
  1780. vcpu->pio.cur_count = now;
  1781. if (vcpu->pio.cur_count == vcpu->pio.count)
  1782. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1783. for (i = 0; i < nr_pages; ++i) {
  1784. mutex_lock(&vcpu->kvm->lock);
  1785. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1786. vcpu->pio.guest_pages[i] = page;
  1787. mutex_unlock(&vcpu->kvm->lock);
  1788. if (!page) {
  1789. inject_gp(vcpu);
  1790. free_pio_guest_pages(vcpu);
  1791. return 1;
  1792. }
  1793. }
  1794. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1795. if (!vcpu->pio.in) {
  1796. /* string PIO write */
  1797. ret = pio_copy_data(vcpu);
  1798. if (ret >= 0 && pio_dev) {
  1799. pio_string_write(pio_dev, vcpu);
  1800. complete_pio(vcpu);
  1801. if (vcpu->pio.count == 0)
  1802. ret = 1;
  1803. }
  1804. } else if (pio_dev)
  1805. pr_unimpl(vcpu, "no string pio read support yet, "
  1806. "port %x size %d count %ld\n",
  1807. port, size, count);
  1808. return ret;
  1809. }
  1810. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1811. /*
  1812. * Check if userspace requested an interrupt window, and that the
  1813. * interrupt window is open.
  1814. *
  1815. * No need to exit to userspace if we already have an interrupt queued.
  1816. */
  1817. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1818. struct kvm_run *kvm_run)
  1819. {
  1820. return (!vcpu->irq_summary &&
  1821. kvm_run->request_interrupt_window &&
  1822. vcpu->interrupt_window_open &&
  1823. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1824. }
  1825. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1826. struct kvm_run *kvm_run)
  1827. {
  1828. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1829. kvm_run->cr8 = get_cr8(vcpu);
  1830. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1831. if (irqchip_in_kernel(vcpu->kvm))
  1832. kvm_run->ready_for_interrupt_injection = 1;
  1833. else
  1834. kvm_run->ready_for_interrupt_injection =
  1835. (vcpu->interrupt_window_open &&
  1836. vcpu->irq_summary == 0);
  1837. }
  1838. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1839. {
  1840. int r;
  1841. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1842. pr_debug("vcpu %d received sipi with vector # %x\n",
  1843. vcpu->vcpu_id, vcpu->sipi_vector);
  1844. kvm_lapic_reset(vcpu);
  1845. r = kvm_x86_ops->vcpu_reset(vcpu);
  1846. if (r)
  1847. return r;
  1848. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1849. }
  1850. preempted:
  1851. if (vcpu->guest_debug.enabled)
  1852. kvm_x86_ops->guest_debug_pre(vcpu);
  1853. again:
  1854. r = kvm_mmu_reload(vcpu);
  1855. if (unlikely(r))
  1856. goto out;
  1857. kvm_inject_pending_timer_irqs(vcpu);
  1858. preempt_disable();
  1859. kvm_x86_ops->prepare_guest_switch(vcpu);
  1860. kvm_load_guest_fpu(vcpu);
  1861. local_irq_disable();
  1862. if (signal_pending(current)) {
  1863. local_irq_enable();
  1864. preempt_enable();
  1865. r = -EINTR;
  1866. kvm_run->exit_reason = KVM_EXIT_INTR;
  1867. ++vcpu->stat.signal_exits;
  1868. goto out;
  1869. }
  1870. if (irqchip_in_kernel(vcpu->kvm))
  1871. kvm_x86_ops->inject_pending_irq(vcpu);
  1872. else if (!vcpu->mmio_read_completed)
  1873. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1874. vcpu->guest_mode = 1;
  1875. kvm_guest_enter();
  1876. if (vcpu->requests)
  1877. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1878. kvm_x86_ops->tlb_flush(vcpu);
  1879. kvm_x86_ops->run(vcpu, kvm_run);
  1880. vcpu->guest_mode = 0;
  1881. local_irq_enable();
  1882. ++vcpu->stat.exits;
  1883. /*
  1884. * We must have an instruction between local_irq_enable() and
  1885. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1886. * the interrupt shadow. The stat.exits increment will do nicely.
  1887. * But we need to prevent reordering, hence this barrier():
  1888. */
  1889. barrier();
  1890. kvm_guest_exit();
  1891. preempt_enable();
  1892. /*
  1893. * Profile KVM exit RIPs:
  1894. */
  1895. if (unlikely(prof_on == KVM_PROFILING)) {
  1896. kvm_x86_ops->cache_regs(vcpu);
  1897. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1898. }
  1899. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1900. if (r > 0) {
  1901. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1902. r = -EINTR;
  1903. kvm_run->exit_reason = KVM_EXIT_INTR;
  1904. ++vcpu->stat.request_irq_exits;
  1905. goto out;
  1906. }
  1907. if (!need_resched()) {
  1908. ++vcpu->stat.light_exits;
  1909. goto again;
  1910. }
  1911. }
  1912. out:
  1913. if (r > 0) {
  1914. kvm_resched(vcpu);
  1915. goto preempted;
  1916. }
  1917. post_kvm_run_save(vcpu, kvm_run);
  1918. return r;
  1919. }
  1920. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1921. {
  1922. int r;
  1923. sigset_t sigsaved;
  1924. vcpu_load(vcpu);
  1925. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1926. kvm_vcpu_block(vcpu);
  1927. vcpu_put(vcpu);
  1928. return -EAGAIN;
  1929. }
  1930. if (vcpu->sigset_active)
  1931. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1932. /* re-sync apic's tpr */
  1933. if (!irqchip_in_kernel(vcpu->kvm))
  1934. set_cr8(vcpu, kvm_run->cr8);
  1935. if (vcpu->pio.cur_count) {
  1936. r = complete_pio(vcpu);
  1937. if (r)
  1938. goto out;
  1939. }
  1940. #if CONFIG_HAS_IOMEM
  1941. if (vcpu->mmio_needed) {
  1942. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1943. vcpu->mmio_read_completed = 1;
  1944. vcpu->mmio_needed = 0;
  1945. r = emulate_instruction(vcpu, kvm_run,
  1946. vcpu->mmio_fault_cr2, 0, 1);
  1947. if (r == EMULATE_DO_MMIO) {
  1948. /*
  1949. * Read-modify-write. Back to userspace.
