exec.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/swap.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/perf_event.h>
  35. #include <linux/highmem.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/key.h>
  38. #include <linux/personality.h>
  39. #include <linux/binfmts.h>
  40. #include <linux/utsname.h>
  41. #include <linux/pid_namespace.h>
  42. #include <linux/module.h>
  43. #include <linux/namei.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/mount.h>
  46. #include <linux/security.h>
  47. #include <linux/syscalls.h>
  48. #include <linux/tsacct_kern.h>
  49. #include <linux/cn_proc.h>
  50. #include <linux/audit.h>
  51. #include <linux/tracehook.h>
  52. #include <linux/kmod.h>
  53. #include <linux/fsnotify.h>
  54. #include <linux/fs_struct.h>
  55. #include <linux/pipe_fs_i.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/tlb.h>
  59. #include "internal.h"
  60. int core_uses_pid;
  61. char core_pattern[CORENAME_MAX_SIZE] = "core";
  62. unsigned int core_pipe_limit;
  63. int suid_dumpable = 0;
  64. /* The maximal length of core_pattern is also specified in sysctl.c */
  65. static LIST_HEAD(formats);
  66. static DEFINE_RWLOCK(binfmt_lock);
  67. int __register_binfmt(struct linux_binfmt * fmt, int insert)
  68. {
  69. if (!fmt)
  70. return -EINVAL;
  71. write_lock(&binfmt_lock);
  72. insert ? list_add(&fmt->lh, &formats) :
  73. list_add_tail(&fmt->lh, &formats);
  74. write_unlock(&binfmt_lock);
  75. return 0;
  76. }
  77. EXPORT_SYMBOL(__register_binfmt);
  78. void unregister_binfmt(struct linux_binfmt * fmt)
  79. {
  80. write_lock(&binfmt_lock);
  81. list_del(&fmt->lh);
  82. write_unlock(&binfmt_lock);
  83. }
  84. EXPORT_SYMBOL(unregister_binfmt);
  85. static inline void put_binfmt(struct linux_binfmt * fmt)
  86. {
  87. module_put(fmt->module);
  88. }
  89. /*
  90. * Note that a shared library must be both readable and executable due to
  91. * security reasons.
  92. *
  93. * Also note that we take the address to load from from the file itself.
  94. */
  95. SYSCALL_DEFINE1(uselib, const char __user *, library)
  96. {
  97. struct file *file;
  98. char *tmp = getname(library);
  99. int error = PTR_ERR(tmp);
  100. if (IS_ERR(tmp))
  101. goto out;
  102. file = do_filp_open(AT_FDCWD, tmp,
  103. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  104. MAY_READ | MAY_EXEC | MAY_OPEN);
  105. putname(tmp);
  106. error = PTR_ERR(file);
  107. if (IS_ERR(file))
  108. goto out;
  109. error = -EINVAL;
  110. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  111. goto exit;
  112. error = -EACCES;
  113. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  114. goto exit;
  115. fsnotify_open(file->f_path.dentry);
  116. error = -ENOEXEC;
  117. if(file->f_op) {
  118. struct linux_binfmt * fmt;
  119. read_lock(&binfmt_lock);
  120. list_for_each_entry(fmt, &formats, lh) {
  121. if (!fmt->load_shlib)
  122. continue;
  123. if (!try_module_get(fmt->module))
  124. continue;
  125. read_unlock(&binfmt_lock);
  126. error = fmt->load_shlib(file);
  127. read_lock(&binfmt_lock);
  128. put_binfmt(fmt);
  129. if (error != -ENOEXEC)
  130. break;
  131. }
  132. read_unlock(&binfmt_lock);
  133. }
  134. exit:
  135. fput(file);
  136. out:
  137. return error;
  138. }
  139. #ifdef CONFIG_MMU
  140. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  141. int write)
  142. {
  143. struct page *page;
  144. int ret;
  145. #ifdef CONFIG_STACK_GROWSUP
  146. if (write) {
  147. ret = expand_stack_downwards(bprm->vma, pos);
  148. if (ret < 0)
  149. return NULL;
  150. }
  151. #endif
  152. ret = get_user_pages(current, bprm->mm, pos,
  153. 1, write, 1, &page, NULL);
  154. if (ret <= 0)
  155. return NULL;
  156. if (write) {
  157. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  158. struct rlimit *rlim;
  159. /*
  160. * We've historically supported up to 32 pages (ARG_MAX)
  161. * of argument strings even with small stacks
  162. */
  163. if (size <= ARG_MAX)
  164. return page;
  165. /*
  166. * Limit to 1/4-th the stack size for the argv+env strings.
  167. * This ensures that:
  168. * - the remaining binfmt code will not run out of stack space,
  169. * - the program will have a reasonable amount of stack left
  170. * to work from.
  171. */
  172. rlim = current->signal->rlim;
  173. if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
  174. put_page(page);
  175. return NULL;
  176. }
  177. }
  178. return page;
  179. }
  180. static void put_arg_page(struct page *page)
  181. {
  182. put_page(page);
  183. }
  184. static void free_arg_page(struct linux_binprm *bprm, int i)
  185. {
  186. }
  187. static void free_arg_pages(struct linux_binprm *bprm)
  188. {
  189. }
  190. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  191. struct page *page)
  192. {
  193. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  194. }
  195. static int __bprm_mm_init(struct linux_binprm *bprm)
  196. {
  197. int err;
  198. struct vm_area_struct *vma = NULL;
  199. struct mm_struct *mm = bprm->mm;
  200. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  201. if (!vma)
  202. return -ENOMEM;
  203. down_write(&mm->mmap_sem);
  204. vma->vm_mm = mm;
  205. /*
  206. * Place the stack at the largest stack address the architecture
  207. * supports. Later, we'll move this to an appropriate place. We don't
  208. * use STACK_TOP because that can depend on attributes which aren't
  209. * configured yet.
  210. */
  211. vma->vm_end = STACK_TOP_MAX;
  212. vma->vm_start = vma->vm_end - PAGE_SIZE;
  213. vma->vm_flags = VM_STACK_FLAGS;
  214. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  215. err = insert_vm_struct(mm, vma);
  216. if (err)
  217. goto err;
  218. mm->stack_vm = mm->total_vm = 1;
  219. up_write(&mm->mmap_sem);
  220. bprm->p = vma->vm_end - sizeof(void *);
  221. return 0;
  222. err:
  223. up_write(&mm->mmap_sem);
  224. bprm->vma = NULL;
  225. kmem_cache_free(vm_area_cachep, vma);
  226. return err;
  227. }
  228. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  229. {
  230. return len <= MAX_ARG_STRLEN;
  231. }
  232. #else
  233. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  234. int write)
  235. {
  236. struct page *page;
  237. page = bprm->page[pos / PAGE_SIZE];
  238. if (!page && write) {
  239. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  240. if (!page)
  241. return NULL;
  242. bprm->page[pos / PAGE_SIZE] = page;
  243. }
  244. return page;
  245. }
  246. static void put_arg_page(struct page *page)
  247. {
  248. }
  249. static void free_arg_page(struct linux_binprm *bprm, int i)
  250. {
  251. if (bprm->page[i]) {
  252. __free_page(bprm->page[i]);
  253. bprm->page[i] = NULL;
  254. }
  255. }
  256. static void free_arg_pages(struct linux_binprm *bprm)
  257. {
  258. int i;
  259. for (i = 0; i < MAX_ARG_PAGES; i++)
  260. free_arg_page(bprm, i);
  261. }
  262. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  263. struct page *page)
  264. {
  265. }
  266. static int __bprm_mm_init(struct linux_binprm *bprm)
  267. {
  268. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  269. return 0;
  270. }
  271. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  272. {
  273. return len <= bprm->p;
  274. }
  275. #endif /* CONFIG_MMU */
  276. /*
  277. * Create a new mm_struct and populate it with a temporary stack
  278. * vm_area_struct. We don't have enough context at this point to set the stack
  279. * flags, permissions, and offset, so we use temporary values. We'll update
  280. * them later in setup_arg_pages().
