slub.c 129 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. /*
  35. * Lock order:
  36. * 1. slab_mutex (Global Mutex)
  37. * 2. node->list_lock
  38. * 3. slab_lock(page) (Only on some arches and for debugging)
  39. *
  40. * slab_mutex
  41. *
  42. * The role of the slab_mutex is to protect the list of all the slabs
  43. * and to synchronize major metadata changes to slab cache structures.
  44. *
  45. * The slab_lock is only used for debugging and on arches that do not
  46. * have the ability to do a cmpxchg_double. It only protects the second
  47. * double word in the page struct. Meaning
  48. * A. page->freelist -> List of object free in a page
  49. * B. page->counters -> Counters of objects
  50. * C. page->frozen -> frozen state
  51. *
  52. * If a slab is frozen then it is exempt from list management. It is not
  53. * on any list. The processor that froze the slab is the one who can
  54. * perform list operations on the page. Other processors may put objects
  55. * onto the freelist but the processor that froze the slab is the only
  56. * one that can retrieve the objects from the page's freelist.
  57. *
  58. * The list_lock protects the partial and full list on each node and
  59. * the partial slab counter. If taken then no new slabs may be added or
  60. * removed from the lists nor make the number of partial slabs be modified.
  61. * (Note that the total number of slabs is an atomic value that may be
  62. * modified without taking the list lock).
  63. *
  64. * The list_lock is a centralized lock and thus we avoid taking it as
  65. * much as possible. As long as SLUB does not have to handle partial
  66. * slabs, operations can continue without any centralized lock. F.e.
  67. * allocating a long series of objects that fill up slabs does not require
  68. * the list lock.
  69. * Interrupts are disabled during allocation and deallocation in order to
  70. * make the slab allocator safe to use in the context of an irq. In addition
  71. * interrupts are disabled to ensure that the processor does not change
  72. * while handling per_cpu slabs, due to kernel preemption.
  73. *
  74. * SLUB assigns one slab for allocation to each processor.
  75. * Allocations only occur from these slabs called cpu slabs.
  76. *
  77. * Slabs with free elements are kept on a partial list and during regular
  78. * operations no list for full slabs is used. If an object in a full slab is
  79. * freed then the slab will show up again on the partial lists.
  80. * We track full slabs for debugging purposes though because otherwise we
  81. * cannot scan all objects.
  82. *
  83. * Slabs are freed when they become empty. Teardown and setup is
  84. * minimal so we rely on the page allocators per cpu caches for
  85. * fast frees and allocs.
  86. *
  87. * Overloading of page flags that are otherwise used for LRU management.
  88. *
  89. * PageActive The slab is frozen and exempt from list processing.
  90. * This means that the slab is dedicated to a purpose
  91. * such as satisfying allocations for a specific
  92. * processor. Objects may be freed in the slab while
  93. * it is frozen but slab_free will then skip the usual
  94. * list operations. It is up to the processor holding
  95. * the slab to integrate the slab into the slab lists
  96. * when the slab is no longer needed.
  97. *
  98. * One use of this flag is to mark slabs that are
  99. * used for allocations. Then such a slab becomes a cpu
  100. * slab. The cpu slab may be equipped with an additional
  101. * freelist that allows lockless access to
  102. * free objects in addition to the regular freelist
  103. * that requires the slab lock.
  104. *
  105. * PageError Slab requires special handling due to debug
  106. * options set. This moves slab handling out of
  107. * the fast path and disables lockless freelists.
  108. */
  109. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  110. SLAB_TRACE | SLAB_DEBUG_FREE)
  111. static inline int kmem_cache_debug(struct kmem_cache *s)
  112. {
  113. #ifdef CONFIG_SLUB_DEBUG
  114. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  115. #else
  116. return 0;
  117. #endif
  118. }
  119. /*
  120. * Issues still to be resolved:
  121. *
  122. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  123. *
  124. * - Variable sizing of the per node arrays
  125. */
  126. /* Enable to test recovery from slab corruption on boot */
  127. #undef SLUB_RESILIENCY_TEST
  128. /* Enable to log cmpxchg failures */
  129. #undef SLUB_DEBUG_CMPXCHG
  130. /*
  131. * Mininum number of partial slabs. These will be left on the partial
  132. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  133. */
  134. #define MIN_PARTIAL 5
  135. /*
  136. * Maximum number of desirable partial slabs.
  137. * The existence of more partial slabs makes kmem_cache_shrink
  138. * sort the partial list by the number of objects in the.
  139. */
  140. #define MAX_PARTIAL 10
  141. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  142. SLAB_POISON | SLAB_STORE_USER)
  143. /*
  144. * Debugging flags that require metadata to be stored in the slab. These get
  145. * disabled when slub_debug=O is used and a cache's min order increases with
  146. * metadata.
  147. */
  148. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  149. /*
  150. * Set of flags that will prevent slab merging
  151. */
  152. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  153. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  154. SLAB_FAILSLAB)
  155. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  156. SLAB_CACHE_DMA | SLAB_NOTRACK)
  157. #define OO_SHIFT 16
  158. #define OO_MASK ((1 << OO_SHIFT) - 1)
  159. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  160. /* Internal SLUB flags */
  161. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  162. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  163. static int kmem_size = sizeof(struct kmem_cache);
  164. #ifdef CONFIG_SMP
  165. static struct notifier_block slab_notifier;
  166. #endif
  167. /*
  168. * Tracking user of a slab.
  169. */
  170. #define TRACK_ADDRS_COUNT 16
  171. struct track {
  172. unsigned long addr; /* Called from address */
  173. #ifdef CONFIG_STACKTRACE
  174. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  175. #endif
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void sysfs_slab_remove(struct kmem_cache *);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s)
  190. {
  191. kfree(s->name);
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. __this_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  205. {
  206. return s->node[node];
  207. }
  208. /* Verify that a pointer has an address that is valid within a slab page */
  209. static inline int check_valid_pointer(struct kmem_cache *s,
  210. struct page *page, const void *object)
  211. {
  212. void *base;
  213. if (!object)
  214. return 1;
  215. base = page_address(page);
  216. if (object < base || object >= base + page->objects * s->size ||
  217. (object - base) % s->size) {
  218. return 0;
  219. }
  220. return 1;
  221. }
  222. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  223. {
  224. return *(void **)(object + s->offset);
  225. }
  226. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  227. {
  228. prefetch(object + s->offset);
  229. }
  230. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  231. {
  232. void *p;
  233. #ifdef CONFIG_DEBUG_PAGEALLOC
  234. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  235. #else
  236. p = get_freepointer(s, object);
  237. #endif
  238. return p;
  239. }
  240. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  241. {
  242. *(void **)(object + s->offset) = fp;
  243. }
  244. /* Loop over all objects in a slab */
  245. #define for_each_object(__p, __s, __addr, __objects) \
  246. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  247. __p += (__s)->size)
  248. /* Determine object index from a given position */
  249. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  250. {
  251. return (p - addr) / s->size;
  252. }
  253. static inline size_t slab_ksize(const struct kmem_cache *s)
  254. {
  255. #ifdef CONFIG_SLUB_DEBUG
  256. /*
  257. * Debugging requires use of the padding between object
  258. * and whatever may come after it.
  259. */
  260. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  261. return s->object_size;
  262. #endif
  263. /*
  264. * If we have the need to store the freelist pointer
  265. * back there or track user information then we can
  266. * only use the space before that information.
  267. */
  268. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  269. return s->inuse;
  270. /*
  271. * Else we can use all the padding etc for the allocation
  272. */
  273. return s->size;
  274. }
  275. static inline int order_objects(int order, unsigned long size, int reserved)
  276. {
  277. return ((PAGE_SIZE << order) - reserved) / size;
  278. }
  279. static inline struct kmem_cache_order_objects oo_make(int order,
  280. unsigned long size, int reserved)
  281. {
  282. struct kmem_cache_order_objects x = {
  283. (order << OO_SHIFT) + order_objects(order, size, reserved)
  284. };
  285. return x;
  286. }
  287. static inline int oo_order(struct kmem_cache_order_objects x)
  288. {
  289. return x.x >> OO_SHIFT;
  290. }
  291. static inline int oo_objects(struct kmem_cache_order_objects x)
  292. {
  293. return x.x & OO_MASK;
  294. }
  295. /*
  296. * Per slab locking using the pagelock
  297. */
  298. static __always_inline void slab_lock(struct page *page)
  299. {
  300. bit_spin_lock(PG_locked, &page->flags);
  301. }
  302. static __always_inline void slab_unlock(struct page *page)
  303. {
  304. __bit_spin_unlock(PG_locked, &page->flags);
  305. }
  306. /* Interrupts must be disabled (for the fallback code to work right) */
  307. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  308. void *freelist_old, unsigned long counters_old,
  309. void *freelist_new, unsigned long counters_new,
  310. const char *n)
  311. {
  312. VM_BUG_ON(!irqs_disabled());
  313. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  314. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  315. if (s->flags & __CMPXCHG_DOUBLE) {
  316. if (cmpxchg_double(&page->freelist, &page->counters,
  317. freelist_old, counters_old,
  318. freelist_new, counters_new))
  319. return 1;
  320. } else
  321. #endif
  322. {
  323. slab_lock(page);
  324. if (page->freelist == freelist_old && page->counters == counters_old) {
  325. page->freelist = freelist_new;
  326. page->counters = counters_new;
  327. slab_unlock(page);
  328. return 1;
  329. }
  330. slab_unlock(page);
  331. }
  332. cpu_relax();
  333. stat(s, CMPXCHG_DOUBLE_FAIL);
  334. #ifdef SLUB_DEBUG_CMPXCHG
  335. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  336. #endif
  337. return 0;
  338. }
  339. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  340. void *freelist_old, unsigned long counters_old,
  341. void *freelist_new, unsigned long counters_new,
  342. const char *n)
  343. {
  344. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  345. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  346. if (s->flags & __CMPXCHG_DOUBLE) {
  347. if (cmpxchg_double(&page->freelist, &page->counters,
  348. freelist_old, counters_old,
  349. freelist_new, counters_new))
  350. return 1;
  351. } else
  352. #endif
  353. {
  354. unsigned long flags;
  355. local_irq_save(flags);
  356. slab_lock(page);
  357. if (page->freelist == freelist_old && page->counters == counters_old) {
  358. page->freelist = freelist_new;
  359. page->counters = counters_new;
  360. slab_unlock(page);
  361. local_irq_restore(flags);
  362. return 1;
  363. }
  364. slab_unlock(page);
  365. local_irq_restore(flags);
  366. }
  367. cpu_relax();
  368. stat(s, CMPXCHG_DOUBLE_FAIL);
  369. #ifdef SLUB_DEBUG_CMPXCHG
  370. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  371. #endif
  372. return 0;
  373. }
  374. #ifdef CONFIG_SLUB_DEBUG
  375. /*
  376. * Determine a map of object in use on a page.
  377. *
  378. * Node listlock must be held to guarantee that the page does
  379. * not vanish from under us.
  380. */
  381. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  382. {
  383. void *p;
  384. void *addr = page_address(page);
  385. for (p = page->freelist; p; p = get_freepointer(s, p))
  386. set_bit(slab_index(p, s, addr), map);
  387. }
  388. /*
  389. * Debug settings:
  390. */
  391. #ifdef CONFIG_SLUB_DEBUG_ON
  392. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  393. #else
  394. static int slub_debug;
  395. #endif
  396. static char *slub_debug_slabs;
  397. static int disable_higher_order_debug;
  398. /*
  399. * Object debugging
  400. */
  401. static void print_section(char *text, u8 *addr, unsigned int length)
  402. {
  403. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  404. length, 1);
  405. }
  406. static struct track *get_track(struct kmem_cache *s, void *object,
  407. enum track_item alloc)
  408. {
  409. struct track *p;
  410. if (s->offset)
  411. p = object + s->offset + sizeof(void *);
  412. else
  413. p = object + s->inuse;
  414. return p + alloc;
  415. }
  416. static void set_track(struct kmem_cache *s, void *object,
  417. enum track_item alloc, unsigned long addr)
  418. {
  419. struct track *p = get_track(s, object, alloc);
  420. if (addr) {
  421. #ifdef CONFIG_STACKTRACE
  422. struct stack_trace trace;
  423. int i;
  424. trace.nr_entries = 0;
  425. trace.max_entries = TRACK_ADDRS_COUNT;
  426. trace.entries = p->addrs;
  427. trace.skip = 3;
  428. save_stack_trace(&trace);
  429. /* See rant in lockdep.c */
  430. if (trace.nr_entries != 0 &&
  431. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  432. trace.nr_entries--;
  433. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  434. p->addrs[i] = 0;
  435. #endif
  436. p->addr = addr;
  437. p->cpu = smp_processor_id();
  438. p->pid = current->pid;
  439. p->when = jiffies;
  440. } else
  441. memset(p, 0, sizeof(struct track));
  442. }
  443. static void init_tracking(struct kmem_cache *s, void *object)
  444. {
  445. if (!(s->flags & SLAB_STORE_USER))
  446. return;
  447. set_track(s, object, TRACK_FREE, 0UL);
  448. set_track(s, object, TRACK_ALLOC, 0UL);
  449. }
  450. static void print_track(const char *s, struct track *t)
  451. {
  452. if (!t->addr)
  453. return;
  454. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  455. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  456. #ifdef CONFIG_STACKTRACE
  457. {
  458. int i;
  459. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  460. if (t->addrs[i])
  461. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  462. else
  463. break;
  464. }
  465. #endif
  466. }
  467. static void print_tracking(struct kmem_cache *s, void *object)
  468. {
  469. if (!(s->flags & SLAB_STORE_USER))
  470. return;
  471. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  472. print_track("Freed", get_track(s, object, TRACK_FREE));
  473. }
  474. static void print_page_info(struct page *page)
  475. {
  476. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  477. page, page->objects, page->inuse, page->freelist, page->flags);
  478. }
  479. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  480. {
  481. va_list args;
  482. char buf[100];
  483. va_start(args, fmt);
  484. vsnprintf(buf, sizeof(buf), fmt, args);
  485. va_end(args);
  486. printk(KERN_ERR "========================================"
  487. "=====================================\n");
  488. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  489. printk(KERN_ERR "----------------------------------------"
  490. "-------------------------------------\n\n");
  491. }
  492. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  493. {
  494. va_list args;
  495. char buf[100];
  496. va_start(args, fmt);
  497. vsnprintf(buf, sizeof(buf), fmt, args);
  498. va_end(args);
  499. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  500. }
  501. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  502. {
  503. unsigned int off; /* Offset of last byte */
  504. u8 *addr = page_address(page);
  505. print_tracking(s, p);
  506. print_page_info(page);
  507. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  508. p, p - addr, get_freepointer(s, p));
  509. if (p > addr + 16)
  510. print_section("Bytes b4 ", p - 16, 16);
  511. print_section("Object ", p, min_t(unsigned long, s->object_size,
  512. PAGE_SIZE));
  513. if (s->flags & SLAB_RED_ZONE)
  514. print_section("Redzone ", p + s->object_size,
  515. s->inuse - s->object_size);
  516. if (s->offset)
  517. off = s->offset + sizeof(void *);
  518. else
  519. off = s->inuse;
  520. if (s->flags & SLAB_STORE_USER)
  521. off += 2 * sizeof(struct track);
  522. if (off != s->size)
  523. /* Beginning of the filler is the free pointer */
  524. print_section("Padding ", p + off, s->size - off);
  525. dump_stack();
  526. }
  527. static void object_err(struct kmem_cache *s, struct page *page,
  528. u8 *object, char *reason)
  529. {
  530. slab_bug(s, "%s", reason);
  531. print_trailer(s, page, object);
  532. }
  533. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  534. {
  535. va_list args;
  536. char buf[100];
  537. va_start(args, fmt);
  538. vsnprintf(buf, sizeof(buf), fmt, args);
  539. va_end(args);
  540. slab_bug(s, "%s", buf);
  541. print_page_info(page);
  542. dump_stack();
  543. }
  544. static void init_object(struct kmem_cache *s, void *object, u8 val)
  545. {
  546. u8 *p = object;
  547. if (s->flags & __OBJECT_POISON) {
  548. memset(p, POISON_FREE, s->object_size - 1);
  549. p[s->object_size - 1] = POISON_END;
  550. }
  551. if (s->flags & SLAB_RED_ZONE)
  552. memset(p + s->object_size, val, s->inuse - s->object_size);
  553. }
  554. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  555. void *from, void *to)
  556. {
  557. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  558. memset(from, data, to - from);
  559. }
  560. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  561. u8 *object, char *what,
  562. u8 *start, unsigned int value, unsigned int bytes)
  563. {
  564. u8 *fault;
  565. u8 *end;
  566. fault = memchr_inv(start, value, bytes);
  567. if (!fault)
  568. return 1;
  569. end = start + bytes;
  570. while (end > fault && end[-1] == value)
  571. end--;
  572. slab_bug(s, "%s overwritten", what);
  573. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  574. fault, end - 1, fault[0], value);
  575. print_trailer(s, page, object);
  576. restore_bytes(s, what, value, fault, end);
  577. return 0;
  578. }
  579. /*
  580. * Object layout:
  581. *
  582. * object address
  583. * Bytes of the object to be managed.
  584. * If the freepointer may overlay the object then the free
  585. * pointer is the first word of the object.
  586. *
  587. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  588. * 0xa5 (POISON_END)
  589. *
  590. * object + s->object_size
  591. * Padding to reach word boundary. This is also used for Redzoning.
  592. * Padding is extended by another word if Redzoning is enabled and
  593. * object_size == inuse.
  594. *
  595. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  596. * 0xcc (RED_ACTIVE) for objects in use.
  597. *
  598. * object + s->inuse
  599. * Meta data starts here.
  600. *
  601. * A. Free pointer (if we cannot overwrite object on free)
  602. * B. Tracking data for SLAB_STORE_USER
  603. * C. Padding to reach required alignment boundary or at mininum
  604. * one word if debugging is on to be able to detect writes
  605. * before the word boundary.
  606. *
  607. * Padding is done using 0x5a (POISON_INUSE)
  608. *
  609. * object + s->size
  610. * Nothing is used beyond s->size.
  611. *
  612. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  613. * ignored. And therefore no slab options that rely on these boundaries
  614. * may be used with merged slabcaches.
  615. */
  616. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  617. {
  618. unsigned long off = s->inuse; /* The end of info */
  619. if (s->offset)
  620. /* Freepointer is placed after the object. */
  621. off += sizeof(void *);
  622. if (s->flags & SLAB_STORE_USER)
  623. /* We also have user information there */
  624. off += 2 * sizeof(struct track);
  625. if (s->size == off)
  626. return 1;
  627. return check_bytes_and_report(s, page, p, "Object padding",
  628. p + off, POISON_INUSE, s->size - off);
  629. }
  630. /* Check the pad bytes at the end of a slab page */
  631. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  632. {
  633. u8 *start;
  634. u8 *fault;
  635. u8 *end;
  636. int length;
  637. int remainder;
  638. if (!(s->flags & SLAB_POISON))
  639. return 1;
  640. start = page_address(page);
  641. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  642. end = start + length;
  643. remainder = length % s->size;
  644. if (!remainder)
  645. return 1;
  646. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  647. if (!fault)
  648. return 1;
  649. while (end > fault && end[-1] == POISON_INUSE)
  650. end--;
  651. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  652. print_section("Padding ", end - remainder, remainder);
  653. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  654. return 0;
  655. }
  656. static int check_object(struct kmem_cache *s, struct page *page,
  657. void *object, u8 val)
  658. {
  659. u8 *p = object;
  660. u8 *endobject = object + s->object_size;
  661. if (s->flags & SLAB_RED_ZONE) {
  662. if (!check_bytes_and_report(s, page, object, "Redzone",
  663. endobject, val, s->inuse - s->object_size))
  664. return 0;
  665. } else {
  666. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  667. check_bytes_and_report(s, page, p, "Alignment padding",
  668. endobject, POISON_INUSE, s->inuse - s->object_size);
  669. }
  670. }
  671. if (s->flags & SLAB_POISON) {
  672. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  673. (!check_bytes_and_report(s, page, p, "Poison", p,
  674. POISON_FREE, s->object_size - 1) ||
  675. !check_bytes_and_report(s, page, p, "Poison",
  676. p + s->object_size - 1, POISON_END, 1)))
  677. return 0;
  678. /*
  679. * check_pad_bytes cleans up on its own.
