sched.c 270 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. raw_spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. raw_spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. raw_spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. raw_spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. raw_spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned char in_nohz_recently;
  453. #endif
  454. /* capture load from *all* tasks on this cpu: */
  455. struct load_weight load;
  456. unsigned long nr_load_updates;
  457. u64 nr_switches;
  458. struct cfs_rq cfs;
  459. struct rt_rq rt;
  460. #ifdef CONFIG_FAIR_GROUP_SCHED
  461. /* list of leaf cfs_rq on this cpu: */
  462. struct list_head leaf_cfs_rq_list;
  463. #endif
  464. #ifdef CONFIG_RT_GROUP_SCHED
  465. struct list_head leaf_rt_rq_list;
  466. #endif
  467. /*
  468. * This is part of a global counter where only the total sum
  469. * over all CPUs matters. A task can increase this counter on
  470. * one CPU and if it got migrated afterwards it may decrease
  471. * it on another CPU. Always updated under the runqueue lock:
  472. */
  473. unsigned long nr_uninterruptible;
  474. struct task_struct *curr, *idle;
  475. unsigned long next_balance;
  476. struct mm_struct *prev_mm;
  477. u64 clock;
  478. atomic_t nr_iowait;
  479. #ifdef CONFIG_SMP
  480. struct root_domain *rd;
  481. struct sched_domain *sd;
  482. unsigned char idle_at_tick;
  483. /* For active balancing */
  484. int post_schedule;
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. u64 rt_avg;
  494. u64 age_stamp;
  495. u64 idle_stamp;
  496. u64 avg_idle;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. *ppos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  675. /*
  676. * Inject some fuzzyness into changing the per-cpu group shares
  677. * this avoids remote rq-locks at the expense of fairness.
  678. * default: 4
  679. */
  680. unsigned int sysctl_sched_shares_thresh = 4;
  681. /*
  682. * period over which we average the RT time consumption, measured
  683. * in ms.
  684. *
  685. * default: 1s
  686. */
  687. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  688. /*
  689. * period over which we measure -rt task cpu usage in us.
  690. * default: 1s
  691. */
  692. unsigned int sysctl_sched_rt_period = 1000000;
  693. static __read_mostly int scheduler_running;
  694. /*
  695. * part of the period that we allow rt tasks to run in us.
  696. * default: 0.95s
  697. */
  698. int sysctl_sched_rt_runtime = 950000;
  699. static inline u64 global_rt_period(void)
  700. {
  701. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  702. }
  703. static inline u64 global_rt_runtime(void)
  704. {
  705. if (sysctl_sched_rt_runtime < 0)
  706. return RUNTIME_INF;
  707. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  708. }
  709. #ifndef prepare_arch_switch
  710. # define prepare_arch_switch(next) do { } while (0)
  711. #endif
  712. #ifndef finish_arch_switch
  713. # define finish_arch_switch(prev) do { } while (0)
  714. #endif
  715. static inline int task_current(struct rq *rq, struct task_struct *p)
  716. {
  717. return rq->curr == p;
  718. }
  719. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  720. static inline int task_running(struct rq *rq, struct task_struct *p)
  721. {
  722. return task_current(rq, p);
  723. }
  724. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  725. {
  726. }
  727. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  728. {
  729. #ifdef CONFIG_DEBUG_SPINLOCK
  730. /* this is a valid case when another task releases the spinlock */
  731. rq->lock.owner = current;
  732. #endif
  733. /*
  734. * If we are tracking spinlock dependencies then we have to
  735. * fix up the runqueue lock - which gets 'carried over' from
  736. * prev into current:
  737. */
  738. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  739. raw_spin_unlock_irq(&rq->lock);
  740. }
  741. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  742. static inline int task_running(struct rq *rq, struct task_struct *p)
  743. {
  744. #ifdef CONFIG_SMP
  745. return p->oncpu;
  746. #else
  747. return task_current(rq, p);
  748. #endif
  749. }
  750. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * We can optimise this out completely for !SMP, because the
  755. * SMP rebalancing from interrupt is the only thing that cares
  756. * here.
  757. */
  758. next->oncpu = 1;
  759. #endif
  760. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. raw_spin_unlock_irq(&rq->lock);
  762. #else
  763. raw_spin_unlock(&rq->lock);
  764. #endif
  765. }
  766. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  767. {
  768. #ifdef CONFIG_SMP
  769. /*
  770. * After ->oncpu is cleared, the task can be moved to a different CPU.
  771. * We must ensure this doesn't happen until the switch is completely
  772. * finished.
  773. */
  774. smp_wmb();
  775. prev->oncpu = 0;
  776. #endif
  777. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  778. local_irq_enable();
  779. #endif
  780. }
  781. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  782. /*
  783. * __task_rq_lock - lock the runqueue a given task resides on.
  784. * Must be called interrupts disabled.
  785. */
  786. static inline struct rq *__task_rq_lock(struct task_struct *p)
  787. __acquires(rq->lock)
  788. {
  789. for (;;) {
  790. struct rq *rq = task_rq(p);
  791. raw_spin_lock(&rq->lock);
  792. if (likely(rq == task_rq(p)))
  793. return rq;
  794. raw_spin_unlock(&rq->lock);
  795. }
  796. }
  797. /*
  798. * task_rq_lock - lock the runqueue a given task resides on and disable
  799. * interrupts. Note the ordering: we can safely lookup the task_rq without
  800. * explicitly disabling preemption.
  801. */
  802. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  803. __acquires(rq->lock)
  804. {
  805. struct rq *rq;
  806. for (;;) {
  807. local_irq_save(*flags);
  808. rq = task_rq(p);
  809. raw_spin_lock(&rq->lock);
  810. if (likely(rq == task_rq(p)))
  811. return rq;
  812. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. }
  815. void task_rq_unlock_wait(struct task_struct *p)
  816. {
  817. struct rq *rq = task_rq(p);
  818. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  819. raw_spin_unlock_wait(&rq->lock);
  820. }
  821. static void __task_rq_unlock(struct rq *rq)
  822. __releases(rq->lock)
  823. {
  824. raw_spin_unlock(&rq->lock);
  825. }
  826. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  827. __releases(rq->lock)
  828. {
  829. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  830. }
  831. /*
  832. * this_rq_lock - lock this runqueue and disable interrupts.
  833. */
  834. static struct rq *this_rq_lock(void)
  835. __acquires(rq->lock)
  836. {
  837. struct rq *rq;
  838. local_irq_disable();
  839. rq = this_rq();
  840. raw_spin_lock(&rq->lock);
  841. return rq;
  842. }
  843. #ifdef CONFIG_SCHED_HRTICK
  844. /*
  845. * Use HR-timers to deliver accurate preemption points.
  846. *
  847. * Its all a bit involved since we cannot program an hrt while holding the
  848. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  849. * reschedule event.
  850. *
  851. * When we get rescheduled we reprogram the hrtick_timer outside of the
  852. * rq->lock.
  853. */
  854. /*
  855. * Use hrtick when:
  856. * - enabled by features
  857. * - hrtimer is actually high res
  858. */
  859. static inline int hrtick_enabled(struct rq *rq)
  860. {
  861. if (!sched_feat(HRTICK))
  862. return 0;
  863. if (!cpu_active(cpu_of(rq)))
  864. return 0;
  865. return hrtimer_is_hres_active(&rq->hrtick_timer);
  866. }
  867. static void hrtick_clear(struct rq *rq)
  868. {
  869. if (hrtimer_active(&rq->hrtick_timer))
  870. hrtimer_cancel(&rq->hrtick_timer);
  871. }
  872. /*
  873. * High-resolution timer tick.
  874. * Runs from hardirq context with interrupts disabled.
  875. */
  876. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  877. {
  878. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  879. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  880. raw_spin_lock(&rq->lock);
  881. update_rq_clock(rq);
  882. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  883. raw_spin_unlock(&rq->lock);
  884. return HRTIMER_NORESTART;
  885. }
  886. #ifdef CONFIG_SMP
  887. /*
  888. * called from hardirq (IPI) context
  889. */
  890. static void __hrtick_start(void *arg)
  891. {
  892. struct rq *rq = arg;
  893. raw_spin_lock(&rq->lock);
  894. hrtimer_restart(&rq->hrtick_timer);
  895. rq->hrtick_csd_pending = 0;
  896. raw_spin_unlock(&rq->lock);
  897. }
  898. /*
  899. * Called to set the hrtick timer state.
  900. *
  901. * called with rq->lock held and irqs disabled
  902. */
  903. static void hrtick_start(struct rq *rq, u64 delay)
  904. {
  905. struct hrtimer *timer = &rq->hrtick_timer;
  906. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  907. hrtimer_set_expires(timer, time);
  908. if (rq == this_rq()) {
  909. hrtimer_restart(timer);
  910. } else if (!rq->hrtick_csd_pending) {
  911. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  912. rq->hrtick_csd_pending = 1;
  913. }
  914. }
  915. static int
  916. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  917. {
  918. int cpu = (int)(long)hcpu;
  919. switch (action) {
  920. case CPU_UP_CANCELED:
  921. case CPU_UP_CANCELED_FROZEN:
  922. case CPU_DOWN_PREPARE:
  923. case CPU_DOWN_PREPARE_FROZEN:
  924. case CPU_DEAD:
  925. case CPU_DEAD_FROZEN:
  926. hrtick_clear(cpu_rq(cpu));
  927. return NOTIFY_OK;
  928. }
  929. return NOTIFY_DONE;
  930. }
  931. static __init void init_hrtick(void)
  932. {
  933. hotcpu_notifier(hotplug_hrtick, 0);
  934. }
  935. #else
  936. /*
  937. * Called to set the hrtick timer state.
  938. *
  939. * called with rq->lock held and irqs disabled
  940. */
  941. static void hrtick_start(struct rq *rq, u64 delay)
  942. {
  943. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  944. HRTIMER_MODE_REL_PINNED, 0);
  945. }
  946. static inline void init_hrtick(void)
  947. {
  948. }
  949. #endif /* CONFIG_SMP */
  950. static void init_rq_hrtick(struct rq *rq)
  951. {
  952. #ifdef CONFIG_SMP
  953. rq->hrtick_csd_pending = 0;
  954. rq->hrtick_csd.flags = 0;
  955. rq->hrtick_csd.func = __hrtick_start;
  956. rq->hrtick_csd.info = rq;
  957. #endif
  958. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  959. rq->hrtick_timer.function = hrtick;
  960. }
  961. #else /* CONFIG_SCHED_HRTICK */
  962. static inline void hrtick_clear(struct rq *rq)
  963. {
  964. }
  965. static inline void init_rq_hrtick(struct rq *rq)
  966. {
  967. }
  968. static inline void init_hrtick(void)
  969. {
  970. }
  971. #endif /* CONFIG_SCHED_HRTICK */
  972. /*
  973. * resched_task - mark a task 'to be rescheduled now'.
  974. *
  975. * On UP this means the setting of the need_resched flag, on SMP it
  976. * might also involve a cross-CPU call to trigger the scheduler on
  977. * the target CPU.
  978. */
  979. #ifdef CONFIG_SMP
  980. #ifndef tsk_is_polling
  981. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  982. #endif
  983. static void resched_task(struct task_struct *p)
  984. {
  985. int cpu;
  986. assert_raw_spin_locked(&task_rq(p)->lock);
  987. if (test_tsk_need_resched(p))
  988. return;
  989. set_tsk_need_resched(p);
  990. cpu = task_cpu(p);
  991. if (cpu == smp_processor_id())
  992. return;
  993. /* NEED_RESCHED must be visible before we test polling */
  994. smp_mb();
  995. if (!tsk_is_polling(p))
  996. smp_send_reschedule(cpu);
  997. }
  998. static void resched_cpu(int cpu)
  999. {
  1000. struct rq *rq = cpu_rq(cpu);
  1001. unsigned long flags;
  1002. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1003. return;
  1004. resched_task(cpu_curr(cpu));
  1005. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1006. }
  1007. #ifdef CONFIG_NO_HZ
  1008. /*
  1009. * When add_timer_on() enqueues a timer into the timer wheel of an
  1010. * idle CPU then this timer might expire before the next timer event
  1011. * which is scheduled to wake up that CPU. In case of a completely
  1012. * idle system the next event might even be infinite time into the
  1013. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1014. * leaves the inner idle loop so the newly added timer is taken into
  1015. * account when the CPU goes back to idle and evaluates the timer
  1016. * wheel for the next timer event.
  1017. */
  1018. void wake_up_idle_cpu(int cpu)
  1019. {
  1020. struct rq *rq = cpu_rq(cpu);
  1021. if (cpu == smp_processor_id())
  1022. return;
  1023. /*
  1024. * This is safe, as this function is called with the timer
  1025. * wheel base lock of (cpu) held. When the CPU is on the way
  1026. * to idle and has not yet set rq->curr to idle then it will
  1027. * be serialized on the timer wheel base lock and take the new
  1028. * timer into account automatically.
  1029. */
  1030. if (rq->curr != rq->idle)
  1031. return;
  1032. /*
  1033. * We can set TIF_RESCHED on the idle task of the other CPU
  1034. * lockless. The worst case is that the other CPU runs the
  1035. * idle task through an additional NOOP schedule()
  1036. */
  1037. set_tsk_need_resched(rq->idle);
  1038. /* NEED_RESCHED must be visible before we test polling */
  1039. smp_mb();
  1040. if (!tsk_is_polling(rq->idle))
  1041. smp_send_reschedule(cpu);
  1042. }
  1043. #endif /* CONFIG_NO_HZ */
  1044. static u64 sched_avg_period(void)
  1045. {
  1046. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1047. }
  1048. static void sched_avg_update(struct rq *rq)
  1049. {
  1050. s64 period = sched_avg_period();
  1051. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1052. rq->age_stamp += period;
  1053. rq->rt_avg /= 2;
  1054. }
  1055. }
  1056. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1057. {
  1058. rq->rt_avg += rt_delta;
  1059. sched_avg_update(rq);
  1060. }
  1061. #else /* !CONFIG_SMP */
  1062. static void resched_task(struct task_struct *p)
  1063. {
  1064. assert_raw_spin_locked(&task_rq(p)->lock);
  1065. set_tsk_need_resched(p);
  1066. }
  1067. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1068. {
  1069. }
  1070. #endif /* CONFIG_SMP */
  1071. #if BITS_PER_LONG == 32
  1072. # define WMULT_CONST (~0UL)
  1073. #else
  1074. # define WMULT_CONST (1UL << 32)
  1075. #endif
  1076. #define WMULT_SHIFT 32
  1077. /*
  1078. * Shift right and round:
  1079. */
  1080. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1081. /*
  1082. * delta *= weight / lw
  1083. */
  1084. static unsigned long
  1085. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1086. struct load_weight *lw)
  1087. {
  1088. u64 tmp;
  1089. if (!lw->inv_weight) {
  1090. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1091. lw->inv_weight = 1;
  1092. else
  1093. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1094. / (lw->weight+1);
  1095. }
  1096. tmp = (u64)delta_exec * weight;
  1097. /*
  1098. * Check whether we'd overflow the 64-bit multiplication:
  1099. */
  1100. if (unlikely(tmp > WMULT_CONST))
  1101. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1102. WMULT_SHIFT/2);
  1103. else
  1104. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1105. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1106. }
  1107. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1108. {
  1109. lw->weight += inc;
  1110. lw->inv_weight = 0;
  1111. }
  1112. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1113. {
  1114. lw->weight -= dec;
  1115. lw->inv_weight = 0;
  1116. }
  1117. /*
  1118. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1119. * of tasks with abnormal "nice" values across CPUs the contribution that
  1120. * each task makes to its run queue's load is weighted according to its
  1121. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1122. * scaled version of the new time slice allocation that they receive on time
  1123. * slice expiry etc.
  1124. */
  1125. #define WEIGHT_IDLEPRIO 3
  1126. #define WMULT_IDLEPRIO 1431655765
  1127. /*
  1128. * Nice levels are multiplicative, with a gentle 10% change for every
  1129. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1130. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1131. * that remained on nice 0.
  1132. *
  1133. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1134. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1135. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1136. * If a task goes up by ~10% and another task goes down by ~10% then
  1137. * the relative distance between them is ~25%.)
  1138. */
  1139. static const int prio_to_weight[40] = {
  1140. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1141. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1142. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1143. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1144. /* 0 */ 1024, 820, 655, 526, 423,
  1145. /* 5 */ 335, 272, 215, 172, 137,
  1146. /* 10 */ 110, 87, 70, 56, 45,
  1147. /* 15 */ 36, 29, 23, 18, 15,
  1148. };
  1149. /*
  1150. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1151. *
  1152. * In cases where the weight does not change often, we can use the
  1153. * precalculated inverse to speed up arithmetics by turning divisions
  1154. * into multiplications:
  1155. */
  1156. static const u32 prio_to_wmult[40] = {
  1157. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1158. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1159. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1160. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1161. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1162. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1163. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1164. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1165. };
  1166. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1167. /*
  1168. * runqueue iterator, to support SMP load-balancing between different
  1169. * scheduling classes, without having to expose their internal data
  1170. * structures to the load-balancing proper:
  1171. */
  1172. struct rq_iterator {
  1173. void *arg;
  1174. struct task_struct *(*start)(void *);
  1175. struct task_struct *(*next)(void *);
  1176. };
  1177. #ifdef CONFIG_SMP
  1178. static unsigned long
  1179. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1180. unsigned long max_load_move, struct sched_domain *sd,
  1181. enum cpu_idle_type idle, int *all_pinned,
  1182. int *this_best_prio, struct rq_iterator *iterator);
  1183. static int
  1184. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. struct sched_domain *sd, enum cpu_idle_type idle,
  1186. struct rq_iterator *iterator);
  1187. #endif
  1188. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1189. enum cpuacct_stat_index {
  1190. CPUACCT_STAT_USER, /* ... user mode */
  1191. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1192. CPUACCT_STAT_NSTATS,
  1193. };
  1194. #ifdef CONFIG_CGROUP_CPUACCT
  1195. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1196. static void cpuacct_update_stats(struct task_struct *tsk,
  1197. enum cpuacct_stat_index idx, cputime_t val);
  1198. #else
  1199. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1200. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1201. enum cpuacct_stat_index idx, cputime_t val) {}
  1202. #endif
  1203. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1204. {
  1205. update_load_add(&rq->load, load);
  1206. }
  1207. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1208. {
  1209. update_load_sub(&rq->load, load);
  1210. }
  1211. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1212. typedef int (*tg_visitor)(struct task_group *, void *);
  1213. /*
  1214. * Iterate the full tree, calling @down when first entering a node and @up when
  1215. * leaving it for the final time.
  1216. */
  1217. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1218. {
  1219. struct task_group *parent, *child;
  1220. int ret;
  1221. rcu_read_lock();
  1222. parent = &root_task_group;
  1223. down:
  1224. ret = (*down)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1228. parent = child;
  1229. goto down;
  1230. up:
  1231. continue;
  1232. }
  1233. ret = (*up)(parent, data);
  1234. if (ret)
  1235. goto out_unlock;
  1236. child = parent;
  1237. parent = parent->parent;
  1238. if (parent)
  1239. goto up;
  1240. out_unlock:
  1241. rcu_read_unlock();
  1242. return ret;
  1243. }
  1244. static int tg_nop(struct task_group *tg, void *data)
  1245. {
  1246. return 0;
  1247. }
  1248. #endif
  1249. #ifdef CONFIG_SMP
  1250. /* Used instead of source_load when we know the type == 0 */
  1251. static unsigned long weighted_cpuload(const int cpu)
  1252. {
  1253. return cpu_rq(cpu)->load.weight;
  1254. }
  1255. /*
  1256. * Return a low guess at the load of a migration-source cpu weighted
  1257. * according to the scheduling class and "nice" value.
  1258. *
  1259. * We want to under-estimate the load of migration sources, to
  1260. * balance conservatively.
  1261. */
  1262. static unsigned long source_load(int cpu, int type)
  1263. {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long total = weighted_cpuload(cpu);
  1266. if (type == 0 || !sched_feat(LB_BIAS))
  1267. return total;
  1268. return min(rq->cpu_load[type-1], total);
  1269. }
  1270. /*
  1271. * Return a high guess at the load of a migration-target cpu weighted
  1272. * according to the scheduling class and "nice" value.
  1273. */
  1274. static unsigned long target_load(int cpu, int type)
  1275. {
  1276. struct rq *rq = cpu_rq(cpu);
  1277. unsigned long total = weighted_cpuload(cpu);
  1278. if (type == 0 || !sched_feat(LB_BIAS))
  1279. return total;
  1280. return max(rq->cpu_load[type-1], total);
  1281. }
  1282. static struct sched_group *group_of(int cpu)
  1283. {
  1284. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1285. if (!sd)
  1286. return NULL;
  1287. return sd->groups;
  1288. }
  1289. static unsigned long power_of(int cpu)
  1290. {
  1291. struct sched_group *group = group_of(cpu);
  1292. if (!group)
  1293. return SCHED_LOAD_SCALE;
  1294. return group->cpu_power;
  1295. }
  1296. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1297. static unsigned long cpu_avg_load_per_task(int cpu)
  1298. {
  1299. struct rq *rq = cpu_rq(cpu);
  1300. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1301. if (nr_running)
  1302. rq->avg_load_per_task = rq->load.weight / nr_running;
  1303. else
  1304. rq->avg_load_per_task = 0;
  1305. return rq->avg_load_per_task;
  1306. }
  1307. #ifdef CONFIG_FAIR_GROUP_SCHED
  1308. static __read_mostly unsigned long *update_shares_data;
  1309. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1310. /*
  1311. * Calculate and set the cpu's group shares.
  1312. */
  1313. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1314. unsigned long sd_shares,
  1315. unsigned long sd_rq_weight,
  1316. unsigned long *usd_rq_weight)
  1317. {
  1318. unsigned long shares, rq_weight;
  1319. int boost = 0;
  1320. rq_weight = usd_rq_weight[cpu];
  1321. if (!rq_weight) {
  1322. boost = 1;
  1323. rq_weight = NICE_0_LOAD;
  1324. }
  1325. /*
  1326. * \Sum_j shares_j * rq_weight_i
  1327. * shares_i = -----------------------------
  1328. * \Sum_j rq_weight_j
  1329. */
  1330. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1331. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1332. if (abs(shares - tg->se[cpu]->load.weight) >
  1333. sysctl_sched_shares_thresh) {
  1334. struct rq *rq = cpu_rq(cpu);
  1335. unsigned long flags;
  1336. raw_spin_lock_irqsave(&rq->lock, flags);
  1337. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1338. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1339. __set_se_shares(tg->se[cpu], shares);
  1340. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1341. }
  1342. }
  1343. /*
  1344. * Re-compute the task group their per cpu shares over the given domain.
  1345. * This needs to be done in a bottom-up fashion because the rq weight of a
  1346. * parent group depends on the shares of its child groups.
  1347. */
  1348. static int tg_shares_up(struct task_group *tg, void *data)
  1349. {
  1350. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1351. unsigned long *usd_rq_weight;
  1352. struct sched_domain *sd = data;
  1353. unsigned long flags;
  1354. int i;
  1355. if (!tg->se[0])
  1356. return 0;
  1357. local_irq_save(flags);
  1358. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1359. for_each_cpu(i, sched_domain_span(sd)) {
  1360. weight = tg->cfs_rq[i]->load.weight;
  1361. usd_rq_weight[i] = weight;
  1362. rq_weight += weight;
  1363. /*
  1364. * If there are currently no tasks on the cpu pretend there
  1365. * is one of average load so that when a new task gets to
  1366. * run here it will not get delayed by group starvation.
  1367. */
  1368. if (!weight)
  1369. weight = NICE_0_LOAD;
  1370. sum_weight += weight;
  1371. shares += tg->cfs_rq[i]->shares;
  1372. }
  1373. if (!rq_weight)
  1374. rq_weight = sum_weight;
  1375. if ((!shares && rq_weight) || shares > tg->shares)
  1376. shares = tg->shares;
  1377. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1378. shares = tg->shares;
  1379. for_each_cpu(i, sched_domain_span(sd))
  1380. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1381. local_irq_restore(flags);
  1382. return 0;
  1383. }
  1384. /*
  1385. * Compute the cpu's hierarchical load factor for each task group.
  1386. * This needs to be done in a top-down fashion because the load of a child
  1387. * group is a fraction of its parents load.
  1388. */
  1389. static int tg_load_down(struct task_group *tg, void *data)
  1390. {
  1391. unsigned long load;
  1392. long cpu = (long)data;
  1393. if (!tg->parent) {
  1394. load = cpu_rq(cpu)->load.weight;
  1395. } else {
  1396. load = tg->parent->cfs_rq[cpu]->h_load;
  1397. load *= tg->cfs_rq[cpu]->shares;
  1398. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1399. }
  1400. tg->cfs_rq[cpu]->h_load = load;
  1401. return 0;
  1402. }
  1403. static void update_shares(struct sched_domain *sd)
  1404. {
  1405. s64 elapsed;
  1406. u64 now;
  1407. if (root_task_group_empty())
  1408. return;
  1409. now = cpu_clock(raw_smp_processor_id());
  1410. elapsed = now - sd->last_update;
  1411. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1412. sd->last_update = now;
  1413. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1414. }
  1415. }
  1416. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1417. {
  1418. if (root_task_group_empty())
  1419. return;
  1420. raw_spin_unlock(&rq->lock);
  1421. update_shares(sd);
  1422. raw_spin_lock(&rq->lock);
  1423. }
  1424. static void update_h_load(long cpu)
  1425. {
  1426. if (root_task_group_empty())
  1427. return;
  1428. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1429. }
  1430. #else
  1431. static inline void update_shares(struct sched_domain *sd)
  1432. {
  1433. }
  1434. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1435. {
  1436. }
  1437. #endif
  1438. #ifdef CONFIG_PREEMPT
  1439. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1440. /*
  1441. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1442. * way at the expense of forcing extra atomic operations in all
  1443. * invocations. This assures that the double_lock is acquired using the
  1444. * same underlying policy as the spinlock_t on this architecture, which
  1445. * reduces latency compared to the unfair variant below. However, it
  1446. * also adds more overhead and therefore may reduce throughput.
  1447. */
  1448. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1449. __releases(this_rq->lock)
  1450. __acquires(busiest->lock)
  1451. __acquires(this_rq->lock)
  1452. {
  1453. raw_spin_unlock(&this_rq->lock);
  1454. double_rq_lock(this_rq, busiest);
  1455. return 1;
  1456. }
  1457. #else
  1458. /*
  1459. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1460. * latency by eliminating extra atomic operations when the locks are
  1461. * already in proper order on entry. This favors lower cpu-ids and will
  1462. * grant the double lock to lower cpus over higher ids under contention,
  1463. * regardless of entry order into the function.
  1464. */
  1465. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1466. __releases(this_rq->lock)
  1467. __acquires(busiest->lock)
  1468. __acquires(this_rq->lock)
  1469. {
  1470. int ret = 0;
  1471. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1472. if (busiest < this_rq) {
  1473. raw_spin_unlock(&this_rq->lock);
  1474. raw_spin_lock(&busiest->lock);
  1475. raw_spin_lock_nested(&this_rq->lock,
  1476. SINGLE_DEPTH_NESTING);
  1477. ret = 1;
  1478. } else
  1479. raw_spin_lock_nested(&busiest->lock,
  1480. SINGLE_DEPTH_NESTING);
  1481. }
  1482. return ret;
  1483. }
  1484. #endif /* CONFIG_PREEMPT */
  1485. /*
  1486. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1487. */
  1488. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1489. {
  1490. if (unlikely(!irqs_disabled())) {
  1491. /* printk() doesn't work good under rq->lock */
  1492. raw_spin_unlock(&this_rq->lock);
  1493. BUG_ON(1);
  1494. }
  1495. return _double_lock_balance(this_rq, busiest);
  1496. }
  1497. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1498. __releases(busiest->lock)
  1499. {
  1500. raw_spin_unlock(&busiest->lock);
  1501. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1502. }
  1503. #endif
  1504. #ifdef CONFIG_FAIR_GROUP_SCHED
  1505. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1506. {
  1507. #ifdef CONFIG_SMP
  1508. cfs_rq->shares = shares;
  1509. #endif
  1510. }
  1511. #endif
  1512. static void calc_load_account_active(struct rq *this_rq);
  1513. static void update_sysctl(void);
  1514. static int get_update_sysctl_factor(void);
  1515. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1516. {
  1517. set_task_rq(p, cpu);
  1518. #ifdef CONFIG_SMP
  1519. /*
  1520. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1521. * successfuly executed on another CPU. We must ensure that updates of
  1522. * per-task data have been completed by this moment.
  1523. */
  1524. smp_wmb();
  1525. task_thread_info(p)->cpu = cpu;
  1526. #endif
  1527. }
  1528. #include "sched_stats.h"
  1529. #include "sched_idletask.c"
  1530. #include "sched_fair.c"
  1531. #include "sched_rt.c"
  1532. #ifdef CONFIG_SCHED_DEBUG
  1533. # include "sched_debug.c"
  1534. #endif
  1535. #define sched_class_highest (&rt_sched_class)
  1536. #define for_each_class(class) \
  1537. for (class = sched_class_highest; class; class = class->next)
  1538. static void inc_nr_running(struct rq *rq)
  1539. {
  1540. rq->nr_running++;
  1541. }
  1542. static void dec_nr_running(struct rq *rq)
  1543. {
  1544. rq->nr_running--;
  1545. }
  1546. static void set_load_weight(struct task_struct *p)
  1547. {
  1548. if (task_has_rt_policy(p)) {
  1549. p->se.load.weight = prio_to_weight[0] * 2;
  1550. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1551. return;
  1552. }
  1553. /*
  1554. * SCHED_IDLE tasks get minimal weight:
  1555. */
  1556. if (p->policy == SCHED_IDLE) {
  1557. p->se.load.weight = WEIGHT_IDLEPRIO;
  1558. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1559. return;
  1560. }
  1561. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1562. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1563. }
  1564. static void update_avg(u64 *avg, u64 sample)
  1565. {
  1566. s64 diff = sample - *avg;
  1567. *avg += diff >> 3;
  1568. }
  1569. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1570. {
  1571. if (wakeup)
  1572. p->se.start_runtime = p->se.sum_exec_runtime;
  1573. sched_info_queued(p);
  1574. p->sched_class->enqueue_task(rq, p, wakeup);
  1575. p->se.on_rq = 1;
  1576. }
  1577. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1578. {
  1579. if (sleep) {
  1580. if (p->se.last_wakeup) {
  1581. update_avg(&p->se.avg_overlap,
  1582. p->se.sum_exec_runtime - p->se.last_wakeup);
  1583. p->se.last_wakeup = 0;
  1584. } else {
  1585. update_avg(&p->se.avg_wakeup,
  1586. sysctl_sched_wakeup_granularity);
  1587. }
  1588. }
  1589. sched_info_dequeued(p);
  1590. p->sched_class->dequeue_task(rq, p, sleep);
  1591. p->se.on_rq = 0;
  1592. }
  1593. /*
  1594. * __normal_prio - return the priority that is based on the static prio
  1595. */
  1596. static inline int __normal_prio(struct task_struct *p)
  1597. {
  1598. return p->static_prio;
  1599. }
  1600. /*
  1601. * Calculate the expected normal priority: i.e. priority
  1602. * without taking RT-inheritance into account. Might be
  1603. * boosted by interactivity modifiers. Changes upon fork,
  1604. * setprio syscalls, and whenever the interactivity
  1605. * estimator recalculates.
  1606. */
  1607. static inline int normal_prio(struct task_struct *p)
  1608. {
  1609. int prio;
  1610. if (task_has_rt_policy(p))
  1611. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1612. else
  1613. prio = __normal_prio(p);
  1614. return prio;
  1615. }
  1616. /*
  1617. * Calculate the current priority, i.e. the priority
  1618. * taken into account by the scheduler. This value might
  1619. * be boosted by RT tasks, or might be boosted by
  1620. * interactivity modifiers. Will be RT if the task got
  1621. * RT-boosted. If not then it returns p->normal_prio.
  1622. */
  1623. static int effective_prio(struct task_struct *p)
  1624. {
  1625. p->normal_prio = normal_prio(p);
  1626. /*
  1627. * If we are RT tasks or we were boosted to RT priority,
  1628. * keep the priority unchanged. Otherwise, update priority
  1629. * to the normal priority:
  1630. */
  1631. if (!rt_prio(p->prio))
  1632. return p->normal_prio;
  1633. return p->prio;
  1634. }
  1635. /*
  1636. * activate_task - move a task to the runqueue.
  1637. */
  1638. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1639. {
  1640. if (task_contributes_to_load(p))
  1641. rq->nr_uninterruptible--;
  1642. enqueue_task(rq, p, wakeup);
  1643. inc_nr_running(rq);
  1644. }
  1645. /*
  1646. * deactivate_task - remove a task from the runqueue.
  1647. */
  1648. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1649. {
  1650. if (task_contributes_to_load(p))
  1651. rq->nr_uninterruptible++;
  1652. dequeue_task(rq, p, sleep);
  1653. dec_nr_running(rq);
  1654. }
  1655. /**
  1656. * task_curr - is this task currently executing on a CPU?
  1657. * @p: the task in question.
  1658. */
  1659. inline int task_curr(const struct task_struct *p)
  1660. {
  1661. return cpu_curr(task_cpu(p)) == p;
  1662. }
  1663. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1664. const struct sched_class *prev_class,
  1665. int oldprio, int running)
  1666. {
  1667. if (prev_class != p->sched_class) {
  1668. if (prev_class->switched_from)
  1669. prev_class->switched_from(rq, p, running);
  1670. p->sched_class->switched_to(rq, p, running);
  1671. } else
  1672. p->sched_class->prio_changed(rq, p, oldprio, running);
  1673. }
  1674. #ifdef CONFIG_SMP
  1675. /*
  1676. * Is this task likely cache-hot:
  1677. */
  1678. static int
  1679. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1680. {
  1681. s64 delta;
  1682. if (p->sched_class != &fair_sched_class)
  1683. return 0;
  1684. /*
  1685. * Buddy candidates are cache hot:
  1686. */
  1687. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1688. (&p->se == cfs_rq_of(&p->se)->next ||
  1689. &p->se == cfs_rq_of(&p->se)->last))
  1690. return 1;
  1691. if (sysctl_sched_migration_cost == -1)
  1692. return 1;
  1693. if (sysctl_sched_migration_cost == 0)
  1694. return 0;
  1695. delta = now - p->se.exec_start;
  1696. return delta < (s64)sysctl_sched_migration_cost;
  1697. }
  1698. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1699. {
  1700. #ifdef CONFIG_SCHED_DEBUG
  1701. /*
  1702. * We should never call set_task_cpu() on a blocked task,
  1703. * ttwu() will sort out the placement.
  1704. */
  1705. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1706. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1707. #endif
  1708. trace_sched_migrate_task(p, new_cpu);
  1709. if (task_cpu(p) != new_cpu) {
  1710. p->se.nr_migrations++;
  1711. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1712. }
  1713. __set_task_cpu(p, new_cpu);
  1714. }
  1715. struct migration_req {
  1716. struct list_head list;
  1717. struct task_struct *task;
  1718. int dest_cpu;
  1719. struct completion done;
  1720. };
  1721. /*
  1722. * The task's runqueue lock must be held.
  1723. * Returns true if you have to wait for migration thread.
  1724. */
  1725. static int
  1726. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1727. {
  1728. struct rq *rq = task_rq(p);
  1729. /*
  1730. * If the task is not on a runqueue (and not running), then
  1731. * the next wake-up will properly place the task.
  1732. */
  1733. if (!p->se.on_rq && !task_running(rq, p))
  1734. return 0;
  1735. init_completion(&req->done);
  1736. req->task = p;
  1737. req->dest_cpu = dest_cpu;
  1738. list_add(&req->list, &rq->migration_queue);
  1739. return 1;
  1740. }
  1741. /*
  1742. * wait_task_context_switch - wait for a thread to complete at least one
  1743. * context switch.
  1744. *
  1745. * @p must not be current.
  1746. */
  1747. void wait_task_context_switch(struct task_struct *p)
  1748. {
  1749. unsigned long nvcsw, nivcsw, flags;
  1750. int running;
  1751. struct rq *rq;
  1752. nvcsw = p->nvcsw;
  1753. nivcsw = p->nivcsw;
  1754. for (;;) {
  1755. /*
  1756. * The runqueue is assigned before the actual context
  1757. * switch. We need to take the runqueue lock.
  1758. *
  1759. * We could check initially without the lock but it is
  1760. * very likely that we need to take the lock in every
  1761. * iteration.
  1762. */
  1763. rq = task_rq_lock(p, &flags);
  1764. running = task_running(rq, p);
  1765. task_rq_unlock(rq, &flags);
  1766. if (likely(!running))
  1767. break;
  1768. /*
  1769. * The switch count is incremented before the actual
  1770. * context switch. We thus wait for two switches to be
  1771. * sure at least one completed.
  1772. */
  1773. if ((p->nvcsw - nvcsw) > 1)
  1774. break;
  1775. if ((p->nivcsw - nivcsw) > 1)
  1776. break;
  1777. cpu_relax();
  1778. }
  1779. }
  1780. /*
  1781. * wait_task_inactive - wait for a thread to unschedule.
