tcp_input.c 163 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  107. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  108. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  109. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. /* Adapt the MSS value used to make delayed ack decision to the
  113. * real world.
  114. */
  115. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  116. {
  117. struct inet_connection_sock *icsk = inet_csk(sk);
  118. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  119. unsigned int len;
  120. icsk->icsk_ack.last_seg_size = 0;
  121. /* skb->len may jitter because of SACKs, even if peer
  122. * sends good full-sized frames.
  123. */
  124. len = skb_shinfo(skb)->gso_size ? : skb->len;
  125. if (len >= icsk->icsk_ack.rcv_mss) {
  126. icsk->icsk_ack.rcv_mss = len;
  127. } else {
  128. /* Otherwise, we make more careful check taking into account,
  129. * that SACKs block is variable.
  130. *
  131. * "len" is invariant segment length, including TCP header.
  132. */
  133. len += skb->data - skb_transport_header(skb);
  134. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  135. /* If PSH is not set, packet should be
  136. * full sized, provided peer TCP is not badly broken.
  137. * This observation (if it is correct 8)) allows
  138. * to handle super-low mtu links fairly.
  139. */
  140. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  141. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  142. /* Subtract also invariant (if peer is RFC compliant),
  143. * tcp header plus fixed timestamp option length.
  144. * Resulting "len" is MSS free of SACK jitter.
  145. */
  146. len -= tcp_sk(sk)->tcp_header_len;
  147. icsk->icsk_ack.last_seg_size = len;
  148. if (len == lss) {
  149. icsk->icsk_ack.rcv_mss = len;
  150. return;
  151. }
  152. }
  153. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  156. }
  157. }
  158. static void tcp_incr_quickack(struct sock *sk)
  159. {
  160. struct inet_connection_sock *icsk = inet_csk(sk);
  161. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  162. if (quickacks == 0)
  163. quickacks = 2;
  164. if (quickacks > icsk->icsk_ack.quick)
  165. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  166. }
  167. static void tcp_enter_quickack_mode(struct sock *sk)
  168. {
  169. struct inet_connection_sock *icsk = inet_csk(sk);
  170. tcp_incr_quickack(sk);
  171. icsk->icsk_ack.pingpong = 0;
  172. icsk->icsk_ack.ato = TCP_ATO_MIN;
  173. }
  174. /* Send ACKs quickly, if "quick" count is not exhausted
  175. * and the session is not interactive.
  176. */
  177. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  178. {
  179. const struct inet_connection_sock *icsk = inet_csk(sk);
  180. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  181. }
  182. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  183. {
  184. if (tp->ecn_flags & TCP_ECN_OK)
  185. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  186. }
  187. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  188. {
  189. if (tcp_hdr(skb)->cwr)
  190. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  191. }
  192. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  193. {
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  197. {
  198. if (!(tp->ecn_flags & TCP_ECN_OK))
  199. return;
  200. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  201. case INET_ECN_NOT_ECT:
  202. /* Funny extension: if ECT is not set on a segment,
  203. * and we already seen ECT on a previous segment,
  204. * it is probably a retransmit.
  205. */
  206. if (tp->ecn_flags & TCP_ECN_SEEN)
  207. tcp_enter_quickack_mode((struct sock *)tp);
  208. break;
  209. case INET_ECN_CE:
  210. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  211. /* Better not delay acks, sender can have a very low cwnd */
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. }
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return true;
  234. return false;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_fixup_sndbuf(struct sock *sk)
  241. {
  242. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  243. sndmem *= TCP_INIT_CWND;
  244. if (sk->sk_sndbuf < sndmem)
  245. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  246. }
  247. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  248. *
  249. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  250. * forward and advertised in receiver window (tp->rcv_wnd) and
  251. * "application buffer", required to isolate scheduling/application
  252. * latencies from network.
  253. * window_clamp is maximal advertised window. It can be less than
  254. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  255. * is reserved for "application" buffer. The less window_clamp is
  256. * the smoother our behaviour from viewpoint of network, but the lower
  257. * throughput and the higher sensitivity of the connection to losses. 8)
  258. *
  259. * rcv_ssthresh is more strict window_clamp used at "slow start"
  260. * phase to predict further behaviour of this connection.
  261. * It is used for two goals:
  262. * - to enforce header prediction at sender, even when application
  263. * requires some significant "application buffer". It is check #1.
  264. * - to prevent pruning of receive queue because of misprediction
  265. * of receiver window. Check #2.
  266. *
  267. * The scheme does not work when sender sends good segments opening
  268. * window and then starts to feed us spaghetti. But it should work
  269. * in common situations. Otherwise, we have to rely on queue collapsing.
  270. */
  271. /* Slow part of check#2. */
  272. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. /* Optimize this! */
  276. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  277. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  278. while (tp->rcv_ssthresh <= window) {
  279. if (truesize <= skb->len)
  280. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  281. truesize >>= 1;
  282. window >>= 1;
  283. }
  284. return 0;
  285. }
  286. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  287. {
  288. struct tcp_sock *tp = tcp_sk(sk);
  289. /* Check #1 */
  290. if (tp->rcv_ssthresh < tp->window_clamp &&
  291. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  292. !sk_under_memory_pressure(sk)) {
  293. int incr;
  294. /* Check #2. Increase window, if skb with such overhead
  295. * will fit to rcvbuf in future.
  296. */
  297. if (tcp_win_from_space(skb->truesize) <= skb->len)
  298. incr = 2 * tp->advmss;
  299. else
  300. incr = __tcp_grow_window(sk, skb);
  301. if (incr) {
  302. incr = max_t(int, incr, 2 * skb->len);
  303. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  304. tp->window_clamp);
  305. inet_csk(sk)->icsk_ack.quick |= 1;
  306. }
  307. }
  308. }
  309. /* 3. Tuning rcvbuf, when connection enters established state. */
  310. static void tcp_fixup_rcvbuf(struct sock *sk)
  311. {
  312. u32 mss = tcp_sk(sk)->advmss;
  313. int rcvmem;
  314. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  315. tcp_default_init_rwnd(mss);
  316. if (sk->sk_rcvbuf < rcvmem)
  317. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  318. }
  319. /* 4. Try to fixup all. It is made immediately after connection enters
  320. * established state.
  321. */
  322. void tcp_init_buffer_space(struct sock *sk)
  323. {
  324. struct tcp_sock *tp = tcp_sk(sk);
  325. int maxwin;
  326. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  327. tcp_fixup_rcvbuf(sk);
  328. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  329. tcp_fixup_sndbuf(sk);
  330. tp->rcvq_space.space = tp->rcv_wnd;
  331. maxwin = tcp_full_space(sk);
  332. if (tp->window_clamp >= maxwin) {
  333. tp->window_clamp = maxwin;
  334. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  335. tp->window_clamp = max(maxwin -
  336. (maxwin >> sysctl_tcp_app_win),
  337. 4 * tp->advmss);
  338. }
  339. /* Force reservation of one segment. */
  340. if (sysctl_tcp_app_win &&
  341. tp->window_clamp > 2 * tp->advmss &&
  342. tp->window_clamp + tp->advmss > maxwin)
  343. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  344. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  345. tp->snd_cwnd_stamp = tcp_time_stamp;
  346. }
  347. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  348. static void tcp_clamp_window(struct sock *sk)
  349. {
  350. struct tcp_sock *tp = tcp_sk(sk);
  351. struct inet_connection_sock *icsk = inet_csk(sk);
  352. icsk->icsk_ack.quick = 0;
  353. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  354. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  355. !sk_under_memory_pressure(sk) &&
  356. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  357. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  358. sysctl_tcp_rmem[2]);
  359. }
  360. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  361. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  362. }
  363. /* Initialize RCV_MSS value.
  364. * RCV_MSS is an our guess about MSS used by the peer.
  365. * We haven't any direct information about the MSS.
  366. * It's better to underestimate the RCV_MSS rather than overestimate.
  367. * Overestimations make us ACKing less frequently than needed.
  368. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  369. */
  370. void tcp_initialize_rcv_mss(struct sock *sk)
  371. {
  372. const struct tcp_sock *tp = tcp_sk(sk);
  373. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  374. hint = min(hint, tp->rcv_wnd / 2);
  375. hint = min(hint, TCP_MSS_DEFAULT);
  376. hint = max(hint, TCP_MIN_MSS);
  377. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  378. }
  379. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  380. /* Receiver "autotuning" code.
  381. *
  382. * The algorithm for RTT estimation w/o timestamps is based on
  383. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  384. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  385. *
  386. * More detail on this code can be found at
  387. * <http://staff.psc.edu/jheffner/>,
  388. * though this reference is out of date. A new paper
  389. * is pending.
  390. */
  391. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  392. {
  393. u32 new_sample = tp->rcv_rtt_est.rtt;
  394. long m = sample;
  395. if (m == 0)
  396. m = 1;
  397. if (new_sample != 0) {
  398. /* If we sample in larger samples in the non-timestamp
  399. * case, we could grossly overestimate the RTT especially
  400. * with chatty applications or bulk transfer apps which
  401. * are stalled on filesystem I/O.
  402. *
  403. * Also, since we are only going for a minimum in the
  404. * non-timestamp case, we do not smooth things out
  405. * else with timestamps disabled convergence takes too
  406. * long.
  407. */
  408. if (!win_dep) {
  409. m -= (new_sample >> 3);
  410. new_sample += m;
  411. } else {
  412. m <<= 3;
  413. if (m < new_sample)
  414. new_sample = m;
  415. }
  416. } else {
  417. /* No previous measure. */
  418. new_sample = m << 3;
  419. }
  420. if (tp->rcv_rtt_est.rtt != new_sample)
  421. tp->rcv_rtt_est.rtt = new_sample;
  422. }
  423. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  424. {
  425. if (tp->rcv_rtt_est.time == 0)
  426. goto new_measure;
  427. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  428. return;
  429. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  430. new_measure:
  431. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  432. tp->rcv_rtt_est.time = tcp_time_stamp;
  433. }
  434. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  435. const struct sk_buff *skb)
  436. {
  437. struct tcp_sock *tp = tcp_sk(sk);
  438. if (tp->rx_opt.rcv_tsecr &&
  439. (TCP_SKB_CB(skb)->end_seq -
  440. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  441. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  442. }
  443. /*
  444. * This function should be called every time data is copied to user space.
  445. * It calculates the appropriate TCP receive buffer space.
  446. */
  447. void tcp_rcv_space_adjust(struct sock *sk)
  448. {
  449. struct tcp_sock *tp = tcp_sk(sk);
  450. int time;
  451. int space;
  452. if (tp->rcvq_space.time == 0)
  453. goto new_measure;
  454. time = tcp_time_stamp - tp->rcvq_space.time;
  455. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  456. return;
  457. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  458. space = max(tp->rcvq_space.space, space);
  459. if (tp->rcvq_space.space != space) {
  460. int rcvmem;
  461. tp->rcvq_space.space = space;
  462. if (sysctl_tcp_moderate_rcvbuf &&
  463. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  464. int new_clamp = space;
  465. /* Receive space grows, normalize in order to
  466. * take into account packet headers and sk_buff
  467. * structure overhead.
  468. */
  469. space /= tp->advmss;
  470. if (!space)
  471. space = 1;
  472. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  473. while (tcp_win_from_space(rcvmem) < tp->advmss)
  474. rcvmem += 128;
  475. space *= rcvmem;
  476. space = min(space, sysctl_tcp_rmem[2]);
  477. if (space > sk->sk_rcvbuf) {
  478. sk->sk_rcvbuf = space;
  479. /* Make the window clamp follow along. */
  480. tp->window_clamp = new_clamp;
  481. }
  482. }
  483. }
  484. new_measure:
  485. tp->rcvq_space.seq = tp->copied_seq;
  486. tp->rcvq_space.time = tcp_time_stamp;
  487. }
  488. /* There is something which you must keep in mind when you analyze the
  489. * behavior of the tp->ato delayed ack timeout interval. When a
  490. * connection starts up, we want to ack as quickly as possible. The
  491. * problem is that "good" TCP's do slow start at the beginning of data
  492. * transmission. The means that until we send the first few ACK's the
  493. * sender will sit on his end and only queue most of his data, because
  494. * he can only send snd_cwnd unacked packets at any given time. For
  495. * each ACK we send, he increments snd_cwnd and transmits more of his
  496. * queue. -DaveM
  497. */
  498. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  499. {
  500. struct tcp_sock *tp = tcp_sk(sk);
  501. struct inet_connection_sock *icsk = inet_csk(sk);
  502. u32 now;
  503. inet_csk_schedule_ack(sk);
  504. tcp_measure_rcv_mss(sk, skb);
  505. tcp_rcv_rtt_measure(tp);
  506. now = tcp_time_stamp;
  507. if (!icsk->icsk_ack.ato) {
  508. /* The _first_ data packet received, initialize
  509. * delayed ACK engine.
  510. */
  511. tcp_incr_quickack(sk);
  512. icsk->icsk_ack.ato = TCP_ATO_MIN;
  513. } else {
  514. int m = now - icsk->icsk_ack.lrcvtime;
  515. if (m <= TCP_ATO_MIN / 2) {
  516. /* The fastest case is the first. */
  517. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  518. } else if (m < icsk->icsk_ack.ato) {
  519. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  520. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  521. icsk->icsk_ack.ato = icsk->icsk_rto;
  522. } else if (m > icsk->icsk_rto) {
  523. /* Too long gap. Apparently sender failed to
  524. * restart window, so that we send ACKs quickly.
  525. */
  526. tcp_incr_quickack(sk);
  527. sk_mem_reclaim(sk);
  528. }
  529. }
  530. icsk->icsk_ack.lrcvtime = now;
  531. TCP_ECN_check_ce(tp, skb);
  532. if (skb->len >= 128)
  533. tcp_grow_window(sk, skb);
  534. }
  535. /* Called to compute a smoothed rtt estimate. The data fed to this
  536. * routine either comes from timestamps, or from segments that were
  537. * known _not_ to have been retransmitted [see Karn/Partridge
  538. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  539. * piece by Van Jacobson.
  540. * NOTE: the next three routines used to be one big routine.
  541. * To save cycles in the RFC 1323 implementation it was better to break
  542. * it up into three procedures. -- erics
  543. */
  544. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  545. {
  546. struct tcp_sock *tp = tcp_sk(sk);
  547. long m = mrtt; /* RTT */
  548. /* The following amusing code comes from Jacobson's
  549. * article in SIGCOMM '88. Note that rtt and mdev
  550. * are scaled versions of rtt and mean deviation.
  551. * This is designed to be as fast as possible
  552. * m stands for "measurement".
  553. *
  554. * On a 1990 paper the rto value is changed to:
  555. * RTO = rtt + 4 * mdev
  556. *
  557. * Funny. This algorithm seems to be very broken.
  558. * These formulae increase RTO, when it should be decreased, increase
  559. * too slowly, when it should be increased quickly, decrease too quickly
  560. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  561. * does not matter how to _calculate_ it. Seems, it was trap
  562. * that VJ failed to avoid. 8)
  563. */
  564. if (m == 0)
  565. m = 1;
  566. if (tp->srtt != 0) {
  567. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  568. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  569. if (m < 0) {
  570. m = -m; /* m is now abs(error) */
  571. m -= (tp->mdev >> 2); /* similar update on mdev */
  572. /* This is similar to one of Eifel findings.
  573. * Eifel blocks mdev updates when rtt decreases.
  574. * This solution is a bit different: we use finer gain
  575. * for mdev in this case (alpha*beta).
  576. * Like Eifel it also prevents growth of rto,
  577. * but also it limits too fast rto decreases,
  578. * happening in pure Eifel.
  579. */
  580. if (m > 0)
  581. m >>= 3;
  582. } else {
  583. m -= (tp->mdev >> 2); /* similar update on mdev */
  584. }
  585. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  586. if (tp->mdev > tp->mdev_max) {
  587. tp->mdev_max = tp->mdev;
  588. if (tp->mdev_max > tp->rttvar)
  589. tp->rttvar = tp->mdev_max;
  590. }
  591. if (after(tp->snd_una, tp->rtt_seq)) {
  592. if (tp->mdev_max < tp->rttvar)
  593. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  594. tp->rtt_seq = tp->snd_nxt;
  595. tp->mdev_max = tcp_rto_min(sk);
  596. }
  597. } else {
  598. /* no previous measure. */
  599. tp->srtt = m << 3; /* take the measured time to be rtt */
  600. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  601. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  602. tp->rtt_seq = tp->snd_nxt;
  603. }
  604. }
  605. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  606. * routine referred to above.
  607. */
  608. void tcp_set_rto(struct sock *sk)
  609. {
  610. const struct tcp_sock *tp = tcp_sk(sk);
  611. /* Old crap is replaced with new one. 8)
  612. *
  613. * More seriously:
  614. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  615. * It cannot be less due to utterly erratic ACK generation made
  616. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  617. * to do with delayed acks, because at cwnd>2 true delack timeout
  618. * is invisible. Actually, Linux-2.4 also generates erratic
  619. * ACKs in some circumstances.
  620. */
  621. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  622. /* 2. Fixups made earlier cannot be right.
  623. * If we do not estimate RTO correctly without them,
  624. * all the algo is pure shit and should be replaced
  625. * with correct one. It is exactly, which we pretend to do.
  626. */
  627. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  628. * guarantees that rto is higher.
  629. */
  630. tcp_bound_rto(sk);
  631. }
  632. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  633. {
  634. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  635. if (!cwnd)
  636. cwnd = TCP_INIT_CWND;
  637. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  638. }
  639. /*
  640. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  641. * disables it when reordering is detected
  642. */
  643. void tcp_disable_fack(struct tcp_sock *tp)
  644. {
  645. /* RFC3517 uses different metric in lost marker => reset on change */
  646. if (tcp_is_fack(tp))
  647. tp->lost_skb_hint = NULL;
  648. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  649. }
  650. /* Take a notice that peer is sending D-SACKs */
  651. static void tcp_dsack_seen(struct tcp_sock *tp)
  652. {
  653. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  654. }
  655. static void tcp_update_reordering(struct sock *sk, const int metric,
  656. const int ts)
  657. {
  658. struct tcp_sock *tp = tcp_sk(sk);
  659. if (metric > tp->reordering) {
  660. int mib_idx;
  661. tp->reordering = min(TCP_MAX_REORDERING, metric);
  662. /* This exciting event is worth to be remembered. 8) */
  663. if (ts)
  664. mib_idx = LINUX_MIB_TCPTSREORDER;
  665. else if (tcp_is_reno(tp))
  666. mib_idx = LINUX_MIB_TCPRENOREORDER;
  667. else if (tcp_is_fack(tp))
  668. mib_idx = LINUX_MIB_TCPFACKREORDER;
  669. else
  670. mib_idx = LINUX_MIB_TCPSACKREORDER;
  671. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  672. #if FASTRETRANS_DEBUG > 1
  673. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  674. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  675. tp->reordering,
  676. tp->fackets_out,
  677. tp->sacked_out,
  678. tp->undo_marker ? tp->undo_retrans : 0);
  679. #endif
  680. tcp_disable_fack(tp);
  681. }
  682. if (metric > 0)
  683. tcp_disable_early_retrans(tp);
  684. }
  685. /* This must be called before lost_out is incremented */
  686. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  687. {
  688. if ((tp->retransmit_skb_hint == NULL) ||
  689. before(TCP_SKB_CB(skb)->seq,
  690. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  691. tp->retransmit_skb_hint = skb;
  692. if (!tp->lost_out ||
  693. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  694. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  695. }
  696. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  697. {
  698. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  699. tcp_verify_retransmit_hint(tp, skb);
  700. tp->lost_out += tcp_skb_pcount(skb);
  701. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  702. }
  703. }
  704. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  705. struct sk_buff *skb)
  706. {
  707. tcp_verify_retransmit_hint(tp, skb);
  708. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  709. tp->lost_out += tcp_skb_pcount(skb);
  710. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  711. }
  712. }
  713. /* This procedure tags the retransmission queue when SACKs arrive.
  714. *
  715. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  716. * Packets in queue with these bits set are counted in variables
  717. * sacked_out, retrans_out and lost_out, correspondingly.
  718. *
  719. * Valid combinations are:
  720. * Tag InFlight Description
  721. * 0 1 - orig segment is in flight.
  722. * S 0 - nothing flies, orig reached receiver.
  723. * L 0 - nothing flies, orig lost by net.
  724. * R 2 - both orig and retransmit are in flight.
  725. * L|R 1 - orig is lost, retransmit is in flight.
  726. * S|R 1 - orig reached receiver, retrans is still in flight.
  727. * (L|S|R is logically valid, it could occur when L|R is sacked,
  728. * but it is equivalent to plain S and code short-curcuits it to S.
  729. * L|S is logically invalid, it would mean -1 packet in flight 8))
  730. *
  731. * These 6 states form finite state machine, controlled by the following events:
  732. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  733. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  734. * 3. Loss detection event of two flavors:
  735. * A. Scoreboard estimator decided the packet is lost.
  736. * A'. Reno "three dupacks" marks head of queue lost.
  737. * A''. Its FACK modification, head until snd.fack is lost.
  738. * B. SACK arrives sacking SND.NXT at the moment, when the
  739. * segment was retransmitted.
  740. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  741. *
  742. * It is pleasant to note, that state diagram turns out to be commutative,
  743. * so that we are allowed not to be bothered by order of our actions,
  744. * when multiple events arrive simultaneously. (see the function below).