  281. */
  282. int bprm_mm_init(struct linux_binprm *bprm)
  283. {
  284. int err;
  285. struct mm_struct *mm = NULL;
  286. bprm->mm = mm = mm_alloc();
  287. err = -ENOMEM;
  288. if (!mm)
  289. goto err;
  290. err = init_new_context(current, mm);
  291. if (err)
  292. goto err;
  293. err = __bprm_mm_init(bprm);
  294. if (err)
  295. goto err;
  296. return 0;
  297. err:
  298. if (mm) {
  299. bprm->mm = NULL;
  300. mmdrop(mm);
  301. }
  302. return err;
  303. }
  304. /*
  305. * count() counts the number of strings in array ARGV.
  306. */
  307. static int count(char __user * __user * argv, int max)
  308. {
  309. int i = 0;
  310. if (argv != NULL) {
  311. for (;;) {
  312. char __user * p;
  313. if (get_user(p, argv))
  314. return -EFAULT;
  315. if (!p)
  316. break;
  317. argv++;
  318. if (i++ >= max)
  319. return -E2BIG;
  320. cond_resched();
  321. }
  322. }
  323. return i;
  324. }
  325. /*
  326. * 'copy_strings()' copies argument/environment strings from the old
  327. * processes's memory to the new process's stack. The call to get_user_pages()
  328. * ensures the destination page is created and not swapped out.
  329. */
  330. static int copy_strings(int argc, char __user * __user * argv,
  331. struct linux_binprm *bprm)
  332. {
  333. struct page *kmapped_page = NULL;
  334. char *kaddr = NULL;
  335. unsigned long kpos = 0;
  336. int ret;
  337. while (argc-- > 0) {
  338. char __user *str;
  339. int len;
  340. unsigned long pos;
  341. if (get_user(str, argv+argc) ||
  342. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  343. ret = -EFAULT;
  344. goto out;
  345. }
  346. if (!valid_arg_len(bprm, len)) {
  347. ret = -E2BIG;
  348. goto out;
  349. }
  350. /* We're going to work our way backwords. */
  351. pos = bprm->p;
  352. str += len;
  353. bprm->p -= len;
  354. while (len > 0) {
  355. int offset, bytes_to_copy;
  356. offset = pos % PAGE_SIZE;
  357. if (offset == 0)
  358. offset = PAGE_SIZE;
  359. bytes_to_copy = offset;
  360. if (bytes_to_copy > len)
  361. bytes_to_copy = len;
  362. offset -= bytes_to_copy;
  363. pos -= bytes_to_copy;
  364. str -= bytes_to_copy;
  365. len -= bytes_to_copy;
  366. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  367. struct page *page;
  368. page = get_arg_page(bprm, pos, 1);
  369. if (!page) {
  370. ret = -E2BIG;
  371. goto out;
  372. }
  373. if (kmapped_page) {
  374. flush_kernel_dcache_page(kmapped_page);
  375. kunmap(kmapped_page);
  376. put_arg_page(kmapped_page);
  377. }
  378. kmapped_page = page;
  379. kaddr = kmap(kmapped_page);
  380. kpos = pos & PAGE_MASK;
  381. flush_arg_page(bprm, kpos, kmapped_page);
  382. }
  383. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  384. ret = -EFAULT;
  385. goto out;
  386. }
  387. }
  388. }
  389. ret = 0;
  390. out:
  391. if (kmapped_page) {
  392. flush_kernel_dcache_page(kmapped_page);
  393. kunmap(kmapped_page);
  394. put_arg_page(kmapped_page);
  395. }
  396. return ret;
  397. }
  398. /*
  399. * Like copy_strings, but get argv and its values from kernel memory.
  400. */
  401. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  402. {
  403. int r;
  404. mm_segment_t oldfs = get_fs();
  405. set_fs(KERNEL_DS);
  406. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  407. set_fs(oldfs);
  408. return r;
  409. }
  410. EXPORT_SYMBOL(copy_strings_kernel);
  411. #ifdef CONFIG_MMU
  412. /*
  413. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  414. * the binfmt code determines where the new stack should reside, we shift it to
  415. * its final location. The process proceeds as follows:
  416. *
  417. * 1) Use shift to calculate the new vma endpoints.
  418. * 2) Extend vma to cover both the old and new ranges. This ensures the
  419. * arguments passed to subsequent functions are consistent.
  420. * 3) Move vma's page tables to the new range.
  421. * 4) Free up any cleared pgd range.
  422. * 5) Shrink the vma to cover only the new range.
  423. */
  424. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  425. {
  426. struct mm_struct *mm = vma->vm_mm;
  427. unsigned long old_start = vma->vm_start;
  428. unsigned long old_end = vma->vm_end;
  429. unsigned long length = old_end - old_start;
  430. unsigned long new_start = old_start - shift;
  431. unsigned long new_end = old_end - shift;
  432. struct mmu_gather *tlb;
  433. BUG_ON(new_start > new_end);
  434. /*
  435. * ensure there are no vmas between where we want to go
  436. * and where we are
  437. */
  438. if (vma != find_vma(mm, new_start))
  439. return -EFAULT;
  440. /*
  441. * cover the whole range: [new_start, old_end)
  442. */
  443. vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
  444. /*
  445. * move the page tables downwards, on failure we rely on
  446. * process cleanup to remove whatever mess we made.
  447. */
  448. if (length != move_page_tables(vma, old_start,
  449. vma, new_start, length))
  450. return -ENOMEM;
  451. lru_add_drain();
  452. tlb = tlb_gather_mmu(mm, 0);
  453. if (new_end > old_start) {
  454. /*
  455. * when the old and new regions overlap clear from new_end.
  456. */
  457. free_pgd_range(tlb, new_end, old_end, new_end,
  458. vma->vm_next ? vma->vm_next->vm_start : 0);
  459. } else {
  460. /*
  461. * otherwise, clean from old_start; this is done to not touch
  462. * the address space in [new_end, old_start) some architectures
  463. * have constraints on va-space that make this illegal (IA64) -
  464. * for the others its just a little faster.
  465. */
  466. free_pgd_range(tlb, old_start, old_end, new_end,
  467. vma->vm_next ? vma->vm_next->vm_start : 0);
  468. }
  469. tlb_finish_mmu(tlb, new_end, old_end);
  470. /*
  471. * shrink the vma to just the new range.
  472. */
  473. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  474. return 0;
  475. }
  476. #define EXTRA_STACK_VM_PAGES 20 /* random */
  477. /*
  478. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  479. * the stack is optionally relocated, and some extra space is added.