  1782. *
  1783. * If @match_state is nonzero, it's the @p->state value just checked and
  1784. * not expected to change. If it changes, i.e. @p might have woken up,
  1785. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1786. * we return a positive number (its total switch count). If a second call
  1787. * a short while later returns the same number, the caller can be sure that
  1788. * @p has remained unscheduled the whole time.
  1789. *
  1790. * The caller must ensure that the task *will* unschedule sometime soon,
  1791. * else this function might spin for a *long* time. This function can't
  1792. * be called with interrupts off, or it may introduce deadlock with
  1793. * smp_call_function() if an IPI is sent by the same process we are
  1794. * waiting to become inactive.
  1795. */
  1796. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1797. {
  1798. unsigned long flags;
  1799. int running, on_rq;
  1800. unsigned long ncsw;
  1801. struct rq *rq;
  1802. for (;;) {
  1803. /*
  1804. * We do the initial early heuristics without holding
  1805. * any task-queue locks at all. We'll only try to get
  1806. * the runqueue lock when things look like they will
  1807. * work out!
  1808. */
  1809. rq = task_rq(p);
  1810. /*
  1811. * If the task is actively running on another CPU
  1812. * still, just relax and busy-wait without holding
  1813. * any locks.
  1814. *
  1815. * NOTE! Since we don't hold any locks, it's not
  1816. * even sure that "rq" stays as the right runqueue!
  1817. * But we don't care, since "task_running()" will
  1818. * return false if the runqueue has changed and p
  1819. * is actually now running somewhere else!
  1820. */
  1821. while (task_running(rq, p)) {
  1822. if (match_state && unlikely(p->state != match_state))
  1823. return 0;
  1824. cpu_relax();
  1825. }
  1826. /*
  1827. * Ok, time to look more closely! We need the rq
  1828. * lock now, to be *sure*. If we're wrong, we'll
  1829. * just go back and repeat.
  1830. */
  1831. rq = task_rq_lock(p, &flags);
  1832. trace_sched_wait_task(rq, p);
  1833. running = task_running(rq, p);
  1834. on_rq = p->se.on_rq;
  1835. ncsw = 0;
  1836. if (!match_state || p->state == match_state)
  1837. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1838. task_rq_unlock(rq, &flags);
  1839. /*
  1840. * If it changed from the expected state, bail out now.
  1841. */
  1842. if (unlikely(!ncsw))
  1843. break;
  1844. /*
  1845. * Was it really running after all now that we
  1846. * checked with the proper locks actually held?
  1847. *
  1848. * Oops. Go back and try again..
  1849. */
  1850. if (unlikely(running)) {
  1851. cpu_relax();
  1852. continue;
  1853. }
  1854. /*
  1855. * It's not enough that it's not actively running,
  1856. * it must be off the runqueue _entirely_, and not
  1857. * preempted!
  1858. *
  1859. * So if it was still runnable (but just not actively
  1860. * running right now), it's preempted, and we should
  1861. * yield - it could be a while.
  1862. */
  1863. if (unlikely(on_rq)) {
  1864. schedule_timeout_uninterruptible(1);
  1865. continue;
  1866. }
  1867. /*
  1868. * Ahh, all good. It wasn't running, and it wasn't
  1869. * runnable, which means that it will never become
  1870. * running in the future either. We're all done!
  1871. */
  1872. break;
  1873. }
  1874. return ncsw;
  1875. }
  1876. /***
  1877. * kick_process - kick a running thread to enter/exit the kernel
  1878. * @p: the to-be-kicked thread
  1879. *
  1880. * Cause a process which is running on another CPU to enter
  1881. * kernel-mode, without any delay. (to get signals handled.)
  1882. *
  1883. * NOTE: this function doesnt have to take the runqueue lock,
  1884. * because all it wants to ensure is that the remote task enters
  1885. * the kernel. If the IPI races and the task has been migrated
  1886. * to another CPU then no harm is done and the purpose has been
  1887. * achieved as well.
  1888. */
  1889. void kick_process(struct task_struct *p)
  1890. {
  1891. int cpu;
  1892. preempt_disable();
  1893. cpu = task_cpu(p);
  1894. if ((cpu != smp_processor_id()) && task_curr(p))
  1895. smp_send_reschedule(cpu);
  1896. preempt_enable();
  1897. }
  1898. EXPORT_SYMBOL_GPL(kick_process);
  1899. #endif /* CONFIG_SMP */
  1900. /**
  1901. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1902. * @p: the task to evaluate
  1903. * @func: the function to be called
  1904. * @info: the function call argument
  1905. *
  1906. * Calls the function @func when the task is currently running. This might
  1907. * be on the current CPU, which just calls the function directly
  1908. */
  1909. void task_oncpu_function_call(struct task_struct *p,
  1910. void (*func) (void *info), void *info)
  1911. {
  1912. int cpu;
  1913. preempt_disable();
  1914. cpu = task_cpu(p);
  1915. if (task_curr(p))
  1916. smp_call_function_single(cpu, func, info, 1);
  1917. preempt_enable();
  1918. }
  1919. #ifdef CONFIG_SMP
  1920. static int select_fallback_rq(int cpu, struct task_struct *p)
  1921. {
  1922. int dest_cpu;
  1923. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1924. /* Look for allowed, online CPU in same node. */
  1925. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1926. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1927. return dest_cpu;
  1928. /* Any allowed, online CPU? */
  1929. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1930. if (dest_cpu < nr_cpu_ids)
  1931. return dest_cpu;
  1932. /* No more Mr. Nice Guy. */
  1933. if (dest_cpu >= nr_cpu_ids) {
  1934. rcu_read_lock();
  1935. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1936. rcu_read_unlock();
  1937. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1938. /*
  1939. * Don't tell them about moving exiting tasks or
  1940. * kernel threads (both mm NULL), since they never
  1941. * leave kernel.
  1942. */
  1943. if (p->mm && printk_ratelimit()) {
  1944. printk(KERN_INFO "process %d (%s) no "
  1945. "longer affine to cpu%d\n",
  1946. task_pid_nr(p), p->comm, cpu);
  1947. }
  1948. }
  1949. return dest_cpu;
  1950. }
  1951. /*
  1952. * Gets called from 3 sites (exec, fork, wakeup), since it is called without
  1953. * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
  1954. * by:
  1955. *
  1956. * exec: is unstable, retry loop
  1957. * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
  1958. */
  1959. static inline
  1960. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1961. {
  1962. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1963. /*
  1964. * In order not to call set_task_cpu() on a blocking task we need
  1965. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1966. * cpu.
  1967. *
  1968. * Since this is common to all placement strategies, this lives here.
  1969. *
  1970. * [ this allows ->select_task() to simply return task_cpu(p) and
  1971. * not worry about this generic constraint ]
  1972. */
  1973. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1974. !cpu_online(cpu)))
  1975. cpu = select_fallback_rq(task_cpu(p), p);
  1976. return cpu;
  1977. }
  1978. #endif
  1979. /***
  1980. * try_to_wake_up - wake up a thread
  1981. * @p: the to-be-woken-up thread
  1982. * @state: the mask of task states that can be woken
  1983. * @sync: do a synchronous wakeup?
  1984. *
  1985. * Put it on the run-queue if it's not already there. The "current"
  1986. * thread is always on the run-queue (except when the actual
  1987. * re-schedule is in progress), and as such you're allowed to do
  1988. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1989. * runnable without the overhead of this.
  1990. *
  1991. * returns failure only if the task is already active.
  1992. */
  1993. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1994. int wake_flags)
  1995. {
  1996. int cpu, orig_cpu, this_cpu, success = 0;
  1997. unsigned long flags;
  1998. struct rq *rq, *orig_rq;
  1999. if (!sched_feat(SYNC_WAKEUPS))
  2000. wake_flags &= ~WF_SYNC;
  2001. this_cpu = get_cpu();
  2002. smp_wmb();
  2003. rq = orig_rq = task_rq_lock(p, &flags);
  2004. update_rq_clock(rq);
  2005. if (!(p->state & state))
  2006. goto out;
  2007. if (p->se.on_rq)
  2008. goto out_running;
  2009. cpu = task_cpu(p);
  2010. orig_cpu = cpu;
  2011. #ifdef CONFIG_SMP
  2012. if (unlikely(task_running(rq, p)))
  2013. goto out_activate;
  2014. /*
  2015. * In order to handle concurrent wakeups and release the rq->lock
  2016. * we put the task in TASK_WAKING state.
  2017. *
  2018. * First fix up the nr_uninterruptible count:
  2019. */
  2020. if (task_contributes_to_load(p))
  2021. rq->nr_uninterruptible--;
  2022. p->state = TASK_WAKING;
  2023. if (p->sched_class->task_waking)
  2024. p->sched_class->task_waking(rq, p);
  2025. __task_rq_unlock(rq);
  2026. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2027. if (cpu != orig_cpu)
  2028. set_task_cpu(p, cpu);
  2029. rq = __task_rq_lock(p);
  2030. update_rq_clock(rq);
  2031. WARN_ON(p->state != TASK_WAKING);
  2032. cpu = task_cpu(p);
  2033. #ifdef CONFIG_SCHEDSTATS
  2034. schedstat_inc(rq, ttwu_count);
  2035. if (cpu == this_cpu)
  2036. schedstat_inc(rq, ttwu_local);
  2037. else {
  2038. struct sched_domain *sd;
  2039. for_each_domain(this_cpu, sd) {
  2040. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2041. schedstat_inc(sd, ttwu_wake_remote);
  2042. break;
  2043. }
  2044. }
  2045. }
  2046. #endif /* CONFIG_SCHEDSTATS */
  2047. out_activate:
  2048. #endif /* CONFIG_SMP */
  2049. schedstat_inc(p, se.nr_wakeups);
  2050. if (wake_flags & WF_SYNC)
  2051. schedstat_inc(p, se.nr_wakeups_sync);
  2052. if (orig_cpu != cpu)
  2053. schedstat_inc(p, se.nr_wakeups_migrate);
  2054. if (cpu == this_cpu)
  2055. schedstat_inc(p, se.nr_wakeups_local);
  2056. else
  2057. schedstat_inc(p, se.nr_wakeups_remote);
  2058. activate_task(rq, p, 1);
  2059. success = 1;
  2060. /*
  2061. * Only attribute actual wakeups done by this task.
  2062. */
  2063. if (!in_interrupt()) {
  2064. struct sched_entity *se = &current->se;
  2065. u64 sample = se->sum_exec_runtime;
  2066. if (se->last_wakeup)
  2067. sample -= se->last_wakeup;
  2068. else
  2069. sample -= se->start_runtime;
  2070. update_avg(&se->avg_wakeup, sample);
  2071. se->last_wakeup = se->sum_exec_runtime;
  2072. }
  2073. out_running:
  2074. trace_sched_wakeup(rq, p, success);
  2075. check_preempt_curr(rq, p, wake_flags);
  2076. p->state = TASK_RUNNING;
  2077. #ifdef CONFIG_SMP
  2078. if (p->sched_class->task_woken)
  2079. p->sched_class->task_woken(rq, p);
  2080. if (unlikely(rq->idle_stamp)) {
  2081. u64 delta = rq->clock - rq->idle_stamp;
  2082. u64 max = 2*sysctl_sched_migration_cost;
  2083. if (delta > max)
  2084. rq->avg_idle = max;
  2085. else
  2086. update_avg(&rq->avg_idle, delta);
  2087. rq->idle_stamp = 0;
  2088. }
  2089. #endif
  2090. out:
  2091. task_rq_unlock(rq, &flags);
  2092. put_cpu();
  2093. return success;
  2094. }
  2095. /**
  2096. * wake_up_process - Wake up a specific process
  2097. * @p: The process to be woken up.
  2098. *
  2099. * Attempt to wake up the nominated process and move it to the set of runnable
  2100. * processes. Returns 1 if the process was woken up, 0 if it was already
  2101. * running.
  2102. *
  2103. * It may be assumed that this function implies a write memory barrier before
  2104. * changing the task state if and only if any tasks are woken up.
  2105. */
  2106. int wake_up_process(struct task_struct *p)
  2107. {
  2108. return try_to_wake_up(p, TASK_ALL, 0);
  2109. }
  2110. EXPORT_SYMBOL(wake_up_process);
  2111. int wake_up_state(struct task_struct *p, unsigned int state)
  2112. {
  2113. return try_to_wake_up(p, state, 0);
  2114. }
  2115. /*
  2116. * Perform scheduler related setup for a newly forked process p.
  2117. * p is forked by current.
  2118. *
  2119. * __sched_fork() is basic setup used by init_idle() too:
  2120. */
  2121. static void __sched_fork(struct task_struct *p)
  2122. {
  2123. p->se.exec_start = 0;
  2124. p->se.sum_exec_runtime = 0;
  2125. p->se.prev_sum_exec_runtime = 0;
  2126. p->se.nr_migrations = 0;
  2127. p->se.last_wakeup = 0;
  2128. p->se.avg_overlap = 0;
  2129. p->se.start_runtime = 0;
  2130. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2131. #ifdef CONFIG_SCHEDSTATS
  2132. p->se.wait_start = 0;
  2133. p->se.wait_max = 0;
  2134. p->se.wait_count = 0;
  2135. p->se.wait_sum = 0;
  2136. p->se.sleep_start = 0;
  2137. p->se.sleep_max = 0;
  2138. p->se.sum_sleep_runtime = 0;
  2139. p->se.block_start = 0;
  2140. p->se.block_max = 0;
  2141. p->se.exec_max = 0;
  2142. p->se.slice_max = 0;
  2143. p->se.nr_migrations_cold = 0;
  2144. p->se.nr_failed_migrations_affine = 0;
  2145. p->se.nr_failed_migrations_running = 0;
  2146. p->se.nr_failed_migrations_hot = 0;
  2147. p->se.nr_forced_migrations = 0;
  2148. p->se.nr_wakeups = 0;
  2149. p->se.nr_wakeups_sync = 0;
  2150. p->se.nr_wakeups_migrate = 0;
  2151. p->se.nr_wakeups_local = 0;
  2152. p->se.nr_wakeups_remote = 0;
  2153. p->se.nr_wakeups_affine = 0;
  2154. p->se.nr_wakeups_affine_attempts = 0;
  2155. p->se.nr_wakeups_passive = 0;
  2156. p->se.nr_wakeups_idle = 0;
  2157. #endif
  2158. INIT_LIST_HEAD(&p->rt.run_list);
  2159. p->se.on_rq = 0;
  2160. INIT_LIST_HEAD(&p->se.group_node);
  2161. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2162. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2163. #endif
  2164. }
  2165. /*
  2166. * fork()/clone()-time setup:
  2167. */
  2168. void sched_fork(struct task_struct *p, int clone_flags)
  2169. {
  2170. int cpu = get_cpu();
  2171. __sched_fork(p);
  2172. /*
  2173. * We mark the process as waking here. This guarantees that
  2174. * nobody will actually run it, and a signal or other external
  2175. * event cannot wake it up and insert it on the runqueue either.
  2176. */
  2177. p->state = TASK_WAKING;
  2178. /*
  2179. * Revert to default priority/policy on fork if requested.
  2180. */
  2181. if (unlikely(p->sched_reset_on_fork)) {
  2182. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2183. p->policy = SCHED_NORMAL;
  2184. p->normal_prio = p->static_prio;
  2185. }
  2186. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2187. p->static_prio = NICE_TO_PRIO(0);
  2188. p->normal_prio = p->static_prio;
  2189. set_load_weight(p);
  2190. }
  2191. /*
  2192. * We don't need the reset flag anymore after the fork. It has
  2193. * fulfilled its duty:
  2194. */
  2195. p->sched_reset_on_fork = 0;
  2196. }
  2197. /*
  2198. * Make sure we do not leak PI boosting priority to the child.
  2199. */
  2200. p->prio = current->normal_prio;
  2201. if (!rt_prio(p->prio))
  2202. p->sched_class = &fair_sched_class;
  2203. if (p->sched_class->task_fork)
  2204. p->sched_class->task_fork(p);
  2205. set_task_cpu(p, cpu);
  2206. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2207. if (likely(sched_info_on()))
  2208. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2209. #endif
  2210. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2211. p->oncpu = 0;
  2212. #endif
  2213. #ifdef CONFIG_PREEMPT
  2214. /* Want to start with kernel preemption disabled. */
  2215. task_thread_info(p)->preempt_count = 1;
  2216. #endif
  2217. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2218. put_cpu();
  2219. }
  2220. /*
  2221. * wake_up_new_task - wake up a newly created task for the first time.
  2222. *
  2223. * This function will do some initial scheduler statistics housekeeping
  2224. * that must be done for every newly created context, then puts the task
  2225. * on the runqueue and wakes it.
  2226. */
  2227. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2228. {
  2229. unsigned long flags;
  2230. struct rq *rq;
  2231. int cpu = get_cpu();
  2232. #ifdef CONFIG_SMP
  2233. /*
  2234. * Fork balancing, do it here and not earlier because:
  2235. * - cpus_allowed can change in the fork path
  2236. * - any previously selected cpu might disappear through hotplug
  2237. *
  2238. * We still have TASK_WAKING but PF_STARTING is gone now, meaning
  2239. * ->cpus_allowed is stable, we have preemption disabled, meaning
  2240. * cpu_online_mask is stable.
  2241. */
  2242. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2243. set_task_cpu(p, cpu);
  2244. #endif
  2245. rq = task_rq_lock(p, &flags);
  2246. BUG_ON(p->state != TASK_WAKING);
  2247. p->state = TASK_RUNNING;
  2248. update_rq_clock(rq);
  2249. activate_task(rq, p, 0);
  2250. trace_sched_wakeup_new(rq, p, 1);
  2251. check_preempt_curr(rq, p, WF_FORK);
  2252. #ifdef CONFIG_SMP
  2253. if (p->sched_class->task_woken)
  2254. p->sched_class->task_woken(rq, p);
  2255. #endif
  2256. task_rq_unlock(rq, &flags);
  2257. put_cpu();
  2258. }
  2259. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2260. /**
  2261. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2262. * @notifier: notifier struct to register
  2263. */
  2264. void preempt_notifier_register(struct preempt_notifier *notifier)
  2265. {
  2266. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2267. }
  2268. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2269. /**
  2270. * preempt_notifier_unregister - no longer interested in preemption notifications
  2271. * @notifier: notifier struct to unregister
  2272. *
  2273. * This is safe to call from within a preemption notifier.
  2274. */
  2275. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2276. {
  2277. hlist_del(&notifier->link);
  2278. }
  2279. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2280. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2281. {
  2282. struct preempt_notifier *notifier;
  2283. struct hlist_node *node;
  2284. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2285. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2286. }
  2287. static void
  2288. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2289. struct task_struct *next)
  2290. {
  2291. struct preempt_notifier *notifier;
  2292. struct hlist_node *node;
  2293. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2294. notifier->ops->sched_out(notifier, next);
  2295. }
  2296. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2297. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2298. {
  2299. }
  2300. static void
  2301. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2302. struct task_struct *next)
  2303. {
  2304. }
  2305. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2306. /**
  2307. * prepare_task_switch - prepare to switch tasks
  2308. * @rq: the runqueue preparing to switch
  2309. * @prev: the current task that is being switched out
  2310. * @next: the task we are going to switch to.
  2311. *
  2312. * This is called with the rq lock held and interrupts off. It must
  2313. * be paired with a subsequent finish_task_switch after the context
  2314. * switch.
  2315. *
  2316. * prepare_task_switch sets up locking and calls architecture specific
  2317. * hooks.
  2318. */
  2319. static inline void
  2320. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2321. struct task_struct *next)
  2322. {
  2323. fire_sched_out_preempt_notifiers(prev, next);
  2324. prepare_lock_switch(rq, next);
  2325. prepare_arch_switch(next);
  2326. }
  2327. /**
  2328. * finish_task_switch - clean up after a task-switch
  2329. * @rq: runqueue associated with task-switch
  2330. * @prev: the thread we just switched away from.
  2331. *
  2332. * finish_task_switch must be called after the context switch, paired
  2333. * with a prepare_task_switch call before the context switch.
  2334. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2335. * and do any other architecture-specific cleanup actions.
  2336. *
  2337. * Note that we may have delayed dropping an mm in context_switch(). If
  2338. * so, we finish that here outside of the runqueue lock. (Doing it
  2339. * with the lock held can cause deadlocks; see schedule() for
  2340. * details.)
  2341. */
  2342. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2343. __releases(rq->lock)
  2344. {
  2345. struct mm_struct *mm = rq->prev_mm;
  2346. long prev_state;
  2347. rq->prev_mm = NULL;
  2348. /*
  2349. * A task struct has one reference for the use as "current".
  2350. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2351. * schedule one last time. The schedule call will never return, and
  2352. * the scheduled task must drop that reference.
  2353. * The test for TASK_DEAD must occur while the runqueue locks are
  2354. * still held, otherwise prev could be scheduled on another cpu, die
  2355. * there before we look at prev->state, and then the reference would
  2356. * be dropped twice.
  2357. * Manfred Spraul <manfred@colorfullife.com>
  2358. */
  2359. prev_state = prev->state;
  2360. finish_arch_switch(prev);
  2361. perf_event_task_sched_in(current, cpu_of(rq));
  2362. finish_lock_switch(rq, prev);
  2363. fire_sched_in_preempt_notifiers(current);
  2364. if (mm)
  2365. mmdrop(mm);
  2366. if (unlikely(prev_state == TASK_DEAD)) {
  2367. /*
  2368. * Remove function-return probe instances associated with this
  2369. * task and put them back on the free list.
  2370. */
  2371. kprobe_flush_task(prev);
  2372. put_task_struct(prev);
  2373. }
  2374. }
  2375. #ifdef CONFIG_SMP
  2376. /* assumes rq->lock is held */
  2377. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2378. {
  2379. if (prev->sched_class->pre_schedule)
  2380. prev->sched_class->pre_schedule(rq, prev);
  2381. }
  2382. /* rq->lock is NOT held, but preemption is disabled */
  2383. static inline void post_schedule(struct rq *rq)
  2384. {
  2385. if (rq->post_schedule) {
  2386. unsigned long flags;
  2387. raw_spin_lock_irqsave(&rq->lock, flags);
  2388. if (rq->curr->sched_class->post_schedule)
  2389. rq->curr->sched_class->post_schedule(rq);
  2390. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2391. rq->post_schedule = 0;
  2392. }
  2393. }
  2394. #else
  2395. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2396. {
  2397. }
  2398. static inline void post_schedule(struct rq *rq)
  2399. {
  2400. }
  2401. #endif
  2402. /**
  2403. * schedule_tail - first thing a freshly forked thread must call.
  2404. * @prev: the thread we just switched away from.
  2405. */
  2406. asmlinkage void schedule_tail(struct task_struct *prev)
  2407. __releases(rq->lock)
  2408. {
  2409. struct rq *rq = this_rq();
  2410. finish_task_switch(rq, prev);
  2411. /*
  2412. * FIXME: do we need to worry about rq being invalidated by the
  2413. * task_switch?
  2414. */
  2415. post_schedule(rq);
  2416. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2417. /* In this case, finish_task_switch does not reenable preemption */
  2418. preempt_enable();
  2419. #endif
  2420. if (current->set_child_tid)
  2421. put_user(task_pid_vnr(current), current->set_child_tid);
  2422. }
  2423. /*
  2424. * context_switch - switch to the new MM and the new
  2425. * thread's register state.
  2426. */
  2427. static inline void
  2428. context_switch(struct rq *rq, struct task_struct *prev,
  2429. struct task_struct *next)
  2430. {
  2431. struct mm_struct *mm, *oldmm;
  2432. prepare_task_switch(rq, prev, next);
  2433. trace_sched_switch(rq, prev, next);
  2434. mm = next->mm;
  2435. oldmm = prev->active_mm;
  2436. /*
  2437. * For paravirt, this is coupled with an exit in switch_to to
  2438. * combine the page table reload and the switch backend into
  2439. * one hypercall.
  2440. */
  2441. arch_start_context_switch(prev);
  2442. if (likely(!mm)) {
  2443. next->active_mm = oldmm;
  2444. atomic_inc(&oldmm->mm_count);
  2445. enter_lazy_tlb(oldmm, next);
  2446. } else
  2447. switch_mm(oldmm, mm, next);
  2448. if (likely(!prev->mm)) {
  2449. prev->active_mm = NULL;
  2450. rq->prev_mm = oldmm;
  2451. }
  2452. /*
  2453. * Since the runqueue lock will be released by the next
  2454. * task (which is an invalid locking op but in the case
  2455. * of the scheduler it's an obvious special-case), so we
  2456. * do an early lockdep release here:
  2457. */
  2458. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2459. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2460. #endif
  2461. /* Here we just switch the register state and the stack. */
  2462. switch_to(prev, next, prev);
  2463. barrier();
  2464. /*
  2465. * this_rq must be evaluated again because prev may have moved
  2466. * CPUs since it called schedule(), thus the 'rq' on its stack
  2467. * frame will be invalid.
  2468. */
  2469. finish_task_switch(this_rq(), prev);
  2470. }
  2471. /*
  2472. * nr_running, nr_uninterruptible and nr_context_switches:
  2473. *
  2474. * externally visible scheduler statistics: current number of runnable
  2475. * threads, current number of uninterruptible-sleeping threads, total
  2476. * number of context switches performed since bootup.
  2477. */
  2478. unsigned long nr_running(void)
  2479. {
  2480. unsigned long i, sum = 0;
  2481. for_each_online_cpu(i)
  2482. sum += cpu_rq(i)->nr_running;
  2483. return sum;
  2484. }
  2485. unsigned long nr_uninterruptible(void)
  2486. {
  2487. unsigned long i, sum = 0;
  2488. for_each_possible_cpu(i)
  2489. sum += cpu_rq(i)->nr_uninterruptible;
  2490. /*
  2491. * Since we read the counters lockless, it might be slightly
  2492. * inaccurate. Do not allow it to go below zero though:
  2493. */
  2494. if (unlikely((long)sum < 0))
  2495. sum = 0;
  2496. return sum;
  2497. }
  2498. unsigned long long nr_context_switches(void)
  2499. {
  2500. int i;
  2501. unsigned long long sum = 0;
  2502. for_each_possible_cpu(i)
  2503. sum += cpu_rq(i)->nr_switches;
  2504. return sum;
  2505. }
  2506. unsigned long nr_iowait(void)
  2507. {
  2508. unsigned long i, sum = 0;
  2509. for_each_possible_cpu(i)
  2510. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2511. return sum;
  2512. }
  2513. unsigned long nr_iowait_cpu(void)
  2514. {
  2515. struct rq *this = this_rq();
  2516. return atomic_read(&this->nr_iowait);
  2517. }
  2518. unsigned long this_cpu_load(void)
  2519. {
  2520. struct rq *this = this_rq();
  2521. return this->cpu_load[0];
  2522. }
  2523. /* Variables and functions for calc_load */
  2524. static atomic_long_t calc_load_tasks;
  2525. static unsigned long calc_load_update;
  2526. unsigned long avenrun[3];
  2527. EXPORT_SYMBOL(avenrun);
  2528. /**
  2529. * get_avenrun - get the load average array
  2530. * @loads: pointer to dest load array
  2531. * @offset: offset to add
  2532. * @shift: shift count to shift the result left
  2533. *
  2534. * These values are estimates at best, so no need for locking.
  2535. */
  2536. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2537. {
  2538. loads[0] = (avenrun[0] + offset) << shift;
  2539. loads[1] = (avenrun[1] + offset) << shift;
  2540. loads[2] = (avenrun[2] + offset) << shift;
  2541. }
  2542. static unsigned long
  2543. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2544. {
  2545. load *= exp;
  2546. load += active * (FIXED_1 - exp);
  2547. return load >> FSHIFT;
  2548. }
  2549. /*
  2550. * calc_load - update the avenrun load estimates 10 ticks after the
  2551. * CPUs have updated calc_load_tasks.
  2552. */
  2553. void calc_global_load(void)
  2554. {
  2555. unsigned long upd = calc_load_update + 10;
  2556. long active;
  2557. if (time_before(jiffies, upd))
  2558. return;
  2559. active = atomic_long_read(&calc_load_tasks);
  2560. active = active > 0 ? active * FIXED_1 : 0;
  2561. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2562. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2563. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2564. calc_load_update += LOAD_FREQ;
  2565. }
  2566. /*
  2567. * Either called from update_cpu_load() or from a cpu going idle
  2568. */
  2569. static void calc_load_account_active(struct rq *this_rq)
  2570. {
  2571. long nr_active, delta;
  2572. nr_active = this_rq->nr_running;
  2573. nr_active += (long) this_rq->nr_uninterruptible;
  2574. if (nr_active != this_rq->calc_load_active) {
  2575. delta = nr_active - this_rq->calc_load_active;
  2576. this_rq->calc_load_active = nr_active;
  2577. atomic_long_add(delta, &calc_load_tasks);
  2578. }
  2579. }
  2580. /*
  2581. * Update rq->cpu_load[] statistics. This function is usually called every
  2582. * scheduler tick (TICK_NSEC).
  2583. */
  2584. static void update_cpu_load(struct rq *this_rq)
  2585. {
  2586. unsigned long this_load = this_rq->load.weight;
  2587. int i, scale;
  2588. this_rq->nr_load_updates++;
  2589. /* Update our load: */
  2590. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2591. unsigned long old_load, new_load;
  2592. /* scale is effectively 1 << i now, and >> i divides by scale */
  2593. old_load = this_rq->cpu_load[i];
  2594. new_load = this_load;
  2595. /*
  2596. * Round up the averaging division if load is increasing. This
  2597. * prevents us from getting stuck on 9 if the load is 10, for
  2598. * example.
  2599. */
  2600. if (new_load > old_load)
  2601. new_load += scale-1;
  2602. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2603. }
  2604. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2605. this_rq->calc_load_update += LOAD_FREQ;
  2606. calc_load_account_active(this_rq);
  2607. }
  2608. }
  2609. #ifdef CONFIG_SMP
  2610. /*
  2611. * double_rq_lock - safely lock two runqueues
  2612. *
  2613. * Note this does not disable interrupts like task_rq_lock,
  2614. * you need to do so manually before calling.
  2615. */
  2616. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2617. __acquires(rq1->lock)
  2618. __acquires(rq2->lock)
  2619. {
  2620. BUG_ON(!irqs_disabled());
  2621. if (rq1 == rq2) {
  2622. raw_spin_lock(&rq1->lock);
  2623. __acquire(rq2->lock); /* Fake it out ;) */
  2624. } else {
  2625. if (rq1 < rq2) {
  2626. raw_spin_lock(&rq1->lock);
  2627. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2628. } else {
  2629. raw_spin_lock(&rq2->lock);
  2630. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2631. }
  2632. }
  2633. update_rq_clock(rq1);
  2634. update_rq_clock(rq2);
  2635. }
  2636. /*
  2637. * double_rq_unlock - safely unlock two runqueues
  2638. *
  2639. * Note this does not restore interrupts like task_rq_unlock,
  2640. * you need to do so manually after calling.
  2641. */
  2642. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2643. __releases(rq1->lock)
  2644. __releases(rq2->lock)
  2645. {
  2646. raw_spin_unlock(&rq1->lock);
  2647. if (rq1 != rq2)
  2648. raw_spin_unlock(&rq2->lock);
  2649. else
  2650. __release(rq2->lock);
  2651. }
  2652. /*
  2653. * sched_exec - execve() is a valuable balancing opportunity, because at
  2654. * this point the task has the smallest effective memory and cache footprint.
  2655. */
  2656. void sched_exec(void)
  2657. {
  2658. struct task_struct *p = current;
  2659. struct migration_req req;
  2660. int dest_cpu, this_cpu;
  2661. unsigned long flags;
  2662. struct rq *rq;
  2663. again:
  2664. this_cpu = get_cpu();
  2665. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2666. if (dest_cpu == this_cpu) {
  2667. put_cpu();
  2668. return;
  2669. }
  2670. rq = task_rq_lock(p, &flags);
  2671. put_cpu();
  2672. /*
  2673. * select_task_rq() can race against ->cpus_allowed
  2674. */
  2675. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2676. || unlikely(!cpu_active(dest_cpu))) {
  2677. task_rq_unlock(rq, &flags);
  2678. goto again;
  2679. }
  2680. /* force the process onto the specified CPU */
  2681. if (migrate_task(p, dest_cpu, &req)) {
  2682. /* Need to wait for migration thread (might exit: take ref). */
  2683. struct task_struct *mt = rq->migration_thread;
  2684. get_task_struct(mt);
  2685. task_rq_unlock(rq, &flags);
  2686. wake_up_process(mt);
  2687. put_task_struct(mt);
  2688. wait_for_completion(&req.done);
  2689. return;
  2690. }
  2691. task_rq_unlock(rq, &flags);
  2692. }
  2693. /*
  2694. * pull_task - move a task from a remote runqueue to the local runqueue.
  2695. * Both runqueues must be locked.
  2696. */
  2697. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2698. struct rq *this_rq, int this_cpu)
  2699. {
  2700. deactivate_task(src_rq, p, 0);
  2701. set_task_cpu(p, this_cpu);
  2702. activate_task(this_rq, p, 0);
  2703. check_preempt_curr(this_rq, p, 0);
  2704. }
  2705. /*
  2706. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2707. */
  2708. static
  2709. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2710. struct sched_domain *sd, enum cpu_idle_type idle,
  2711. int *all_pinned)
  2712. {
  2713. int tsk_cache_hot = 0;
  2714. /*
  2715. * We do not migrate tasks that are:
  2716. * 1) running (obviously), or
  2717. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2718. * 3) are cache-hot on their current CPU.
  2719. */
  2720. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2721. schedstat_inc(p, se.nr_failed_migrations_affine);
  2722. return 0;
  2723. }
  2724. *all_pinned = 0;
  2725. if (task_running(rq, p)) {
  2726. schedstat_inc(p, se.nr_failed_migrations_running);
  2727. return 0;
  2728. }
  2729. /*
  2730. * Aggressive migration if:
  2731. * 1) task is cache cold, or
  2732. * 2) too many balance attempts have failed.
  2733. */
  2734. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2735. if (!tsk_cache_hot ||
  2736. sd->nr_balance_failed > sd->cache_nice_tries) {
  2737. #ifdef CONFIG_SCHEDSTATS
  2738. if (tsk_cache_hot) {
  2739. schedstat_inc(sd, lb_hot_gained[idle]);
  2740. schedstat_inc(p, se.nr_forced_migrations);
  2741. }
  2742. #endif
  2743. return 1;
  2744. }
  2745. if (tsk_cache_hot) {
  2746. schedstat_inc(p, se.nr_failed_migrations_hot);
  2747. return 0;
  2748. }
  2749. return 1;
  2750. }
  2751. static unsigned long
  2752. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2753. unsigned long max_load_move, struct sched_domain *sd,
  2754. enum cpu_idle_type idle, int *all_pinned,
  2755. int *this_best_prio, struct rq_iterator *iterator)
  2756. {
  2757. int loops = 0, pulled = 0, pinned = 0;
  2758. struct task_struct *p;
  2759. long rem_load_move = max_load_move;
  2760. if (max_load_move == 0)
  2761. goto out;
  2762. pinned = 1;
  2763. /*
  2764. * Start the load-balancing iterator:
  2765. */
  2766. p = iterator->start(iterator->arg);
  2767. next:
  2768. if (!p || loops++ > sysctl_sched_nr_migrate)
  2769. goto out;
  2770. if ((p->se.load.weight >> 1) > rem_load_move ||
  2771. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2772. p = iterator->next(iterator->arg);
  2773. goto next;
  2774. }
  2775. pull_task(busiest, p, this_rq, this_cpu);
  2776. pulled++;
  2777. rem_load_move -= p->se.load.weight;
  2778. #ifdef CONFIG_PREEMPT
  2779. /*
  2780. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2781. * will stop after the first task is pulled to minimize the critical
  2782. * section.
  2783. */
  2784. if (idle == CPU_NEWLY_IDLE)
  2785. goto out;
  2786. #endif
  2787. /*
  2788. * We only want to steal up to the prescribed amount of weighted load.
  2789. */
  2790. if (rem_load_move > 0) {
  2791. if (p->prio < *this_best_prio)
  2792. *this_best_prio = p->prio;
  2793. p = iterator->next(iterator->arg);
  2794. goto next;
  2795. }
  2796. out:
  2797. /*
  2798. * Right now, this is one of only two places pull_task() is called,
  2799. * so we can safely collect pull_task() stats here rather than
  2800. * inside pull_task().
  2801. */
  2802. schedstat_add(sd, lb_gained[idle], pulled);
  2803. if (all_pinned)
  2804. *all_pinned = pinned;
  2805. return max_load_move - rem_load_move;
  2806. }
  2807. /*
  2808. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2809. * this_rq, as part of a balancing operation within domain "sd".
  2810. * Returns 1 if successful and 0 otherwise.
  2811. *
  2812. * Called with both runqueues locked.
  2813. */
  2814. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2815. unsigned long max_load_move,
  2816. struct sched_domain *sd, enum cpu_idle_type idle,
  2817. int *all_pinned)
  2818. {
  2819. const struct sched_class *class = sched_class_highest;
  2820. unsigned long total_load_moved = 0;
  2821. int this_best_prio = this_rq->curr->prio;
  2822. do {
  2823. total_load_moved +=
  2824. class->load_balance(this_rq, this_cpu, busiest,
  2825. max_load_move - total_load_moved,
  2826. sd, idle, all_pinned, &this_best_prio);
  2827. class = class->next;
  2828. #ifdef CONFIG_PREEMPT
  2829. /*
  2830. * NEWIDLE balancing is a source of latency, so preemptible
  2831. * kernels will stop after the first task is pulled to minimize
  2832. * the critical section.