  680. */
  681. check_pad_bytes(s, page, p);
  682. }
  683. if (!s->offset && val == SLUB_RED_ACTIVE)
  684. /*
  685. * Object and freepointer overlap. Cannot check
  686. * freepointer while object is allocated.
  687. */
  688. return 1;
  689. /* Check free pointer validity */
  690. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  691. object_err(s, page, p, "Freepointer corrupt");
  692. /*
  693. * No choice but to zap it and thus lose the remainder
  694. * of the free objects in this slab. May cause
  695. * another error because the object count is now wrong.
  696. */
  697. set_freepointer(s, p, NULL);
  698. return 0;
  699. }
  700. return 1;
  701. }
  702. static int check_slab(struct kmem_cache *s, struct page *page)
  703. {
  704. int maxobj;
  705. VM_BUG_ON(!irqs_disabled());
  706. if (!PageSlab(page)) {
  707. slab_err(s, page, "Not a valid slab page");
  708. return 0;
  709. }
  710. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  711. if (page->objects > maxobj) {
  712. slab_err(s, page, "objects %u > max %u",
  713. s->name, page->objects, maxobj);
  714. return 0;
  715. }
  716. if (page->inuse > page->objects) {
  717. slab_err(s, page, "inuse %u > max %u",
  718. s->name, page->inuse, page->objects);
  719. return 0;
  720. }
  721. /* Slab_pad_check fixes things up after itself */
  722. slab_pad_check(s, page);
  723. return 1;
  724. }
  725. /*
  726. * Determine if a certain object on a page is on the freelist. Must hold the
  727. * slab lock to guarantee that the chains are in a consistent state.
  728. */
  729. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  730. {
  731. int nr = 0;
  732. void *fp;
  733. void *object = NULL;
  734. unsigned long max_objects;
  735. fp = page->freelist;
  736. while (fp && nr <= page->objects) {
  737. if (fp == search)
  738. return 1;
  739. if (!check_valid_pointer(s, page, fp)) {
  740. if (object) {
  741. object_err(s, page, object,
  742. "Freechain corrupt");
  743. set_freepointer(s, object, NULL);
  744. break;
  745. } else {
  746. slab_err(s, page, "Freepointer corrupt");
  747. page->freelist = NULL;
  748. page->inuse = page->objects;
  749. slab_fix(s, "Freelist cleared");
  750. return 0;
  751. }
  752. break;
  753. }
  754. object = fp;
  755. fp = get_freepointer(s, object);
  756. nr++;
  757. }
  758. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  759. if (max_objects > MAX_OBJS_PER_PAGE)
  760. max_objects = MAX_OBJS_PER_PAGE;
  761. if (page->objects != max_objects) {
  762. slab_err(s, page, "Wrong number of objects. Found %d but "
  763. "should be %d", page->objects, max_objects);
  764. page->objects = max_objects;
  765. slab_fix(s, "Number of objects adjusted.");
  766. }
  767. if (page->inuse != page->objects - nr) {
  768. slab_err(s, page, "Wrong object count. Counter is %d but "
  769. "counted were %d", page->inuse, page->objects - nr);
  770. page->inuse = page->objects - nr;
  771. slab_fix(s, "Object count adjusted.");
  772. }
  773. return search == NULL;
  774. }
  775. static void trace(struct kmem_cache *s, struct page *page, void *object,
  776. int alloc)
  777. {
  778. if (s->flags & SLAB_TRACE) {
  779. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  780. s->name,
  781. alloc ? "alloc" : "free",
  782. object, page->inuse,
  783. page->freelist);
  784. if (!alloc)
  785. print_section("Object ", (void *)object, s->object_size);
  786. dump_stack();
  787. }
  788. }
  789. /*
  790. * Hooks for other subsystems that check memory allocations. In a typical
  791. * production configuration these hooks all should produce no code at all.
  792. */
  793. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  794. {
  795. flags &= gfp_allowed_mask;
  796. lockdep_trace_alloc(flags);
  797. might_sleep_if(flags & __GFP_WAIT);
  798. return should_failslab(s->object_size, flags, s->flags);
  799. }
  800. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  801. {
  802. flags &= gfp_allowed_mask;
  803. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  804. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  805. }
  806. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  807. {
  808. kmemleak_free_recursive(x, s->flags);
  809. /*
  810. * Trouble is that we may no longer disable interupts in the fast path
  811. * So in order to make the debug calls that expect irqs to be
  812. * disabled we need to disable interrupts temporarily.
  813. */
  814. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  815. {
  816. unsigned long flags;
  817. local_irq_save(flags);
  818. kmemcheck_slab_free(s, x, s->object_size);
  819. debug_check_no_locks_freed(x, s->object_size);
  820. local_irq_restore(flags);
  821. }
  822. #endif
  823. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  824. debug_check_no_obj_freed(x, s->object_size);
  825. }
  826. /*
  827. * Tracking of fully allocated slabs for debugging purposes.
  828. *
  829. * list_lock must be held.
  830. */
  831. static void add_full(struct kmem_cache *s,
  832. struct kmem_cache_node *n, struct page *page)
  833. {
  834. if (!(s->flags & SLAB_STORE_USER))
  835. return;
  836. list_add(&page->lru, &n->full);
  837. }
  838. /*
  839. * list_lock must be held.
  840. */
  841. static void remove_full(struct kmem_cache *s, struct page *page)
  842. {
  843. if (!(s->flags & SLAB_STORE_USER))
  844. return;
  845. list_del(&page->lru);
  846. }
  847. /* Tracking of the number of slabs for debugging purposes */
  848. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  849. {
  850. struct kmem_cache_node *n = get_node(s, node);
  851. return atomic_long_read(&n->nr_slabs);
  852. }
  853. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  854. {
  855. return atomic_long_read(&n->nr_slabs);
  856. }
  857. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  858. {
  859. struct kmem_cache_node *n = get_node(s, node);
  860. /*
  861. * May be called early in order to allocate a slab for the
  862. * kmem_cache_node structure. Solve the chicken-egg
  863. * dilemma by deferring the increment of the count during
  864. * bootstrap (see early_kmem_cache_node_alloc).
  865. */
  866. if (n) {
  867. atomic_long_inc(&n->nr_slabs);
  868. atomic_long_add(objects, &n->total_objects);
  869. }
  870. }
  871. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  872. {
  873. struct kmem_cache_node *n = get_node(s, node);
  874. atomic_long_dec(&n->nr_slabs);
  875. atomic_long_sub(objects, &n->total_objects);
  876. }
  877. /* Object debug checks for alloc/free paths */
  878. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  879. void *object)
  880. {
  881. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  882. return;
  883. init_object(s, object, SLUB_RED_INACTIVE);
  884. init_tracking(s, object);
  885. }
  886. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  887. void *object, unsigned long addr)
  888. {
  889. if (!check_slab(s, page))
  890. goto bad;
  891. if (!check_valid_pointer(s, page, object)) {
  892. object_err(s, page, object, "Freelist Pointer check fails");
  893. goto bad;
  894. }
  895. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  896. goto bad;
  897. /* Success perform special debug activities for allocs */
  898. if (s->flags & SLAB_STORE_USER)
  899. set_track(s, object, TRACK_ALLOC, addr);
  900. trace(s, page, object, 1);
  901. init_object(s, object, SLUB_RED_ACTIVE);
  902. return 1;
  903. bad:
  904. if (PageSlab(page)) {
  905. /*
  906. * If this is a slab page then lets do the best we can
  907. * to avoid issues in the future. Marking all objects
  908. * as used avoids touching the remaining objects.
  909. */
  910. slab_fix(s, "Marking all objects used");
  911. page->inuse = page->objects;
  912. page->freelist = NULL;
  913. }
  914. return 0;
  915. }
  916. static noinline int free_debug_processing(struct kmem_cache *s,
  917. struct page *page, void *object, unsigned long addr)
  918. {
  919. unsigned long flags;
  920. int rc = 0;
  921. local_irq_save(flags);
  922. slab_lock(page);
  923. if (!check_slab(s, page))
  924. goto fail;
  925. if (!check_valid_pointer(s, page, object)) {
  926. slab_err(s, page, "Invalid object pointer 0x%p", object);
  927. goto fail;
  928. }
  929. if (on_freelist(s, page, object)) {
  930. object_err(s, page, object, "Object already free");
  931. goto fail;
  932. }
  933. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  934. goto out;
  935. if (unlikely(s != page->slab)) {
  936. if (!PageSlab(page)) {
  937. slab_err(s, page, "Attempt to free object(0x%p) "
  938. "outside of slab", object);
  939. } else if (!page->slab) {
  940. printk(KERN_ERR
  941. "SLUB <none>: no slab for object 0x%p.\n",
  942. object);
  943. dump_stack();
  944. } else
  945. object_err(s, page, object,
  946. "page slab pointer corrupt.");
  947. goto fail;
  948. }
  949. if (s->flags & SLAB_STORE_USER)
  950. set_track(s, object, TRACK_FREE, addr);
  951. trace(s, page, object, 0);
  952. init_object(s, object, SLUB_RED_INACTIVE);
  953. rc = 1;
  954. out:
  955. slab_unlock(page);
  956. local_irq_restore(flags);
  957. return rc;
  958. fail:
  959. slab_fix(s, "Object at 0x%p not freed", object);
  960. goto out;
  961. }
  962. static int __init setup_slub_debug(char *str)
  963. {
  964. slub_debug = DEBUG_DEFAULT_FLAGS;
  965. if (*str++ != '=' || !*str)
  966. /*
  967. * No options specified. Switch on full debugging.
  968. */
  969. goto out;
  970. if (*str == ',')
  971. /*
  972. * No options but restriction on slabs. This means full
  973. * debugging for slabs matching a pattern.
  974. */
  975. goto check_slabs;
  976. if (tolower(*str) == 'o') {
  977. /*
  978. * Avoid enabling debugging on caches if its minimum order
  979. * would increase as a result.
  980. */
  981. disable_higher_order_debug = 1;
  982. goto out;
  983. }
  984. slub_debug = 0;
  985. if (*str == '-')
  986. /*
  987. * Switch off all debugging measures.
  988. */
  989. goto out;
  990. /*
  991. * Determine which debug features should be switched on
  992. */
  993. for (; *str && *str != ','; str++) {
  994. switch (tolower(*str)) {
  995. case 'f':
  996. slub_debug |= SLAB_DEBUG_FREE;
  997. break;
  998. case 'z':
  999. slub_debug |= SLAB_RED_ZONE;
  1000. break;
  1001. case 'p':
  1002. slub_debug |= SLAB_POISON;
  1003. break;
  1004. case 'u':
  1005. slub_debug |= SLAB_STORE_USER;
  1006. break;
  1007. case 't':
  1008. slub_debug |= SLAB_TRACE;
  1009. break;
  1010. case 'a':
  1011. slub_debug |= SLAB_FAILSLAB;
  1012. break;
  1013. default:
  1014. printk(KERN_ERR "slub_debug option '%c' "
  1015. "unknown. skipped\n", *str);
  1016. }
  1017. }
  1018. check_slabs:
  1019. if (*str == ',')
  1020. slub_debug_slabs = str + 1;
  1021. out:
  1022. return 1;
  1023. }
  1024. __setup("slub_debug", setup_slub_debug);
  1025. static unsigned long kmem_cache_flags(unsigned long object_size,
  1026. unsigned long flags, const char *name,
  1027. void (*ctor)(void *))
  1028. {
  1029. /*
  1030. * Enable debugging if selected on the kernel commandline.
  1031. */
  1032. if (slub_debug && (!slub_debug_slabs ||
  1033. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1034. flags |= slub_debug;
  1035. return flags;
  1036. }
  1037. #else
  1038. static inline void setup_object_debug(struct kmem_cache *s,
  1039. struct page *page, void *object) {}
  1040. static inline int alloc_debug_processing(struct kmem_cache *s,
  1041. struct page *page, void *object, unsigned long addr) { return 0; }
  1042. static inline int free_debug_processing(struct kmem_cache *s,
  1043. struct page *page, void *object, unsigned long addr) { return 0; }
  1044. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1045. { return 1; }
  1046. static inline int check_object(struct kmem_cache *s, struct page *page,
  1047. void *object, u8 val) { return 1; }
  1048. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1049. struct page *page) {}
  1050. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1051. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1052. unsigned long flags, const char *name,
  1053. void (*ctor)(void *))
  1054. {
  1055. return flags;
  1056. }
  1057. #define slub_debug 0
  1058. #define disable_higher_order_debug 0
  1059. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1060. { return 0; }
  1061. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1062. { return 0; }
  1063. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1064. int objects) {}
  1065. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1066. int objects) {}
  1067. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1068. { return 0; }
  1069. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1070. void *object) {}
  1071. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1072. #endif /* CONFIG_SLUB_DEBUG */
  1073. /*
  1074. * Slab allocation and freeing
  1075. */
  1076. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1077. struct kmem_cache_order_objects oo)
  1078. {
  1079. int order = oo_order(oo);
  1080. flags |= __GFP_NOTRACK;
  1081. if (node == NUMA_NO_NODE)
  1082. return alloc_pages(flags, order);
  1083. else
  1084. return alloc_pages_exact_node(node, flags, order);
  1085. }
  1086. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1087. {
  1088. struct page *page;
  1089. struct kmem_cache_order_objects oo = s->oo;
  1090. gfp_t alloc_gfp;
  1091. flags &= gfp_allowed_mask;
  1092. if (flags & __GFP_WAIT)
  1093. local_irq_enable();
  1094. flags |= s->allocflags;
  1095. /*
  1096. * Let the initial higher-order allocation fail under memory pressure
  1097. * so we fall-back to the minimum order allocation.
  1098. */
  1099. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1100. page = alloc_slab_page(alloc_gfp, node, oo);
  1101. if (unlikely(!page)) {
  1102. oo = s->min;
  1103. /*
  1104. * Allocation may have failed due to fragmentation.
  1105. * Try a lower order alloc if possible
  1106. */
  1107. page = alloc_slab_page(flags, node, oo);
  1108. if (page)
  1109. stat(s, ORDER_FALLBACK);
  1110. }
  1111. if (flags & __GFP_WAIT)
  1112. local_irq_disable();
  1113. if (!page)
  1114. return NULL;
  1115. if (kmemcheck_enabled
  1116. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1117. int pages = 1 << oo_order(oo);
  1118. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1119. /*
  1120. * Objects from caches that have a constructor don't get
  1121. * cleared when they're allocated, so we need to do it here.
  1122. */
  1123. if (s->ctor)
  1124. kmemcheck_mark_uninitialized_pages(page, pages);
  1125. else
  1126. kmemcheck_mark_unallocated_pages(page, pages);
  1127. }
  1128. page->objects = oo_objects(oo);
  1129. mod_zone_page_state(page_zone(page),
  1130. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1131. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1132. 1 << oo_order(oo));
  1133. return page;
  1134. }
  1135. static void setup_object(struct kmem_cache *s, struct page *page,
  1136. void *object)
  1137. {
  1138. setup_object_debug(s, page, object);
  1139. if (unlikely(s->ctor))
  1140. s->ctor(object);
  1141. }
  1142. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1143. {
  1144. struct page *page;
  1145. void *start;
  1146. void *last;
  1147. void *p;
  1148. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1149. page = allocate_slab(s,
  1150. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1151. if (!page)
  1152. goto out;
  1153. inc_slabs_node(s, page_to_nid(page), page->objects);
  1154. page->slab = s;
  1155. __SetPageSlab(page);
  1156. start = page_address(page);
  1157. if (unlikely(s->flags & SLAB_POISON))
  1158. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1159. last = start;
  1160. for_each_object(p, s, start, page->objects) {
  1161. setup_object(s, page, last);
  1162. set_freepointer(s, last, p);
  1163. last = p;
  1164. }
  1165. setup_object(s, page, last);
  1166. set_freepointer(s, last, NULL);
  1167. page->freelist = start;
  1168. page->inuse = page->objects;
  1169. page->frozen = 1;
  1170. out:
  1171. return page;
  1172. }
  1173. static void __free_slab(struct kmem_cache *s, struct page *page)
  1174. {
  1175. int order = compound_order(page);
  1176. int pages = 1 << order;
  1177. if (kmem_cache_debug(s)) {
  1178. void *p;
  1179. slab_pad_check(s, page);
  1180. for_each_object(p, s, page_address(page),
  1181. page->objects)
  1182. check_object(s, page, p, SLUB_RED_INACTIVE);
  1183. }
  1184. kmemcheck_free_shadow(page, compound_order(page));
  1185. mod_zone_page_state(page_zone(page),
  1186. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1187. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1188. -pages);
  1189. __ClearPageSlab(page);
  1190. reset_page_mapcount(page);
  1191. if (current->reclaim_state)
  1192. current->reclaim_state->reclaimed_slab += pages;
  1193. __free_pages(page, order);
  1194. }
  1195. #define need_reserve_slab_rcu \
  1196. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1197. static void rcu_free_slab(struct rcu_head *h)
  1198. {
  1199. struct page *page;
  1200. if (need_reserve_slab_rcu)
  1201. page = virt_to_head_page(h);
  1202. else
  1203. page = container_of((struct list_head *)h, struct page, lru);
  1204. __free_slab(page->slab, page);
  1205. }
  1206. static void free_slab(struct kmem_cache *s, struct page *page)
  1207. {
  1208. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1209. struct rcu_head *head;
  1210. if (need_reserve_slab_rcu) {
  1211. int order = compound_order(page);
  1212. int offset = (PAGE_SIZE << order) - s->reserved;
  1213. VM_BUG_ON(s->reserved != sizeof(*head));
  1214. head = page_address(page) + offset;
  1215. } else {
  1216. /*
  1217. * RCU free overloads the RCU head over the LRU
  1218. */
  1219. head = (void *)&page->lru;
  1220. }
  1221. call_rcu(head, rcu_free_slab);
  1222. } else
  1223. __free_slab(s, page);
  1224. }
  1225. static void discard_slab(struct kmem_cache *s, struct page *page)
  1226. {
  1227. dec_slabs_node(s, page_to_nid(page), page->objects);
  1228. free_slab(s, page);
  1229. }
  1230. /*
  1231. * Management of partially allocated slabs.
  1232. *
  1233. * list_lock must be held.