  1950. */
  1951. r = 0;
  1952. goto out;
  1953. }
  1954. }
  1955. #endif
  1956. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1957. kvm_x86_ops->cache_regs(vcpu);
  1958. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1959. kvm_x86_ops->decache_regs(vcpu);
  1960. }
  1961. r = __vcpu_run(vcpu, kvm_run);
  1962. out:
  1963. if (vcpu->sigset_active)
  1964. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1965. vcpu_put(vcpu);
  1966. return r;
  1967. }
  1968. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1969. struct kvm_regs *regs)
  1970. {
  1971. vcpu_load(vcpu);
  1972. kvm_x86_ops->cache_regs(vcpu);
  1973. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1974. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1975. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1976. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1977. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1978. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1979. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1980. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1981. #ifdef CONFIG_X86_64
  1982. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1983. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1984. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1985. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1986. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1987. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1988. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1989. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1990. #endif
  1991. regs->rip = vcpu->rip;
  1992. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1993. /*
  1994. * Don't leak debug flags in case they were set for guest debugging
  1995. */
  1996. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1997. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1998. vcpu_put(vcpu);
  1999. return 0;
  2000. }
  2001. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  2002. struct kvm_regs *regs)
  2003. {
  2004. vcpu_load(vcpu);
  2005. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  2006. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  2007. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  2008. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  2009. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  2010. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  2011. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  2012. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  2013. #ifdef CONFIG_X86_64
  2014. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  2015. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  2016. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  2017. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  2018. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  2019. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  2020. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2021. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2022. #endif
  2023. vcpu->rip = regs->rip;
  2024. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2025. kvm_x86_ops->decache_regs(vcpu);
  2026. vcpu_put(vcpu);
  2027. return 0;
  2028. }
  2029. static void get_segment(struct kvm_vcpu *vcpu,
  2030. struct kvm_segment *var, int seg)
  2031. {
  2032. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2033. }
  2034. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2035. struct kvm_sregs *sregs)
  2036. {
  2037. struct descriptor_table dt;
  2038. int pending_vec;
  2039. vcpu_load(vcpu);
  2040. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2041. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2042. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2043. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2044. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2045. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2046. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2047. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2048. kvm_x86_ops->get_idt(vcpu, &dt);
  2049. sregs->idt.limit = dt.limit;
  2050. sregs->idt.base = dt.base;
  2051. kvm_x86_ops->get_gdt(vcpu, &dt);
  2052. sregs->gdt.limit = dt.limit;
  2053. sregs->gdt.base = dt.base;
  2054. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2055. sregs->cr0 = vcpu->cr0;
  2056. sregs->cr2 = vcpu->cr2;
  2057. sregs->cr3 = vcpu->cr3;
  2058. sregs->cr4 = vcpu->cr4;
  2059. sregs->cr8 = get_cr8(vcpu);
  2060. sregs->efer = vcpu->shadow_efer;
  2061. sregs->apic_base = kvm_get_apic_base(vcpu);
  2062. if (irqchip_in_kernel(vcpu->kvm)) {
  2063. memset(sregs->interrupt_bitmap, 0,
  2064. sizeof sregs->interrupt_bitmap);
  2065. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2066. if (pending_vec >= 0)
  2067. set_bit(pending_vec,
  2068. (unsigned long *)sregs->interrupt_bitmap);
  2069. } else
  2070. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2071. sizeof sregs->interrupt_bitmap);
  2072. vcpu_put(vcpu);
  2073. return 0;
  2074. }
  2075. static void set_segment(struct kvm_vcpu *vcpu,
  2076. struct kvm_segment *var, int seg)
  2077. {
  2078. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2079. }
  2080. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2081. struct kvm_sregs *sregs)
  2082. {
  2083. int mmu_reset_needed = 0;
  2084. int i, pending_vec, max_bits;
  2085. struct descriptor_table dt;
  2086. vcpu_load(vcpu);
  2087. dt.limit = sregs->idt.limit;
  2088. dt.base = sregs->idt.base;