  2833. */
  2834. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2835. break;
  2836. #endif
  2837. } while (class && max_load_move > total_load_moved);
  2838. return total_load_moved > 0;
  2839. }
  2840. static int
  2841. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2842. struct sched_domain *sd, enum cpu_idle_type idle,
  2843. struct rq_iterator *iterator)
  2844. {
  2845. struct task_struct *p = iterator->start(iterator->arg);
  2846. int pinned = 0;
  2847. while (p) {
  2848. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2849. pull_task(busiest, p, this_rq, this_cpu);
  2850. /*
  2851. * Right now, this is only the second place pull_task()
  2852. * is called, so we can safely collect pull_task()
  2853. * stats here rather than inside pull_task().
  2854. */
  2855. schedstat_inc(sd, lb_gained[idle]);
  2856. return 1;
  2857. }
  2858. p = iterator->next(iterator->arg);
  2859. }
  2860. return 0;
  2861. }
  2862. /*
  2863. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2864. * part of active balancing operations within "domain".
  2865. * Returns 1 if successful and 0 otherwise.
  2866. *
  2867. * Called with both runqueues locked.
  2868. */
  2869. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2870. struct sched_domain *sd, enum cpu_idle_type idle)
  2871. {
  2872. const struct sched_class *class;
  2873. for_each_class(class) {
  2874. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2875. return 1;
  2876. }
  2877. return 0;
  2878. }
  2879. /********** Helpers for find_busiest_group ************************/
  2880. /*
  2881. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2882. * during load balancing.
  2883. */
  2884. struct sd_lb_stats {
  2885. struct sched_group *busiest; /* Busiest group in this sd */
  2886. struct sched_group *this; /* Local group in this sd */
  2887. unsigned long total_load; /* Total load of all groups in sd */
  2888. unsigned long total_pwr; /* Total power of all groups in sd */
  2889. unsigned long avg_load; /* Average load across all groups in sd */
  2890. /** Statistics of this group */
  2891. unsigned long this_load;
  2892. unsigned long this_load_per_task;
  2893. unsigned long this_nr_running;
  2894. /* Statistics of the busiest group */
  2895. unsigned long max_load;
  2896. unsigned long busiest_load_per_task;
  2897. unsigned long busiest_nr_running;
  2898. int group_imb; /* Is there imbalance in this sd */
  2899. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2900. int power_savings_balance; /* Is powersave balance needed for this sd */
  2901. struct sched_group *group_min; /* Least loaded group in sd */
  2902. struct sched_group *group_leader; /* Group which relieves group_min */
  2903. unsigned long min_load_per_task; /* load_per_task in group_min */
  2904. unsigned long leader_nr_running; /* Nr running of group_leader */
  2905. unsigned long min_nr_running; /* Nr running of group_min */
  2906. #endif
  2907. };
  2908. /*
  2909. * sg_lb_stats - stats of a sched_group required for load_balancing
  2910. */
  2911. struct sg_lb_stats {
  2912. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2913. unsigned long group_load; /* Total load over the CPUs of the group */
  2914. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2915. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2916. unsigned long group_capacity;
  2917. int group_imb; /* Is there an imbalance in the group ? */
  2918. };
  2919. /**
  2920. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2921. * @group: The group whose first cpu is to be returned.
  2922. */
  2923. static inline unsigned int group_first_cpu(struct sched_group *group)
  2924. {
  2925. return cpumask_first(sched_group_cpus(group));
  2926. }
  2927. /**
  2928. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2929. * @sd: The sched_domain whose load_idx is to be obtained.
  2930. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2931. */
  2932. static inline int get_sd_load_idx(struct sched_domain *sd,
  2933. enum cpu_idle_type idle)
  2934. {
  2935. int load_idx;
  2936. switch (idle) {
  2937. case CPU_NOT_IDLE:
  2938. load_idx = sd->busy_idx;
  2939. break;
  2940. case CPU_NEWLY_IDLE:
  2941. load_idx = sd->newidle_idx;
  2942. break;
  2943. default:
  2944. load_idx = sd->idle_idx;
  2945. break;
  2946. }
  2947. return load_idx;
  2948. }
  2949. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2950. /**
  2951. * init_sd_power_savings_stats - Initialize power savings statistics for
  2952. * the given sched_domain, during load balancing.
  2953. *
  2954. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2955. * @sds: Variable containing the statistics for sd.
  2956. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2957. */
  2958. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2959. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2960. {
  2961. /*
  2962. * Busy processors will not participate in power savings
  2963. * balance.
  2964. */
  2965. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2966. sds->power_savings_balance = 0;
  2967. else {
  2968. sds->power_savings_balance = 1;
  2969. sds->min_nr_running = ULONG_MAX;
  2970. sds->leader_nr_running = 0;
  2971. }
  2972. }
  2973. /**
  2974. * update_sd_power_savings_stats - Update the power saving stats for a
  2975. * sched_domain while performing load balancing.
  2976. *
  2977. * @group: sched_group belonging to the sched_domain under consideration.
  2978. * @sds: Variable containing the statistics of the sched_domain
  2979. * @local_group: Does group contain the CPU for which we're performing
  2980. * load balancing ?
  2981. * @sgs: Variable containing the statistics of the group.
  2982. */
  2983. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2984. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2985. {
  2986. if (!sds->power_savings_balance)
  2987. return;
  2988. /*
  2989. * If the local group is idle or completely loaded
  2990. * no need to do power savings balance at this domain
  2991. */
  2992. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2993. !sds->this_nr_running))
  2994. sds->power_savings_balance = 0;
  2995. /*
  2996. * If a group is already running at full capacity or idle,
  2997. * don't include that group in power savings calculations
  2998. */
  2999. if (!sds->power_savings_balance ||
  3000. sgs->sum_nr_running >= sgs->group_capacity ||
  3001. !sgs->sum_nr_running)
  3002. return;
  3003. /*
  3004. * Calculate the group which has the least non-idle load.
  3005. * This is the group from where we need to pick up the load
  3006. * for saving power
  3007. */
  3008. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3009. (sgs->sum_nr_running == sds->min_nr_running &&
  3010. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3011. sds->group_min = group;
  3012. sds->min_nr_running = sgs->sum_nr_running;
  3013. sds->min_load_per_task = sgs->sum_weighted_load /
  3014. sgs->sum_nr_running;
  3015. }
  3016. /*
  3017. * Calculate the group which is almost near its
  3018. * capacity but still has some space to pick up some load
  3019. * from other group and save more power
  3020. */
  3021. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3022. return;
  3023. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3024. (sgs->sum_nr_running == sds->leader_nr_running &&
  3025. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3026. sds->group_leader = group;
  3027. sds->leader_nr_running = sgs->sum_nr_running;
  3028. }
  3029. }
  3030. /**
  3031. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3032. * @sds: Variable containing the statistics of the sched_domain
  3033. * under consideration.
  3034. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3035. * @imbalance: Variable to store the imbalance.
  3036. *
  3037. * Description:
  3038. * Check if we have potential to perform some power-savings balance.
  3039. * If yes, set the busiest group to be the least loaded group in the
  3040. * sched_domain, so that it's CPUs can be put to idle.
  3041. *
  3042. * Returns 1 if there is potential to perform power-savings balance.
  3043. * Else returns 0.
  3044. */
  3045. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3046. int this_cpu, unsigned long *imbalance)
  3047. {
  3048. if (!sds->power_savings_balance)
  3049. return 0;
  3050. if (sds->this != sds->group_leader ||
  3051. sds->group_leader == sds->group_min)
  3052. return 0;
  3053. *imbalance = sds->min_load_per_task;
  3054. sds->busiest = sds->group_min;
  3055. return 1;
  3056. }
  3057. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3058. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3059. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3060. {
  3061. return;
  3062. }
  3063. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3064. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3065. {
  3066. return;
  3067. }
  3068. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3069. int this_cpu, unsigned long *imbalance)
  3070. {
  3071. return 0;
  3072. }
  3073. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3074. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3075. {
  3076. return SCHED_LOAD_SCALE;
  3077. }
  3078. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3079. {
  3080. return default_scale_freq_power(sd, cpu);
  3081. }
  3082. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3083. {
  3084. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3085. unsigned long smt_gain = sd->smt_gain;
  3086. smt_gain /= weight;
  3087. return smt_gain;
  3088. }
  3089. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3090. {
  3091. return default_scale_smt_power(sd, cpu);
  3092. }
  3093. unsigned long scale_rt_power(int cpu)
  3094. {
  3095. struct rq *rq = cpu_rq(cpu);
  3096. u64 total, available;
  3097. sched_avg_update(rq);
  3098. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3099. available = total - rq->rt_avg;
  3100. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3101. total = SCHED_LOAD_SCALE;
  3102. total >>= SCHED_LOAD_SHIFT;
  3103. return div_u64(available, total);
  3104. }
  3105. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3106. {
  3107. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3108. unsigned long power = SCHED_LOAD_SCALE;
  3109. struct sched_group *sdg = sd->groups;
  3110. if (sched_feat(ARCH_POWER))
  3111. power *= arch_scale_freq_power(sd, cpu);
  3112. else
  3113. power *= default_scale_freq_power(sd, cpu);
  3114. power >>= SCHED_LOAD_SHIFT;
  3115. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3116. if (sched_feat(ARCH_POWER))
  3117. power *= arch_scale_smt_power(sd, cpu);
  3118. else
  3119. power *= default_scale_smt_power(sd, cpu);
  3120. power >>= SCHED_LOAD_SHIFT;
  3121. }
  3122. power *= scale_rt_power(cpu);
  3123. power >>= SCHED_LOAD_SHIFT;
  3124. if (!power)
  3125. power = 1;
  3126. sdg->cpu_power = power;
  3127. }
  3128. static void update_group_power(struct sched_domain *sd, int cpu)
  3129. {
  3130. struct sched_domain *child = sd->child;
  3131. struct sched_group *group, *sdg = sd->groups;
  3132. unsigned long power;
  3133. if (!child) {
  3134. update_cpu_power(sd, cpu);
  3135. return;
  3136. }
  3137. power = 0;
  3138. group = child->groups;
  3139. do {
  3140. power += group->cpu_power;
  3141. group = group->next;
  3142. } while (group != child->groups);
  3143. sdg->cpu_power = power;
  3144. }
  3145. /**
  3146. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3147. * @sd: The sched_domain whose statistics are to be updated.
  3148. * @group: sched_group whose statistics are to be updated.
  3149. * @this_cpu: Cpu for which load balance is currently performed.
  3150. * @idle: Idle status of this_cpu
  3151. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3152. * @sd_idle: Idle status of the sched_domain containing group.
  3153. * @local_group: Does group contain this_cpu.
  3154. * @cpus: Set of cpus considered for load balancing.
  3155. * @balance: Should we balance.
  3156. * @sgs: variable to hold the statistics for this group.
  3157. */
  3158. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3159. struct sched_group *group, int this_cpu,
  3160. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3161. int local_group, const struct cpumask *cpus,
  3162. int *balance, struct sg_lb_stats *sgs)
  3163. {
  3164. unsigned long load, max_cpu_load, min_cpu_load;
  3165. int i;
  3166. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3167. unsigned long sum_avg_load_per_task;
  3168. unsigned long avg_load_per_task;
  3169. if (local_group) {
  3170. balance_cpu = group_first_cpu(group);
  3171. if (balance_cpu == this_cpu)
  3172. update_group_power(sd, this_cpu);
  3173. }
  3174. /* Tally up the load of all CPUs in the group */
  3175. sum_avg_load_per_task = avg_load_per_task = 0;
  3176. max_cpu_load = 0;
  3177. min_cpu_load = ~0UL;
  3178. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3179. struct rq *rq = cpu_rq(i);
  3180. if (*sd_idle && rq->nr_running)
  3181. *sd_idle = 0;
  3182. /* Bias balancing toward cpus of our domain */
  3183. if (local_group) {
  3184. if (idle_cpu(i) && !first_idle_cpu) {
  3185. first_idle_cpu = 1;
  3186. balance_cpu = i;
  3187. }
  3188. load = target_load(i, load_idx);
  3189. } else {
  3190. load = source_load(i, load_idx);
  3191. if (load > max_cpu_load)
  3192. max_cpu_load = load;
  3193. if (min_cpu_load > load)
  3194. min_cpu_load = load;
  3195. }
  3196. sgs->group_load += load;
  3197. sgs->sum_nr_running += rq->nr_running;
  3198. sgs->sum_weighted_load += weighted_cpuload(i);
  3199. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3200. }
  3201. /*
  3202. * First idle cpu or the first cpu(busiest) in this sched group
  3203. * is eligible for doing load balancing at this and above
  3204. * domains. In the newly idle case, we will allow all the cpu's
  3205. * to do the newly idle load balance.
  3206. */
  3207. if (idle != CPU_NEWLY_IDLE && local_group &&
  3208. balance_cpu != this_cpu && balance) {
  3209. *balance = 0;
  3210. return;
  3211. }
  3212. /* Adjust by relative CPU power of the group */
  3213. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3214. /*
  3215. * Consider the group unbalanced when the imbalance is larger
  3216. * than the average weight of two tasks.
  3217. *
  3218. * APZ: with cgroup the avg task weight can vary wildly and
  3219. * might not be a suitable number - should we keep a
  3220. * normalized nr_running number somewhere that negates
  3221. * the hierarchy?
  3222. */
  3223. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3224. group->cpu_power;
  3225. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3226. sgs->group_imb = 1;
  3227. sgs->group_capacity =
  3228. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3229. }
  3230. /**
  3231. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3232. * @sd: sched_domain whose statistics are to be updated.
  3233. * @this_cpu: Cpu for which load balance is currently performed.
  3234. * @idle: Idle status of this_cpu
  3235. * @sd_idle: Idle status of the sched_domain containing group.
  3236. * @cpus: Set of cpus considered for load balancing.
  3237. * @balance: Should we balance.
  3238. * @sds: variable to hold the statistics for this sched_domain.
  3239. */
  3240. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3241. enum cpu_idle_type idle, int *sd_idle,
  3242. const struct cpumask *cpus, int *balance,
  3243. struct sd_lb_stats *sds)
  3244. {
  3245. struct sched_domain *child = sd->child;
  3246. struct sched_group *group = sd->groups;
  3247. struct sg_lb_stats sgs;
  3248. int load_idx, prefer_sibling = 0;
  3249. if (child && child->flags & SD_PREFER_SIBLING)
  3250. prefer_sibling = 1;
  3251. init_sd_power_savings_stats(sd, sds, idle);
  3252. load_idx = get_sd_load_idx(sd, idle);
  3253. do {
  3254. int local_group;
  3255. local_group = cpumask_test_cpu(this_cpu,
  3256. sched_group_cpus(group));
  3257. memset(&sgs, 0, sizeof(sgs));
  3258. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3259. local_group, cpus, balance, &sgs);
  3260. if (local_group && balance && !(*balance))
  3261. return;
  3262. sds->total_load += sgs.group_load;
  3263. sds->total_pwr += group->cpu_power;
  3264. /*
  3265. * In case the child domain prefers tasks go to siblings
  3266. * first, lower the group capacity to one so that we'll try
  3267. * and move all the excess tasks away.
  3268. */
  3269. if (prefer_sibling)
  3270. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3271. if (local_group) {
  3272. sds->this_load = sgs.avg_load;
  3273. sds->this = group;
  3274. sds->this_nr_running = sgs.sum_nr_running;
  3275. sds->this_load_per_task = sgs.sum_weighted_load;
  3276. } else if (sgs.avg_load > sds->max_load &&
  3277. (sgs.sum_nr_running > sgs.group_capacity ||
  3278. sgs.group_imb)) {
  3279. sds->max_load = sgs.avg_load;
  3280. sds->busiest = group;
  3281. sds->busiest_nr_running = sgs.sum_nr_running;
  3282. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3283. sds->group_imb = sgs.group_imb;
  3284. }
  3285. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3286. group = group->next;
  3287. } while (group != sd->groups);
  3288. }
  3289. /**
  3290. * fix_small_imbalance - Calculate the minor imbalance that exists
  3291. * amongst the groups of a sched_domain, during
  3292. * load balancing.
  3293. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3294. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3295. * @imbalance: Variable to store the imbalance.
  3296. */
  3297. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3298. int this_cpu, unsigned long *imbalance)
  3299. {
  3300. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3301. unsigned int imbn = 2;
  3302. if (sds->this_nr_running) {
  3303. sds->this_load_per_task /= sds->this_nr_running;
  3304. if (sds->busiest_load_per_task >
  3305. sds->this_load_per_task)
  3306. imbn = 1;
  3307. } else
  3308. sds->this_load_per_task =
  3309. cpu_avg_load_per_task(this_cpu);
  3310. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3311. sds->busiest_load_per_task * imbn) {
  3312. *imbalance = sds->busiest_load_per_task;
  3313. return;
  3314. }
  3315. /*
  3316. * OK, we don't have enough imbalance to justify moving tasks,
  3317. * however we may be able to increase total CPU power used by
  3318. * moving them.
  3319. */
  3320. pwr_now += sds->busiest->cpu_power *
  3321. min(sds->busiest_load_per_task, sds->max_load);
  3322. pwr_now += sds->this->cpu_power *
  3323. min(sds->this_load_per_task, sds->this_load);
  3324. pwr_now /= SCHED_LOAD_SCALE;
  3325. /* Amount of load we'd subtract */
  3326. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3327. sds->busiest->cpu_power;
  3328. if (sds->max_load > tmp)
  3329. pwr_move += sds->busiest->cpu_power *
  3330. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3331. /* Amount of load we'd add */
  3332. if (sds->max_load * sds->busiest->cpu_power <
  3333. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3334. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3335. sds->this->cpu_power;
  3336. else
  3337. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3338. sds->this->cpu_power;
  3339. pwr_move += sds->this->cpu_power *
  3340. min(sds->this_load_per_task, sds->this_load + tmp);
  3341. pwr_move /= SCHED_LOAD_SCALE;
  3342. /* Move if we gain throughput */
  3343. if (pwr_move > pwr_now)
  3344. *imbalance = sds->busiest_load_per_task;
  3345. }
  3346. /**
  3347. * calculate_imbalance - Calculate the amount of imbalance present within the
  3348. * groups of a given sched_domain during load balance.
  3349. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3350. * @this_cpu: Cpu for which currently load balance is being performed.
  3351. * @imbalance: The variable to store the imbalance.
  3352. */
  3353. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3354. unsigned long *imbalance)
  3355. {
  3356. unsigned long max_pull;
  3357. /*
  3358. * In the presence of smp nice balancing, certain scenarios can have
  3359. * max load less than avg load(as we skip the groups at or below
  3360. * its cpu_power, while calculating max_load..)
  3361. */
  3362. if (sds->max_load < sds->avg_load) {
  3363. *imbalance = 0;
  3364. return fix_small_imbalance(sds, this_cpu, imbalance);
  3365. }
  3366. /* Don't want to pull so many tasks that a group would go idle */
  3367. max_pull = min(sds->max_load - sds->avg_load,
  3368. sds->max_load - sds->busiest_load_per_task);
  3369. /* How much load to actually move to equalise the imbalance */
  3370. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3371. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3372. / SCHED_LOAD_SCALE;
  3373. /*
  3374. * if *imbalance is less than the average load per runnable task
  3375. * there is no gaurantee that any tasks will be moved so we'll have
  3376. * a think about bumping its value to force at least one task to be
  3377. * moved
  3378. */
  3379. if (*imbalance < sds->busiest_load_per_task)
  3380. return fix_small_imbalance(sds, this_cpu, imbalance);
  3381. }
  3382. /******* find_busiest_group() helpers end here *********************/
  3383. /**
  3384. * find_busiest_group - Returns the busiest group within the sched_domain
  3385. * if there is an imbalance. If there isn't an imbalance, and
  3386. * the user has opted for power-savings, it returns a group whose
  3387. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3388. * such a group exists.
  3389. *
  3390. * Also calculates the amount of weighted load which should be moved
  3391. * to restore balance.
  3392. *
  3393. * @sd: The sched_domain whose busiest group is to be returned.
  3394. * @this_cpu: The cpu for which load balancing is currently being performed.
  3395. * @imbalance: Variable which stores amount of weighted load which should
  3396. * be moved to restore balance/put a group to idle.
  3397. * @idle: The idle status of this_cpu.
  3398. * @sd_idle: The idleness of sd
  3399. * @cpus: The set of CPUs under consideration for load-balancing.
  3400. * @balance: Pointer to a variable indicating if this_cpu
  3401. * is the appropriate cpu to perform load balancing at this_level.
  3402. *
  3403. * Returns: - the busiest group if imbalance exists.
  3404. * - If no imbalance and user has opted for power-savings balance,
  3405. * return the least loaded group whose CPUs can be
  3406. * put to idle by rebalancing its tasks onto our group.
  3407. */
  3408. static struct sched_group *
  3409. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3410. unsigned long *imbalance, enum cpu_idle_type idle,
  3411. int *sd_idle, const struct cpumask *cpus, int *balance)
  3412. {
  3413. struct sd_lb_stats sds;
  3414. memset(&sds, 0, sizeof(sds));
  3415. /*
  3416. * Compute the various statistics relavent for load balancing at
  3417. * this level.
  3418. */
  3419. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3420. balance, &sds);
  3421. /* Cases where imbalance does not exist from POV of this_cpu */
  3422. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3423. * at this level.
  3424. * 2) There is no busy sibling group to pull from.
  3425. * 3) This group is the busiest group.
  3426. * 4) This group is more busy than the avg busieness at this
  3427. * sched_domain.
  3428. * 5) The imbalance is within the specified limit.
  3429. * 6) Any rebalance would lead to ping-pong
  3430. */
  3431. if (balance && !(*balance))
  3432. goto ret;
  3433. if (!sds.busiest || sds.busiest_nr_running == 0)
  3434. goto out_balanced;
  3435. if (sds.this_load >= sds.max_load)
  3436. goto out_balanced;
  3437. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3438. if (sds.this_load >= sds.avg_load)
  3439. goto out_balanced;
  3440. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3441. goto out_balanced;
  3442. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3443. if (sds.group_imb)
  3444. sds.busiest_load_per_task =
  3445. min(sds.busiest_load_per_task, sds.avg_load);
  3446. /*
  3447. * We're trying to get all the cpus to the average_load, so we don't
  3448. * want to push ourselves above the average load, nor do we wish to
  3449. * reduce the max loaded cpu below the average load, as either of these
  3450. * actions would just result in more rebalancing later, and ping-pong
  3451. * tasks around. Thus we look for the minimum possible imbalance.
  3452. * Negative imbalances (*we* are more loaded than anyone else) will
  3453. * be counted as no imbalance for these purposes -- we can't fix that
  3454. * by pulling tasks to us. Be careful of negative numbers as they'll
  3455. * appear as very large values with unsigned longs.
  3456. */
  3457. if (sds.max_load <= sds.busiest_load_per_task)
  3458. goto out_balanced;
  3459. /* Looks like there is an imbalance. Compute it */
  3460. calculate_imbalance(&sds, this_cpu, imbalance);
  3461. return sds.busiest;
  3462. out_balanced:
  3463. /*
  3464. * There is no obvious imbalance. But check if we can do some balancing
  3465. * to save power.
  3466. */
  3467. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3468. return sds.busiest;
  3469. ret:
  3470. *imbalance = 0;
  3471. return NULL;
  3472. }
  3473. /*
  3474. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3475. */
  3476. static struct rq *
  3477. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3478. unsigned long imbalance, const struct cpumask *cpus)
  3479. {
  3480. struct rq *busiest = NULL, *rq;
  3481. unsigned long max_load = 0;
  3482. int i;
  3483. for_each_cpu(i, sched_group_cpus(group)) {
  3484. unsigned long power = power_of(i);
  3485. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3486. unsigned long wl;
  3487. if (!cpumask_test_cpu(i, cpus))
  3488. continue;
  3489. rq = cpu_rq(i);
  3490. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3491. wl /= power;
  3492. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3493. continue;
  3494. if (wl > max_load) {
  3495. max_load = wl;
  3496. busiest = rq;
  3497. }
  3498. }
  3499. return busiest;
  3500. }
  3501. /*
  3502. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3503. * so long as it is large enough.
  3504. */
  3505. #define MAX_PINNED_INTERVAL 512
  3506. /* Working cpumask for load_balance and load_balance_newidle. */
  3507. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3508. /*
  3509. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3510. * tasks if there is an imbalance.
  3511. */
  3512. static int load_balance(int this_cpu, struct rq *this_rq,
  3513. struct sched_domain *sd, enum cpu_idle_type idle,
  3514. int *balance)
  3515. {
  3516. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3517. struct sched_group *group;
  3518. unsigned long imbalance;
  3519. struct rq *busiest;
  3520. unsigned long flags;
  3521. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3522. cpumask_copy(cpus, cpu_active_mask);
  3523. /*
  3524. * When power savings policy is enabled for the parent domain, idle
  3525. * sibling can pick up load irrespective of busy siblings. In this case,
  3526. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3527. * portraying it as CPU_NOT_IDLE.
  3528. */
  3529. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3530. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3531. sd_idle = 1;
  3532. schedstat_inc(sd, lb_count[idle]);
  3533. redo:
  3534. update_shares(sd);
  3535. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3536. cpus, balance);
  3537. if (*balance == 0)
  3538. goto out_balanced;
  3539. if (!group) {
  3540. schedstat_inc(sd, lb_nobusyg[idle]);
  3541. goto out_balanced;
  3542. }
  3543. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3544. if (!busiest) {
  3545. schedstat_inc(sd, lb_nobusyq[idle]);
  3546. goto out_balanced;
  3547. }
  3548. BUG_ON(busiest == this_rq);
  3549. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3550. ld_moved = 0;
  3551. if (busiest->nr_running > 1) {
  3552. /*
  3553. * Attempt to move tasks. If find_busiest_group has found
  3554. * an imbalance but busiest->nr_running <= 1, the group is
  3555. * still unbalanced. ld_moved simply stays zero, so it is
  3556. * correctly treated as an imbalance.
  3557. */
  3558. local_irq_save(flags);
  3559. double_rq_lock(this_rq, busiest);
  3560. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3561. imbalance, sd, idle, &all_pinned);
  3562. double_rq_unlock(this_rq, busiest);
  3563. local_irq_restore(flags);
  3564. /*
  3565. * some other cpu did the load balance for us.
  3566. */
  3567. if (ld_moved && this_cpu != smp_processor_id())
  3568. resched_cpu(this_cpu);
  3569. /* All tasks on this runqueue were pinned by CPU affinity */
  3570. if (unlikely(all_pinned)) {
  3571. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3572. if (!cpumask_empty(cpus))
  3573. goto redo;
  3574. goto out_balanced;
  3575. }
  3576. }
  3577. if (!ld_moved) {
  3578. schedstat_inc(sd, lb_failed[idle]);
  3579. sd->nr_balance_failed++;
  3580. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3581. raw_spin_lock_irqsave(&busiest->lock, flags);
  3582. /* don't kick the migration_thread, if the curr
  3583. * task on busiest cpu can't be moved to this_cpu
  3584. */
  3585. if (!cpumask_test_cpu(this_cpu,
  3586. &busiest->curr->cpus_allowed)) {
  3587. raw_spin_unlock_irqrestore(&busiest->lock,
  3588. flags);
  3589. all_pinned = 1;
  3590. goto out_one_pinned;
  3591. }
  3592. if (!busiest->active_balance) {
  3593. busiest->active_balance = 1;
  3594. busiest->push_cpu = this_cpu;
  3595. active_balance = 1;
  3596. }
  3597. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3598. if (active_balance)
  3599. wake_up_process(busiest->migration_thread);
  3600. /*
  3601. * We've kicked active balancing, reset the failure
  3602. * counter.
  3603. */
  3604. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3605. }
  3606. } else
  3607. sd->nr_balance_failed = 0;
  3608. if (likely(!active_balance)) {
  3609. /* We were unbalanced, so reset the balancing interval */
  3610. sd->balance_interval = sd->min_interval;
  3611. } else {
  3612. /*
  3613. * If we've begun active balancing, start to back off. This
  3614. * case may not be covered by the all_pinned logic if there
  3615. * is only 1 task on the busy runqueue (because we don't call
  3616. * move_tasks).
  3617. */
  3618. if (sd->balance_interval < sd->max_interval)
  3619. sd->balance_interval *= 2;
  3620. }
  3621. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3622. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3623. ld_moved = -1;
  3624. goto out;
  3625. out_balanced:
  3626. schedstat_inc(sd, lb_balanced[idle]);
  3627. sd->nr_balance_failed = 0;
  3628. out_one_pinned:
  3629. /* tune up the balancing interval */
  3630. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3631. (sd->balance_interval < sd->max_interval))
  3632. sd->balance_interval *= 2;
  3633. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3634. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3635. ld_moved = -1;
  3636. else
  3637. ld_moved = 0;
  3638. out:
  3639. if (ld_moved)
  3640. update_shares(sd);
  3641. return ld_moved;
  3642. }
  3643. /*
  3644. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3645. * tasks if there is an imbalance.
  3646. *
  3647. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3648. * this_rq is locked.
  3649. */
  3650. static int
  3651. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3652. {
  3653. struct sched_group *group;
  3654. struct rq *busiest = NULL;
  3655. unsigned long imbalance;
  3656. int ld_moved = 0;
  3657. int sd_idle = 0;
  3658. int all_pinned = 0;
  3659. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3660. cpumask_copy(cpus, cpu_active_mask);
  3661. /*
  3662. * When power savings policy is enabled for the parent domain, idle
  3663. * sibling can pick up load irrespective of busy siblings. In this case,
  3664. * let the state of idle sibling percolate up as IDLE, instead of
  3665. * portraying it as CPU_NOT_IDLE.
  3666. */
  3667. if (sd->flags & SD_SHARE_CPUPOWER &&
  3668. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3669. sd_idle = 1;
  3670. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3671. redo:
  3672. update_shares_locked(this_rq, sd);
  3673. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3674. &sd_idle, cpus, NULL);
  3675. if (!group) {
  3676. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3677. goto out_balanced;
  3678. }
  3679. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3680. if (!busiest) {
  3681. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3682. goto out_balanced;
  3683. }
  3684. BUG_ON(busiest == this_rq);
  3685. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3686. ld_moved = 0;
  3687. if (busiest->nr_running > 1) {
  3688. /* Attempt to move tasks */
  3689. double_lock_balance(this_rq, busiest);
  3690. /* this_rq->clock is already updated */
  3691. update_rq_clock(busiest);
  3692. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3693. imbalance, sd, CPU_NEWLY_IDLE,
  3694. &all_pinned);
  3695. double_unlock_balance(this_rq, busiest);
  3696. if (unlikely(all_pinned)) {
  3697. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3698. if (!cpumask_empty(cpus))
  3699. goto redo;
  3700. }
  3701. }
  3702. if (!ld_moved) {
  3703. int active_balance = 0;
  3704. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3705. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3706. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3707. return -1;
  3708. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3709. return -1;
  3710. if (sd->nr_balance_failed++ < 2)
  3711. return -1;
  3712. /*
  3713. * The only task running in a non-idle cpu can be moved to this
  3714. * cpu in an attempt to completely freeup the other CPU
  3715. * package. The same method used to move task in load_balance()
  3716. * have been extended for load_balance_newidle() to speedup
  3717. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3718. *
  3719. * The package power saving logic comes from
  3720. * find_busiest_group(). If there are no imbalance, then
  3721. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3722. * f_b_g() will select a group from which a running task may be
  3723. * pulled to this cpu in order to make the other package idle.
  3724. * If there is no opportunity to make a package idle and if
  3725. * there are no imbalance, then f_b_g() will return NULL and no
  3726. * action will be taken in load_balance_newidle().
  3727. *
  3728. * Under normal task pull operation due to imbalance, there
  3729. * will be more than one task in the source run queue and
  3730. * move_tasks() will succeed. ld_moved will be true and this
  3731. * active balance code will not be triggered.
  3732. */
  3733. /* Lock busiest in correct order while this_rq is held */
  3734. double_lock_balance(this_rq, busiest);
  3735. /*
  3736. * don't kick the migration_thread, if the curr
  3737. * task on busiest cpu can't be moved to this_cpu
  3738. */
  3739. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3740. double_unlock_balance(this_rq, busiest);
  3741. all_pinned = 1;
  3742. return ld_moved;
  3743. }
  3744. if (!busiest->active_balance) {
  3745. busiest->active_balance = 1;
  3746. busiest->push_cpu = this_cpu;
  3747. active_balance = 1;
  3748. }
  3749. double_unlock_balance(this_rq, busiest);
  3750. /*
  3751. * Should not call ttwu while holding a rq->lock
  3752. */
  3753. raw_spin_unlock(&this_rq->lock);
  3754. if (active_balance)
  3755. wake_up_process(busiest->migration_thread);
  3756. raw_spin_lock(&this_rq->lock);
  3757. } else
  3758. sd->nr_balance_failed = 0;
  3759. update_shares_locked(this_rq, sd);
  3760. return ld_moved;
  3761. out_balanced:
  3762. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3763. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3764. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3765. return -1;
  3766. sd->nr_balance_failed = 0;
  3767. return 0;
  3768. }
  3769. /*
  3770. * idle_balance is called by schedule() if this_cpu is about to become
  3771. * idle. Attempts to pull tasks from other CPUs.
  3772. */
  3773. static void idle_balance(int this_cpu, struct rq *this_rq)
  3774. {
  3775. struct sched_domain *sd;
  3776. int pulled_task = 0;
  3777. unsigned long next_balance = jiffies + HZ;
  3778. this_rq->idle_stamp = this_rq->clock;
  3779. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3780. return;
  3781. for_each_domain(this_cpu, sd) {
  3782. unsigned long interval;
  3783. if (!(sd->flags & SD_LOAD_BALANCE))
  3784. continue;
  3785. if (sd->flags & SD_BALANCE_NEWIDLE)
  3786. /* If we've pulled tasks over stop searching: */
  3787. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3788. sd);
  3789. interval = msecs_to_jiffies(sd->balance_interval);
  3790. if (time_after(next_balance, sd->last_balance + interval))
  3791. next_balance = sd->last_balance + interval;
  3792. if (pulled_task) {
  3793. this_rq->idle_stamp = 0;
  3794. break;
  3795. }
  3796. }
  3797. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3798. /*
  3799. * We are going idle. next_balance may be set based on
  3800. * a busy processor. So reset next_balance.
  3801. */
  3802. this_rq->next_balance = next_balance;
  3803. }
  3804. }
  3805. /*
  3806. * active_load_balance is run by migration threads. It pushes running tasks
  3807. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3808. * running on each physical CPU where possible, and avoids physical /
  3809. * logical imbalances.
  3810. *
  3811. * Called with busiest_rq locked.
  3812. */
  3813. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3814. {
  3815. int target_cpu = busiest_rq->push_cpu;
  3816. struct sched_domain *sd;
  3817. struct rq *target_rq;
  3818. /* Is there any task to move? */
  3819. if (busiest_rq->nr_running <= 1)
  3820. return;
  3821. target_rq = cpu_rq(target_cpu);
  3822. /*
  3823. * This condition is "impossible", if it occurs
  3824. * we need to fix it. Originally reported by
  3825. * Bjorn Helgaas on a 128-cpu setup.
  3826. */
  3827. BUG_ON(busiest_rq == target_rq);
  3828. /* move a task from busiest_rq to target_rq */
  3829. double_lock_balance(busiest_rq, target_rq);
  3830. update_rq_clock(busiest_rq);
  3831. update_rq_clock(target_rq);
  3832. /* Search for an sd spanning us and the target CPU. */
  3833. for_each_domain(target_cpu, sd) {
  3834. if ((sd->flags & SD_LOAD_BALANCE) &&
  3835. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3836. break;
  3837. }
  3838. if (likely(sd)) {
  3839. schedstat_inc(sd, alb_count);
  3840. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3841. sd, CPU_IDLE))
  3842. schedstat_inc(sd, alb_pushed);
  3843. else
  3844. schedstat_inc(sd, alb_failed);
  3845. }
  3846. double_unlock_balance(busiest_rq, target_rq);
  3847. }
  3848. #ifdef CONFIG_NO_HZ
  3849. static struct {
  3850. atomic_t load_balancer;
  3851. cpumask_var_t cpu_mask;
  3852. cpumask_var_t ilb_grp_nohz_mask;
  3853. } nohz ____cacheline_aligned = {
  3854. .load_balancer = ATOMIC_INIT(-1),
  3855. };
  3856. int get_nohz_load_balancer(void)
  3857. {
  3858. return atomic_read(&nohz.load_balancer);
  3859. }
  3860. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3861. /**
  3862. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3863. * @cpu: The cpu whose lowest level of sched domain is to
  3864. * be returned.
  3865. * @flag: The flag to check for the lowest sched_domain
  3866. * for the given cpu.
  3867. *
  3868. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3869. */
  3870. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3871. {
  3872. struct sched_domain *sd;
  3873. for_each_domain(cpu, sd)
  3874. if (sd && (sd->flags & flag))
  3875. break;
  3876. return sd;
  3877. }
  3878. /**
  3879. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3880. * @cpu: The cpu whose domains we're iterating over.
  3881. * @sd: variable holding the value of the power_savings_sd
  3882. * for cpu.