  1234. */
  1235. static inline void add_partial(struct kmem_cache_node *n,
  1236. struct page *page, int tail)
  1237. {
  1238. n->nr_partial++;
  1239. if (tail == DEACTIVATE_TO_TAIL)
  1240. list_add_tail(&page->lru, &n->partial);
  1241. else
  1242. list_add(&page->lru, &n->partial);
  1243. }
  1244. /*
  1245. * list_lock must be held.
  1246. */
  1247. static inline void remove_partial(struct kmem_cache_node *n,
  1248. struct page *page)
  1249. {
  1250. list_del(&page->lru);
  1251. n->nr_partial--;
  1252. }
  1253. /*
  1254. * Remove slab from the partial list, freeze it and
  1255. * return the pointer to the freelist.
  1256. *
  1257. * Returns a list of objects or NULL if it fails.
  1258. *
  1259. * Must hold list_lock since we modify the partial list.
  1260. */
  1261. static inline void *acquire_slab(struct kmem_cache *s,
  1262. struct kmem_cache_node *n, struct page *page,
  1263. int mode)
  1264. {
  1265. void *freelist;
  1266. unsigned long counters;
  1267. struct page new;
  1268. /*
  1269. * Zap the freelist and set the frozen bit.
  1270. * The old freelist is the list of objects for the
  1271. * per cpu allocation list.
  1272. */
  1273. freelist = page->freelist;
  1274. counters = page->counters;
  1275. new.counters = counters;
  1276. if (mode) {
  1277. new.inuse = page->objects;
  1278. new.freelist = NULL;
  1279. } else {
  1280. new.freelist = freelist;
  1281. }
  1282. VM_BUG_ON(new.frozen);
  1283. new.frozen = 1;
  1284. if (!__cmpxchg_double_slab(s, page,
  1285. freelist, counters,
  1286. new.freelist, new.counters,
  1287. "acquire_slab"))
  1288. return NULL;
  1289. remove_partial(n, page);
  1290. WARN_ON(!freelist);
  1291. return freelist;
  1292. }
  1293. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1294. /*
  1295. * Try to allocate a partial slab from a specific node.
  1296. */
  1297. static void *get_partial_node(struct kmem_cache *s,
  1298. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1299. {
  1300. struct page *page, *page2;
  1301. void *object = NULL;
  1302. /*
  1303. * Racy check. If we mistakenly see no partial slabs then we
  1304. * just allocate an empty slab. If we mistakenly try to get a
  1305. * partial slab and there is none available then get_partials()
  1306. * will return NULL.
  1307. */
  1308. if (!n || !n->nr_partial)
  1309. return NULL;
  1310. spin_lock(&n->list_lock);
  1311. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1312. void *t = acquire_slab(s, n, page, object == NULL);
  1313. int available;
  1314. if (!t)
  1315. break;
  1316. if (!object) {
  1317. c->page = page;
  1318. stat(s, ALLOC_FROM_PARTIAL);
  1319. object = t;
  1320. available = page->objects - page->inuse;
  1321. } else {
  1322. available = put_cpu_partial(s, page, 0);
  1323. stat(s, CPU_PARTIAL_NODE);
  1324. }
  1325. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1326. break;
  1327. }
  1328. spin_unlock(&n->list_lock);
  1329. return object;
  1330. }
  1331. /*
  1332. * Get a page from somewhere. Search in increasing NUMA distances.
  1333. */
  1334. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1335. struct kmem_cache_cpu *c)
  1336. {
  1337. #ifdef CONFIG_NUMA
  1338. struct zonelist *zonelist;
  1339. struct zoneref *z;
  1340. struct zone *zone;
  1341. enum zone_type high_zoneidx = gfp_zone(flags);
  1342. void *object;
  1343. unsigned int cpuset_mems_cookie;
  1344. /*
  1345. * The defrag ratio allows a configuration of the tradeoffs between
  1346. * inter node defragmentation and node local allocations. A lower
  1347. * defrag_ratio increases the tendency to do local allocations
  1348. * instead of attempting to obtain partial slabs from other nodes.
  1349. *
  1350. * If the defrag_ratio is set to 0 then kmalloc() always
  1351. * returns node local objects. If the ratio is higher then kmalloc()
  1352. * may return off node objects because partial slabs are obtained
  1353. * from other nodes and filled up.
  1354. *
  1355. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1356. * defrag_ratio = 1000) then every (well almost) allocation will
  1357. * first attempt to defrag slab caches on other nodes. This means
  1358. * scanning over all nodes to look for partial slabs which may be
  1359. * expensive if we do it every time we are trying to find a slab
  1360. * with available objects.
  1361. */
  1362. if (!s->remote_node_defrag_ratio ||
  1363. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1364. return NULL;
  1365. do {
  1366. cpuset_mems_cookie = get_mems_allowed();
  1367. zonelist = node_zonelist(slab_node(), flags);
  1368. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1369. struct kmem_cache_node *n;
  1370. n = get_node(s, zone_to_nid(zone));
  1371. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1372. n->nr_partial > s->min_partial) {
  1373. object = get_partial_node(s, n, c);
  1374. if (object) {
  1375. /*
  1376. * Return the object even if
  1377. * put_mems_allowed indicated that
  1378. * the cpuset mems_allowed was
  1379. * updated in parallel. It's a
  1380. * harmless race between the alloc
  1381. * and the cpuset update.
  1382. */
  1383. put_mems_allowed(cpuset_mems_cookie);
  1384. return object;
  1385. }
  1386. }
  1387. }
  1388. } while (!put_mems_allowed(cpuset_mems_cookie));
  1389. #endif
  1390. return NULL;
  1391. }
  1392. /*
  1393. * Get a partial page, lock it and return it.
  1394. */
  1395. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1396. struct kmem_cache_cpu *c)
  1397. {
  1398. void *object;
  1399. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1400. object = get_partial_node(s, get_node(s, searchnode), c);
  1401. if (object || node != NUMA_NO_NODE)
  1402. return object;
  1403. return get_any_partial(s, flags, c);
  1404. }
  1405. #ifdef CONFIG_PREEMPT
  1406. /*
  1407. * Calculate the next globally unique transaction for disambiguiation
  1408. * during cmpxchg. The transactions start with the cpu number and are then
  1409. * incremented by CONFIG_NR_CPUS.
  1410. */
  1411. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1412. #else
  1413. /*
  1414. * No preemption supported therefore also no need to check for
  1415. * different cpus.
  1416. */
  1417. #define TID_STEP 1
  1418. #endif
  1419. static inline unsigned long next_tid(unsigned long tid)
  1420. {
  1421. return tid + TID_STEP;
  1422. }
  1423. static inline unsigned int tid_to_cpu(unsigned long tid)
  1424. {
  1425. return tid % TID_STEP;
  1426. }
  1427. static inline unsigned long tid_to_event(unsigned long tid)
  1428. {
  1429. return tid / TID_STEP;
  1430. }
  1431. static inline unsigned int init_tid(int cpu)
  1432. {
  1433. return cpu;
  1434. }
  1435. static inline void note_cmpxchg_failure(const char *n,
  1436. const struct kmem_cache *s, unsigned long tid)
  1437. {
  1438. #ifdef SLUB_DEBUG_CMPXCHG
  1439. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1440. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1441. #ifdef CONFIG_PREEMPT
  1442. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1443. printk("due to cpu change %d -> %d\n",
  1444. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1445. else
  1446. #endif
  1447. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1448. printk("due to cpu running other code. Event %ld->%ld\n",
  1449. tid_to_event(tid), tid_to_event(actual_tid));
  1450. else
  1451. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1452. actual_tid, tid, next_tid(tid));
  1453. #endif
  1454. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1455. }
  1456. void init_kmem_cache_cpus(struct kmem_cache *s)
  1457. {
  1458. int cpu;
  1459. for_each_possible_cpu(cpu)
  1460. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1461. }
  1462. /*
  1463. * Remove the cpu slab
  1464. */
  1465. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1466. {
  1467. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1468. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1469. int lock = 0;
  1470. enum slab_modes l = M_NONE, m = M_NONE;
  1471. void *nextfree;
  1472. int tail = DEACTIVATE_TO_HEAD;
  1473. struct page new;
  1474. struct page old;
  1475. if (page->freelist) {
  1476. stat(s, DEACTIVATE_REMOTE_FREES);
  1477. tail = DEACTIVATE_TO_TAIL;
  1478. }
  1479. /*
  1480. * Stage one: Free all available per cpu objects back
  1481. * to the page freelist while it is still frozen. Leave the
  1482. * last one.
  1483. *
  1484. * There is no need to take the list->lock because the page
  1485. * is still frozen.
  1486. */
  1487. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1488. void *prior;
  1489. unsigned long counters;
  1490. do {
  1491. prior = page->freelist;
  1492. counters = page->counters;
  1493. set_freepointer(s, freelist, prior);
  1494. new.counters = counters;
  1495. new.inuse--;
  1496. VM_BUG_ON(!new.frozen);
  1497. } while (!__cmpxchg_double_slab(s, page,
  1498. prior, counters,
  1499. freelist, new.counters,
  1500. "drain percpu freelist"));
  1501. freelist = nextfree;
  1502. }
  1503. /*
  1504. * Stage two: Ensure that the page is unfrozen while the
  1505. * list presence reflects the actual number of objects
  1506. * during unfreeze.
  1507. *
  1508. * We setup the list membership and then perform a cmpxchg
  1509. * with the count. If there is a mismatch then the page
  1510. * is not unfrozen but the page is on the wrong list.
  1511. *
  1512. * Then we restart the process which may have to remove
  1513. * the page from the list that we just put it on again
  1514. * because the number of objects in the slab may have
  1515. * changed.
  1516. */
  1517. redo:
  1518. old.freelist = page->freelist;
  1519. old.counters = page->counters;
  1520. VM_BUG_ON(!old.frozen);
  1521. /* Determine target state of the slab */
  1522. new.counters = old.counters;
  1523. if (freelist) {
  1524. new.inuse--;
  1525. set_freepointer(s, freelist, old.freelist);
  1526. new.freelist = freelist;
  1527. } else
  1528. new.freelist = old.freelist;
  1529. new.frozen = 0;
  1530. if (!new.inuse && n->nr_partial > s->min_partial)
  1531. m = M_FREE;
  1532. else if (new.freelist) {
  1533. m = M_PARTIAL;
  1534. if (!lock) {
  1535. lock = 1;
  1536. /*
  1537. * Taking the spinlock removes the possiblity
  1538. * that acquire_slab() will see a slab page that
  1539. * is frozen
  1540. */
  1541. spin_lock(&n->list_lock);
  1542. }
  1543. } else {
  1544. m = M_FULL;
  1545. if (kmem_cache_debug(s) && !lock) {
  1546. lock = 1;
  1547. /*
  1548. * This also ensures that the scanning of full
  1549. * slabs from diagnostic functions will not see
  1550. * any frozen slabs.
  1551. */
  1552. spin_lock(&n->list_lock);
  1553. }
  1554. }
  1555. if (l != m) {
  1556. if (l == M_PARTIAL)
  1557. remove_partial(n, page);
  1558. else if (l == M_FULL)
  1559. remove_full(s, page);
  1560. if (m == M_PARTIAL) {
  1561. add_partial(n, page, tail);
  1562. stat(s, tail);
  1563. } else if (m == M_FULL) {
  1564. stat(s, DEACTIVATE_FULL);
  1565. add_full(s, n, page);
  1566. }
  1567. }
  1568. l = m;
  1569. if (!__cmpxchg_double_slab(s, page,
  1570. old.freelist, old.counters,
  1571. new.freelist, new.counters,
  1572. "unfreezing slab"))
  1573. goto redo;
  1574. if (lock)
  1575. spin_unlock(&n->list_lock);
  1576. if (m == M_FREE) {
  1577. stat(s, DEACTIVATE_EMPTY);
  1578. discard_slab(s, page);
  1579. stat(s, FREE_SLAB);
  1580. }
  1581. }
  1582. /*
  1583. * Unfreeze all the cpu partial slabs.
  1584. *
  1585. * This function must be called with interrupt disabled.
  1586. */
  1587. static void unfreeze_partials(struct kmem_cache *s)
  1588. {
  1589. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1590. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1591. struct page *page, *discard_page = NULL;
  1592. while ((page = c->partial)) {
  1593. struct page new;
  1594. struct page old;
  1595. c->partial = page->next;
  1596. n2 = get_node(s, page_to_nid(page));
  1597. if (n != n2) {
  1598. if (n)
  1599. spin_unlock(&n->list_lock);
  1600. n = n2;
  1601. spin_lock(&n->list_lock);
  1602. }
  1603. do {
  1604. old.freelist = page->freelist;
  1605. old.counters = page->counters;
  1606. VM_BUG_ON(!old.frozen);
  1607. new.counters = old.counters;
  1608. new.freelist = old.freelist;
  1609. new.frozen = 0;
  1610. } while (!__cmpxchg_double_slab(s, page,
  1611. old.freelist, old.counters,
  1612. new.freelist, new.counters,
  1613. "unfreezing slab"));
  1614. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1615. page->next = discard_page;
  1616. discard_page = page;
  1617. } else {
  1618. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1619. stat(s, FREE_ADD_PARTIAL);
  1620. }
  1621. }
  1622. if (n)
  1623. spin_unlock(&n->list_lock);
  1624. while (discard_page) {
  1625. page = discard_page;
  1626. discard_page = discard_page->next;
  1627. stat(s, DEACTIVATE_EMPTY);
  1628. discard_slab(s, page);
  1629. stat(s, FREE_SLAB);
  1630. }
  1631. }
  1632. /*
  1633. * Put a page that was just frozen (in __slab_free) into a partial page
  1634. * slot if available. This is done without interrupts disabled and without
  1635. * preemption disabled. The cmpxchg is racy and may put the partial page
  1636. * onto a random cpus partial slot.
  1637. *
  1638. * If we did not find a slot then simply move all the partials to the
  1639. * per node partial list.
  1640. */
  1641. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1642. {
  1643. struct page *oldpage;
  1644. int pages;
  1645. int pobjects;
  1646. do {
  1647. pages = 0;
  1648. pobjects = 0;
  1649. oldpage = this_cpu_read(s->cpu_slab->partial);
  1650. if (oldpage) {
  1651. pobjects = oldpage->pobjects;
  1652. pages = oldpage->pages;
  1653. if (drain && pobjects > s->cpu_partial) {
  1654. unsigned long flags;
  1655. /*
  1656. * partial array is full. Move the existing
  1657. * set to the per node partial list.
  1658. */
  1659. local_irq_save(flags);
  1660. unfreeze_partials(s);
  1661. local_irq_restore(flags);
  1662. pobjects = 0;
  1663. pages = 0;
  1664. stat(s, CPU_PARTIAL_DRAIN);
  1665. }
  1666. }
  1667. pages++;
  1668. pobjects += page->objects - page->inuse;
  1669. page->pages = pages;
  1670. page->pobjects = pobjects;
  1671. page->next = oldpage;
  1672. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1673. return pobjects;
  1674. }
  1675. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1676. {
  1677. stat(s, CPUSLAB_FLUSH);
  1678. deactivate_slab(s, c->page, c->freelist);
  1679. c->tid = next_tid(c->tid);
  1680. c->page = NULL;
  1681. c->freelist = NULL;
  1682. }
  1683. /*
  1684. * Flush cpu slab.
  1685. *
  1686. * Called from IPI handler with interrupts disabled.
  1687. */
  1688. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1689. {
  1690. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1691. if (likely(c)) {
  1692. if (c->page)
  1693. flush_slab(s, c);
  1694. unfreeze_partials(s);
  1695. }
  1696. }
  1697. static void flush_cpu_slab(void *d)
  1698. {
  1699. struct kmem_cache *s = d;
  1700. __flush_cpu_slab(s, smp_processor_id());
  1701. }
  1702. static bool has_cpu_slab(int cpu, void *info)
  1703. {
  1704. struct kmem_cache *s = info;
  1705. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1706. return c->page || c->partial;
  1707. }
  1708. static void flush_all(struct kmem_cache *s)
  1709. {
  1710. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1711. }
  1712. /*
  1713. * Check if the objects in a per cpu structure fit numa
  1714. * locality expectations.
  1715. */
  1716. static inline int node_match(struct page *page, int node)
  1717. {
  1718. #ifdef CONFIG_NUMA
  1719. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1720. return 0;
  1721. #endif
  1722. return 1;
  1723. }
  1724. static int count_free(struct page *page)
  1725. {
  1726. return page->objects - page->inuse;
  1727. }
  1728. static unsigned long count_partial(struct kmem_cache_node *n,
  1729. int (*get_count)(struct page *))
  1730. {
  1731. unsigned long flags;
  1732. unsigned long x = 0;
  1733. struct page *page;
  1734. spin_lock_irqsave(&n->list_lock, flags);
  1735. list_for_each_entry(page, &n->partial, lru)
  1736. x += get_count(page);
  1737. spin_unlock_irqrestore(&n->list_lock, flags);
  1738. return x;
  1739. }
  1740. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1741. {
  1742. #ifdef CONFIG_SLUB_DEBUG
  1743. return atomic_long_read(&n->total_objects);
  1744. #else
  1745. return 0;
  1746. #endif
  1747. }
  1748. static noinline void
  1749. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1750. {
  1751. int node;
  1752. printk(KERN_WARNING
  1753. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1754. nid, gfpflags);
  1755. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1756. "default order: %d, min order: %d\n", s->name, s->object_size,
  1757. s->size, oo_order(s->oo), oo_order(s->min));
  1758. if (oo_order(s->min) > get_order(s->object_size))
  1759. printk(KERN_WARNING " %s debugging increased min order, use "
  1760. "slub_debug=O to disable.\n", s->name);
  1761. for_each_online_node(node) {
  1762. struct kmem_cache_node *n = get_node(s, node);
  1763. unsigned long nr_slabs;
  1764. unsigned long nr_objs;
  1765. unsigned long nr_free;
  1766. if (!n)
  1767. continue;
  1768. nr_free = count_partial(n, count_free);
  1769. nr_slabs = node_nr_slabs(n);
  1770. nr_objs = node_nr_objs(n);
  1771. printk(KERN_WARNING
  1772. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1773. node, nr_slabs, nr_objs, nr_free);
  1774. }
  1775. }
  1776. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1777. int node, struct kmem_cache_cpu **pc)
  1778. {
  1779. void *freelist;
  1780. struct kmem_cache_cpu *c = *pc;
  1781. struct page *page;
  1782. freelist = get_partial(s, flags, node, c);
  1783. if (freelist)
  1784. return freelist;
  1785. page = new_slab(s, flags, node);
  1786. if (page) {
  1787. c = __this_cpu_ptr(s->cpu_slab);
  1788. if (c->page)
  1789. flush_slab(s, c);
  1790. /*
  1791. * No other reference to the page yet so we can
  1792. * muck around with it freely without cmpxchg
  1793. */
  1794. freelist = page->freelist;
  1795. page->freelist = NULL;
  1796. stat(s, ALLOC_SLAB);
  1797. c->page = page;
  1798. *pc = c;
  1799. } else
  1800. freelist = NULL;
  1801. return freelist;
  1802. }
  1803. /*
  1804. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1805. * or deactivate the page.
  1806. *
  1807. * The page is still frozen if the return value is not NULL.
  1808. *
  1809. * If this function returns NULL then the page has been unfrozen.
  1810. *
  1811. * This function must be called with interrupt disabled.