  2089. kvm_x86_ops->set_idt(vcpu, &dt);
  2090. dt.limit = sregs->gdt.limit;
  2091. dt.base = sregs->gdt.base;
  2092. kvm_x86_ops->set_gdt(vcpu, &dt);
  2093. vcpu->cr2 = sregs->cr2;
  2094. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2095. vcpu->cr3 = sregs->cr3;
  2096. set_cr8(vcpu, sregs->cr8);
  2097. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2098. #ifdef CONFIG_X86_64
  2099. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2100. #endif
  2101. kvm_set_apic_base(vcpu, sregs->apic_base);
  2102. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2103. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2104. vcpu->cr0 = sregs->cr0;
  2105. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2106. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2107. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2108. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2109. load_pdptrs(vcpu, vcpu->cr3);
  2110. if (mmu_reset_needed)
  2111. kvm_mmu_reset_context(vcpu);
  2112. if (!irqchip_in_kernel(vcpu->kvm)) {
  2113. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2114. sizeof vcpu->irq_pending);
  2115. vcpu->irq_summary = 0;
  2116. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2117. if (vcpu->irq_pending[i])
  2118. __set_bit(i, &vcpu->irq_summary);
  2119. } else {
  2120. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2121. pending_vec = find_first_bit(
  2122. (const unsigned long *)sregs->interrupt_bitmap,
  2123. max_bits);
  2124. /* Only pending external irq is handled here */
  2125. if (pending_vec < max_bits) {
  2126. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2127. pr_debug("Set back pending irq %d\n",
  2128. pending_vec);
  2129. }
  2130. }
  2131. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2132. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2133. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2134. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2135. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2136. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2137. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2138. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2139. vcpu_put(vcpu);
  2140. return 0;
  2141. }
  2142. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2143. {
  2144. struct kvm_segment cs;
  2145. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2146. *db = cs.db;
  2147. *l = cs.l;
  2148. }
  2149. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2150. /*
  2151. * Translate a guest virtual address to a guest physical address.
  2152. */
  2153. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2154. struct kvm_translation *tr)
  2155. {
  2156. unsigned long vaddr = tr->linear_address;
  2157. gpa_t gpa;
  2158. vcpu_load(vcpu);
  2159. mutex_lock(&vcpu->kvm->lock);
  2160. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2161. tr->physical_address = gpa;
  2162. tr->valid = gpa != UNMAPPED_GVA;
  2163. tr->writeable = 1;
  2164. tr->usermode = 0;
  2165. mutex_unlock(&vcpu->kvm->lock);
  2166. vcpu_put(vcpu);
  2167. return 0;
  2168. }
  2169. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2170. struct kvm_interrupt *irq)
  2171. {
  2172. if (irq->irq < 0 || irq->irq >= 256)
  2173. return -EINVAL;
  2174. if (irqchip_in_kernel(vcpu->kvm))
  2175. return -ENXIO;
  2176. vcpu_load(vcpu);
  2177. set_bit(irq->irq, vcpu->irq_pending);
  2178. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2179. vcpu_put(vcpu);
  2180. return 0;
  2181. }
  2182. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2183. struct kvm_debug_guest *dbg)
  2184. {
  2185. int r;
  2186. vcpu_load(vcpu);
  2187. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2188. vcpu_put(vcpu);
  2189. return r;
  2190. }
  2191. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2192. unsigned long address,
  2193. int *type)
  2194. {
  2195. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2196. unsigned long pgoff;
  2197. struct page *page;
  2198. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2199. if (pgoff == 0)
  2200. page = virt_to_page(vcpu->run);
  2201. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2202. page = virt_to_page(vcpu->pio_data);
  2203. else
  2204. return NOPAGE_SIGBUS;
  2205. get_page(page);
  2206. if (type != NULL)
  2207. *type = VM_FAULT_MINOR;
  2208. return page;
  2209. }
  2210. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2211. .nopage = kvm_vcpu_nopage,
  2212. };
  2213. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2214. {
  2215. vma->vm_ops = &kvm_vcpu_vm_ops;
  2216. return 0;
  2217. }
  2218. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2219. {
  2220. struct kvm_vcpu *vcpu = filp->private_data;
  2221. fput(vcpu->kvm->filp);
  2222. return 0;
  2223. }
  2224. static struct file_operations kvm_vcpu_fops = {
  2225. .release = kvm_vcpu_release,
  2226. .unlocked_ioctl = kvm_vcpu_ioctl,
  2227. .compat_ioctl = kvm_vcpu_ioctl,
  2228. .mmap = kvm_vcpu_mmap,
  2229. };
  2230. /*
  2231. * Allocates an inode for the vcpu.
  2232. */
  2233. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2234. {
  2235. int fd, r;
  2236. struct inode *inode;
  2237. struct file *file;
  2238. r = anon_inode_getfd(&fd, &inode, &file,
  2239. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2240. if (r)
  2241. return r;
  2242. atomic_inc(&vcpu->kvm->filp->f_count);
  2243. return fd;
  2244. }
  2245. /*
  2246. * Creates some virtual cpus. Good luck creating more than one.