  3883. * @flag: The flag to filter the sched_domains to be iterated.
  3884. *
  3885. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3886. * set, starting from the lowest sched_domain to the highest.
  3887. */
  3888. #define for_each_flag_domain(cpu, sd, flag) \
  3889. for (sd = lowest_flag_domain(cpu, flag); \
  3890. (sd && (sd->flags & flag)); sd = sd->parent)
  3891. /**
  3892. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3893. * @ilb_group: group to be checked for semi-idleness
  3894. *
  3895. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3896. *
  3897. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3898. * and atleast one non-idle CPU. This helper function checks if the given
  3899. * sched_group is semi-idle or not.
  3900. */
  3901. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3902. {
  3903. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3904. sched_group_cpus(ilb_group));
  3905. /*
  3906. * A sched_group is semi-idle when it has atleast one busy cpu
  3907. * and atleast one idle cpu.
  3908. */
  3909. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3910. return 0;
  3911. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3912. return 0;
  3913. return 1;
  3914. }
  3915. /**
  3916. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3917. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3918. *
  3919. * Returns: Returns the id of the idle load balancer if it exists,
  3920. * Else, returns >= nr_cpu_ids.
  3921. *
  3922. * This algorithm picks the idle load balancer such that it belongs to a
  3923. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3924. * completely idle packages/cores just for the purpose of idle load balancing
  3925. * when there are other idle cpu's which are better suited for that job.
  3926. */
  3927. static int find_new_ilb(int cpu)
  3928. {
  3929. struct sched_domain *sd;
  3930. struct sched_group *ilb_group;
  3931. /*
  3932. * Have idle load balancer selection from semi-idle packages only
  3933. * when power-aware load balancing is enabled
  3934. */
  3935. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3936. goto out_done;
  3937. /*
  3938. * Optimize for the case when we have no idle CPUs or only one
  3939. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3940. */
  3941. if (cpumask_weight(nohz.cpu_mask) < 2)
  3942. goto out_done;
  3943. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3944. ilb_group = sd->groups;
  3945. do {
  3946. if (is_semi_idle_group(ilb_group))
  3947. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3948. ilb_group = ilb_group->next;
  3949. } while (ilb_group != sd->groups);
  3950. }
  3951. out_done:
  3952. return cpumask_first(nohz.cpu_mask);
  3953. }
  3954. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3955. static inline int find_new_ilb(int call_cpu)
  3956. {
  3957. return cpumask_first(nohz.cpu_mask);
  3958. }
  3959. #endif
  3960. /*
  3961. * This routine will try to nominate the ilb (idle load balancing)
  3962. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3963. * load balancing on behalf of all those cpus. If all the cpus in the system
  3964. * go into this tickless mode, then there will be no ilb owner (as there is
  3965. * no need for one) and all the cpus will sleep till the next wakeup event
  3966. * arrives...
  3967. *
  3968. * For the ilb owner, tick is not stopped. And this tick will be used
  3969. * for idle load balancing. ilb owner will still be part of
  3970. * nohz.cpu_mask..
  3971. *
  3972. * While stopping the tick, this cpu will become the ilb owner if there
  3973. * is no other owner. And will be the owner till that cpu becomes busy
  3974. * or if all cpus in the system stop their ticks at which point
  3975. * there is no need for ilb owner.
  3976. *
  3977. * When the ilb owner becomes busy, it nominates another owner, during the
  3978. * next busy scheduler_tick()
  3979. */
  3980. int select_nohz_load_balancer(int stop_tick)
  3981. {
  3982. int cpu = smp_processor_id();
  3983. if (stop_tick) {
  3984. cpu_rq(cpu)->in_nohz_recently = 1;
  3985. if (!cpu_active(cpu)) {
  3986. if (atomic_read(&nohz.load_balancer) != cpu)
  3987. return 0;
  3988. /*
  3989. * If we are going offline and still the leader,
  3990. * give up!
  3991. */
  3992. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3993. BUG();
  3994. return 0;
  3995. }
  3996. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3997. /* time for ilb owner also to sleep */
  3998. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3999. if (atomic_read(&nohz.load_balancer) == cpu)
  4000. atomic_set(&nohz.load_balancer, -1);
  4001. return 0;
  4002. }
  4003. if (atomic_read(&nohz.load_balancer) == -1) {
  4004. /* make me the ilb owner */
  4005. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  4006. return 1;
  4007. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4008. int new_ilb;
  4009. if (!(sched_smt_power_savings ||
  4010. sched_mc_power_savings))
  4011. return 1;
  4012. /*
  4013. * Check to see if there is a more power-efficient
  4014. * ilb.
  4015. */
  4016. new_ilb = find_new_ilb(cpu);
  4017. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4018. atomic_set(&nohz.load_balancer, -1);
  4019. resched_cpu(new_ilb);
  4020. return 0;
  4021. }
  4022. return 1;
  4023. }
  4024. } else {
  4025. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4026. return 0;
  4027. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4028. if (atomic_read(&nohz.load_balancer) == cpu)
  4029. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4030. BUG();
  4031. }
  4032. return 0;
  4033. }
  4034. #endif
  4035. static DEFINE_SPINLOCK(balancing);
  4036. /*
  4037. * It checks each scheduling domain to see if it is due to be balanced,
  4038. * and initiates a balancing operation if so.
  4039. *
  4040. * Balancing parameters are set up in arch_init_sched_domains.
  4041. */
  4042. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4043. {
  4044. int balance = 1;
  4045. struct rq *rq = cpu_rq(cpu);
  4046. unsigned long interval;
  4047. struct sched_domain *sd;
  4048. /* Earliest time when we have to do rebalance again */
  4049. unsigned long next_balance = jiffies + 60*HZ;
  4050. int update_next_balance = 0;
  4051. int need_serialize;
  4052. for_each_domain(cpu, sd) {
  4053. if (!(sd->flags & SD_LOAD_BALANCE))
  4054. continue;
  4055. interval = sd->balance_interval;
  4056. if (idle != CPU_IDLE)
  4057. interval *= sd->busy_factor;
  4058. /* scale ms to jiffies */
  4059. interval = msecs_to_jiffies(interval);
  4060. if (unlikely(!interval))
  4061. interval = 1;
  4062. if (interval > HZ*NR_CPUS/10)
  4063. interval = HZ*NR_CPUS/10;
  4064. need_serialize = sd->flags & SD_SERIALIZE;
  4065. if (need_serialize) {
  4066. if (!spin_trylock(&balancing))
  4067. goto out;
  4068. }
  4069. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4070. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4071. /*
  4072. * We've pulled tasks over so either we're no
  4073. * longer idle, or one of our SMT siblings is
  4074. * not idle.
  4075. */
  4076. idle = CPU_NOT_IDLE;
  4077. }
  4078. sd->last_balance = jiffies;
  4079. }
  4080. if (need_serialize)
  4081. spin_unlock(&balancing);
  4082. out:
  4083. if (time_after(next_balance, sd->last_balance + interval)) {
  4084. next_balance = sd->last_balance + interval;
  4085. update_next_balance = 1;
  4086. }
  4087. /*
  4088. * Stop the load balance at this level. There is another
  4089. * CPU in our sched group which is doing load balancing more
  4090. * actively.
  4091. */
  4092. if (!balance)
  4093. break;
  4094. }
  4095. /*
  4096. * next_balance will be updated only when there is a need.
  4097. * When the cpu is attached to null domain for ex, it will not be
  4098. * updated.
  4099. */
  4100. if (likely(update_next_balance))
  4101. rq->next_balance = next_balance;
  4102. }
  4103. /*
  4104. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4105. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4106. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4107. */
  4108. static void run_rebalance_domains(struct softirq_action *h)
  4109. {
  4110. int this_cpu = smp_processor_id();
  4111. struct rq *this_rq = cpu_rq(this_cpu);
  4112. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4113. CPU_IDLE : CPU_NOT_IDLE;
  4114. rebalance_domains(this_cpu, idle);
  4115. #ifdef CONFIG_NO_HZ
  4116. /*
  4117. * If this cpu is the owner for idle load balancing, then do the
  4118. * balancing on behalf of the other idle cpus whose ticks are
  4119. * stopped.
  4120. */
  4121. if (this_rq->idle_at_tick &&
  4122. atomic_read(&nohz.load_balancer) == this_cpu) {
  4123. struct rq *rq;
  4124. int balance_cpu;
  4125. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4126. if (balance_cpu == this_cpu)
  4127. continue;
  4128. /*
  4129. * If this cpu gets work to do, stop the load balancing
  4130. * work being done for other cpus. Next load
  4131. * balancing owner will pick it up.
  4132. */
  4133. if (need_resched())
  4134. break;
  4135. rebalance_domains(balance_cpu, CPU_IDLE);
  4136. rq = cpu_rq(balance_cpu);
  4137. if (time_after(this_rq->next_balance, rq->next_balance))
  4138. this_rq->next_balance = rq->next_balance;
  4139. }
  4140. }
  4141. #endif
  4142. }
  4143. static inline int on_null_domain(int cpu)
  4144. {
  4145. return !rcu_dereference(cpu_rq(cpu)->sd);
  4146. }
  4147. /*
  4148. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4149. *
  4150. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4151. * idle load balancing owner or decide to stop the periodic load balancing,
  4152. * if the whole system is idle.
  4153. */
  4154. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4155. {
  4156. #ifdef CONFIG_NO_HZ
  4157. /*
  4158. * If we were in the nohz mode recently and busy at the current
  4159. * scheduler tick, then check if we need to nominate new idle
  4160. * load balancer.
  4161. */
  4162. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4163. rq->in_nohz_recently = 0;
  4164. if (atomic_read(&nohz.load_balancer) == cpu) {
  4165. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4166. atomic_set(&nohz.load_balancer, -1);
  4167. }
  4168. if (atomic_read(&nohz.load_balancer) == -1) {
  4169. int ilb = find_new_ilb(cpu);
  4170. if (ilb < nr_cpu_ids)
  4171. resched_cpu(ilb);
  4172. }
  4173. }
  4174. /*
  4175. * If this cpu is idle and doing idle load balancing for all the
  4176. * cpus with ticks stopped, is it time for that to stop?
  4177. */
  4178. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4179. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4180. resched_cpu(cpu);
  4181. return;
  4182. }
  4183. /*
  4184. * If this cpu is idle and the idle load balancing is done by
  4185. * someone else, then no need raise the SCHED_SOFTIRQ
  4186. */
  4187. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4188. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4189. return;
  4190. #endif
  4191. /* Don't need to rebalance while attached to NULL domain */
  4192. if (time_after_eq(jiffies, rq->next_balance) &&
  4193. likely(!on_null_domain(cpu)))
  4194. raise_softirq(SCHED_SOFTIRQ);
  4195. }
  4196. #else /* CONFIG_SMP */
  4197. /*
  4198. * on UP we do not need to balance between CPUs:
  4199. */
  4200. static inline void idle_balance(int cpu, struct rq *rq)
  4201. {
  4202. }
  4203. #endif
  4204. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4205. EXPORT_PER_CPU_SYMBOL(kstat);
  4206. /*
  4207. * Return any ns on the sched_clock that have not yet been accounted in
  4208. * @p in case that task is currently running.
  4209. *
  4210. * Called with task_rq_lock() held on @rq.
  4211. */
  4212. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4213. {
  4214. u64 ns = 0;
  4215. if (task_current(rq, p)) {
  4216. update_rq_clock(rq);
  4217. ns = rq->clock - p->se.exec_start;
  4218. if ((s64)ns < 0)
  4219. ns = 0;
  4220. }
  4221. return ns;
  4222. }
  4223. unsigned long long task_delta_exec(struct task_struct *p)
  4224. {
  4225. unsigned long flags;
  4226. struct rq *rq;
  4227. u64 ns = 0;
  4228. rq = task_rq_lock(p, &flags);
  4229. ns = do_task_delta_exec(p, rq);
  4230. task_rq_unlock(rq, &flags);
  4231. return ns;
  4232. }
  4233. /*
  4234. * Return accounted runtime for the task.
  4235. * In case the task is currently running, return the runtime plus current's
  4236. * pending runtime that have not been accounted yet.
  4237. */
  4238. unsigned long long task_sched_runtime(struct task_struct *p)
  4239. {
  4240. unsigned long flags;
  4241. struct rq *rq;
  4242. u64 ns = 0;
  4243. rq = task_rq_lock(p, &flags);
  4244. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4245. task_rq_unlock(rq, &flags);
  4246. return ns;
  4247. }
  4248. /*
  4249. * Return sum_exec_runtime for the thread group.
  4250. * In case the task is currently running, return the sum plus current's
  4251. * pending runtime that have not been accounted yet.
  4252. *
  4253. * Note that the thread group might have other running tasks as well,
  4254. * so the return value not includes other pending runtime that other
  4255. * running tasks might have.
  4256. */
  4257. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4258. {
  4259. struct task_cputime totals;
  4260. unsigned long flags;
  4261. struct rq *rq;
  4262. u64 ns;
  4263. rq = task_rq_lock(p, &flags);
  4264. thread_group_cputime(p, &totals);
  4265. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4266. task_rq_unlock(rq, &flags);
  4267. return ns;
  4268. }
  4269. /*
  4270. * Account user cpu time to a process.
  4271. * @p: the process that the cpu time gets accounted to
  4272. * @cputime: the cpu time spent in user space since the last update
  4273. * @cputime_scaled: cputime scaled by cpu frequency
  4274. */
  4275. void account_user_time(struct task_struct *p, cputime_t cputime,
  4276. cputime_t cputime_scaled)
  4277. {
  4278. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4279. cputime64_t tmp;
  4280. /* Add user time to process. */
  4281. p->utime = cputime_add(p->utime, cputime);
  4282. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4283. account_group_user_time(p, cputime);
  4284. /* Add user time to cpustat. */
  4285. tmp = cputime_to_cputime64(cputime);
  4286. if (TASK_NICE(p) > 0)
  4287. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4288. else
  4289. cpustat->user = cputime64_add(cpustat->user, tmp);
  4290. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4291. /* Account for user time used */
  4292. acct_update_integrals(p);
  4293. }
  4294. /*
  4295. * Account guest cpu time to a process.
  4296. * @p: the process that the cpu time gets accounted to
  4297. * @cputime: the cpu time spent in virtual machine since the last update
  4298. * @cputime_scaled: cputime scaled by cpu frequency
  4299. */
  4300. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4301. cputime_t cputime_scaled)
  4302. {
  4303. cputime64_t tmp;
  4304. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4305. tmp = cputime_to_cputime64(cputime);
  4306. /* Add guest time to process. */
  4307. p->utime = cputime_add(p->utime, cputime);
  4308. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4309. account_group_user_time(p, cputime);
  4310. p->gtime = cputime_add(p->gtime, cputime);
  4311. /* Add guest time to cpustat. */
  4312. if (TASK_NICE(p) > 0) {
  4313. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4314. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4315. } else {
  4316. cpustat->user = cputime64_add(cpustat->user, tmp);
  4317. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4318. }
  4319. }
  4320. /*
  4321. * Account system cpu time to a process.
  4322. * @p: the process that the cpu time gets accounted to
  4323. * @hardirq_offset: the offset to subtract from hardirq_count()
  4324. * @cputime: the cpu time spent in kernel space since the last update
  4325. * @cputime_scaled: cputime scaled by cpu frequency
  4326. */
  4327. void account_system_time(struct task_struct *p, int hardirq_offset,
  4328. cputime_t cputime, cputime_t cputime_scaled)
  4329. {
  4330. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4331. cputime64_t tmp;
  4332. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4333. account_guest_time(p, cputime, cputime_scaled);
  4334. return;
  4335. }
  4336. /* Add system time to process. */
  4337. p->stime = cputime_add(p->stime, cputime);
  4338. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4339. account_group_system_time(p, cputime);
  4340. /* Add system time to cpustat. */
  4341. tmp = cputime_to_cputime64(cputime);
  4342. if (hardirq_count() - hardirq_offset)
  4343. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4344. else if (softirq_count())
  4345. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4346. else
  4347. cpustat->system = cputime64_add(cpustat->system, tmp);
  4348. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4349. /* Account for system time used */
  4350. acct_update_integrals(p);
  4351. }
  4352. /*
  4353. * Account for involuntary wait time.
  4354. * @steal: the cpu time spent in involuntary wait
  4355. */
  4356. void account_steal_time(cputime_t cputime)
  4357. {
  4358. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4359. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4360. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4361. }
  4362. /*
  4363. * Account for idle time.
  4364. * @cputime: the cpu time spent in idle wait
  4365. */
  4366. void account_idle_time(cputime_t cputime)
  4367. {
  4368. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4369. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4370. struct rq *rq = this_rq();
  4371. if (atomic_read(&rq->nr_iowait) > 0)
  4372. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4373. else
  4374. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4375. }
  4376. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4377. /*
  4378. * Account a single tick of cpu time.
  4379. * @p: the process that the cpu time gets accounted to
  4380. * @user_tick: indicates if the tick is a user or a system tick
  4381. */
  4382. void account_process_tick(struct task_struct *p, int user_tick)
  4383. {
  4384. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4385. struct rq *rq = this_rq();
  4386. if (user_tick)
  4387. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4388. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4389. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4390. one_jiffy_scaled);
  4391. else
  4392. account_idle_time(cputime_one_jiffy);
  4393. }
  4394. /*
  4395. * Account multiple ticks of steal time.
  4396. * @p: the process from which the cpu time has been stolen
  4397. * @ticks: number of stolen ticks
  4398. */
  4399. void account_steal_ticks(unsigned long ticks)
  4400. {
  4401. account_steal_time(jiffies_to_cputime(ticks));
  4402. }
  4403. /*
  4404. * Account multiple ticks of idle time.
  4405. * @ticks: number of stolen ticks
  4406. */
  4407. void account_idle_ticks(unsigned long ticks)
  4408. {
  4409. account_idle_time(jiffies_to_cputime(ticks));
  4410. }
  4411. #endif
  4412. /*
  4413. * Use precise platform statistics if available:
  4414. */
  4415. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4416. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4417. {
  4418. *ut = p->utime;
  4419. *st = p->stime;
  4420. }
  4421. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4422. {
  4423. struct task_cputime cputime;
  4424. thread_group_cputime(p, &cputime);
  4425. *ut = cputime.utime;
  4426. *st = cputime.stime;
  4427. }
  4428. #else
  4429. #ifndef nsecs_to_cputime
  4430. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4431. #endif
  4432. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4433. {
  4434. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4435. /*
  4436. * Use CFS's precise accounting:
  4437. */
  4438. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4439. if (total) {
  4440. u64 temp;
  4441. temp = (u64)(rtime * utime);
  4442. do_div(temp, total);
  4443. utime = (cputime_t)temp;
  4444. } else
  4445. utime = rtime;
  4446. /*
  4447. * Compare with previous values, to keep monotonicity:
  4448. */
  4449. p->prev_utime = max(p->prev_utime, utime);
  4450. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4451. *ut = p->prev_utime;
  4452. *st = p->prev_stime;
  4453. }
  4454. /*
  4455. * Must be called with siglock held.
  4456. */
  4457. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4458. {
  4459. struct signal_struct *sig = p->signal;
  4460. struct task_cputime cputime;
  4461. cputime_t rtime, utime, total;
  4462. thread_group_cputime(p, &cputime);
  4463. total = cputime_add(cputime.utime, cputime.stime);
  4464. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4465. if (total) {
  4466. u64 temp;
  4467. temp = (u64)(rtime * cputime.utime);
  4468. do_div(temp, total);
  4469. utime = (cputime_t)temp;
  4470. } else
  4471. utime = rtime;
  4472. sig->prev_utime = max(sig->prev_utime, utime);
  4473. sig->prev_stime = max(sig->prev_stime,
  4474. cputime_sub(rtime, sig->prev_utime));
  4475. *ut = sig->prev_utime;
  4476. *st = sig->prev_stime;
  4477. }
  4478. #endif
  4479. /*
  4480. * This function gets called by the timer code, with HZ frequency.
  4481. * We call it with interrupts disabled.
  4482. *
  4483. * It also gets called by the fork code, when changing the parent's
  4484. * timeslices.
  4485. */
  4486. void scheduler_tick(void)
  4487. {
  4488. int cpu = smp_processor_id();
  4489. struct rq *rq = cpu_rq(cpu);
  4490. struct task_struct *curr = rq->curr;
  4491. sched_clock_tick();
  4492. raw_spin_lock(&rq->lock);
  4493. update_rq_clock(rq);
  4494. update_cpu_load(rq);
  4495. curr->sched_class->task_tick(rq, curr, 0);
  4496. raw_spin_unlock(&rq->lock);
  4497. perf_event_task_tick(curr, cpu);
  4498. #ifdef CONFIG_SMP
  4499. rq->idle_at_tick = idle_cpu(cpu);
  4500. trigger_load_balance(rq, cpu);
  4501. #endif
  4502. }
  4503. notrace unsigned long get_parent_ip(unsigned long addr)
  4504. {
  4505. if (in_lock_functions(addr)) {
  4506. addr = CALLER_ADDR2;
  4507. if (in_lock_functions(addr))
  4508. addr = CALLER_ADDR3;
  4509. }
  4510. return addr;
  4511. }
  4512. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4513. defined(CONFIG_PREEMPT_TRACER))
  4514. void __kprobes add_preempt_count(int val)
  4515. {
  4516. #ifdef CONFIG_DEBUG_PREEMPT
  4517. /*
  4518. * Underflow?
  4519. */
  4520. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4521. return;
  4522. #endif
  4523. preempt_count() += val;
  4524. #ifdef CONFIG_DEBUG_PREEMPT
  4525. /*
  4526. * Spinlock count overflowing soon?
  4527. */
  4528. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4529. PREEMPT_MASK - 10);
  4530. #endif
  4531. if (preempt_count() == val)
  4532. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4533. }
  4534. EXPORT_SYMBOL(add_preempt_count);
  4535. void __kprobes sub_preempt_count(int val)
  4536. {
  4537. #ifdef CONFIG_DEBUG_PREEMPT
  4538. /*
  4539. * Underflow?
  4540. */
  4541. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4542. return;
  4543. /*
  4544. * Is the spinlock portion underflowing?
  4545. */
  4546. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4547. !(preempt_count() & PREEMPT_MASK)))
  4548. return;
  4549. #endif
  4550. if (preempt_count() == val)
  4551. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4552. preempt_count() -= val;
  4553. }
  4554. EXPORT_SYMBOL(sub_preempt_count);
  4555. #endif
  4556. /*
  4557. * Print scheduling while atomic bug:
  4558. */
  4559. static noinline void __schedule_bug(struct task_struct *prev)
  4560. {
  4561. struct pt_regs *regs = get_irq_regs();
  4562. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4563. prev->comm, prev->pid, preempt_count());
  4564. debug_show_held_locks(prev);
  4565. print_modules();
  4566. if (irqs_disabled())
  4567. print_irqtrace_events(prev);
  4568. if (regs)
  4569. show_regs(regs);
  4570. else
  4571. dump_stack();
  4572. }
  4573. /*
  4574. * Various schedule()-time debugging checks and statistics:
  4575. */
  4576. static inline void schedule_debug(struct task_struct *prev)
  4577. {
  4578. /*
  4579. * Test if we are atomic. Since do_exit() needs to call into
  4580. * schedule() atomically, we ignore that path for now.
  4581. * Otherwise, whine if we are scheduling when we should not be.
  4582. */
  4583. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4584. __schedule_bug(prev);
  4585. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4586. schedstat_inc(this_rq(), sched_count);
  4587. #ifdef CONFIG_SCHEDSTATS
  4588. if (unlikely(prev->lock_depth >= 0)) {
  4589. schedstat_inc(this_rq(), bkl_count);
  4590. schedstat_inc(prev, sched_info.bkl_count);
  4591. }
  4592. #endif
  4593. }
  4594. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4595. {
  4596. if (prev->state == TASK_RUNNING) {
  4597. u64 runtime = prev->se.sum_exec_runtime;
  4598. runtime -= prev->se.prev_sum_exec_runtime;
  4599. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4600. /*
  4601. * In order to avoid avg_overlap growing stale when we are
  4602. * indeed overlapping and hence not getting put to sleep, grow
  4603. * the avg_overlap on preemption.
  4604. *
  4605. * We use the average preemption runtime because that
  4606. * correlates to the amount of cache footprint a task can
  4607. * build up.
  4608. */
  4609. update_avg(&prev->se.avg_overlap, runtime);
  4610. }
  4611. prev->sched_class->put_prev_task(rq, prev);
  4612. }
  4613. /*
  4614. * Pick up the highest-prio task:
  4615. */
  4616. static inline struct task_struct *
  4617. pick_next_task(struct rq *rq)
  4618. {
  4619. const struct sched_class *class;
  4620. struct task_struct *p;
  4621. /*
  4622. * Optimization: we know that if all tasks are in
  4623. * the fair class we can call that function directly:
  4624. */
  4625. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4626. p = fair_sched_class.pick_next_task(rq);
  4627. if (likely(p))
  4628. return p;
  4629. }
  4630. class = sched_class_highest;
  4631. for ( ; ; ) {
  4632. p = class->pick_next_task(rq);
  4633. if (p)
  4634. return p;
  4635. /*
  4636. * Will never be NULL as the idle class always
  4637. * returns a non-NULL p:
  4638. */
  4639. class = class->next;
  4640. }
  4641. }
  4642. /*
  4643. * schedule() is the main scheduler function.
  4644. */
  4645. asmlinkage void __sched schedule(void)
  4646. {
  4647. struct task_struct *prev, *next;
  4648. unsigned long *switch_count;
  4649. struct rq *rq;
  4650. int cpu;
  4651. need_resched:
  4652. preempt_disable();
  4653. cpu = smp_processor_id();
  4654. rq = cpu_rq(cpu);
  4655. rcu_sched_qs(cpu);
  4656. prev = rq->curr;
  4657. switch_count = &prev->nivcsw;
  4658. release_kernel_lock(prev);
  4659. need_resched_nonpreemptible:
  4660. schedule_debug(prev);
  4661. if (sched_feat(HRTICK))
  4662. hrtick_clear(rq);
  4663. raw_spin_lock_irq(&rq->lock);
  4664. update_rq_clock(rq);
  4665. clear_tsk_need_resched(prev);
  4666. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4667. if (unlikely(signal_pending_state(prev->state, prev)))
  4668. prev->state = TASK_RUNNING;
  4669. else
  4670. deactivate_task(rq, prev, 1);
  4671. switch_count = &prev->nvcsw;
  4672. }
  4673. pre_schedule(rq, prev);
  4674. if (unlikely(!rq->nr_running))
  4675. idle_balance(cpu, rq);
  4676. put_prev_task(rq, prev);
  4677. next = pick_next_task(rq);
  4678. if (likely(prev != next)) {
  4679. sched_info_switch(prev, next);
  4680. perf_event_task_sched_out(prev, next, cpu);
  4681. rq->nr_switches++;
  4682. rq->curr = next;
  4683. ++*switch_count;
  4684. context_switch(rq, prev, next); /* unlocks the rq */
  4685. /*
  4686. * the context switch might have flipped the stack from under
  4687. * us, hence refresh the local variables.
  4688. */
  4689. cpu = smp_processor_id();
  4690. rq = cpu_rq(cpu);
  4691. } else
  4692. raw_spin_unlock_irq(&rq->lock);
  4693. post_schedule(rq);
  4694. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  4695. prev = rq->curr;
  4696. switch_count = &prev->nivcsw;
  4697. goto need_resched_nonpreemptible;
  4698. }
  4699. preempt_enable_no_resched();
  4700. if (need_resched())
  4701. goto need_resched;
  4702. }
  4703. EXPORT_SYMBOL(schedule);
  4704. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4705. /*
  4706. * Look out! "owner" is an entirely speculative pointer
  4707. * access and not reliable.
  4708. */
  4709. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4710. {
  4711. unsigned int cpu;
  4712. struct rq *rq;
  4713. if (!sched_feat(OWNER_SPIN))
  4714. return 0;
  4715. #ifdef CONFIG_DEBUG_PAGEALLOC
  4716. /*
  4717. * Need to access the cpu field knowing that
  4718. * DEBUG_PAGEALLOC could have unmapped it if
  4719. * the mutex owner just released it and exited.
  4720. */
  4721. if (probe_kernel_address(&owner->cpu, cpu))
  4722. goto out;
  4723. #else
  4724. cpu = owner->cpu;
  4725. #endif
  4726. /*
  4727. * Even if the access succeeded (likely case),
  4728. * the cpu field may no longer be valid.
  4729. */
  4730. if (cpu >= nr_cpumask_bits)
  4731. goto out;
  4732. /*
  4733. * We need to validate that we can do a
  4734. * get_cpu() and that we have the percpu area.
  4735. */
  4736. if (!cpu_online(cpu))
  4737. goto out;
  4738. rq = cpu_rq(cpu);
  4739. for (;;) {
  4740. /*
  4741. * Owner changed, break to re-assess state.
  4742. */
  4743. if (lock->owner != owner)
  4744. break;
  4745. /*
  4746. * Is that owner really running on that cpu?
  4747. */
  4748. if (task_thread_info(rq->curr) != owner || need_resched())
  4749. return 0;
  4750. cpu_relax();
  4751. }
  4752. out:
  4753. return 1;
  4754. }
  4755. #endif
  4756. #ifdef CONFIG_PREEMPT
  4757. /*
  4758. * this is the entry point to schedule() from in-kernel preemption
  4759. * off of preempt_enable. Kernel preemptions off return from interrupt
  4760. * occur there and call schedule directly.
  4761. */
  4762. asmlinkage void __sched preempt_schedule(void)
  4763. {
  4764. struct thread_info *ti = current_thread_info();
  4765. /*
  4766. * If there is a non-zero preempt_count or interrupts are disabled,
  4767. * we do not want to preempt the current task. Just return..
  4768. */
  4769. if (likely(ti->preempt_count || irqs_disabled()))
  4770. return;
  4771. do {
  4772. add_preempt_count(PREEMPT_ACTIVE);
  4773. schedule();
  4774. sub_preempt_count(PREEMPT_ACTIVE);
  4775. /*
  4776. * Check again in case we missed a preemption opportunity
  4777. * between schedule and now.
  4778. */
  4779. barrier();
  4780. } while (need_resched());
  4781. }
  4782. EXPORT_SYMBOL(preempt_schedule);
  4783. /*
  4784. * this is the entry point to schedule() from kernel preemption
  4785. * off of irq context.
  4786. * Note, that this is called and return with irqs disabled. This will
  4787. * protect us against recursive calling from irq.
  4788. */
  4789. asmlinkage void __sched preempt_schedule_irq(void)
  4790. {
  4791. struct thread_info *ti = current_thread_info();
  4792. /* Catch callers which need to be fixed */
  4793. BUG_ON(ti->preempt_count || !irqs_disabled());
  4794. do {
  4795. add_preempt_count(PREEMPT_ACTIVE);
  4796. local_irq_enable();
  4797. schedule();
  4798. local_irq_disable();
  4799. sub_preempt_count(PREEMPT_ACTIVE);
  4800. /*
  4801. * Check again in case we missed a preemption opportunity
  4802. * between schedule and now.
  4803. */
  4804. barrier();
  4805. } while (need_resched());
  4806. }
  4807. #endif /* CONFIG_PREEMPT */
  4808. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4809. void *key)
  4810. {
  4811. return try_to_wake_up(curr->private, mode, wake_flags);
  4812. }
  4813. EXPORT_SYMBOL(default_wake_function);
  4814. /*
  4815. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4816. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4817. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4818. *
  4819. * There are circumstances in which we can try to wake a task which has already
  4820. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4821. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4822. */
  4823. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4824. int nr_exclusive, int wake_flags, void *key)
  4825. {
  4826. wait_queue_t *curr, *next;
  4827. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4828. unsigned flags = curr->flags;
  4829. if (curr->func(curr, mode, wake_flags, key) &&
  4830. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4831. break;
  4832. }
  4833. }
  4834. /**
  4835. * __wake_up - wake up threads blocked on a waitqueue.
  4836. * @q: the waitqueue
  4837. * @mode: which threads
  4838. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4839. * @key: is directly passed to the wakeup function
  4840. *
  4841. * It may be assumed that this function implies a write memory barrier before
  4842. * changing the task state if and only if any tasks are woken up.
  4843. */
  4844. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4845. int nr_exclusive, void *key)
  4846. {
  4847. unsigned long flags;
  4848. spin_lock_irqsave(&q->lock, flags);
  4849. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4850. spin_unlock_irqrestore(&q->lock, flags);
  4851. }
  4852. EXPORT_SYMBOL(__wake_up);
  4853. /*
  4854. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4855. */
  4856. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4857. {
  4858. __wake_up_common(q, mode, 1, 0, NULL);
  4859. }
  4860. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4861. {
  4862. __wake_up_common(q, mode, 1, 0, key);
  4863. }
  4864. /**
  4865. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4866. * @q: the waitqueue
  4867. * @mode: which threads
  4868. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4869. * @key: opaque value to be passed to wakeup targets
  4870. *
  4871. * The sync wakeup differs that the waker knows that it will schedule
  4872. * away soon, so while the target thread will be woken up, it will not
  4873. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4874. * with each other. This can prevent needless bouncing between CPUs.
  4875. *
  4876. * On UP it can prevent extra preemption.
  4877. *
  4878. * It may be assumed that this function implies a write memory barrier before
  4879. * changing the task state if and only if any tasks are woken up.
  4880. */
  4881. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4882. int nr_exclusive, void *key)
  4883. {
  4884. unsigned long flags;
  4885. int wake_flags = WF_SYNC;
  4886. if (unlikely(!q))
  4887. return;
  4888. if (unlikely(!nr_exclusive))
  4889. wake_flags = 0;
  4890. spin_lock_irqsave(&q->lock, flags);
  4891. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4892. spin_unlock_irqrestore(&q->lock, flags);
  4893. }
  4894. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4895. /*
  4896. * __wake_up_sync - see __wake_up_sync_key()
  4897. */
  4898. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4899. {
  4900. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4901. }
  4902. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4903. /**
  4904. * complete: - signals a single thread waiting on this completion
  4905. * @x: holds the state of this particular completion
  4906. *
  4907. * This will wake up a single thread waiting on this completion. Threads will be
  4908. * awakened in the same order in which they were queued.
  4909. *
  4910. * See also complete_all(), wait_for_completion() and related routines.
  4911. *
  4912. * It may be assumed that this function implies a write memory barrier before
  4913. * changing the task state if and only if any tasks are woken up.
  4914. */
  4915. void complete(struct completion *x)
  4916. {
  4917. unsigned long flags;
  4918. spin_lock_irqsave(&x->wait.lock, flags);
  4919. x->done++;
  4920. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4921. spin_unlock_irqrestore(&x->wait.lock, flags);
  4922. }
  4923. EXPORT_SYMBOL(complete);
  4924. /**
  4925. * complete_all: - signals all threads waiting on this completion
  4926. * @x: holds the state of this particular completion
  4927. *
  4928. * This will wake up all threads waiting on this particular completion event.
  4929. *
  4930. * It may be assumed that this function implies a write memory barrier before
  4931. * changing the task state if and only if any tasks are woken up.
  4932. */
  4933. void complete_all(struct completion *x)
  4934. {
  4935. unsigned long flags;
  4936. spin_lock_irqsave(&x->wait.lock, flags);
  4937. x->done += UINT_MAX/2;
  4938. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4939. spin_unlock_irqrestore(&x->wait.lock, flags);
  4940. }
  4941. EXPORT_SYMBOL(complete_all);
  4942. static inline long __sched
  4943. do_wait_for_common(struct completion *x, long timeout, int state)
  4944. {
  4945. if (!x->done) {
  4946. DECLARE_WAITQUEUE(wait, current);
  4947. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4948. __add_wait_queue_tail(&x->wait, &wait);
  4949. do {
  4950. if (signal_pending_state(state, current)) {
  4951. timeout = -ERESTARTSYS;
  4952. break;
  4953. }
  4954. __set_current_state(state);
  4955. spin_unlock_irq(&x->wait.lock);
  4956. timeout = schedule_timeout(timeout);
  4957. spin_lock_irq(&x->wait.lock);
  4958. } while (!x->done && timeout);
  4959. __remove_wait_queue(&x->wait, &wait);
  4960. if (!x->done)
  4961. return timeout;
  4962. }
  4963. x->done--;
  4964. return timeout ?: 1;
  4965. }
  4966. static long __sched
  4967. wait_for_common(struct completion *x, long timeout, int state)
  4968. {
  4969. might_sleep();
  4970. spin_lock_irq(&x->wait.lock);
  4971. timeout = do_wait_for_common(x, timeout, state);
  4972. spin_unlock_irq(&x->wait.lock);
  4973. return timeout;
  4974. }
  4975. /**
  4976. * wait_for_completion: - waits for completion of a task
  4977. * @x: holds the state of this particular completion
  4978. *
  4979. * This waits to be signaled for completion of a specific task. It is NOT
  4980. * interruptible and there is no timeout.
  4981. *
  4982. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4983. * and interrupt capability. Also see complete().
  4984. */
  4985. void __sched wait_for_completion(struct completion *x)
  4986. {
  4987. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4988. }
  4989. EXPORT_SYMBOL(wait_for_completion);
  4990. /**
  4991. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4992. * @x: holds the state of this particular completion
  4993. * @timeout: timeout value in jiffies
  4994. *
  4995. * This waits for either a completion of a specific task to be signaled or for a
  4996. * specified timeout to expire. The timeout is in jiffies. It is not
  4997. * interruptible.