  745. *
  746. * Reordering detection.
  747. * --------------------
  748. * Reordering metric is maximal distance, which a packet can be displaced
  749. * in packet stream. With SACKs we can estimate it:
  750. *
  751. * 1. SACK fills old hole and the corresponding segment was not
  752. * ever retransmitted -> reordering. Alas, we cannot use it
  753. * when segment was retransmitted.
  754. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  755. * for retransmitted and already SACKed segment -> reordering..
  756. * Both of these heuristics are not used in Loss state, when we cannot
  757. * account for retransmits accurately.
  758. *
  759. * SACK block validation.
  760. * ----------------------
  761. *
  762. * SACK block range validation checks that the received SACK block fits to
  763. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  764. * Note that SND.UNA is not included to the range though being valid because
  765. * it means that the receiver is rather inconsistent with itself reporting
  766. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  767. * perfectly valid, however, in light of RFC2018 which explicitly states
  768. * that "SACK block MUST reflect the newest segment. Even if the newest
  769. * segment is going to be discarded ...", not that it looks very clever
  770. * in case of head skb. Due to potentional receiver driven attacks, we
  771. * choose to avoid immediate execution of a walk in write queue due to
  772. * reneging and defer head skb's loss recovery to standard loss recovery
  773. * procedure that will eventually trigger (nothing forbids us doing this).
  774. *
  775. * Implements also blockage to start_seq wrap-around. Problem lies in the
  776. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  777. * there's no guarantee that it will be before snd_nxt (n). The problem
  778. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  779. * wrap (s_w):
  780. *
  781. * <- outs wnd -> <- wrapzone ->
  782. * u e n u_w e_w s n_w
  783. * | | | | | | |
  784. * |<------------+------+----- TCP seqno space --------------+---------->|
  785. * ...-- <2^31 ->| |<--------...
  786. * ...---- >2^31 ------>| |<--------...
  787. *
  788. * Current code wouldn't be vulnerable but it's better still to discard such
  789. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  790. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  791. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  792. * equal to the ideal case (infinite seqno space without wrap caused issues).
  793. *
  794. * With D-SACK the lower bound is extended to cover sequence space below
  795. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  796. * again, D-SACK block must not to go across snd_una (for the same reason as
  797. * for the normal SACK blocks, explained above). But there all simplicity
  798. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  799. * fully below undo_marker they do not affect behavior in anyway and can
  800. * therefore be safely ignored. In rare cases (which are more or less
  801. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  802. * fragmentation and packet reordering past skb's retransmission. To consider
  803. * them correctly, the acceptable range must be extended even more though
  804. * the exact amount is rather hard to quantify. However, tp->max_window can
  805. * be used as an exaggerated estimate.
  806. */
  807. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  808. u32 start_seq, u32 end_seq)
  809. {
  810. /* Too far in future, or reversed (interpretation is ambiguous) */
  811. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  812. return false;
  813. /* Nasty start_seq wrap-around check (see comments above) */
  814. if (!before(start_seq, tp->snd_nxt))
  815. return false;
  816. /* In outstanding window? ...This is valid exit for D-SACKs too.
  817. * start_seq == snd_una is non-sensical (see comments above)
  818. */
  819. if (after(start_seq, tp->snd_una))
  820. return true;
  821. if (!is_dsack || !tp->undo_marker)
  822. return false;
  823. /* ...Then it's D-SACK, and must reside below snd_una completely */
  824. if (after(end_seq, tp->snd_una))
  825. return false;
  826. if (!before(start_seq, tp->undo_marker))
  827. return true;
  828. /* Too old */
  829. if (!after(end_seq, tp->undo_marker))
  830. return false;
  831. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  832. * start_seq < undo_marker and end_seq >= undo_marker.
  833. */
  834. return !before(start_seq, end_seq - tp->max_window);
  835. }
  836. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  837. * Event "B". Later note: FACK people cheated me again 8), we have to account
  838. * for reordering! Ugly, but should help.
  839. *
  840. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  841. * less than what is now known to be received by the other end (derived from
  842. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  843. * retransmitted skbs to avoid some costly processing per ACKs.
  844. */
  845. static void tcp_mark_lost_retrans(struct sock *sk)
  846. {
  847. const struct inet_connection_sock *icsk = inet_csk(sk);
  848. struct tcp_sock *tp = tcp_sk(sk);
  849. struct sk_buff *skb;
  850. int cnt = 0;
  851. u32 new_low_seq = tp->snd_nxt;
  852. u32 received_upto = tcp_highest_sack_seq(tp);
  853. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  854. !after(received_upto, tp->lost_retrans_low) ||
  855. icsk->icsk_ca_state != TCP_CA_Recovery)
  856. return;
  857. tcp_for_write_queue(skb, sk) {
  858. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  859. if (skb == tcp_send_head(sk))
  860. break;
  861. if (cnt == tp->retrans_out)
  862. break;
  863. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  864. continue;
  865. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  866. continue;
  867. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  868. * constraint here (see above) but figuring out that at
  869. * least tp->reordering SACK blocks reside between ack_seq
  870. * and received_upto is not easy task to do cheaply with
  871. * the available datastructures.
  872. *
  873. * Whether FACK should check here for tp->reordering segs
  874. * in-between one could argue for either way (it would be
  875. * rather simple to implement as we could count fack_count
  876. * during the walk and do tp->fackets_out - fack_count).
  877. */
  878. if (after(received_upto, ack_seq)) {
  879. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  880. tp->retrans_out -= tcp_skb_pcount(skb);
  881. tcp_skb_mark_lost_uncond_verify(tp, skb);
  882. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  883. } else {
  884. if (before(ack_seq, new_low_seq))
  885. new_low_seq = ack_seq;
  886. cnt += tcp_skb_pcount(skb);
  887. }
  888. }
  889. if (tp->retrans_out)
  890. tp->lost_retrans_low = new_low_seq;
  891. }
  892. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  893. struct tcp_sack_block_wire *sp, int num_sacks,
  894. u32 prior_snd_una)
  895. {
  896. struct tcp_sock *tp = tcp_sk(sk);
  897. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  898. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  899. bool dup_sack = false;
  900. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  901. dup_sack = true;
  902. tcp_dsack_seen(tp);
  903. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  904. } else if (num_sacks > 1) {
  905. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  906. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  907. if (!after(end_seq_0, end_seq_1) &&
  908. !before(start_seq_0, start_seq_1)) {
  909. dup_sack = true;
  910. tcp_dsack_seen(tp);
  911. NET_INC_STATS_BH(sock_net(sk),
  912. LINUX_MIB_TCPDSACKOFORECV);
  913. }
  914. }
  915. /* D-SACK for already forgotten data... Do dumb counting. */
  916. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  917. !after(end_seq_0, prior_snd_una) &&
  918. after(end_seq_0, tp->undo_marker))
  919. tp->undo_retrans--;
  920. return dup_sack;
  921. }
  922. struct tcp_sacktag_state {
  923. int reord;
  924. int fack_count;
  925. int flag;
  926. s32 rtt; /* RTT measured by SACKing never-retransmitted data */
  927. };
  928. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  929. * the incoming SACK may not exactly match but we can find smaller MSS
  930. * aligned portion of it that matches. Therefore we might need to fragment
  931. * which may fail and creates some hassle (caller must handle error case
  932. * returns).
  933. *
  934. * FIXME: this could be merged to shift decision code
  935. */
  936. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  937. u32 start_seq, u32 end_seq)
  938. {
  939. int err;
  940. bool in_sack;
  941. unsigned int pkt_len;
  942. unsigned int mss;
  943. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  944. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  945. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  946. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  947. mss = tcp_skb_mss(skb);
  948. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  949. if (!in_sack) {
  950. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  951. if (pkt_len < mss)
  952. pkt_len = mss;
  953. } else {
  954. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  955. if (pkt_len < mss)
  956. return -EINVAL;
  957. }
  958. /* Round if necessary so that SACKs cover only full MSSes
  959. * and/or the remaining small portion (if present)
  960. */
  961. if (pkt_len > mss) {
  962. unsigned int new_len = (pkt_len / mss) * mss;
  963. if (!in_sack && new_len < pkt_len) {
  964. new_len += mss;
  965. if (new_len > skb->len)
  966. return 0;
  967. }
  968. pkt_len = new_len;
  969. }
  970. err = tcp_fragment(sk, skb, pkt_len, mss);
  971. if (err < 0)
  972. return err;
  973. }
  974. return in_sack;
  975. }
  976. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  977. static u8 tcp_sacktag_one(struct sock *sk,
  978. struct tcp_sacktag_state *state, u8 sacked,
  979. u32 start_seq, u32 end_seq,
  980. int dup_sack, int pcount, u32 xmit_time)
  981. {
  982. struct tcp_sock *tp = tcp_sk(sk);
  983. int fack_count = state->fack_count;
  984. /* Account D-SACK for retransmitted packet. */
  985. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  986. if (tp->undo_marker && tp->undo_retrans &&
  987. after(end_seq, tp->undo_marker))
  988. tp->undo_retrans--;
  989. if (sacked & TCPCB_SACKED_ACKED)
  990. state->reord = min(fack_count, state->reord);
  991. }
  992. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  993. if (!after(end_seq, tp->snd_una))
  994. return sacked;
  995. if (!(sacked & TCPCB_SACKED_ACKED)) {
  996. if (sacked & TCPCB_SACKED_RETRANS) {
  997. /* If the segment is not tagged as lost,
  998. * we do not clear RETRANS, believing
  999. * that retransmission is still in flight.
  1000. */
  1001. if (sacked & TCPCB_LOST) {
  1002. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1003. tp->lost_out -= pcount;
  1004. tp->retrans_out -= pcount;
  1005. }
  1006. } else {
  1007. if (!(sacked & TCPCB_RETRANS)) {
  1008. /* New sack for not retransmitted frame,
  1009. * which was in hole. It is reordering.
  1010. */
  1011. if (before(start_seq,
  1012. tcp_highest_sack_seq(tp)))
  1013. state->reord = min(fack_count,
  1014. state->reord);
  1015. if (!after(end_seq, tp->high_seq))
  1016. state->flag |= FLAG_ORIG_SACK_ACKED;
  1017. /* Pick the earliest sequence sacked for RTT */
  1018. if (state->rtt < 0)
  1019. state->rtt = tcp_time_stamp - xmit_time;
  1020. }
  1021. if (sacked & TCPCB_LOST) {
  1022. sacked &= ~TCPCB_LOST;
  1023. tp->lost_out -= pcount;
  1024. }
  1025. }
  1026. sacked |= TCPCB_SACKED_ACKED;
  1027. state->flag |= FLAG_DATA_SACKED;
  1028. tp->sacked_out += pcount;
  1029. fack_count += pcount;
  1030. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1031. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1032. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1033. tp->lost_cnt_hint += pcount;
  1034. if (fack_count > tp->fackets_out)
  1035. tp->fackets_out = fack_count;
  1036. }
  1037. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1038. * frames and clear it. undo_retrans is decreased above, L|R frames
  1039. * are accounted above as well.
  1040. */
  1041. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1042. sacked &= ~TCPCB_SACKED_RETRANS;
  1043. tp->retrans_out -= pcount;
  1044. }
  1045. return sacked;
  1046. }
  1047. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1048. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1049. */
  1050. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1051. struct tcp_sacktag_state *state,
  1052. unsigned int pcount, int shifted, int mss,
  1053. bool dup_sack)
  1054. {
  1055. struct tcp_sock *tp = tcp_sk(sk);
  1056. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1057. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1058. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1059. BUG_ON(!pcount);
  1060. /* Adjust counters and hints for the newly sacked sequence
  1061. * range but discard the return value since prev is already
  1062. * marked. We must tag the range first because the seq
  1063. * advancement below implicitly advances
  1064. * tcp_highest_sack_seq() when skb is highest_sack.
  1065. */
  1066. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1067. start_seq, end_seq, dup_sack, pcount,
  1068. TCP_SKB_CB(skb)->when);
  1069. if (skb == tp->lost_skb_hint)
  1070. tp->lost_cnt_hint += pcount;
  1071. TCP_SKB_CB(prev)->end_seq += shifted;
  1072. TCP_SKB_CB(skb)->seq += shifted;
  1073. skb_shinfo(prev)->gso_segs += pcount;
  1074. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1075. skb_shinfo(skb)->gso_segs -= pcount;
  1076. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1077. * in theory this shouldn't be necessary but as long as DSACK
  1078. * code can come after this skb later on it's better to keep
  1079. * setting gso_size to something.
  1080. */
  1081. if (!skb_shinfo(prev)->gso_size) {
  1082. skb_shinfo(prev)->gso_size = mss;
  1083. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1084. }
  1085. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1086. if (skb_shinfo(skb)->gso_segs <= 1) {
  1087. skb_shinfo(skb)->gso_size = 0;
  1088. skb_shinfo(skb)->gso_type = 0;
  1089. }
  1090. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1091. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1092. if (skb->len > 0) {
  1093. BUG_ON(!tcp_skb_pcount(skb));
  1094. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1095. return false;
  1096. }
  1097. /* Whole SKB was eaten :-) */
  1098. if (skb == tp->retransmit_skb_hint)
  1099. tp->retransmit_skb_hint = prev;
  1100. if (skb == tp->lost_skb_hint) {
  1101. tp->lost_skb_hint = prev;
  1102. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1103. }
  1104. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1105. if (skb == tcp_highest_sack(sk))
  1106. tcp_advance_highest_sack(sk, skb);
  1107. tcp_unlink_write_queue(skb, sk);
  1108. sk_wmem_free_skb(sk, skb);
  1109. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1110. return true;
  1111. }
  1112. /* I wish gso_size would have a bit more sane initialization than
  1113. * something-or-zero which complicates things
  1114. */
  1115. static int tcp_skb_seglen(const struct sk_buff *skb)
  1116. {
  1117. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1118. }
  1119. /* Shifting pages past head area doesn't work */
  1120. static int skb_can_shift(const struct sk_buff *skb)
  1121. {
  1122. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1123. }
  1124. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1125. * skb.
  1126. */
  1127. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1128. struct tcp_sacktag_state *state,
  1129. u32 start_seq, u32 end_seq,
  1130. bool dup_sack)
  1131. {
  1132. struct tcp_sock *tp = tcp_sk(sk);
  1133. struct sk_buff *prev;
  1134. int mss;
  1135. int pcount = 0;
  1136. int len;
  1137. int in_sack;
  1138. if (!sk_can_gso(sk))
  1139. goto fallback;
  1140. /* Normally R but no L won't result in plain S */
  1141. if (!dup_sack &&
  1142. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1143. goto fallback;
  1144. if (!skb_can_shift(skb))
  1145. goto fallback;
  1146. /* This frame is about to be dropped (was ACKed). */
  1147. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1148. goto fallback;
  1149. /* Can only happen with delayed DSACK + discard craziness */
  1150. if (unlikely(skb == tcp_write_queue_head(sk)))
  1151. goto fallback;
  1152. prev = tcp_write_queue_prev(sk, skb);
  1153. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1154. goto fallback;
  1155. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1156. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1157. if (in_sack) {
  1158. len = skb->len;
  1159. pcount = tcp_skb_pcount(skb);
  1160. mss = tcp_skb_seglen(skb);
  1161. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1162. * drop this restriction as unnecessary
  1163. */
  1164. if (mss != tcp_skb_seglen(prev))
  1165. goto fallback;
  1166. } else {
  1167. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1168. goto noop;
  1169. /* CHECKME: This is non-MSS split case only?, this will
  1170. * cause skipped skbs due to advancing loop btw, original
  1171. * has that feature too
  1172. */
  1173. if (tcp_skb_pcount(skb) <= 1)
  1174. goto noop;
  1175. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1176. if (!in_sack) {
  1177. /* TODO: head merge to next could be attempted here
  1178. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1179. * though it might not be worth of the additional hassle
  1180. *
  1181. * ...we can probably just fallback to what was done
  1182. * previously. We could try merging non-SACKed ones
  1183. * as well but it probably isn't going to buy off
  1184. * because later SACKs might again split them, and
  1185. * it would make skb timestamp tracking considerably
  1186. * harder problem.
  1187. */
  1188. goto fallback;
  1189. }
  1190. len = end_seq - TCP_SKB_CB(skb)->seq;
  1191. BUG_ON(len < 0);
  1192. BUG_ON(len > skb->len);
  1193. /* MSS boundaries should be honoured or else pcount will
  1194. * severely break even though it makes things bit trickier.
  1195. * Optimize common case to avoid most of the divides
  1196. */
  1197. mss = tcp_skb_mss(skb);
  1198. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1199. * drop this restriction as unnecessary
  1200. */
  1201. if (mss != tcp_skb_seglen(prev))
  1202. goto fallback;
  1203. if (len == mss) {
  1204. pcount = 1;
  1205. } else if (len < mss) {
  1206. goto noop;
  1207. } else {
  1208. pcount = len / mss;
  1209. len = pcount * mss;
  1210. }
  1211. }
  1212. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1213. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1214. goto fallback;
  1215. if (!skb_shift(prev, skb, len))
  1216. goto fallback;
  1217. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1218. goto out;
  1219. /* Hole filled allows collapsing with the next as well, this is very
  1220. * useful when hole on every nth skb pattern happens
  1221. */
  1222. if (prev == tcp_write_queue_tail(sk))
  1223. goto out;
  1224. skb = tcp_write_queue_next(sk, prev);
  1225. if (!skb_can_shift(skb) ||
  1226. (skb == tcp_send_head(sk)) ||
  1227. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1228. (mss != tcp_skb_seglen(skb)))
  1229. goto out;
  1230. len = skb->len;
  1231. if (skb_shift(prev, skb, len)) {
  1232. pcount += tcp_skb_pcount(skb);
  1233. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1234. }
  1235. out:
  1236. state->fack_count += pcount;
  1237. return prev;
  1238. noop:
  1239. return skb;
  1240. fallback:
  1241. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1242. return NULL;
  1243. }
  1244. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1245. struct tcp_sack_block *next_dup,
  1246. struct tcp_sacktag_state *state,
  1247. u32 start_seq, u32 end_seq,
  1248. bool dup_sack_in)
  1249. {
  1250. struct tcp_sock *tp = tcp_sk(sk);
  1251. struct sk_buff *tmp;
  1252. tcp_for_write_queue_from(skb, sk) {
  1253. int in_sack = 0;
  1254. bool dup_sack = dup_sack_in;
  1255. if (skb == tcp_send_head(sk))
  1256. break;
  1257. /* queue is in-order => we can short-circuit the walk early */
  1258. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1259. break;
  1260. if ((next_dup != NULL) &&
  1261. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1262. in_sack = tcp_match_skb_to_sack(sk, skb,
  1263. next_dup->start_seq,
  1264. next_dup->end_seq);
  1265. if (in_sack > 0)
  1266. dup_sack = true;
  1267. }
  1268. /* skb reference here is a bit tricky to get right, since
  1269. * shifting can eat and free both this skb and the next,
  1270. * so not even _safe variant of the loop is enough.
  1271. */
  1272. if (in_sack <= 0) {
  1273. tmp = tcp_shift_skb_data(sk, skb, state,
  1274. start_seq, end_seq, dup_sack);
  1275. if (tmp != NULL) {
  1276. if (tmp != skb) {
  1277. skb = tmp;
  1278. continue;
  1279. }
  1280. in_sack = 0;
  1281. } else {
  1282. in_sack = tcp_match_skb_to_sack(sk, skb,
  1283. start_seq,
  1284. end_seq);
  1285. }
  1286. }
  1287. if (unlikely(in_sack < 0))
  1288. break;
  1289. if (in_sack) {
  1290. TCP_SKB_CB(skb)->sacked =
  1291. tcp_sacktag_one(sk,
  1292. state,
  1293. TCP_SKB_CB(skb)->sacked,
  1294. TCP_SKB_CB(skb)->seq,
  1295. TCP_SKB_CB(skb)->end_seq,
  1296. dup_sack,
  1297. tcp_skb_pcount(skb),
  1298. TCP_SKB_CB(skb)->when);
  1299. if (!before(TCP_SKB_CB(skb)->seq,
  1300. tcp_highest_sack_seq(tp)))
  1301. tcp_advance_highest_sack(sk, skb);
  1302. }
  1303. state->fack_count += tcp_skb_pcount(skb);
  1304. }
  1305. return skb;
  1306. }
  1307. /* Avoid all extra work that is being done by sacktag while walking in
  1308. * a normal way
  1309. */
  1310. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1311. struct tcp_sacktag_state *state,
  1312. u32 skip_to_seq)
  1313. {
  1314. tcp_for_write_queue_from(skb, sk) {
  1315. if (skb == tcp_send_head(sk))
  1316. break;
  1317. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1318. break;
  1319. state->fack_count += tcp_skb_pcount(skb);
  1320. }
  1321. return skb;
  1322. }
  1323. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1324. struct sock *sk,
  1325. struct tcp_sack_block *next_dup,
  1326. struct tcp_sacktag_state *state,
  1327. u32 skip_to_seq)
  1328. {
  1329. if (next_dup == NULL)
  1330. return skb;
  1331. if (before(next_dup->start_seq, skip_to_seq)) {
  1332. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1333. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1334. next_dup->start_seq, next_dup->end_seq,
  1335. 1);
  1336. }
  1337. return skb;
  1338. }
  1339. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1340. {
  1341. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1342. }
  1343. static int
  1344. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1345. u32 prior_snd_una, s32 *sack_rtt)
  1346. {
  1347. struct tcp_sock *tp = tcp_sk(sk);
  1348. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1349. TCP_SKB_CB(ack_skb)->sacked);
  1350. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1351. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1352. struct tcp_sack_block *cache;
  1353. struct tcp_sacktag_state state;
  1354. struct sk_buff *skb;
  1355. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1356. int used_sacks;
  1357. bool found_dup_sack = false;
  1358. int i, j;
  1359. int first_sack_index;
  1360. state.flag = 0;
  1361. state.reord = tp->packets_out;
  1362. state.rtt = -1;
  1363. if (!tp->sacked_out) {
  1364. if (WARN_ON(tp->fackets_out))
  1365. tp->fackets_out = 0;
  1366. tcp_highest_sack_reset(sk);
  1367. }
  1368. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1369. num_sacks, prior_snd_una);
  1370. if (found_dup_sack)
  1371. state.flag |= FLAG_DSACKING_ACK;
  1372. /* Eliminate too old ACKs, but take into
  1373. * account more or less fresh ones, they can
  1374. * contain valid SACK info.