  2247. */
  2248. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2249. {
  2250. int r;
  2251. struct kvm_vcpu *vcpu;
  2252. if (!valid_vcpu(n))
  2253. return -EINVAL;
  2254. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2255. if (IS_ERR(vcpu))
  2256. return PTR_ERR(vcpu);
  2257. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2258. /* We do fxsave: this must be aligned. */
  2259. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2260. vcpu_load(vcpu);
  2261. r = kvm_x86_ops->vcpu_reset(vcpu);
  2262. if (r == 0)
  2263. r = kvm_mmu_setup(vcpu);
  2264. vcpu_put(vcpu);
  2265. if (r < 0)
  2266. goto free_vcpu;
  2267. mutex_lock(&kvm->lock);
  2268. if (kvm->vcpus[n]) {
  2269. r = -EEXIST;
  2270. mutex_unlock(&kvm->lock);
  2271. goto mmu_unload;
  2272. }
  2273. kvm->vcpus[n] = vcpu;
  2274. mutex_unlock(&kvm->lock);
  2275. /* Now it's all set up, let userspace reach it */
  2276. r = create_vcpu_fd(vcpu);
  2277. if (r < 0)
  2278. goto unlink;
  2279. return r;
  2280. unlink:
  2281. mutex_lock(&kvm->lock);
  2282. kvm->vcpus[n] = NULL;
  2283. mutex_unlock(&kvm->lock);
  2284. mmu_unload:
  2285. vcpu_load(vcpu);
  2286. kvm_mmu_unload(vcpu);
  2287. vcpu_put(vcpu);
  2288. free_vcpu:
  2289. kvm_x86_ops->vcpu_free(vcpu);
  2290. return r;
  2291. }
  2292. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2293. {
  2294. if (sigset) {
  2295. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2296. vcpu->sigset_active = 1;
  2297. vcpu->sigset = *sigset;
  2298. } else
  2299. vcpu->sigset_active = 0;
  2300. return 0;
  2301. }
  2302. /*
  2303. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2304. * we have asm/x86/processor.h
  2305. */
  2306. struct fxsave {
  2307. u16 cwd;
  2308. u16 swd;
  2309. u16 twd;
  2310. u16 fop;
  2311. u64 rip;
  2312. u64 rdp;
  2313. u32 mxcsr;
  2314. u32 mxcsr_mask;
  2315. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2316. #ifdef CONFIG_X86_64
  2317. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2318. #else
  2319. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2320. #endif
  2321. };
  2322. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2323. {
  2324. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2325. vcpu_load(vcpu);
  2326. memcpy(fpu->fpr, fxsave->st_space, 128);
  2327. fpu->fcw = fxsave->cwd;
  2328. fpu->fsw = fxsave->swd;
  2329. fpu->ftwx = fxsave->twd;
  2330. fpu->last_opcode = fxsave->fop;
  2331. fpu->last_ip = fxsave->rip;
  2332. fpu->last_dp = fxsave->rdp;
  2333. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2334. vcpu_put(vcpu);
  2335. return 0;
  2336. }
  2337. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2338. {
  2339. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2340. vcpu_load(vcpu);
  2341. memcpy(fxsave->st_space, fpu->fpr, 128);
  2342. fxsave->cwd = fpu->fcw;
  2343. fxsave->swd = fpu->fsw;
  2344. fxsave->twd = fpu->ftwx;
  2345. fxsave->fop = fpu->last_opcode;
  2346. fxsave->rip = fpu->last_ip;
  2347. fxsave->rdp = fpu->last_dp;
  2348. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2349. vcpu_put(vcpu);
  2350. return 0;
  2351. }
  2352. static long kvm_vcpu_ioctl(struct file *filp,
  2353. unsigned int ioctl, unsigned long arg)
  2354. {
  2355. struct kvm_vcpu *vcpu = filp->private_data;
  2356. void __user *argp = (void __user *)arg;
  2357. int r;
  2358. switch (ioctl) {
  2359. case KVM_RUN:
  2360. r = -EINVAL;
  2361. if (arg)
  2362. goto out;
  2363. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2364. break;
  2365. case KVM_GET_REGS: {
  2366. struct kvm_regs kvm_regs;
  2367. memset(&kvm_regs, 0, sizeof kvm_regs);
  2368. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2369. if (r)
  2370. goto out;
  2371. r = -EFAULT;
  2372. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2373. goto out;
  2374. r = 0;
  2375. break;
  2376. }
  2377. case KVM_SET_REGS: {
  2378. struct kvm_regs kvm_regs;
  2379. r = -EFAULT;
  2380. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2381. goto out;
  2382. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2383. if (r)
  2384. goto out;
  2385. r = 0;
  2386. break;
  2387. }
  2388. case KVM_GET_SREGS: {
  2389. struct kvm_sregs kvm_sregs;
  2390. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2391. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2392. if (r)
  2393. goto out;
  2394. r = -EFAULT;
  2395. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2396. goto out;
  2397. r = 0;
  2398. break;
  2399. }
  2400. case KVM_SET_SREGS: {
  2401. struct kvm_sregs kvm_sregs;
  2402. r = -EFAULT;