  1812. */
  1813. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1814. {
  1815. struct page new;
  1816. unsigned long counters;
  1817. void *freelist;
  1818. do {
  1819. freelist = page->freelist;
  1820. counters = page->counters;
  1821. new.counters = counters;
  1822. VM_BUG_ON(!new.frozen);
  1823. new.inuse = page->objects;
  1824. new.frozen = freelist != NULL;
  1825. } while (!__cmpxchg_double_slab(s, page,
  1826. freelist, counters,
  1827. NULL, new.counters,
  1828. "get_freelist"));
  1829. return freelist;
  1830. }
  1831. /*
  1832. * Slow path. The lockless freelist is empty or we need to perform
  1833. * debugging duties.
  1834. *
  1835. * Processing is still very fast if new objects have been freed to the
  1836. * regular freelist. In that case we simply take over the regular freelist
  1837. * as the lockless freelist and zap the regular freelist.
  1838. *
  1839. * If that is not working then we fall back to the partial lists. We take the
  1840. * first element of the freelist as the object to allocate now and move the
  1841. * rest of the freelist to the lockless freelist.
  1842. *
  1843. * And if we were unable to get a new slab from the partial slab lists then
  1844. * we need to allocate a new slab. This is the slowest path since it involves
  1845. * a call to the page allocator and the setup of a new slab.
  1846. */
  1847. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1848. unsigned long addr, struct kmem_cache_cpu *c)
  1849. {
  1850. void *freelist;
  1851. struct page *page;
  1852. unsigned long flags;
  1853. local_irq_save(flags);
  1854. #ifdef CONFIG_PREEMPT
  1855. /*
  1856. * We may have been preempted and rescheduled on a different
  1857. * cpu before disabling interrupts. Need to reload cpu area
  1858. * pointer.
  1859. */
  1860. c = this_cpu_ptr(s->cpu_slab);
  1861. #endif
  1862. page = c->page;
  1863. if (!page)
  1864. goto new_slab;
  1865. redo:
  1866. if (unlikely(!node_match(page, node))) {
  1867. stat(s, ALLOC_NODE_MISMATCH);
  1868. deactivate_slab(s, page, c->freelist);
  1869. c->page = NULL;
  1870. c->freelist = NULL;
  1871. goto new_slab;
  1872. }
  1873. /* must check again c->freelist in case of cpu migration or IRQ */
  1874. freelist = c->freelist;
  1875. if (freelist)
  1876. goto load_freelist;
  1877. stat(s, ALLOC_SLOWPATH);
  1878. freelist = get_freelist(s, page);
  1879. if (!freelist) {
  1880. c->page = NULL;
  1881. stat(s, DEACTIVATE_BYPASS);
  1882. goto new_slab;
  1883. }
  1884. stat(s, ALLOC_REFILL);
  1885. load_freelist:
  1886. /*
  1887. * freelist is pointing to the list of objects to be used.
  1888. * page is pointing to the page from which the objects are obtained.
  1889. * That page must be frozen for per cpu allocations to work.
  1890. */
  1891. VM_BUG_ON(!c->page->frozen);
  1892. c->freelist = get_freepointer(s, freelist);
  1893. c->tid = next_tid(c->tid);
  1894. local_irq_restore(flags);
  1895. return freelist;
  1896. new_slab:
  1897. if (c->partial) {
  1898. page = c->page = c->partial;
  1899. c->partial = page->next;
  1900. stat(s, CPU_PARTIAL_ALLOC);
  1901. c->freelist = NULL;
  1902. goto redo;
  1903. }
  1904. freelist = new_slab_objects(s, gfpflags, node, &c);
  1905. if (unlikely(!freelist)) {
  1906. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1907. slab_out_of_memory(s, gfpflags, node);
  1908. local_irq_restore(flags);
  1909. return NULL;
  1910. }
  1911. page = c->page;
  1912. if (likely(!kmem_cache_debug(s)))
  1913. goto load_freelist;
  1914. /* Only entered in the debug case */
  1915. if (!alloc_debug_processing(s, page, freelist, addr))
  1916. goto new_slab; /* Slab failed checks. Next slab needed */
  1917. deactivate_slab(s, page, get_freepointer(s, freelist));
  1918. c->page = NULL;
  1919. c->freelist = NULL;
  1920. local_irq_restore(flags);
  1921. return freelist;
  1922. }
  1923. /*
  1924. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1925. * have the fastpath folded into their functions. So no function call
  1926. * overhead for requests that can be satisfied on the fastpath.
  1927. *
  1928. * The fastpath works by first checking if the lockless freelist can be used.
  1929. * If not then __slab_alloc is called for slow processing.
  1930. *
  1931. * Otherwise we can simply pick the next object from the lockless free list.
  1932. */
  1933. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1934. gfp_t gfpflags, int node, unsigned long addr)
  1935. {
  1936. void **object;
  1937. struct kmem_cache_cpu *c;
  1938. struct page *page;
  1939. unsigned long tid;
  1940. if (slab_pre_alloc_hook(s, gfpflags))
  1941. return NULL;
  1942. redo:
  1943. /*
  1944. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1945. * enabled. We may switch back and forth between cpus while
  1946. * reading from one cpu area. That does not matter as long
  1947. * as we end up on the original cpu again when doing the cmpxchg.
  1948. */
  1949. c = __this_cpu_ptr(s->cpu_slab);
  1950. /*
  1951. * The transaction ids are globally unique per cpu and per operation on
  1952. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1953. * occurs on the right processor and that there was no operation on the
  1954. * linked list in between.
  1955. */
  1956. tid = c->tid;
  1957. barrier();
  1958. object = c->freelist;
  1959. page = c->page;
  1960. if (unlikely(!object || !node_match(page, node)))
  1961. object = __slab_alloc(s, gfpflags, node, addr, c);
  1962. else {
  1963. void *next_object = get_freepointer_safe(s, object);
  1964. /*
  1965. * The cmpxchg will only match if there was no additional
  1966. * operation and if we are on the right processor.
  1967. *
  1968. * The cmpxchg does the following atomically (without lock semantics!)
  1969. * 1. Relocate first pointer to the current per cpu area.
  1970. * 2. Verify that tid and freelist have not been changed
  1971. * 3. If they were not changed replace tid and freelist
  1972. *
  1973. * Since this is without lock semantics the protection is only against
  1974. * code executing on this cpu *not* from access by other cpus.
  1975. */
  1976. if (unlikely(!this_cpu_cmpxchg_double(
  1977. s->cpu_slab->freelist, s->cpu_slab->tid,
  1978. object, tid,
  1979. next_object, next_tid(tid)))) {
  1980. note_cmpxchg_failure("slab_alloc", s, tid);
  1981. goto redo;
  1982. }
  1983. prefetch_freepointer(s, next_object);
  1984. stat(s, ALLOC_FASTPATH);
  1985. }
  1986. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1987. memset(object, 0, s->object_size);
  1988. slab_post_alloc_hook(s, gfpflags, object);
  1989. return object;
  1990. }
  1991. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1992. {
  1993. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1994. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  1995. return ret;
  1996. }
  1997. EXPORT_SYMBOL(kmem_cache_alloc);
  1998. #ifdef CONFIG_TRACING
  1999. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2000. {
  2001. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2002. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2003. return ret;
  2004. }
  2005. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2006. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2007. {
  2008. void *ret = kmalloc_order(size, flags, order);
  2009. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2010. return ret;
  2011. }
  2012. EXPORT_SYMBOL(kmalloc_order_trace);
  2013. #endif
  2014. #ifdef CONFIG_NUMA
  2015. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2016. {
  2017. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2018. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2019. s->object_size, s->size, gfpflags, node);
  2020. return ret;
  2021. }
  2022. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2023. #ifdef CONFIG_TRACING
  2024. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2025. gfp_t gfpflags,
  2026. int node, size_t size)
  2027. {
  2028. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2029. trace_kmalloc_node(_RET_IP_, ret,
  2030. size, s->size, gfpflags, node);
  2031. return ret;
  2032. }
  2033. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2034. #endif
  2035. #endif
  2036. /*
  2037. * Slow patch handling. This may still be called frequently since objects
  2038. * have a longer lifetime than the cpu slabs in most processing loads.
  2039. *
  2040. * So we still attempt to reduce cache line usage. Just take the slab
  2041. * lock and free the item. If there is no additional partial page
  2042. * handling required then we can return immediately.
  2043. */
  2044. static void __slab_free(struct kmem_cache *s, struct page *page,
  2045. void *x, unsigned long addr)
  2046. {
  2047. void *prior;
  2048. void **object = (void *)x;
  2049. int was_frozen;
  2050. int inuse;
  2051. struct page new;
  2052. unsigned long counters;
  2053. struct kmem_cache_node *n = NULL;
  2054. unsigned long uninitialized_var(flags);
  2055. stat(s, FREE_SLOWPATH);
  2056. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2057. return;
  2058. do {
  2059. prior = page->freelist;
  2060. counters = page->counters;
  2061. set_freepointer(s, object, prior);
  2062. new.counters = counters;
  2063. was_frozen = new.frozen;
  2064. new.inuse--;
  2065. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2066. if (!kmem_cache_debug(s) && !prior)
  2067. /*
  2068. * Slab was on no list before and will be partially empty
  2069. * We can defer the list move and instead freeze it.
  2070. */
  2071. new.frozen = 1;
  2072. else { /* Needs to be taken off a list */
  2073. n = get_node(s, page_to_nid(page));
  2074. /*
  2075. * Speculatively acquire the list_lock.
  2076. * If the cmpxchg does not succeed then we may
  2077. * drop the list_lock without any processing.
  2078. *
  2079. * Otherwise the list_lock will synchronize with
  2080. * other processors updating the list of slabs.
  2081. */
  2082. spin_lock_irqsave(&n->list_lock, flags);
  2083. }
  2084. }
  2085. inuse = new.inuse;
  2086. } while (!cmpxchg_double_slab(s, page,
  2087. prior, counters,
  2088. object, new.counters,
  2089. "__slab_free"));
  2090. if (likely(!n)) {
  2091. /*
  2092. * If we just froze the page then put it onto the
  2093. * per cpu partial list.
  2094. */
  2095. if (new.frozen && !was_frozen) {
  2096. put_cpu_partial(s, page, 1);
  2097. stat(s, CPU_PARTIAL_FREE);
  2098. }
  2099. /*
  2100. * The list lock was not taken therefore no list
  2101. * activity can be necessary.
  2102. */
  2103. if (was_frozen)
  2104. stat(s, FREE_FROZEN);
  2105. return;
  2106. }
  2107. /*
  2108. * was_frozen may have been set after we acquired the list_lock in
  2109. * an earlier loop. So we need to check it here again.
  2110. */
  2111. if (was_frozen)
  2112. stat(s, FREE_FROZEN);
  2113. else {
  2114. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2115. goto slab_empty;
  2116. /*
  2117. * Objects left in the slab. If it was not on the partial list before
  2118. * then add it.
  2119. */
  2120. if (unlikely(!prior)) {
  2121. remove_full(s, page);
  2122. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2123. stat(s, FREE_ADD_PARTIAL);
  2124. }
  2125. }
  2126. spin_unlock_irqrestore(&n->list_lock, flags);
  2127. return;
  2128. slab_empty:
  2129. if (prior) {
  2130. /*
  2131. * Slab on the partial list.
  2132. */
  2133. remove_partial(n, page);
  2134. stat(s, FREE_REMOVE_PARTIAL);
  2135. } else
  2136. /* Slab must be on the full list */
  2137. remove_full(s, page);
  2138. spin_unlock_irqrestore(&n->list_lock, flags);
  2139. stat(s, FREE_SLAB);
  2140. discard_slab(s, page);
  2141. }
  2142. /*
  2143. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2144. * can perform fastpath freeing without additional function calls.
  2145. *
  2146. * The fastpath is only possible if we are freeing to the current cpu slab
  2147. * of this processor. This typically the case if we have just allocated
  2148. * the item before.
  2149. *
  2150. * If fastpath is not possible then fall back to __slab_free where we deal
  2151. * with all sorts of special processing.
  2152. */
  2153. static __always_inline void slab_free(struct kmem_cache *s,
  2154. struct page *page, void *x, unsigned long addr)
  2155. {
  2156. void **object = (void *)x;
  2157. struct kmem_cache_cpu *c;
  2158. unsigned long tid;
  2159. slab_free_hook(s, x);
  2160. redo:
  2161. /*
  2162. * Determine the currently cpus per cpu slab.
  2163. * The cpu may change afterward. However that does not matter since
  2164. * data is retrieved via this pointer. If we are on the same cpu
  2165. * during the cmpxchg then the free will succedd.
  2166. */
  2167. c = __this_cpu_ptr(s->cpu_slab);
  2168. tid = c->tid;
  2169. barrier();
  2170. if (likely(page == c->page)) {
  2171. set_freepointer(s, object, c->freelist);
  2172. if (unlikely(!this_cpu_cmpxchg_double(
  2173. s->cpu_slab->freelist, s->cpu_slab->tid,
  2174. c->freelist, tid,
  2175. object, next_tid(tid)))) {
  2176. note_cmpxchg_failure("slab_free", s, tid);
  2177. goto redo;
  2178. }
  2179. stat(s, FREE_FASTPATH);
  2180. } else
  2181. __slab_free(s, page, x, addr);
  2182. }
  2183. void kmem_cache_free(struct kmem_cache *s, void *x)
  2184. {
  2185. struct page *page;
  2186. page = virt_to_head_page(x);
  2187. slab_free(s, page, x, _RET_IP_);
  2188. trace_kmem_cache_free(_RET_IP_, x);
  2189. }
  2190. EXPORT_SYMBOL(kmem_cache_free);
  2191. /*
  2192. * Object placement in a slab is made very easy because we always start at
  2193. * offset 0. If we tune the size of the object to the alignment then we can
  2194. * get the required alignment by putting one properly sized object after
  2195. * another.
  2196. *
  2197. * Notice that the allocation order determines the sizes of the per cpu
  2198. * caches. Each processor has always one slab available for allocations.
  2199. * Increasing the allocation order reduces the number of times that slabs
  2200. * must be moved on and off the partial lists and is therefore a factor in
  2201. * locking overhead.
  2202. */
  2203. /*
  2204. * Mininum / Maximum order of slab pages. This influences locking overhead
  2205. * and slab fragmentation. A higher order reduces the number of partial slabs
  2206. * and increases the number of allocations possible without having to
  2207. * take the list_lock.
  2208. */
  2209. static int slub_min_order;
  2210. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2211. static int slub_min_objects;
  2212. /*
  2213. * Merge control. If this is set then no merging of slab caches will occur.
  2214. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2215. */
  2216. static int slub_nomerge;
  2217. /*
  2218. * Calculate the order of allocation given an slab object size.
  2219. *
  2220. * The order of allocation has significant impact on performance and other
  2221. * system components. Generally order 0 allocations should be preferred since
  2222. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2223. * be problematic to put into order 0 slabs because there may be too much
  2224. * unused space left. We go to a higher order if more than 1/16th of the slab
  2225. * would be wasted.
  2226. *
  2227. * In order to reach satisfactory performance we must ensure that a minimum
  2228. * number of objects is in one slab. Otherwise we may generate too much
  2229. * activity on the partial lists which requires taking the list_lock. This is
  2230. * less a concern for large slabs though which are rarely used.
  2231. *
  2232. * slub_max_order specifies the order where we begin to stop considering the
  2233. * number of objects in a slab as critical. If we reach slub_max_order then
  2234. * we try to keep the page order as low as possible. So we accept more waste
  2235. * of space in favor of a small page order.
  2236. *
  2237. * Higher order allocations also allow the placement of more objects in a
  2238. * slab and thereby reduce object handling overhead. If the user has
  2239. * requested a higher mininum order then we start with that one instead of
  2240. * the smallest order which will fit the object.
  2241. */
  2242. static inline int slab_order(int size, int min_objects,
  2243. int max_order, int fract_leftover, int reserved)
  2244. {
  2245. int order;
  2246. int rem;
  2247. int min_order = slub_min_order;
  2248. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2249. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2250. for (order = max(min_order,
  2251. fls(min_objects * size - 1) - PAGE_SHIFT);
  2252. order <= max_order; order++) {
  2253. unsigned long slab_size = PAGE_SIZE << order;
  2254. if (slab_size < min_objects * size + reserved)
  2255. continue;
  2256. rem = (slab_size - reserved) % size;
  2257. if (rem <= slab_size / fract_leftover)
  2258. break;
  2259. }
  2260. return order;
  2261. }
  2262. static inline int calculate_order(int size, int reserved)
  2263. {
  2264. int order;
  2265. int min_objects;
  2266. int fraction;
  2267. int max_objects;
  2268. /*
  2269. * Attempt to find best configuration for a slab. This
  2270. * works by first attempting to generate a layout with
  2271. * the best configuration and backing off gradually.
  2272. *
  2273. * First we reduce the acceptable waste in a slab. Then
  2274. * we reduce the minimum objects required in a slab.
  2275. */
  2276. min_objects = slub_min_objects;
  2277. if (!min_objects)
  2278. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2279. max_objects = order_objects(slub_max_order, size, reserved);
  2280. min_objects = min(min_objects, max_objects);
  2281. while (min_objects > 1) {
  2282. fraction = 16;
  2283. while (fraction >= 4) {
  2284. order = slab_order(size, min_objects,
  2285. slub_max_order, fraction, reserved);
  2286. if (order <= slub_max_order)
  2287. return order;
  2288. fraction /= 2;
  2289. }
  2290. min_objects--;
  2291. }
  2292. /*
  2293. * We were unable to place multiple objects in a slab. Now
  2294. * lets see if we can place a single object there.
  2295. */
  2296. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2297. if (order <= slub_max_order)
  2298. return order;
  2299. /*
  2300. * Doh this slab cannot be placed using slub_max_order.
  2301. */
  2302. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2303. if (order < MAX_ORDER)
  2304. return order;
  2305. return -ENOSYS;
  2306. }
  2307. /*
  2308. * Figure out what the alignment of the objects will be.
  2309. */
  2310. static unsigned long calculate_alignment(unsigned long flags,
  2311. unsigned long align, unsigned long size)
  2312. {
  2313. /*
  2314. * If the user wants hardware cache aligned objects then follow that
  2315. * suggestion if the object is sufficiently large.
  2316. *
  2317. * The hardware cache alignment cannot override the specified
  2318. * alignment though. If that is greater then use it.
  2319. */
  2320. if (flags & SLAB_HWCACHE_ALIGN) {
  2321. unsigned long ralign = cache_line_size();
  2322. while (size <= ralign / 2)
  2323. ralign /= 2;
  2324. align = max(align, ralign);
  2325. }
  2326. if (align < ARCH_SLAB_MINALIGN)
  2327. align = ARCH_SLAB_MINALIGN;
  2328. return ALIGN(align, sizeof(void *));
  2329. }
  2330. static void
  2331. init_kmem_cache_node(struct kmem_cache_node *n)
  2332. {
  2333. n->nr_partial = 0;
  2334. spin_lock_init(&n->list_lock);
  2335. INIT_LIST_HEAD(&n->partial);
  2336. #ifdef CONFIG_SLUB_DEBUG
  2337. atomic_long_set(&n->nr_slabs, 0);
  2338. atomic_long_set(&n->total_objects, 0);
  2339. INIT_LIST_HEAD(&n->full);
  2340. #endif
  2341. }
  2342. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2343. {
  2344. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2345. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2346. /*
  2347. * Must align to double word boundary for the double cmpxchg
  2348. * instructions to work; see __pcpu_double_call_return_bool().