  1375. */
  1376. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1377. return 0;
  1378. if (!tp->packets_out)
  1379. goto out;
  1380. used_sacks = 0;
  1381. first_sack_index = 0;
  1382. for (i = 0; i < num_sacks; i++) {
  1383. bool dup_sack = !i && found_dup_sack;
  1384. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1385. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1386. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1387. sp[used_sacks].start_seq,
  1388. sp[used_sacks].end_seq)) {
  1389. int mib_idx;
  1390. if (dup_sack) {
  1391. if (!tp->undo_marker)
  1392. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1393. else
  1394. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1395. } else {
  1396. /* Don't count olds caused by ACK reordering */
  1397. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1398. !after(sp[used_sacks].end_seq, tp->snd_una))
  1399. continue;
  1400. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1401. }
  1402. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1403. if (i == 0)
  1404. first_sack_index = -1;
  1405. continue;
  1406. }
  1407. /* Ignore very old stuff early */
  1408. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1409. continue;
  1410. used_sacks++;
  1411. }
  1412. /* order SACK blocks to allow in order walk of the retrans queue */
  1413. for (i = used_sacks - 1; i > 0; i--) {
  1414. for (j = 0; j < i; j++) {
  1415. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1416. swap(sp[j], sp[j + 1]);
  1417. /* Track where the first SACK block goes to */
  1418. if (j == first_sack_index)
  1419. first_sack_index = j + 1;
  1420. }
  1421. }
  1422. }
  1423. skb = tcp_write_queue_head(sk);
  1424. state.fack_count = 0;
  1425. i = 0;
  1426. if (!tp->sacked_out) {
  1427. /* It's already past, so skip checking against it */
  1428. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1429. } else {
  1430. cache = tp->recv_sack_cache;
  1431. /* Skip empty blocks in at head of the cache */
  1432. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1433. !cache->end_seq)
  1434. cache++;
  1435. }
  1436. while (i < used_sacks) {
  1437. u32 start_seq = sp[i].start_seq;
  1438. u32 end_seq = sp[i].end_seq;
  1439. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1440. struct tcp_sack_block *next_dup = NULL;
  1441. if (found_dup_sack && ((i + 1) == first_sack_index))
  1442. next_dup = &sp[i + 1];
  1443. /* Skip too early cached blocks */
  1444. while (tcp_sack_cache_ok(tp, cache) &&
  1445. !before(start_seq, cache->end_seq))
  1446. cache++;
  1447. /* Can skip some work by looking recv_sack_cache? */
  1448. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1449. after(end_seq, cache->start_seq)) {
  1450. /* Head todo? */
  1451. if (before(start_seq, cache->start_seq)) {
  1452. skb = tcp_sacktag_skip(skb, sk, &state,
  1453. start_seq);
  1454. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1455. &state,
  1456. start_seq,
  1457. cache->start_seq,
  1458. dup_sack);
  1459. }
  1460. /* Rest of the block already fully processed? */
  1461. if (!after(end_seq, cache->end_seq))
  1462. goto advance_sp;
  1463. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1464. &state,
  1465. cache->end_seq);
  1466. /* ...tail remains todo... */
  1467. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1468. /* ...but better entrypoint exists! */
  1469. skb = tcp_highest_sack(sk);
  1470. if (skb == NULL)
  1471. break;
  1472. state.fack_count = tp->fackets_out;
  1473. cache++;
  1474. goto walk;
  1475. }
  1476. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1477. /* Check overlap against next cached too (past this one already) */
  1478. cache++;
  1479. continue;
  1480. }
  1481. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1482. skb = tcp_highest_sack(sk);
  1483. if (skb == NULL)
  1484. break;
  1485. state.fack_count = tp->fackets_out;
  1486. }
  1487. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1488. walk:
  1489. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1490. start_seq, end_seq, dup_sack);
  1491. advance_sp:
  1492. i++;
  1493. }
  1494. /* Clear the head of the cache sack blocks so we can skip it next time */
  1495. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1496. tp->recv_sack_cache[i].start_seq = 0;
  1497. tp->recv_sack_cache[i].end_seq = 0;
  1498. }
  1499. for (j = 0; j < used_sacks; j++)
  1500. tp->recv_sack_cache[i++] = sp[j];
  1501. tcp_mark_lost_retrans(sk);
  1502. tcp_verify_left_out(tp);
  1503. if ((state.reord < tp->fackets_out) &&
  1504. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1505. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1506. out:
  1507. #if FASTRETRANS_DEBUG > 0
  1508. WARN_ON((int)tp->sacked_out < 0);
  1509. WARN_ON((int)tp->lost_out < 0);
  1510. WARN_ON((int)tp->retrans_out < 0);
  1511. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1512. #endif
  1513. *sack_rtt = state.rtt;
  1514. return state.flag;
  1515. }
  1516. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1517. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1518. */
  1519. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1520. {
  1521. u32 holes;
  1522. holes = max(tp->lost_out, 1U);
  1523. holes = min(holes, tp->packets_out);
  1524. if ((tp->sacked_out + holes) > tp->packets_out) {
  1525. tp->sacked_out = tp->packets_out - holes;
  1526. return true;
  1527. }
  1528. return false;
  1529. }
  1530. /* If we receive more dupacks than we expected counting segments
  1531. * in assumption of absent reordering, interpret this as reordering.
  1532. * The only another reason could be bug in receiver TCP.
  1533. */
  1534. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1535. {
  1536. struct tcp_sock *tp = tcp_sk(sk);
  1537. if (tcp_limit_reno_sacked(tp))
  1538. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1539. }
  1540. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1541. static void tcp_add_reno_sack(struct sock *sk)
  1542. {
  1543. struct tcp_sock *tp = tcp_sk(sk);
  1544. tp->sacked_out++;
  1545. tcp_check_reno_reordering(sk, 0);
  1546. tcp_verify_left_out(tp);
  1547. }
  1548. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1549. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1550. {
  1551. struct tcp_sock *tp = tcp_sk(sk);
  1552. if (acked > 0) {
  1553. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1554. if (acked - 1 >= tp->sacked_out)
  1555. tp->sacked_out = 0;
  1556. else
  1557. tp->sacked_out -= acked - 1;
  1558. }
  1559. tcp_check_reno_reordering(sk, acked);
  1560. tcp_verify_left_out(tp);
  1561. }
  1562. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1563. {
  1564. tp->sacked_out = 0;
  1565. }
  1566. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1567. {
  1568. tp->retrans_out = 0;
  1569. tp->lost_out = 0;
  1570. tp->undo_marker = 0;
  1571. tp->undo_retrans = 0;
  1572. }
  1573. void tcp_clear_retrans(struct tcp_sock *tp)
  1574. {
  1575. tcp_clear_retrans_partial(tp);
  1576. tp->fackets_out = 0;
  1577. tp->sacked_out = 0;
  1578. }
  1579. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1580. * and reset tags completely, otherwise preserve SACKs. If receiver
  1581. * dropped its ofo queue, we will know this due to reneging detection.
  1582. */
  1583. void tcp_enter_loss(struct sock *sk, int how)
  1584. {
  1585. const struct inet_connection_sock *icsk = inet_csk(sk);
  1586. struct tcp_sock *tp = tcp_sk(sk);
  1587. struct sk_buff *skb;
  1588. bool new_recovery = false;
  1589. /* Reduce ssthresh if it has not yet been made inside this window. */
  1590. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1591. !after(tp->high_seq, tp->snd_una) ||
  1592. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1593. new_recovery = true;
  1594. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1595. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1596. tcp_ca_event(sk, CA_EVENT_LOSS);
  1597. }
  1598. tp->snd_cwnd = 1;
  1599. tp->snd_cwnd_cnt = 0;
  1600. tp->snd_cwnd_stamp = tcp_time_stamp;
  1601. tcp_clear_retrans_partial(tp);
  1602. if (tcp_is_reno(tp))
  1603. tcp_reset_reno_sack(tp);
  1604. tp->undo_marker = tp->snd_una;
  1605. if (how) {
  1606. tp->sacked_out = 0;
  1607. tp->fackets_out = 0;
  1608. }
  1609. tcp_clear_all_retrans_hints(tp);
  1610. tcp_for_write_queue(skb, sk) {
  1611. if (skb == tcp_send_head(sk))
  1612. break;
  1613. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1614. tp->undo_marker = 0;
  1615. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1616. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1617. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1618. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1619. tp->lost_out += tcp_skb_pcount(skb);
  1620. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1621. }
  1622. }
  1623. tcp_verify_left_out(tp);
  1624. tp->reordering = min_t(unsigned int, tp->reordering,
  1625. sysctl_tcp_reordering);
  1626. tcp_set_ca_state(sk, TCP_CA_Loss);
  1627. tp->high_seq = tp->snd_nxt;
  1628. TCP_ECN_queue_cwr(tp);
  1629. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1630. * loss recovery is underway except recurring timeout(s) on
  1631. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1632. */
  1633. tp->frto = sysctl_tcp_frto &&
  1634. (new_recovery || icsk->icsk_retransmits) &&
  1635. !inet_csk(sk)->icsk_mtup.probe_size;
  1636. }
  1637. /* If ACK arrived pointing to a remembered SACK, it means that our
  1638. * remembered SACKs do not reflect real state of receiver i.e.
  1639. * receiver _host_ is heavily congested (or buggy).
  1640. *
  1641. * Do processing similar to RTO timeout.
  1642. */
  1643. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1644. {
  1645. if (flag & FLAG_SACK_RENEGING) {
  1646. struct inet_connection_sock *icsk = inet_csk(sk);
  1647. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1648. tcp_enter_loss(sk, 1);
  1649. icsk->icsk_retransmits++;
  1650. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1651. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1652. icsk->icsk_rto, TCP_RTO_MAX);
  1653. return true;
  1654. }
  1655. return false;
  1656. }
  1657. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1658. {
  1659. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1660. }
  1661. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1662. * counter when SACK is enabled (without SACK, sacked_out is used for
  1663. * that purpose).
  1664. *
  1665. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1666. * segments up to the highest received SACK block so far and holes in
  1667. * between them.
  1668. *
  1669. * With reordering, holes may still be in flight, so RFC3517 recovery
  1670. * uses pure sacked_out (total number of SACKed segments) even though
  1671. * it violates the RFC that uses duplicate ACKs, often these are equal
  1672. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1673. * they differ. Since neither occurs due to loss, TCP should really
  1674. * ignore them.
  1675. */
  1676. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1677. {
  1678. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1679. }
  1680. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1681. {
  1682. struct tcp_sock *tp = tcp_sk(sk);
  1683. unsigned long delay;
  1684. /* Delay early retransmit and entering fast recovery for
  1685. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1686. * available, or RTO is scheduled to fire first.
  1687. */
  1688. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1689. (flag & FLAG_ECE) || !tp->srtt)
  1690. return false;
  1691. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1692. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1693. return false;
  1694. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1695. TCP_RTO_MAX);
  1696. return true;
  1697. }
  1698. /* Linux NewReno/SACK/FACK/ECN state machine.
  1699. * --------------------------------------
  1700. *
  1701. * "Open" Normal state, no dubious events, fast path.
  1702. * "Disorder" In all the respects it is "Open",
  1703. * but requires a bit more attention. It is entered when
  1704. * we see some SACKs or dupacks. It is split of "Open"
  1705. * mainly to move some processing from fast path to slow one.
  1706. * "CWR" CWND was reduced due to some Congestion Notification event.
  1707. * It can be ECN, ICMP source quench, local device congestion.
  1708. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1709. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1710. *
  1711. * tcp_fastretrans_alert() is entered:
  1712. * - each incoming ACK, if state is not "Open"
  1713. * - when arrived ACK is unusual, namely:
  1714. * * SACK
  1715. * * Duplicate ACK.
  1716. * * ECN ECE.
  1717. *
  1718. * Counting packets in flight is pretty simple.
  1719. *
  1720. * in_flight = packets_out - left_out + retrans_out
  1721. *
  1722. * packets_out is SND.NXT-SND.UNA counted in packets.
  1723. *
  1724. * retrans_out is number of retransmitted segments.
  1725. *
  1726. * left_out is number of segments left network, but not ACKed yet.
  1727. *
  1728. * left_out = sacked_out + lost_out
  1729. *
  1730. * sacked_out: Packets, which arrived to receiver out of order
  1731. * and hence not ACKed. With SACKs this number is simply
  1732. * amount of SACKed data. Even without SACKs
  1733. * it is easy to give pretty reliable estimate of this number,
  1734. * counting duplicate ACKs.
  1735. *
  1736. * lost_out: Packets lost by network. TCP has no explicit
  1737. * "loss notification" feedback from network (for now).
  1738. * It means that this number can be only _guessed_.
  1739. * Actually, it is the heuristics to predict lossage that
  1740. * distinguishes different algorithms.
  1741. *
  1742. * F.e. after RTO, when all the queue is considered as lost,
  1743. * lost_out = packets_out and in_flight = retrans_out.
  1744. *
  1745. * Essentially, we have now two algorithms counting
  1746. * lost packets.
  1747. *
  1748. * FACK: It is the simplest heuristics. As soon as we decided
  1749. * that something is lost, we decide that _all_ not SACKed
  1750. * packets until the most forward SACK are lost. I.e.
  1751. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1752. * It is absolutely correct estimate, if network does not reorder
  1753. * packets. And it loses any connection to reality when reordering
  1754. * takes place. We use FACK by default until reordering
  1755. * is suspected on the path to this destination.
  1756. *
  1757. * NewReno: when Recovery is entered, we assume that one segment
  1758. * is lost (classic Reno). While we are in Recovery and
  1759. * a partial ACK arrives, we assume that one more packet
  1760. * is lost (NewReno). This heuristics are the same in NewReno
  1761. * and SACK.
  1762. *
  1763. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1764. * deflation etc. CWND is real congestion window, never inflated, changes
  1765. * only according to classic VJ rules.
  1766. *
  1767. * Really tricky (and requiring careful tuning) part of algorithm
  1768. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1769. * The first determines the moment _when_ we should reduce CWND and,
  1770. * hence, slow down forward transmission. In fact, it determines the moment
  1771. * when we decide that hole is caused by loss, rather than by a reorder.
  1772. *
  1773. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1774. * holes, caused by lost packets.
  1775. *
  1776. * And the most logically complicated part of algorithm is undo
  1777. * heuristics. We detect false retransmits due to both too early
  1778. * fast retransmit (reordering) and underestimated RTO, analyzing
  1779. * timestamps and D-SACKs. When we detect that some segments were
  1780. * retransmitted by mistake and CWND reduction was wrong, we undo
  1781. * window reduction and abort recovery phase. This logic is hidden
  1782. * inside several functions named tcp_try_undo_<something>.
  1783. */
  1784. /* This function decides, when we should leave Disordered state
  1785. * and enter Recovery phase, reducing congestion window.
  1786. *
  1787. * Main question: may we further continue forward transmission
  1788. * with the same cwnd?
  1789. */
  1790. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1791. {
  1792. struct tcp_sock *tp = tcp_sk(sk);
  1793. __u32 packets_out;
  1794. /* Trick#1: The loss is proven. */
  1795. if (tp->lost_out)
  1796. return true;
  1797. /* Not-A-Trick#2 : Classic rule... */
  1798. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1799. return true;
  1800. /* Trick#4: It is still not OK... But will it be useful to delay
  1801. * recovery more?
  1802. */
  1803. packets_out = tp->packets_out;
  1804. if (packets_out <= tp->reordering &&
  1805. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1806. !tcp_may_send_now(sk)) {
  1807. /* We have nothing to send. This connection is limited
  1808. * either by receiver window or by application.
  1809. */
  1810. return true;
  1811. }
  1812. /* If a thin stream is detected, retransmit after first
  1813. * received dupack. Employ only if SACK is supported in order
  1814. * to avoid possible corner-case series of spurious retransmissions
  1815. * Use only if there are no unsent data.
  1816. */
  1817. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1818. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1819. tcp_is_sack(tp) && !tcp_send_head(sk))
  1820. return true;
  1821. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1822. * retransmissions due to small network reorderings, we implement
  1823. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1824. * interval if appropriate.
  1825. */
  1826. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1827. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1828. !tcp_may_send_now(sk))
  1829. return !tcp_pause_early_retransmit(sk, flag);
  1830. return false;
  1831. }
  1832. /* Detect loss in event "A" above by marking head of queue up as lost.
  1833. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1834. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1835. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1836. * the maximum SACKed segments to pass before reaching this limit.
  1837. */
  1838. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1839. {
  1840. struct tcp_sock *tp = tcp_sk(sk);
  1841. struct sk_buff *skb;
  1842. int cnt, oldcnt;
  1843. int err;
  1844. unsigned int mss;
  1845. /* Use SACK to deduce losses of new sequences sent during recovery */
  1846. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1847. WARN_ON(packets > tp->packets_out);
  1848. if (tp->lost_skb_hint) {
  1849. skb = tp->lost_skb_hint;
  1850. cnt = tp->lost_cnt_hint;
  1851. /* Head already handled? */
  1852. if (mark_head && skb != tcp_write_queue_head(sk))
  1853. return;
  1854. } else {
  1855. skb = tcp_write_queue_head(sk);
  1856. cnt = 0;
  1857. }
  1858. tcp_for_write_queue_from(skb, sk) {
  1859. if (skb == tcp_send_head(sk))
  1860. break;
  1861. /* TODO: do this better */
  1862. /* this is not the most efficient way to do this... */
  1863. tp->lost_skb_hint = skb;
  1864. tp->lost_cnt_hint = cnt;
  1865. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1866. break;
  1867. oldcnt = cnt;
  1868. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1869. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1870. cnt += tcp_skb_pcount(skb);
  1871. if (cnt > packets) {
  1872. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1873. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1874. (oldcnt >= packets))
  1875. break;
  1876. mss = skb_shinfo(skb)->gso_size;
  1877. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1878. if (err < 0)
  1879. break;
  1880. cnt = packets;
  1881. }
  1882. tcp_skb_mark_lost(tp, skb);
  1883. if (mark_head)
  1884. break;
  1885. }
  1886. tcp_verify_left_out(tp);
  1887. }
  1888. /* Account newly detected lost packet(s) */
  1889. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1890. {
  1891. struct tcp_sock *tp = tcp_sk(sk);
  1892. if (tcp_is_reno(tp)) {
  1893. tcp_mark_head_lost(sk, 1, 1);
  1894. } else if (tcp_is_fack(tp)) {
  1895. int lost = tp->fackets_out - tp->reordering;
  1896. if (lost <= 0)
  1897. lost = 1;
  1898. tcp_mark_head_lost(sk, lost, 0);
  1899. } else {
  1900. int sacked_upto = tp->sacked_out - tp->reordering;
  1901. if (sacked_upto >= 0)
  1902. tcp_mark_head_lost(sk, sacked_upto, 0);
  1903. else if (fast_rexmit)
  1904. tcp_mark_head_lost(sk, 1, 1);
  1905. }
  1906. }
  1907. /* CWND moderation, preventing bursts due to too big ACKs
  1908. * in dubious situations.
  1909. */
  1910. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1911. {
  1912. tp->snd_cwnd = min(tp->snd_cwnd,
  1913. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1914. tp->snd_cwnd_stamp = tcp_time_stamp;
  1915. }
  1916. /* Nothing was retransmitted or returned timestamp is less
  1917. * than timestamp of the first retransmission.