  2403. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2404. goto out;
  2405. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2406. if (r)
  2407. goto out;
  2408. r = 0;
  2409. break;
  2410. }
  2411. case KVM_TRANSLATE: {
  2412. struct kvm_translation tr;
  2413. r = -EFAULT;
  2414. if (copy_from_user(&tr, argp, sizeof tr))
  2415. goto out;
  2416. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2417. if (r)
  2418. goto out;
  2419. r = -EFAULT;
  2420. if (copy_to_user(argp, &tr, sizeof tr))
  2421. goto out;
  2422. r = 0;
  2423. break;
  2424. }
  2425. case KVM_INTERRUPT: {
  2426. struct kvm_interrupt irq;
  2427. r = -EFAULT;
  2428. if (copy_from_user(&irq, argp, sizeof irq))
  2429. goto out;
  2430. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2431. if (r)
  2432. goto out;
  2433. r = 0;
  2434. break;
  2435. }
  2436. case KVM_DEBUG_GUEST: {
  2437. struct kvm_debug_guest dbg;
  2438. r = -EFAULT;
  2439. if (copy_from_user(&dbg, argp, sizeof dbg))
  2440. goto out;
  2441. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2442. if (r)
  2443. goto out;
  2444. r = 0;
  2445. break;
  2446. }
  2447. case KVM_SET_SIGNAL_MASK: {
  2448. struct kvm_signal_mask __user *sigmask_arg = argp;
  2449. struct kvm_signal_mask kvm_sigmask;
  2450. sigset_t sigset, *p;
  2451. p = NULL;
  2452. if (argp) {
  2453. r = -EFAULT;
  2454. if (copy_from_user(&kvm_sigmask, argp,
  2455. sizeof kvm_sigmask))
  2456. goto out;
  2457. r = -EINVAL;
  2458. if (kvm_sigmask.len != sizeof sigset)
  2459. goto out;
  2460. r = -EFAULT;
  2461. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2462. sizeof sigset))
  2463. goto out;
  2464. p = &sigset;
  2465. }
  2466. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2467. break;
  2468. }
  2469. case KVM_GET_FPU: {
  2470. struct kvm_fpu fpu;
  2471. memset(&fpu, 0, sizeof fpu);
  2472. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2473. if (r)
  2474. goto out;
  2475. r = -EFAULT;
  2476. if (copy_to_user(argp, &fpu, sizeof fpu))
  2477. goto out;
  2478. r = 0;
  2479. break;
  2480. }
  2481. case KVM_SET_FPU: {
  2482. struct kvm_fpu fpu;
  2483. r = -EFAULT;
  2484. if (copy_from_user(&fpu, argp, sizeof fpu))
  2485. goto out;
  2486. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2487. if (r)
  2488. goto out;
  2489. r = 0;
  2490. break;
  2491. }
  2492. default:
  2493. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2494. }
  2495. out:
  2496. return r;
  2497. }
  2498. static long kvm_vm_ioctl(struct file *filp,
  2499. unsigned int ioctl, unsigned long arg)
  2500. {
  2501. struct kvm *kvm = filp->private_data;
  2502. void __user *argp = (void __user *)arg;
  2503. int r = -EINVAL;
  2504. switch (ioctl) {
  2505. case KVM_CREATE_VCPU:
  2506. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2507. if (r < 0)
  2508. goto out;
  2509. break;
  2510. case KVM_SET_MEMORY_REGION: {
  2511. struct kvm_memory_region kvm_mem;
  2512. struct kvm_userspace_memory_region kvm_userspace_mem;
  2513. r = -EFAULT;
  2514. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2515. goto out;
  2516. kvm_userspace_mem.slot = kvm_mem.slot;
  2517. kvm_userspace_mem.flags = kvm_mem.flags;
  2518. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2519. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2520. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2521. if (r)
  2522. goto out;
  2523. break;
  2524. }
  2525. case KVM_SET_USER_MEMORY_REGION: {
  2526. struct kvm_userspace_memory_region kvm_userspace_mem;
  2527. r = -EFAULT;
  2528. if (copy_from_user(&kvm_userspace_mem, argp,
  2529. sizeof kvm_userspace_mem))
  2530. goto out;
  2531. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2532. if (r)
  2533. goto out;
  2534. break;
  2535. }
  2536. case KVM_SET_NR_MMU_PAGES:
  2537. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2538. if (r)
  2539. goto out;
  2540. break;
  2541. case KVM_GET_NR_MMU_PAGES:
  2542. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2543. break;
  2544. case KVM_GET_DIRTY_LOG: {
  2545. struct kvm_dirty_log log;
  2546. r = -EFAULT;
  2547. if (copy_from_user(&log, argp, sizeof log))
  2548. goto out;
  2549. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2550. if (r)
  2551. goto out;
  2552. break;
  2553. }
  2554. case KVM_SET_MEMORY_ALIAS: {
  2555. struct kvm_memory_alias alias;
  2556. r = -EFAULT;
  2557. if (copy_from_user(&alias, argp, sizeof alias))
  2558. goto out;
  2559. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2560. if (r)
  2561. goto out;
  2562. break;
  2563. }
  2564. case KVM_CREATE_IRQCHIP:
  2565. r = -ENOMEM;
  2566. kvm->vpic = kvm_create_pic(kvm);
  2567. if (kvm->vpic) {
  2568. r = kvm_ioapic_init(kvm);
  2569. if (r) {
  2570. kfree(kvm->vpic);
  2571. kvm->vpic = NULL;
  2572. goto out;
  2573. }
  2574. } else
  2575. goto out;
  2576. break;
  2577. case KVM_IRQ_LINE: {
  2578. struct kvm_irq_level irq_event;
  2579. r = -EFAULT;
  2580. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2581. goto out;
  2582. if (irqchip_in_kernel(kvm)) {
  2583. mutex_lock(&kvm->lock);
  2584. if (irq_event.irq < 16)
  2585. kvm_pic_set_irq(pic_irqchip(kvm),
  2586. irq_event.irq,
  2587. irq_event.level);
  2588. kvm_ioapic_set_irq(kvm->vioapic,
  2589. irq_event.irq,
  2590. irq_event.level);
  2591. mutex_unlock(&kvm->lock);
  2592. r = 0;
  2593. }
  2594. break;
  2595. }
  2596. case KVM_GET_IRQCHIP: {
  2597. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2598. struct kvm_irqchip chip;
  2599. r = -EFAULT;
  2600. if (copy_from_user(&chip, argp, sizeof chip))
  2601. goto out;
  2602. r = -ENXIO;
  2603. if (!irqchip_in_kernel(kvm))
  2604. goto out;
  2605. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2606. if (r)
  2607. goto out;
  2608. r = -EFAULT;
  2609. if (copy_to_user(argp, &chip, sizeof chip))
  2610. goto out;
  2611. r = 0;
  2612. break;
  2613. }
  2614. case KVM_SET_IRQCHIP: {
  2615. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2616. struct kvm_irqchip chip;
  2617. r = -EFAULT;
  2618. if (copy_from_user(&chip, argp, sizeof chip))
  2619. goto out;
  2620. r = -ENXIO;
  2621. if (!irqchip_in_kernel(kvm))
  2622. goto out;
  2623. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2624. if (r)
  2625. goto out;
  2626. r = 0;
  2627. break;
  2628. }
  2629. default:
  2630. ;
  2631. }
  2632. out:
  2633. return r;
  2634. }
  2635. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2636. unsigned long address,
  2637. int *type)
  2638. {
  2639. struct kvm *kvm = vma->vm_file->private_data;
  2640. unsigned long pgoff;
  2641. struct page *page;
  2642. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2643. page = gfn_to_page(kvm, pgoff);
  2644. if (is_error_page(page)) {
  2645. kvm_release_page(page);
  2646. return NOPAGE_SIGBUS;
  2647. }
  2648. if (type != NULL)
  2649. *type = VM_FAULT_MINOR;
  2650. return page;
  2651. }
  2652. static struct vm_operations_struct kvm_vm_vm_ops = {
  2653. .nopage = kvm_vm_nopage,
  2654. };
  2655. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2656. {
  2657. vma->vm_ops = &kvm_vm_vm_ops;
  2658. return 0;
  2659. }
  2660. static struct file_operations kvm_vm_fops = {
  2661. .release = kvm_vm_release,
  2662. .unlocked_ioctl = kvm_vm_ioctl,
  2663. .compat_ioctl = kvm_vm_ioctl,
  2664. .mmap = kvm_vm_mmap,
  2665. };
  2666. static int kvm_dev_ioctl_create_vm(void)
  2667. {
  2668. int fd, r;
  2669. struct inode *inode;
  2670. struct file *file;
  2671. struct kvm *kvm;
  2672. kvm = kvm_create_vm();
  2673. if (IS_ERR(kvm))
  2674. return PTR_ERR(kvm);
  2675. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2676. if (r) {
  2677. kvm_destroy_vm(kvm);
  2678. return r;
  2679. }
  2680. kvm->filp = file;
  2681. return fd;
  2682. }
  2683. static long kvm_dev_ioctl(struct file *filp,
  2684. unsigned int ioctl, unsigned long arg)
  2685. {
  2686. void __user *argp = (void __user *)arg;
  2687. long r = -EINVAL;
  2688. switch (ioctl) {
  2689. case KVM_GET_API_VERSION:
  2690. r = -EINVAL;
  2691. if (arg)
  2692. goto out;
  2693. r = KVM_API_VERSION;
  2694. break;
  2695. case KVM_CREATE_VM:
  2696. r = -EINVAL;
  2697. if (arg)
  2698. goto out;
  2699. r = kvm_dev_ioctl_create_vm();
  2700. break;
  2701. case KVM_CHECK_EXTENSION: {
  2702. int ext = (long)argp;
  2703. switch (ext) {
  2704. case KVM_CAP_IRQCHIP:
  2705. case KVM_CAP_HLT:
  2706. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2707. case KVM_CAP_USER_MEMORY:
  2708. r = 1;
  2709. break;
  2710. default:
  2711. r = 0;
  2712. break;
  2713. }
  2714. break;
  2715. }
  2716. case KVM_GET_VCPU_MMAP_SIZE:
  2717. r = -EINVAL;
  2718. if (arg)
  2719. goto out;
  2720. r = 2 * PAGE_SIZE;
  2721. break;
  2722. default:
  2723. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2724. }
  2725. out:
  2726. return r;
  2727. }
  2728. static struct file_operations kvm_chardev_ops = {
  2729. .unlocked_ioctl = kvm_dev_ioctl,
  2730. .compat_ioctl = kvm_dev_ioctl,
  2731. };
  2732. static struct miscdevice kvm_dev = {
  2733. KVM_MINOR,
  2734. "kvm",
  2735. &kvm_chardev_ops,
  2736. };
  2737. /*
  2738. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2739. * cached on it.