  2349. */
  2350. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2351. 2 * sizeof(void *));
  2352. if (!s->cpu_slab)
  2353. return 0;
  2354. init_kmem_cache_cpus(s);
  2355. return 1;
  2356. }
  2357. static struct kmem_cache *kmem_cache_node;
  2358. /*
  2359. * No kmalloc_node yet so do it by hand. We know that this is the first
  2360. * slab on the node for this slabcache. There are no concurrent accesses
  2361. * possible.
  2362. *
  2363. * Note that this function only works on the kmalloc_node_cache
  2364. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2365. * memory on a fresh node that has no slab structures yet.
  2366. */
  2367. static void early_kmem_cache_node_alloc(int node)
  2368. {
  2369. struct page *page;
  2370. struct kmem_cache_node *n;
  2371. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2372. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2373. BUG_ON(!page);
  2374. if (page_to_nid(page) != node) {
  2375. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2376. "node %d\n", node);
  2377. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2378. "in order to be able to continue\n");
  2379. }
  2380. n = page->freelist;
  2381. BUG_ON(!n);
  2382. page->freelist = get_freepointer(kmem_cache_node, n);
  2383. page->inuse = 1;
  2384. page->frozen = 0;
  2385. kmem_cache_node->node[node] = n;
  2386. #ifdef CONFIG_SLUB_DEBUG
  2387. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2388. init_tracking(kmem_cache_node, n);
  2389. #endif
  2390. init_kmem_cache_node(n);
  2391. inc_slabs_node(kmem_cache_node, node, page->objects);
  2392. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2393. }
  2394. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2395. {
  2396. int node;
  2397. for_each_node_state(node, N_NORMAL_MEMORY) {
  2398. struct kmem_cache_node *n = s->node[node];
  2399. if (n)
  2400. kmem_cache_free(kmem_cache_node, n);
  2401. s->node[node] = NULL;
  2402. }
  2403. }
  2404. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2405. {
  2406. int node;
  2407. for_each_node_state(node, N_NORMAL_MEMORY) {
  2408. struct kmem_cache_node *n;
  2409. if (slab_state == DOWN) {
  2410. early_kmem_cache_node_alloc(node);
  2411. continue;
  2412. }
  2413. n = kmem_cache_alloc_node(kmem_cache_node,
  2414. GFP_KERNEL, node);
  2415. if (!n) {
  2416. free_kmem_cache_nodes(s);
  2417. return 0;
  2418. }
  2419. s->node[node] = n;
  2420. init_kmem_cache_node(n);
  2421. }
  2422. return 1;
  2423. }
  2424. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2425. {
  2426. if (min < MIN_PARTIAL)
  2427. min = MIN_PARTIAL;
  2428. else if (min > MAX_PARTIAL)
  2429. min = MAX_PARTIAL;
  2430. s->min_partial = min;
  2431. }
  2432. /*
  2433. * calculate_sizes() determines the order and the distribution of data within
  2434. * a slab object.
  2435. */
  2436. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2437. {
  2438. unsigned long flags = s->flags;
  2439. unsigned long size = s->object_size;
  2440. unsigned long align = s->align;
  2441. int order;
  2442. /*
  2443. * Round up object size to the next word boundary. We can only
  2444. * place the free pointer at word boundaries and this determines
  2445. * the possible location of the free pointer.
  2446. */
  2447. size = ALIGN(size, sizeof(void *));
  2448. #ifdef CONFIG_SLUB_DEBUG
  2449. /*
  2450. * Determine if we can poison the object itself. If the user of
  2451. * the slab may touch the object after free or before allocation
  2452. * then we should never poison the object itself.
  2453. */
  2454. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2455. !s->ctor)
  2456. s->flags |= __OBJECT_POISON;
  2457. else
  2458. s->flags &= ~__OBJECT_POISON;
  2459. /*
  2460. * If we are Redzoning then check if there is some space between the
  2461. * end of the object and the free pointer. If not then add an
  2462. * additional word to have some bytes to store Redzone information.
  2463. */
  2464. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2465. size += sizeof(void *);
  2466. #endif
  2467. /*
  2468. * With that we have determined the number of bytes in actual use
  2469. * by the object. This is the potential offset to the free pointer.
  2470. */
  2471. s->inuse = size;
  2472. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2473. s->ctor)) {
  2474. /*
  2475. * Relocate free pointer after the object if it is not
  2476. * permitted to overwrite the first word of the object on
  2477. * kmem_cache_free.
  2478. *
  2479. * This is the case if we do RCU, have a constructor or
  2480. * destructor or are poisoning the objects.
  2481. */
  2482. s->offset = size;
  2483. size += sizeof(void *);
  2484. }
  2485. #ifdef CONFIG_SLUB_DEBUG
  2486. if (flags & SLAB_STORE_USER)
  2487. /*
  2488. * Need to store information about allocs and frees after
  2489. * the object.
  2490. */
  2491. size += 2 * sizeof(struct track);
  2492. if (flags & SLAB_RED_ZONE)
  2493. /*
  2494. * Add some empty padding so that we can catch
  2495. * overwrites from earlier objects rather than let
  2496. * tracking information or the free pointer be
  2497. * corrupted if a user writes before the start
  2498. * of the object.
  2499. */
  2500. size += sizeof(void *);
  2501. #endif
  2502. /*
  2503. * Determine the alignment based on various parameters that the
  2504. * user specified and the dynamic determination of cache line size
  2505. * on bootup.
  2506. */
  2507. align = calculate_alignment(flags, align, s->object_size);
  2508. s->align = align;
  2509. /*
  2510. * SLUB stores one object immediately after another beginning from
  2511. * offset 0. In order to align the objects we have to simply size
  2512. * each object to conform to the alignment.
  2513. */
  2514. size = ALIGN(size, align);
  2515. s->size = size;
  2516. if (forced_order >= 0)
  2517. order = forced_order;
  2518. else
  2519. order = calculate_order(size, s->reserved);
  2520. if (order < 0)
  2521. return 0;
  2522. s->allocflags = 0;
  2523. if (order)
  2524. s->allocflags |= __GFP_COMP;
  2525. if (s->flags & SLAB_CACHE_DMA)
  2526. s->allocflags |= SLUB_DMA;
  2527. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2528. s->allocflags |= __GFP_RECLAIMABLE;
  2529. /*
  2530. * Determine the number of objects per slab
  2531. */
  2532. s->oo = oo_make(order, size, s->reserved);
  2533. s->min = oo_make(get_order(size), size, s->reserved);
  2534. if (oo_objects(s->oo) > oo_objects(s->max))
  2535. s->max = s->oo;
  2536. return !!oo_objects(s->oo);
  2537. }
  2538. static int kmem_cache_open(struct kmem_cache *s,
  2539. const char *name, size_t size,
  2540. size_t align, unsigned long flags,
  2541. void (*ctor)(void *))
  2542. {
  2543. memset(s, 0, kmem_size);
  2544. s->name = name;
  2545. s->ctor = ctor;
  2546. s->object_size = size;
  2547. s->align = align;
  2548. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2549. s->reserved = 0;
  2550. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2551. s->reserved = sizeof(struct rcu_head);
  2552. if (!calculate_sizes(s, -1))
  2553. goto error;
  2554. if (disable_higher_order_debug) {
  2555. /*
  2556. * Disable debugging flags that store metadata if the min slab
  2557. * order increased.
  2558. */
  2559. if (get_order(s->size) > get_order(s->object_size)) {
  2560. s->flags &= ~DEBUG_METADATA_FLAGS;
  2561. s->offset = 0;
  2562. if (!calculate_sizes(s, -1))
  2563. goto error;
  2564. }
  2565. }
  2566. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2567. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2568. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2569. /* Enable fast mode */
  2570. s->flags |= __CMPXCHG_DOUBLE;
  2571. #endif
  2572. /*
  2573. * The larger the object size is, the more pages we want on the partial
  2574. * list to avoid pounding the page allocator excessively.
  2575. */
  2576. set_min_partial(s, ilog2(s->size) / 2);
  2577. /*
  2578. * cpu_partial determined the maximum number of objects kept in the
  2579. * per cpu partial lists of a processor.
  2580. *
  2581. * Per cpu partial lists mainly contain slabs that just have one
  2582. * object freed. If they are used for allocation then they can be
  2583. * filled up again with minimal effort. The slab will never hit the
  2584. * per node partial lists and therefore no locking will be required.
  2585. *
  2586. * This setting also determines
  2587. *
  2588. * A) The number of objects from per cpu partial slabs dumped to the
  2589. * per node list when we reach the limit.
  2590. * B) The number of objects in cpu partial slabs to extract from the
  2591. * per node list when we run out of per cpu objects. We only fetch 50%
  2592. * to keep some capacity around for frees.
  2593. */
  2594. if (kmem_cache_debug(s))
  2595. s->cpu_partial = 0;
  2596. else if (s->size >= PAGE_SIZE)
  2597. s->cpu_partial = 2;
  2598. else if (s->size >= 1024)
  2599. s->cpu_partial = 6;
  2600. else if (s->size >= 256)
  2601. s->cpu_partial = 13;
  2602. else
  2603. s->cpu_partial = 30;
  2604. s->refcount = 1;
  2605. #ifdef CONFIG_NUMA
  2606. s->remote_node_defrag_ratio = 1000;
  2607. #endif
  2608. if (!init_kmem_cache_nodes(s))
  2609. goto error;
  2610. if (alloc_kmem_cache_cpus(s))
  2611. return 1;
  2612. free_kmem_cache_nodes(s);
  2613. error:
  2614. if (flags & SLAB_PANIC)
  2615. panic("Cannot create slab %s size=%lu realsize=%u "
  2616. "order=%u offset=%u flags=%lx\n",
  2617. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2618. s->offset, flags);
  2619. return 0;
  2620. }
  2621. /*
  2622. * Determine the size of a slab object
  2623. */
  2624. unsigned int kmem_cache_size(struct kmem_cache *s)
  2625. {
  2626. return s->object_size;
  2627. }
  2628. EXPORT_SYMBOL(kmem_cache_size);
  2629. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2630. const char *text)
  2631. {
  2632. #ifdef CONFIG_SLUB_DEBUG
  2633. void *addr = page_address(page);
  2634. void *p;
  2635. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2636. sizeof(long), GFP_ATOMIC);
  2637. if (!map)
  2638. return;
  2639. slab_err(s, page, "%s", text);
  2640. slab_lock(page);
  2641. get_map(s, page, map);
  2642. for_each_object(p, s, addr, page->objects) {
  2643. if (!test_bit(slab_index(p, s, addr), map)) {
  2644. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2645. p, p - addr);
  2646. print_tracking(s, p);
  2647. }
  2648. }
  2649. slab_unlock(page);
  2650. kfree(map);
  2651. #endif
  2652. }
  2653. /*
  2654. * Attempt to free all partial slabs on a node.
  2655. * This is called from kmem_cache_close(). We must be the last thread
  2656. * using the cache and therefore we do not need to lock anymore.
  2657. */
  2658. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2659. {
  2660. struct page *page, *h;
  2661. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2662. if (!page->inuse) {
  2663. remove_partial(n, page);
  2664. discard_slab(s, page);
  2665. } else {
  2666. list_slab_objects(s, page,
  2667. "Objects remaining on kmem_cache_close()");
  2668. }
  2669. }
  2670. }
  2671. /*
  2672. * Release all resources used by a slab cache.
  2673. */
  2674. static inline int kmem_cache_close(struct kmem_cache *s)
  2675. {
  2676. int node;
  2677. flush_all(s);
  2678. free_percpu(s->cpu_slab);
  2679. /* Attempt to free all objects */
  2680. for_each_node_state(node, N_NORMAL_MEMORY) {
  2681. struct kmem_cache_node *n = get_node(s, node);
  2682. free_partial(s, n);
  2683. if (n->nr_partial || slabs_node(s, node))
  2684. return 1;
  2685. }
  2686. free_kmem_cache_nodes(s);
  2687. return 0;
  2688. }
  2689. /*
  2690. * Close a cache and release the kmem_cache structure
  2691. * (must be used for caches created using kmem_cache_create)
  2692. */
  2693. void kmem_cache_destroy(struct kmem_cache *s)
  2694. {
  2695. mutex_lock(&slab_mutex);
  2696. s->refcount--;
  2697. if (!s->refcount) {
  2698. list_del(&s->list);
  2699. mutex_unlock(&slab_mutex);
  2700. if (kmem_cache_close(s)) {
  2701. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2702. "still has objects.\n", s->name, __func__);
  2703. dump_stack();
  2704. }
  2705. if (s->flags & SLAB_DESTROY_BY_RCU)
  2706. rcu_barrier();
  2707. sysfs_slab_remove(s);
  2708. } else
  2709. mutex_unlock(&slab_mutex);
  2710. }
  2711. EXPORT_SYMBOL(kmem_cache_destroy);
  2712. /********************************************************************
  2713. * Kmalloc subsystem
  2714. *******************************************************************/
  2715. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2716. EXPORT_SYMBOL(kmalloc_caches);
  2717. static struct kmem_cache *kmem_cache;
  2718. #ifdef CONFIG_ZONE_DMA
  2719. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2720. #endif
  2721. static int __init setup_slub_min_order(char *str)
  2722. {
  2723. get_option(&str, &slub_min_order);
  2724. return 1;
  2725. }
  2726. __setup("slub_min_order=", setup_slub_min_order);
  2727. static int __init setup_slub_max_order(char *str)
  2728. {
  2729. get_option(&str, &slub_max_order);
  2730. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2731. return 1;
  2732. }
  2733. __setup("slub_max_order=", setup_slub_max_order);
  2734. static int __init setup_slub_min_objects(char *str)
  2735. {
  2736. get_option(&str, &slub_min_objects);
  2737. return 1;
  2738. }
  2739. __setup("slub_min_objects=", setup_slub_min_objects);
  2740. static int __init setup_slub_nomerge(char *str)
  2741. {
  2742. slub_nomerge = 1;
  2743. return 1;
  2744. }
  2745. __setup("slub_nomerge", setup_slub_nomerge);
  2746. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2747. int size, unsigned int flags)
  2748. {
  2749. struct kmem_cache *s;
  2750. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2751. /*
  2752. * This function is called with IRQs disabled during early-boot on
  2753. * single CPU so there's no need to take slab_mutex here.
  2754. */
  2755. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2756. flags, NULL))
  2757. goto panic;
  2758. list_add(&s->list, &slab_caches);
  2759. return s;
  2760. panic:
  2761. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2762. return NULL;
  2763. }
  2764. /*
  2765. * Conversion table for small slabs sizes / 8 to the index in the
  2766. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2767. * of two cache sizes there. The size of larger slabs can be determined using
  2768. * fls.
  2769. */
  2770. static s8 size_index[24] = {
  2771. 3, /* 8 */
  2772. 4, /* 16 */
  2773. 5, /* 24 */
  2774. 5, /* 32 */
  2775. 6, /* 40 */
  2776. 6, /* 48 */
  2777. 6, /* 56 */
  2778. 6, /* 64 */
  2779. 1, /* 72 */
  2780. 1, /* 80 */
  2781. 1, /* 88 */
  2782. 1, /* 96 */
  2783. 7, /* 104 */
  2784. 7, /* 112 */
  2785. 7, /* 120 */
  2786. 7, /* 128 */
  2787. 2, /* 136 */
  2788. 2, /* 144 */
  2789. 2, /* 152 */
  2790. 2, /* 160 */
  2791. 2, /* 168 */
  2792. 2, /* 176 */
  2793. 2, /* 184 */
  2794. 2 /* 192 */
  2795. };
  2796. static inline int size_index_elem(size_t bytes)
  2797. {
  2798. return (bytes - 1) / 8;
  2799. }
  2800. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2801. {
  2802. int index;
  2803. if (size <= 192) {
  2804. if (!size)
  2805. return ZERO_SIZE_PTR;
  2806. index = size_index[size_index_elem(size)];
  2807. } else
  2808. index = fls(size - 1);
  2809. #ifdef CONFIG_ZONE_DMA
  2810. if (unlikely((flags & SLUB_DMA)))
  2811. return kmalloc_dma_caches[index];
  2812. #endif
  2813. return kmalloc_caches[index];
  2814. }
  2815. void *__kmalloc(size_t size, gfp_t flags)
  2816. {
  2817. struct kmem_cache *s;
  2818. void *ret;
  2819. if (unlikely(size > SLUB_MAX_SIZE))
  2820. return kmalloc_large(size, flags);
  2821. s = get_slab(size, flags);
  2822. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2823. return s;
  2824. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2825. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2826. return ret;
  2827. }
  2828. EXPORT_SYMBOL(__kmalloc);
  2829. #ifdef CONFIG_NUMA
  2830. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2831. {
  2832. struct page *page;
  2833. void *ptr = NULL;
  2834. flags |= __GFP_COMP | __GFP_NOTRACK;
  2835. page = alloc_pages_node(node, flags, get_order(size));
  2836. if (page)
  2837. ptr = page_address(page);
  2838. kmemleak_alloc(ptr, size, 1, flags);
  2839. return ptr;
  2840. }
  2841. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2842. {
  2843. struct kmem_cache *s;
  2844. void *ret;
  2845. if (unlikely(size > SLUB_MAX_SIZE)) {
  2846. ret = kmalloc_large_node(size, flags, node);
  2847. trace_kmalloc_node(_RET_IP_, ret,
  2848. size, PAGE_SIZE << get_order(size),
  2849. flags, node);
  2850. return ret;
  2851. }
  2852. s = get_slab(size, flags);
  2853. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2854. return s;
  2855. ret = slab_alloc(s, flags, node, _RET_IP_);
  2856. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2857. return ret;
  2858. }
  2859. EXPORT_SYMBOL(__kmalloc_node);
  2860. #endif
  2861. size_t ksize(const void *object)
  2862. {
  2863. struct page *page;
  2864. if (unlikely(object == ZERO_SIZE_PTR))
  2865. return 0;
  2866. page = virt_to_head_page(object);
  2867. if (unlikely(!PageSlab(page))) {
  2868. WARN_ON(!PageCompound(page));
  2869. return PAGE_SIZE << compound_order(page);
  2870. }
  2871. return slab_ksize(page->slab);
  2872. }
  2873. EXPORT_SYMBOL(ksize);
  2874. #ifdef CONFIG_SLUB_DEBUG
  2875. bool verify_mem_not_deleted(const void *x)
  2876. {
  2877. struct page *page;
  2878. void *object = (void *)x;
  2879. unsigned long flags;
  2880. bool rv;
  2881. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2882. return false;
  2883. local_irq_save(flags);
  2884. page = virt_to_head_page(x);
  2885. if (unlikely(!PageSlab(page))) {
  2886. /* maybe it was from stack? */
  2887. rv = true;
  2888. goto out_unlock;
  2889. }
  2890. slab_lock(page);
  2891. if (on_freelist(page->slab, page, object)) {
  2892. object_err(page->slab, page, object, "Object is on free-list");
  2893. rv = false;
  2894. } else {
  2895. rv = true;
  2896. }
  2897. slab_unlock(page);
  2898. out_unlock:
  2899. local_irq_restore(flags);
  2900. return rv;
  2901. }
  2902. EXPORT_SYMBOL(verify_mem_not_deleted);
  2903. #endif
  2904. void kfree(const void *x)
  2905. {
  2906. struct page *page;
  2907. void *object = (void *)x;
  2908. trace_kfree(_RET_IP_, x);
  2909. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2910. return;
  2911. page = virt_to_head_page(x);
  2912. if (unlikely(!PageSlab(page))) {
  2913. BUG_ON(!PageCompound(page));
  2914. kmemleak_free(x);
  2915. put_page(page);
  2916. return;
  2917. }
  2918. slab_free(page->slab, page, object, _RET_IP_);
  2919. }
  2920. EXPORT_SYMBOL(kfree);
  2921. /*
  2922. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2923. * the remaining slabs by the number of items in use. The slabs with the
  2924. * most items in use come first. New allocations will then fill those up
  2925. * and thus they can be removed from the partial lists.