  4998. */
  4999. unsigned long __sched
  5000. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  5001. {
  5002. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  5003. }
  5004. EXPORT_SYMBOL(wait_for_completion_timeout);
  5005. /**
  5006. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  5007. * @x: holds the state of this particular completion
  5008. *
  5009. * This waits for completion of a specific task to be signaled. It is
  5010. * interruptible.
  5011. */
  5012. int __sched wait_for_completion_interruptible(struct completion *x)
  5013. {
  5014. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5015. if (t == -ERESTARTSYS)
  5016. return t;
  5017. return 0;
  5018. }
  5019. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5020. /**
  5021. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5022. * @x: holds the state of this particular completion
  5023. * @timeout: timeout value in jiffies
  5024. *
  5025. * This waits for either a completion of a specific task to be signaled or for a
  5026. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5027. */
  5028. unsigned long __sched
  5029. wait_for_completion_interruptible_timeout(struct completion *x,
  5030. unsigned long timeout)
  5031. {
  5032. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5033. }
  5034. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5035. /**
  5036. * wait_for_completion_killable: - waits for completion of a task (killable)
  5037. * @x: holds the state of this particular completion
  5038. *
  5039. * This waits to be signaled for completion of a specific task. It can be
  5040. * interrupted by a kill signal.
  5041. */
  5042. int __sched wait_for_completion_killable(struct completion *x)
  5043. {
  5044. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5045. if (t == -ERESTARTSYS)
  5046. return t;
  5047. return 0;
  5048. }
  5049. EXPORT_SYMBOL(wait_for_completion_killable);
  5050. /**
  5051. * try_wait_for_completion - try to decrement a completion without blocking
  5052. * @x: completion structure
  5053. *
  5054. * Returns: 0 if a decrement cannot be done without blocking
  5055. * 1 if a decrement succeeded.
  5056. *
  5057. * If a completion is being used as a counting completion,
  5058. * attempt to decrement the counter without blocking. This
  5059. * enables us to avoid waiting if the resource the completion
  5060. * is protecting is not available.
  5061. */
  5062. bool try_wait_for_completion(struct completion *x)
  5063. {
  5064. unsigned long flags;
  5065. int ret = 1;
  5066. spin_lock_irqsave(&x->wait.lock, flags);
  5067. if (!x->done)
  5068. ret = 0;
  5069. else
  5070. x->done--;
  5071. spin_unlock_irqrestore(&x->wait.lock, flags);
  5072. return ret;
  5073. }
  5074. EXPORT_SYMBOL(try_wait_for_completion);
  5075. /**
  5076. * completion_done - Test to see if a completion has any waiters
  5077. * @x: completion structure
  5078. *
  5079. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5080. * 1 if there are no waiters.
  5081. *
  5082. */
  5083. bool completion_done(struct completion *x)
  5084. {
  5085. unsigned long flags;
  5086. int ret = 1;
  5087. spin_lock_irqsave(&x->wait.lock, flags);
  5088. if (!x->done)
  5089. ret = 0;
  5090. spin_unlock_irqrestore(&x->wait.lock, flags);
  5091. return ret;
  5092. }
  5093. EXPORT_SYMBOL(completion_done);
  5094. static long __sched
  5095. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5096. {
  5097. unsigned long flags;
  5098. wait_queue_t wait;
  5099. init_waitqueue_entry(&wait, current);
  5100. __set_current_state(state);
  5101. spin_lock_irqsave(&q->lock, flags);
  5102. __add_wait_queue(q, &wait);
  5103. spin_unlock(&q->lock);
  5104. timeout = schedule_timeout(timeout);
  5105. spin_lock_irq(&q->lock);
  5106. __remove_wait_queue(q, &wait);
  5107. spin_unlock_irqrestore(&q->lock, flags);
  5108. return timeout;
  5109. }
  5110. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5111. {
  5112. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5113. }
  5114. EXPORT_SYMBOL(interruptible_sleep_on);
  5115. long __sched
  5116. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5117. {
  5118. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5119. }
  5120. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5121. void __sched sleep_on(wait_queue_head_t *q)
  5122. {
  5123. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5124. }
  5125. EXPORT_SYMBOL(sleep_on);
  5126. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5127. {
  5128. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5129. }
  5130. EXPORT_SYMBOL(sleep_on_timeout);
  5131. #ifdef CONFIG_RT_MUTEXES
  5132. /*
  5133. * rt_mutex_setprio - set the current priority of a task
  5134. * @p: task
  5135. * @prio: prio value (kernel-internal form)
  5136. *
  5137. * This function changes the 'effective' priority of a task. It does
  5138. * not touch ->normal_prio like __setscheduler().
  5139. *
  5140. * Used by the rt_mutex code to implement priority inheritance logic.
  5141. */
  5142. void rt_mutex_setprio(struct task_struct *p, int prio)
  5143. {
  5144. unsigned long flags;
  5145. int oldprio, on_rq, running;
  5146. struct rq *rq;
  5147. const struct sched_class *prev_class = p->sched_class;
  5148. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5149. rq = task_rq_lock(p, &flags);
  5150. update_rq_clock(rq);
  5151. oldprio = p->prio;
  5152. on_rq = p->se.on_rq;
  5153. running = task_current(rq, p);
  5154. if (on_rq)
  5155. dequeue_task(rq, p, 0);
  5156. if (running)
  5157. p->sched_class->put_prev_task(rq, p);
  5158. if (rt_prio(prio))
  5159. p->sched_class = &rt_sched_class;
  5160. else
  5161. p->sched_class = &fair_sched_class;
  5162. p->prio = prio;
  5163. if (running)
  5164. p->sched_class->set_curr_task(rq);
  5165. if (on_rq) {
  5166. enqueue_task(rq, p, 0);
  5167. check_class_changed(rq, p, prev_class, oldprio, running);
  5168. }
  5169. task_rq_unlock(rq, &flags);
  5170. }
  5171. #endif
  5172. void set_user_nice(struct task_struct *p, long nice)
  5173. {
  5174. int old_prio, delta, on_rq;
  5175. unsigned long flags;
  5176. struct rq *rq;
  5177. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5178. return;
  5179. /*
  5180. * We have to be careful, if called from sys_setpriority(),
  5181. * the task might be in the middle of scheduling on another CPU.
  5182. */
  5183. rq = task_rq_lock(p, &flags);
  5184. update_rq_clock(rq);
  5185. /*
  5186. * The RT priorities are set via sched_setscheduler(), but we still
  5187. * allow the 'normal' nice value to be set - but as expected
  5188. * it wont have any effect on scheduling until the task is
  5189. * SCHED_FIFO/SCHED_RR:
  5190. */
  5191. if (task_has_rt_policy(p)) {
  5192. p->static_prio = NICE_TO_PRIO(nice);
  5193. goto out_unlock;
  5194. }
  5195. on_rq = p->se.on_rq;
  5196. if (on_rq)
  5197. dequeue_task(rq, p, 0);
  5198. p->static_prio = NICE_TO_PRIO(nice);
  5199. set_load_weight(p);
  5200. old_prio = p->prio;
  5201. p->prio = effective_prio(p);
  5202. delta = p->prio - old_prio;
  5203. if (on_rq) {
  5204. enqueue_task(rq, p, 0);
  5205. /*
  5206. * If the task increased its priority or is running and
  5207. * lowered its priority, then reschedule its CPU:
  5208. */
  5209. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5210. resched_task(rq->curr);
  5211. }
  5212. out_unlock:
  5213. task_rq_unlock(rq, &flags);
  5214. }
  5215. EXPORT_SYMBOL(set_user_nice);
  5216. /*
  5217. * can_nice - check if a task can reduce its nice value
  5218. * @p: task
  5219. * @nice: nice value
  5220. */
  5221. int can_nice(const struct task_struct *p, const int nice)
  5222. {
  5223. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5224. int nice_rlim = 20 - nice;
  5225. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5226. capable(CAP_SYS_NICE));
  5227. }
  5228. #ifdef __ARCH_WANT_SYS_NICE
  5229. /*
  5230. * sys_nice - change the priority of the current process.
  5231. * @increment: priority increment
  5232. *
  5233. * sys_setpriority is a more generic, but much slower function that
  5234. * does similar things.
  5235. */
  5236. SYSCALL_DEFINE1(nice, int, increment)
  5237. {
  5238. long nice, retval;
  5239. /*
  5240. * Setpriority might change our priority at the same moment.
  5241. * We don't have to worry. Conceptually one call occurs first
  5242. * and we have a single winner.
  5243. */
  5244. if (increment < -40)
  5245. increment = -40;
  5246. if (increment > 40)
  5247. increment = 40;
  5248. nice = TASK_NICE(current) + increment;
  5249. if (nice < -20)
  5250. nice = -20;
  5251. if (nice > 19)
  5252. nice = 19;
  5253. if (increment < 0 && !can_nice(current, nice))
  5254. return -EPERM;
  5255. retval = security_task_setnice(current, nice);
  5256. if (retval)
  5257. return retval;
  5258. set_user_nice(current, nice);
  5259. return 0;
  5260. }
  5261. #endif
  5262. /**
  5263. * task_prio - return the priority value of a given task.
  5264. * @p: the task in question.
  5265. *
  5266. * This is the priority value as seen by users in /proc.
  5267. * RT tasks are offset by -200. Normal tasks are centered
  5268. * around 0, value goes from -16 to +15.
  5269. */
  5270. int task_prio(const struct task_struct *p)
  5271. {
  5272. return p->prio - MAX_RT_PRIO;
  5273. }
  5274. /**
  5275. * task_nice - return the nice value of a given task.
  5276. * @p: the task in question.
  5277. */
  5278. int task_nice(const struct task_struct *p)
  5279. {
  5280. return TASK_NICE(p);
  5281. }
  5282. EXPORT_SYMBOL(task_nice);
  5283. /**
  5284. * idle_cpu - is a given cpu idle currently?
  5285. * @cpu: the processor in question.
  5286. */
  5287. int idle_cpu(int cpu)
  5288. {
  5289. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5290. }
  5291. /**
  5292. * idle_task - return the idle task for a given cpu.
  5293. * @cpu: the processor in question.
  5294. */
  5295. struct task_struct *idle_task(int cpu)
  5296. {
  5297. return cpu_rq(cpu)->idle;
  5298. }
  5299. /**
  5300. * find_process_by_pid - find a process with a matching PID value.
  5301. * @pid: the pid in question.
  5302. */
  5303. static struct task_struct *find_process_by_pid(pid_t pid)
  5304. {
  5305. return pid ? find_task_by_vpid(pid) : current;
  5306. }
  5307. /* Actually do priority change: must hold rq lock. */
  5308. static void
  5309. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5310. {
  5311. BUG_ON(p->se.on_rq);
  5312. p->policy = policy;
  5313. p->rt_priority = prio;
  5314. p->normal_prio = normal_prio(p);
  5315. /* we are holding p->pi_lock already */
  5316. p->prio = rt_mutex_getprio(p);
  5317. if (rt_prio(p->prio))
  5318. p->sched_class = &rt_sched_class;
  5319. else
  5320. p->sched_class = &fair_sched_class;
  5321. set_load_weight(p);
  5322. }
  5323. /*
  5324. * check the target process has a UID that matches the current process's
  5325. */
  5326. static bool check_same_owner(struct task_struct *p)
  5327. {
  5328. const struct cred *cred = current_cred(), *pcred;
  5329. bool match;
  5330. rcu_read_lock();
  5331. pcred = __task_cred(p);
  5332. match = (cred->euid == pcred->euid ||
  5333. cred->euid == pcred->uid);
  5334. rcu_read_unlock();
  5335. return match;
  5336. }
  5337. static int __sched_setscheduler(struct task_struct *p, int policy,
  5338. struct sched_param *param, bool user)
  5339. {
  5340. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5341. unsigned long flags;
  5342. const struct sched_class *prev_class = p->sched_class;
  5343. struct rq *rq;
  5344. int reset_on_fork;
  5345. /* may grab non-irq protected spin_locks */
  5346. BUG_ON(in_interrupt());
  5347. recheck:
  5348. /* double check policy once rq lock held */
  5349. if (policy < 0) {
  5350. reset_on_fork = p->sched_reset_on_fork;
  5351. policy = oldpolicy = p->policy;
  5352. } else {
  5353. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5354. policy &= ~SCHED_RESET_ON_FORK;
  5355. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5356. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5357. policy != SCHED_IDLE)
  5358. return -EINVAL;
  5359. }
  5360. /*
  5361. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5362. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5363. * SCHED_BATCH and SCHED_IDLE is 0.
  5364. */
  5365. if (param->sched_priority < 0 ||
  5366. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5367. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5368. return -EINVAL;
  5369. if (rt_policy(policy) != (param->sched_priority != 0))
  5370. return -EINVAL;
  5371. /*
  5372. * Allow unprivileged RT tasks to decrease priority:
  5373. */
  5374. if (user && !capable(CAP_SYS_NICE)) {
  5375. if (rt_policy(policy)) {
  5376. unsigned long rlim_rtprio;
  5377. if (!lock_task_sighand(p, &flags))
  5378. return -ESRCH;
  5379. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5380. unlock_task_sighand(p, &flags);
  5381. /* can't set/change the rt policy */
  5382. if (policy != p->policy && !rlim_rtprio)
  5383. return -EPERM;
  5384. /* can't increase priority */
  5385. if (param->sched_priority > p->rt_priority &&
  5386. param->sched_priority > rlim_rtprio)
  5387. return -EPERM;
  5388. }
  5389. /*
  5390. * Like positive nice levels, dont allow tasks to
  5391. * move out of SCHED_IDLE either:
  5392. */
  5393. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5394. return -EPERM;
  5395. /* can't change other user's priorities */
  5396. if (!check_same_owner(p))
  5397. return -EPERM;
  5398. /* Normal users shall not reset the sched_reset_on_fork flag */
  5399. if (p->sched_reset_on_fork && !reset_on_fork)
  5400. return -EPERM;
  5401. }
  5402. if (user) {
  5403. #ifdef CONFIG_RT_GROUP_SCHED
  5404. /*
  5405. * Do not allow realtime tasks into groups that have no runtime
  5406. * assigned.
  5407. */
  5408. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5409. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5410. return -EPERM;
  5411. #endif
  5412. retval = security_task_setscheduler(p, policy, param);
  5413. if (retval)
  5414. return retval;
  5415. }
  5416. /*
  5417. * make sure no PI-waiters arrive (or leave) while we are
  5418. * changing the priority of the task:
  5419. */
  5420. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5421. /*
  5422. * To be able to change p->policy safely, the apropriate
  5423. * runqueue lock must be held.
  5424. */
  5425. rq = __task_rq_lock(p);
  5426. /* recheck policy now with rq lock held */
  5427. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5428. policy = oldpolicy = -1;
  5429. __task_rq_unlock(rq);
  5430. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5431. goto recheck;
  5432. }
  5433. update_rq_clock(rq);
  5434. on_rq = p->se.on_rq;
  5435. running = task_current(rq, p);
  5436. if (on_rq)
  5437. deactivate_task(rq, p, 0);
  5438. if (running)
  5439. p->sched_class->put_prev_task(rq, p);
  5440. p->sched_reset_on_fork = reset_on_fork;
  5441. oldprio = p->prio;
  5442. __setscheduler(rq, p, policy, param->sched_priority);
  5443. if (running)
  5444. p->sched_class->set_curr_task(rq);
  5445. if (on_rq) {
  5446. activate_task(rq, p, 0);
  5447. check_class_changed(rq, p, prev_class, oldprio, running);
  5448. }
  5449. __task_rq_unlock(rq);
  5450. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5451. rt_mutex_adjust_pi(p);
  5452. return 0;
  5453. }
  5454. /**
  5455. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5456. * @p: the task in question.
  5457. * @policy: new policy.
  5458. * @param: structure containing the new RT priority.
  5459. *
  5460. * NOTE that the task may be already dead.
  5461. */
  5462. int sched_setscheduler(struct task_struct *p, int policy,
  5463. struct sched_param *param)
  5464. {
  5465. return __sched_setscheduler(p, policy, param, true);
  5466. }
  5467. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5468. /**
  5469. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5470. * @p: the task in question.
  5471. * @policy: new policy.
  5472. * @param: structure containing the new RT priority.
  5473. *
  5474. * Just like sched_setscheduler, only don't bother checking if the
  5475. * current context has permission. For example, this is needed in
  5476. * stop_machine(): we create temporary high priority worker threads,
  5477. * but our caller might not have that capability.
  5478. */
  5479. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5480. struct sched_param *param)
  5481. {
  5482. return __sched_setscheduler(p, policy, param, false);
  5483. }
  5484. static int
  5485. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5486. {
  5487. struct sched_param lparam;
  5488. struct task_struct *p;
  5489. int retval;
  5490. if (!param || pid < 0)
  5491. return -EINVAL;
  5492. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5493. return -EFAULT;
  5494. rcu_read_lock();
  5495. retval = -ESRCH;
  5496. p = find_process_by_pid(pid);
  5497. if (p != NULL)
  5498. retval = sched_setscheduler(p, policy, &lparam);
  5499. rcu_read_unlock();
  5500. return retval;
  5501. }
  5502. /**
  5503. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5504. * @pid: the pid in question.
  5505. * @policy: new policy.
  5506. * @param: structure containing the new RT priority.
  5507. */
  5508. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5509. struct sched_param __user *, param)
  5510. {
  5511. /* negative values for policy are not valid */
  5512. if (policy < 0)
  5513. return -EINVAL;
  5514. return do_sched_setscheduler(pid, policy, param);
  5515. }
  5516. /**
  5517. * sys_sched_setparam - set/change the RT priority of a thread
  5518. * @pid: the pid in question.
  5519. * @param: structure containing the new RT priority.
  5520. */
  5521. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5522. {
  5523. return do_sched_setscheduler(pid, -1, param);
  5524. }
  5525. /**
  5526. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5527. * @pid: the pid in question.
  5528. */
  5529. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5530. {
  5531. struct task_struct *p;
  5532. int retval;
  5533. if (pid < 0)
  5534. return -EINVAL;
  5535. retval = -ESRCH;
  5536. rcu_read_lock();
  5537. p = find_process_by_pid(pid);
  5538. if (p) {
  5539. retval = security_task_getscheduler(p);
  5540. if (!retval)
  5541. retval = p->policy
  5542. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5543. }
  5544. rcu_read_unlock();
  5545. return retval;
  5546. }
  5547. /**
  5548. * sys_sched_getparam - get the RT priority of a thread
  5549. * @pid: the pid in question.
  5550. * @param: structure containing the RT priority.
  5551. */
  5552. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5553. {
  5554. struct sched_param lp;
  5555. struct task_struct *p;
  5556. int retval;
  5557. if (!param || pid < 0)
  5558. return -EINVAL;
  5559. rcu_read_lock();
  5560. p = find_process_by_pid(pid);
  5561. retval = -ESRCH;
  5562. if (!p)
  5563. goto out_unlock;
  5564. retval = security_task_getscheduler(p);
  5565. if (retval)
  5566. goto out_unlock;
  5567. lp.sched_priority = p->rt_priority;
  5568. rcu_read_unlock();
  5569. /*
  5570. * This one might sleep, we cannot do it with a spinlock held ...
  5571. */
  5572. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5573. return retval;
  5574. out_unlock:
  5575. rcu_read_unlock();
  5576. return retval;
  5577. }
  5578. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5579. {
  5580. cpumask_var_t cpus_allowed, new_mask;
  5581. struct task_struct *p;
  5582. int retval;
  5583. get_online_cpus();
  5584. rcu_read_lock();
  5585. p = find_process_by_pid(pid);
  5586. if (!p) {
  5587. rcu_read_unlock();
  5588. put_online_cpus();
  5589. return -ESRCH;
  5590. }
  5591. /* Prevent p going away */
  5592. get_task_struct(p);
  5593. rcu_read_unlock();
  5594. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5595. retval = -ENOMEM;
  5596. goto out_put_task;
  5597. }
  5598. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5599. retval = -ENOMEM;
  5600. goto out_free_cpus_allowed;
  5601. }
  5602. retval = -EPERM;
  5603. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5604. goto out_unlock;
  5605. retval = security_task_setscheduler(p, 0, NULL);
  5606. if (retval)
  5607. goto out_unlock;
  5608. cpuset_cpus_allowed(p, cpus_allowed);
  5609. cpumask_and(new_mask, in_mask, cpus_allowed);
  5610. again:
  5611. retval = set_cpus_allowed_ptr(p, new_mask);
  5612. if (!retval) {
  5613. cpuset_cpus_allowed(p, cpus_allowed);
  5614. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5615. /*
  5616. * We must have raced with a concurrent cpuset
  5617. * update. Just reset the cpus_allowed to the
  5618. * cpuset's cpus_allowed
  5619. */
  5620. cpumask_copy(new_mask, cpus_allowed);
  5621. goto again;
  5622. }
  5623. }
  5624. out_unlock:
  5625. free_cpumask_var(new_mask);
  5626. out_free_cpus_allowed:
  5627. free_cpumask_var(cpus_allowed);
  5628. out_put_task:
  5629. put_task_struct(p);
  5630. put_online_cpus();
  5631. return retval;
  5632. }
  5633. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5634. struct cpumask *new_mask)
  5635. {
  5636. if (len < cpumask_size())
  5637. cpumask_clear(new_mask);
  5638. else if (len > cpumask_size())
  5639. len = cpumask_size();
  5640. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5641. }
  5642. /**
  5643. * sys_sched_setaffinity - set the cpu affinity of a process
  5644. * @pid: pid of the process
  5645. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5646. * @user_mask_ptr: user-space pointer to the new cpu mask
  5647. */
  5648. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5649. unsigned long __user *, user_mask_ptr)
  5650. {
  5651. cpumask_var_t new_mask;
  5652. int retval;
  5653. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5654. return -ENOMEM;
  5655. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5656. if (retval == 0)
  5657. retval = sched_setaffinity(pid, new_mask);
  5658. free_cpumask_var(new_mask);
  5659. return retval;
  5660. }
  5661. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5662. {
  5663. struct task_struct *p;
  5664. unsigned long flags;
  5665. struct rq *rq;
  5666. int retval;
  5667. get_online_cpus();
  5668. rcu_read_lock();
  5669. retval = -ESRCH;
  5670. p = find_process_by_pid(pid);
  5671. if (!p)
  5672. goto out_unlock;
  5673. retval = security_task_getscheduler(p);
  5674. if (retval)
  5675. goto out_unlock;
  5676. rq = task_rq_lock(p, &flags);
  5677. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5678. task_rq_unlock(rq, &flags);
  5679. out_unlock:
  5680. rcu_read_unlock();
  5681. put_online_cpus();
  5682. return retval;
  5683. }
  5684. /**
  5685. * sys_sched_getaffinity - get the cpu affinity of a process
  5686. * @pid: pid of the process
  5687. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5688. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5689. */
  5690. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5691. unsigned long __user *, user_mask_ptr)
  5692. {
  5693. int ret;
  5694. cpumask_var_t mask;
  5695. if (len < cpumask_size())
  5696. return -EINVAL;
  5697. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5698. return -ENOMEM;
  5699. ret = sched_getaffinity(pid, mask);
  5700. if (ret == 0) {
  5701. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5702. ret = -EFAULT;
  5703. else
  5704. ret = cpumask_size();
  5705. }
  5706. free_cpumask_var(mask);
  5707. return ret;
  5708. }
  5709. /**
  5710. * sys_sched_yield - yield the current processor to other threads.
  5711. *
  5712. * This function yields the current CPU to other tasks. If there are no
  5713. * other threads running on this CPU then this function will return.
  5714. */
  5715. SYSCALL_DEFINE0(sched_yield)
  5716. {
  5717. struct rq *rq = this_rq_lock();
  5718. schedstat_inc(rq, yld_count);
  5719. current->sched_class->yield_task(rq);
  5720. /*
  5721. * Since we are going to call schedule() anyway, there's
  5722. * no need to preempt or enable interrupts:
  5723. */
  5724. __release(rq->lock);
  5725. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5726. do_raw_spin_unlock(&rq->lock);
  5727. preempt_enable_no_resched();
  5728. schedule();
  5729. return 0;
  5730. }
  5731. static inline int should_resched(void)
  5732. {
  5733. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5734. }
  5735. static void __cond_resched(void)
  5736. {
  5737. add_preempt_count(PREEMPT_ACTIVE);
  5738. schedule();
  5739. sub_preempt_count(PREEMPT_ACTIVE);
  5740. }
  5741. int __sched _cond_resched(void)
  5742. {
  5743. if (should_resched()) {
  5744. __cond_resched();
  5745. return 1;
  5746. }
  5747. return 0;
  5748. }
  5749. EXPORT_SYMBOL(_cond_resched);
  5750. /*
  5751. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5752. * call schedule, and on return reacquire the lock.
  5753. *
  5754. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5755. * operations here to prevent schedule() from being called twice (once via
  5756. * spin_unlock(), once by hand).
  5757. */
  5758. int __cond_resched_lock(spinlock_t *lock)
  5759. {
  5760. int resched = should_resched();
  5761. int ret = 0;
  5762. lockdep_assert_held(lock);
  5763. if (spin_needbreak(lock) || resched) {
  5764. spin_unlock(lock);
  5765. if (resched)
  5766. __cond_resched();
  5767. else
  5768. cpu_relax();
  5769. ret = 1;
  5770. spin_lock(lock);
  5771. }
  5772. return ret;
  5773. }
  5774. EXPORT_SYMBOL(__cond_resched_lock);
  5775. int __sched __cond_resched_softirq(void)
  5776. {
  5777. BUG_ON(!in_softirq());
  5778. if (should_resched()) {
  5779. local_bh_enable();
  5780. __cond_resched();
  5781. local_bh_disable();
  5782. return 1;
  5783. }
  5784. return 0;
  5785. }
  5786. EXPORT_SYMBOL(__cond_resched_softirq);
  5787. /**
  5788. * yield - yield the current processor to other threads.
  5789. *
  5790. * This is a shortcut for kernel-space yielding - it marks the
  5791. * thread runnable and calls sys_sched_yield().
  5792. */
  5793. void __sched yield(void)
  5794. {
  5795. set_current_state(TASK_RUNNING);
  5796. sys_sched_yield();
  5797. }
  5798. EXPORT_SYMBOL(yield);
  5799. /*
  5800. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5801. * that process accounting knows that this is a task in IO wait state.
  5802. */
  5803. void __sched io_schedule(void)
  5804. {
  5805. struct rq *rq = raw_rq();
  5806. delayacct_blkio_start();
  5807. atomic_inc(&rq->nr_iowait);
  5808. current->in_iowait = 1;
  5809. schedule();
  5810. current->in_iowait = 0;
  5811. atomic_dec(&rq->nr_iowait);
  5812. delayacct_blkio_end();
  5813. }
  5814. EXPORT_SYMBOL(io_schedule);
  5815. long __sched io_schedule_timeout(long timeout)
  5816. {
  5817. struct rq *rq = raw_rq();
  5818. long ret;
  5819. delayacct_blkio_start();
  5820. atomic_inc(&rq->nr_iowait);
  5821. current->in_iowait = 1;
  5822. ret = schedule_timeout(timeout);
  5823. current->in_iowait = 0;
  5824. atomic_dec(&rq->nr_iowait);
  5825. delayacct_blkio_end();
  5826. return ret;
  5827. }
  5828. /**
  5829. * sys_sched_get_priority_max - return maximum RT priority.
  5830. * @policy: scheduling class.
  5831. *
  5832. * this syscall returns the maximum rt_priority that can be used
  5833. * by a given scheduling class.
  5834. */
  5835. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5836. {
  5837. int ret = -EINVAL;
  5838. switch (policy) {
  5839. case SCHED_FIFO:
  5840. case SCHED_RR:
  5841. ret = MAX_USER_RT_PRIO-1;
  5842. break;
  5843. case SCHED_NORMAL:
  5844. case SCHED_BATCH:
  5845. case SCHED_IDLE:
  5846. ret = 0;
  5847. break;
  5848. }
  5849. return ret;
  5850. }
  5851. /**
  5852. * sys_sched_get_priority_min - return minimum RT priority.
  5853. * @policy: scheduling class.
  5854. *
  5855. * this syscall returns the minimum rt_priority that can be used
  5856. * by a given scheduling class.
  5857. */
  5858. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5859. {
  5860. int ret = -EINVAL;
  5861. switch (policy) {
  5862. case SCHED_FIFO:
  5863. case SCHED_RR:
  5864. ret = 1;
  5865. break;
  5866. case SCHED_NORMAL:
  5867. case SCHED_BATCH:
  5868. case SCHED_IDLE:
  5869. ret = 0;
  5870. }
  5871. return ret;
  5872. }
  5873. /**
  5874. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5875. * @pid: pid of the process.
  5876. * @interval: userspace pointer to the timeslice value.
  5877. *
  5878. * this syscall writes the default timeslice value of a given process
  5879. * into the user-space timespec buffer. A value of '0' means infinity.
  5880. */
  5881. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5882. struct timespec __user *, interval)
  5883. {
  5884. struct task_struct *p;
  5885. unsigned int time_slice;
  5886. unsigned long flags;
  5887. struct rq *rq;
  5888. int retval;
  5889. struct timespec t;
  5890. if (pid < 0)
  5891. return -EINVAL;
  5892. retval = -ESRCH;
  5893. rcu_read_lock();
  5894. p = find_process_by_pid(pid);
  5895. if (!p)
  5896. goto out_unlock;
  5897. retval = security_task_getscheduler(p);
  5898. if (retval)
  5899. goto out_unlock;
  5900. rq = task_rq_lock(p, &flags);
  5901. time_slice = p->sched_class->get_rr_interval(rq, p);
  5902. task_rq_unlock(rq, &flags);
  5903. rcu_read_unlock();
  5904. jiffies_to_timespec(time_slice, &t);
  5905. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5906. return retval;
  5907. out_unlock:
  5908. rcu_read_unlock();
  5909. return retval;
  5910. }
  5911. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5912. void sched_show_task(struct task_struct *p)
  5913. {
  5914. unsigned long free = 0;
  5915. unsigned state;
  5916. state = p->state ? __ffs(p->state) + 1 : 0;
  5917. printk(KERN_INFO "%-13.13s %c", p->comm,
  5918. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5919. #if BITS_PER_LONG == 32
  5920. if (state == TASK_RUNNING)
  5921. printk(KERN_CONT " running ");
  5922. else
  5923. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5924. #else
  5925. if (state == TASK_RUNNING)
  5926. printk(KERN_CONT " running task ");
  5927. else
  5928. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5929. #endif
  5930. #ifdef CONFIG_DEBUG_STACK_USAGE
  5931. free = stack_not_used(p);
  5932. #endif
  5933. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5934. task_pid_nr(p), task_pid_nr(p->real_parent),
  5935. (unsigned long)task_thread_info(p)->flags);
  5936. show_stack(p, NULL);
  5937. }
  5938. void show_state_filter(unsigned long state_filter)
  5939. {
  5940. struct task_struct *g, *p;
  5941. #if BITS_PER_LONG == 32
  5942. printk(KERN_INFO
  5943. " task PC stack pid father\n");
  5944. #else
  5945. printk(KERN_INFO
  5946. " task PC stack pid father\n");
  5947. #endif
  5948. read_lock(&tasklist_lock);
  5949. do_each_thread(g, p) {
  5950. /*
  5951. * reset the NMI-timeout, listing all files on a slow
  5952. * console might take alot of time:
  5953. */
  5954. touch_nmi_watchdog();
  5955. if (!state_filter || (p->state & state_filter))
  5956. sched_show_task(p);
  5957. } while_each_thread(g, p);
  5958. touch_all_softlockup_watchdogs();
  5959. #ifdef CONFIG_SCHED_DEBUG
  5960. sysrq_sched_debug_show();
  5961. #endif
  5962. read_unlock(&tasklist_lock);
  5963. /*
  5964. * Only show locks if all tasks are dumped:
  5965. */
  5966. if (!state_filter)
  5967. debug_show_all_locks();
  5968. }
  5969. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5970. {
  5971. idle->sched_class = &idle_sched_class;
  5972. }
  5973. /**
  5974. * init_idle - set up an idle thread for a given CPU
  5975. * @idle: task in question
  5976. * @cpu: cpu the idle task belongs to
  5977. *
  5978. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5979. * flag, to make booting more robust.
  5980. */
  5981. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5982. {
  5983. struct rq *rq = cpu_rq(cpu);
  5984. unsigned long flags;
  5985. raw_spin_lock_irqsave(&rq->lock, flags);
  5986. __sched_fork(idle);
  5987. idle->state = TASK_RUNNING;
  5988. idle->se.exec_start = sched_clock();
  5989. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5990. __set_task_cpu(idle, cpu);
  5991. rq->curr = rq->idle = idle;
  5992. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5993. idle->oncpu = 1;
  5994. #endif
  5995. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5996. /* Set the preempt count _outside_ the spinlocks! */
  5997. #if defined(CONFIG_PREEMPT)
  5998. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5999. #else
  6000. task_thread_info(idle)->preempt_count = 0;
  6001. #endif
  6002. /*
  6003. * The idle tasks have their own, simple scheduling class:
  6004. */
  6005. idle->sched_class = &idle_sched_class;
  6006. ftrace_graph_init_task(idle);
  6007. }
  6008. /*
  6009. * In a system that switches off the HZ timer nohz_cpu_mask
  6010. * indicates which cpus entered this state. This is used
  6011. * in the rcu update to wait only for active cpus. For system
  6012. * which do not switch off the HZ timer nohz_cpu_mask should
  6013. * always be CPU_BITS_NONE.
  6014. */
  6015. cpumask_var_t nohz_cpu_mask;
  6016. /*
  6017. * Increase the granularity value when there are more CPUs,
  6018. * because with more CPUs the 'effective latency' as visible
  6019. * to users decreases. But the relationship is not linear,
  6020. * so pick a second-best guess by going with the log2 of the
  6021. * number of CPUs.
  6022. *
  6023. * This idea comes from the SD scheduler of Con Kolivas:
  6024. */
  6025. static int get_update_sysctl_factor(void)
  6026. {
  6027. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6028. unsigned int factor;
  6029. switch (sysctl_sched_tunable_scaling) {
  6030. case SCHED_TUNABLESCALING_NONE:
  6031. factor = 1;
  6032. break;
  6033. case SCHED_TUNABLESCALING_LINEAR:
  6034. factor = cpus;
  6035. break;
  6036. case SCHED_TUNABLESCALING_LOG:
  6037. default:
  6038. factor = 1 + ilog2(cpus);
  6039. break;
  6040. }
  6041. return factor;
  6042. }
  6043. static void update_sysctl(void)
  6044. {
  6045. unsigned int factor = get_update_sysctl_factor();
  6046. #define SET_SYSCTL(name) \
  6047. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6048. SET_SYSCTL(sched_min_granularity);
  6049. SET_SYSCTL(sched_latency);
  6050. SET_SYSCTL(sched_wakeup_granularity);
  6051. SET_SYSCTL(sched_shares_ratelimit);
  6052. #undef SET_SYSCTL
  6053. }
  6054. static inline void sched_init_granularity(void)
  6055. {
  6056. update_sysctl();
  6057. }
  6058. #ifdef CONFIG_SMP
  6059. /*
  6060. * This is how migration works:
  6061. *
  6062. * 1) we queue a struct migration_req structure in the source CPU's
  6063. * runqueue and wake up that CPU's migration thread.
  6064. * 2) we down() the locked semaphore => thread blocks.
  6065. * 3) migration thread wakes up (implicitly it forces the migrated
  6066. * thread off the CPU)
  6067. * 4) it gets the migration request and checks whether the migrated
  6068. * task is still in the wrong runqueue.
  6069. * 5) if it's in the wrong runqueue then the migration thread removes
  6070. * it and puts it into the right queue.
  6071. * 6) migration thread up()s the semaphore.
  6072. * 7) we wake up and the migration is done.
  6073. */
  6074. /*
  6075. * Change a given task's CPU affinity. Migrate the thread to a
  6076. * proper CPU and schedule it away if the CPU it's executing on
  6077. * is removed from the allowed bitmask.
  6078. *
  6079. * NOTE: the caller must have a valid reference to the task, the
  6080. * task must not exit() & deallocate itself prematurely. The
  6081. * call is not atomic; no spinlocks may be held.
  6082. */
  6083. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6084. {
  6085. struct migration_req req;
  6086. unsigned long flags;
  6087. struct rq *rq;
  6088. int ret = 0;
  6089. /*
  6090. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  6091. * the ->cpus_allowed mask from under waking tasks, which would be
  6092. * possible when we change rq->lock in ttwu(), so synchronize against
  6093. * TASK_WAKING to avoid that.
  6094. *
  6095. * Make an exception for freshly cloned tasks, since cpuset namespaces
  6096. * might move the task about, we have to validate the target in
  6097. * wake_up_new_task() anyway since the cpu might have gone away.