  1918. */
  1919. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1920. {
  1921. return !tp->retrans_stamp ||
  1922. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1923. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1924. }
  1925. /* Undo procedures. */
  1926. #if FASTRETRANS_DEBUG > 1
  1927. static void DBGUNDO(struct sock *sk, const char *msg)
  1928. {
  1929. struct tcp_sock *tp = tcp_sk(sk);
  1930. struct inet_sock *inet = inet_sk(sk);
  1931. if (sk->sk_family == AF_INET) {
  1932. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1933. msg,
  1934. &inet->inet_daddr, ntohs(inet->inet_dport),
  1935. tp->snd_cwnd, tcp_left_out(tp),
  1936. tp->snd_ssthresh, tp->prior_ssthresh,
  1937. tp->packets_out);
  1938. }
  1939. #if IS_ENABLED(CONFIG_IPV6)
  1940. else if (sk->sk_family == AF_INET6) {
  1941. struct ipv6_pinfo *np = inet6_sk(sk);
  1942. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  1943. msg,
  1944. &np->daddr, ntohs(inet->inet_dport),
  1945. tp->snd_cwnd, tcp_left_out(tp),
  1946. tp->snd_ssthresh, tp->prior_ssthresh,
  1947. tp->packets_out);
  1948. }
  1949. #endif
  1950. }
  1951. #else
  1952. #define DBGUNDO(x...) do { } while (0)
  1953. #endif
  1954. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  1955. {
  1956. struct tcp_sock *tp = tcp_sk(sk);
  1957. if (unmark_loss) {
  1958. struct sk_buff *skb;
  1959. tcp_for_write_queue(skb, sk) {
  1960. if (skb == tcp_send_head(sk))
  1961. break;
  1962. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1963. }
  1964. tp->lost_out = 0;
  1965. tcp_clear_all_retrans_hints(tp);
  1966. }
  1967. if (tp->prior_ssthresh) {
  1968. const struct inet_connection_sock *icsk = inet_csk(sk);
  1969. if (icsk->icsk_ca_ops->undo_cwnd)
  1970. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  1971. else
  1972. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  1973. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  1974. tp->snd_ssthresh = tp->prior_ssthresh;
  1975. TCP_ECN_withdraw_cwr(tp);
  1976. }
  1977. } else {
  1978. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  1979. }
  1980. tp->snd_cwnd_stamp = tcp_time_stamp;
  1981. tp->undo_marker = 0;
  1982. }
  1983. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  1984. {
  1985. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  1986. }
  1987. /* People celebrate: "We love our President!" */
  1988. static bool tcp_try_undo_recovery(struct sock *sk)
  1989. {
  1990. struct tcp_sock *tp = tcp_sk(sk);
  1991. if (tcp_may_undo(tp)) {
  1992. int mib_idx;
  1993. /* Happy end! We did not retransmit anything
  1994. * or our original transmission succeeded.
  1995. */
  1996. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  1997. tcp_undo_cwnd_reduction(sk, false);
  1998. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  1999. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2000. else
  2001. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2002. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2003. }
  2004. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2005. /* Hold old state until something *above* high_seq
  2006. * is ACKed. For Reno it is MUST to prevent false
  2007. * fast retransmits (RFC2582). SACK TCP is safe. */
  2008. tcp_moderate_cwnd(tp);
  2009. return true;
  2010. }
  2011. tcp_set_ca_state(sk, TCP_CA_Open);
  2012. return false;
  2013. }
  2014. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2015. static bool tcp_try_undo_dsack(struct sock *sk)
  2016. {
  2017. struct tcp_sock *tp = tcp_sk(sk);
  2018. if (tp->undo_marker && !tp->undo_retrans) {
  2019. DBGUNDO(sk, "D-SACK");
  2020. tcp_undo_cwnd_reduction(sk, false);
  2021. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2022. return true;
  2023. }
  2024. return false;
  2025. }
  2026. /* We can clear retrans_stamp when there are no retransmissions in the
  2027. * window. It would seem that it is trivially available for us in
  2028. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2029. * what will happen if errors occur when sending retransmission for the
  2030. * second time. ...It could the that such segment has only
  2031. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2032. * the head skb is enough except for some reneging corner cases that
  2033. * are not worth the effort.
  2034. *
  2035. * Main reason for all this complexity is the fact that connection dying
  2036. * time now depends on the validity of the retrans_stamp, in particular,
  2037. * that successive retransmissions of a segment must not advance
  2038. * retrans_stamp under any conditions.
  2039. */
  2040. static bool tcp_any_retrans_done(const struct sock *sk)
  2041. {
  2042. const struct tcp_sock *tp = tcp_sk(sk);
  2043. struct sk_buff *skb;
  2044. if (tp->retrans_out)
  2045. return true;
  2046. skb = tcp_write_queue_head(sk);
  2047. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2048. return true;
  2049. return false;
  2050. }
  2051. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2052. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2053. {
  2054. struct tcp_sock *tp = tcp_sk(sk);
  2055. if (frto_undo || tcp_may_undo(tp)) {
  2056. tcp_undo_cwnd_reduction(sk, true);
  2057. DBGUNDO(sk, "partial loss");
  2058. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2059. if (frto_undo)
  2060. NET_INC_STATS_BH(sock_net(sk),
  2061. LINUX_MIB_TCPSPURIOUSRTOS);
  2062. inet_csk(sk)->icsk_retransmits = 0;
  2063. if (frto_undo || tcp_is_sack(tp))
  2064. tcp_set_ca_state(sk, TCP_CA_Open);
  2065. return true;
  2066. }
  2067. return false;
  2068. }
  2069. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2070. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2071. * It computes the number of packets to send (sndcnt) based on packets newly
  2072. * delivered:
  2073. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2074. * cwnd reductions across a full RTT.
  2075. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2076. * losses and/or application stalls), do not perform any further cwnd
  2077. * reductions, but instead slow start up to ssthresh.
  2078. */
  2079. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2080. {
  2081. struct tcp_sock *tp = tcp_sk(sk);
  2082. tp->high_seq = tp->snd_nxt;
  2083. tp->tlp_high_seq = 0;
  2084. tp->snd_cwnd_cnt = 0;
  2085. tp->prior_cwnd = tp->snd_cwnd;
  2086. tp->prr_delivered = 0;
  2087. tp->prr_out = 0;
  2088. if (set_ssthresh)
  2089. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2090. TCP_ECN_queue_cwr(tp);
  2091. }
  2092. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2093. int fast_rexmit)
  2094. {
  2095. struct tcp_sock *tp = tcp_sk(sk);
  2096. int sndcnt = 0;
  2097. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2098. int newly_acked_sacked = prior_unsacked -
  2099. (tp->packets_out - tp->sacked_out);
  2100. tp->prr_delivered += newly_acked_sacked;
  2101. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2102. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2103. tp->prior_cwnd - 1;
  2104. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2105. } else {
  2106. sndcnt = min_t(int, delta,
  2107. max_t(int, tp->prr_delivered - tp->prr_out,
  2108. newly_acked_sacked) + 1);
  2109. }
  2110. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2111. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2112. }
  2113. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2114. {
  2115. struct tcp_sock *tp = tcp_sk(sk);
  2116. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2117. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2118. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2119. tp->snd_cwnd = tp->snd_ssthresh;
  2120. tp->snd_cwnd_stamp = tcp_time_stamp;
  2121. }
  2122. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2123. }
  2124. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2125. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2126. {
  2127. struct tcp_sock *tp = tcp_sk(sk);
  2128. tp->prior_ssthresh = 0;
  2129. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2130. tp->undo_marker = 0;
  2131. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2132. tcp_set_ca_state(sk, TCP_CA_CWR);
  2133. }
  2134. }
  2135. static void tcp_try_keep_open(struct sock *sk)
  2136. {
  2137. struct tcp_sock *tp = tcp_sk(sk);
  2138. int state = TCP_CA_Open;
  2139. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2140. state = TCP_CA_Disorder;
  2141. if (inet_csk(sk)->icsk_ca_state != state) {
  2142. tcp_set_ca_state(sk, state);
  2143. tp->high_seq = tp->snd_nxt;
  2144. }
  2145. }
  2146. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2147. {
  2148. struct tcp_sock *tp = tcp_sk(sk);
  2149. tcp_verify_left_out(tp);
  2150. if (!tcp_any_retrans_done(sk))
  2151. tp->retrans_stamp = 0;
  2152. if (flag & FLAG_ECE)
  2153. tcp_enter_cwr(sk, 1);
  2154. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2155. tcp_try_keep_open(sk);
  2156. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2157. tcp_moderate_cwnd(tp);
  2158. } else {
  2159. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2160. }
  2161. }
  2162. static void tcp_mtup_probe_failed(struct sock *sk)
  2163. {
  2164. struct inet_connection_sock *icsk = inet_csk(sk);
  2165. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2166. icsk->icsk_mtup.probe_size = 0;
  2167. }
  2168. static void tcp_mtup_probe_success(struct sock *sk)
  2169. {
  2170. struct tcp_sock *tp = tcp_sk(sk);
  2171. struct inet_connection_sock *icsk = inet_csk(sk);
  2172. /* FIXME: breaks with very large cwnd */
  2173. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2174. tp->snd_cwnd = tp->snd_cwnd *
  2175. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2176. icsk->icsk_mtup.probe_size;
  2177. tp->snd_cwnd_cnt = 0;
  2178. tp->snd_cwnd_stamp = tcp_time_stamp;
  2179. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2180. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2181. icsk->icsk_mtup.probe_size = 0;
  2182. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2183. }
  2184. /* Do a simple retransmit without using the backoff mechanisms in
  2185. * tcp_timer. This is used for path mtu discovery.
  2186. * The socket is already locked here.
  2187. */
  2188. void tcp_simple_retransmit(struct sock *sk)
  2189. {
  2190. const struct inet_connection_sock *icsk = inet_csk(sk);
  2191. struct tcp_sock *tp = tcp_sk(sk);
  2192. struct sk_buff *skb;
  2193. unsigned int mss = tcp_current_mss(sk);
  2194. u32 prior_lost = tp->lost_out;
  2195. tcp_for_write_queue(skb, sk) {
  2196. if (skb == tcp_send_head(sk))
  2197. break;
  2198. if (tcp_skb_seglen(skb) > mss &&
  2199. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2200. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2201. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2202. tp->retrans_out -= tcp_skb_pcount(skb);
  2203. }
  2204. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2205. }
  2206. }
  2207. tcp_clear_retrans_hints_partial(tp);
  2208. if (prior_lost == tp->lost_out)
  2209. return;
  2210. if (tcp_is_reno(tp))
  2211. tcp_limit_reno_sacked(tp);
  2212. tcp_verify_left_out(tp);
  2213. /* Don't muck with the congestion window here.
  2214. * Reason is that we do not increase amount of _data_
  2215. * in network, but units changed and effective
  2216. * cwnd/ssthresh really reduced now.
  2217. */
  2218. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2219. tp->high_seq = tp->snd_nxt;
  2220. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2221. tp->prior_ssthresh = 0;
  2222. tp->undo_marker = 0;
  2223. tcp_set_ca_state(sk, TCP_CA_Loss);
  2224. }
  2225. tcp_xmit_retransmit_queue(sk);
  2226. }
  2227. EXPORT_SYMBOL(tcp_simple_retransmit);
  2228. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2229. {
  2230. struct tcp_sock *tp = tcp_sk(sk);
  2231. int mib_idx;
  2232. if (tcp_is_reno(tp))
  2233. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2234. else
  2235. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2236. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2237. tp->prior_ssthresh = 0;
  2238. tp->undo_marker = tp->snd_una;
  2239. tp->undo_retrans = tp->retrans_out;
  2240. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2241. if (!ece_ack)
  2242. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2243. tcp_init_cwnd_reduction(sk, true);
  2244. }
  2245. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2246. }
  2247. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2248. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2249. */
  2250. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2251. {
  2252. struct inet_connection_sock *icsk = inet_csk(sk);
  2253. struct tcp_sock *tp = tcp_sk(sk);
  2254. bool recovered = !before(tp->snd_una, tp->high_seq);
  2255. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2256. if (flag & FLAG_ORIG_SACK_ACKED) {
  2257. /* Step 3.b. A timeout is spurious if not all data are
  2258. * lost, i.e., never-retransmitted data are (s)acked.
  2259. */
  2260. tcp_try_undo_loss(sk, true);
  2261. return;
  2262. }
  2263. if (after(tp->snd_nxt, tp->high_seq) &&
  2264. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2265. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2266. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2267. tp->high_seq = tp->snd_nxt;
  2268. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2269. TCP_NAGLE_OFF);
  2270. if (after(tp->snd_nxt, tp->high_seq))
  2271. return; /* Step 2.b */
  2272. tp->frto = 0;
  2273. }
  2274. }
  2275. if (recovered) {
  2276. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2277. icsk->icsk_retransmits = 0;
  2278. tcp_try_undo_recovery(sk);
  2279. return;
  2280. }
  2281. if (flag & FLAG_DATA_ACKED)
  2282. icsk->icsk_retransmits = 0;
  2283. if (tcp_is_reno(tp)) {
  2284. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2285. * delivered. Lower inflight to clock out (re)tranmissions.
  2286. */
  2287. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2288. tcp_add_reno_sack(sk);
  2289. else if (flag & FLAG_SND_UNA_ADVANCED)
  2290. tcp_reset_reno_sack(tp);
  2291. }
  2292. if (tcp_try_undo_loss(sk, false))
  2293. return;
  2294. tcp_xmit_retransmit_queue(sk);
  2295. }
  2296. /* Undo during fast recovery after partial ACK. */
  2297. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2298. const int prior_unsacked)
  2299. {
  2300. struct tcp_sock *tp = tcp_sk(sk);
  2301. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2302. /* Plain luck! Hole if filled with delayed
  2303. * packet, rather than with a retransmit.
  2304. */
  2305. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2306. /* We are getting evidence that the reordering degree is higher
  2307. * than we realized. If there are no retransmits out then we
  2308. * can undo. Otherwise we clock out new packets but do not
  2309. * mark more packets lost or retransmit more.
  2310. */
  2311. if (tp->retrans_out) {
  2312. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2313. return true;
  2314. }
  2315. if (!tcp_any_retrans_done(sk))
  2316. tp->retrans_stamp = 0;
  2317. DBGUNDO(sk, "partial recovery");
  2318. tcp_undo_cwnd_reduction(sk, true);
  2319. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2320. tcp_try_keep_open(sk);
  2321. return true;
  2322. }
  2323. return false;
  2324. }
  2325. /* Process an event, which can update packets-in-flight not trivially.
  2326. * Main goal of this function is to calculate new estimate for left_out,
  2327. * taking into account both packets sitting in receiver's buffer and
  2328. * packets lost by network.
  2329. *
  2330. * Besides that it does CWND reduction, when packet loss is detected
  2331. * and changes state of machine.
  2332. *
  2333. * It does _not_ decide what to send, it is made in function
  2334. * tcp_xmit_retransmit_queue().
  2335. */
  2336. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2337. const int prior_unsacked,
  2338. bool is_dupack, int flag)
  2339. {
  2340. struct inet_connection_sock *icsk = inet_csk(sk);
  2341. struct tcp_sock *tp = tcp_sk(sk);
  2342. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2343. (tcp_fackets_out(tp) > tp->reordering));
  2344. int fast_rexmit = 0;
  2345. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2346. tp->sacked_out = 0;
  2347. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2348. tp->fackets_out = 0;
  2349. /* Now state machine starts.
  2350. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2351. if (flag & FLAG_ECE)
  2352. tp->prior_ssthresh = 0;
  2353. /* B. In all the states check for reneging SACKs. */
  2354. if (tcp_check_sack_reneging(sk, flag))
  2355. return;
  2356. /* C. Check consistency of the current state. */
  2357. tcp_verify_left_out(tp);
  2358. /* D. Check state exit conditions. State can be terminated
  2359. * when high_seq is ACKed. */
  2360. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2361. WARN_ON(tp->retrans_out != 0);
  2362. tp->retrans_stamp = 0;
  2363. } else if (!before(tp->snd_una, tp->high_seq)) {
  2364. switch (icsk->icsk_ca_state) {
  2365. case TCP_CA_CWR:
  2366. /* CWR is to be held something *above* high_seq
  2367. * is ACKed for CWR bit to reach receiver. */
  2368. if (tp->snd_una != tp->high_seq) {
  2369. tcp_end_cwnd_reduction(sk);
  2370. tcp_set_ca_state(sk, TCP_CA_Open);
  2371. }
  2372. break;
  2373. case TCP_CA_Recovery:
  2374. if (tcp_is_reno(tp))
  2375. tcp_reset_reno_sack(tp);
  2376. if (tcp_try_undo_recovery(sk))
  2377. return;
  2378. tcp_end_cwnd_reduction(sk);
  2379. break;
  2380. }
  2381. }
  2382. /* E. Process state. */
  2383. switch (icsk->icsk_ca_state) {
  2384. case TCP_CA_Recovery:
  2385. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2386. if (tcp_is_reno(tp) && is_dupack)
  2387. tcp_add_reno_sack(sk);
  2388. } else {
  2389. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2390. return;
  2391. /* Partial ACK arrived. Force fast retransmit. */
  2392. do_lost = tcp_is_reno(tp) ||
  2393. tcp_fackets_out(tp) > tp->reordering;
  2394. }
  2395. if (tcp_try_undo_dsack(sk)) {
  2396. tcp_try_keep_open(sk);
  2397. return;
  2398. }
  2399. break;
  2400. case TCP_CA_Loss:
  2401. tcp_process_loss(sk, flag, is_dupack);
  2402. if (icsk->icsk_ca_state != TCP_CA_Open)
  2403. return;
  2404. /* Fall through to processing in Open state. */
  2405. default:
  2406. if (tcp_is_reno(tp)) {
  2407. if (flag & FLAG_SND_UNA_ADVANCED)
  2408. tcp_reset_reno_sack(tp);
  2409. if (is_dupack)
  2410. tcp_add_reno_sack(sk);
  2411. }
  2412. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2413. tcp_try_undo_dsack(sk);
  2414. if (!tcp_time_to_recover(sk, flag)) {
  2415. tcp_try_to_open(sk, flag, prior_unsacked);
  2416. return;
  2417. }
  2418. /* MTU probe failure: don't reduce cwnd */
  2419. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2420. icsk->icsk_mtup.probe_size &&
  2421. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2422. tcp_mtup_probe_failed(sk);
  2423. /* Restores the reduction we did in tcp_mtup_probe() */
  2424. tp->snd_cwnd++;
  2425. tcp_simple_retransmit(sk);
  2426. return;
  2427. }
  2428. /* Otherwise enter Recovery state */
  2429. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2430. fast_rexmit = 1;
  2431. }
  2432. if (do_lost)
  2433. tcp_update_scoreboard(sk, fast_rexmit);
  2434. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2435. tcp_xmit_retransmit_queue(sk);
  2436. }
  2437. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2438. s32 seq_rtt, s32 sack_rtt)
  2439. {
  2440. const struct tcp_sock *tp = tcp_sk(sk);
  2441. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2442. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2443. * Karn's algorithm forbids taking RTT if some retransmitted data
  2444. * is acked (RFC6298).
  2445. */
  2446. if (flag & FLAG_RETRANS_DATA_ACKED)
  2447. seq_rtt = -1;
  2448. if (seq_rtt < 0)
  2449. seq_rtt = sack_rtt;
  2450. /* RTTM Rule: A TSecr value received in a segment is used to
  2451. * update the averaged RTT measurement only if the segment
  2452. * acknowledges some new data, i.e., only if it advances the
  2453. * left edge of the send window.
  2454. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2455. */
  2456. if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2457. seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2458. if (seq_rtt < 0)
  2459. return false;
  2460. tcp_rtt_estimator(sk, seq_rtt);
  2461. tcp_set_rto(sk);
  2462. /* RFC6298: only reset backoff on valid RTT measurement. */
  2463. inet_csk(sk)->icsk_backoff = 0;
  2464. return true;
  2465. }
  2466. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2467. static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2468. {
  2469. struct tcp_sock *tp = tcp_sk(sk);
  2470. s32 seq_rtt = -1;
  2471. if (tp->lsndtime && !tp->total_retrans)
  2472. seq_rtt = tcp_time_stamp - tp->lsndtime;
  2473. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
  2474. }
  2475. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2476. {
  2477. const struct inet_connection_sock *icsk = inet_csk(sk);
  2478. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2479. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2480. }
  2481. /* Restart timer after forward progress on connection.
  2482. * RFC2988 recommends to restart timer to now+rto.
  2483. */
  2484. void tcp_rearm_rto(struct sock *sk)
  2485. {
  2486. const struct inet_connection_sock *icsk = inet_csk(sk);
  2487. struct tcp_sock *tp = tcp_sk(sk);
  2488. /* If the retrans timer is currently being used by Fast Open
  2489. * for SYN-ACK retrans purpose, stay put.
  2490. */
  2491. if (tp->fastopen_rsk)
  2492. return;
  2493. if (!tp->packets_out) {
  2494. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2495. } else {
  2496. u32 rto = inet_csk(sk)->icsk_rto;
  2497. /* Offset the time elapsed after installing regular RTO */
  2498. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2499. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2500. struct sk_buff *skb = tcp_write_queue_head(sk);
  2501. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2502. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2503. /* delta may not be positive if the socket is locked
  2504. * when the retrans timer fires and is rescheduled.
  2505. */
  2506. if (delta > 0)
  2507. rto = delta;
  2508. }
  2509. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2510. TCP_RTO_MAX);
  2511. }
  2512. }
  2513. /* This function is called when the delayed ER timer fires. TCP enters
  2514. * fast recovery and performs fast-retransmit.
  2515. */
  2516. void tcp_resume_early_retransmit(struct sock *sk)
  2517. {
  2518. struct tcp_sock *tp = tcp_sk(sk);
  2519. tcp_rearm_rto(sk);
  2520. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2521. if (!tp->do_early_retrans)
  2522. return;
  2523. tcp_enter_recovery(sk, false);
  2524. tcp_update_scoreboard(sk, 1);
  2525. tcp_xmit_retransmit_queue(sk);
  2526. }
  2527. /* If we get here, the whole TSO packet has not been acked. */
  2528. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2529. {
  2530. struct tcp_sock *tp = tcp_sk(sk);
  2531. u32 packets_acked;
  2532. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2533. packets_acked = tcp_skb_pcount(skb);
  2534. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2535. return 0;
  2536. packets_acked -= tcp_skb_pcount(skb);
  2537. if (packets_acked) {
  2538. BUG_ON(tcp_skb_pcount(skb) == 0);
  2539. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2540. }
  2541. return packets_acked;
  2542. }
  2543. /* Remove acknowledged frames from the retransmission queue. If our packet
  2544. * is before the ack sequence we can discard it as it's confirmed to have
  2545. * arrived at the other end.