  480. */
  481. int setup_arg_pages(struct linux_binprm *bprm,
  482. unsigned long stack_top,
  483. int executable_stack)
  484. {
  485. unsigned long ret;
  486. unsigned long stack_shift;
  487. struct mm_struct *mm = current->mm;
  488. struct vm_area_struct *vma = bprm->vma;
  489. struct vm_area_struct *prev = NULL;
  490. unsigned long vm_flags;
  491. unsigned long stack_base;
  492. unsigned long stack_size;
  493. unsigned long stack_expand;
  494. unsigned long rlim_stack;
  495. #ifdef CONFIG_STACK_GROWSUP
  496. /* Limit stack size to 1GB */
  497. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  498. if (stack_base > (1 << 30))
  499. stack_base = 1 << 30;
  500. /* Make sure we didn't let the argument array grow too large. */
  501. if (vma->vm_end - vma->vm_start > stack_base)
  502. return -ENOMEM;
  503. stack_base = PAGE_ALIGN(stack_top - stack_base);
  504. stack_shift = vma->vm_start - stack_base;
  505. mm->arg_start = bprm->p - stack_shift;
  506. bprm->p = vma->vm_end - stack_shift;
  507. #else
  508. stack_top = arch_align_stack(stack_top);
  509. stack_top = PAGE_ALIGN(stack_top);
  510. stack_shift = vma->vm_end - stack_top;
  511. bprm->p -= stack_shift;
  512. mm->arg_start = bprm->p;
  513. #endif
  514. if (bprm->loader)
  515. bprm->loader -= stack_shift;
  516. bprm->exec -= stack_shift;
  517. down_write(&mm->mmap_sem);
  518. vm_flags = VM_STACK_FLAGS;
  519. /*
  520. * Adjust stack execute permissions; explicitly enable for
  521. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  522. * (arch default) otherwise.
  523. */
  524. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  525. vm_flags |= VM_EXEC;
  526. else if (executable_stack == EXSTACK_DISABLE_X)
  527. vm_flags &= ~VM_EXEC;
  528. vm_flags |= mm->def_flags;
  529. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  530. vm_flags);
  531. if (ret)
  532. goto out_unlock;
  533. BUG_ON(prev != vma);
  534. /* Move stack pages down in memory. */
  535. if (stack_shift) {
  536. ret = shift_arg_pages(vma, stack_shift);
  537. if (ret)
  538. goto out_unlock;
  539. }
  540. stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  541. stack_size = vma->vm_end - vma->vm_start;
  542. /*
  543. * Align this down to a page boundary as expand_stack
  544. * will align it up.
  545. */
  546. rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
  547. #ifdef CONFIG_STACK_GROWSUP
  548. if (stack_size + stack_expand > rlim_stack)
  549. stack_base = vma->vm_start + rlim_stack;
  550. else
  551. stack_base = vma->vm_end + stack_expand;
  552. #else
  553. if (stack_size + stack_expand > rlim_stack)
  554. stack_base = vma->vm_end - rlim_stack;
  555. else
  556. stack_base = vma->vm_start - stack_expand;
  557. #endif
  558. ret = expand_stack(vma, stack_base);
  559. if (ret)
  560. ret = -EFAULT;
  561. out_unlock:
  562. up_write(&mm->mmap_sem);
  563. return ret;
  564. }
  565. EXPORT_SYMBOL(setup_arg_pages);
  566. #endif /* CONFIG_MMU */
  567. struct file *open_exec(const char *name)
  568. {
  569. struct file *file;
  570. int err;
  571. file = do_filp_open(AT_FDCWD, name,
  572. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  573. MAY_EXEC | MAY_OPEN);
  574. if (IS_ERR(file))
  575. goto out;
  576. err = -EACCES;
  577. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  578. goto exit;
  579. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  580. goto exit;
  581. fsnotify_open(file->f_path.dentry);
  582. err = deny_write_access(file);
  583. if (err)
  584. goto exit;
  585. out:
  586. return file;
  587. exit:
  588. fput(file);
  589. return ERR_PTR(err);
  590. }
  591. EXPORT_SYMBOL(open_exec);
  592. int kernel_read(struct file *file, loff_t offset,
  593. char *addr, unsigned long count)
  594. {
  595. mm_segment_t old_fs;
  596. loff_t pos = offset;
  597. int result;
  598. old_fs = get_fs();
  599. set_fs(get_ds());
  600. /* The cast to a user pointer is valid due to the set_fs() */
  601. result = vfs_read(file, (void __user *)addr, count, &pos);
  602. set_fs(old_fs);
  603. return result;
  604. }
  605. EXPORT_SYMBOL(kernel_read);
  606. static int exec_mmap(struct mm_struct *mm)
  607. {
  608. struct task_struct *tsk;
  609. struct mm_struct * old_mm, *active_mm;
  610. /* Notify parent that we're no longer interested in the old VM */
  611. tsk = current;
  612. old_mm = current->mm;
  613. mm_release(tsk, old_mm);
  614. if (old_mm) {
  615. /*
  616. * Make sure that if there is a core dump in progress
  617. * for the old mm, we get out and die instead of going
  618. * through with the exec. We must hold mmap_sem around
  619. * checking core_state and changing tsk->mm.
  620. */
  621. down_read(&old_mm->mmap_sem);
  622. if (unlikely(old_mm->core_state)) {
  623. up_read(&old_mm->mmap_sem);
  624. return -EINTR;
  625. }
  626. }
  627. task_lock(tsk);
  628. active_mm = tsk->active_mm;
  629. tsk->mm = mm;
  630. tsk->active_mm = mm;
  631. activate_mm(active_mm, mm);
  632. task_unlock(tsk);
  633. arch_pick_mmap_layout(mm);
  634. if (old_mm) {
  635. up_read(&old_mm->mmap_sem);
  636. BUG_ON(active_mm != old_mm);
  637. mm_update_next_owner(old_mm);
  638. mmput(old_mm);
  639. return 0;
  640. }
  641. mmdrop(active_mm);
  642. return 0;
  643. }
  644. /*
  645. * This function makes sure the current process has its own signal table,
  646. * so that flush_signal_handlers can later reset the handlers without
  647. * disturbing other processes. (Other processes might share the signal
  648. * table via the CLONE_SIGHAND option to clone().)
  649. */
  650. static int de_thread(struct task_struct *tsk)
  651. {
  652. struct signal_struct *sig = tsk->signal;
  653. struct sighand_struct *oldsighand = tsk->sighand;
  654. spinlock_t *lock = &oldsighand->siglock;
  655. int count;
  656. if (thread_group_empty(tsk))
  657. goto no_thread_group;
  658. /*
  659. * Kill all other threads in the thread group.
  660. */
  661. spin_lock_irq(lock);
  662. if (signal_group_exit(sig)) {
  663. /*
  664. * Another group action in progress, just
  665. * return so that the signal is processed.
  666. */
  667. spin_unlock_irq(lock);
  668. return -EAGAIN;
  669. }
  670. sig->group_exit_task = tsk;
  671. zap_other_threads(tsk);
  672. /* Account for the thread group leader hanging around: */
  673. count = thread_group_leader(tsk) ? 1 : 2;
  674. sig->notify_count = count;
  675. while (atomic_read(&sig->count) > count) {
  676. __set_current_state(TASK_UNINTERRUPTIBLE);
  677. spin_unlock_irq(lock);
  678. schedule();
  679. spin_lock_irq(lock);
  680. }
  681. spin_unlock_irq(lock);
  682. /*
  683. * At this point all other threads have exited, all we have to
  684. * do is to wait for the thread group leader to become inactive,
  685. * and to assume its PID:
  686. */
  687. if (!thread_group_leader(tsk)) {
  688. struct task_struct *leader = tsk->group_leader;
  689. sig->notify_count = -1; /* for exit_notify() */
  690. for (;;) {
  691. write_lock_irq(&tasklist_lock);
  692. if (likely(leader->exit_state))
  693. break;
  694. __set_current_state(TASK_UNINTERRUPTIBLE);
  695. write_unlock_irq(&tasklist_lock);
  696. schedule();
  697. }
  698. /*
  699. * The only record we have of the real-time age of a
  700. * process, regardless of execs it's done, is start_time.