  2926. *
  2927. * The slabs with the least items are placed last. This results in them
  2928. * being allocated from last increasing the chance that the last objects
  2929. * are freed in them.
  2930. */
  2931. int kmem_cache_shrink(struct kmem_cache *s)
  2932. {
  2933. int node;
  2934. int i;
  2935. struct kmem_cache_node *n;
  2936. struct page *page;
  2937. struct page *t;
  2938. int objects = oo_objects(s->max);
  2939. struct list_head *slabs_by_inuse =
  2940. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2941. unsigned long flags;
  2942. if (!slabs_by_inuse)
  2943. return -ENOMEM;
  2944. flush_all(s);
  2945. for_each_node_state(node, N_NORMAL_MEMORY) {
  2946. n = get_node(s, node);
  2947. if (!n->nr_partial)
  2948. continue;
  2949. for (i = 0; i < objects; i++)
  2950. INIT_LIST_HEAD(slabs_by_inuse + i);
  2951. spin_lock_irqsave(&n->list_lock, flags);
  2952. /*
  2953. * Build lists indexed by the items in use in each slab.
  2954. *
  2955. * Note that concurrent frees may occur while we hold the
  2956. * list_lock. page->inuse here is the upper limit.
  2957. */
  2958. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2959. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2960. if (!page->inuse)
  2961. n->nr_partial--;
  2962. }
  2963. /*
  2964. * Rebuild the partial list with the slabs filled up most
  2965. * first and the least used slabs at the end.
  2966. */
  2967. for (i = objects - 1; i > 0; i--)
  2968. list_splice(slabs_by_inuse + i, n->partial.prev);
  2969. spin_unlock_irqrestore(&n->list_lock, flags);
  2970. /* Release empty slabs */
  2971. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2972. discard_slab(s, page);
  2973. }
  2974. kfree(slabs_by_inuse);
  2975. return 0;
  2976. }
  2977. EXPORT_SYMBOL(kmem_cache_shrink);
  2978. #if defined(CONFIG_MEMORY_HOTPLUG)
  2979. static int slab_mem_going_offline_callback(void *arg)
  2980. {
  2981. struct kmem_cache *s;
  2982. mutex_lock(&slab_mutex);
  2983. list_for_each_entry(s, &slab_caches, list)
  2984. kmem_cache_shrink(s);
  2985. mutex_unlock(&slab_mutex);
  2986. return 0;
  2987. }
  2988. static void slab_mem_offline_callback(void *arg)
  2989. {
  2990. struct kmem_cache_node *n;
  2991. struct kmem_cache *s;
  2992. struct memory_notify *marg = arg;
  2993. int offline_node;
  2994. offline_node = marg->status_change_nid;
  2995. /*
  2996. * If the node still has available memory. we need kmem_cache_node
  2997. * for it yet.
  2998. */
  2999. if (offline_node < 0)
  3000. return;
  3001. mutex_lock(&slab_mutex);
  3002. list_for_each_entry(s, &slab_caches, list) {
  3003. n = get_node(s, offline_node);
  3004. if (n) {
  3005. /*
  3006. * if n->nr_slabs > 0, slabs still exist on the node
  3007. * that is going down. We were unable to free them,
  3008. * and offline_pages() function shouldn't call this
  3009. * callback. So, we must fail.
  3010. */
  3011. BUG_ON(slabs_node(s, offline_node));
  3012. s->node[offline_node] = NULL;
  3013. kmem_cache_free(kmem_cache_node, n);
  3014. }
  3015. }
  3016. mutex_unlock(&slab_mutex);
  3017. }
  3018. static int slab_mem_going_online_callback(void *arg)
  3019. {
  3020. struct kmem_cache_node *n;
  3021. struct kmem_cache *s;
  3022. struct memory_notify *marg = arg;
  3023. int nid = marg->status_change_nid;
  3024. int ret = 0;
  3025. /*
  3026. * If the node's memory is already available, then kmem_cache_node is
  3027. * already created. Nothing to do.
  3028. */
  3029. if (nid < 0)
  3030. return 0;
  3031. /*
  3032. * We are bringing a node online. No memory is available yet. We must
  3033. * allocate a kmem_cache_node structure in order to bring the node
  3034. * online.
  3035. */
  3036. mutex_lock(&slab_mutex);
  3037. list_for_each_entry(s, &slab_caches, list) {
  3038. /*
  3039. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3040. * since memory is not yet available from the node that
  3041. * is brought up.
  3042. */
  3043. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3044. if (!n) {
  3045. ret = -ENOMEM;
  3046. goto out;
  3047. }
  3048. init_kmem_cache_node(n);
  3049. s->node[nid] = n;
  3050. }
  3051. out:
  3052. mutex_unlock(&slab_mutex);
  3053. return ret;
  3054. }
  3055. static int slab_memory_callback(struct notifier_block *self,
  3056. unsigned long action, void *arg)
  3057. {
  3058. int ret = 0;
  3059. switch (action) {
  3060. case MEM_GOING_ONLINE:
  3061. ret = slab_mem_going_online_callback(arg);
  3062. break;
  3063. case MEM_GOING_OFFLINE:
  3064. ret = slab_mem_going_offline_callback(arg);
  3065. break;
  3066. case MEM_OFFLINE:
  3067. case MEM_CANCEL_ONLINE:
  3068. slab_mem_offline_callback(arg);
  3069. break;
  3070. case MEM_ONLINE:
  3071. case MEM_CANCEL_OFFLINE:
  3072. break;
  3073. }
  3074. if (ret)
  3075. ret = notifier_from_errno(ret);
  3076. else
  3077. ret = NOTIFY_OK;
  3078. return ret;
  3079. }
  3080. #endif /* CONFIG_MEMORY_HOTPLUG */
  3081. /********************************************************************
  3082. * Basic setup of slabs
  3083. *******************************************************************/
  3084. /*
  3085. * Used for early kmem_cache structures that were allocated using
  3086. * the page allocator
  3087. */
  3088. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3089. {
  3090. int node;
  3091. list_add(&s->list, &slab_caches);
  3092. s->refcount = -1;
  3093. for_each_node_state(node, N_NORMAL_MEMORY) {
  3094. struct kmem_cache_node *n = get_node(s, node);
  3095. struct page *p;
  3096. if (n) {
  3097. list_for_each_entry(p, &n->partial, lru)
  3098. p->slab = s;
  3099. #ifdef CONFIG_SLUB_DEBUG
  3100. list_for_each_entry(p, &n->full, lru)
  3101. p->slab = s;
  3102. #endif
  3103. }
  3104. }
  3105. }
  3106. void __init kmem_cache_init(void)
  3107. {
  3108. int i;
  3109. int caches = 0;
  3110. struct kmem_cache *temp_kmem_cache;
  3111. int order;
  3112. struct kmem_cache *temp_kmem_cache_node;
  3113. unsigned long kmalloc_size;
  3114. if (debug_guardpage_minorder())
  3115. slub_max_order = 0;
  3116. kmem_size = offsetof(struct kmem_cache, node) +
  3117. nr_node_ids * sizeof(struct kmem_cache_node *);
  3118. /* Allocate two kmem_caches from the page allocator */
  3119. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3120. order = get_order(2 * kmalloc_size);
  3121. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3122. /*
  3123. * Must first have the slab cache available for the allocations of the
  3124. * struct kmem_cache_node's. There is special bootstrap code in
  3125. * kmem_cache_open for slab_state == DOWN.
  3126. */
  3127. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3128. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3129. sizeof(struct kmem_cache_node),
  3130. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3131. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3132. /* Able to allocate the per node structures */
  3133. slab_state = PARTIAL;
  3134. temp_kmem_cache = kmem_cache;
  3135. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3136. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3137. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3138. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3139. /*
  3140. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3141. * kmem_cache_node is separately allocated so no need to
  3142. * update any list pointers.
  3143. */
  3144. temp_kmem_cache_node = kmem_cache_node;
  3145. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3146. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3147. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3148. caches++;
  3149. kmem_cache_bootstrap_fixup(kmem_cache);
  3150. caches++;
  3151. /* Free temporary boot structure */
  3152. free_pages((unsigned long)temp_kmem_cache, order);
  3153. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3154. /*
  3155. * Patch up the size_index table if we have strange large alignment
  3156. * requirements for the kmalloc array. This is only the case for
  3157. * MIPS it seems. The standard arches will not generate any code here.
  3158. *
  3159. * Largest permitted alignment is 256 bytes due to the way we
  3160. * handle the index determination for the smaller caches.
  3161. *
  3162. * Make sure that nothing crazy happens if someone starts tinkering
  3163. * around with ARCH_KMALLOC_MINALIGN
  3164. */
  3165. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3166. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3167. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3168. int elem = size_index_elem(i);
  3169. if (elem >= ARRAY_SIZE(size_index))
  3170. break;
  3171. size_index[elem] = KMALLOC_SHIFT_LOW;
  3172. }
  3173. if (KMALLOC_MIN_SIZE == 64) {
  3174. /*
  3175. * The 96 byte size cache is not used if the alignment
  3176. * is 64 byte.
  3177. */
  3178. for (i = 64 + 8; i <= 96; i += 8)
  3179. size_index[size_index_elem(i)] = 7;
  3180. } else if (KMALLOC_MIN_SIZE == 128) {
  3181. /*
  3182. * The 192 byte sized cache is not used if the alignment
  3183. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3184. * instead.
  3185. */
  3186. for (i = 128 + 8; i <= 192; i += 8)
  3187. size_index[size_index_elem(i)] = 8;
  3188. }
  3189. /* Caches that are not of the two-to-the-power-of size */
  3190. if (KMALLOC_MIN_SIZE <= 32) {
  3191. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3192. caches++;
  3193. }
  3194. if (KMALLOC_MIN_SIZE <= 64) {
  3195. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3196. caches++;
  3197. }
  3198. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3199. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3200. caches++;
  3201. }
  3202. slab_state = UP;
  3203. /* Provide the correct kmalloc names now that the caches are up */
  3204. if (KMALLOC_MIN_SIZE <= 32) {
  3205. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3206. BUG_ON(!kmalloc_caches[1]->name);
  3207. }
  3208. if (KMALLOC_MIN_SIZE <= 64) {
  3209. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3210. BUG_ON(!kmalloc_caches[2]->name);
  3211. }
  3212. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3213. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3214. BUG_ON(!s);
  3215. kmalloc_caches[i]->name = s;
  3216. }
  3217. #ifdef CONFIG_SMP
  3218. register_cpu_notifier(&slab_notifier);
  3219. #endif
  3220. #ifdef CONFIG_ZONE_DMA
  3221. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3222. struct kmem_cache *s = kmalloc_caches[i];
  3223. if (s && s->size) {
  3224. char *name = kasprintf(GFP_NOWAIT,
  3225. "dma-kmalloc-%d", s->object_size);
  3226. BUG_ON(!name);
  3227. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3228. s->object_size, SLAB_CACHE_DMA);
  3229. }
  3230. }
  3231. #endif
  3232. printk(KERN_INFO
  3233. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3234. " CPUs=%d, Nodes=%d\n",
  3235. caches, cache_line_size(),
  3236. slub_min_order, slub_max_order, slub_min_objects,
  3237. nr_cpu_ids, nr_node_ids);
  3238. }
  3239. void __init kmem_cache_init_late(void)
  3240. {
  3241. }
  3242. /*
  3243. * Find a mergeable slab cache
  3244. */
  3245. static int slab_unmergeable(struct kmem_cache *s)
  3246. {
  3247. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3248. return 1;
  3249. if (s->ctor)
  3250. return 1;
  3251. /*
  3252. * We may have set a slab to be unmergeable during bootstrap.
  3253. */
  3254. if (s->refcount < 0)
  3255. return 1;
  3256. return 0;
  3257. }
  3258. static struct kmem_cache *find_mergeable(size_t size,
  3259. size_t align, unsigned long flags, const char *name,
  3260. void (*ctor)(void *))
  3261. {
  3262. struct kmem_cache *s;
  3263. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3264. return NULL;
  3265. if (ctor)
  3266. return NULL;
  3267. size = ALIGN(size, sizeof(void *));
  3268. align = calculate_alignment(flags, align, size);
  3269. size = ALIGN(size, align);
  3270. flags = kmem_cache_flags(size, flags, name, NULL);
  3271. list_for_each_entry(s, &slab_caches, list) {
  3272. if (slab_unmergeable(s))
  3273. continue;
  3274. if (size > s->size)
  3275. continue;
  3276. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3277. continue;
  3278. /*
  3279. * Check if alignment is compatible.
  3280. * Courtesy of Adrian Drzewiecki
  3281. */
  3282. if ((s->size & ~(align - 1)) != s->size)
  3283. continue;
  3284. if (s->size - size >= sizeof(void *))
  3285. continue;
  3286. return s;
  3287. }
  3288. return NULL;
  3289. }
  3290. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3291. size_t align, unsigned long flags, void (*ctor)(void *))
  3292. {
  3293. struct kmem_cache *s;
  3294. char *n;
  3295. s = find_mergeable(size, align, flags, name, ctor);
  3296. if (s) {
  3297. s->refcount++;
  3298. /*
  3299. * Adjust the object sizes so that we clear
  3300. * the complete object on kzalloc.
  3301. */
  3302. s->object_size = max(s->object_size, (int)size);
  3303. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3304. if (sysfs_slab_alias(s, name)) {
  3305. s->refcount--;
  3306. return NULL;
  3307. }
  3308. return s;
  3309. }
  3310. n = kstrdup(name, GFP_KERNEL);
  3311. if (!n)
  3312. return NULL;
  3313. s = kmalloc(kmem_size, GFP_KERNEL);
  3314. if (s) {
  3315. if (kmem_cache_open(s, n,
  3316. size, align, flags, ctor)) {
  3317. int r;
  3318. list_add(&s->list, &slab_caches);
  3319. mutex_unlock(&slab_mutex);
  3320. r = sysfs_slab_add(s);
  3321. mutex_lock(&slab_mutex);
  3322. if (!r)
  3323. return s;
  3324. list_del(&s->list);
  3325. kmem_cache_close(s);
  3326. }
  3327. kfree(s);
  3328. }
  3329. kfree(n);
  3330. return NULL;
  3331. }
  3332. #ifdef CONFIG_SMP
  3333. /*
  3334. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3335. * necessary.
  3336. */
  3337. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3338. unsigned long action, void *hcpu)
  3339. {
  3340. long cpu = (long)hcpu;
  3341. struct kmem_cache *s;
  3342. unsigned long flags;
  3343. switch (action) {
  3344. case CPU_UP_CANCELED:
  3345. case CPU_UP_CANCELED_FROZEN:
  3346. case CPU_DEAD:
  3347. case CPU_DEAD_FROZEN:
  3348. mutex_lock(&slab_mutex);
  3349. list_for_each_entry(s, &slab_caches, list) {
  3350. local_irq_save(flags);
  3351. __flush_cpu_slab(s, cpu);
  3352. local_irq_restore(flags);
  3353. }
  3354. mutex_unlock(&slab_mutex);
  3355. break;
  3356. default:
  3357. break;
  3358. }
  3359. return NOTIFY_OK;
  3360. }
  3361. static struct notifier_block __cpuinitdata slab_notifier = {
  3362. .notifier_call = slab_cpuup_callback
  3363. };
  3364. #endif
  3365. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3366. {
  3367. struct kmem_cache *s;
  3368. void *ret;
  3369. if (unlikely(size > SLUB_MAX_SIZE))
  3370. return kmalloc_large(size, gfpflags);
  3371. s = get_slab(size, gfpflags);
  3372. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3373. return s;
  3374. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3375. /* Honor the call site pointer we received. */
  3376. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3377. return ret;
  3378. }
  3379. #ifdef CONFIG_NUMA
  3380. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3381. int node, unsigned long caller)
  3382. {
  3383. struct kmem_cache *s;
  3384. void *ret;
  3385. if (unlikely(size > SLUB_MAX_SIZE)) {
  3386. ret = kmalloc_large_node(size, gfpflags, node);
  3387. trace_kmalloc_node(caller, ret,
  3388. size, PAGE_SIZE << get_order(size),
  3389. gfpflags, node);
  3390. return ret;
  3391. }
  3392. s = get_slab(size, gfpflags);
  3393. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3394. return s;
  3395. ret = slab_alloc(s, gfpflags, node, caller);
  3396. /* Honor the call site pointer we received. */
  3397. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3398. return ret;
  3399. }
  3400. #endif
  3401. #ifdef CONFIG_SYSFS
  3402. static int count_inuse(struct page *page)
  3403. {
  3404. return page->inuse;
  3405. }
  3406. static int count_total(struct page *page)
  3407. {
  3408. return page->objects;
  3409. }
  3410. #endif
  3411. #ifdef CONFIG_SLUB_DEBUG
  3412. static int validate_slab(struct kmem_cache *s, struct page *page,
  3413. unsigned long *map)
  3414. {
  3415. void *p;
  3416. void *addr = page_address(page);
  3417. if (!check_slab(s, page) ||
  3418. !on_freelist(s, page, NULL))
  3419. return 0;
  3420. /* Now we know that a valid freelist exists */
  3421. bitmap_zero(map, page->objects);
  3422. get_map(s, page, map);
  3423. for_each_object(p, s, addr, page->objects) {
  3424. if (test_bit(slab_index(p, s, addr), map))
  3425. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3426. return 0;
  3427. }
  3428. for_each_object(p, s, addr, page->objects)
  3429. if (!test_bit(slab_index(p, s, addr), map))
  3430. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3431. return 0;
  3432. return 1;
  3433. }
  3434. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3435. unsigned long *map)
  3436. {
  3437. slab_lock(page);
  3438. validate_slab(s, page, map);
  3439. slab_unlock(page);
  3440. }
  3441. static int validate_slab_node(struct kmem_cache *s,
  3442. struct kmem_cache_node *n, unsigned long *map)
  3443. {
  3444. unsigned long count = 0;
  3445. struct page *page;
  3446. unsigned long flags;
  3447. spin_lock_irqsave(&n->list_lock, flags);
  3448. list_for_each_entry(page, &n->partial, lru) {
  3449. validate_slab_slab(s, page, map);
  3450. count++;
  3451. }
  3452. if (count != n->nr_partial)
  3453. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3454. "counter=%ld\n", s->name, count, n->nr_partial);
  3455. if (!(s->flags & SLAB_STORE_USER))
  3456. goto out;
  3457. list_for_each_entry(page, &n->full, lru) {
  3458. validate_slab_slab(s, page, map);
  3459. count++;
  3460. }
  3461. if (count != atomic_long_read(&n->nr_slabs))
  3462. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3463. "counter=%ld\n", s->name, count,
  3464. atomic_long_read(&n->nr_slabs));
  3465. out:
  3466. spin_unlock_irqrestore(&n->list_lock, flags);
  3467. return count;
  3468. }
  3469. static long validate_slab_cache(struct kmem_cache *s)
  3470. {
  3471. int node;
  3472. unsigned long count = 0;
  3473. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3474. sizeof(unsigned long), GFP_KERNEL);
  3475. if (!map)
  3476. return -ENOMEM;
  3477. flush_all(s);
  3478. for_each_node_state(node, N_NORMAL_MEMORY) {
  3479. struct kmem_cache_node *n = get_node(s, node);
  3480. count += validate_slab_node(s, n, map);
  3481. }
  3482. kfree(map);
  3483. return count;
  3484. }
  3485. /*
  3486. * Generate lists of code addresses where slabcache objects are allocated
  3487. * and freed.