  2546. */
  2547. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2548. u32 prior_snd_una, s32 sack_rtt)
  2549. {
  2550. struct tcp_sock *tp = tcp_sk(sk);
  2551. const struct inet_connection_sock *icsk = inet_csk(sk);
  2552. struct sk_buff *skb;
  2553. u32 now = tcp_time_stamp;
  2554. int fully_acked = true;
  2555. int flag = 0;
  2556. u32 pkts_acked = 0;
  2557. u32 reord = tp->packets_out;
  2558. u32 prior_sacked = tp->sacked_out;
  2559. s32 seq_rtt = -1;
  2560. s32 ca_seq_rtt = -1;
  2561. ktime_t last_ackt = net_invalid_timestamp();
  2562. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2563. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2564. u32 acked_pcount;
  2565. u8 sacked = scb->sacked;
  2566. /* Determine how many packets and what bytes were acked, tso and else */
  2567. if (after(scb->end_seq, tp->snd_una)) {
  2568. if (tcp_skb_pcount(skb) == 1 ||
  2569. !after(tp->snd_una, scb->seq))
  2570. break;
  2571. acked_pcount = tcp_tso_acked(sk, skb);
  2572. if (!acked_pcount)
  2573. break;
  2574. fully_acked = false;
  2575. } else {
  2576. acked_pcount = tcp_skb_pcount(skb);
  2577. }
  2578. if (sacked & TCPCB_RETRANS) {
  2579. if (sacked & TCPCB_SACKED_RETRANS)
  2580. tp->retrans_out -= acked_pcount;
  2581. flag |= FLAG_RETRANS_DATA_ACKED;
  2582. } else {
  2583. ca_seq_rtt = now - scb->when;
  2584. last_ackt = skb->tstamp;
  2585. if (seq_rtt < 0) {
  2586. seq_rtt = ca_seq_rtt;
  2587. }
  2588. if (!(sacked & TCPCB_SACKED_ACKED))
  2589. reord = min(pkts_acked, reord);
  2590. if (!after(scb->end_seq, tp->high_seq))
  2591. flag |= FLAG_ORIG_SACK_ACKED;
  2592. }
  2593. if (sacked & TCPCB_SACKED_ACKED)
  2594. tp->sacked_out -= acked_pcount;
  2595. if (sacked & TCPCB_LOST)
  2596. tp->lost_out -= acked_pcount;
  2597. tp->packets_out -= acked_pcount;
  2598. pkts_acked += acked_pcount;
  2599. /* Initial outgoing SYN's get put onto the write_queue
  2600. * just like anything else we transmit. It is not
  2601. * true data, and if we misinform our callers that
  2602. * this ACK acks real data, we will erroneously exit
  2603. * connection startup slow start one packet too
  2604. * quickly. This is severely frowned upon behavior.
  2605. */
  2606. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2607. flag |= FLAG_DATA_ACKED;
  2608. } else {
  2609. flag |= FLAG_SYN_ACKED;
  2610. tp->retrans_stamp = 0;
  2611. }
  2612. if (!fully_acked)
  2613. break;
  2614. tcp_unlink_write_queue(skb, sk);
  2615. sk_wmem_free_skb(sk, skb);
  2616. if (skb == tp->retransmit_skb_hint)
  2617. tp->retransmit_skb_hint = NULL;
  2618. if (skb == tp->lost_skb_hint)
  2619. tp->lost_skb_hint = NULL;
  2620. }
  2621. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2622. tp->snd_up = tp->snd_una;
  2623. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2624. flag |= FLAG_SACK_RENEGING;
  2625. if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) ||
  2626. (flag & FLAG_ACKED))
  2627. tcp_rearm_rto(sk);
  2628. if (flag & FLAG_ACKED) {
  2629. const struct tcp_congestion_ops *ca_ops
  2630. = inet_csk(sk)->icsk_ca_ops;
  2631. if (unlikely(icsk->icsk_mtup.probe_size &&
  2632. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2633. tcp_mtup_probe_success(sk);
  2634. }
  2635. if (tcp_is_reno(tp)) {
  2636. tcp_remove_reno_sacks(sk, pkts_acked);
  2637. } else {
  2638. int delta;
  2639. /* Non-retransmitted hole got filled? That's reordering */
  2640. if (reord < prior_fackets)
  2641. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2642. delta = tcp_is_fack(tp) ? pkts_acked :
  2643. prior_sacked - tp->sacked_out;
  2644. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2645. }
  2646. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2647. if (ca_ops->pkts_acked) {
  2648. s32 rtt_us = -1;
  2649. /* Is the ACK triggering packet unambiguous? */
  2650. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2651. /* High resolution needed and available? */
  2652. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2653. !ktime_equal(last_ackt,
  2654. net_invalid_timestamp()))
  2655. rtt_us = ktime_us_delta(ktime_get_real(),
  2656. last_ackt);
  2657. else if (ca_seq_rtt >= 0)
  2658. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2659. }
  2660. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2661. }
  2662. }
  2663. #if FASTRETRANS_DEBUG > 0
  2664. WARN_ON((int)tp->sacked_out < 0);
  2665. WARN_ON((int)tp->lost_out < 0);
  2666. WARN_ON((int)tp->retrans_out < 0);
  2667. if (!tp->packets_out && tcp_is_sack(tp)) {
  2668. icsk = inet_csk(sk);
  2669. if (tp->lost_out) {
  2670. pr_debug("Leak l=%u %d\n",
  2671. tp->lost_out, icsk->icsk_ca_state);
  2672. tp->lost_out = 0;
  2673. }
  2674. if (tp->sacked_out) {
  2675. pr_debug("Leak s=%u %d\n",
  2676. tp->sacked_out, icsk->icsk_ca_state);
  2677. tp->sacked_out = 0;
  2678. }
  2679. if (tp->retrans_out) {
  2680. pr_debug("Leak r=%u %d\n",
  2681. tp->retrans_out, icsk->icsk_ca_state);
  2682. tp->retrans_out = 0;
  2683. }
  2684. }
  2685. #endif
  2686. return flag;
  2687. }
  2688. static void tcp_ack_probe(struct sock *sk)
  2689. {
  2690. const struct tcp_sock *tp = tcp_sk(sk);
  2691. struct inet_connection_sock *icsk = inet_csk(sk);
  2692. /* Was it a usable window open? */
  2693. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2694. icsk->icsk_backoff = 0;
  2695. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2696. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2697. * This function is not for random using!
  2698. */
  2699. } else {
  2700. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2701. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2702. TCP_RTO_MAX);
  2703. }
  2704. }
  2705. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2706. {
  2707. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2708. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2709. }
  2710. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2711. {
  2712. const struct tcp_sock *tp = tcp_sk(sk);
  2713. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2714. !tcp_in_cwnd_reduction(sk);
  2715. }
  2716. /* Check that window update is acceptable.
  2717. * The function assumes that snd_una<=ack<=snd_next.
  2718. */
  2719. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2720. const u32 ack, const u32 ack_seq,
  2721. const u32 nwin)
  2722. {
  2723. return after(ack, tp->snd_una) ||
  2724. after(ack_seq, tp->snd_wl1) ||
  2725. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2726. }
  2727. /* Update our send window.
  2728. *
  2729. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2730. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2731. */
  2732. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2733. u32 ack_seq)
  2734. {
  2735. struct tcp_sock *tp = tcp_sk(sk);
  2736. int flag = 0;
  2737. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2738. if (likely(!tcp_hdr(skb)->syn))
  2739. nwin <<= tp->rx_opt.snd_wscale;
  2740. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2741. flag |= FLAG_WIN_UPDATE;
  2742. tcp_update_wl(tp, ack_seq);
  2743. if (tp->snd_wnd != nwin) {
  2744. tp->snd_wnd = nwin;
  2745. /* Note, it is the only place, where
  2746. * fast path is recovered for sending TCP.
  2747. */
  2748. tp->pred_flags = 0;
  2749. tcp_fast_path_check(sk);
  2750. if (nwin > tp->max_window) {
  2751. tp->max_window = nwin;
  2752. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2753. }
  2754. }
  2755. }
  2756. tp->snd_una = ack;
  2757. return flag;
  2758. }
  2759. /* RFC 5961 7 [ACK Throttling] */
  2760. static void tcp_send_challenge_ack(struct sock *sk)
  2761. {
  2762. /* unprotected vars, we dont care of overwrites */
  2763. static u32 challenge_timestamp;
  2764. static unsigned int challenge_count;
  2765. u32 now = jiffies / HZ;
  2766. if (now != challenge_timestamp) {
  2767. challenge_timestamp = now;
  2768. challenge_count = 0;
  2769. }
  2770. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2771. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2772. tcp_send_ack(sk);
  2773. }
  2774. }
  2775. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2776. {
  2777. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2778. tp->rx_opt.ts_recent_stamp = get_seconds();
  2779. }
  2780. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2781. {
  2782. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2783. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2784. * extra check below makes sure this can only happen
  2785. * for pure ACK frames. -DaveM
  2786. *
  2787. * Not only, also it occurs for expired timestamps.
  2788. */
  2789. if (tcp_paws_check(&tp->rx_opt, 0))
  2790. tcp_store_ts_recent(tp);
  2791. }
  2792. }
  2793. /* This routine deals with acks during a TLP episode.
  2794. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2795. */
  2796. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2797. {
  2798. struct tcp_sock *tp = tcp_sk(sk);
  2799. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2800. !(flag & (FLAG_SND_UNA_ADVANCED |
  2801. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2802. /* Mark the end of TLP episode on receiving TLP dupack or when
  2803. * ack is after tlp_high_seq.
  2804. */
  2805. if (is_tlp_dupack) {
  2806. tp->tlp_high_seq = 0;
  2807. return;
  2808. }
  2809. if (after(ack, tp->tlp_high_seq)) {
  2810. tp->tlp_high_seq = 0;
  2811. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2812. if (!(flag & FLAG_DSACKING_ACK)) {
  2813. tcp_init_cwnd_reduction(sk, true);
  2814. tcp_set_ca_state(sk, TCP_CA_CWR);
  2815. tcp_end_cwnd_reduction(sk);
  2816. tcp_set_ca_state(sk, TCP_CA_Open);
  2817. NET_INC_STATS_BH(sock_net(sk),
  2818. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2819. }
  2820. }
  2821. }
  2822. /* This routine deals with incoming acks, but not outgoing ones. */
  2823. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2824. {
  2825. struct inet_connection_sock *icsk = inet_csk(sk);
  2826. struct tcp_sock *tp = tcp_sk(sk);
  2827. u32 prior_snd_una = tp->snd_una;
  2828. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2829. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2830. bool is_dupack = false;
  2831. u32 prior_in_flight;
  2832. u32 prior_fackets;
  2833. int prior_packets = tp->packets_out;
  2834. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  2835. int acked = 0; /* Number of packets newly acked */
  2836. s32 sack_rtt = -1;
  2837. /* If the ack is older than previous acks
  2838. * then we can probably ignore it.
  2839. */
  2840. if (before(ack, prior_snd_una)) {
  2841. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2842. if (before(ack, prior_snd_una - tp->max_window)) {
  2843. tcp_send_challenge_ack(sk);
  2844. return -1;
  2845. }
  2846. goto old_ack;
  2847. }
  2848. /* If the ack includes data we haven't sent yet, discard
  2849. * this segment (RFC793 Section 3.9).
  2850. */
  2851. if (after(ack, tp->snd_nxt))
  2852. goto invalid_ack;
  2853. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2854. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2855. tcp_rearm_rto(sk);
  2856. if (after(ack, prior_snd_una))
  2857. flag |= FLAG_SND_UNA_ADVANCED;
  2858. prior_fackets = tp->fackets_out;
  2859. prior_in_flight = tcp_packets_in_flight(tp);
  2860. /* ts_recent update must be made after we are sure that the packet
  2861. * is in window.
  2862. */
  2863. if (flag & FLAG_UPDATE_TS_RECENT)
  2864. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2865. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2866. /* Window is constant, pure forward advance.
  2867. * No more checks are required.
  2868. * Note, we use the fact that SND.UNA>=SND.WL2.
  2869. */
  2870. tcp_update_wl(tp, ack_seq);
  2871. tp->snd_una = ack;
  2872. flag |= FLAG_WIN_UPDATE;
  2873. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2874. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2875. } else {
  2876. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2877. flag |= FLAG_DATA;
  2878. else
  2879. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2880. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2881. if (TCP_SKB_CB(skb)->sacked)
  2882. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  2883. &sack_rtt);
  2884. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2885. flag |= FLAG_ECE;
  2886. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2887. }
  2888. /* We passed data and got it acked, remove any soft error
  2889. * log. Something worked...
  2890. */
  2891. sk->sk_err_soft = 0;
  2892. icsk->icsk_probes_out = 0;
  2893. tp->rcv_tstamp = tcp_time_stamp;
  2894. if (!prior_packets)
  2895. goto no_queue;
  2896. /* See if we can take anything off of the retransmit queue. */
  2897. acked = tp->packets_out;
  2898. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
  2899. acked -= tp->packets_out;
  2900. if (tcp_ack_is_dubious(sk, flag)) {
  2901. /* Advance CWND, if state allows this. */
  2902. if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
  2903. tcp_cong_avoid(sk, ack, prior_in_flight);
  2904. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2905. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  2906. is_dupack, flag);
  2907. } else {
  2908. if (flag & FLAG_DATA_ACKED)
  2909. tcp_cong_avoid(sk, ack, prior_in_flight);
  2910. }
  2911. if (tp->tlp_high_seq)
  2912. tcp_process_tlp_ack(sk, ack, flag);
  2913. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2914. struct dst_entry *dst = __sk_dst_get(sk);
  2915. if (dst)
  2916. dst_confirm(dst);
  2917. }
  2918. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2919. tcp_schedule_loss_probe(sk);
  2920. return 1;
  2921. no_queue:
  2922. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  2923. if (flag & FLAG_DSACKING_ACK)
  2924. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  2925. is_dupack, flag);
  2926. /* If this ack opens up a zero window, clear backoff. It was
  2927. * being used to time the probes, and is probably far higher than
  2928. * it needs to be for normal retransmission.
  2929. */
  2930. if (tcp_send_head(sk))
  2931. tcp_ack_probe(sk);
  2932. if (tp->tlp_high_seq)
  2933. tcp_process_tlp_ack(sk, ack, flag);
  2934. return 1;
  2935. invalid_ack:
  2936. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2937. return -1;
  2938. old_ack:
  2939. /* If data was SACKed, tag it and see if we should send more data.
  2940. * If data was DSACKed, see if we can undo a cwnd reduction.
  2941. */
  2942. if (TCP_SKB_CB(skb)->sacked) {
  2943. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  2944. &sack_rtt);
  2945. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  2946. is_dupack, flag);
  2947. }
  2948. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2949. return 0;
  2950. }
  2951. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2952. * But, this can also be called on packets in the established flow when
  2953. * the fast version below fails.
  2954. */
  2955. void tcp_parse_options(const struct sk_buff *skb,
  2956. struct tcp_options_received *opt_rx, int estab,
  2957. struct tcp_fastopen_cookie *foc)
  2958. {
  2959. const unsigned char *ptr;
  2960. const struct tcphdr *th = tcp_hdr(skb);
  2961. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2962. ptr = (const unsigned char *)(th + 1);
  2963. opt_rx->saw_tstamp = 0;
  2964. while (length > 0) {
  2965. int opcode = *ptr++;
  2966. int opsize;
  2967. switch (opcode) {
  2968. case TCPOPT_EOL:
  2969. return;
  2970. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2971. length--;
  2972. continue;
  2973. default:
  2974. opsize = *ptr++;
  2975. if (opsize < 2) /* "silly options" */
  2976. return;
  2977. if (opsize > length)
  2978. return; /* don't parse partial options */
  2979. switch (opcode) {
  2980. case TCPOPT_MSS:
  2981. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  2982. u16 in_mss = get_unaligned_be16(ptr);
  2983. if (in_mss) {
  2984. if (opt_rx->user_mss &&
  2985. opt_rx->user_mss < in_mss)
  2986. in_mss = opt_rx->user_mss;
  2987. opt_rx->mss_clamp = in_mss;
  2988. }
  2989. }
  2990. break;
  2991. case TCPOPT_WINDOW:
  2992. if (opsize == TCPOLEN_WINDOW && th->syn &&
  2993. !estab && sysctl_tcp_window_scaling) {
  2994. __u8 snd_wscale = *(__u8 *)ptr;
  2995. opt_rx->wscale_ok = 1;
  2996. if (snd_wscale > 14) {
  2997. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  2998. __func__,
  2999. snd_wscale);
  3000. snd_wscale = 14;
  3001. }
  3002. opt_rx->snd_wscale = snd_wscale;
  3003. }
  3004. break;
  3005. case TCPOPT_TIMESTAMP:
  3006. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3007. ((estab && opt_rx->tstamp_ok) ||
  3008. (!estab && sysctl_tcp_timestamps))) {
  3009. opt_rx->saw_tstamp = 1;
  3010. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3011. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3012. }
  3013. break;
  3014. case TCPOPT_SACK_PERM:
  3015. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3016. !estab && sysctl_tcp_sack) {
  3017. opt_rx->sack_ok = TCP_SACK_SEEN;
  3018. tcp_sack_reset(opt_rx);
  3019. }
  3020. break;
  3021. case TCPOPT_SACK:
  3022. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3023. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3024. opt_rx->sack_ok) {
  3025. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3026. }
  3027. break;
  3028. #ifdef CONFIG_TCP_MD5SIG
  3029. case TCPOPT_MD5SIG:
  3030. /*
  3031. * The MD5 Hash has already been
  3032. * checked (see tcp_v{4,6}_do_rcv()).
  3033. */
  3034. break;
  3035. #endif
  3036. case TCPOPT_EXP:
  3037. /* Fast Open option shares code 254 using a
  3038. * 16 bits magic number. It's valid only in
  3039. * SYN or SYN-ACK with an even size.
  3040. */
  3041. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3042. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3043. foc == NULL || !th->syn || (opsize & 1))
  3044. break;
  3045. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3046. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3047. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3048. memcpy(foc->val, ptr + 2, foc->len);
  3049. else if (foc->len != 0)
  3050. foc->len = -1;
  3051. break;
  3052. }
  3053. ptr += opsize-2;
  3054. length -= opsize;
  3055. }
  3056. }
  3057. }
  3058. EXPORT_SYMBOL(tcp_parse_options);
  3059. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3060. {
  3061. const __be32 *ptr = (const __be32 *)(th + 1);
  3062. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3063. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3064. tp->rx_opt.saw_tstamp = 1;
  3065. ++ptr;
  3066. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3067. ++ptr;
  3068. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3069. return true;
  3070. }
  3071. return false;
  3072. }
  3073. /* Fast parse options. This hopes to only see timestamps.
  3074. * If it is wrong it falls back on tcp_parse_options().
  3075. */
  3076. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3077. const struct tcphdr *th, struct tcp_sock *tp)
  3078. {
  3079. /* In the spirit of fast parsing, compare doff directly to constant
  3080. * values. Because equality is used, short doff can be ignored here.
  3081. */
  3082. if (th->doff == (sizeof(*th) / 4)) {
  3083. tp->rx_opt.saw_tstamp = 0;
  3084. return false;
  3085. } else if (tp->rx_opt.tstamp_ok &&
  3086. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3087. if (tcp_parse_aligned_timestamp(tp, th))
  3088. return true;
  3089. }
  3090. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3091. if (tp->rx_opt.saw_tstamp)
  3092. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3093. return true;
  3094. }
  3095. #ifdef CONFIG_TCP_MD5SIG
  3096. /*
  3097. * Parse MD5 Signature option
  3098. */
  3099. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3100. {
  3101. int length = (th->doff << 2) - sizeof(*th);
  3102. const u8 *ptr = (const u8 *)(th + 1);
  3103. /* If the TCP option is too short, we can short cut */
  3104. if (length < TCPOLEN_MD5SIG)
  3105. return NULL;
  3106. while (length > 0) {
  3107. int opcode = *ptr++;
  3108. int opsize;
  3109. switch(opcode) {
  3110. case TCPOPT_EOL:
  3111. return NULL;
  3112. case TCPOPT_NOP:
  3113. length--;
  3114. continue;
  3115. default:
  3116. opsize = *ptr++;
  3117. if (opsize < 2 || opsize > length)
  3118. return NULL;
  3119. if (opcode == TCPOPT_MD5SIG)
  3120. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3121. }
  3122. ptr += opsize - 2;
  3123. length -= opsize;
  3124. }
  3125. return NULL;
  3126. }
  3127. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3128. #endif
  3129. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3130. *
  3131. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3132. * it can pass through stack. So, the following predicate verifies that
  3133. * this segment is not used for anything but congestion avoidance or
  3134. * fast retransmit. Moreover, we even are able to eliminate most of such
  3135. * second order effects, if we apply some small "replay" window (~RTO)
  3136. * to timestamp space.