  701. * All the past CPU time is accumulated in signal_struct
  702. * from sister threads now dead. But in this non-leader
  703. * exec, nothing survives from the original leader thread,
  704. * whose birth marks the true age of this process now.
  705. * When we take on its identity by switching to its PID, we
  706. * also take its birthdate (always earlier than our own).
  707. */
  708. tsk->start_time = leader->start_time;
  709. BUG_ON(!same_thread_group(leader, tsk));
  710. BUG_ON(has_group_leader_pid(tsk));
  711. /*
  712. * An exec() starts a new thread group with the
  713. * TGID of the previous thread group. Rehash the
  714. * two threads with a switched PID, and release
  715. * the former thread group leader:
  716. */
  717. /* Become a process group leader with the old leader's pid.
  718. * The old leader becomes a thread of the this thread group.
  719. * Note: The old leader also uses this pid until release_task
  720. * is called. Odd but simple and correct.
  721. */
  722. detach_pid(tsk, PIDTYPE_PID);
  723. tsk->pid = leader->pid;
  724. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  725. transfer_pid(leader, tsk, PIDTYPE_PGID);
  726. transfer_pid(leader, tsk, PIDTYPE_SID);
  727. list_replace_rcu(&leader->tasks, &tsk->tasks);
  728. list_replace_init(&leader->sibling, &tsk->sibling);
  729. tsk->group_leader = tsk;
  730. leader->group_leader = tsk;
  731. tsk->exit_signal = SIGCHLD;
  732. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  733. leader->exit_state = EXIT_DEAD;
  734. write_unlock_irq(&tasklist_lock);
  735. release_task(leader);
  736. }
  737. sig->group_exit_task = NULL;
  738. sig->notify_count = 0;
  739. no_thread_group:
  740. if (current->mm)
  741. setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
  742. exit_itimers(sig);
  743. flush_itimer_signals();
  744. if (atomic_read(&oldsighand->count) != 1) {
  745. struct sighand_struct *newsighand;
  746. /*
  747. * This ->sighand is shared with the CLONE_SIGHAND
  748. * but not CLONE_THREAD task, switch to the new one.
  749. */
  750. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  751. if (!newsighand)
  752. return -ENOMEM;
  753. atomic_set(&newsighand->count, 1);
  754. memcpy(newsighand->action, oldsighand->action,
  755. sizeof(newsighand->action));
  756. write_lock_irq(&tasklist_lock);
  757. spin_lock(&oldsighand->siglock);
  758. rcu_assign_pointer(tsk->sighand, newsighand);
  759. spin_unlock(&oldsighand->siglock);
  760. write_unlock_irq(&tasklist_lock);
  761. __cleanup_sighand(oldsighand);
  762. }
  763. BUG_ON(!thread_group_leader(tsk));
  764. return 0;
  765. }
  766. /*
  767. * These functions flushes out all traces of the currently running executable
  768. * so that a new one can be started
  769. */
  770. static void flush_old_files(struct files_struct * files)
  771. {
  772. long j = -1;
  773. struct fdtable *fdt;
  774. spin_lock(&files->file_lock);
  775. for (;;) {
  776. unsigned long set, i;
  777. j++;
  778. i = j * __NFDBITS;
  779. fdt = files_fdtable(files);
  780. if (i >= fdt->max_fds)
  781. break;
  782. set = fdt->close_on_exec->fds_bits[j];
  783. if (!set)
  784. continue;
  785. fdt->close_on_exec->fds_bits[j] = 0;
  786. spin_unlock(&files->file_lock);
  787. for ( ; set ; i++,set >>= 1) {
  788. if (set & 1) {
  789. sys_close(i);
  790. }
  791. }
  792. spin_lock(&files->file_lock);
  793. }
  794. spin_unlock(&files->file_lock);
  795. }
  796. char *get_task_comm(char *buf, struct task_struct *tsk)
  797. {
  798. /* buf must be at least sizeof(tsk->comm) in size */
  799. task_lock(tsk);
  800. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  801. task_unlock(tsk);
  802. return buf;
  803. }
  804. void set_task_comm(struct task_struct *tsk, char *buf)
  805. {
  806. task_lock(tsk);
  807. /*
  808. * Threads may access current->comm without holding
  809. * the task lock, so write the string carefully.
  810. * Readers without a lock may see incomplete new
  811. * names but are safe from non-terminating string reads.
  812. */
  813. memset(tsk->comm, 0, TASK_COMM_LEN);
  814. wmb();
  815. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  816. task_unlock(tsk);
  817. perf_event_comm(tsk);
  818. }
  819. int flush_old_exec(struct linux_binprm * bprm)
  820. {
  821. int retval;
  822. /*
  823. * Make sure we have a private signal table and that
  824. * we are unassociated from the previous thread group.
  825. */
  826. retval = de_thread(current);
  827. if (retval)
  828. goto out;
  829. set_mm_exe_file(bprm->mm, bprm->file);
  830. /*
  831. * Release all of the old mmap stuff
  832. */
  833. retval = exec_mmap(bprm->mm);
  834. if (retval)
  835. goto out;
  836. bprm->mm = NULL; /* We're using it now */
  837. current->flags &= ~PF_RANDOMIZE;
  838. flush_thread();
  839. current->personality &= ~bprm->per_clear;
  840. return 0;
  841. out:
  842. return retval;
  843. }
  844. EXPORT_SYMBOL(flush_old_exec);
  845. void setup_new_exec(struct linux_binprm * bprm)
  846. {
  847. int i, ch;
  848. char * name;
  849. char tcomm[sizeof(current->comm)];
  850. arch_pick_mmap_layout(current->mm);
  851. /* This is the point of no return */
  852. current->sas_ss_sp = current->sas_ss_size = 0;
  853. if (current_euid() == current_uid() && current_egid() == current_gid())
  854. set_dumpable(current->mm, 1);
  855. else
  856. set_dumpable(current->mm, suid_dumpable);
  857. name = bprm->filename;
  858. /* Copies the binary name from after last slash */
  859. for (i=0; (ch = *(name++)) != '\0';) {
  860. if (ch == '/')
  861. i = 0; /* overwrite what we wrote */
  862. else
  863. if (i < (sizeof(tcomm) - 1))
  864. tcomm[i++] = ch;
  865. }
  866. tcomm[i] = '\0';
  867. set_task_comm(current, tcomm);
  868. /* Set the new mm task size. We have to do that late because it may
  869. * depend on TIF_32BIT which is only updated in flush_thread() on
  870. * some architectures like powerpc
  871. */
  872. current->mm->task_size = TASK_SIZE;
  873. /* install the new credentials */
  874. if (bprm->cred->uid != current_euid() ||
  875. bprm->cred->gid != current_egid()) {
  876. current->pdeath_signal = 0;
  877. } else if (file_permission(bprm->file, MAY_READ) ||
  878. bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
  879. set_dumpable(current->mm, suid_dumpable);
  880. }
  881. /*
  882. * Flush performance counters when crossing a
  883. * security domain:
  884. */
  885. if (!get_dumpable(current->mm))
  886. perf_event_exit_task(current);
  887. /* An exec changes our domain. We are no longer part of the thread
  888. group */
  889. current->self_exec_id++;
  890. flush_signal_handlers(current, 0);
  891. flush_old_files(current->files);
  892. }
  893. EXPORT_SYMBOL(setup_new_exec);
  894. /*
  895. * Prepare credentials and lock ->cred_guard_mutex.