  3488. */
  3489. struct location {
  3490. unsigned long count;
  3491. unsigned long addr;
  3492. long long sum_time;
  3493. long min_time;
  3494. long max_time;
  3495. long min_pid;
  3496. long max_pid;
  3497. DECLARE_BITMAP(cpus, NR_CPUS);
  3498. nodemask_t nodes;
  3499. };
  3500. struct loc_track {
  3501. unsigned long max;
  3502. unsigned long count;
  3503. struct location *loc;
  3504. };
  3505. static void free_loc_track(struct loc_track *t)
  3506. {
  3507. if (t->max)
  3508. free_pages((unsigned long)t->loc,
  3509. get_order(sizeof(struct location) * t->max));
  3510. }
  3511. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3512. {
  3513. struct location *l;
  3514. int order;
  3515. order = get_order(sizeof(struct location) * max);
  3516. l = (void *)__get_free_pages(flags, order);
  3517. if (!l)
  3518. return 0;
  3519. if (t->count) {
  3520. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3521. free_loc_track(t);
  3522. }
  3523. t->max = max;
  3524. t->loc = l;
  3525. return 1;
  3526. }
  3527. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3528. const struct track *track)
  3529. {
  3530. long start, end, pos;
  3531. struct location *l;
  3532. unsigned long caddr;
  3533. unsigned long age = jiffies - track->when;
  3534. start = -1;
  3535. end = t->count;
  3536. for ( ; ; ) {
  3537. pos = start + (end - start + 1) / 2;
  3538. /*
  3539. * There is nothing at "end". If we end up there
  3540. * we need to add something to before end.
  3541. */
  3542. if (pos == end)
  3543. break;
  3544. caddr = t->loc[pos].addr;
  3545. if (track->addr == caddr) {
  3546. l = &t->loc[pos];
  3547. l->count++;
  3548. if (track->when) {
  3549. l->sum_time += age;
  3550. if (age < l->min_time)
  3551. l->min_time = age;
  3552. if (age > l->max_time)
  3553. l->max_time = age;
  3554. if (track->pid < l->min_pid)
  3555. l->min_pid = track->pid;
  3556. if (track->pid > l->max_pid)
  3557. l->max_pid = track->pid;
  3558. cpumask_set_cpu(track->cpu,
  3559. to_cpumask(l->cpus));
  3560. }
  3561. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3562. return 1;
  3563. }
  3564. if (track->addr < caddr)
  3565. end = pos;
  3566. else
  3567. start = pos;
  3568. }
  3569. /*
  3570. * Not found. Insert new tracking element.
  3571. */
  3572. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3573. return 0;
  3574. l = t->loc + pos;
  3575. if (pos < t->count)
  3576. memmove(l + 1, l,
  3577. (t->count - pos) * sizeof(struct location));
  3578. t->count++;
  3579. l->count = 1;
  3580. l->addr = track->addr;
  3581. l->sum_time = age;
  3582. l->min_time = age;
  3583. l->max_time = age;
  3584. l->min_pid = track->pid;
  3585. l->max_pid = track->pid;
  3586. cpumask_clear(to_cpumask(l->cpus));
  3587. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3588. nodes_clear(l->nodes);
  3589. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3590. return 1;
  3591. }
  3592. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3593. struct page *page, enum track_item alloc,
  3594. unsigned long *map)
  3595. {
  3596. void *addr = page_address(page);
  3597. void *p;
  3598. bitmap_zero(map, page->objects);
  3599. get_map(s, page, map);
  3600. for_each_object(p, s, addr, page->objects)
  3601. if (!test_bit(slab_index(p, s, addr), map))
  3602. add_location(t, s, get_track(s, p, alloc));
  3603. }
  3604. static int list_locations(struct kmem_cache *s, char *buf,
  3605. enum track_item alloc)
  3606. {
  3607. int len = 0;
  3608. unsigned long i;
  3609. struct loc_track t = { 0, 0, NULL };
  3610. int node;
  3611. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3612. sizeof(unsigned long), GFP_KERNEL);
  3613. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3614. GFP_TEMPORARY)) {
  3615. kfree(map);
  3616. return sprintf(buf, "Out of memory\n");
  3617. }
  3618. /* Push back cpu slabs */
  3619. flush_all(s);
  3620. for_each_node_state(node, N_NORMAL_MEMORY) {
  3621. struct kmem_cache_node *n = get_node(s, node);
  3622. unsigned long flags;
  3623. struct page *page;
  3624. if (!atomic_long_read(&n->nr_slabs))
  3625. continue;
  3626. spin_lock_irqsave(&n->list_lock, flags);
  3627. list_for_each_entry(page, &n->partial, lru)
  3628. process_slab(&t, s, page, alloc, map);
  3629. list_for_each_entry(page, &n->full, lru)
  3630. process_slab(&t, s, page, alloc, map);
  3631. spin_unlock_irqrestore(&n->list_lock, flags);
  3632. }
  3633. for (i = 0; i < t.count; i++) {
  3634. struct location *l = &t.loc[i];
  3635. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3636. break;
  3637. len += sprintf(buf + len, "%7ld ", l->count);
  3638. if (l->addr)
  3639. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3640. else
  3641. len += sprintf(buf + len, "<not-available>");
  3642. if (l->sum_time != l->min_time) {
  3643. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3644. l->min_time,
  3645. (long)div_u64(l->sum_time, l->count),
  3646. l->max_time);
  3647. } else
  3648. len += sprintf(buf + len, " age=%ld",
  3649. l->min_time);
  3650. if (l->min_pid != l->max_pid)
  3651. len += sprintf(buf + len, " pid=%ld-%ld",
  3652. l->min_pid, l->max_pid);
  3653. else
  3654. len += sprintf(buf + len, " pid=%ld",
  3655. l->min_pid);
  3656. if (num_online_cpus() > 1 &&
  3657. !cpumask_empty(to_cpumask(l->cpus)) &&
  3658. len < PAGE_SIZE - 60) {
  3659. len += sprintf(buf + len, " cpus=");
  3660. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3661. to_cpumask(l->cpus));
  3662. }
  3663. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3664. len < PAGE_SIZE - 60) {
  3665. len += sprintf(buf + len, " nodes=");
  3666. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3667. l->nodes);
  3668. }
  3669. len += sprintf(buf + len, "\n");
  3670. }
  3671. free_loc_track(&t);
  3672. kfree(map);
  3673. if (!t.count)
  3674. len += sprintf(buf, "No data\n");
  3675. return len;
  3676. }
  3677. #endif
  3678. #ifdef SLUB_RESILIENCY_TEST
  3679. static void resiliency_test(void)
  3680. {
  3681. u8 *p;
  3682. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3683. printk(KERN_ERR "SLUB resiliency testing\n");
  3684. printk(KERN_ERR "-----------------------\n");
  3685. printk(KERN_ERR "A. Corruption after allocation\n");
  3686. p = kzalloc(16, GFP_KERNEL);
  3687. p[16] = 0x12;
  3688. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3689. " 0x12->0x%p\n\n", p + 16);
  3690. validate_slab_cache(kmalloc_caches[4]);
  3691. /* Hmmm... The next two are dangerous */
  3692. p = kzalloc(32, GFP_KERNEL);
  3693. p[32 + sizeof(void *)] = 0x34;
  3694. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3695. " 0x34 -> -0x%p\n", p);
  3696. printk(KERN_ERR
  3697. "If allocated object is overwritten then not detectable\n\n");
  3698. validate_slab_cache(kmalloc_caches[5]);
  3699. p = kzalloc(64, GFP_KERNEL);
  3700. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3701. *p = 0x56;
  3702. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3703. p);
  3704. printk(KERN_ERR
  3705. "If allocated object is overwritten then not detectable\n\n");
  3706. validate_slab_cache(kmalloc_caches[6]);
  3707. printk(KERN_ERR "\nB. Corruption after free\n");
  3708. p = kzalloc(128, GFP_KERNEL);
  3709. kfree(p);
  3710. *p = 0x78;
  3711. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3712. validate_slab_cache(kmalloc_caches[7]);
  3713. p = kzalloc(256, GFP_KERNEL);
  3714. kfree(p);
  3715. p[50] = 0x9a;
  3716. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3717. p);
  3718. validate_slab_cache(kmalloc_caches[8]);
  3719. p = kzalloc(512, GFP_KERNEL);
  3720. kfree(p);
  3721. p[512] = 0xab;
  3722. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3723. validate_slab_cache(kmalloc_caches[9]);
  3724. }
  3725. #else
  3726. #ifdef CONFIG_SYSFS
  3727. static void resiliency_test(void) {};
  3728. #endif
  3729. #endif
  3730. #ifdef CONFIG_SYSFS
  3731. enum slab_stat_type {
  3732. SL_ALL, /* All slabs */
  3733. SL_PARTIAL, /* Only partially allocated slabs */
  3734. SL_CPU, /* Only slabs used for cpu caches */
  3735. SL_OBJECTS, /* Determine allocated objects not slabs */
  3736. SL_TOTAL /* Determine object capacity not slabs */
  3737. };
  3738. #define SO_ALL (1 << SL_ALL)
  3739. #define SO_PARTIAL (1 << SL_PARTIAL)
  3740. #define SO_CPU (1 << SL_CPU)
  3741. #define SO_OBJECTS (1 << SL_OBJECTS)
  3742. #define SO_TOTAL (1 << SL_TOTAL)
  3743. static ssize_t show_slab_objects(struct kmem_cache *s,
  3744. char *buf, unsigned long flags)
  3745. {
  3746. unsigned long total = 0;
  3747. int node;
  3748. int x;
  3749. unsigned long *nodes;
  3750. unsigned long *per_cpu;
  3751. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3752. if (!nodes)
  3753. return -ENOMEM;
  3754. per_cpu = nodes + nr_node_ids;
  3755. if (flags & SO_CPU) {
  3756. int cpu;
  3757. for_each_possible_cpu(cpu) {
  3758. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3759. int node;
  3760. struct page *page;
  3761. page = ACCESS_ONCE(c->page);
  3762. if (!page)
  3763. continue;
  3764. node = page_to_nid(page);
  3765. if (flags & SO_TOTAL)
  3766. x = page->objects;
  3767. else if (flags & SO_OBJECTS)
  3768. x = page->inuse;
  3769. else
  3770. x = 1;
  3771. total += x;
  3772. nodes[node] += x;
  3773. page = ACCESS_ONCE(c->partial);
  3774. if (page) {
  3775. x = page->pobjects;
  3776. total += x;
  3777. nodes[node] += x;
  3778. }
  3779. per_cpu[node]++;
  3780. }
  3781. }
  3782. lock_memory_hotplug();
  3783. #ifdef CONFIG_SLUB_DEBUG
  3784. if (flags & SO_ALL) {
  3785. for_each_node_state(node, N_NORMAL_MEMORY) {
  3786. struct kmem_cache_node *n = get_node(s, node);
  3787. if (flags & SO_TOTAL)
  3788. x = atomic_long_read(&n->total_objects);
  3789. else if (flags & SO_OBJECTS)
  3790. x = atomic_long_read(&n->total_objects) -
  3791. count_partial(n, count_free);
  3792. else
  3793. x = atomic_long_read(&n->nr_slabs);
  3794. total += x;
  3795. nodes[node] += x;
  3796. }
  3797. } else
  3798. #endif
  3799. if (flags & SO_PARTIAL) {
  3800. for_each_node_state(node, N_NORMAL_MEMORY) {
  3801. struct kmem_cache_node *n = get_node(s, node);
  3802. if (flags & SO_TOTAL)
  3803. x = count_partial(n, count_total);
  3804. else if (flags & SO_OBJECTS)
  3805. x = count_partial(n, count_inuse);
  3806. else
  3807. x = n->nr_partial;
  3808. total += x;
  3809. nodes[node] += x;
  3810. }
  3811. }
  3812. x = sprintf(buf, "%lu", total);
  3813. #ifdef CONFIG_NUMA
  3814. for_each_node_state(node, N_NORMAL_MEMORY)
  3815. if (nodes[node])
  3816. x += sprintf(buf + x, " N%d=%lu",
  3817. node, nodes[node]);
  3818. #endif
  3819. unlock_memory_hotplug();
  3820. kfree(nodes);
  3821. return x + sprintf(buf + x, "\n");
  3822. }
  3823. #ifdef CONFIG_SLUB_DEBUG
  3824. static int any_slab_objects(struct kmem_cache *s)
  3825. {
  3826. int node;
  3827. for_each_online_node(node) {
  3828. struct kmem_cache_node *n = get_node(s, node);
  3829. if (!n)
  3830. continue;
  3831. if (atomic_long_read(&n->total_objects))
  3832. return 1;
  3833. }
  3834. return 0;
  3835. }
  3836. #endif
  3837. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3838. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3839. struct slab_attribute {
  3840. struct attribute attr;
  3841. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3842. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3843. };
  3844. #define SLAB_ATTR_RO(_name) \
  3845. static struct slab_attribute _name##_attr = \
  3846. __ATTR(_name, 0400, _name##_show, NULL)
  3847. #define SLAB_ATTR(_name) \
  3848. static struct slab_attribute _name##_attr = \
  3849. __ATTR(_name, 0600, _name##_show, _name##_store)
  3850. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3851. {
  3852. return sprintf(buf, "%d\n", s->size);
  3853. }
  3854. SLAB_ATTR_RO(slab_size);
  3855. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3856. {
  3857. return sprintf(buf, "%d\n", s->align);
  3858. }
  3859. SLAB_ATTR_RO(align);
  3860. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3861. {
  3862. return sprintf(buf, "%d\n", s->object_size);
  3863. }
  3864. SLAB_ATTR_RO(object_size);
  3865. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3866. {
  3867. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3868. }
  3869. SLAB_ATTR_RO(objs_per_slab);
  3870. static ssize_t order_store(struct kmem_cache *s,
  3871. const char *buf, size_t length)
  3872. {
  3873. unsigned long order;
  3874. int err;
  3875. err = strict_strtoul(buf, 10, &order);
  3876. if (err)
  3877. return err;
  3878. if (order > slub_max_order || order < slub_min_order)
  3879. return -EINVAL;
  3880. calculate_sizes(s, order);
  3881. return length;
  3882. }
  3883. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3884. {
  3885. return sprintf(buf, "%d\n", oo_order(s->oo));
  3886. }
  3887. SLAB_ATTR(order);
  3888. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3889. {
  3890. return sprintf(buf, "%lu\n", s->min_partial);
  3891. }
  3892. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3893. size_t length)
  3894. {
  3895. unsigned long min;
  3896. int err;
  3897. err = strict_strtoul(buf, 10, &min);
  3898. if (err)
  3899. return err;
  3900. set_min_partial(s, min);
  3901. return length;
  3902. }
  3903. SLAB_ATTR(min_partial);
  3904. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3905. {
  3906. return sprintf(buf, "%u\n", s->cpu_partial);
  3907. }
  3908. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3909. size_t length)
  3910. {
  3911. unsigned long objects;
  3912. int err;
  3913. err = strict_strtoul(buf, 10, &objects);
  3914. if (err)
  3915. return err;
  3916. if (objects && kmem_cache_debug(s))
  3917. return -EINVAL;
  3918. s->cpu_partial = objects;
  3919. flush_all(s);
  3920. return length;
  3921. }
  3922. SLAB_ATTR(cpu_partial);
  3923. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3924. {
  3925. if (!s->ctor)
  3926. return 0;
  3927. return sprintf(buf, "%pS\n", s->ctor);
  3928. }
  3929. SLAB_ATTR_RO(ctor);
  3930. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3931. {
  3932. return sprintf(buf, "%d\n", s->refcount - 1);
  3933. }
  3934. SLAB_ATTR_RO(aliases);
  3935. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3936. {
  3937. return show_slab_objects(s, buf, SO_PARTIAL);
  3938. }
  3939. SLAB_ATTR_RO(partial);
  3940. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3941. {
  3942. return show_slab_objects(s, buf, SO_CPU);
  3943. }
  3944. SLAB_ATTR_RO(cpu_slabs);
  3945. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3946. {
  3947. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3948. }
  3949. SLAB_ATTR_RO(objects);
  3950. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3951. {
  3952. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3953. }
  3954. SLAB_ATTR_RO(objects_partial);
  3955. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3956. {
  3957. int objects = 0;
  3958. int pages = 0;
  3959. int cpu;
  3960. int len;
  3961. for_each_online_cpu(cpu) {
  3962. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3963. if (page) {
  3964. pages += page->pages;
  3965. objects += page->pobjects;
  3966. }
  3967. }
  3968. len = sprintf(buf, "%d(%d)", objects, pages);
  3969. #ifdef CONFIG_SMP
  3970. for_each_online_cpu(cpu) {
  3971. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3972. if (page && len < PAGE_SIZE - 20)
  3973. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3974. page->pobjects, page->pages);
  3975. }
  3976. #endif
  3977. return len + sprintf(buf + len, "\n");
  3978. }
  3979. SLAB_ATTR_RO(slabs_cpu_partial);
  3980. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3981. {
  3982. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3983. }
  3984. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3985. const char *buf, size_t length)
  3986. {
  3987. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3988. if (buf[0] == '1')
  3989. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3990. return length;
  3991. }
  3992. SLAB_ATTR(reclaim_account);
  3993. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3994. {
  3995. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3996. }
  3997. SLAB_ATTR_RO(hwcache_align);
  3998. #ifdef CONFIG_ZONE_DMA
  3999. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4000. {
  4001. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4002. }
  4003. SLAB_ATTR_RO(cache_dma);
  4004. #endif
  4005. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4006. {
  4007. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4008. }
  4009. SLAB_ATTR_RO(destroy_by_rcu);
  4010. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4011. {
  4012. return sprintf(buf, "%d\n", s->reserved);
  4013. }
  4014. SLAB_ATTR_RO(reserved);
  4015. #ifdef CONFIG_SLUB_DEBUG
  4016. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4017. {
  4018. return show_slab_objects(s, buf, SO_ALL);
  4019. }
  4020. SLAB_ATTR_RO(slabs);
  4021. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4022. {
  4023. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4024. }
  4025. SLAB_ATTR_RO(total_objects);
  4026. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4027. {
  4028. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4029. }
  4030. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4031. const char *buf, size_t length)
  4032. {
  4033. s->flags &= ~SLAB_DEBUG_FREE;
  4034. if (buf[0] == '1') {
  4035. s->flags &= ~__CMPXCHG_DOUBLE;
  4036. s->flags |= SLAB_DEBUG_FREE;
  4037. }
  4038. return length;
  4039. }
  4040. SLAB_ATTR(sanity_checks);
  4041. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4042. {
  4043. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4044. }
  4045. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4046. size_t length)
  4047. {
  4048. s->flags &= ~SLAB_TRACE;
  4049. if (buf[0] == '1') {
  4050. s->flags &= ~__CMPXCHG_DOUBLE;
  4051. s->flags |= SLAB_TRACE;