  3137. *
  3138. * All these measures still do not guarantee that we reject wrapped ACKs
  3139. * on networks with high bandwidth, when sequence space is recycled fastly,
  3140. * but it guarantees that such events will be very rare and do not affect
  3141. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3142. * buggy extension.
  3143. *
  3144. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3145. * states that events when retransmit arrives after original data are rare.
  3146. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3147. * the biggest problem on large power networks even with minor reordering.
  3148. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3149. * up to bandwidth of 18Gigabit/sec. 8) ]
  3150. */
  3151. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3152. {
  3153. const struct tcp_sock *tp = tcp_sk(sk);
  3154. const struct tcphdr *th = tcp_hdr(skb);
  3155. u32 seq = TCP_SKB_CB(skb)->seq;
  3156. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3157. return (/* 1. Pure ACK with correct sequence number. */
  3158. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3159. /* 2. ... and duplicate ACK. */
  3160. ack == tp->snd_una &&
  3161. /* 3. ... and does not update window. */
  3162. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3163. /* 4. ... and sits in replay window. */
  3164. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3165. }
  3166. static inline bool tcp_paws_discard(const struct sock *sk,
  3167. const struct sk_buff *skb)
  3168. {
  3169. const struct tcp_sock *tp = tcp_sk(sk);
  3170. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3171. !tcp_disordered_ack(sk, skb);
  3172. }
  3173. /* Check segment sequence number for validity.
  3174. *
  3175. * Segment controls are considered valid, if the segment
  3176. * fits to the window after truncation to the window. Acceptability
  3177. * of data (and SYN, FIN, of course) is checked separately.
  3178. * See tcp_data_queue(), for example.
  3179. *
  3180. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3181. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3182. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3183. * (borrowed from freebsd)
  3184. */
  3185. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3186. {
  3187. return !before(end_seq, tp->rcv_wup) &&
  3188. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3189. }
  3190. /* When we get a reset we do this. */
  3191. void tcp_reset(struct sock *sk)
  3192. {
  3193. /* We want the right error as BSD sees it (and indeed as we do). */
  3194. switch (sk->sk_state) {
  3195. case TCP_SYN_SENT:
  3196. sk->sk_err = ECONNREFUSED;
  3197. break;
  3198. case TCP_CLOSE_WAIT:
  3199. sk->sk_err = EPIPE;
  3200. break;
  3201. case TCP_CLOSE:
  3202. return;
  3203. default:
  3204. sk->sk_err = ECONNRESET;
  3205. }
  3206. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3207. smp_wmb();
  3208. if (!sock_flag(sk, SOCK_DEAD))
  3209. sk->sk_error_report(sk);
  3210. tcp_done(sk);
  3211. }
  3212. /*
  3213. * Process the FIN bit. This now behaves as it is supposed to work
  3214. * and the FIN takes effect when it is validly part of sequence
  3215. * space. Not before when we get holes.
  3216. *
  3217. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3218. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3219. * TIME-WAIT)
  3220. *
  3221. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3222. * close and we go into CLOSING (and later onto TIME-WAIT)
  3223. *
  3224. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3225. */
  3226. static void tcp_fin(struct sock *sk)
  3227. {
  3228. struct tcp_sock *tp = tcp_sk(sk);
  3229. const struct dst_entry *dst;
  3230. inet_csk_schedule_ack(sk);
  3231. sk->sk_shutdown |= RCV_SHUTDOWN;
  3232. sock_set_flag(sk, SOCK_DONE);
  3233. switch (sk->sk_state) {
  3234. case TCP_SYN_RECV:
  3235. case TCP_ESTABLISHED:
  3236. /* Move to CLOSE_WAIT */
  3237. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3238. dst = __sk_dst_get(sk);
  3239. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3240. inet_csk(sk)->icsk_ack.pingpong = 1;
  3241. break;
  3242. case TCP_CLOSE_WAIT:
  3243. case TCP_CLOSING:
  3244. /* Received a retransmission of the FIN, do
  3245. * nothing.
  3246. */
  3247. break;
  3248. case TCP_LAST_ACK:
  3249. /* RFC793: Remain in the LAST-ACK state. */
  3250. break;
  3251. case TCP_FIN_WAIT1:
  3252. /* This case occurs when a simultaneous close
  3253. * happens, we must ack the received FIN and
  3254. * enter the CLOSING state.
  3255. */
  3256. tcp_send_ack(sk);
  3257. tcp_set_state(sk, TCP_CLOSING);
  3258. break;
  3259. case TCP_FIN_WAIT2:
  3260. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3261. tcp_send_ack(sk);
  3262. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3263. break;
  3264. default:
  3265. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3266. * cases we should never reach this piece of code.
  3267. */
  3268. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3269. __func__, sk->sk_state);
  3270. break;
  3271. }
  3272. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3273. * Probably, we should reset in this case. For now drop them.
  3274. */
  3275. __skb_queue_purge(&tp->out_of_order_queue);
  3276. if (tcp_is_sack(tp))
  3277. tcp_sack_reset(&tp->rx_opt);
  3278. sk_mem_reclaim(sk);
  3279. if (!sock_flag(sk, SOCK_DEAD)) {
  3280. sk->sk_state_change(sk);
  3281. /* Do not send POLL_HUP for half duplex close. */
  3282. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3283. sk->sk_state == TCP_CLOSE)
  3284. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3285. else
  3286. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3287. }
  3288. }
  3289. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3290. u32 end_seq)
  3291. {
  3292. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3293. if (before(seq, sp->start_seq))
  3294. sp->start_seq = seq;
  3295. if (after(end_seq, sp->end_seq))
  3296. sp->end_seq = end_seq;
  3297. return true;
  3298. }
  3299. return false;
  3300. }
  3301. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3302. {
  3303. struct tcp_sock *tp = tcp_sk(sk);
  3304. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3305. int mib_idx;
  3306. if (before(seq, tp->rcv_nxt))
  3307. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3308. else
  3309. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3310. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3311. tp->rx_opt.dsack = 1;
  3312. tp->duplicate_sack[0].start_seq = seq;
  3313. tp->duplicate_sack[0].end_seq = end_seq;
  3314. }
  3315. }
  3316. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3317. {
  3318. struct tcp_sock *tp = tcp_sk(sk);
  3319. if (!tp->rx_opt.dsack)
  3320. tcp_dsack_set(sk, seq, end_seq);
  3321. else
  3322. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3323. }
  3324. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3325. {
  3326. struct tcp_sock *tp = tcp_sk(sk);
  3327. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3328. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3329. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3330. tcp_enter_quickack_mode(sk);
  3331. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3332. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3333. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3334. end_seq = tp->rcv_nxt;
  3335. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3336. }
  3337. }
  3338. tcp_send_ack(sk);
  3339. }
  3340. /* These routines update the SACK block as out-of-order packets arrive or
  3341. * in-order packets close up the sequence space.
  3342. */
  3343. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3344. {
  3345. int this_sack;
  3346. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3347. struct tcp_sack_block *swalk = sp + 1;
  3348. /* See if the recent change to the first SACK eats into
  3349. * or hits the sequence space of other SACK blocks, if so coalesce.
  3350. */
  3351. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3352. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3353. int i;
  3354. /* Zap SWALK, by moving every further SACK up by one slot.
  3355. * Decrease num_sacks.
  3356. */
  3357. tp->rx_opt.num_sacks--;
  3358. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3359. sp[i] = sp[i + 1];
  3360. continue;
  3361. }
  3362. this_sack++, swalk++;
  3363. }
  3364. }
  3365. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3366. {
  3367. struct tcp_sock *tp = tcp_sk(sk);
  3368. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3369. int cur_sacks = tp->rx_opt.num_sacks;
  3370. int this_sack;
  3371. if (!cur_sacks)
  3372. goto new_sack;
  3373. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3374. if (tcp_sack_extend(sp, seq, end_seq)) {
  3375. /* Rotate this_sack to the first one. */
  3376. for (; this_sack > 0; this_sack--, sp--)
  3377. swap(*sp, *(sp - 1));
  3378. if (cur_sacks > 1)
  3379. tcp_sack_maybe_coalesce(tp);
  3380. return;
  3381. }
  3382. }
  3383. /* Could not find an adjacent existing SACK, build a new one,
  3384. * put it at the front, and shift everyone else down. We
  3385. * always know there is at least one SACK present already here.
  3386. *
  3387. * If the sack array is full, forget about the last one.
  3388. */
  3389. if (this_sack >= TCP_NUM_SACKS) {
  3390. this_sack--;
  3391. tp->rx_opt.num_sacks--;
  3392. sp--;
  3393. }
  3394. for (; this_sack > 0; this_sack--, sp--)
  3395. *sp = *(sp - 1);
  3396. new_sack:
  3397. /* Build the new head SACK, and we're done. */
  3398. sp->start_seq = seq;
  3399. sp->end_seq = end_seq;
  3400. tp->rx_opt.num_sacks++;
  3401. }
  3402. /* RCV.NXT advances, some SACKs should be eaten. */
  3403. static void tcp_sack_remove(struct tcp_sock *tp)
  3404. {
  3405. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3406. int num_sacks = tp->rx_opt.num_sacks;
  3407. int this_sack;
  3408. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3409. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3410. tp->rx_opt.num_sacks = 0;
  3411. return;
  3412. }
  3413. for (this_sack = 0; this_sack < num_sacks;) {
  3414. /* Check if the start of the sack is covered by RCV.NXT. */
  3415. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3416. int i;
  3417. /* RCV.NXT must cover all the block! */
  3418. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3419. /* Zap this SACK, by moving forward any other SACKS. */
  3420. for (i=this_sack+1; i < num_sacks; i++)
  3421. tp->selective_acks[i-1] = tp->selective_acks[i];
  3422. num_sacks--;
  3423. continue;
  3424. }
  3425. this_sack++;
  3426. sp++;
  3427. }
  3428. tp->rx_opt.num_sacks = num_sacks;
  3429. }
  3430. /* This one checks to see if we can put data from the
  3431. * out_of_order queue into the receive_queue.
  3432. */
  3433. static void tcp_ofo_queue(struct sock *sk)
  3434. {
  3435. struct tcp_sock *tp = tcp_sk(sk);
  3436. __u32 dsack_high = tp->rcv_nxt;
  3437. struct sk_buff *skb;
  3438. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3439. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3440. break;
  3441. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3442. __u32 dsack = dsack_high;
  3443. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3444. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3445. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3446. }
  3447. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3448. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3449. __skb_unlink(skb, &tp->out_of_order_queue);
  3450. __kfree_skb(skb);
  3451. continue;
  3452. }
  3453. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3454. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3455. TCP_SKB_CB(skb)->end_seq);
  3456. __skb_unlink(skb, &tp->out_of_order_queue);
  3457. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3458. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3459. if (tcp_hdr(skb)->fin)
  3460. tcp_fin(sk);
  3461. }
  3462. }
  3463. static bool tcp_prune_ofo_queue(struct sock *sk);
  3464. static int tcp_prune_queue(struct sock *sk);
  3465. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3466. unsigned int size)
  3467. {
  3468. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3469. !sk_rmem_schedule(sk, skb, size)) {
  3470. if (tcp_prune_queue(sk) < 0)
  3471. return -1;
  3472. if (!sk_rmem_schedule(sk, skb, size)) {
  3473. if (!tcp_prune_ofo_queue(sk))
  3474. return -1;
  3475. if (!sk_rmem_schedule(sk, skb, size))
  3476. return -1;
  3477. }
  3478. }
  3479. return 0;
  3480. }
  3481. /**
  3482. * tcp_try_coalesce - try to merge skb to prior one
  3483. * @sk: socket
  3484. * @to: prior buffer
  3485. * @from: buffer to add in queue
  3486. * @fragstolen: pointer to boolean
  3487. *
  3488. * Before queueing skb @from after @to, try to merge them
  3489. * to reduce overall memory use and queue lengths, if cost is small.
  3490. * Packets in ofo or receive queues can stay a long time.
  3491. * Better try to coalesce them right now to avoid future collapses.
  3492. * Returns true if caller should free @from instead of queueing it
  3493. */
  3494. static bool tcp_try_coalesce(struct sock *sk,
  3495. struct sk_buff *to,
  3496. struct sk_buff *from,
  3497. bool *fragstolen)
  3498. {
  3499. int delta;
  3500. *fragstolen = false;
  3501. if (tcp_hdr(from)->fin)
  3502. return false;
  3503. /* Its possible this segment overlaps with prior segment in queue */
  3504. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3505. return false;
  3506. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3507. return false;
  3508. atomic_add(delta, &sk->sk_rmem_alloc);
  3509. sk_mem_charge(sk, delta);
  3510. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3511. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3512. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3513. return true;
  3514. }
  3515. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3516. {
  3517. struct tcp_sock *tp = tcp_sk(sk);
  3518. struct sk_buff *skb1;
  3519. u32 seq, end_seq;
  3520. TCP_ECN_check_ce(tp, skb);
  3521. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3522. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3523. __kfree_skb(skb);
  3524. return;
  3525. }
  3526. /* Disable header prediction. */
  3527. tp->pred_flags = 0;
  3528. inet_csk_schedule_ack(sk);
  3529. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3530. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3531. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3532. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3533. if (!skb1) {
  3534. /* Initial out of order segment, build 1 SACK. */
  3535. if (tcp_is_sack(tp)) {
  3536. tp->rx_opt.num_sacks = 1;
  3537. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3538. tp->selective_acks[0].end_seq =
  3539. TCP_SKB_CB(skb)->end_seq;
  3540. }
  3541. __skb_queue_head(&tp->out_of_order_queue, skb);
  3542. goto end;
  3543. }
  3544. seq = TCP_SKB_CB(skb)->seq;
  3545. end_seq = TCP_SKB_CB(skb)->end_seq;
  3546. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3547. bool fragstolen;
  3548. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3549. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3550. } else {
  3551. kfree_skb_partial(skb, fragstolen);
  3552. skb = NULL;
  3553. }
  3554. if (!tp->rx_opt.num_sacks ||
  3555. tp->selective_acks[0].end_seq != seq)
  3556. goto add_sack;
  3557. /* Common case: data arrive in order after hole. */
  3558. tp->selective_acks[0].end_seq = end_seq;
  3559. goto end;
  3560. }
  3561. /* Find place to insert this segment. */
  3562. while (1) {
  3563. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3564. break;
  3565. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3566. skb1 = NULL;
  3567. break;
  3568. }
  3569. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3570. }
  3571. /* Do skb overlap to previous one? */
  3572. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3573. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3574. /* All the bits are present. Drop. */
  3575. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3576. __kfree_skb(skb);
  3577. skb = NULL;
  3578. tcp_dsack_set(sk, seq, end_seq);
  3579. goto add_sack;
  3580. }
  3581. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3582. /* Partial overlap. */
  3583. tcp_dsack_set(sk, seq,
  3584. TCP_SKB_CB(skb1)->end_seq);
  3585. } else {
  3586. if (skb_queue_is_first(&tp->out_of_order_queue,
  3587. skb1))
  3588. skb1 = NULL;
  3589. else
  3590. skb1 = skb_queue_prev(
  3591. &tp->out_of_order_queue,
  3592. skb1);
  3593. }
  3594. }
  3595. if (!skb1)
  3596. __skb_queue_head(&tp->out_of_order_queue, skb);
  3597. else
  3598. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3599. /* And clean segments covered by new one as whole. */
  3600. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3601. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3602. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3603. break;
  3604. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3605. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3606. end_seq);
  3607. break;
  3608. }
  3609. __skb_unlink(skb1, &tp->out_of_order_queue);
  3610. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3611. TCP_SKB_CB(skb1)->end_seq);
  3612. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3613. __kfree_skb(skb1);
  3614. }
  3615. add_sack:
  3616. if (tcp_is_sack(tp))
  3617. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3618. end:
  3619. if (skb)
  3620. skb_set_owner_r(skb, sk);
  3621. }
  3622. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3623. bool *fragstolen)
  3624. {
  3625. int eaten;
  3626. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3627. __skb_pull(skb, hdrlen);
  3628. eaten = (tail &&
  3629. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3630. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3631. if (!eaten) {
  3632. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3633. skb_set_owner_r(skb, sk);
  3634. }
  3635. return eaten;
  3636. }
  3637. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3638. {
  3639. struct sk_buff *skb = NULL;
  3640. struct tcphdr *th;
  3641. bool fragstolen;
  3642. if (size == 0)
  3643. return 0;
  3644. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3645. if (!skb)
  3646. goto err;
  3647. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3648. goto err_free;
  3649. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3650. skb_reset_transport_header(skb);
  3651. memset(th, 0, sizeof(*th));
  3652. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3653. goto err_free;
  3654. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3655. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3656. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3657. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3658. WARN_ON_ONCE(fragstolen); /* should not happen */
  3659. __kfree_skb(skb);
  3660. }
  3661. return size;
  3662. err_free:
  3663. kfree_skb(skb);
  3664. err:
  3665. return -ENOMEM;
  3666. }
  3667. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3668. {
  3669. const struct tcphdr *th = tcp_hdr(skb);
  3670. struct tcp_sock *tp = tcp_sk(sk);
  3671. int eaten = -1;
  3672. bool fragstolen = false;
  3673. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3674. goto drop;
  3675. skb_dst_drop(skb);
  3676. __skb_pull(skb, th->doff * 4);
  3677. TCP_ECN_accept_cwr(tp, skb);
  3678. tp->rx_opt.dsack = 0;
  3679. /* Queue data for delivery to the user.
  3680. * Packets in sequence go to the receive queue.
  3681. * Out of sequence packets to the out_of_order_queue.
  3682. */
  3683. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3684. if (tcp_receive_window(tp) == 0)
  3685. goto out_of_window;
  3686. /* Ok. In sequence. In window. */
  3687. if (tp->ucopy.task == current &&
  3688. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3689. sock_owned_by_user(sk) && !tp->urg_data) {
  3690. int chunk = min_t(unsigned int, skb->len,
  3691. tp->ucopy.len);
  3692. __set_current_state(TASK_RUNNING);
  3693. local_bh_enable();
  3694. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3695. tp->ucopy.len -= chunk;
  3696. tp->copied_seq += chunk;
  3697. eaten = (chunk == skb->len);
  3698. tcp_rcv_space_adjust(sk);
  3699. }
  3700. local_bh_disable();
  3701. }
  3702. if (eaten <= 0) {
  3703. queue_and_out:
  3704. if (eaten < 0 &&
  3705. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3706. goto drop;
  3707. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3708. }
  3709. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3710. if (skb->len)
  3711. tcp_event_data_recv(sk, skb);
  3712. if (th->fin)
  3713. tcp_fin(sk);
  3714. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3715. tcp_ofo_queue(sk);
  3716. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3717. * gap in queue is filled.
  3718. */
  3719. if (skb_queue_empty(&tp->out_of_order_queue))
  3720. inet_csk(sk)->icsk_ack.pingpong = 0;
  3721. }
  3722. if (tp->rx_opt.num_sacks)
  3723. tcp_sack_remove(tp);
  3724. tcp_fast_path_check(sk);
  3725. if (eaten > 0)
  3726. kfree_skb_partial(skb, fragstolen);
  3727. if (!sock_flag(sk, SOCK_DEAD))
  3728. sk->sk_data_ready(sk, 0);
  3729. return;
  3730. }
  3731. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3732. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3733. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3734. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3735. out_of_window:
  3736. tcp_enter_quickack_mode(sk);
  3737. inet_csk_schedule_ack(sk);
  3738. drop:
  3739. __kfree_skb(skb);
  3740. return;
  3741. }
  3742. /* Out of window. F.e. zero window probe. */
  3743. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3744. goto out_of_window;
  3745. tcp_enter_quickack_mode(sk);
  3746. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3747. /* Partial packet, seq < rcv_next < end_seq */
  3748. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3749. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3750. TCP_SKB_CB(skb)->end_seq);
  3751. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3752. /* If window is closed, drop tail of packet. But after
  3753. * remembering D-SACK for its head made in previous line.
  3754. */
  3755. if (!tcp_receive_window(tp))
  3756. goto out_of_window;
  3757. goto queue_and_out;
  3758. }
  3759. tcp_data_queue_ofo(sk, skb);
  3760. }
  3761. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3762. struct sk_buff_head *list)
  3763. {
  3764. struct sk_buff *next = NULL;
  3765. if (!skb_queue_is_last(list, skb))
  3766. next = skb_queue_next(list, skb);
  3767. __skb_unlink(skb, list);
  3768. __kfree_skb(skb);
  3769. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3770. return next;
  3771. }
  3772. /* Collapse contiguous sequence of skbs head..tail with
  3773. * sequence numbers start..end.
  3774. *
  3775. * If tail is NULL, this means until the end of the list.
  3776. *
  3777. * Segments with FIN/SYN are not collapsed (only because this
  3778. * simplifies code)
  3779. */
  3780. static void
  3781. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3782. struct sk_buff *head, struct sk_buff *tail,
  3783. u32 start, u32 end)
  3784. {
  3785. struct sk_buff *skb, *n;
  3786. bool end_of_skbs;
  3787. /* First, check that queue is collapsible and find
  3788. * the point where collapsing can be useful. */
  3789. skb = head;
  3790. restart:
  3791. end_of_skbs = true;
  3792. skb_queue_walk_from_safe(list, skb, n) {
  3793. if (skb == tail)
  3794. break;
  3795. /* No new bits? It is possible on ofo queue. */
  3796. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3797. skb = tcp_collapse_one(sk, skb, list);
  3798. if (!skb)
  3799. break;
  3800. goto restart;
  3801. }
  3802. /* The first skb to collapse is:
  3803. * - not SYN/FIN and
  3804. * - bloated or contains data before "start" or
  3805. * overlaps to the next one.