  896. * install_exec_creds() commits the new creds and drops the lock.
  897. * Or, if exec fails before, free_bprm() should release ->cred and
  898. * and unlock.
  899. */
  900. int prepare_bprm_creds(struct linux_binprm *bprm)
  901. {
  902. if (mutex_lock_interruptible(&current->cred_guard_mutex))
  903. return -ERESTARTNOINTR;
  904. bprm->cred = prepare_exec_creds();
  905. if (likely(bprm->cred))
  906. return 0;
  907. mutex_unlock(&current->cred_guard_mutex);
  908. return -ENOMEM;
  909. }
  910. void free_bprm(struct linux_binprm *bprm)
  911. {
  912. free_arg_pages(bprm);
  913. if (bprm->cred) {
  914. mutex_unlock(&current->cred_guard_mutex);
  915. abort_creds(bprm->cred);
  916. }
  917. kfree(bprm);
  918. }
  919. /*
  920. * install the new credentials for this executable
  921. */
  922. void install_exec_creds(struct linux_binprm *bprm)
  923. {
  924. security_bprm_committing_creds(bprm);
  925. commit_creds(bprm->cred);
  926. bprm->cred = NULL;
  927. /*
  928. * cred_guard_mutex must be held at least to this point to prevent
  929. * ptrace_attach() from altering our determination of the task's
  930. * credentials; any time after this it may be unlocked.
  931. */
  932. security_bprm_committed_creds(bprm);
  933. mutex_unlock(&current->cred_guard_mutex);
  934. }
  935. EXPORT_SYMBOL(install_exec_creds);
  936. /*
  937. * determine how safe it is to execute the proposed program
  938. * - the caller must hold current->cred_guard_mutex to protect against
  939. * PTRACE_ATTACH
  940. */
  941. int check_unsafe_exec(struct linux_binprm *bprm)
  942. {
  943. struct task_struct *p = current, *t;
  944. unsigned n_fs;
  945. int res = 0;
  946. bprm->unsafe = tracehook_unsafe_exec(p);
  947. n_fs = 1;
  948. write_lock(&p->fs->lock);
  949. rcu_read_lock();
  950. for (t = next_thread(p); t != p; t = next_thread(t)) {
  951. if (t->fs == p->fs)
  952. n_fs++;
  953. }
  954. rcu_read_unlock();
  955. if (p->fs->users > n_fs) {
  956. bprm->unsafe |= LSM_UNSAFE_SHARE;
  957. } else {
  958. res = -EAGAIN;
  959. if (!p->fs->in_exec) {
  960. p->fs->in_exec = 1;
  961. res = 1;
  962. }
  963. }
  964. write_unlock(&p->fs->lock);
  965. return res;
  966. }
  967. /*
  968. * Fill the binprm structure from the inode.
  969. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  970. *
  971. * This may be called multiple times for binary chains (scripts for example).
  972. */
  973. int prepare_binprm(struct linux_binprm *bprm)
  974. {
  975. umode_t mode;
  976. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  977. int retval;
  978. mode = inode->i_mode;
  979. if (bprm->file->f_op == NULL)
  980. return -EACCES;
  981. /* clear any previous set[ug]id data from a previous binary */
  982. bprm->cred->euid = current_euid();
  983. bprm->cred->egid = current_egid();
  984. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  985. /* Set-uid? */
  986. if (mode & S_ISUID) {
  987. bprm->per_clear |= PER_CLEAR_ON_SETID;
  988. bprm->cred->euid = inode->i_uid;
  989. }
  990. /* Set-gid? */
  991. /*
  992. * If setgid is set but no group execute bit then this
  993. * is a candidate for mandatory locking, not a setgid
  994. * executable.
  995. */
  996. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  997. bprm->per_clear |= PER_CLEAR_ON_SETID;
  998. bprm->cred->egid = inode->i_gid;
  999. }
  1000. }
  1001. /* fill in binprm security blob */
  1002. retval = security_bprm_set_creds(bprm);
  1003. if (retval)
  1004. return retval;
  1005. bprm->cred_prepared = 1;
  1006. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  1007. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  1008. }
  1009. EXPORT_SYMBOL(prepare_binprm);
  1010. /*
  1011. * Arguments are '\0' separated strings found at the location bprm->p
  1012. * points to; chop off the first by relocating brpm->p to right after
  1013. * the first '\0' encountered.
  1014. */
  1015. int remove_arg_zero(struct linux_binprm *bprm)
  1016. {
  1017. int ret = 0;
  1018. unsigned long offset;
  1019. char *kaddr;
  1020. struct page *page;
  1021. if (!bprm->argc)
  1022. return 0;
  1023. do {
  1024. offset = bprm->p & ~PAGE_MASK;
  1025. page = get_arg_page(bprm, bprm->p, 0);
  1026. if (!page) {
  1027. ret = -EFAULT;
  1028. goto out;
  1029. }
  1030. kaddr = kmap_atomic(page, KM_USER0);
  1031. for (; offset < PAGE_SIZE && kaddr[offset];
  1032. offset++, bprm->p++)
  1033. ;
  1034. kunmap_atomic(kaddr, KM_USER0);
  1035. put_arg_page(page);
  1036. if (offset == PAGE_SIZE)
  1037. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  1038. } while (offset == PAGE_SIZE);
  1039. bprm->p++;
  1040. bprm->argc--;
  1041. ret = 0;
  1042. out:
  1043. return ret;
  1044. }
  1045. EXPORT_SYMBOL(remove_arg_zero);
  1046. /*
  1047. * cycle the list of binary formats handler, until one recognizes the image
  1048. */
  1049. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1050. {
  1051. unsigned int depth = bprm->recursion_depth;
  1052. int try,retval;
  1053. struct linux_binfmt *fmt;
  1054. retval = security_bprm_check(bprm);
  1055. if (retval)
  1056. return retval;
  1057. /* kernel module loader fixup */
  1058. /* so we don't try to load run modprobe in kernel space. */
  1059. set_fs(USER_DS);
  1060. retval = audit_bprm(bprm);
  1061. if (retval)
  1062. return retval;
  1063. retval = -ENOENT;
  1064. for (try=0; try<2; try++) {
  1065. read_lock(&binfmt_lock);
  1066. list_for_each_entry(fmt, &formats, lh) {
  1067. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1068. if (!fn)
  1069. continue;
  1070. if (!try_module_get(fmt->module))
  1071. continue;
  1072. read_unlock(&binfmt_lock);
  1073. retval = fn(bprm, regs);
  1074. /*
  1075. * Restore the depth counter to its starting value
  1076. * in this call, so we don't have to rely on every
  1077. * load_binary function to restore it on return.