  2740. */
  2741. static void decache_vcpus_on_cpu(int cpu)
  2742. {
  2743. struct kvm *vm;
  2744. struct kvm_vcpu *vcpu;
  2745. int i;
  2746. spin_lock(&kvm_lock);
  2747. list_for_each_entry(vm, &vm_list, vm_list)
  2748. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2749. vcpu = vm->vcpus[i];
  2750. if (!vcpu)
  2751. continue;
  2752. /*
  2753. * If the vcpu is locked, then it is running on some
  2754. * other cpu and therefore it is not cached on the
  2755. * cpu in question.
  2756. *
  2757. * If it's not locked, check the last cpu it executed
  2758. * on.
  2759. */
  2760. if (mutex_trylock(&vcpu->mutex)) {
  2761. if (vcpu->cpu == cpu) {
  2762. kvm_x86_ops->vcpu_decache(vcpu);
  2763. vcpu->cpu = -1;
  2764. }
  2765. mutex_unlock(&vcpu->mutex);
  2766. }
  2767. }
  2768. spin_unlock(&kvm_lock);
  2769. }
  2770. static void hardware_enable(void *junk)
  2771. {
  2772. int cpu = raw_smp_processor_id();
  2773. if (cpu_isset(cpu, cpus_hardware_enabled))
  2774. return;
  2775. cpu_set(cpu, cpus_hardware_enabled);
  2776. kvm_x86_ops->hardware_enable(NULL);
  2777. }
  2778. static void hardware_disable(void *junk)
  2779. {
  2780. int cpu = raw_smp_processor_id();
  2781. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2782. return;
  2783. cpu_clear(cpu, cpus_hardware_enabled);
  2784. decache_vcpus_on_cpu(cpu);
  2785. kvm_x86_ops->hardware_disable(NULL);
  2786. }
  2787. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2788. void *v)
  2789. {
  2790. int cpu = (long)v;
  2791. switch (val) {
  2792. case CPU_DYING:
  2793. case CPU_DYING_FROZEN:
  2794. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2795. cpu);
  2796. hardware_disable(NULL);
  2797. break;
  2798. case CPU_UP_CANCELED:
  2799. case CPU_UP_CANCELED_FROZEN:
  2800. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2801. cpu);
  2802. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2803. break;
  2804. case CPU_ONLINE:
  2805. case CPU_ONLINE_FROZEN:
  2806. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2807. cpu);
  2808. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2809. break;
  2810. }
  2811. return NOTIFY_OK;
  2812. }
  2813. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2814. void *v)
  2815. {
  2816. if (val == SYS_RESTART) {
  2817. /*
  2818. * Some (well, at least mine) BIOSes hang on reboot if
  2819. * in vmx root mode.
  2820. */
  2821. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2822. on_each_cpu(hardware_disable, NULL, 0, 1);
  2823. }
  2824. return NOTIFY_OK;
  2825. }
  2826. static struct notifier_block kvm_reboot_notifier = {
  2827. .notifier_call = kvm_reboot,
  2828. .priority = 0,
  2829. };
  2830. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2831. {
  2832. memset(bus, 0, sizeof(*bus));
  2833. }
  2834. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2835. {
  2836. int i;
  2837. for (i = 0; i < bus->dev_count; i++) {
  2838. struct kvm_io_device *pos = bus->devs[i];
  2839. kvm_iodevice_destructor(pos);
  2840. }
  2841. }
  2842. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2843. {
  2844. int i;
  2845. for (i = 0; i < bus->dev_count; i++) {
  2846. struct kvm_io_device *pos = bus->devs[i];
  2847. if (pos->in_range(pos, addr))
  2848. return pos;
  2849. }
  2850. return NULL;
  2851. }
  2852. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2853. {
  2854. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2855. bus->devs[bus->dev_count++] = dev;
  2856. }
  2857. static struct notifier_block kvm_cpu_notifier = {
  2858. .notifier_call = kvm_cpu_hotplug,
  2859. .priority = 20, /* must be > scheduler priority */
  2860. };
  2861. static u64 stat_get(void *_offset)
  2862. {
  2863. unsigned offset = (long)_offset;
  2864. u64 total = 0;
  2865. struct kvm *kvm;
  2866. struct kvm_vcpu *vcpu;
  2867. int i;
  2868. spin_lock(&kvm_lock);
  2869. list_for_each_entry(kvm, &vm_list, vm_list)
  2870. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2871. vcpu = kvm->vcpus[i];
  2872. if (vcpu)
  2873. total += *(u32 *)((void *)vcpu + offset);
  2874. }
  2875. spin_unlock(&kvm_lock);
  2876. return total;
  2877. }
  2878. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2879. static __init void kvm_init_debug(void)
  2880. {
  2881. struct kvm_stats_debugfs_item *p;
  2882. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2883. for (p = debugfs_entries; p->name; ++p)
  2884. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2885. (void *)(long)p->offset,
  2886. &stat_fops);
  2887. }
  2888. static void kvm_exit_debug(void)
  2889. {
  2890. struct kvm_stats_debugfs_item *p;
  2891. for (p = debugfs_entries; p->name; ++p)