  4052. }
  4053. return length;
  4054. }
  4055. SLAB_ATTR(trace);
  4056. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4057. {
  4058. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4059. }
  4060. static ssize_t red_zone_store(struct kmem_cache *s,
  4061. const char *buf, size_t length)
  4062. {
  4063. if (any_slab_objects(s))
  4064. return -EBUSY;
  4065. s->flags &= ~SLAB_RED_ZONE;
  4066. if (buf[0] == '1') {
  4067. s->flags &= ~__CMPXCHG_DOUBLE;
  4068. s->flags |= SLAB_RED_ZONE;
  4069. }
  4070. calculate_sizes(s, -1);
  4071. return length;
  4072. }
  4073. SLAB_ATTR(red_zone);
  4074. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4075. {
  4076. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4077. }
  4078. static ssize_t poison_store(struct kmem_cache *s,
  4079. const char *buf, size_t length)
  4080. {
  4081. if (any_slab_objects(s))
  4082. return -EBUSY;
  4083. s->flags &= ~SLAB_POISON;
  4084. if (buf[0] == '1') {
  4085. s->flags &= ~__CMPXCHG_DOUBLE;
  4086. s->flags |= SLAB_POISON;
  4087. }
  4088. calculate_sizes(s, -1);
  4089. return length;
  4090. }
  4091. SLAB_ATTR(poison);
  4092. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4093. {
  4094. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4095. }
  4096. static ssize_t store_user_store(struct kmem_cache *s,
  4097. const char *buf, size_t length)
  4098. {
  4099. if (any_slab_objects(s))
  4100. return -EBUSY;
  4101. s->flags &= ~SLAB_STORE_USER;
  4102. if (buf[0] == '1') {
  4103. s->flags &= ~__CMPXCHG_DOUBLE;
  4104. s->flags |= SLAB_STORE_USER;
  4105. }
  4106. calculate_sizes(s, -1);
  4107. return length;
  4108. }
  4109. SLAB_ATTR(store_user);
  4110. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4111. {
  4112. return 0;
  4113. }
  4114. static ssize_t validate_store(struct kmem_cache *s,
  4115. const char *buf, size_t length)
  4116. {
  4117. int ret = -EINVAL;
  4118. if (buf[0] == '1') {
  4119. ret = validate_slab_cache(s);
  4120. if (ret >= 0)
  4121. ret = length;
  4122. }
  4123. return ret;
  4124. }
  4125. SLAB_ATTR(validate);
  4126. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4127. {
  4128. if (!(s->flags & SLAB_STORE_USER))
  4129. return -ENOSYS;
  4130. return list_locations(s, buf, TRACK_ALLOC);
  4131. }
  4132. SLAB_ATTR_RO(alloc_calls);
  4133. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4134. {
  4135. if (!(s->flags & SLAB_STORE_USER))
  4136. return -ENOSYS;
  4137. return list_locations(s, buf, TRACK_FREE);
  4138. }
  4139. SLAB_ATTR_RO(free_calls);
  4140. #endif /* CONFIG_SLUB_DEBUG */
  4141. #ifdef CONFIG_FAILSLAB
  4142. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4143. {
  4144. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4145. }
  4146. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4147. size_t length)
  4148. {
  4149. s->flags &= ~SLAB_FAILSLAB;
  4150. if (buf[0] == '1')
  4151. s->flags |= SLAB_FAILSLAB;
  4152. return length;
  4153. }
  4154. SLAB_ATTR(failslab);
  4155. #endif
  4156. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4157. {
  4158. return 0;
  4159. }
  4160. static ssize_t shrink_store(struct kmem_cache *s,
  4161. const char *buf, size_t length)
  4162. {
  4163. if (buf[0] == '1') {
  4164. int rc = kmem_cache_shrink(s);
  4165. if (rc)
  4166. return rc;
  4167. } else
  4168. return -EINVAL;
  4169. return length;
  4170. }
  4171. SLAB_ATTR(shrink);
  4172. #ifdef CONFIG_NUMA
  4173. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4174. {
  4175. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4176. }
  4177. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4178. const char *buf, size_t length)
  4179. {
  4180. unsigned long ratio;
  4181. int err;
  4182. err = strict_strtoul(buf, 10, &ratio);
  4183. if (err)
  4184. return err;
  4185. if (ratio <= 100)
  4186. s->remote_node_defrag_ratio = ratio * 10;
  4187. return length;
  4188. }
  4189. SLAB_ATTR(remote_node_defrag_ratio);
  4190. #endif
  4191. #ifdef CONFIG_SLUB_STATS
  4192. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4193. {
  4194. unsigned long sum = 0;
  4195. int cpu;
  4196. int len;
  4197. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4198. if (!data)
  4199. return -ENOMEM;
  4200. for_each_online_cpu(cpu) {
  4201. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4202. data[cpu] = x;
  4203. sum += x;
  4204. }
  4205. len = sprintf(buf, "%lu", sum);
  4206. #ifdef CONFIG_SMP
  4207. for_each_online_cpu(cpu) {
  4208. if (data[cpu] && len < PAGE_SIZE - 20)
  4209. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4210. }
  4211. #endif
  4212. kfree(data);
  4213. return len + sprintf(buf + len, "\n");
  4214. }
  4215. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4216. {
  4217. int cpu;
  4218. for_each_online_cpu(cpu)
  4219. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4220. }
  4221. #define STAT_ATTR(si, text) \
  4222. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4223. { \
  4224. return show_stat(s, buf, si); \
  4225. } \
  4226. static ssize_t text##_store(struct kmem_cache *s, \
  4227. const char *buf, size_t length) \
  4228. { \
  4229. if (buf[0] != '0') \
  4230. return -EINVAL; \
  4231. clear_stat(s, si); \
  4232. return length; \
  4233. } \
  4234. SLAB_ATTR(text); \
  4235. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4236. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4237. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4238. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4239. STAT_ATTR(FREE_FROZEN, free_frozen);
  4240. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4241. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4242. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4243. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4244. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4245. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4246. STAT_ATTR(FREE_SLAB, free_slab);
  4247. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4248. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4249. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4250. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4251. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4252. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4253. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4254. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4255. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4256. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4257. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4258. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4259. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4260. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4261. #endif
  4262. static struct attribute *slab_attrs[] = {
  4263. &slab_size_attr.attr,
  4264. &object_size_attr.attr,
  4265. &objs_per_slab_attr.attr,
  4266. &order_attr.attr,
  4267. &min_partial_attr.attr,
  4268. &cpu_partial_attr.attr,
  4269. &objects_attr.attr,
  4270. &objects_partial_attr.attr,
  4271. &partial_attr.attr,
  4272. &cpu_slabs_attr.attr,
  4273. &ctor_attr.attr,
  4274. &aliases_attr.attr,
  4275. &align_attr.attr,
  4276. &hwcache_align_attr.attr,
  4277. &reclaim_account_attr.attr,
  4278. &destroy_by_rcu_attr.attr,
  4279. &shrink_attr.attr,
  4280. &reserved_attr.attr,
  4281. &slabs_cpu_partial_attr.attr,
  4282. #ifdef CONFIG_SLUB_DEBUG
  4283. &total_objects_attr.attr,
  4284. &slabs_attr.attr,
  4285. &sanity_checks_attr.attr,
  4286. &trace_attr.attr,
  4287. &red_zone_attr.attr,
  4288. &poison_attr.attr,
  4289. &store_user_attr.attr,
  4290. &validate_attr.attr,
  4291. &alloc_calls_attr.attr,
  4292. &free_calls_attr.attr,
  4293. #endif
  4294. #ifdef CONFIG_ZONE_DMA
  4295. &cache_dma_attr.attr,
  4296. #endif
  4297. #ifdef CONFIG_NUMA
  4298. &remote_node_defrag_ratio_attr.attr,
  4299. #endif
  4300. #ifdef CONFIG_SLUB_STATS
  4301. &alloc_fastpath_attr.attr,
  4302. &alloc_slowpath_attr.attr,
  4303. &free_fastpath_attr.attr,
  4304. &free_slowpath_attr.attr,
  4305. &free_frozen_attr.attr,
  4306. &free_add_partial_attr.attr,
  4307. &free_remove_partial_attr.attr,
  4308. &alloc_from_partial_attr.attr,
  4309. &alloc_slab_attr.attr,
  4310. &alloc_refill_attr.attr,
  4311. &alloc_node_mismatch_attr.attr,
  4312. &free_slab_attr.attr,
  4313. &cpuslab_flush_attr.attr,
  4314. &deactivate_full_attr.attr,
  4315. &deactivate_empty_attr.attr,
  4316. &deactivate_to_head_attr.attr,
  4317. &deactivate_to_tail_attr.attr,
  4318. &deactivate_remote_frees_attr.attr,
  4319. &deactivate_bypass_attr.attr,
  4320. &order_fallback_attr.attr,
  4321. &cmpxchg_double_fail_attr.attr,
  4322. &cmpxchg_double_cpu_fail_attr.attr,
  4323. &cpu_partial_alloc_attr.attr,
  4324. &cpu_partial_free_attr.attr,
  4325. &cpu_partial_node_attr.attr,
  4326. &cpu_partial_drain_attr.attr,
  4327. #endif
  4328. #ifdef CONFIG_FAILSLAB
  4329. &failslab_attr.attr,
  4330. #endif
  4331. NULL
  4332. };
  4333. static struct attribute_group slab_attr_group = {
  4334. .attrs = slab_attrs,
  4335. };
  4336. static ssize_t slab_attr_show(struct kobject *kobj,
  4337. struct attribute *attr,
  4338. char *buf)
  4339. {
  4340. struct slab_attribute *attribute;
  4341. struct kmem_cache *s;
  4342. int err;
  4343. attribute = to_slab_attr(attr);
  4344. s = to_slab(kobj);
  4345. if (!attribute->show)
  4346. return -EIO;
  4347. err = attribute->show(s, buf);
  4348. return err;
  4349. }
  4350. static ssize_t slab_attr_store(struct kobject *kobj,
  4351. struct attribute *attr,
  4352. const char *buf, size_t len)
  4353. {
  4354. struct slab_attribute *attribute;
  4355. struct kmem_cache *s;
  4356. int err;
  4357. attribute = to_slab_attr(attr);
  4358. s = to_slab(kobj);
  4359. if (!attribute->store)
  4360. return -EIO;
  4361. err = attribute->store(s, buf, len);
  4362. return err;
  4363. }
  4364. static void kmem_cache_release(struct kobject *kobj)
  4365. {
  4366. struct kmem_cache *s = to_slab(kobj);
  4367. kfree(s->name);
  4368. kfree(s);
  4369. }
  4370. static const struct sysfs_ops slab_sysfs_ops = {
  4371. .show = slab_attr_show,
  4372. .store = slab_attr_store,
  4373. };
  4374. static struct kobj_type slab_ktype = {
  4375. .sysfs_ops = &slab_sysfs_ops,
  4376. .release = kmem_cache_release
  4377. };
  4378. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4379. {
  4380. struct kobj_type *ktype = get_ktype(kobj);
  4381. if (ktype == &slab_ktype)
  4382. return 1;
  4383. return 0;
  4384. }
  4385. static const struct kset_uevent_ops slab_uevent_ops = {
  4386. .filter = uevent_filter,
  4387. };
  4388. static struct kset *slab_kset;
  4389. #define ID_STR_LENGTH 64
  4390. /* Create a unique string id for a slab cache:
  4391. *
  4392. * Format :[flags-]size
  4393. */
  4394. static char *create_unique_id(struct kmem_cache *s)
  4395. {
  4396. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4397. char *p = name;
  4398. BUG_ON(!name);
  4399. *p++ = ':';
  4400. /*
  4401. * First flags affecting slabcache operations. We will only
  4402. * get here for aliasable slabs so we do not need to support
  4403. * too many flags. The flags here must cover all flags that
  4404. * are matched during merging to guarantee that the id is
  4405. * unique.
  4406. */
  4407. if (s->flags & SLAB_CACHE_DMA)
  4408. *p++ = 'd';
  4409. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4410. *p++ = 'a';
  4411. if (s->flags & SLAB_DEBUG_FREE)
  4412. *p++ = 'F';
  4413. if (!(s->flags & SLAB_NOTRACK))
  4414. *p++ = 't';
  4415. if (p != name + 1)
  4416. *p++ = '-';
  4417. p += sprintf(p, "%07d", s->size);
  4418. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4419. return name;
  4420. }
  4421. static int sysfs_slab_add(struct kmem_cache *s)
  4422. {
  4423. int err;
  4424. const char *name;
  4425. int unmergeable;
  4426. if (slab_state < FULL)
  4427. /* Defer until later */
  4428. return 0;
  4429. unmergeable = slab_unmergeable(s);
  4430. if (unmergeable) {
  4431. /*
  4432. * Slabcache can never be merged so we can use the name proper.
  4433. * This is typically the case for debug situations. In that
  4434. * case we can catch duplicate names easily.
  4435. */
  4436. sysfs_remove_link(&slab_kset->kobj, s->name);
  4437. name = s->name;
  4438. } else {
  4439. /*
  4440. * Create a unique name for the slab as a target
  4441. * for the symlinks.
  4442. */
  4443. name = create_unique_id(s);
  4444. }
  4445. s->kobj.kset = slab_kset;
  4446. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4447. if (err) {
  4448. kobject_put(&s->kobj);
  4449. return err;
  4450. }
  4451. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4452. if (err) {
  4453. kobject_del(&s->kobj);
  4454. kobject_put(&s->kobj);
  4455. return err;
  4456. }
  4457. kobject_uevent(&s->kobj, KOBJ_ADD);
  4458. if (!unmergeable) {
  4459. /* Setup first alias */
  4460. sysfs_slab_alias(s, s->name);
  4461. kfree(name);
  4462. }
  4463. return 0;
  4464. }
  4465. static void sysfs_slab_remove(struct kmem_cache *s)
  4466. {
  4467. if (slab_state < FULL)
  4468. /*
  4469. * Sysfs has not been setup yet so no need to remove the
  4470. * cache from sysfs.
  4471. */
  4472. return;
  4473. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4474. kobject_del(&s->kobj);
  4475. kobject_put(&s->kobj);
  4476. }
  4477. /*
  4478. * Need to buffer aliases during bootup until sysfs becomes
  4479. * available lest we lose that information.
  4480. */
  4481. struct saved_alias {
  4482. struct kmem_cache *s;
  4483. const char *name;
  4484. struct saved_alias *next;
  4485. };
  4486. static struct saved_alias *alias_list;
  4487. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4488. {
  4489. struct saved_alias *al;
  4490. if (slab_state == FULL) {
  4491. /*
  4492. * If we have a leftover link then remove it.
  4493. */
  4494. sysfs_remove_link(&slab_kset->kobj, name);
  4495. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4496. }
  4497. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4498. if (!al)
  4499. return -ENOMEM;
  4500. al->s = s;
  4501. al->name = name;
  4502. al->next = alias_list;
  4503. alias_list = al;
  4504. return 0;
  4505. }
  4506. static int __init slab_sysfs_init(void)
  4507. {
  4508. struct kmem_cache *s;
  4509. int err;
  4510. mutex_lock(&slab_mutex);
  4511. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4512. if (!slab_kset) {
  4513. mutex_unlock(&slab_mutex);
  4514. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4515. return -ENOSYS;
  4516. }
  4517. slab_state = FULL;
  4518. list_for_each_entry(s, &slab_caches, list) {
  4519. err = sysfs_slab_add(s);
  4520. if (err)
  4521. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4522. " to sysfs\n", s->name);
  4523. }
  4524. while (alias_list) {
  4525. struct saved_alias *al = alias_list;
  4526. alias_list = alias_list->next;
  4527. err = sysfs_slab_alias(al->s, al->name);
  4528. if (err)
  4529. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4530. " %s to sysfs\n", al->name);
  4531. kfree(al);
  4532. }
  4533. mutex_unlock(&slab_mutex);
  4534. resiliency_test();
  4535. return 0;
  4536. }
  4537. __initcall(slab_sysfs_init);
  4538. #endif /* CONFIG_SYSFS */
  4539. /*
  4540. * The /proc/slabinfo ABI
  4541. */
  4542. #ifdef CONFIG_SLABINFO
  4543. static void print_slabinfo_header(struct seq_file *m)
  4544. {
  4545. seq_puts(m, "slabinfo - version: 2.1\n");
  4546. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4547. "<objperslab> <pagesperslab>");
  4548. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4549. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4550. seq_putc(m, '\n');
  4551. }
  4552. static void *s_start(struct seq_file *m, loff_t *pos)
  4553. {
  4554. loff_t n = *pos;
  4555. mutex_lock(&slab_mutex);
  4556. if (!n)
  4557. print_slabinfo_header(m);
  4558. return seq_list_start(&slab_caches, *pos);
  4559. }
  4560. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4561. {
  4562. return seq_list_next(p, &slab_caches, pos);
  4563. }
  4564. static void s_stop(struct seq_file *m, void *p)
  4565. {
  4566. mutex_unlock(&slab_mutex);
  4567. }
  4568. static int s_show(struct seq_file *m, void *p)
  4569. {
  4570. unsigned long nr_partials = 0;
  4571. unsigned long nr_slabs = 0;
  4572. unsigned long nr_inuse = 0;
  4573. unsigned long nr_objs = 0;
  4574. unsigned long nr_free = 0;
  4575. struct kmem_cache *s;
  4576. int node;
  4577. s = list_entry(p, struct kmem_cache, list);
  4578. for_each_online_node(node) {
  4579. struct kmem_cache_node *n = get_node(s, node);
  4580. if (!n)
  4581. continue;
  4582. nr_partials += n->nr_partial;
  4583. nr_slabs += atomic_long_read(&n->nr_slabs);
  4584. nr_objs += atomic_long_read(&n->total_objects);
  4585. nr_free += count_partial(n, count_free);
  4586. }
  4587. nr_inuse = nr_objs - nr_free;
  4588. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4589. nr_objs, s->size, oo_objects(s->oo),
  4590. (1 << oo_order(s->oo)));
  4591. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4592. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4593. 0UL);
  4594. seq_putc(m, '\n');
  4595. return 0;
  4596. }
  4597. static const struct seq_operations slabinfo_op = {
  4598. .start = s_start,
  4599. .next = s_next,
  4600. .stop = s_stop,
  4601. .show = s_show,
  4602. };
  4603. static int slabinfo_open(struct inode *inode, struct file *file)
  4604. {
  4605. return seq_open(file, &slabinfo_op);
  4606. }
  4607. static const struct file_operations proc_slabinfo_operations = {
  4608. .open = slabinfo_open,
  4609. .read = seq_read,
  4610. .llseek = seq_lseek,
  4611. .release = seq_release,
  4612. };
  4613. static int __init slab_proc_init(void)
  4614. {
  4615. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4616. return 0;
  4617. }
  4618. module_init(slab_proc_init);
  4619. #endif /* CONFIG_SLABINFO */