  1078. */
  1079. bprm->recursion_depth = depth;
  1080. if (retval >= 0) {
  1081. if (depth == 0)
  1082. tracehook_report_exec(fmt, bprm, regs);
  1083. put_binfmt(fmt);
  1084. allow_write_access(bprm->file);
  1085. if (bprm->file)
  1086. fput(bprm->file);
  1087. bprm->file = NULL;
  1088. current->did_exec = 1;
  1089. proc_exec_connector(current);
  1090. return retval;
  1091. }
  1092. read_lock(&binfmt_lock);
  1093. put_binfmt(fmt);
  1094. if (retval != -ENOEXEC || bprm->mm == NULL)
  1095. break;
  1096. if (!bprm->file) {
  1097. read_unlock(&binfmt_lock);
  1098. return retval;
  1099. }
  1100. }
  1101. read_unlock(&binfmt_lock);
  1102. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1103. break;
  1104. #ifdef CONFIG_MODULES
  1105. } else {
  1106. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1107. if (printable(bprm->buf[0]) &&
  1108. printable(bprm->buf[1]) &&
  1109. printable(bprm->buf[2]) &&
  1110. printable(bprm->buf[3]))
  1111. break; /* -ENOEXEC */
  1112. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1113. #endif
  1114. }
  1115. }
  1116. return retval;
  1117. }
  1118. EXPORT_SYMBOL(search_binary_handler);
  1119. /*
  1120. * sys_execve() executes a new program.
  1121. */
  1122. int do_execve(char * filename,
  1123. char __user *__user *argv,
  1124. char __user *__user *envp,
  1125. struct pt_regs * regs)
  1126. {
  1127. struct linux_binprm *bprm;
  1128. struct file *file;
  1129. struct files_struct *displaced;
  1130. bool clear_in_exec;
  1131. int retval;
  1132. retval = unshare_files(&displaced);
  1133. if (retval)
  1134. goto out_ret;
  1135. retval = -ENOMEM;
  1136. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1137. if (!bprm)
  1138. goto out_files;
  1139. retval = prepare_bprm_creds(bprm);
  1140. if (retval)
  1141. goto out_free;
  1142. retval = check_unsafe_exec(bprm);
  1143. if (retval < 0)
  1144. goto out_free;
  1145. clear_in_exec = retval;
  1146. current->in_execve = 1;
  1147. file = open_exec(filename);
  1148. retval = PTR_ERR(file);
  1149. if (IS_ERR(file))
  1150. goto out_unmark;
  1151. sched_exec();
  1152. bprm->file = file;
  1153. bprm->filename = filename;
  1154. bprm->interp = filename;
  1155. retval = bprm_mm_init(bprm);
  1156. if (retval)
  1157. goto out_file;
  1158. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1159. if ((retval = bprm->argc) < 0)
  1160. goto out;
  1161. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1162. if ((retval = bprm->envc) < 0)
  1163. goto out;
  1164. retval = prepare_binprm(bprm);
  1165. if (retval < 0)
  1166. goto out;
  1167. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1168. if (retval < 0)
  1169. goto out;
  1170. bprm->exec = bprm->p;
  1171. retval = copy_strings(bprm->envc, envp, bprm);
  1172. if (retval < 0)
  1173. goto out;
  1174. retval = copy_strings(bprm->argc, argv, bprm);
  1175. if (retval < 0)
  1176. goto out;
  1177. current->flags &= ~PF_KTHREAD;
  1178. retval = search_binary_handler(bprm,regs);
  1179. if (retval < 0)
  1180. goto out;
  1181. current->stack_start = current->mm->start_stack;
  1182. /* execve succeeded */
  1183. current->fs->in_exec = 0;
  1184. current->in_execve = 0;
  1185. acct_update_integrals(current);
  1186. free_bprm(bprm);
  1187. if (displaced)
  1188. put_files_struct(displaced);
  1189. return retval;
  1190. out:
  1191. if (bprm->mm)
  1192. mmput (bprm->mm);
  1193. out_file:
  1194. if (bprm->file) {
  1195. allow_write_access(bprm->file);
  1196. fput(bprm->file);
  1197. }
  1198. out_unmark:
  1199. if (clear_in_exec)
  1200. current->fs->in_exec = 0;
  1201. current->in_execve = 0;
  1202. out_free:
  1203. free_bprm(bprm);
  1204. out_files:
  1205. if (displaced)
  1206. reset_files_struct(displaced);
  1207. out_ret:
  1208. return retval;
  1209. }
  1210. void set_binfmt(struct linux_binfmt *new)
  1211. {
  1212. struct mm_struct *mm = current->mm;
  1213. if (mm->binfmt)
  1214. module_put(mm->binfmt->module);
  1215. mm->binfmt = new;
  1216. if (new)
  1217. __module_get(new->module);
  1218. }
  1219. EXPORT_SYMBOL(set_binfmt);
  1220. /* format_corename will inspect the pattern parameter, and output a
  1221. * name into corename, which must have space for at least
  1222. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1223. */
  1224. static int format_corename(char *corename, long signr)
  1225. {
  1226. const struct cred *cred = current_cred();
  1227. const char *pat_ptr = core_pattern;
  1228. int ispipe = (*pat_ptr == '|');
  1229. char *out_ptr = corename;
  1230. char *const out_end = corename + CORENAME_MAX_SIZE;
  1231. int rc;
  1232. int pid_in_pattern = 0;
  1233. /* Repeat as long as we have more pattern to process and more output
  1234. space */
  1235. while (*pat_ptr) {
  1236. if (*pat_ptr != '%') {
  1237. if (out_ptr == out_end)
  1238. goto out;
  1239. *out_ptr++ = *pat_ptr++;
  1240. } else {
  1241. switch (*++pat_ptr) {
  1242. case 0:
  1243. goto out;
  1244. /* Double percent, output one percent */
  1245. case '%':
  1246. if (out_ptr == out_end)
  1247. goto out;
  1248. *out_ptr++ = '%';
  1249. break;
  1250. /* pid */
  1251. case 'p':
  1252. pid_in_pattern = 1;
  1253. rc = snprintf(out_ptr, out_end - out_ptr,
  1254. "%d", task_tgid_vnr(current));
  1255. if (rc > out_end - out_ptr)
  1256. goto out;
  1257. out_ptr += rc;
  1258. break;
  1259. /* uid */
  1260. case 'u':
  1261. rc = snprintf(out_ptr, out_end - out_ptr,
  1262. "%d", cred->uid);
  1263. if (rc > out_end - out_ptr)
  1264. goto out;
  1265. out_ptr += rc;
  1266. break;
  1267. /* gid */
  1268. case 'g':
  1269. rc = snprintf(out_ptr, out_end - out_ptr,
  1270. "%d", cred->gid);
  1271. if (rc > out_end - out_ptr)
  1272. goto out;
  1273. out_ptr += rc;
  1274. break;
  1275. /* signal that caused the coredump */
  1276. case 's':
  1277. rc = snprintf(out_ptr, out_end - out_ptr,
  1278. "%ld", signr);
  1279. if (rc > out_end - out_ptr)
  1280. goto out;
  1281. out_ptr += rc;
  1282. break;
  1283. /* UNIX time of coredump */
  1284. case 't': {
  1285. struct timeval tv;
  1286. do_gettimeofday(&tv);
  1287. rc = snprintf(out_ptr, out_end - out_ptr,
  1288. "%lu", tv.tv_sec);
  1289. if (rc > out_end - out_ptr)
  1290. goto out;
  1291. out_ptr += rc;
  1292. break;
  1293. }
  1294. /* hostname */
  1295. case 'h':
  1296. down_read(&uts_sem);
  1297. rc = snprintf(out_ptr, out_end - out_ptr,