  6098. */
  6099. again:
  6100. while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
  6101. cpu_relax();
  6102. rq = task_rq_lock(p, &flags);
  6103. if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
  6104. task_rq_unlock(rq, &flags);
  6105. goto again;
  6106. }
  6107. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6108. ret = -EINVAL;
  6109. goto out;
  6110. }
  6111. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6112. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6113. ret = -EINVAL;
  6114. goto out;
  6115. }
  6116. if (p->sched_class->set_cpus_allowed)
  6117. p->sched_class->set_cpus_allowed(p, new_mask);
  6118. else {
  6119. cpumask_copy(&p->cpus_allowed, new_mask);
  6120. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6121. }
  6122. /* Can the task run on the task's current CPU? If so, we're done */
  6123. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6124. goto out;
  6125. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6126. /* Need help from migration thread: drop lock and wait. */
  6127. struct task_struct *mt = rq->migration_thread;
  6128. get_task_struct(mt);
  6129. task_rq_unlock(rq, &flags);
  6130. wake_up_process(rq->migration_thread);
  6131. put_task_struct(mt);
  6132. wait_for_completion(&req.done);
  6133. tlb_migrate_finish(p->mm);
  6134. return 0;
  6135. }
  6136. out:
  6137. task_rq_unlock(rq, &flags);
  6138. return ret;
  6139. }
  6140. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6141. /*
  6142. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6143. * this because either it can't run here any more (set_cpus_allowed()
  6144. * away from this CPU, or CPU going down), or because we're
  6145. * attempting to rebalance this task on exec (sched_exec).
  6146. *
  6147. * So we race with normal scheduler movements, but that's OK, as long
  6148. * as the task is no longer on this CPU.
  6149. *
  6150. * Returns non-zero if task was successfully migrated.
  6151. */
  6152. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6153. {
  6154. struct rq *rq_dest, *rq_src;
  6155. int ret = 0;
  6156. if (unlikely(!cpu_active(dest_cpu)))
  6157. return ret;
  6158. rq_src = cpu_rq(src_cpu);
  6159. rq_dest = cpu_rq(dest_cpu);
  6160. double_rq_lock(rq_src, rq_dest);
  6161. /* Already moved. */
  6162. if (task_cpu(p) != src_cpu)
  6163. goto done;
  6164. /* Affinity changed (again). */
  6165. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6166. goto fail;
  6167. /*
  6168. * If we're not on a rq, the next wake-up will ensure we're
  6169. * placed properly.
  6170. */
  6171. if (p->se.on_rq) {
  6172. deactivate_task(rq_src, p, 0);
  6173. set_task_cpu(p, dest_cpu);
  6174. activate_task(rq_dest, p, 0);
  6175. check_preempt_curr(rq_dest, p, 0);
  6176. }
  6177. done:
  6178. ret = 1;
  6179. fail:
  6180. double_rq_unlock(rq_src, rq_dest);
  6181. return ret;
  6182. }
  6183. #define RCU_MIGRATION_IDLE 0
  6184. #define RCU_MIGRATION_NEED_QS 1
  6185. #define RCU_MIGRATION_GOT_QS 2
  6186. #define RCU_MIGRATION_MUST_SYNC 3
  6187. /*
  6188. * migration_thread - this is a highprio system thread that performs
  6189. * thread migration by bumping thread off CPU then 'pushing' onto
  6190. * another runqueue.
  6191. */
  6192. static int migration_thread(void *data)
  6193. {
  6194. int badcpu;
  6195. int cpu = (long)data;
  6196. struct rq *rq;
  6197. rq = cpu_rq(cpu);
  6198. BUG_ON(rq->migration_thread != current);
  6199. set_current_state(TASK_INTERRUPTIBLE);
  6200. while (!kthread_should_stop()) {
  6201. struct migration_req *req;
  6202. struct list_head *head;
  6203. raw_spin_lock_irq(&rq->lock);
  6204. if (cpu_is_offline(cpu)) {
  6205. raw_spin_unlock_irq(&rq->lock);
  6206. break;
  6207. }
  6208. if (rq->active_balance) {
  6209. active_load_balance(rq, cpu);
  6210. rq->active_balance = 0;
  6211. }
  6212. head = &rq->migration_queue;
  6213. if (list_empty(head)) {
  6214. raw_spin_unlock_irq(&rq->lock);
  6215. schedule();
  6216. set_current_state(TASK_INTERRUPTIBLE);
  6217. continue;
  6218. }
  6219. req = list_entry(head->next, struct migration_req, list);
  6220. list_del_init(head->next);
  6221. if (req->task != NULL) {
  6222. raw_spin_unlock(&rq->lock);
  6223. __migrate_task(req->task, cpu, req->dest_cpu);
  6224. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6225. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6226. raw_spin_unlock(&rq->lock);
  6227. } else {
  6228. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6229. raw_spin_unlock(&rq->lock);
  6230. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6231. }
  6232. local_irq_enable();
  6233. complete(&req->done);
  6234. }
  6235. __set_current_state(TASK_RUNNING);
  6236. return 0;
  6237. }
  6238. #ifdef CONFIG_HOTPLUG_CPU
  6239. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6240. {
  6241. int ret;
  6242. local_irq_disable();
  6243. ret = __migrate_task(p, src_cpu, dest_cpu);
  6244. local_irq_enable();
  6245. return ret;
  6246. }
  6247. /*
  6248. * Figure out where task on dead CPU should go, use force if necessary.
  6249. */
  6250. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6251. {
  6252. int dest_cpu;
  6253. again:
  6254. dest_cpu = select_fallback_rq(dead_cpu, p);
  6255. /* It can have affinity changed while we were choosing. */
  6256. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6257. goto again;
  6258. }
  6259. /*
  6260. * While a dead CPU has no uninterruptible tasks queued at this point,
  6261. * it might still have a nonzero ->nr_uninterruptible counter, because
  6262. * for performance reasons the counter is not stricly tracking tasks to
  6263. * their home CPUs. So we just add the counter to another CPU's counter,
  6264. * to keep the global sum constant after CPU-down:
  6265. */
  6266. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6267. {
  6268. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6269. unsigned long flags;
  6270. local_irq_save(flags);
  6271. double_rq_lock(rq_src, rq_dest);
  6272. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6273. rq_src->nr_uninterruptible = 0;
  6274. double_rq_unlock(rq_src, rq_dest);
  6275. local_irq_restore(flags);
  6276. }
  6277. /* Run through task list and migrate tasks from the dead cpu. */
  6278. static void migrate_live_tasks(int src_cpu)
  6279. {
  6280. struct task_struct *p, *t;
  6281. read_lock(&tasklist_lock);
  6282. do_each_thread(t, p) {
  6283. if (p == current)
  6284. continue;
  6285. if (task_cpu(p) == src_cpu)
  6286. move_task_off_dead_cpu(src_cpu, p);
  6287. } while_each_thread(t, p);
  6288. read_unlock(&tasklist_lock);
  6289. }
  6290. /*
  6291. * Schedules idle task to be the next runnable task on current CPU.
  6292. * It does so by boosting its priority to highest possible.
  6293. * Used by CPU offline code.
  6294. */
  6295. void sched_idle_next(void)
  6296. {
  6297. int this_cpu = smp_processor_id();
  6298. struct rq *rq = cpu_rq(this_cpu);
  6299. struct task_struct *p = rq->idle;
  6300. unsigned long flags;
  6301. /* cpu has to be offline */
  6302. BUG_ON(cpu_online(this_cpu));
  6303. /*
  6304. * Strictly not necessary since rest of the CPUs are stopped by now
  6305. * and interrupts disabled on the current cpu.
  6306. */
  6307. raw_spin_lock_irqsave(&rq->lock, flags);
  6308. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6309. update_rq_clock(rq);
  6310. activate_task(rq, p, 0);
  6311. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6312. }
  6313. /*
  6314. * Ensures that the idle task is using init_mm right before its cpu goes
  6315. * offline.
  6316. */
  6317. void idle_task_exit(void)
  6318. {
  6319. struct mm_struct *mm = current->active_mm;
  6320. BUG_ON(cpu_online(smp_processor_id()));
  6321. if (mm != &init_mm)
  6322. switch_mm(mm, &init_mm, current);
  6323. mmdrop(mm);
  6324. }
  6325. /* called under rq->lock with disabled interrupts */
  6326. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6327. {
  6328. struct rq *rq = cpu_rq(dead_cpu);
  6329. /* Must be exiting, otherwise would be on tasklist. */
  6330. BUG_ON(!p->exit_state);
  6331. /* Cannot have done final schedule yet: would have vanished. */
  6332. BUG_ON(p->state == TASK_DEAD);
  6333. get_task_struct(p);
  6334. /*
  6335. * Drop lock around migration; if someone else moves it,
  6336. * that's OK. No task can be added to this CPU, so iteration is
  6337. * fine.
  6338. */
  6339. raw_spin_unlock_irq(&rq->lock);
  6340. move_task_off_dead_cpu(dead_cpu, p);
  6341. raw_spin_lock_irq(&rq->lock);
  6342. put_task_struct(p);
  6343. }
  6344. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6345. static void migrate_dead_tasks(unsigned int dead_cpu)
  6346. {
  6347. struct rq *rq = cpu_rq(dead_cpu);
  6348. struct task_struct *next;
  6349. for ( ; ; ) {
  6350. if (!rq->nr_running)
  6351. break;
  6352. update_rq_clock(rq);
  6353. next = pick_next_task(rq);
  6354. if (!next)
  6355. break;
  6356. next->sched_class->put_prev_task(rq, next);
  6357. migrate_dead(dead_cpu, next);
  6358. }
  6359. }
  6360. /*
  6361. * remove the tasks which were accounted by rq from calc_load_tasks.
  6362. */
  6363. static void calc_global_load_remove(struct rq *rq)
  6364. {
  6365. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6366. rq->calc_load_active = 0;
  6367. }
  6368. #endif /* CONFIG_HOTPLUG_CPU */
  6369. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6370. static struct ctl_table sd_ctl_dir[] = {
  6371. {
  6372. .procname = "sched_domain",
  6373. .mode = 0555,
  6374. },
  6375. {}
  6376. };
  6377. static struct ctl_table sd_ctl_root[] = {
  6378. {
  6379. .procname = "kernel",
  6380. .mode = 0555,
  6381. .child = sd_ctl_dir,
  6382. },
  6383. {}
  6384. };
  6385. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6386. {
  6387. struct ctl_table *entry =
  6388. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6389. return entry;
  6390. }
  6391. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6392. {
  6393. struct ctl_table *entry;
  6394. /*
  6395. * In the intermediate directories, both the child directory and
  6396. * procname are dynamically allocated and could fail but the mode
  6397. * will always be set. In the lowest directory the names are
  6398. * static strings and all have proc handlers.
  6399. */
  6400. for (entry = *tablep; entry->mode; entry++) {
  6401. if (entry->child)
  6402. sd_free_ctl_entry(&entry->child);
  6403. if (entry->proc_handler == NULL)
  6404. kfree(entry->procname);
  6405. }
  6406. kfree(*tablep);
  6407. *tablep = NULL;
  6408. }
  6409. static void
  6410. set_table_entry(struct ctl_table *entry,
  6411. const char *procname, void *data, int maxlen,
  6412. mode_t mode, proc_handler *proc_handler)
  6413. {
  6414. entry->procname = procname;
  6415. entry->data = data;
  6416. entry->maxlen = maxlen;
  6417. entry->mode = mode;
  6418. entry->proc_handler = proc_handler;
  6419. }
  6420. static struct ctl_table *
  6421. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6422. {
  6423. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6424. if (table == NULL)
  6425. return NULL;
  6426. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6427. sizeof(long), 0644, proc_doulongvec_minmax);
  6428. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6429. sizeof(long), 0644, proc_doulongvec_minmax);
  6430. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6431. sizeof(int), 0644, proc_dointvec_minmax);
  6432. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6433. sizeof(int), 0644, proc_dointvec_minmax);
  6434. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6435. sizeof(int), 0644, proc_dointvec_minmax);
  6436. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6437. sizeof(int), 0644, proc_dointvec_minmax);
  6438. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6439. sizeof(int), 0644, proc_dointvec_minmax);
  6440. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6441. sizeof(int), 0644, proc_dointvec_minmax);
  6442. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6443. sizeof(int), 0644, proc_dointvec_minmax);
  6444. set_table_entry(&table[9], "cache_nice_tries",
  6445. &sd->cache_nice_tries,
  6446. sizeof(int), 0644, proc_dointvec_minmax);
  6447. set_table_entry(&table[10], "flags", &sd->flags,
  6448. sizeof(int), 0644, proc_dointvec_minmax);
  6449. set_table_entry(&table[11], "name", sd->name,
  6450. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6451. /* &table[12] is terminator */
  6452. return table;
  6453. }
  6454. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6455. {
  6456. struct ctl_table *entry, *table;
  6457. struct sched_domain *sd;
  6458. int domain_num = 0, i;
  6459. char buf[32];
  6460. for_each_domain(cpu, sd)
  6461. domain_num++;
  6462. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6463. if (table == NULL)
  6464. return NULL;
  6465. i = 0;
  6466. for_each_domain(cpu, sd) {
  6467. snprintf(buf, 32, "domain%d", i);
  6468. entry->procname = kstrdup(buf, GFP_KERNEL);
  6469. entry->mode = 0555;
  6470. entry->child = sd_alloc_ctl_domain_table(sd);
  6471. entry++;
  6472. i++;
  6473. }
  6474. return table;
  6475. }
  6476. static struct ctl_table_header *sd_sysctl_header;
  6477. static void register_sched_domain_sysctl(void)
  6478. {
  6479. int i, cpu_num = num_possible_cpus();
  6480. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6481. char buf[32];
  6482. WARN_ON(sd_ctl_dir[0].child);
  6483. sd_ctl_dir[0].child = entry;
  6484. if (entry == NULL)
  6485. return;
  6486. for_each_possible_cpu(i) {
  6487. snprintf(buf, 32, "cpu%d", i);
  6488. entry->procname = kstrdup(buf, GFP_KERNEL);
  6489. entry->mode = 0555;
  6490. entry->child = sd_alloc_ctl_cpu_table(i);
  6491. entry++;
  6492. }
  6493. WARN_ON(sd_sysctl_header);
  6494. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6495. }
  6496. /* may be called multiple times per register */
  6497. static void unregister_sched_domain_sysctl(void)
  6498. {
  6499. if (sd_sysctl_header)
  6500. unregister_sysctl_table(sd_sysctl_header);
  6501. sd_sysctl_header = NULL;
  6502. if (sd_ctl_dir[0].child)
  6503. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6504. }
  6505. #else
  6506. static void register_sched_domain_sysctl(void)
  6507. {
  6508. }
  6509. static void unregister_sched_domain_sysctl(void)
  6510. {
  6511. }
  6512. #endif
  6513. static void set_rq_online(struct rq *rq)
  6514. {
  6515. if (!rq->online) {
  6516. const struct sched_class *class;
  6517. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6518. rq->online = 1;
  6519. for_each_class(class) {
  6520. if (class->rq_online)
  6521. class->rq_online(rq);
  6522. }
  6523. }
  6524. }
  6525. static void set_rq_offline(struct rq *rq)
  6526. {
  6527. if (rq->online) {
  6528. const struct sched_class *class;
  6529. for_each_class(class) {
  6530. if (class->rq_offline)
  6531. class->rq_offline(rq);
  6532. }
  6533. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6534. rq->online = 0;
  6535. }
  6536. }
  6537. /*
  6538. * migration_call - callback that gets triggered when a CPU is added.
  6539. * Here we can start up the necessary migration thread for the new CPU.
  6540. */
  6541. static int __cpuinit
  6542. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6543. {
  6544. struct task_struct *p;
  6545. int cpu = (long)hcpu;
  6546. unsigned long flags;
  6547. struct rq *rq;
  6548. switch (action) {
  6549. case CPU_UP_PREPARE:
  6550. case CPU_UP_PREPARE_FROZEN:
  6551. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6552. if (IS_ERR(p))
  6553. return NOTIFY_BAD;
  6554. kthread_bind(p, cpu);
  6555. /* Must be high prio: stop_machine expects to yield to it. */
  6556. rq = task_rq_lock(p, &flags);
  6557. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6558. task_rq_unlock(rq, &flags);
  6559. get_task_struct(p);
  6560. cpu_rq(cpu)->migration_thread = p;
  6561. rq->calc_load_update = calc_load_update;
  6562. break;
  6563. case CPU_ONLINE:
  6564. case CPU_ONLINE_FROZEN:
  6565. /* Strictly unnecessary, as first user will wake it. */
  6566. wake_up_process(cpu_rq(cpu)->migration_thread);
  6567. /* Update our root-domain */
  6568. rq = cpu_rq(cpu);
  6569. raw_spin_lock_irqsave(&rq->lock, flags);
  6570. if (rq->rd) {
  6571. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6572. set_rq_online(rq);
  6573. }
  6574. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6575. break;
  6576. #ifdef CONFIG_HOTPLUG_CPU
  6577. case CPU_UP_CANCELED:
  6578. case CPU_UP_CANCELED_FROZEN:
  6579. if (!cpu_rq(cpu)->migration_thread)
  6580. break;
  6581. /* Unbind it from offline cpu so it can run. Fall thru. */
  6582. kthread_bind(cpu_rq(cpu)->migration_thread,
  6583. cpumask_any(cpu_online_mask));
  6584. kthread_stop(cpu_rq(cpu)->migration_thread);
  6585. put_task_struct(cpu_rq(cpu)->migration_thread);
  6586. cpu_rq(cpu)->migration_thread = NULL;
  6587. break;
  6588. case CPU_DEAD:
  6589. case CPU_DEAD_FROZEN:
  6590. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6591. migrate_live_tasks(cpu);
  6592. rq = cpu_rq(cpu);
  6593. kthread_stop(rq->migration_thread);
  6594. put_task_struct(rq->migration_thread);
  6595. rq->migration_thread = NULL;
  6596. /* Idle task back to normal (off runqueue, low prio) */
  6597. raw_spin_lock_irq(&rq->lock);
  6598. update_rq_clock(rq);
  6599. deactivate_task(rq, rq->idle, 0);
  6600. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6601. rq->idle->sched_class = &idle_sched_class;
  6602. migrate_dead_tasks(cpu);
  6603. raw_spin_unlock_irq(&rq->lock);
  6604. cpuset_unlock();
  6605. migrate_nr_uninterruptible(rq);
  6606. BUG_ON(rq->nr_running != 0);
  6607. calc_global_load_remove(rq);
  6608. /*
  6609. * No need to migrate the tasks: it was best-effort if
  6610. * they didn't take sched_hotcpu_mutex. Just wake up
  6611. * the requestors.
  6612. */
  6613. raw_spin_lock_irq(&rq->lock);
  6614. while (!list_empty(&rq->migration_queue)) {
  6615. struct migration_req *req;
  6616. req = list_entry(rq->migration_queue.next,
  6617. struct migration_req, list);
  6618. list_del_init(&req->list);
  6619. raw_spin_unlock_irq(&rq->lock);
  6620. complete(&req->done);
  6621. raw_spin_lock_irq(&rq->lock);
  6622. }
  6623. raw_spin_unlock_irq(&rq->lock);
  6624. break;
  6625. case CPU_DYING:
  6626. case CPU_DYING_FROZEN:
  6627. /* Update our root-domain */
  6628. rq = cpu_rq(cpu);
  6629. raw_spin_lock_irqsave(&rq->lock, flags);
  6630. if (rq->rd) {
  6631. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6632. set_rq_offline(rq);
  6633. }
  6634. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6635. break;
  6636. #endif
  6637. }
  6638. return NOTIFY_OK;
  6639. }
  6640. /*
  6641. * Register at high priority so that task migration (migrate_all_tasks)
  6642. * happens before everything else. This has to be lower priority than
  6643. * the notifier in the perf_event subsystem, though.
  6644. */
  6645. static struct notifier_block __cpuinitdata migration_notifier = {
  6646. .notifier_call = migration_call,
  6647. .priority = 10
  6648. };
  6649. static int __init migration_init(void)
  6650. {
  6651. void *cpu = (void *)(long)smp_processor_id();
  6652. int err;
  6653. /* Start one for the boot CPU: */
  6654. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6655. BUG_ON(err == NOTIFY_BAD);
  6656. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6657. register_cpu_notifier(&migration_notifier);
  6658. return 0;
  6659. }
  6660. early_initcall(migration_init);
  6661. #endif
  6662. #ifdef CONFIG_SMP
  6663. #ifdef CONFIG_SCHED_DEBUG
  6664. static __read_mostly int sched_domain_debug_enabled;
  6665. static int __init sched_domain_debug_setup(char *str)
  6666. {
  6667. sched_domain_debug_enabled = 1;
  6668. return 0;
  6669. }
  6670. early_param("sched_debug", sched_domain_debug_setup);
  6671. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6672. struct cpumask *groupmask)
  6673. {
  6674. struct sched_group *group = sd->groups;
  6675. char str[256];
  6676. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6677. cpumask_clear(groupmask);
  6678. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6679. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6680. printk("does not load-balance\n");
  6681. if (sd->parent)
  6682. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6683. " has parent");
  6684. return -1;
  6685. }
  6686. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6687. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6688. printk(KERN_ERR "ERROR: domain->span does not contain "
  6689. "CPU%d\n", cpu);
  6690. }
  6691. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6692. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6693. " CPU%d\n", cpu);
  6694. }
  6695. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6696. do {
  6697. if (!group) {
  6698. printk("\n");
  6699. printk(KERN_ERR "ERROR: group is NULL\n");
  6700. break;
  6701. }
  6702. if (!group->cpu_power) {
  6703. printk(KERN_CONT "\n");
  6704. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6705. "set\n");
  6706. break;
  6707. }
  6708. if (!cpumask_weight(sched_group_cpus(group))) {
  6709. printk(KERN_CONT "\n");
  6710. printk(KERN_ERR "ERROR: empty group\n");
  6711. break;
  6712. }
  6713. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6714. printk(KERN_CONT "\n");
  6715. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6716. break;
  6717. }
  6718. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6719. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6720. printk(KERN_CONT " %s", str);
  6721. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6722. printk(KERN_CONT " (cpu_power = %d)",
  6723. group->cpu_power);
  6724. }
  6725. group = group->next;
  6726. } while (group != sd->groups);
  6727. printk(KERN_CONT "\n");
  6728. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6729. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6730. if (sd->parent &&
  6731. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6732. printk(KERN_ERR "ERROR: parent span is not a superset "
  6733. "of domain->span\n");
  6734. return 0;
  6735. }
  6736. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6737. {
  6738. cpumask_var_t groupmask;
  6739. int level = 0;
  6740. if (!sched_domain_debug_enabled)
  6741. return;
  6742. if (!sd) {
  6743. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6744. return;
  6745. }
  6746. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6747. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6748. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6749. return;
  6750. }
  6751. for (;;) {
  6752. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6753. break;
  6754. level++;
  6755. sd = sd->parent;
  6756. if (!sd)
  6757. break;
  6758. }
  6759. free_cpumask_var(groupmask);
  6760. }
  6761. #else /* !CONFIG_SCHED_DEBUG */
  6762. # define sched_domain_debug(sd, cpu) do { } while (0)
  6763. #endif /* CONFIG_SCHED_DEBUG */
  6764. static int sd_degenerate(struct sched_domain *sd)
  6765. {
  6766. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6767. return 1;
  6768. /* Following flags need at least 2 groups */
  6769. if (sd->flags & (SD_LOAD_BALANCE |
  6770. SD_BALANCE_NEWIDLE |
  6771. SD_BALANCE_FORK |
  6772. SD_BALANCE_EXEC |
  6773. SD_SHARE_CPUPOWER |
  6774. SD_SHARE_PKG_RESOURCES)) {
  6775. if (sd->groups != sd->groups->next)
  6776. return 0;
  6777. }
  6778. /* Following flags don't use groups */
  6779. if (sd->flags & (SD_WAKE_AFFINE))
  6780. return 0;
  6781. return 1;
  6782. }
  6783. static int
  6784. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6785. {
  6786. unsigned long cflags = sd->flags, pflags = parent->flags;
  6787. if (sd_degenerate(parent))
  6788. return 1;
  6789. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6790. return 0;
  6791. /* Flags needing groups don't count if only 1 group in parent */
  6792. if (parent->groups == parent->groups->next) {
  6793. pflags &= ~(SD_LOAD_BALANCE |
  6794. SD_BALANCE_NEWIDLE |
  6795. SD_BALANCE_FORK |
  6796. SD_BALANCE_EXEC |
  6797. SD_SHARE_CPUPOWER |
  6798. SD_SHARE_PKG_RESOURCES);
  6799. if (nr_node_ids == 1)
  6800. pflags &= ~SD_SERIALIZE;
  6801. }
  6802. if (~cflags & pflags)
  6803. return 0;
  6804. return 1;
  6805. }
  6806. static void free_rootdomain(struct root_domain *rd)
  6807. {
  6808. synchronize_sched();
  6809. cpupri_cleanup(&rd->cpupri);
  6810. free_cpumask_var(rd->rto_mask);
  6811. free_cpumask_var(rd->online);
  6812. free_cpumask_var(rd->span);
  6813. kfree(rd);
  6814. }
  6815. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6816. {
  6817. struct root_domain *old_rd = NULL;
  6818. unsigned long flags;
  6819. raw_spin_lock_irqsave(&rq->lock, flags);
  6820. if (rq->rd) {
  6821. old_rd = rq->rd;
  6822. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6823. set_rq_offline(rq);
  6824. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6825. /*
  6826. * If we dont want to free the old_rt yet then
  6827. * set old_rd to NULL to skip the freeing later
  6828. * in this function:
  6829. */
  6830. if (!atomic_dec_and_test(&old_rd->refcount))
  6831. old_rd = NULL;
  6832. }
  6833. atomic_inc(&rd->refcount);
  6834. rq->rd = rd;
  6835. cpumask_set_cpu(rq->cpu, rd->span);
  6836. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6837. set_rq_online(rq);
  6838. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6839. if (old_rd)
  6840. free_rootdomain(old_rd);
  6841. }
  6842. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6843. {
  6844. gfp_t gfp = GFP_KERNEL;
  6845. memset(rd, 0, sizeof(*rd));
  6846. if (bootmem)
  6847. gfp = GFP_NOWAIT;
  6848. if (!alloc_cpumask_var(&rd->span, gfp))
  6849. goto out;
  6850. if (!alloc_cpumask_var(&rd->online, gfp))
  6851. goto free_span;
  6852. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6853. goto free_online;
  6854. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6855. goto free_rto_mask;
  6856. return 0;
  6857. free_rto_mask:
  6858. free_cpumask_var(rd->rto_mask);
  6859. free_online:
  6860. free_cpumask_var(rd->online);
  6861. free_span:
  6862. free_cpumask_var(rd->span);
  6863. out:
  6864. return -ENOMEM;
  6865. }
  6866. static void init_defrootdomain(void)
  6867. {
  6868. init_rootdomain(&def_root_domain, true);
  6869. atomic_set(&def_root_domain.refcount, 1);
  6870. }
  6871. static struct root_domain *alloc_rootdomain(void)
  6872. {
  6873. struct root_domain *rd;
  6874. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6875. if (!rd)
  6876. return NULL;
  6877. if (init_rootdomain(rd, false) != 0) {
  6878. kfree(rd);
  6879. return NULL;
  6880. }
  6881. return rd;
  6882. }
  6883. /*
  6884. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6885. * hold the hotplug lock.
  6886. */
  6887. static void
  6888. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6889. {
  6890. struct rq *rq = cpu_rq(cpu);
  6891. struct sched_domain *tmp;
  6892. /* Remove the sched domains which do not contribute to scheduling. */
  6893. for (tmp = sd; tmp; ) {
  6894. struct sched_domain *parent = tmp->parent;
  6895. if (!parent)
  6896. break;
  6897. if (sd_parent_degenerate(tmp, parent)) {
  6898. tmp->parent = parent->parent;
  6899. if (parent->parent)
  6900. parent->parent->child = tmp;
  6901. } else
  6902. tmp = tmp->parent;
  6903. }
  6904. if (sd && sd_degenerate(sd)) {
  6905. sd = sd->parent;
  6906. if (sd)
  6907. sd->child = NULL;
  6908. }
  6909. sched_domain_debug(sd, cpu);
  6910. rq_attach_root(rq, rd);
  6911. rcu_assign_pointer(rq->sd, sd);
  6912. }
  6913. /* cpus with isolated domains */
  6914. static cpumask_var_t cpu_isolated_map;
  6915. /* Setup the mask of cpus configured for isolated domains */
  6916. static int __init isolated_cpu_setup(char *str)
  6917. {
  6918. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6919. cpulist_parse(str, cpu_isolated_map);
  6920. return 1;
  6921. }
  6922. __setup("isolcpus=", isolated_cpu_setup);
  6923. /*
  6924. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6925. * to a function which identifies what group(along with sched group) a CPU
  6926. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6927. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6928. *
  6929. * init_sched_build_groups will build a circular linked list of the groups
  6930. * covered by the given span, and will set each group's ->cpumask correctly,
  6931. * and ->cpu_power to 0.
  6932. */
  6933. static void
  6934. init_sched_build_groups(const struct cpumask *span,
  6935. const struct cpumask *cpu_map,
  6936. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6937. struct sched_group **sg,
  6938. struct cpumask *tmpmask),
  6939. struct cpumask *covered, struct cpumask *tmpmask)
  6940. {
  6941. struct sched_group *first = NULL, *last = NULL;
  6942. int i;
  6943. cpumask_clear(covered);
  6944. for_each_cpu(i, span) {
  6945. struct sched_group *sg;
  6946. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6947. int j;
  6948. if (cpumask_test_cpu(i, covered))
  6949. continue;
  6950. cpumask_clear(sched_group_cpus(sg));
  6951. sg->cpu_power = 0;
  6952. for_each_cpu(j, span) {
  6953. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6954. continue;
  6955. cpumask_set_cpu(j, covered);
  6956. cpumask_set_cpu(j, sched_group_cpus(sg));
  6957. }
  6958. if (!first)
  6959. first = sg;
  6960. if (last)
  6961. last->next = sg;
  6962. last = sg;
  6963. }
  6964. last->next = first;
  6965. }
  6966. #define SD_NODES_PER_DOMAIN 16
  6967. #ifdef CONFIG_NUMA
  6968. /**
  6969. * find_next_best_node - find the next node to include in a sched_domain
  6970. * @node: node whose sched_domain we're building
  6971. * @used_nodes: nodes already in the sched_domain
  6972. *
  6973. * Find the next node to include in a given scheduling domain. Simply
  6974. * finds the closest node not already in the @used_nodes map.
  6975. *
  6976. * Should use nodemask_t.
  6977. */
  6978. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6979. {
  6980. int i, n, val, min_val, best_node = 0;
  6981. min_val = INT_MAX;
  6982. for (i = 0; i < nr_node_ids; i++) {
  6983. /* Start at @node */
  6984. n = (node + i) % nr_node_ids;
  6985. if (!nr_cpus_node(n))
  6986. continue;
  6987. /* Skip already used nodes */
  6988. if (node_isset(n, *used_nodes))
  6989. continue;
  6990. /* Simple min distance search */
  6991. val = node_distance(node, n);
  6992. if (val < min_val) {
  6993. min_val = val;
  6994. best_node = n;
  6995. }
  6996. }
  6997. node_set(best_node, *used_nodes);
  6998. return best_node;
  6999. }
  7000. /**
  7001. * sched_domain_node_span - get a cpumask for a node's sched_domain
  7002. * @node: node whose cpumask we're constructing
  7003. * @span: resulting cpumask
  7004. *
  7005. * Given a node, construct a good cpumask for its sched_domain to span. It
  7006. * should be one that prevents unnecessary balancing, but also spreads tasks
  7007. * out optimally.
  7008. */
  7009. static void sched_domain_node_span(int node, struct cpumask *span)
  7010. {
  7011. nodemask_t used_nodes;
  7012. int i;
  7013. cpumask_clear(span);
  7014. nodes_clear(used_nodes);
  7015. cpumask_or(span, span, cpumask_of_node(node));
  7016. node_set(node, used_nodes);
  7017. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  7018. int next_node = find_next_best_node(node, &used_nodes);
  7019. cpumask_or(span, span, cpumask_of_node(next_node));
  7020. }
  7021. }
  7022. #endif /* CONFIG_NUMA */
  7023. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7024. /*
  7025. * The cpus mask in sched_group and sched_domain hangs off the end.
  7026. *
  7027. * ( See the the comments in include/linux/sched.h:struct sched_group
  7028. * and struct sched_domain. )
  7029. */
  7030. struct static_sched_group {
  7031. struct sched_group sg;
  7032. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7033. };
  7034. struct static_sched_domain {
  7035. struct sched_domain sd;
  7036. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7037. };
  7038. struct s_data {
  7039. #ifdef CONFIG_NUMA
  7040. int sd_allnodes;
  7041. cpumask_var_t domainspan;
  7042. cpumask_var_t covered;
  7043. cpumask_var_t notcovered;
  7044. #endif
  7045. cpumask_var_t nodemask;
  7046. cpumask_var_t this_sibling_map;
  7047. cpumask_var_t this_core_map;
  7048. cpumask_var_t send_covered;
  7049. cpumask_var_t tmpmask;
  7050. struct sched_group **sched_group_nodes;
  7051. struct root_domain *rd;
  7052. };
  7053. enum s_alloc {
  7054. sa_sched_groups = 0,
  7055. sa_rootdomain,
  7056. sa_tmpmask,
  7057. sa_send_covered,
  7058. sa_this_core_map,
  7059. sa_this_sibling_map,
  7060. sa_nodemask,
  7061. sa_sched_group_nodes,
  7062. #ifdef CONFIG_NUMA
  7063. sa_notcovered,
  7064. sa_covered,
  7065. sa_domainspan,
  7066. #endif
  7067. sa_none,
  7068. };
  7069. /*
  7070. * SMT sched-domains:
  7071. */
  7072. #ifdef CONFIG_SCHED_SMT
  7073. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7074. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7075. static int
  7076. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7077. struct sched_group **sg, struct cpumask *unused)
  7078. {
  7079. if (sg)
  7080. *sg = &per_cpu(sched_groups, cpu).sg;
  7081. return cpu;
  7082. }
  7083. #endif /* CONFIG_SCHED_SMT */
  7084. /*
  7085. * multi-core sched-domains:
  7086. */
  7087. #ifdef CONFIG_SCHED_MC
  7088. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7089. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7090. #endif /* CONFIG_SCHED_MC */
  7091. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7092. static int
  7093. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7094. struct sched_group **sg, struct cpumask *mask)
  7095. {
  7096. int group;
  7097. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7098. group = cpumask_first(mask);
  7099. if (sg)
  7100. *sg = &per_cpu(sched_group_core, group).sg;
  7101. return group;
  7102. }
  7103. #elif defined(CONFIG_SCHED_MC)
  7104. static int
  7105. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7106. struct sched_group **sg, struct cpumask *unused)
  7107. {
  7108. if (sg)
  7109. *sg = &per_cpu(sched_group_core, cpu).sg;
  7110. return cpu;
  7111. }
  7112. #endif
  7113. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7114. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7115. static int
  7116. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7117. struct sched_group **sg, struct cpumask *mask)
  7118. {
  7119. int group;
  7120. #ifdef CONFIG_SCHED_MC
  7121. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7122. group = cpumask_first(mask);
  7123. #elif defined(CONFIG_SCHED_SMT)
  7124. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7125. group = cpumask_first(mask);
  7126. #else
  7127. group = cpu;
  7128. #endif
  7129. if (sg)
  7130. *sg = &per_cpu(sched_group_phys, group).sg;
  7131. return group;
  7132. }
  7133. #ifdef CONFIG_NUMA
  7134. /*
  7135. * The init_sched_build_groups can't handle what we want to do with node
  7136. * groups, so roll our own. Now each node has its own list of groups which
  7137. * gets dynamically allocated.
  7138. */
  7139. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7140. static struct sched_group ***sched_group_nodes_bycpu;
  7141. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7142. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7143. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7144. struct sched_group **sg,
  7145. struct cpumask *nodemask)
  7146. {
  7147. int group;
  7148. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7149. group = cpumask_first(nodemask);
  7150. if (sg)
  7151. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7152. return group;
  7153. }
  7154. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7155. {
  7156. struct sched_group *sg = group_head;
  7157. int j;
  7158. if (!sg)
  7159. return;
  7160. do {
  7161. for_each_cpu(j, sched_group_cpus(sg)) {
  7162. struct sched_domain *sd;
  7163. sd = &per_cpu(phys_domains, j).sd;
  7164. if (j != group_first_cpu(sd->groups)) {
  7165. /*
  7166. * Only add "power" once for each
  7167. * physical package.