  3806. */
  3807. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3808. (tcp_win_from_space(skb->truesize) > skb->len ||
  3809. before(TCP_SKB_CB(skb)->seq, start))) {
  3810. end_of_skbs = false;
  3811. break;
  3812. }
  3813. if (!skb_queue_is_last(list, skb)) {
  3814. struct sk_buff *next = skb_queue_next(list, skb);
  3815. if (next != tail &&
  3816. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3817. end_of_skbs = false;
  3818. break;
  3819. }
  3820. }
  3821. /* Decided to skip this, advance start seq. */
  3822. start = TCP_SKB_CB(skb)->end_seq;
  3823. }
  3824. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3825. return;
  3826. while (before(start, end)) {
  3827. struct sk_buff *nskb;
  3828. unsigned int header = skb_headroom(skb);
  3829. int copy = SKB_MAX_ORDER(header, 0);
  3830. /* Too big header? This can happen with IPv6. */
  3831. if (copy < 0)
  3832. return;
  3833. if (end - start < copy)
  3834. copy = end - start;
  3835. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3836. if (!nskb)
  3837. return;
  3838. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3839. skb_set_network_header(nskb, (skb_network_header(skb) -
  3840. skb->head));
  3841. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3842. skb->head));
  3843. skb_reserve(nskb, header);
  3844. memcpy(nskb->head, skb->head, header);
  3845. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3846. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3847. __skb_queue_before(list, skb, nskb);
  3848. skb_set_owner_r(nskb, sk);
  3849. /* Copy data, releasing collapsed skbs. */
  3850. while (copy > 0) {
  3851. int offset = start - TCP_SKB_CB(skb)->seq;
  3852. int size = TCP_SKB_CB(skb)->end_seq - start;
  3853. BUG_ON(offset < 0);
  3854. if (size > 0) {
  3855. size = min(copy, size);
  3856. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3857. BUG();
  3858. TCP_SKB_CB(nskb)->end_seq += size;
  3859. copy -= size;
  3860. start += size;
  3861. }
  3862. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3863. skb = tcp_collapse_one(sk, skb, list);
  3864. if (!skb ||
  3865. skb == tail ||
  3866. tcp_hdr(skb)->syn ||
  3867. tcp_hdr(skb)->fin)
  3868. return;
  3869. }
  3870. }
  3871. }
  3872. }
  3873. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3874. * and tcp_collapse() them until all the queue is collapsed.
  3875. */
  3876. static void tcp_collapse_ofo_queue(struct sock *sk)
  3877. {
  3878. struct tcp_sock *tp = tcp_sk(sk);
  3879. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3880. struct sk_buff *head;
  3881. u32 start, end;
  3882. if (skb == NULL)
  3883. return;
  3884. start = TCP_SKB_CB(skb)->seq;
  3885. end = TCP_SKB_CB(skb)->end_seq;
  3886. head = skb;
  3887. for (;;) {
  3888. struct sk_buff *next = NULL;
  3889. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3890. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3891. skb = next;
  3892. /* Segment is terminated when we see gap or when
  3893. * we are at the end of all the queue. */
  3894. if (!skb ||
  3895. after(TCP_SKB_CB(skb)->seq, end) ||
  3896. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3897. tcp_collapse(sk, &tp->out_of_order_queue,
  3898. head, skb, start, end);
  3899. head = skb;
  3900. if (!skb)
  3901. break;
  3902. /* Start new segment */
  3903. start = TCP_SKB_CB(skb)->seq;
  3904. end = TCP_SKB_CB(skb)->end_seq;
  3905. } else {
  3906. if (before(TCP_SKB_CB(skb)->seq, start))
  3907. start = TCP_SKB_CB(skb)->seq;
  3908. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3909. end = TCP_SKB_CB(skb)->end_seq;
  3910. }
  3911. }
  3912. }
  3913. /*
  3914. * Purge the out-of-order queue.
  3915. * Return true if queue was pruned.
  3916. */
  3917. static bool tcp_prune_ofo_queue(struct sock *sk)
  3918. {
  3919. struct tcp_sock *tp = tcp_sk(sk);
  3920. bool res = false;
  3921. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3922. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3923. __skb_queue_purge(&tp->out_of_order_queue);
  3924. /* Reset SACK state. A conforming SACK implementation will
  3925. * do the same at a timeout based retransmit. When a connection
  3926. * is in a sad state like this, we care only about integrity
  3927. * of the connection not performance.
  3928. */
  3929. if (tp->rx_opt.sack_ok)
  3930. tcp_sack_reset(&tp->rx_opt);
  3931. sk_mem_reclaim(sk);
  3932. res = true;
  3933. }
  3934. return res;
  3935. }
  3936. /* Reduce allocated memory if we can, trying to get
  3937. * the socket within its memory limits again.
  3938. *
  3939. * Return less than zero if we should start dropping frames
  3940. * until the socket owning process reads some of the data
  3941. * to stabilize the situation.
  3942. */
  3943. static int tcp_prune_queue(struct sock *sk)
  3944. {
  3945. struct tcp_sock *tp = tcp_sk(sk);
  3946. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3947. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3948. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3949. tcp_clamp_window(sk);
  3950. else if (sk_under_memory_pressure(sk))
  3951. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3952. tcp_collapse_ofo_queue(sk);
  3953. if (!skb_queue_empty(&sk->sk_receive_queue))
  3954. tcp_collapse(sk, &sk->sk_receive_queue,
  3955. skb_peek(&sk->sk_receive_queue),
  3956. NULL,
  3957. tp->copied_seq, tp->rcv_nxt);
  3958. sk_mem_reclaim(sk);
  3959. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3960. return 0;
  3961. /* Collapsing did not help, destructive actions follow.
  3962. * This must not ever occur. */
  3963. tcp_prune_ofo_queue(sk);
  3964. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3965. return 0;
  3966. /* If we are really being abused, tell the caller to silently
  3967. * drop receive data on the floor. It will get retransmitted
  3968. * and hopefully then we'll have sufficient space.
  3969. */
  3970. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  3971. /* Massive buffer overcommit. */
  3972. tp->pred_flags = 0;
  3973. return -1;
  3974. }
  3975. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3976. * As additional protections, we do not touch cwnd in retransmission phases,
  3977. * and if application hit its sndbuf limit recently.
  3978. */
  3979. void tcp_cwnd_application_limited(struct sock *sk)
  3980. {
  3981. struct tcp_sock *tp = tcp_sk(sk);
  3982. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3983. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3984. /* Limited by application or receiver window. */
  3985. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3986. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3987. if (win_used < tp->snd_cwnd) {
  3988. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3989. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3990. }
  3991. tp->snd_cwnd_used = 0;
  3992. }
  3993. tp->snd_cwnd_stamp = tcp_time_stamp;
  3994. }
  3995. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  3996. {
  3997. const struct tcp_sock *tp = tcp_sk(sk);
  3998. /* If the user specified a specific send buffer setting, do
  3999. * not modify it.
  4000. */
  4001. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4002. return false;
  4003. /* If we are under global TCP memory pressure, do not expand. */
  4004. if (sk_under_memory_pressure(sk))
  4005. return false;
  4006. /* If we are under soft global TCP memory pressure, do not expand. */
  4007. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4008. return false;
  4009. /* If we filled the congestion window, do not expand. */
  4010. if (tp->packets_out >= tp->snd_cwnd)
  4011. return false;
  4012. return true;
  4013. }
  4014. /* When incoming ACK allowed to free some skb from write_queue,
  4015. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4016. * on the exit from tcp input handler.
  4017. *
  4018. * PROBLEM: sndbuf expansion does not work well with largesend.
  4019. */
  4020. static void tcp_new_space(struct sock *sk)
  4021. {
  4022. struct tcp_sock *tp = tcp_sk(sk);
  4023. if (tcp_should_expand_sndbuf(sk)) {
  4024. int sndmem = SKB_TRUESIZE(max_t(u32,
  4025. tp->rx_opt.mss_clamp,
  4026. tp->mss_cache) +
  4027. MAX_TCP_HEADER);
  4028. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4029. tp->reordering + 1);
  4030. sndmem *= 2 * demanded;
  4031. if (sndmem > sk->sk_sndbuf)
  4032. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4033. tp->snd_cwnd_stamp = tcp_time_stamp;
  4034. }
  4035. sk->sk_write_space(sk);
  4036. }
  4037. static void tcp_check_space(struct sock *sk)
  4038. {
  4039. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4040. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4041. if (sk->sk_socket &&
  4042. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4043. tcp_new_space(sk);
  4044. }
  4045. }
  4046. static inline void tcp_data_snd_check(struct sock *sk)
  4047. {
  4048. tcp_push_pending_frames(sk);
  4049. tcp_check_space(sk);
  4050. }
  4051. /*
  4052. * Check if sending an ack is needed.
  4053. */
  4054. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4055. {
  4056. struct tcp_sock *tp = tcp_sk(sk);
  4057. /* More than one full frame received... */
  4058. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4059. /* ... and right edge of window advances far enough.
  4060. * (tcp_recvmsg() will send ACK otherwise). Or...
  4061. */
  4062. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4063. /* We ACK each frame or... */
  4064. tcp_in_quickack_mode(sk) ||
  4065. /* We have out of order data. */
  4066. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4067. /* Then ack it now */
  4068. tcp_send_ack(sk);
  4069. } else {
  4070. /* Else, send delayed ack. */
  4071. tcp_send_delayed_ack(sk);
  4072. }
  4073. }
  4074. static inline void tcp_ack_snd_check(struct sock *sk)
  4075. {
  4076. if (!inet_csk_ack_scheduled(sk)) {
  4077. /* We sent a data segment already. */
  4078. return;
  4079. }
  4080. __tcp_ack_snd_check(sk, 1);
  4081. }
  4082. /*
  4083. * This routine is only called when we have urgent data
  4084. * signaled. Its the 'slow' part of tcp_urg. It could be
  4085. * moved inline now as tcp_urg is only called from one
  4086. * place. We handle URGent data wrong. We have to - as
  4087. * BSD still doesn't use the correction from RFC961.
  4088. * For 1003.1g we should support a new option TCP_STDURG to permit
  4089. * either form (or just set the sysctl tcp_stdurg).
  4090. */
  4091. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4092. {
  4093. struct tcp_sock *tp = tcp_sk(sk);
  4094. u32 ptr = ntohs(th->urg_ptr);
  4095. if (ptr && !sysctl_tcp_stdurg)
  4096. ptr--;
  4097. ptr += ntohl(th->seq);
  4098. /* Ignore urgent data that we've already seen and read. */
  4099. if (after(tp->copied_seq, ptr))
  4100. return;
  4101. /* Do not replay urg ptr.
  4102. *
  4103. * NOTE: interesting situation not covered by specs.
  4104. * Misbehaving sender may send urg ptr, pointing to segment,
  4105. * which we already have in ofo queue. We are not able to fetch
  4106. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4107. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4108. * situations. But it is worth to think about possibility of some
  4109. * DoSes using some hypothetical application level deadlock.
  4110. */
  4111. if (before(ptr, tp->rcv_nxt))
  4112. return;
  4113. /* Do we already have a newer (or duplicate) urgent pointer? */
  4114. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4115. return;
  4116. /* Tell the world about our new urgent pointer. */
  4117. sk_send_sigurg(sk);
  4118. /* We may be adding urgent data when the last byte read was
  4119. * urgent. To do this requires some care. We cannot just ignore
  4120. * tp->copied_seq since we would read the last urgent byte again
  4121. * as data, nor can we alter copied_seq until this data arrives
  4122. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4123. *
  4124. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4125. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4126. * and expect that both A and B disappear from stream. This is _wrong_.
  4127. * Though this happens in BSD with high probability, this is occasional.
  4128. * Any application relying on this is buggy. Note also, that fix "works"
  4129. * only in this artificial test. Insert some normal data between A and B and we will
  4130. * decline of BSD again. Verdict: it is better to remove to trap
  4131. * buggy users.
  4132. */
  4133. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4134. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4135. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4136. tp->copied_seq++;
  4137. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4138. __skb_unlink(skb, &sk->sk_receive_queue);
  4139. __kfree_skb(skb);
  4140. }
  4141. }
  4142. tp->urg_data = TCP_URG_NOTYET;
  4143. tp->urg_seq = ptr;
  4144. /* Disable header prediction. */
  4145. tp->pred_flags = 0;
  4146. }
  4147. /* This is the 'fast' part of urgent handling. */
  4148. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4149. {
  4150. struct tcp_sock *tp = tcp_sk(sk);
  4151. /* Check if we get a new urgent pointer - normally not. */
  4152. if (th->urg)
  4153. tcp_check_urg(sk, th);
  4154. /* Do we wait for any urgent data? - normally not... */
  4155. if (tp->urg_data == TCP_URG_NOTYET) {
  4156. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4157. th->syn;
  4158. /* Is the urgent pointer pointing into this packet? */
  4159. if (ptr < skb->len) {
  4160. u8 tmp;
  4161. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4162. BUG();
  4163. tp->urg_data = TCP_URG_VALID | tmp;
  4164. if (!sock_flag(sk, SOCK_DEAD))
  4165. sk->sk_data_ready(sk, 0);
  4166. }
  4167. }
  4168. }
  4169. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4170. {
  4171. struct tcp_sock *tp = tcp_sk(sk);
  4172. int chunk = skb->len - hlen;
  4173. int err;
  4174. local_bh_enable();
  4175. if (skb_csum_unnecessary(skb))
  4176. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4177. else
  4178. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4179. tp->ucopy.iov);
  4180. if (!err) {
  4181. tp->ucopy.len -= chunk;
  4182. tp->copied_seq += chunk;
  4183. tcp_rcv_space_adjust(sk);
  4184. }
  4185. local_bh_disable();
  4186. return err;
  4187. }
  4188. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4189. struct sk_buff *skb)
  4190. {
  4191. __sum16 result;
  4192. if (sock_owned_by_user(sk)) {
  4193. local_bh_enable();
  4194. result = __tcp_checksum_complete(skb);
  4195. local_bh_disable();
  4196. } else {
  4197. result = __tcp_checksum_complete(skb);
  4198. }
  4199. return result;
  4200. }
  4201. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4202. struct sk_buff *skb)
  4203. {
  4204. return !skb_csum_unnecessary(skb) &&
  4205. __tcp_checksum_complete_user(sk, skb);
  4206. }
  4207. #ifdef CONFIG_NET_DMA
  4208. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4209. int hlen)
  4210. {
  4211. struct tcp_sock *tp = tcp_sk(sk);
  4212. int chunk = skb->len - hlen;
  4213. int dma_cookie;
  4214. bool copied_early = false;
  4215. if (tp->ucopy.wakeup)
  4216. return false;
  4217. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4218. tp->ucopy.dma_chan = net_dma_find_channel();
  4219. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4220. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4221. skb, hlen,
  4222. tp->ucopy.iov, chunk,
  4223. tp->ucopy.pinned_list);
  4224. if (dma_cookie < 0)
  4225. goto out;
  4226. tp->ucopy.dma_cookie = dma_cookie;
  4227. copied_early = true;
  4228. tp->ucopy.len -= chunk;
  4229. tp->copied_seq += chunk;
  4230. tcp_rcv_space_adjust(sk);
  4231. if ((tp->ucopy.len == 0) ||
  4232. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4233. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4234. tp->ucopy.wakeup = 1;
  4235. sk->sk_data_ready(sk, 0);
  4236. }
  4237. } else if (chunk > 0) {
  4238. tp->ucopy.wakeup = 1;
  4239. sk->sk_data_ready(sk, 0);
  4240. }
  4241. out:
  4242. return copied_early;
  4243. }
  4244. #endif /* CONFIG_NET_DMA */
  4245. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4246. * play significant role here.
  4247. */
  4248. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4249. const struct tcphdr *th, int syn_inerr)
  4250. {
  4251. struct tcp_sock *tp = tcp_sk(sk);
  4252. /* RFC1323: H1. Apply PAWS check first. */
  4253. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4254. tcp_paws_discard(sk, skb)) {
  4255. if (!th->rst) {
  4256. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4257. tcp_send_dupack(sk, skb);
  4258. goto discard;
  4259. }
  4260. /* Reset is accepted even if it did not pass PAWS. */
  4261. }
  4262. /* Step 1: check sequence number */
  4263. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4264. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4265. * (RST) segments are validated by checking their SEQ-fields."
  4266. * And page 69: "If an incoming segment is not acceptable,
  4267. * an acknowledgment should be sent in reply (unless the RST
  4268. * bit is set, if so drop the segment and return)".
  4269. */
  4270. if (!th->rst) {
  4271. if (th->syn)
  4272. goto syn_challenge;
  4273. tcp_send_dupack(sk, skb);
  4274. }
  4275. goto discard;
  4276. }
  4277. /* Step 2: check RST bit */
  4278. if (th->rst) {
  4279. /* RFC 5961 3.2 :
  4280. * If sequence number exactly matches RCV.NXT, then
  4281. * RESET the connection
  4282. * else
  4283. * Send a challenge ACK
  4284. */
  4285. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4286. tcp_reset(sk);
  4287. else
  4288. tcp_send_challenge_ack(sk);
  4289. goto discard;
  4290. }
  4291. /* step 3: check security and precedence [ignored] */
  4292. /* step 4: Check for a SYN
  4293. * RFC 5691 4.2 : Send a challenge ack
  4294. */
  4295. if (th->syn) {
  4296. syn_challenge:
  4297. if (syn_inerr)
  4298. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4299. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4300. tcp_send_challenge_ack(sk);
  4301. goto discard;
  4302. }
  4303. return true;
  4304. discard:
  4305. __kfree_skb(skb);
  4306. return false;
  4307. }
  4308. /*
  4309. * TCP receive function for the ESTABLISHED state.
  4310. *
  4311. * It is split into a fast path and a slow path. The fast path is
  4312. * disabled when:
  4313. * - A zero window was announced from us - zero window probing
  4314. * is only handled properly in the slow path.
  4315. * - Out of order segments arrived.
  4316. * - Urgent data is expected.
  4317. * - There is no buffer space left
  4318. * - Unexpected TCP flags/window values/header lengths are received
  4319. * (detected by checking the TCP header against pred_flags)
  4320. * - Data is sent in both directions. Fast path only supports pure senders
  4321. * or pure receivers (this means either the sequence number or the ack
  4322. * value must stay constant)
  4323. * - Unexpected TCP option.
  4324. *
  4325. * When these conditions are not satisfied it drops into a standard
  4326. * receive procedure patterned after RFC793 to handle all cases.
  4327. * The first three cases are guaranteed by proper pred_flags setting,
  4328. * the rest is checked inline. Fast processing is turned on in
  4329. * tcp_data_queue when everything is OK.
  4330. */
  4331. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4332. const struct tcphdr *th, unsigned int len)
  4333. {
  4334. struct tcp_sock *tp = tcp_sk(sk);
  4335. if (unlikely(sk->sk_rx_dst == NULL))
  4336. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4337. /*
  4338. * Header prediction.
  4339. * The code loosely follows the one in the famous
  4340. * "30 instruction TCP receive" Van Jacobson mail.
  4341. *
  4342. * Van's trick is to deposit buffers into socket queue
  4343. * on a device interrupt, to call tcp_recv function
  4344. * on the receive process context and checksum and copy
  4345. * the buffer to user space. smart...
  4346. *
  4347. * Our current scheme is not silly either but we take the
  4348. * extra cost of the net_bh soft interrupt processing...
  4349. * We do checksum and copy also but from device to kernel.
  4350. */
  4351. tp->rx_opt.saw_tstamp = 0;
  4352. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4353. * if header_prediction is to be made
  4354. * 'S' will always be tp->tcp_header_len >> 2
  4355. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4356. * turn it off (when there are holes in the receive
  4357. * space for instance)
  4358. * PSH flag is ignored.
  4359. */
  4360. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4361. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4362. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4363. int tcp_header_len = tp->tcp_header_len;
  4364. /* Timestamp header prediction: tcp_header_len
  4365. * is automatically equal to th->doff*4 due to pred_flags
  4366. * match.
  4367. */
  4368. /* Check timestamp */
  4369. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4370. /* No? Slow path! */
  4371. if (!tcp_parse_aligned_timestamp(tp, th))
  4372. goto slow_path;
  4373. /* If PAWS failed, check it more carefully in slow path */
  4374. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4375. goto slow_path;
  4376. /* DO NOT update ts_recent here, if checksum fails
  4377. * and timestamp was corrupted part, it will result
  4378. * in a hung connection since we will drop all
  4379. * future packets due to the PAWS test.
  4380. */
  4381. }
  4382. if (len <= tcp_header_len) {
  4383. /* Bulk data transfer: sender */
  4384. if (len == tcp_header_len) {
  4385. /* Predicted packet is in window by definition.
  4386. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4387. * Hence, check seq<=rcv_wup reduces to:
  4388. */
  4389. if (tcp_header_len ==
  4390. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4391. tp->rcv_nxt == tp->rcv_wup)
  4392. tcp_store_ts_recent(tp);
  4393. /* We know that such packets are checksummed
  4394. * on entry.