  1298. "%s", utsname()->nodename);
  1299. up_read(&uts_sem);
  1300. if (rc > out_end - out_ptr)
  1301. goto out;
  1302. out_ptr += rc;
  1303. break;
  1304. /* executable */
  1305. case 'e':
  1306. rc = snprintf(out_ptr, out_end - out_ptr,
  1307. "%s", current->comm);
  1308. if (rc > out_end - out_ptr)
  1309. goto out;
  1310. out_ptr += rc;
  1311. break;
  1312. /* core limit size */
  1313. case 'c':
  1314. rc = snprintf(out_ptr, out_end - out_ptr,
  1315. "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
  1316. if (rc > out_end - out_ptr)
  1317. goto out;
  1318. out_ptr += rc;
  1319. break;
  1320. default:
  1321. break;
  1322. }
  1323. ++pat_ptr;
  1324. }
  1325. }
  1326. /* Backward compatibility with core_uses_pid:
  1327. *
  1328. * If core_pattern does not include a %p (as is the default)
  1329. * and core_uses_pid is set, then .%pid will be appended to
  1330. * the filename. Do not do this for piped commands. */
  1331. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1332. rc = snprintf(out_ptr, out_end - out_ptr,
  1333. ".%d", task_tgid_vnr(current));
  1334. if (rc > out_end - out_ptr)
  1335. goto out;
  1336. out_ptr += rc;
  1337. }
  1338. out:
  1339. *out_ptr = 0;
  1340. return ispipe;
  1341. }
  1342. static int zap_process(struct task_struct *start)
  1343. {
  1344. struct task_struct *t;
  1345. int nr = 0;
  1346. start->signal->flags = SIGNAL_GROUP_EXIT;
  1347. start->signal->group_stop_count = 0;
  1348. t = start;
  1349. do {
  1350. if (t != current && t->mm) {
  1351. sigaddset(&t->pending.signal, SIGKILL);
  1352. signal_wake_up(t, 1);
  1353. nr++;
  1354. }
  1355. } while_each_thread(start, t);
  1356. return nr;
  1357. }
  1358. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1359. struct core_state *core_state, int exit_code)
  1360. {
  1361. struct task_struct *g, *p;
  1362. unsigned long flags;
  1363. int nr = -EAGAIN;
  1364. spin_lock_irq(&tsk->sighand->siglock);
  1365. if (!signal_group_exit(tsk->signal)) {
  1366. mm->core_state = core_state;
  1367. tsk->signal->group_exit_code = exit_code;
  1368. nr = zap_process(tsk);
  1369. }
  1370. spin_unlock_irq(&tsk->sighand->siglock);
  1371. if (unlikely(nr < 0))
  1372. return nr;
  1373. if (atomic_read(&mm->mm_users) == nr + 1)
  1374. goto done;
  1375. /*
  1376. * We should find and kill all tasks which use this mm, and we should
  1377. * count them correctly into ->nr_threads. We don't take tasklist
  1378. * lock, but this is safe wrt:
  1379. *
  1380. * fork:
  1381. * None of sub-threads can fork after zap_process(leader). All
  1382. * processes which were created before this point should be
  1383. * visible to zap_threads() because copy_process() adds the new
  1384. * process to the tail of init_task.tasks list, and lock/unlock
  1385. * of ->siglock provides a memory barrier.
  1386. *
  1387. * do_exit:
  1388. * The caller holds mm->mmap_sem. This means that the task which
  1389. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1390. * its ->mm.
  1391. *
  1392. * de_thread:
  1393. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1394. * we must see either old or new leader, this does not matter.
  1395. * However, it can change p->sighand, so lock_task_sighand(p)
  1396. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1397. * it can't fail.
  1398. *
  1399. * Note also that "g" can be the old leader with ->mm == NULL
  1400. * and already unhashed and thus removed from ->thread_group.
  1401. * This is OK, __unhash_process()->list_del_rcu() does not
  1402. * clear the ->next pointer, we will find the new leader via
  1403. * next_thread().
  1404. */
  1405. rcu_read_lock();
  1406. for_each_process(g) {
  1407. if (g == tsk->group_leader)
  1408. continue;
  1409. if (g->flags & PF_KTHREAD)
  1410. continue;
  1411. p = g;
  1412. do {
  1413. if (p->mm) {
  1414. if (unlikely(p->mm == mm)) {
  1415. lock_task_sighand(p, &flags);
  1416. nr += zap_process(p);
  1417. unlock_task_sighand(p, &flags);
  1418. }
  1419. break;
  1420. }
  1421. } while_each_thread(g, p);
  1422. }
  1423. rcu_read_unlock();
  1424. done:
  1425. atomic_set(&core_state->nr_threads, nr);
  1426. return nr;
  1427. }
  1428. static int coredump_wait(int exit_code, struct core_state *core_state)
  1429. {
  1430. struct task_struct *tsk = current;
  1431. struct mm_struct *mm = tsk->mm;
  1432. struct completion *vfork_done;
  1433. int core_waiters;
  1434. init_completion(&core_state->startup);
  1435. core_state->dumper.task = tsk;
  1436. core_state->dumper.next = NULL;
  1437. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1438. up_write(&mm->mmap_sem);
  1439. if (unlikely(core_waiters < 0))
  1440. goto fail;
  1441. /*
  1442. * Make sure nobody is waiting for us to release the VM,
  1443. * otherwise we can deadlock when we wait on each other
  1444. */
  1445. vfork_done = tsk->vfork_done;
  1446. if (vfork_done) {
  1447. tsk->vfork_done = NULL;
  1448. complete(vfork_done);
  1449. }
  1450. if (core_waiters)
  1451. wait_for_completion(&core_state->startup);
  1452. fail:
  1453. return core_waiters;
  1454. }
  1455. static void coredump_finish(struct mm_struct *mm)
  1456. {
  1457. struct core_thread *curr, *next;
  1458. struct task_struct *task;
  1459. next = mm->core_state->dumper.next;
  1460. while ((curr = next) != NULL) {
  1461. next = curr->next;
  1462. task = curr->task;
  1463. /*
  1464. * see exit_mm(), curr->task must not see
  1465. * ->task == NULL before we read ->next.
  1466. */
  1467. smp_mb();
  1468. curr->task = NULL;
  1469. wake_up_process(task);
  1470. }
  1471. mm->core_state = NULL;
  1472. }
  1473. /*
  1474. * set_dumpable converts traditional three-value dumpable to two flags and
  1475. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1476. * these bits are not changed atomically. So get_dumpable can observe the
  1477. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1478. * return either old dumpable or new one by paying attention to the order of
  1479. * modifying the bits.
  1480. *
  1481. * dumpable | mm->flags (binary)
  1482. * old new | initial interim final
  1483. * ---------+-----------------------
  1484. * 0 1 | 00 01 01
  1485. * 0 2 | 00 10(*) 11
  1486. * 1 0 | 01 00 00
  1487. * 1 2 | 01 11 11
  1488. * 2 0 | 11 10(*) 00
  1489. * 2 1 | 11 11 01
  1490. *
  1491. * (*) get_dumpable regards interim value of 10 as 11.