  2892. debugfs_remove(p->dentry);
  2893. debugfs_remove(debugfs_dir);
  2894. }
  2895. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2896. {
  2897. hardware_disable(NULL);
  2898. return 0;
  2899. }
  2900. static int kvm_resume(struct sys_device *dev)
  2901. {
  2902. hardware_enable(NULL);
  2903. return 0;
  2904. }
  2905. static struct sysdev_class kvm_sysdev_class = {
  2906. .name = "kvm",
  2907. .suspend = kvm_suspend,
  2908. .resume = kvm_resume,
  2909. };
  2910. static struct sys_device kvm_sysdev = {
  2911. .id = 0,
  2912. .cls = &kvm_sysdev_class,
  2913. };
  2914. struct page *bad_page;
  2915. static inline
  2916. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2917. {
  2918. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2919. }
  2920. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2921. {
  2922. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2923. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2924. }
  2925. static void kvm_sched_out(struct preempt_notifier *pn,
  2926. struct task_struct *next)
  2927. {
  2928. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2929. kvm_x86_ops->vcpu_put(vcpu);
  2930. }
  2931. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2932. struct module *module)
  2933. {
  2934. int r;
  2935. int cpu;
  2936. if (kvm_x86_ops) {
  2937. printk(KERN_ERR "kvm: already loaded the other module\n");
  2938. return -EEXIST;
  2939. }
  2940. if (!ops->cpu_has_kvm_support()) {
  2941. printk(KERN_ERR "kvm: no hardware support\n");
  2942. return -EOPNOTSUPP;
  2943. }
  2944. if (ops->disabled_by_bios()) {
  2945. printk(KERN_ERR "kvm: disabled by bios\n");
  2946. return -EOPNOTSUPP;
  2947. }
  2948. kvm_x86_ops = ops;
  2949. r = kvm_x86_ops->hardware_setup();
  2950. if (r < 0)
  2951. goto out;
  2952. for_each_online_cpu(cpu) {
  2953. smp_call_function_single(cpu,
  2954. kvm_x86_ops->check_processor_compatibility,
  2955. &r, 0, 1);
  2956. if (r < 0)
  2957. goto out_free_0;
  2958. }
  2959. on_each_cpu(hardware_enable, NULL, 0, 1);
  2960. r = register_cpu_notifier(&kvm_cpu_notifier);
  2961. if (r)
  2962. goto out_free_1;
  2963. register_reboot_notifier(&kvm_reboot_notifier);
  2964. r = sysdev_class_register(&kvm_sysdev_class);
  2965. if (r)
  2966. goto out_free_2;
  2967. r = sysdev_register(&kvm_sysdev);
  2968. if (r)
  2969. goto out_free_3;
  2970. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2971. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2972. __alignof__(struct kvm_vcpu), 0, 0);
  2973. if (!kvm_vcpu_cache) {
  2974. r = -ENOMEM;
  2975. goto out_free_4;
  2976. }
  2977. kvm_chardev_ops.owner = module;
  2978. r = misc_register(&kvm_dev);
  2979. if (r) {
  2980. printk(KERN_ERR "kvm: misc device register failed\n");
  2981. goto out_free;
  2982. }
  2983. kvm_preempt_ops.sched_in = kvm_sched_in;
  2984. kvm_preempt_ops.sched_out = kvm_sched_out;
  2985. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2986. return 0;
  2987. out_free:
  2988. kmem_cache_destroy(kvm_vcpu_cache);
  2989. out_free_4:
  2990. sysdev_unregister(&kvm_sysdev);
  2991. out_free_3:
  2992. sysdev_class_unregister(&kvm_sysdev_class);
  2993. out_free_2:
  2994. unregister_reboot_notifier(&kvm_reboot_notifier);
  2995. unregister_cpu_notifier(&kvm_cpu_notifier);
  2996. out_free_1:
  2997. on_each_cpu(hardware_disable, NULL, 0, 1);
  2998. out_free_0:
  2999. kvm_x86_ops->hardware_unsetup();
  3000. out:
  3001. kvm_x86_ops = NULL;
  3002. return r;
  3003. }
  3004. EXPORT_SYMBOL_GPL(kvm_init_x86);
  3005. void kvm_exit_x86(void)
  3006. {
  3007. misc_deregister(&kvm_dev);
  3008. kmem_cache_destroy(kvm_vcpu_cache);
  3009. sysdev_unregister(&kvm_sysdev);
  3010. sysdev_class_unregister(&kvm_sysdev_class);
  3011. unregister_reboot_notifier(&kvm_reboot_notifier);
  3012. unregister_cpu_notifier(&kvm_cpu_notifier);
  3013. on_each_cpu(hardware_disable, NULL, 0, 1);
  3014. kvm_x86_ops->hardware_unsetup();
  3015. kvm_x86_ops = NULL;
  3016. }
  3017. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  3018. static __init int kvm_init(void)
  3019. {
  3020. int r;
  3021. r = kvm_mmu_module_init();
  3022. if (r)
  3023. goto out4;
  3024. kvm_init_debug();
  3025. kvm_arch_init();
  3026. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3027. if (bad_page == NULL) {
  3028. r = -ENOMEM;
  3029. goto out;
  3030. }
  3031. return 0;
  3032. out:
  3033. kvm_exit_debug();
  3034. kvm_mmu_module_exit();
  3035. out4:
  3036. return r;
  3037. }
  3038. static __exit void kvm_exit(void)
  3039. {
  3040. kvm_exit_debug();
  3041. __free_page(bad_page);
  3042. kvm_mmu_module_exit();
  3043. }
  3044. module_init(kvm_init)
  3045. module_exit(kvm_exit)