  7168. */
  7169. continue;
  7170. }
  7171. sg->cpu_power += sd->groups->cpu_power;
  7172. }
  7173. sg = sg->next;
  7174. } while (sg != group_head);
  7175. }
  7176. static int build_numa_sched_groups(struct s_data *d,
  7177. const struct cpumask *cpu_map, int num)
  7178. {
  7179. struct sched_domain *sd;
  7180. struct sched_group *sg, *prev;
  7181. int n, j;
  7182. cpumask_clear(d->covered);
  7183. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7184. if (cpumask_empty(d->nodemask)) {
  7185. d->sched_group_nodes[num] = NULL;
  7186. goto out;
  7187. }
  7188. sched_domain_node_span(num, d->domainspan);
  7189. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7190. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7191. GFP_KERNEL, num);
  7192. if (!sg) {
  7193. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7194. num);
  7195. return -ENOMEM;
  7196. }
  7197. d->sched_group_nodes[num] = sg;
  7198. for_each_cpu(j, d->nodemask) {
  7199. sd = &per_cpu(node_domains, j).sd;
  7200. sd->groups = sg;
  7201. }
  7202. sg->cpu_power = 0;
  7203. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7204. sg->next = sg;
  7205. cpumask_or(d->covered, d->covered, d->nodemask);
  7206. prev = sg;
  7207. for (j = 0; j < nr_node_ids; j++) {
  7208. n = (num + j) % nr_node_ids;
  7209. cpumask_complement(d->notcovered, d->covered);
  7210. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7211. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7212. if (cpumask_empty(d->tmpmask))
  7213. break;
  7214. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7215. if (cpumask_empty(d->tmpmask))
  7216. continue;
  7217. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7218. GFP_KERNEL, num);
  7219. if (!sg) {
  7220. printk(KERN_WARNING
  7221. "Can not alloc domain group for node %d\n", j);
  7222. return -ENOMEM;
  7223. }
  7224. sg->cpu_power = 0;
  7225. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7226. sg->next = prev->next;
  7227. cpumask_or(d->covered, d->covered, d->tmpmask);
  7228. prev->next = sg;
  7229. prev = sg;
  7230. }
  7231. out:
  7232. return 0;
  7233. }
  7234. #endif /* CONFIG_NUMA */
  7235. #ifdef CONFIG_NUMA
  7236. /* Free memory allocated for various sched_group structures */
  7237. static void free_sched_groups(const struct cpumask *cpu_map,
  7238. struct cpumask *nodemask)
  7239. {
  7240. int cpu, i;
  7241. for_each_cpu(cpu, cpu_map) {
  7242. struct sched_group **sched_group_nodes
  7243. = sched_group_nodes_bycpu[cpu];
  7244. if (!sched_group_nodes)
  7245. continue;
  7246. for (i = 0; i < nr_node_ids; i++) {
  7247. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7248. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7249. if (cpumask_empty(nodemask))
  7250. continue;
  7251. if (sg == NULL)
  7252. continue;
  7253. sg = sg->next;
  7254. next_sg:
  7255. oldsg = sg;
  7256. sg = sg->next;
  7257. kfree(oldsg);
  7258. if (oldsg != sched_group_nodes[i])
  7259. goto next_sg;
  7260. }
  7261. kfree(sched_group_nodes);
  7262. sched_group_nodes_bycpu[cpu] = NULL;
  7263. }
  7264. }
  7265. #else /* !CONFIG_NUMA */
  7266. static void free_sched_groups(const struct cpumask *cpu_map,
  7267. struct cpumask *nodemask)
  7268. {
  7269. }
  7270. #endif /* CONFIG_NUMA */
  7271. /*
  7272. * Initialize sched groups cpu_power.
  7273. *
  7274. * cpu_power indicates the capacity of sched group, which is used while
  7275. * distributing the load between different sched groups in a sched domain.
  7276. * Typically cpu_power for all the groups in a sched domain will be same unless
  7277. * there are asymmetries in the topology. If there are asymmetries, group
  7278. * having more cpu_power will pickup more load compared to the group having
  7279. * less cpu_power.
  7280. */
  7281. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7282. {
  7283. struct sched_domain *child;
  7284. struct sched_group *group;
  7285. long power;
  7286. int weight;
  7287. WARN_ON(!sd || !sd->groups);
  7288. if (cpu != group_first_cpu(sd->groups))
  7289. return;
  7290. child = sd->child;
  7291. sd->groups->cpu_power = 0;
  7292. if (!child) {
  7293. power = SCHED_LOAD_SCALE;
  7294. weight = cpumask_weight(sched_domain_span(sd));
  7295. /*
  7296. * SMT siblings share the power of a single core.
  7297. * Usually multiple threads get a better yield out of
  7298. * that one core than a single thread would have,
  7299. * reflect that in sd->smt_gain.
  7300. */
  7301. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7302. power *= sd->smt_gain;
  7303. power /= weight;
  7304. power >>= SCHED_LOAD_SHIFT;
  7305. }
  7306. sd->groups->cpu_power += power;
  7307. return;
  7308. }
  7309. /*
  7310. * Add cpu_power of each child group to this groups cpu_power.
  7311. */
  7312. group = child->groups;
  7313. do {
  7314. sd->groups->cpu_power += group->cpu_power;
  7315. group = group->next;
  7316. } while (group != child->groups);
  7317. }
  7318. /*
  7319. * Initializers for schedule domains
  7320. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7321. */
  7322. #ifdef CONFIG_SCHED_DEBUG
  7323. # define SD_INIT_NAME(sd, type) sd->name = #type
  7324. #else
  7325. # define SD_INIT_NAME(sd, type) do { } while (0)
  7326. #endif
  7327. #define SD_INIT(sd, type) sd_init_##type(sd)
  7328. #define SD_INIT_FUNC(type) \
  7329. static noinline void sd_init_##type(struct sched_domain *sd) \
  7330. { \
  7331. memset(sd, 0, sizeof(*sd)); \
  7332. *sd = SD_##type##_INIT; \
  7333. sd->level = SD_LV_##type; \
  7334. SD_INIT_NAME(sd, type); \
  7335. }
  7336. SD_INIT_FUNC(CPU)
  7337. #ifdef CONFIG_NUMA
  7338. SD_INIT_FUNC(ALLNODES)
  7339. SD_INIT_FUNC(NODE)
  7340. #endif
  7341. #ifdef CONFIG_SCHED_SMT
  7342. SD_INIT_FUNC(SIBLING)
  7343. #endif
  7344. #ifdef CONFIG_SCHED_MC
  7345. SD_INIT_FUNC(MC)
  7346. #endif
  7347. static int default_relax_domain_level = -1;
  7348. static int __init setup_relax_domain_level(char *str)
  7349. {
  7350. unsigned long val;
  7351. val = simple_strtoul(str, NULL, 0);
  7352. if (val < SD_LV_MAX)
  7353. default_relax_domain_level = val;
  7354. return 1;
  7355. }
  7356. __setup("relax_domain_level=", setup_relax_domain_level);
  7357. static void set_domain_attribute(struct sched_domain *sd,
  7358. struct sched_domain_attr *attr)
  7359. {
  7360. int request;
  7361. if (!attr || attr->relax_domain_level < 0) {
  7362. if (default_relax_domain_level < 0)
  7363. return;
  7364. else
  7365. request = default_relax_domain_level;
  7366. } else
  7367. request = attr->relax_domain_level;
  7368. if (request < sd->level) {
  7369. /* turn off idle balance on this domain */
  7370. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7371. } else {
  7372. /* turn on idle balance on this domain */
  7373. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7374. }
  7375. }
  7376. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7377. const struct cpumask *cpu_map)
  7378. {
  7379. switch (what) {
  7380. case sa_sched_groups:
  7381. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7382. d->sched_group_nodes = NULL;
  7383. case sa_rootdomain:
  7384. free_rootdomain(d->rd); /* fall through */
  7385. case sa_tmpmask:
  7386. free_cpumask_var(d->tmpmask); /* fall through */
  7387. case sa_send_covered:
  7388. free_cpumask_var(d->send_covered); /* fall through */
  7389. case sa_this_core_map:
  7390. free_cpumask_var(d->this_core_map); /* fall through */
  7391. case sa_this_sibling_map:
  7392. free_cpumask_var(d->this_sibling_map); /* fall through */
  7393. case sa_nodemask:
  7394. free_cpumask_var(d->nodemask); /* fall through */
  7395. case sa_sched_group_nodes:
  7396. #ifdef CONFIG_NUMA
  7397. kfree(d->sched_group_nodes); /* fall through */
  7398. case sa_notcovered:
  7399. free_cpumask_var(d->notcovered); /* fall through */
  7400. case sa_covered:
  7401. free_cpumask_var(d->covered); /* fall through */
  7402. case sa_domainspan:
  7403. free_cpumask_var(d->domainspan); /* fall through */
  7404. #endif
  7405. case sa_none:
  7406. break;
  7407. }
  7408. }
  7409. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7410. const struct cpumask *cpu_map)
  7411. {
  7412. #ifdef CONFIG_NUMA
  7413. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7414. return sa_none;
  7415. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7416. return sa_domainspan;
  7417. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7418. return sa_covered;
  7419. /* Allocate the per-node list of sched groups */
  7420. d->sched_group_nodes = kcalloc(nr_node_ids,
  7421. sizeof(struct sched_group *), GFP_KERNEL);
  7422. if (!d->sched_group_nodes) {
  7423. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7424. return sa_notcovered;
  7425. }
  7426. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7427. #endif
  7428. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7429. return sa_sched_group_nodes;
  7430. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7431. return sa_nodemask;
  7432. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7433. return sa_this_sibling_map;
  7434. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7435. return sa_this_core_map;
  7436. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7437. return sa_send_covered;
  7438. d->rd = alloc_rootdomain();
  7439. if (!d->rd) {
  7440. printk(KERN_WARNING "Cannot alloc root domain\n");
  7441. return sa_tmpmask;
  7442. }
  7443. return sa_rootdomain;
  7444. }
  7445. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7446. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7447. {
  7448. struct sched_domain *sd = NULL;
  7449. #ifdef CONFIG_NUMA
  7450. struct sched_domain *parent;
  7451. d->sd_allnodes = 0;
  7452. if (cpumask_weight(cpu_map) >
  7453. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7454. sd = &per_cpu(allnodes_domains, i).sd;
  7455. SD_INIT(sd, ALLNODES);
  7456. set_domain_attribute(sd, attr);
  7457. cpumask_copy(sched_domain_span(sd), cpu_map);
  7458. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7459. d->sd_allnodes = 1;
  7460. }
  7461. parent = sd;
  7462. sd = &per_cpu(node_domains, i).sd;
  7463. SD_INIT(sd, NODE);
  7464. set_domain_attribute(sd, attr);
  7465. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7466. sd->parent = parent;
  7467. if (parent)
  7468. parent->child = sd;
  7469. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7470. #endif
  7471. return sd;
  7472. }
  7473. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7474. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7475. struct sched_domain *parent, int i)
  7476. {
  7477. struct sched_domain *sd;
  7478. sd = &per_cpu(phys_domains, i).sd;
  7479. SD_INIT(sd, CPU);
  7480. set_domain_attribute(sd, attr);
  7481. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7482. sd->parent = parent;
  7483. if (parent)
  7484. parent->child = sd;
  7485. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7486. return sd;
  7487. }
  7488. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7489. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7490. struct sched_domain *parent, int i)
  7491. {
  7492. struct sched_domain *sd = parent;
  7493. #ifdef CONFIG_SCHED_MC
  7494. sd = &per_cpu(core_domains, i).sd;
  7495. SD_INIT(sd, MC);
  7496. set_domain_attribute(sd, attr);
  7497. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7498. sd->parent = parent;
  7499. parent->child = sd;
  7500. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7501. #endif
  7502. return sd;
  7503. }
  7504. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7505. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7506. struct sched_domain *parent, int i)
  7507. {
  7508. struct sched_domain *sd = parent;
  7509. #ifdef CONFIG_SCHED_SMT
  7510. sd = &per_cpu(cpu_domains, i).sd;
  7511. SD_INIT(sd, SIBLING);
  7512. set_domain_attribute(sd, attr);
  7513. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7514. sd->parent = parent;
  7515. parent->child = sd;
  7516. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7517. #endif
  7518. return sd;
  7519. }
  7520. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7521. const struct cpumask *cpu_map, int cpu)
  7522. {
  7523. switch (l) {
  7524. #ifdef CONFIG_SCHED_SMT
  7525. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7526. cpumask_and(d->this_sibling_map, cpu_map,
  7527. topology_thread_cpumask(cpu));
  7528. if (cpu == cpumask_first(d->this_sibling_map))
  7529. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7530. &cpu_to_cpu_group,
  7531. d->send_covered, d->tmpmask);
  7532. break;
  7533. #endif
  7534. #ifdef CONFIG_SCHED_MC
  7535. case SD_LV_MC: /* set up multi-core groups */
  7536. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7537. if (cpu == cpumask_first(d->this_core_map))
  7538. init_sched_build_groups(d->this_core_map, cpu_map,
  7539. &cpu_to_core_group,
  7540. d->send_covered, d->tmpmask);
  7541. break;
  7542. #endif
  7543. case SD_LV_CPU: /* set up physical groups */
  7544. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7545. if (!cpumask_empty(d->nodemask))
  7546. init_sched_build_groups(d->nodemask, cpu_map,
  7547. &cpu_to_phys_group,
  7548. d->send_covered, d->tmpmask);
  7549. break;
  7550. #ifdef CONFIG_NUMA
  7551. case SD_LV_ALLNODES:
  7552. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7553. d->send_covered, d->tmpmask);
  7554. break;
  7555. #endif
  7556. default:
  7557. break;
  7558. }
  7559. }
  7560. /*
  7561. * Build sched domains for a given set of cpus and attach the sched domains
  7562. * to the individual cpus
  7563. */
  7564. static int __build_sched_domains(const struct cpumask *cpu_map,
  7565. struct sched_domain_attr *attr)
  7566. {
  7567. enum s_alloc alloc_state = sa_none;
  7568. struct s_data d;
  7569. struct sched_domain *sd;
  7570. int i;
  7571. #ifdef CONFIG_NUMA
  7572. d.sd_allnodes = 0;
  7573. #endif
  7574. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7575. if (alloc_state != sa_rootdomain)
  7576. goto error;
  7577. alloc_state = sa_sched_groups;
  7578. /*
  7579. * Set up domains for cpus specified by the cpu_map.
  7580. */
  7581. for_each_cpu(i, cpu_map) {
  7582. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7583. cpu_map);
  7584. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7585. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7586. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7587. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7588. }
  7589. for_each_cpu(i, cpu_map) {
  7590. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7591. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7592. }
  7593. /* Set up physical groups */
  7594. for (i = 0; i < nr_node_ids; i++)
  7595. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7596. #ifdef CONFIG_NUMA
  7597. /* Set up node groups */
  7598. if (d.sd_allnodes)
  7599. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7600. for (i = 0; i < nr_node_ids; i++)
  7601. if (build_numa_sched_groups(&d, cpu_map, i))
  7602. goto error;
  7603. #endif
  7604. /* Calculate CPU power for physical packages and nodes */
  7605. #ifdef CONFIG_SCHED_SMT
  7606. for_each_cpu(i, cpu_map) {
  7607. sd = &per_cpu(cpu_domains, i).sd;
  7608. init_sched_groups_power(i, sd);
  7609. }
  7610. #endif
  7611. #ifdef CONFIG_SCHED_MC
  7612. for_each_cpu(i, cpu_map) {
  7613. sd = &per_cpu(core_domains, i).sd;
  7614. init_sched_groups_power(i, sd);
  7615. }
  7616. #endif
  7617. for_each_cpu(i, cpu_map) {
  7618. sd = &per_cpu(phys_domains, i).sd;
  7619. init_sched_groups_power(i, sd);
  7620. }
  7621. #ifdef CONFIG_NUMA
  7622. for (i = 0; i < nr_node_ids; i++)
  7623. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7624. if (d.sd_allnodes) {
  7625. struct sched_group *sg;
  7626. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7627. d.tmpmask);
  7628. init_numa_sched_groups_power(sg);
  7629. }
  7630. #endif
  7631. /* Attach the domains */
  7632. for_each_cpu(i, cpu_map) {
  7633. #ifdef CONFIG_SCHED_SMT
  7634. sd = &per_cpu(cpu_domains, i).sd;
  7635. #elif defined(CONFIG_SCHED_MC)
  7636. sd = &per_cpu(core_domains, i).sd;
  7637. #else
  7638. sd = &per_cpu(phys_domains, i).sd;
  7639. #endif
  7640. cpu_attach_domain(sd, d.rd, i);
  7641. }
  7642. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7643. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7644. return 0;
  7645. error:
  7646. __free_domain_allocs(&d, alloc_state, cpu_map);
  7647. return -ENOMEM;
  7648. }
  7649. static int build_sched_domains(const struct cpumask *cpu_map)
  7650. {
  7651. return __build_sched_domains(cpu_map, NULL);
  7652. }
  7653. static cpumask_var_t *doms_cur; /* current sched domains */
  7654. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7655. static struct sched_domain_attr *dattr_cur;
  7656. /* attribues of custom domains in 'doms_cur' */
  7657. /*
  7658. * Special case: If a kmalloc of a doms_cur partition (array of
  7659. * cpumask) fails, then fallback to a single sched domain,
  7660. * as determined by the single cpumask fallback_doms.
  7661. */
  7662. static cpumask_var_t fallback_doms;
  7663. /*
  7664. * arch_update_cpu_topology lets virtualized architectures update the
  7665. * cpu core maps. It is supposed to return 1 if the topology changed
  7666. * or 0 if it stayed the same.
  7667. */
  7668. int __attribute__((weak)) arch_update_cpu_topology(void)
  7669. {
  7670. return 0;
  7671. }
  7672. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7673. {
  7674. int i;
  7675. cpumask_var_t *doms;
  7676. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7677. if (!doms)
  7678. return NULL;
  7679. for (i = 0; i < ndoms; i++) {
  7680. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7681. free_sched_domains(doms, i);
  7682. return NULL;
  7683. }
  7684. }
  7685. return doms;
  7686. }
  7687. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7688. {
  7689. unsigned int i;
  7690. for (i = 0; i < ndoms; i++)
  7691. free_cpumask_var(doms[i]);
  7692. kfree(doms);
  7693. }
  7694. /*
  7695. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7696. * For now this just excludes isolated cpus, but could be used to
  7697. * exclude other special cases in the future.
  7698. */
  7699. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7700. {
  7701. int err;
  7702. arch_update_cpu_topology();
  7703. ndoms_cur = 1;
  7704. doms_cur = alloc_sched_domains(ndoms_cur);
  7705. if (!doms_cur)
  7706. doms_cur = &fallback_doms;
  7707. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7708. dattr_cur = NULL;
  7709. err = build_sched_domains(doms_cur[0]);
  7710. register_sched_domain_sysctl();
  7711. return err;
  7712. }
  7713. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7714. struct cpumask *tmpmask)
  7715. {
  7716. free_sched_groups(cpu_map, tmpmask);
  7717. }
  7718. /*
  7719. * Detach sched domains from a group of cpus specified in cpu_map
  7720. * These cpus will now be attached to the NULL domain
  7721. */
  7722. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7723. {
  7724. /* Save because hotplug lock held. */
  7725. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7726. int i;
  7727. for_each_cpu(i, cpu_map)
  7728. cpu_attach_domain(NULL, &def_root_domain, i);
  7729. synchronize_sched();
  7730. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7731. }
  7732. /* handle null as "default" */
  7733. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7734. struct sched_domain_attr *new, int idx_new)
  7735. {
  7736. struct sched_domain_attr tmp;
  7737. /* fast path */
  7738. if (!new && !cur)
  7739. return 1;
  7740. tmp = SD_ATTR_INIT;
  7741. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7742. new ? (new + idx_new) : &tmp,
  7743. sizeof(struct sched_domain_attr));
  7744. }
  7745. /*
  7746. * Partition sched domains as specified by the 'ndoms_new'
  7747. * cpumasks in the array doms_new[] of cpumasks. This compares
  7748. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7749. * It destroys each deleted domain and builds each new domain.
  7750. *
  7751. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7752. * The masks don't intersect (don't overlap.) We should setup one
  7753. * sched domain for each mask. CPUs not in any of the cpumasks will
  7754. * not be load balanced. If the same cpumask appears both in the
  7755. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7756. * it as it is.
  7757. *
  7758. * The passed in 'doms_new' should be allocated using
  7759. * alloc_sched_domains. This routine takes ownership of it and will
  7760. * free_sched_domains it when done with it. If the caller failed the
  7761. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7762. * and partition_sched_domains() will fallback to the single partition
  7763. * 'fallback_doms', it also forces the domains to be rebuilt.
  7764. *
  7765. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7766. * ndoms_new == 0 is a special case for destroying existing domains,
  7767. * and it will not create the default domain.
  7768. *
  7769. * Call with hotplug lock held
  7770. */
  7771. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7772. struct sched_domain_attr *dattr_new)
  7773. {
  7774. int i, j, n;
  7775. int new_topology;
  7776. mutex_lock(&sched_domains_mutex);
  7777. /* always unregister in case we don't destroy any domains */
  7778. unregister_sched_domain_sysctl();
  7779. /* Let architecture update cpu core mappings. */
  7780. new_topology = arch_update_cpu_topology();
  7781. n = doms_new ? ndoms_new : 0;
  7782. /* Destroy deleted domains */
  7783. for (i = 0; i < ndoms_cur; i++) {
  7784. for (j = 0; j < n && !new_topology; j++) {
  7785. if (cpumask_equal(doms_cur[i], doms_new[j])
  7786. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7787. goto match1;
  7788. }
  7789. /* no match - a current sched domain not in new doms_new[] */
  7790. detach_destroy_domains(doms_cur[i]);
  7791. match1:
  7792. ;
  7793. }
  7794. if (doms_new == NULL) {
  7795. ndoms_cur = 0;
  7796. doms_new = &fallback_doms;
  7797. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7798. WARN_ON_ONCE(dattr_new);
  7799. }
  7800. /* Build new domains */
  7801. for (i = 0; i < ndoms_new; i++) {
  7802. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7803. if (cpumask_equal(doms_new[i], doms_cur[j])
  7804. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7805. goto match2;
  7806. }
  7807. /* no match - add a new doms_new */
  7808. __build_sched_domains(doms_new[i],
  7809. dattr_new ? dattr_new + i : NULL);
  7810. match2:
  7811. ;
  7812. }
  7813. /* Remember the new sched domains */
  7814. if (doms_cur != &fallback_doms)
  7815. free_sched_domains(doms_cur, ndoms_cur);
  7816. kfree(dattr_cur); /* kfree(NULL) is safe */
  7817. doms_cur = doms_new;
  7818. dattr_cur = dattr_new;
  7819. ndoms_cur = ndoms_new;
  7820. register_sched_domain_sysctl();
  7821. mutex_unlock(&sched_domains_mutex);
  7822. }
  7823. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7824. static void arch_reinit_sched_domains(void)
  7825. {
  7826. get_online_cpus();
  7827. /* Destroy domains first to force the rebuild */
  7828. partition_sched_domains(0, NULL, NULL);
  7829. rebuild_sched_domains();
  7830. put_online_cpus();
  7831. }
  7832. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7833. {
  7834. unsigned int level = 0;
  7835. if (sscanf(buf, "%u", &level) != 1)
  7836. return -EINVAL;
  7837. /*
  7838. * level is always be positive so don't check for
  7839. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7840. * What happens on 0 or 1 byte write,
  7841. * need to check for count as well?
  7842. */
  7843. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7844. return -EINVAL;
  7845. if (smt)
  7846. sched_smt_power_savings = level;
  7847. else
  7848. sched_mc_power_savings = level;
  7849. arch_reinit_sched_domains();
  7850. return count;
  7851. }
  7852. #ifdef CONFIG_SCHED_MC
  7853. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7854. char *page)
  7855. {
  7856. return sprintf(page, "%u\n", sched_mc_power_savings);
  7857. }
  7858. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7859. const char *buf, size_t count)
  7860. {
  7861. return sched_power_savings_store(buf, count, 0);
  7862. }
  7863. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7864. sched_mc_power_savings_show,
  7865. sched_mc_power_savings_store);
  7866. #endif
  7867. #ifdef CONFIG_SCHED_SMT
  7868. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7869. char *page)
  7870. {
  7871. return sprintf(page, "%u\n", sched_smt_power_savings);
  7872. }
  7873. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7874. const char *buf, size_t count)
  7875. {
  7876. return sched_power_savings_store(buf, count, 1);
  7877. }
  7878. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7879. sched_smt_power_savings_show,
  7880. sched_smt_power_savings_store);
  7881. #endif
  7882. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7883. {
  7884. int err = 0;
  7885. #ifdef CONFIG_SCHED_SMT
  7886. if (smt_capable())
  7887. err = sysfs_create_file(&cls->kset.kobj,
  7888. &attr_sched_smt_power_savings.attr);
  7889. #endif
  7890. #ifdef CONFIG_SCHED_MC
  7891. if (!err && mc_capable())
  7892. err = sysfs_create_file(&cls->kset.kobj,
  7893. &attr_sched_mc_power_savings.attr);
  7894. #endif
  7895. return err;
  7896. }
  7897. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7898. #ifndef CONFIG_CPUSETS
  7899. /*
  7900. * Add online and remove offline CPUs from the scheduler domains.
  7901. * When cpusets are enabled they take over this function.
  7902. */
  7903. static int update_sched_domains(struct notifier_block *nfb,
  7904. unsigned long action, void *hcpu)
  7905. {
  7906. switch (action) {
  7907. case CPU_ONLINE:
  7908. case CPU_ONLINE_FROZEN:
  7909. case CPU_DOWN_PREPARE:
  7910. case CPU_DOWN_PREPARE_FROZEN:
  7911. case CPU_DOWN_FAILED:
  7912. case CPU_DOWN_FAILED_FROZEN:
  7913. partition_sched_domains(1, NULL, NULL);
  7914. return NOTIFY_OK;
  7915. default:
  7916. return NOTIFY_DONE;
  7917. }
  7918. }
  7919. #endif
  7920. static int update_runtime(struct notifier_block *nfb,
  7921. unsigned long action, void *hcpu)
  7922. {
  7923. int cpu = (int)(long)hcpu;
  7924. switch (action) {
  7925. case CPU_DOWN_PREPARE:
  7926. case CPU_DOWN_PREPARE_FROZEN:
  7927. disable_runtime(cpu_rq(cpu));
  7928. return NOTIFY_OK;
  7929. case CPU_DOWN_FAILED:
  7930. case CPU_DOWN_FAILED_FROZEN:
  7931. case CPU_ONLINE:
  7932. case CPU_ONLINE_FROZEN:
  7933. enable_runtime(cpu_rq(cpu));
  7934. return NOTIFY_OK;
  7935. default:
  7936. return NOTIFY_DONE;
  7937. }
  7938. }
  7939. void __init sched_init_smp(void)
  7940. {
  7941. cpumask_var_t non_isolated_cpus;
  7942. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7943. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7944. #if defined(CONFIG_NUMA)
  7945. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7946. GFP_KERNEL);
  7947. BUG_ON(sched_group_nodes_bycpu == NULL);
  7948. #endif
  7949. get_online_cpus();
  7950. mutex_lock(&sched_domains_mutex);
  7951. arch_init_sched_domains(cpu_active_mask);
  7952. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7953. if (cpumask_empty(non_isolated_cpus))
  7954. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7955. mutex_unlock(&sched_domains_mutex);
  7956. put_online_cpus();
  7957. #ifndef CONFIG_CPUSETS
  7958. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7959. hotcpu_notifier(update_sched_domains, 0);
  7960. #endif
  7961. /* RT runtime code needs to handle some hotplug events */
  7962. hotcpu_notifier(update_runtime, 0);
  7963. init_hrtick();
  7964. /* Move init over to a non-isolated CPU */
  7965. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7966. BUG();
  7967. sched_init_granularity();
  7968. free_cpumask_var(non_isolated_cpus);
  7969. init_sched_rt_class();
  7970. }
  7971. #else
  7972. void __init sched_init_smp(void)
  7973. {
  7974. sched_init_granularity();
  7975. }
  7976. #endif /* CONFIG_SMP */
  7977. const_debug unsigned int sysctl_timer_migration = 1;
  7978. int in_sched_functions(unsigned long addr)
  7979. {
  7980. return in_lock_functions(addr) ||
  7981. (addr >= (unsigned long)__sched_text_start
  7982. && addr < (unsigned long)__sched_text_end);
  7983. }
  7984. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7985. {
  7986. cfs_rq->tasks_timeline = RB_ROOT;
  7987. INIT_LIST_HEAD(&cfs_rq->tasks);
  7988. #ifdef CONFIG_FAIR_GROUP_SCHED
  7989. cfs_rq->rq = rq;
  7990. #endif
  7991. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7992. }
  7993. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7994. {
  7995. struct rt_prio_array *array;
  7996. int i;
  7997. array = &rt_rq->active;
  7998. for (i = 0; i < MAX_RT_PRIO; i++) {
  7999. INIT_LIST_HEAD(array->queue + i);
  8000. __clear_bit(i, array->bitmap);
  8001. }
  8002. /* delimiter for bitsearch: */
  8003. __set_bit(MAX_RT_PRIO, array->bitmap);
  8004. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  8005. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  8006. #ifdef CONFIG_SMP
  8007. rt_rq->highest_prio.next = MAX_RT_PRIO;
  8008. #endif
  8009. #endif
  8010. #ifdef CONFIG_SMP
  8011. rt_rq->rt_nr_migratory = 0;
  8012. rt_rq->overloaded = 0;
  8013. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  8014. #endif
  8015. rt_rq->rt_time = 0;
  8016. rt_rq->rt_throttled = 0;
  8017. rt_rq->rt_runtime = 0;
  8018. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  8019. #ifdef CONFIG_RT_GROUP_SCHED
  8020. rt_rq->rt_nr_boosted = 0;
  8021. rt_rq->rq = rq;
  8022. #endif
  8023. }
  8024. #ifdef CONFIG_FAIR_GROUP_SCHED
  8025. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8026. struct sched_entity *se, int cpu, int add,
  8027. struct sched_entity *parent)
  8028. {
  8029. struct rq *rq = cpu_rq(cpu);
  8030. tg->cfs_rq[cpu] = cfs_rq;
  8031. init_cfs_rq(cfs_rq, rq);
  8032. cfs_rq->tg = tg;
  8033. if (add)
  8034. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8035. tg->se[cpu] = se;
  8036. /* se could be NULL for init_task_group */
  8037. if (!se)
  8038. return;
  8039. if (!parent)
  8040. se->cfs_rq = &rq->cfs;
  8041. else
  8042. se->cfs_rq = parent->my_q;
  8043. se->my_q = cfs_rq;
  8044. se->load.weight = tg->shares;
  8045. se->load.inv_weight = 0;
  8046. se->parent = parent;
  8047. }
  8048. #endif
  8049. #ifdef CONFIG_RT_GROUP_SCHED
  8050. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8051. struct sched_rt_entity *rt_se, int cpu, int add,
  8052. struct sched_rt_entity *parent)
  8053. {
  8054. struct rq *rq = cpu_rq(cpu);
  8055. tg->rt_rq[cpu] = rt_rq;
  8056. init_rt_rq(rt_rq, rq);
  8057. rt_rq->tg = tg;
  8058. rt_rq->rt_se = rt_se;
  8059. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8060. if (add)
  8061. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8062. tg->rt_se[cpu] = rt_se;
  8063. if (!rt_se)
  8064. return;
  8065. if (!parent)
  8066. rt_se->rt_rq = &rq->rt;
  8067. else
  8068. rt_se->rt_rq = parent->my_q;
  8069. rt_se->my_q = rt_rq;
  8070. rt_se->parent = parent;
  8071. INIT_LIST_HEAD(&rt_se->run_list);
  8072. }
  8073. #endif
  8074. void __init sched_init(void)
  8075. {
  8076. int i, j;
  8077. unsigned long alloc_size = 0, ptr;
  8078. #ifdef CONFIG_FAIR_GROUP_SCHED
  8079. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8080. #endif
  8081. #ifdef CONFIG_RT_GROUP_SCHED
  8082. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8083. #endif
  8084. #ifdef CONFIG_USER_SCHED
  8085. alloc_size *= 2;
  8086. #endif
  8087. #ifdef CONFIG_CPUMASK_OFFSTACK
  8088. alloc_size += num_possible_cpus() * cpumask_size();
  8089. #endif
  8090. if (alloc_size) {
  8091. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8092. #ifdef CONFIG_FAIR_GROUP_SCHED
  8093. init_task_group.se = (struct sched_entity **)ptr;
  8094. ptr += nr_cpu_ids * sizeof(void **);
  8095. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8096. ptr += nr_cpu_ids * sizeof(void **);
  8097. #ifdef CONFIG_USER_SCHED
  8098. root_task_group.se = (struct sched_entity **)ptr;
  8099. ptr += nr_cpu_ids * sizeof(void **);
  8100. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8101. ptr += nr_cpu_ids * sizeof(void **);
  8102. #endif /* CONFIG_USER_SCHED */
  8103. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8104. #ifdef CONFIG_RT_GROUP_SCHED
  8105. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8106. ptr += nr_cpu_ids * sizeof(void **);
  8107. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8108. ptr += nr_cpu_ids * sizeof(void **);
  8109. #ifdef CONFIG_USER_SCHED
  8110. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8111. ptr += nr_cpu_ids * sizeof(void **);
  8112. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8113. ptr += nr_cpu_ids * sizeof(void **);
  8114. #endif /* CONFIG_USER_SCHED */
  8115. #endif /* CONFIG_RT_GROUP_SCHED */
  8116. #ifdef CONFIG_CPUMASK_OFFSTACK
  8117. for_each_possible_cpu(i) {
  8118. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8119. ptr += cpumask_size();
  8120. }
  8121. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8122. }
  8123. #ifdef CONFIG_SMP
  8124. init_defrootdomain();
  8125. #endif
  8126. init_rt_bandwidth(&def_rt_bandwidth,
  8127. global_rt_period(), global_rt_runtime());
  8128. #ifdef CONFIG_RT_GROUP_SCHED
  8129. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8130. global_rt_period(), global_rt_runtime());
  8131. #ifdef CONFIG_USER_SCHED
  8132. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8133. global_rt_period(), RUNTIME_INF);
  8134. #endif /* CONFIG_USER_SCHED */
  8135. #endif /* CONFIG_RT_GROUP_SCHED */
  8136. #ifdef CONFIG_GROUP_SCHED
  8137. list_add(&init_task_group.list, &task_groups);
  8138. INIT_LIST_HEAD(&init_task_group.children);
  8139. #ifdef CONFIG_USER_SCHED
  8140. INIT_LIST_HEAD(&root_task_group.children);
  8141. init_task_group.parent = &root_task_group;
  8142. list_add(&init_task_group.siblings, &root_task_group.children);
  8143. #endif /* CONFIG_USER_SCHED */
  8144. #endif /* CONFIG_GROUP_SCHED */
  8145. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8146. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8147. __alignof__(unsigned long));
  8148. #endif
  8149. for_each_possible_cpu(i) {
  8150. struct rq *rq;
  8151. rq = cpu_rq(i);
  8152. raw_spin_lock_init(&rq->lock);
  8153. rq->nr_running = 0;
  8154. rq->calc_load_active = 0;
  8155. rq->calc_load_update = jiffies + LOAD_FREQ;
  8156. init_cfs_rq(&rq->cfs, rq);
  8157. init_rt_rq(&rq->rt, rq);
  8158. #ifdef CONFIG_FAIR_GROUP_SCHED
  8159. init_task_group.shares = init_task_group_load;
  8160. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8161. #ifdef CONFIG_CGROUP_SCHED
  8162. /*
  8163. * How much cpu bandwidth does init_task_group get?
  8164. *
  8165. * In case of task-groups formed thr' the cgroup filesystem, it
  8166. * gets 100% of the cpu resources in the system. This overall
  8167. * system cpu resource is divided among the tasks of
  8168. * init_task_group and its child task-groups in a fair manner,
  8169. * based on each entity's (task or task-group's) weight
  8170. * (se->load.weight).
  8171. *
  8172. * In other words, if init_task_group has 10 tasks of weight
  8173. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8174. * then A0's share of the cpu resource is:
  8175. *
  8176. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8177. *
  8178. * We achieve this by letting init_task_group's tasks sit
  8179. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8180. */
  8181. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8182. #elif defined CONFIG_USER_SCHED
  8183. root_task_group.shares = NICE_0_LOAD;
  8184. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8185. /*
  8186. * In case of task-groups formed thr' the user id of tasks,
  8187. * init_task_group represents tasks belonging to root user.
  8188. * Hence it forms a sibling of all subsequent groups formed.
  8189. * In this case, init_task_group gets only a fraction of overall
  8190. * system cpu resource, based on the weight assigned to root
  8191. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8192. * by letting tasks of init_task_group sit in a separate cfs_rq
  8193. * (init_tg_cfs_rq) and having one entity represent this group of
  8194. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8195. */
  8196. init_tg_cfs_entry(&init_task_group,
  8197. &per_cpu(init_tg_cfs_rq, i),
  8198. &per_cpu(init_sched_entity, i), i, 1,
  8199. root_task_group.se[i]);
  8200. #endif
  8201. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8202. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8203. #ifdef CONFIG_RT_GROUP_SCHED
  8204. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8205. #ifdef CONFIG_CGROUP_SCHED
  8206. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8207. #elif defined CONFIG_USER_SCHED
  8208. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8209. init_tg_rt_entry(&init_task_group,
  8210. &per_cpu(init_rt_rq_var, i),
  8211. &per_cpu(init_sched_rt_entity, i), i, 1,
  8212. root_task_group.rt_se[i]);
  8213. #endif
  8214. #endif
  8215. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8216. rq->cpu_load[j] = 0;
  8217. #ifdef CONFIG_SMP
  8218. rq->sd = NULL;
  8219. rq->rd = NULL;
  8220. rq->post_schedule = 0;
  8221. rq->active_balance = 0;
  8222. rq->next_balance = jiffies;
  8223. rq->push_cpu = 0;
  8224. rq->cpu = i;
  8225. rq->online = 0;
  8226. rq->migration_thread = NULL;
  8227. rq->idle_stamp = 0;
  8228. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8229. INIT_LIST_HEAD(&rq->migration_queue);
  8230. rq_attach_root(rq, &def_root_domain);
  8231. #endif
  8232. init_rq_hrtick(rq);
  8233. atomic_set(&rq->nr_iowait, 0);
  8234. }
  8235. set_load_weight(&init_task);
  8236. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8237. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8238. #endif
  8239. #ifdef CONFIG_SMP
  8240. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8241. #endif
  8242. #ifdef CONFIG_RT_MUTEXES
  8243. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8244. #endif
  8245. /*
  8246. * The boot idle thread does lazy MMU switching as well:
  8247. */
  8248. atomic_inc(&init_mm.mm_count);
  8249. enter_lazy_tlb(&init_mm, current);
  8250. /*
  8251. * Make us the idle thread. Technically, schedule() should not be
  8252. * called from this thread, however somewhere below it might be,
  8253. * but because we are the idle thread, we just pick up running again
  8254. * when this runqueue becomes "idle".