  1492. */
  1493. void set_dumpable(struct mm_struct *mm, int value)
  1494. {
  1495. switch (value) {
  1496. case 0:
  1497. clear_bit(MMF_DUMPABLE, &mm->flags);
  1498. smp_wmb();
  1499. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1500. break;
  1501. case 1:
  1502. set_bit(MMF_DUMPABLE, &mm->flags);
  1503. smp_wmb();
  1504. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1505. break;
  1506. case 2:
  1507. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1508. smp_wmb();
  1509. set_bit(MMF_DUMPABLE, &mm->flags);
  1510. break;
  1511. }
  1512. }
  1513. int get_dumpable(struct mm_struct *mm)
  1514. {
  1515. int ret;
  1516. ret = mm->flags & 0x3;
  1517. return (ret >= 2) ? 2 : ret;
  1518. }
  1519. static void wait_for_dump_helpers(struct file *file)
  1520. {
  1521. struct pipe_inode_info *pipe;
  1522. pipe = file->f_path.dentry->d_inode->i_pipe;
  1523. pipe_lock(pipe);
  1524. pipe->readers++;
  1525. pipe->writers--;
  1526. while ((pipe->readers > 1) && (!signal_pending(current))) {
  1527. wake_up_interruptible_sync(&pipe->wait);
  1528. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  1529. pipe_wait(pipe);
  1530. }
  1531. pipe->readers--;
  1532. pipe->writers++;
  1533. pipe_unlock(pipe);
  1534. }
  1535. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1536. {
  1537. struct core_state core_state;
  1538. char corename[CORENAME_MAX_SIZE + 1];
  1539. struct mm_struct *mm = current->mm;
  1540. struct linux_binfmt * binfmt;
  1541. struct inode * inode;
  1542. const struct cred *old_cred;
  1543. struct cred *cred;
  1544. int retval = 0;
  1545. int flag = 0;
  1546. int ispipe = 0;
  1547. char **helper_argv = NULL;
  1548. int helper_argc = 0;
  1549. int dump_count = 0;
  1550. static atomic_t core_dump_count = ATOMIC_INIT(0);
  1551. struct coredump_params cprm = {
  1552. .signr = signr,
  1553. .regs = regs,
  1554. .limit = current->signal->rlim[RLIMIT_CORE].rlim_cur,
  1555. };
  1556. audit_core_dumps(signr);
  1557. binfmt = mm->binfmt;
  1558. if (!binfmt || !binfmt->core_dump)
  1559. goto fail;
  1560. cred = prepare_creds();
  1561. if (!cred) {
  1562. retval = -ENOMEM;
  1563. goto fail;
  1564. }
  1565. down_write(&mm->mmap_sem);
  1566. /*
  1567. * If another thread got here first, or we are not dumpable, bail out.
  1568. */
  1569. if (mm->core_state || !get_dumpable(mm)) {
  1570. up_write(&mm->mmap_sem);
  1571. put_cred(cred);
  1572. goto fail;
  1573. }
  1574. /*
  1575. * We cannot trust fsuid as being the "true" uid of the
  1576. * process nor do we know its entire history. We only know it
  1577. * was tainted so we dump it as root in mode 2.
  1578. */
  1579. if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
  1580. flag = O_EXCL; /* Stop rewrite attacks */
  1581. cred->fsuid = 0; /* Dump root private */
  1582. }
  1583. retval = coredump_wait(exit_code, &core_state);
  1584. if (retval < 0) {
  1585. put_cred(cred);
  1586. goto fail;
  1587. }
  1588. old_cred = override_creds(cred);
  1589. /*
  1590. * Clear any false indication of pending signals that might
  1591. * be seen by the filesystem code called to write the core file.
  1592. */
  1593. clear_thread_flag(TIF_SIGPENDING);
  1594. /*
  1595. * lock_kernel() because format_corename() is controlled by sysctl, which
  1596. * uses lock_kernel()
  1597. */
  1598. lock_kernel();
  1599. ispipe = format_corename(corename, signr);
  1600. unlock_kernel();
  1601. if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
  1602. goto fail_unlock;
  1603. if (ispipe) {
  1604. if (cprm.limit == 0) {
  1605. /*
  1606. * Normally core limits are irrelevant to pipes, since
  1607. * we're not writing to the file system, but we use
  1608. * cprm.limit of 0 here as a speacial value. Any
  1609. * non-zero limit gets set to RLIM_INFINITY below, but
  1610. * a limit of 0 skips the dump. This is a consistent
  1611. * way to catch recursive crashes. We can still crash
  1612. * if the core_pattern binary sets RLIM_CORE = !0
  1613. * but it runs as root, and can do lots of stupid things
  1614. * Note that we use task_tgid_vnr here to grab the pid
  1615. * of the process group leader. That way we get the
  1616. * right pid if a thread in a multi-threaded
  1617. * core_pattern process dies.
  1618. */
  1619. printk(KERN_WARNING
  1620. "Process %d(%s) has RLIMIT_CORE set to 0\n",
  1621. task_tgid_vnr(current), current->comm);
  1622. printk(KERN_WARNING "Aborting core\n");
  1623. goto fail_unlock;
  1624. }
  1625. dump_count = atomic_inc_return(&core_dump_count);
  1626. if (core_pipe_limit && (core_pipe_limit < dump_count)) {
  1627. printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
  1628. task_tgid_vnr(current), current->comm);
  1629. printk(KERN_WARNING "Skipping core dump\n");
  1630. goto fail_dropcount;
  1631. }
  1632. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1633. if (!helper_argv) {
  1634. printk(KERN_WARNING "%s failed to allocate memory\n",
  1635. __func__);
  1636. goto fail_dropcount;
  1637. }
  1638. cprm.limit = RLIM_INFINITY;
  1639. /* SIGPIPE can happen, but it's just never processed */
  1640. if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
  1641. &cprm.file)) {
  1642. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1643. corename);
  1644. goto fail_dropcount;
  1645. }
  1646. } else
  1647. cprm.file = filp_open(corename,
  1648. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1649. 0600);
  1650. if (IS_ERR(cprm.file))
  1651. goto fail_dropcount;
  1652. inode = cprm.file->f_path.dentry->d_inode;
  1653. if (inode->i_nlink > 1)
  1654. goto close_fail; /* multiple links - don't dump */
  1655. if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
  1656. goto close_fail;
  1657. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1658. but keep the previous behaviour for now. */
  1659. if (!ispipe && !S_ISREG(inode->i_mode))
  1660. goto close_fail;
  1661. /*
  1662. * Dont allow local users get cute and trick others to coredump
  1663. * into their pre-created files:
  1664. */
  1665. if (inode->i_uid != current_fsuid())
  1666. goto close_fail;
  1667. if (!cprm.file->f_op)
  1668. goto close_fail;
  1669. if (!cprm.file->f_op->write)
  1670. goto close_fail;
  1671. if (!ispipe &&
  1672. do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
  1673. goto close_fail;
  1674. retval = binfmt->core_dump(&cprm);
  1675. if (retval)
  1676. current->signal->group_exit_code |= 0x80;
  1677. close_fail:
  1678. if (ispipe && core_pipe_limit)
  1679. wait_for_dump_helpers(cprm.file);
  1680. filp_close(cprm.file, NULL);
  1681. fail_dropcount:
  1682. if (dump_count)
  1683. atomic_dec(&core_dump_count);
  1684. fail_unlock:
  1685. if (helper_argv)
  1686. argv_free(helper_argv);
  1687. revert_creds(old_cred);
  1688. put_cred(cred);
  1689. coredump_finish(mm);
  1690. fail:
  1691. return;
  1692. }