  4395. */
  4396. tcp_ack(sk, skb, 0);
  4397. __kfree_skb(skb);
  4398. tcp_data_snd_check(sk);
  4399. return 0;
  4400. } else { /* Header too small */
  4401. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4402. goto discard;
  4403. }
  4404. } else {
  4405. int eaten = 0;
  4406. int copied_early = 0;
  4407. bool fragstolen = false;
  4408. if (tp->copied_seq == tp->rcv_nxt &&
  4409. len - tcp_header_len <= tp->ucopy.len) {
  4410. #ifdef CONFIG_NET_DMA
  4411. if (tp->ucopy.task == current &&
  4412. sock_owned_by_user(sk) &&
  4413. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4414. copied_early = 1;
  4415. eaten = 1;
  4416. }
  4417. #endif
  4418. if (tp->ucopy.task == current &&
  4419. sock_owned_by_user(sk) && !copied_early) {
  4420. __set_current_state(TASK_RUNNING);
  4421. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4422. eaten = 1;
  4423. }
  4424. if (eaten) {
  4425. /* Predicted packet is in window by definition.
  4426. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4427. * Hence, check seq<=rcv_wup reduces to:
  4428. */
  4429. if (tcp_header_len ==
  4430. (sizeof(struct tcphdr) +
  4431. TCPOLEN_TSTAMP_ALIGNED) &&
  4432. tp->rcv_nxt == tp->rcv_wup)
  4433. tcp_store_ts_recent(tp);
  4434. tcp_rcv_rtt_measure_ts(sk, skb);
  4435. __skb_pull(skb, tcp_header_len);
  4436. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4437. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4438. }
  4439. if (copied_early)
  4440. tcp_cleanup_rbuf(sk, skb->len);
  4441. }
  4442. if (!eaten) {
  4443. if (tcp_checksum_complete_user(sk, skb))
  4444. goto csum_error;
  4445. if ((int)skb->truesize > sk->sk_forward_alloc)
  4446. goto step5;
  4447. /* Predicted packet is in window by definition.
  4448. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4449. * Hence, check seq<=rcv_wup reduces to:
  4450. */
  4451. if (tcp_header_len ==
  4452. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4453. tp->rcv_nxt == tp->rcv_wup)
  4454. tcp_store_ts_recent(tp);
  4455. tcp_rcv_rtt_measure_ts(sk, skb);
  4456. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4457. /* Bulk data transfer: receiver */
  4458. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4459. &fragstolen);
  4460. }
  4461. tcp_event_data_recv(sk, skb);
  4462. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4463. /* Well, only one small jumplet in fast path... */
  4464. tcp_ack(sk, skb, FLAG_DATA);
  4465. tcp_data_snd_check(sk);
  4466. if (!inet_csk_ack_scheduled(sk))
  4467. goto no_ack;
  4468. }
  4469. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4470. __tcp_ack_snd_check(sk, 0);
  4471. no_ack:
  4472. #ifdef CONFIG_NET_DMA
  4473. if (copied_early)
  4474. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4475. else
  4476. #endif
  4477. if (eaten)
  4478. kfree_skb_partial(skb, fragstolen);
  4479. sk->sk_data_ready(sk, 0);
  4480. return 0;
  4481. }
  4482. }
  4483. slow_path:
  4484. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4485. goto csum_error;
  4486. if (!th->ack && !th->rst)
  4487. goto discard;
  4488. /*
  4489. * Standard slow path.
  4490. */
  4491. if (!tcp_validate_incoming(sk, skb, th, 1))
  4492. return 0;
  4493. step5:
  4494. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4495. goto discard;
  4496. tcp_rcv_rtt_measure_ts(sk, skb);
  4497. /* Process urgent data. */
  4498. tcp_urg(sk, skb, th);
  4499. /* step 7: process the segment text */
  4500. tcp_data_queue(sk, skb);
  4501. tcp_data_snd_check(sk);
  4502. tcp_ack_snd_check(sk);
  4503. return 0;
  4504. csum_error:
  4505. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4506. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4507. discard:
  4508. __kfree_skb(skb);
  4509. return 0;
  4510. }
  4511. EXPORT_SYMBOL(tcp_rcv_established);
  4512. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4513. {
  4514. struct tcp_sock *tp = tcp_sk(sk);
  4515. struct inet_connection_sock *icsk = inet_csk(sk);
  4516. tcp_set_state(sk, TCP_ESTABLISHED);
  4517. if (skb != NULL) {
  4518. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4519. security_inet_conn_established(sk, skb);
  4520. }
  4521. /* Make sure socket is routed, for correct metrics. */
  4522. icsk->icsk_af_ops->rebuild_header(sk);
  4523. tcp_init_metrics(sk);
  4524. tcp_init_congestion_control(sk);
  4525. /* Prevent spurious tcp_cwnd_restart() on first data
  4526. * packet.
  4527. */
  4528. tp->lsndtime = tcp_time_stamp;
  4529. tcp_init_buffer_space(sk);
  4530. if (sock_flag(sk, SOCK_KEEPOPEN))
  4531. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4532. if (!tp->rx_opt.snd_wscale)
  4533. __tcp_fast_path_on(tp, tp->snd_wnd);
  4534. else
  4535. tp->pred_flags = 0;
  4536. if (!sock_flag(sk, SOCK_DEAD)) {
  4537. sk->sk_state_change(sk);
  4538. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4539. }
  4540. }
  4541. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4542. struct tcp_fastopen_cookie *cookie)
  4543. {
  4544. struct tcp_sock *tp = tcp_sk(sk);
  4545. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4546. u16 mss = tp->rx_opt.mss_clamp;
  4547. bool syn_drop;
  4548. if (mss == tp->rx_opt.user_mss) {
  4549. struct tcp_options_received opt;
  4550. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4551. tcp_clear_options(&opt);
  4552. opt.user_mss = opt.mss_clamp = 0;
  4553. tcp_parse_options(synack, &opt, 0, NULL);
  4554. mss = opt.mss_clamp;
  4555. }
  4556. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4557. cookie->len = -1;
  4558. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4559. * the remote receives only the retransmitted (regular) SYNs: either
  4560. * the original SYN-data or the corresponding SYN-ACK is lost.
  4561. */
  4562. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4563. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4564. if (data) { /* Retransmit unacked data in SYN */
  4565. tcp_for_write_queue_from(data, sk) {
  4566. if (data == tcp_send_head(sk) ||
  4567. __tcp_retransmit_skb(sk, data))
  4568. break;
  4569. }
  4570. tcp_rearm_rto(sk);
  4571. return true;
  4572. }
  4573. tp->syn_data_acked = tp->syn_data;
  4574. return false;
  4575. }
  4576. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4577. const struct tcphdr *th, unsigned int len)
  4578. {
  4579. struct inet_connection_sock *icsk = inet_csk(sk);
  4580. struct tcp_sock *tp = tcp_sk(sk);
  4581. struct tcp_fastopen_cookie foc = { .len = -1 };
  4582. int saved_clamp = tp->rx_opt.mss_clamp;
  4583. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4584. if (tp->rx_opt.saw_tstamp)
  4585. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4586. if (th->ack) {
  4587. /* rfc793:
  4588. * "If the state is SYN-SENT then
  4589. * first check the ACK bit
  4590. * If the ACK bit is set
  4591. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4592. * a reset (unless the RST bit is set, if so drop
  4593. * the segment and return)"
  4594. */
  4595. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4596. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4597. goto reset_and_undo;
  4598. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4599. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4600. tcp_time_stamp)) {
  4601. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4602. goto reset_and_undo;
  4603. }
  4604. /* Now ACK is acceptable.
  4605. *
  4606. * "If the RST bit is set
  4607. * If the ACK was acceptable then signal the user "error:
  4608. * connection reset", drop the segment, enter CLOSED state,
  4609. * delete TCB, and return."
  4610. */
  4611. if (th->rst) {
  4612. tcp_reset(sk);
  4613. goto discard;
  4614. }
  4615. /* rfc793:
  4616. * "fifth, if neither of the SYN or RST bits is set then
  4617. * drop the segment and return."
  4618. *
  4619. * See note below!
  4620. * --ANK(990513)
  4621. */
  4622. if (!th->syn)
  4623. goto discard_and_undo;
  4624. /* rfc793:
  4625. * "If the SYN bit is on ...
  4626. * are acceptable then ...
  4627. * (our SYN has been ACKed), change the connection
  4628. * state to ESTABLISHED..."
  4629. */
  4630. TCP_ECN_rcv_synack(tp, th);
  4631. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4632. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4633. /* Ok.. it's good. Set up sequence numbers and
  4634. * move to established.
  4635. */
  4636. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4637. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4638. /* RFC1323: The window in SYN & SYN/ACK segments is
  4639. * never scaled.
  4640. */
  4641. tp->snd_wnd = ntohs(th->window);
  4642. if (!tp->rx_opt.wscale_ok) {
  4643. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4644. tp->window_clamp = min(tp->window_clamp, 65535U);
  4645. }
  4646. if (tp->rx_opt.saw_tstamp) {
  4647. tp->rx_opt.tstamp_ok = 1;
  4648. tp->tcp_header_len =
  4649. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4650. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4651. tcp_store_ts_recent(tp);
  4652. } else {
  4653. tp->tcp_header_len = sizeof(struct tcphdr);
  4654. }
  4655. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4656. tcp_enable_fack(tp);
  4657. tcp_mtup_init(sk);
  4658. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4659. tcp_initialize_rcv_mss(sk);
  4660. /* Remember, tcp_poll() does not lock socket!
  4661. * Change state from SYN-SENT only after copied_seq
  4662. * is initialized. */
  4663. tp->copied_seq = tp->rcv_nxt;
  4664. smp_mb();
  4665. tcp_finish_connect(sk, skb);
  4666. if ((tp->syn_fastopen || tp->syn_data) &&
  4667. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4668. return -1;
  4669. if (sk->sk_write_pending ||
  4670. icsk->icsk_accept_queue.rskq_defer_accept ||
  4671. icsk->icsk_ack.pingpong) {
  4672. /* Save one ACK. Data will be ready after
  4673. * several ticks, if write_pending is set.
  4674. *
  4675. * It may be deleted, but with this feature tcpdumps
  4676. * look so _wonderfully_ clever, that I was not able
  4677. * to stand against the temptation 8) --ANK
  4678. */
  4679. inet_csk_schedule_ack(sk);
  4680. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4681. tcp_enter_quickack_mode(sk);
  4682. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4683. TCP_DELACK_MAX, TCP_RTO_MAX);
  4684. discard:
  4685. __kfree_skb(skb);
  4686. return 0;
  4687. } else {
  4688. tcp_send_ack(sk);
  4689. }
  4690. return -1;
  4691. }
  4692. /* No ACK in the segment */
  4693. if (th->rst) {
  4694. /* rfc793:
  4695. * "If the RST bit is set
  4696. *
  4697. * Otherwise (no ACK) drop the segment and return."
  4698. */
  4699. goto discard_and_undo;
  4700. }
  4701. /* PAWS check. */
  4702. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4703. tcp_paws_reject(&tp->rx_opt, 0))
  4704. goto discard_and_undo;
  4705. if (th->syn) {
  4706. /* We see SYN without ACK. It is attempt of
  4707. * simultaneous connect with crossed SYNs.
  4708. * Particularly, it can be connect to self.
  4709. */
  4710. tcp_set_state(sk, TCP_SYN_RECV);
  4711. if (tp->rx_opt.saw_tstamp) {
  4712. tp->rx_opt.tstamp_ok = 1;
  4713. tcp_store_ts_recent(tp);
  4714. tp->tcp_header_len =
  4715. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4716. } else {
  4717. tp->tcp_header_len = sizeof(struct tcphdr);
  4718. }
  4719. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4720. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4721. /* RFC1323: The window in SYN & SYN/ACK segments is
  4722. * never scaled.
  4723. */
  4724. tp->snd_wnd = ntohs(th->window);
  4725. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4726. tp->max_window = tp->snd_wnd;
  4727. TCP_ECN_rcv_syn(tp, th);
  4728. tcp_mtup_init(sk);
  4729. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4730. tcp_initialize_rcv_mss(sk);
  4731. tcp_send_synack(sk);
  4732. #if 0
  4733. /* Note, we could accept data and URG from this segment.
  4734. * There are no obstacles to make this (except that we must
  4735. * either change tcp_recvmsg() to prevent it from returning data
  4736. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4737. *
  4738. * However, if we ignore data in ACKless segments sometimes,
  4739. * we have no reasons to accept it sometimes.
  4740. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4741. * is not flawless. So, discard packet for sanity.
  4742. * Uncomment this return to process the data.
  4743. */
  4744. return -1;
  4745. #else
  4746. goto discard;
  4747. #endif
  4748. }
  4749. /* "fifth, if neither of the SYN or RST bits is set then
  4750. * drop the segment and return."
  4751. */
  4752. discard_and_undo:
  4753. tcp_clear_options(&tp->rx_opt);
  4754. tp->rx_opt.mss_clamp = saved_clamp;
  4755. goto discard;
  4756. reset_and_undo:
  4757. tcp_clear_options(&tp->rx_opt);
  4758. tp->rx_opt.mss_clamp = saved_clamp;
  4759. return 1;
  4760. }
  4761. /*
  4762. * This function implements the receiving procedure of RFC 793 for
  4763. * all states except ESTABLISHED and TIME_WAIT.
  4764. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4765. * address independent.
  4766. */
  4767. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4768. const struct tcphdr *th, unsigned int len)
  4769. {
  4770. struct tcp_sock *tp = tcp_sk(sk);
  4771. struct inet_connection_sock *icsk = inet_csk(sk);
  4772. struct request_sock *req;
  4773. int queued = 0;
  4774. bool acceptable;
  4775. tp->rx_opt.saw_tstamp = 0;
  4776. switch (sk->sk_state) {
  4777. case TCP_CLOSE:
  4778. goto discard;
  4779. case TCP_LISTEN:
  4780. if (th->ack)
  4781. return 1;
  4782. if (th->rst)
  4783. goto discard;
  4784. if (th->syn) {
  4785. if (th->fin)
  4786. goto discard;
  4787. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4788. return 1;
  4789. /* Now we have several options: In theory there is
  4790. * nothing else in the frame. KA9Q has an option to
  4791. * send data with the syn, BSD accepts data with the
  4792. * syn up to the [to be] advertised window and
  4793. * Solaris 2.1 gives you a protocol error. For now
  4794. * we just ignore it, that fits the spec precisely
  4795. * and avoids incompatibilities. It would be nice in
  4796. * future to drop through and process the data.
  4797. *
  4798. * Now that TTCP is starting to be used we ought to
  4799. * queue this data.
  4800. * But, this leaves one open to an easy denial of
  4801. * service attack, and SYN cookies can't defend
  4802. * against this problem. So, we drop the data
  4803. * in the interest of security over speed unless
  4804. * it's still in use.
  4805. */
  4806. kfree_skb(skb);
  4807. return 0;
  4808. }
  4809. goto discard;
  4810. case TCP_SYN_SENT:
  4811. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4812. if (queued >= 0)
  4813. return queued;
  4814. /* Do step6 onward by hand. */
  4815. tcp_urg(sk, skb, th);
  4816. __kfree_skb(skb);
  4817. tcp_data_snd_check(sk);
  4818. return 0;
  4819. }
  4820. req = tp->fastopen_rsk;
  4821. if (req != NULL) {
  4822. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4823. sk->sk_state != TCP_FIN_WAIT1);
  4824. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4825. goto discard;
  4826. }
  4827. if (!th->ack && !th->rst)
  4828. goto discard;
  4829. if (!tcp_validate_incoming(sk, skb, th, 0))
  4830. return 0;
  4831. /* step 5: check the ACK field */
  4832. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4833. FLAG_UPDATE_TS_RECENT) > 0;
  4834. switch (sk->sk_state) {
  4835. case TCP_SYN_RECV:
  4836. if (!acceptable)
  4837. return 1;
  4838. /* Once we leave TCP_SYN_RECV, we no longer need req
  4839. * so release it.
  4840. */
  4841. if (req) {
  4842. tp->total_retrans = req->num_retrans;
  4843. reqsk_fastopen_remove(sk, req, false);
  4844. } else {
  4845. /* Make sure socket is routed, for correct metrics. */
  4846. icsk->icsk_af_ops->rebuild_header(sk);
  4847. tcp_init_congestion_control(sk);
  4848. tcp_mtup_init(sk);
  4849. tcp_init_buffer_space(sk);
  4850. tp->copied_seq = tp->rcv_nxt;
  4851. }
  4852. smp_mb();
  4853. tcp_set_state(sk, TCP_ESTABLISHED);
  4854. sk->sk_state_change(sk);
  4855. /* Note, that this wakeup is only for marginal crossed SYN case.
  4856. * Passively open sockets are not waked up, because
  4857. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4858. */
  4859. if (sk->sk_socket)
  4860. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4861. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4862. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4863. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4864. tcp_synack_rtt_meas(sk, req);
  4865. if (tp->rx_opt.tstamp_ok)
  4866. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4867. if (req) {
  4868. /* Re-arm the timer because data may have been sent out.
  4869. * This is similar to the regular data transmission case
  4870. * when new data has just been ack'ed.
  4871. *
  4872. * (TFO) - we could try to be more aggressive and
  4873. * retransmitting any data sooner based on when they
  4874. * are sent out.
  4875. */
  4876. tcp_rearm_rto(sk);
  4877. } else
  4878. tcp_init_metrics(sk);
  4879. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  4880. tp->lsndtime = tcp_time_stamp;
  4881. tcp_initialize_rcv_mss(sk);
  4882. tcp_fast_path_on(tp);
  4883. break;
  4884. case TCP_FIN_WAIT1: {
  4885. struct dst_entry *dst;
  4886. int tmo;
  4887. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4888. * Fast Open socket and this is the first acceptable
  4889. * ACK we have received, this would have acknowledged
  4890. * our SYNACK so stop the SYNACK timer.
  4891. */
  4892. if (req != NULL) {
  4893. /* Return RST if ack_seq is invalid.
  4894. * Note that RFC793 only says to generate a
  4895. * DUPACK for it but for TCP Fast Open it seems
  4896. * better to treat this case like TCP_SYN_RECV
  4897. * above.
  4898. */
  4899. if (!acceptable)
  4900. return 1;
  4901. /* We no longer need the request sock. */
  4902. reqsk_fastopen_remove(sk, req, false);
  4903. tcp_rearm_rto(sk);
  4904. }
  4905. if (tp->snd_una != tp->write_seq)
  4906. break;
  4907. tcp_set_state(sk, TCP_FIN_WAIT2);
  4908. sk->sk_shutdown |= SEND_SHUTDOWN;
  4909. dst = __sk_dst_get(sk);
  4910. if (dst)
  4911. dst_confirm(dst);
  4912. if (!sock_flag(sk, SOCK_DEAD)) {
  4913. /* Wake up lingering close() */
  4914. sk->sk_state_change(sk);
  4915. break;
  4916. }
  4917. if (tp->linger2 < 0 ||
  4918. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4919. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4920. tcp_done(sk);
  4921. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4922. return 1;
  4923. }
  4924. tmo = tcp_fin_time(sk);
  4925. if (tmo > TCP_TIMEWAIT_LEN) {
  4926. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4927. } else if (th->fin || sock_owned_by_user(sk)) {
  4928. /* Bad case. We could lose such FIN otherwise.
  4929. * It is not a big problem, but it looks confusing
  4930. * and not so rare event. We still can lose it now,
  4931. * if it spins in bh_lock_sock(), but it is really
  4932. * marginal case.
  4933. */
  4934. inet_csk_reset_keepalive_timer(sk, tmo);
  4935. } else {
  4936. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4937. goto discard;
  4938. }
  4939. break;
  4940. }
  4941. case TCP_CLOSING:
  4942. if (tp->snd_una == tp->write_seq) {
  4943. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4944. goto discard;
  4945. }
  4946. break;
  4947. case TCP_LAST_ACK:
  4948. if (tp->snd_una == tp->write_seq) {
  4949. tcp_update_metrics(sk);
  4950. tcp_done(sk);
  4951. goto discard;
  4952. }
  4953. break;
  4954. }
  4955. /* step 6: check the URG bit */
  4956. tcp_urg(sk, skb, th);
  4957. /* step 7: process the segment text */
  4958. switch (sk->sk_state) {
  4959. case TCP_CLOSE_WAIT:
  4960. case TCP_CLOSING:
  4961. case TCP_LAST_ACK:
  4962. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4963. break;
  4964. case TCP_FIN_WAIT1:
  4965. case TCP_FIN_WAIT2:
  4966. /* RFC 793 says to queue data in these states,
  4967. * RFC 1122 says we MUST send a reset.
  4968. * BSD 4.4 also does reset.
  4969. */
  4970. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4971. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4972. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4973. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4974. tcp_reset(sk);
  4975. return 1;
  4976. }
  4977. }
  4978. /* Fall through */
  4979. case TCP_ESTABLISHED:
  4980. tcp_data_queue(sk, skb);
  4981. queued = 1;
  4982. break;
  4983. }
  4984. /* tcp_data could move socket to TIME-WAIT */
  4985. if (sk->sk_state != TCP_CLOSE) {
  4986. tcp_data_snd_check(sk);
  4987. tcp_ack_snd_check(sk);
  4988. }
  4989. if (!queued) {
  4990. discard:
  4991. __kfree_skb(skb);
  4992. }
  4993. return 0;
  4994. }
  4995. EXPORT_SYMBOL(tcp_rcv_state_process);