  8255. */
  8256. init_idle(current, smp_processor_id());
  8257. calc_load_update = jiffies + LOAD_FREQ;
  8258. /*
  8259. * During early bootup we pretend to be a normal task:
  8260. */
  8261. current->sched_class = &fair_sched_class;
  8262. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8263. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8264. #ifdef CONFIG_SMP
  8265. #ifdef CONFIG_NO_HZ
  8266. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8267. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8268. #endif
  8269. /* May be allocated at isolcpus cmdline parse time */
  8270. if (cpu_isolated_map == NULL)
  8271. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8272. #endif /* SMP */
  8273. perf_event_init();
  8274. scheduler_running = 1;
  8275. }
  8276. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8277. static inline int preempt_count_equals(int preempt_offset)
  8278. {
  8279. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  8280. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8281. }
  8282. void __might_sleep(char *file, int line, int preempt_offset)
  8283. {
  8284. #ifdef in_atomic
  8285. static unsigned long prev_jiffy; /* ratelimiting */
  8286. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8287. system_state != SYSTEM_RUNNING || oops_in_progress)
  8288. return;
  8289. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8290. return;
  8291. prev_jiffy = jiffies;
  8292. printk(KERN_ERR
  8293. "BUG: sleeping function called from invalid context at %s:%d\n",
  8294. file, line);
  8295. printk(KERN_ERR
  8296. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8297. in_atomic(), irqs_disabled(),
  8298. current->pid, current->comm);
  8299. debug_show_held_locks(current);
  8300. if (irqs_disabled())
  8301. print_irqtrace_events(current);
  8302. dump_stack();
  8303. #endif
  8304. }
  8305. EXPORT_SYMBOL(__might_sleep);
  8306. #endif
  8307. #ifdef CONFIG_MAGIC_SYSRQ
  8308. static void normalize_task(struct rq *rq, struct task_struct *p)
  8309. {
  8310. int on_rq;
  8311. update_rq_clock(rq);
  8312. on_rq = p->se.on_rq;
  8313. if (on_rq)
  8314. deactivate_task(rq, p, 0);
  8315. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8316. if (on_rq) {
  8317. activate_task(rq, p, 0);
  8318. resched_task(rq->curr);
  8319. }
  8320. }
  8321. void normalize_rt_tasks(void)
  8322. {
  8323. struct task_struct *g, *p;
  8324. unsigned long flags;
  8325. struct rq *rq;
  8326. read_lock_irqsave(&tasklist_lock, flags);
  8327. do_each_thread(g, p) {
  8328. /*
  8329. * Only normalize user tasks:
  8330. */
  8331. if (!p->mm)
  8332. continue;
  8333. p->se.exec_start = 0;
  8334. #ifdef CONFIG_SCHEDSTATS
  8335. p->se.wait_start = 0;
  8336. p->se.sleep_start = 0;
  8337. p->se.block_start = 0;
  8338. #endif
  8339. if (!rt_task(p)) {
  8340. /*
  8341. * Renice negative nice level userspace
  8342. * tasks back to 0:
  8343. */
  8344. if (TASK_NICE(p) < 0 && p->mm)
  8345. set_user_nice(p, 0);
  8346. continue;
  8347. }
  8348. raw_spin_lock(&p->pi_lock);
  8349. rq = __task_rq_lock(p);
  8350. normalize_task(rq, p);
  8351. __task_rq_unlock(rq);
  8352. raw_spin_unlock(&p->pi_lock);
  8353. } while_each_thread(g, p);
  8354. read_unlock_irqrestore(&tasklist_lock, flags);
  8355. }
  8356. #endif /* CONFIG_MAGIC_SYSRQ */
  8357. #ifdef CONFIG_IA64
  8358. /*
  8359. * These functions are only useful for the IA64 MCA handling.
  8360. *
  8361. * They can only be called when the whole system has been
  8362. * stopped - every CPU needs to be quiescent, and no scheduling
  8363. * activity can take place. Using them for anything else would
  8364. * be a serious bug, and as a result, they aren't even visible
  8365. * under any other configuration.
  8366. */
  8367. /**
  8368. * curr_task - return the current task for a given cpu.
  8369. * @cpu: the processor in question.
  8370. *
  8371. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8372. */
  8373. struct task_struct *curr_task(int cpu)
  8374. {
  8375. return cpu_curr(cpu);
  8376. }
  8377. /**
  8378. * set_curr_task - set the current task for a given cpu.
  8379. * @cpu: the processor in question.
  8380. * @p: the task pointer to set.
  8381. *
  8382. * Description: This function must only be used when non-maskable interrupts
  8383. * are serviced on a separate stack. It allows the architecture to switch the
  8384. * notion of the current task on a cpu in a non-blocking manner. This function
  8385. * must be called with all CPU's synchronized, and interrupts disabled, the
  8386. * and caller must save the original value of the current task (see
  8387. * curr_task() above) and restore that value before reenabling interrupts and
  8388. * re-starting the system.
  8389. *
  8390. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8391. */
  8392. void set_curr_task(int cpu, struct task_struct *p)
  8393. {
  8394. cpu_curr(cpu) = p;
  8395. }
  8396. #endif
  8397. #ifdef CONFIG_FAIR_GROUP_SCHED
  8398. static void free_fair_sched_group(struct task_group *tg)
  8399. {
  8400. int i;
  8401. for_each_possible_cpu(i) {
  8402. if (tg->cfs_rq)
  8403. kfree(tg->cfs_rq[i]);
  8404. if (tg->se)
  8405. kfree(tg->se[i]);
  8406. }
  8407. kfree(tg->cfs_rq);
  8408. kfree(tg->se);
  8409. }
  8410. static
  8411. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8412. {
  8413. struct cfs_rq *cfs_rq;
  8414. struct sched_entity *se;
  8415. struct rq *rq;
  8416. int i;
  8417. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8418. if (!tg->cfs_rq)
  8419. goto err;
  8420. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8421. if (!tg->se)
  8422. goto err;
  8423. tg->shares = NICE_0_LOAD;
  8424. for_each_possible_cpu(i) {
  8425. rq = cpu_rq(i);
  8426. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8427. GFP_KERNEL, cpu_to_node(i));
  8428. if (!cfs_rq)
  8429. goto err;
  8430. se = kzalloc_node(sizeof(struct sched_entity),
  8431. GFP_KERNEL, cpu_to_node(i));
  8432. if (!se)
  8433. goto err_free_rq;
  8434. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8435. }
  8436. return 1;
  8437. err_free_rq:
  8438. kfree(cfs_rq);
  8439. err:
  8440. return 0;
  8441. }
  8442. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8443. {
  8444. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8445. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8446. }
  8447. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8448. {
  8449. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8450. }
  8451. #else /* !CONFG_FAIR_GROUP_SCHED */
  8452. static inline void free_fair_sched_group(struct task_group *tg)
  8453. {
  8454. }
  8455. static inline
  8456. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8457. {
  8458. return 1;
  8459. }
  8460. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8461. {
  8462. }
  8463. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8464. {
  8465. }
  8466. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8467. #ifdef CONFIG_RT_GROUP_SCHED
  8468. static void free_rt_sched_group(struct task_group *tg)
  8469. {
  8470. int i;
  8471. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8472. for_each_possible_cpu(i) {
  8473. if (tg->rt_rq)
  8474. kfree(tg->rt_rq[i]);
  8475. if (tg->rt_se)
  8476. kfree(tg->rt_se[i]);
  8477. }
  8478. kfree(tg->rt_rq);
  8479. kfree(tg->rt_se);
  8480. }
  8481. static
  8482. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8483. {
  8484. struct rt_rq *rt_rq;
  8485. struct sched_rt_entity *rt_se;
  8486. struct rq *rq;
  8487. int i;
  8488. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8489. if (!tg->rt_rq)
  8490. goto err;
  8491. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8492. if (!tg->rt_se)
  8493. goto err;
  8494. init_rt_bandwidth(&tg->rt_bandwidth,
  8495. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8496. for_each_possible_cpu(i) {
  8497. rq = cpu_rq(i);
  8498. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8499. GFP_KERNEL, cpu_to_node(i));
  8500. if (!rt_rq)
  8501. goto err;
  8502. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8503. GFP_KERNEL, cpu_to_node(i));
  8504. if (!rt_se)
  8505. goto err_free_rq;
  8506. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8507. }
  8508. return 1;
  8509. err_free_rq:
  8510. kfree(rt_rq);
  8511. err:
  8512. return 0;
  8513. }
  8514. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8515. {
  8516. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8517. &cpu_rq(cpu)->leaf_rt_rq_list);
  8518. }
  8519. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8520. {
  8521. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8522. }
  8523. #else /* !CONFIG_RT_GROUP_SCHED */
  8524. static inline void free_rt_sched_group(struct task_group *tg)
  8525. {
  8526. }
  8527. static inline
  8528. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8529. {
  8530. return 1;
  8531. }
  8532. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8533. {
  8534. }
  8535. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8536. {
  8537. }
  8538. #endif /* CONFIG_RT_GROUP_SCHED */
  8539. #ifdef CONFIG_GROUP_SCHED
  8540. static void free_sched_group(struct task_group *tg)
  8541. {
  8542. free_fair_sched_group(tg);
  8543. free_rt_sched_group(tg);
  8544. kfree(tg);
  8545. }
  8546. /* allocate runqueue etc for a new task group */
  8547. struct task_group *sched_create_group(struct task_group *parent)
  8548. {
  8549. struct task_group *tg;
  8550. unsigned long flags;
  8551. int i;
  8552. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8553. if (!tg)
  8554. return ERR_PTR(-ENOMEM);
  8555. if (!alloc_fair_sched_group(tg, parent))
  8556. goto err;
  8557. if (!alloc_rt_sched_group(tg, parent))
  8558. goto err;
  8559. spin_lock_irqsave(&task_group_lock, flags);
  8560. for_each_possible_cpu(i) {
  8561. register_fair_sched_group(tg, i);
  8562. register_rt_sched_group(tg, i);
  8563. }
  8564. list_add_rcu(&tg->list, &task_groups);
  8565. WARN_ON(!parent); /* root should already exist */
  8566. tg->parent = parent;
  8567. INIT_LIST_HEAD(&tg->children);
  8568. list_add_rcu(&tg->siblings, &parent->children);
  8569. spin_unlock_irqrestore(&task_group_lock, flags);
  8570. return tg;
  8571. err:
  8572. free_sched_group(tg);
  8573. return ERR_PTR(-ENOMEM);
  8574. }
  8575. /* rcu callback to free various structures associated with a task group */
  8576. static void free_sched_group_rcu(struct rcu_head *rhp)
  8577. {
  8578. /* now it should be safe to free those cfs_rqs */
  8579. free_sched_group(container_of(rhp, struct task_group, rcu));
  8580. }
  8581. /* Destroy runqueue etc associated with a task group */
  8582. void sched_destroy_group(struct task_group *tg)
  8583. {
  8584. unsigned long flags;
  8585. int i;
  8586. spin_lock_irqsave(&task_group_lock, flags);
  8587. for_each_possible_cpu(i) {
  8588. unregister_fair_sched_group(tg, i);
  8589. unregister_rt_sched_group(tg, i);
  8590. }
  8591. list_del_rcu(&tg->list);
  8592. list_del_rcu(&tg->siblings);
  8593. spin_unlock_irqrestore(&task_group_lock, flags);
  8594. /* wait for possible concurrent references to cfs_rqs complete */
  8595. call_rcu(&tg->rcu, free_sched_group_rcu);
  8596. }
  8597. /* change task's runqueue when it moves between groups.
  8598. * The caller of this function should have put the task in its new group
  8599. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8600. * reflect its new group.
  8601. */
  8602. void sched_move_task(struct task_struct *tsk)
  8603. {
  8604. int on_rq, running;
  8605. unsigned long flags;
  8606. struct rq *rq;
  8607. rq = task_rq_lock(tsk, &flags);
  8608. update_rq_clock(rq);
  8609. running = task_current(rq, tsk);
  8610. on_rq = tsk->se.on_rq;
  8611. if (on_rq)
  8612. dequeue_task(rq, tsk, 0);
  8613. if (unlikely(running))
  8614. tsk->sched_class->put_prev_task(rq, tsk);
  8615. set_task_rq(tsk, task_cpu(tsk));
  8616. #ifdef CONFIG_FAIR_GROUP_SCHED
  8617. if (tsk->sched_class->moved_group)
  8618. tsk->sched_class->moved_group(tsk, on_rq);
  8619. #endif
  8620. if (unlikely(running))
  8621. tsk->sched_class->set_curr_task(rq);
  8622. if (on_rq)
  8623. enqueue_task(rq, tsk, 0);
  8624. task_rq_unlock(rq, &flags);
  8625. }
  8626. #endif /* CONFIG_GROUP_SCHED */
  8627. #ifdef CONFIG_FAIR_GROUP_SCHED
  8628. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8629. {
  8630. struct cfs_rq *cfs_rq = se->cfs_rq;
  8631. int on_rq;
  8632. on_rq = se->on_rq;
  8633. if (on_rq)
  8634. dequeue_entity(cfs_rq, se, 0);
  8635. se->load.weight = shares;
  8636. se->load.inv_weight = 0;
  8637. if (on_rq)
  8638. enqueue_entity(cfs_rq, se, 0);
  8639. }
  8640. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8641. {
  8642. struct cfs_rq *cfs_rq = se->cfs_rq;
  8643. struct rq *rq = cfs_rq->rq;
  8644. unsigned long flags;
  8645. raw_spin_lock_irqsave(&rq->lock, flags);
  8646. __set_se_shares(se, shares);
  8647. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8648. }
  8649. static DEFINE_MUTEX(shares_mutex);
  8650. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8651. {
  8652. int i;
  8653. unsigned long flags;
  8654. /*
  8655. * We can't change the weight of the root cgroup.
  8656. */
  8657. if (!tg->se[0])
  8658. return -EINVAL;
  8659. if (shares < MIN_SHARES)
  8660. shares = MIN_SHARES;
  8661. else if (shares > MAX_SHARES)
  8662. shares = MAX_SHARES;
  8663. mutex_lock(&shares_mutex);
  8664. if (tg->shares == shares)
  8665. goto done;
  8666. spin_lock_irqsave(&task_group_lock, flags);
  8667. for_each_possible_cpu(i)
  8668. unregister_fair_sched_group(tg, i);
  8669. list_del_rcu(&tg->siblings);
  8670. spin_unlock_irqrestore(&task_group_lock, flags);
  8671. /* wait for any ongoing reference to this group to finish */
  8672. synchronize_sched();
  8673. /*
  8674. * Now we are free to modify the group's share on each cpu
  8675. * w/o tripping rebalance_share or load_balance_fair.
  8676. */
  8677. tg->shares = shares;
  8678. for_each_possible_cpu(i) {
  8679. /*
  8680. * force a rebalance
  8681. */
  8682. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8683. set_se_shares(tg->se[i], shares);
  8684. }
  8685. /*
  8686. * Enable load balance activity on this group, by inserting it back on
  8687. * each cpu's rq->leaf_cfs_rq_list.
  8688. */
  8689. spin_lock_irqsave(&task_group_lock, flags);
  8690. for_each_possible_cpu(i)
  8691. register_fair_sched_group(tg, i);
  8692. list_add_rcu(&tg->siblings, &tg->parent->children);
  8693. spin_unlock_irqrestore(&task_group_lock, flags);
  8694. done:
  8695. mutex_unlock(&shares_mutex);
  8696. return 0;
  8697. }
  8698. unsigned long sched_group_shares(struct task_group *tg)
  8699. {
  8700. return tg->shares;
  8701. }
  8702. #endif
  8703. #ifdef CONFIG_RT_GROUP_SCHED
  8704. /*
  8705. * Ensure that the real time constraints are schedulable.
  8706. */
  8707. static DEFINE_MUTEX(rt_constraints_mutex);
  8708. static unsigned long to_ratio(u64 period, u64 runtime)
  8709. {
  8710. if (runtime == RUNTIME_INF)
  8711. return 1ULL << 20;
  8712. return div64_u64(runtime << 20, period);
  8713. }
  8714. /* Must be called with tasklist_lock held */
  8715. static inline int tg_has_rt_tasks(struct task_group *tg)
  8716. {
  8717. struct task_struct *g, *p;
  8718. do_each_thread(g, p) {
  8719. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8720. return 1;
  8721. } while_each_thread(g, p);
  8722. return 0;
  8723. }
  8724. struct rt_schedulable_data {
  8725. struct task_group *tg;
  8726. u64 rt_period;
  8727. u64 rt_runtime;
  8728. };
  8729. static int tg_schedulable(struct task_group *tg, void *data)
  8730. {
  8731. struct rt_schedulable_data *d = data;
  8732. struct task_group *child;
  8733. unsigned long total, sum = 0;
  8734. u64 period, runtime;
  8735. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8736. runtime = tg->rt_bandwidth.rt_runtime;
  8737. if (tg == d->tg) {
  8738. period = d->rt_period;
  8739. runtime = d->rt_runtime;
  8740. }
  8741. #ifdef CONFIG_USER_SCHED
  8742. if (tg == &root_task_group) {
  8743. period = global_rt_period();
  8744. runtime = global_rt_runtime();
  8745. }
  8746. #endif
  8747. /*
  8748. * Cannot have more runtime than the period.
  8749. */
  8750. if (runtime > period && runtime != RUNTIME_INF)
  8751. return -EINVAL;
  8752. /*
  8753. * Ensure we don't starve existing RT tasks.
  8754. */
  8755. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8756. return -EBUSY;
  8757. total = to_ratio(period, runtime);
  8758. /*
  8759. * Nobody can have more than the global setting allows.
  8760. */
  8761. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8762. return -EINVAL;
  8763. /*
  8764. * The sum of our children's runtime should not exceed our own.
  8765. */
  8766. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8767. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8768. runtime = child->rt_bandwidth.rt_runtime;
  8769. if (child == d->tg) {
  8770. period = d->rt_period;
  8771. runtime = d->rt_runtime;
  8772. }
  8773. sum += to_ratio(period, runtime);
  8774. }
  8775. if (sum > total)
  8776. return -EINVAL;
  8777. return 0;
  8778. }
  8779. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8780. {
  8781. struct rt_schedulable_data data = {
  8782. .tg = tg,
  8783. .rt_period = period,
  8784. .rt_runtime = runtime,
  8785. };
  8786. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8787. }
  8788. static int tg_set_bandwidth(struct task_group *tg,
  8789. u64 rt_period, u64 rt_runtime)
  8790. {
  8791. int i, err = 0;
  8792. mutex_lock(&rt_constraints_mutex);
  8793. read_lock(&tasklist_lock);
  8794. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8795. if (err)
  8796. goto unlock;
  8797. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8798. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8799. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8800. for_each_possible_cpu(i) {
  8801. struct rt_rq *rt_rq = tg->rt_rq[i];
  8802. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8803. rt_rq->rt_runtime = rt_runtime;
  8804. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8805. }
  8806. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8807. unlock:
  8808. read_unlock(&tasklist_lock);
  8809. mutex_unlock(&rt_constraints_mutex);
  8810. return err;
  8811. }
  8812. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8813. {
  8814. u64 rt_runtime, rt_period;
  8815. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8816. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8817. if (rt_runtime_us < 0)
  8818. rt_runtime = RUNTIME_INF;
  8819. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8820. }
  8821. long sched_group_rt_runtime(struct task_group *tg)
  8822. {
  8823. u64 rt_runtime_us;
  8824. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8825. return -1;
  8826. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8827. do_div(rt_runtime_us, NSEC_PER_USEC);
  8828. return rt_runtime_us;
  8829. }
  8830. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8831. {
  8832. u64 rt_runtime, rt_period;
  8833. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8834. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8835. if (rt_period == 0)
  8836. return -EINVAL;
  8837. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8838. }
  8839. long sched_group_rt_period(struct task_group *tg)
  8840. {
  8841. u64 rt_period_us;
  8842. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8843. do_div(rt_period_us, NSEC_PER_USEC);
  8844. return rt_period_us;
  8845. }
  8846. static int sched_rt_global_constraints(void)
  8847. {
  8848. u64 runtime, period;
  8849. int ret = 0;
  8850. if (sysctl_sched_rt_period <= 0)
  8851. return -EINVAL;
  8852. runtime = global_rt_runtime();
  8853. period = global_rt_period();
  8854. /*
  8855. * Sanity check on the sysctl variables.
  8856. */
  8857. if (runtime > period && runtime != RUNTIME_INF)
  8858. return -EINVAL;
  8859. mutex_lock(&rt_constraints_mutex);
  8860. read_lock(&tasklist_lock);
  8861. ret = __rt_schedulable(NULL, 0, 0);
  8862. read_unlock(&tasklist_lock);
  8863. mutex_unlock(&rt_constraints_mutex);
  8864. return ret;
  8865. }
  8866. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8867. {
  8868. /* Don't accept realtime tasks when there is no way for them to run */
  8869. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8870. return 0;
  8871. return 1;
  8872. }
  8873. #else /* !CONFIG_RT_GROUP_SCHED */
  8874. static int sched_rt_global_constraints(void)
  8875. {
  8876. unsigned long flags;
  8877. int i;
  8878. if (sysctl_sched_rt_period <= 0)
  8879. return -EINVAL;
  8880. /*
  8881. * There's always some RT tasks in the root group
  8882. * -- migration, kstopmachine etc..
  8883. */
  8884. if (sysctl_sched_rt_runtime == 0)
  8885. return -EBUSY;
  8886. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8887. for_each_possible_cpu(i) {
  8888. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8889. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8890. rt_rq->rt_runtime = global_rt_runtime();
  8891. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8892. }
  8893. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8894. return 0;
  8895. }
  8896. #endif /* CONFIG_RT_GROUP_SCHED */
  8897. int sched_rt_handler(struct ctl_table *table, int write,
  8898. void __user *buffer, size_t *lenp,
  8899. loff_t *ppos)
  8900. {
  8901. int ret;
  8902. int old_period, old_runtime;
  8903. static DEFINE_MUTEX(mutex);
  8904. mutex_lock(&mutex);
  8905. old_period = sysctl_sched_rt_period;
  8906. old_runtime = sysctl_sched_rt_runtime;
  8907. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8908. if (!ret && write) {
  8909. ret = sched_rt_global_constraints();
  8910. if (ret) {
  8911. sysctl_sched_rt_period = old_period;
  8912. sysctl_sched_rt_runtime = old_runtime;
  8913. } else {
  8914. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8915. def_rt_bandwidth.rt_period =
  8916. ns_to_ktime(global_rt_period());
  8917. }
  8918. }
  8919. mutex_unlock(&mutex);
  8920. return ret;
  8921. }
  8922. #ifdef CONFIG_CGROUP_SCHED
  8923. /* return corresponding task_group object of a cgroup */
  8924. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8925. {
  8926. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8927. struct task_group, css);
  8928. }
  8929. static struct cgroup_subsys_state *
  8930. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8931. {
  8932. struct task_group *tg, *parent;
  8933. if (!cgrp->parent) {
  8934. /* This is early initialization for the top cgroup */
  8935. return &init_task_group.css;
  8936. }
  8937. parent = cgroup_tg(cgrp->parent);
  8938. tg = sched_create_group(parent);
  8939. if (IS_ERR(tg))
  8940. return ERR_PTR(-ENOMEM);
  8941. return &tg->css;
  8942. }
  8943. static void
  8944. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8945. {
  8946. struct task_group *tg = cgroup_tg(cgrp);
  8947. sched_destroy_group(tg);
  8948. }
  8949. static int
  8950. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8951. {
  8952. #ifdef CONFIG_RT_GROUP_SCHED
  8953. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8954. return -EINVAL;
  8955. #else
  8956. /* We don't support RT-tasks being in separate groups */
  8957. if (tsk->sched_class != &fair_sched_class)
  8958. return -EINVAL;
  8959. #endif
  8960. return 0;
  8961. }
  8962. static int
  8963. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8964. struct task_struct *tsk, bool threadgroup)
  8965. {
  8966. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8967. if (retval)
  8968. return retval;
  8969. if (threadgroup) {
  8970. struct task_struct *c;
  8971. rcu_read_lock();
  8972. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8973. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8974. if (retval) {
  8975. rcu_read_unlock();
  8976. return retval;
  8977. }
  8978. }
  8979. rcu_read_unlock();
  8980. }
  8981. return 0;
  8982. }
  8983. static void
  8984. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8985. struct cgroup *old_cont, struct task_struct *tsk,
  8986. bool threadgroup)
  8987. {
  8988. sched_move_task(tsk);
  8989. if (threadgroup) {
  8990. struct task_struct *c;
  8991. rcu_read_lock();
  8992. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8993. sched_move_task(c);
  8994. }
  8995. rcu_read_unlock();
  8996. }
  8997. }
  8998. #ifdef CONFIG_FAIR_GROUP_SCHED
  8999. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  9000. u64 shareval)
  9001. {
  9002. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  9003. }
  9004. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  9005. {
  9006. struct task_group *tg = cgroup_tg(cgrp);
  9007. return (u64) tg->shares;
  9008. }
  9009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  9010. #ifdef CONFIG_RT_GROUP_SCHED
  9011. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  9012. s64 val)
  9013. {
  9014. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  9015. }
  9016. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  9017. {
  9018. return sched_group_rt_runtime(cgroup_tg(cgrp));
  9019. }
  9020. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  9021. u64 rt_period_us)
  9022. {
  9023. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  9024. }
  9025. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9026. {
  9027. return sched_group_rt_period(cgroup_tg(cgrp));
  9028. }
  9029. #endif /* CONFIG_RT_GROUP_SCHED */
  9030. static struct cftype cpu_files[] = {
  9031. #ifdef CONFIG_FAIR_GROUP_SCHED
  9032. {
  9033. .name = "shares",
  9034. .read_u64 = cpu_shares_read_u64,
  9035. .write_u64 = cpu_shares_write_u64,
  9036. },
  9037. #endif
  9038. #ifdef CONFIG_RT_GROUP_SCHED
  9039. {
  9040. .name = "rt_runtime_us",
  9041. .read_s64 = cpu_rt_runtime_read,
  9042. .write_s64 = cpu_rt_runtime_write,
  9043. },
  9044. {
  9045. .name = "rt_period_us",
  9046. .read_u64 = cpu_rt_period_read_uint,
  9047. .write_u64 = cpu_rt_period_write_uint,
  9048. },
  9049. #endif
  9050. };
  9051. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9052. {
  9053. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9054. }
  9055. struct cgroup_subsys cpu_cgroup_subsys = {
  9056. .name = "cpu",
  9057. .create = cpu_cgroup_create,
  9058. .destroy = cpu_cgroup_destroy,
  9059. .can_attach = cpu_cgroup_can_attach,
  9060. .attach = cpu_cgroup_attach,
  9061. .populate = cpu_cgroup_populate,
  9062. .subsys_id = cpu_cgroup_subsys_id,
  9063. .early_init = 1,
  9064. };
  9065. #endif /* CONFIG_CGROUP_SCHED */
  9066. #ifdef CONFIG_CGROUP_CPUACCT
  9067. /*
  9068. * CPU accounting code for task groups.
  9069. *
  9070. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9071. * (balbir@in.ibm.com).
  9072. */
  9073. /* track cpu usage of a group of tasks and its child groups */
  9074. struct cpuacct {
  9075. struct cgroup_subsys_state css;
  9076. /* cpuusage holds pointer to a u64-type object on every cpu */
  9077. u64 *cpuusage;
  9078. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9079. struct cpuacct *parent;
  9080. };
  9081. struct cgroup_subsys cpuacct_subsys;
  9082. /* return cpu accounting group corresponding to this container */
  9083. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9084. {
  9085. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9086. struct cpuacct, css);
  9087. }
  9088. /* return cpu accounting group to which this task belongs */
  9089. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9090. {
  9091. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9092. struct cpuacct, css);
  9093. }
  9094. /* create a new cpu accounting group */
  9095. static struct cgroup_subsys_state *cpuacct_create(
  9096. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9097. {
  9098. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9099. int i;
  9100. if (!ca)
  9101. goto out;
  9102. ca->cpuusage = alloc_percpu(u64);
  9103. if (!ca->cpuusage)
  9104. goto out_free_ca;
  9105. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9106. if (percpu_counter_init(&ca->cpustat[i], 0))
  9107. goto out_free_counters;
  9108. if (cgrp->parent)
  9109. ca->parent = cgroup_ca(cgrp->parent);
  9110. return &ca->css;
  9111. out_free_counters:
  9112. while (--i >= 0)
  9113. percpu_counter_destroy(&ca->cpustat[i]);
  9114. free_percpu(ca->cpuusage);
  9115. out_free_ca:
  9116. kfree(ca);
  9117. out:
  9118. return ERR_PTR(-ENOMEM);
  9119. }
  9120. /* destroy an existing cpu accounting group */
  9121. static void
  9122. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9123. {
  9124. struct cpuacct *ca = cgroup_ca(cgrp);
  9125. int i;
  9126. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9127. percpu_counter_destroy(&ca->cpustat[i]);
  9128. free_percpu(ca->cpuusage);
  9129. kfree(ca);
  9130. }
  9131. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9132. {
  9133. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9134. u64 data;
  9135. #ifndef CONFIG_64BIT
  9136. /*
  9137. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9138. */
  9139. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9140. data = *cpuusage;
  9141. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9142. #else
  9143. data = *cpuusage;
  9144. #endif
  9145. return data;
  9146. }
  9147. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9148. {
  9149. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9150. #ifndef CONFIG_64BIT
  9151. /*
  9152. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9153. */
  9154. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9155. *cpuusage = val;
  9156. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9157. #else
  9158. *cpuusage = val;
  9159. #endif
  9160. }
  9161. /* return total cpu usage (in nanoseconds) of a group */
  9162. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9163. {
  9164. struct cpuacct *ca = cgroup_ca(cgrp);
  9165. u64 totalcpuusage = 0;
  9166. int i;
  9167. for_each_present_cpu(i)
  9168. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9169. return totalcpuusage;
  9170. }
  9171. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9172. u64 reset)
  9173. {
  9174. struct cpuacct *ca = cgroup_ca(cgrp);
  9175. int err = 0;
  9176. int i;
  9177. if (reset) {
  9178. err = -EINVAL;
  9179. goto out;
  9180. }
  9181. for_each_present_cpu(i)
  9182. cpuacct_cpuusage_write(ca, i, 0);
  9183. out:
  9184. return err;
  9185. }
  9186. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9187. struct seq_file *m)
  9188. {
  9189. struct cpuacct *ca = cgroup_ca(cgroup);
  9190. u64 percpu;
  9191. int i;
  9192. for_each_present_cpu(i) {
  9193. percpu = cpuacct_cpuusage_read(ca, i);
  9194. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9195. }
  9196. seq_printf(m, "\n");
  9197. return 0;
  9198. }
  9199. static const char *cpuacct_stat_desc[] = {
  9200. [CPUACCT_STAT_USER] = "user",
  9201. [CPUACCT_STAT_SYSTEM] = "system",
  9202. };
  9203. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9204. struct cgroup_map_cb *cb)
  9205. {
  9206. struct cpuacct *ca = cgroup_ca(cgrp);
  9207. int i;
  9208. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9209. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9210. val = cputime64_to_clock_t(val);
  9211. cb->fill(cb, cpuacct_stat_desc[i], val);
  9212. }
  9213. return 0;
  9214. }
  9215. static struct cftype files[] = {
  9216. {
  9217. .name = "usage",
  9218. .read_u64 = cpuusage_read,
  9219. .write_u64 = cpuusage_write,
  9220. },
  9221. {
  9222. .name = "usage_percpu",
  9223. .read_seq_string = cpuacct_percpu_seq_read,
  9224. },
  9225. {
  9226. .name = "stat",
  9227. .read_map = cpuacct_stats_show,
  9228. },
  9229. };
  9230. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9231. {
  9232. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9233. }
  9234. /*
  9235. * charge this task's execution time to its accounting group.
  9236. *
  9237. * called with rq->lock held.
  9238. */
  9239. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9240. {
  9241. struct cpuacct *ca;
  9242. int cpu;
  9243. if (unlikely(!cpuacct_subsys.active))
  9244. return;
  9245. cpu = task_cpu(tsk);
  9246. rcu_read_lock();
  9247. ca = task_ca(tsk);
  9248. for (; ca; ca = ca->parent) {
  9249. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9250. *cpuusage += cputime;
  9251. }
  9252. rcu_read_unlock();
  9253. }
  9254. /*
  9255. * Charge the system/user time to the task's accounting group.
  9256. */
  9257. static void cpuacct_update_stats(struct task_struct *tsk,
  9258. enum cpuacct_stat_index idx, cputime_t val)
  9259. {
  9260. struct cpuacct *ca;
  9261. if (unlikely(!cpuacct_subsys.active))
  9262. return;
  9263. rcu_read_lock();
  9264. ca = task_ca(tsk);
  9265. do {
  9266. percpu_counter_add(&ca->cpustat[idx], val);
  9267. ca = ca->parent;
  9268. } while (ca);
  9269. rcu_read_unlock();
  9270. }
  9271. struct cgroup_subsys cpuacct_subsys = {
  9272. .name = "cpuacct",
  9273. .create = cpuacct_create,
  9274. .destroy = cpuacct_destroy,
  9275. .populate = cpuacct_populate,
  9276. .subsys_id = cpuacct_subsys_id,
  9277. };
  9278. #endif /* CONFIG_CGROUP_CPUACCT */
  9279. #ifndef CONFIG_SMP
  9280. int rcu_expedited_torture_stats(char *page)
  9281. {
  9282. return 0;
  9283. }
  9284. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9285. void synchronize_sched_expedited(void)
  9286. {
  9287. }
  9288. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9289. #else /* #ifndef CONFIG_SMP */
  9290. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9291. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9292. #define RCU_EXPEDITED_STATE_POST -2
  9293. #define RCU_EXPEDITED_STATE_IDLE -1
  9294. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9295. int rcu_expedited_torture_stats(char *page)
  9296. {
  9297. int cnt = 0;
  9298. int cpu;
  9299. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9300. for_each_online_cpu(cpu) {
  9301. cnt += sprintf(&page[cnt], " %d:%d",
  9302. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9303. }
  9304. cnt += sprintf(&page[cnt], "\n");
  9305. return cnt;
  9306. }
  9307. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9308. static long synchronize_sched_expedited_count;
  9309. /*
  9310. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9311. * approach to force grace period to end quickly. This consumes
  9312. * significant time on all CPUs, and is thus not recommended for
  9313. * any sort of common-case code.
  9314. *
  9315. * Note that it is illegal to call this function while holding any
  9316. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9317. * observe this restriction will result in deadlock.
  9318. */
  9319. void synchronize_sched_expedited(void)
  9320. {
  9321. int cpu;
  9322. unsigned long flags;
  9323. bool need_full_sync = 0;
  9324. struct rq *rq;
  9325. struct migration_req *req;
  9326. long snap;
  9327. int trycount = 0;
  9328. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9329. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9330. get_online_cpus();
  9331. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9332. put_online_cpus();
  9333. if (trycount++ < 10)
  9334. udelay(trycount * num_online_cpus());
  9335. else {
  9336. synchronize_sched();
  9337. return;
  9338. }
  9339. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9340. smp_mb(); /* ensure test happens before caller kfree */
  9341. return;
  9342. }
  9343. get_online_cpus();
  9344. }
  9345. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9346. for_each_online_cpu(cpu) {
  9347. rq = cpu_rq(cpu);
  9348. req = &per_cpu(rcu_migration_req, cpu);
  9349. init_completion(&req->done);
  9350. req->task = NULL;
  9351. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9352. raw_spin_lock_irqsave(&rq->lock, flags);
  9353. list_add(&req->list, &rq->migration_queue);
  9354. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9355. wake_up_process(rq->migration_thread);
  9356. }
  9357. for_each_online_cpu(cpu) {
  9358. rcu_expedited_state = cpu;
  9359. req = &per_cpu(rcu_migration_req, cpu);
  9360. rq = cpu_rq(cpu);
  9361. wait_for_completion(&req->done);
  9362. raw_spin_lock_irqsave(&rq->lock, flags);
  9363. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9364. need_full_sync = 1;
  9365. req->dest_cpu = RCU_MIGRATION_IDLE;
  9366. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9367. }
  9368. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9369. synchronize_sched_expedited_count++;
  9370. mutex_unlock(&rcu_sched_expedited_mutex);
  9371. put_online_cpus();
  9372. if (need_full_sync)
  9373. synchronize_sched();
  9374. }
  9375. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9376. #endif /* #else #ifndef CONFIG_SMP */