mmu.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_RSVD_MASK (1U << 3)
  99. #define PFERR_FETCH_MASK (1U << 4)
  100. #define PT_DIRECTORY_LEVEL 2
  101. #define PT_PAGE_TABLE_LEVEL 1
  102. #define RMAP_EXT 4
  103. #define ACC_EXEC_MASK 1
  104. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  105. #define ACC_USER_MASK PT_USER_MASK
  106. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  107. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  108. struct kvm_rmap_desc {
  109. u64 *shadow_ptes[RMAP_EXT];
  110. struct kvm_rmap_desc *more;
  111. };
  112. struct kvm_shadow_walk_iterator {
  113. u64 addr;
  114. hpa_t shadow_addr;
  115. int level;
  116. u64 *sptep;
  117. unsigned index;
  118. };
  119. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  120. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  121. shadow_walk_okay(&(_walker)); \
  122. shadow_walk_next(&(_walker)))
  123. struct kvm_unsync_walk {
  124. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  125. };
  126. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  127. static struct kmem_cache *pte_chain_cache;
  128. static struct kmem_cache *rmap_desc_cache;
  129. static struct kmem_cache *mmu_page_header_cache;
  130. static u64 __read_mostly shadow_trap_nonpresent_pte;
  131. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  132. static u64 __read_mostly shadow_base_present_pte;
  133. static u64 __read_mostly shadow_nx_mask;
  134. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  135. static u64 __read_mostly shadow_user_mask;
  136. static u64 __read_mostly shadow_accessed_mask;
  137. static u64 __read_mostly shadow_dirty_mask;
  138. static u64 __read_mostly shadow_mt_mask;
  139. static inline u64 rsvd_bits(int s, int e)
  140. {
  141. return ((1ULL << (e - s + 1)) - 1) << s;
  142. }
  143. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  144. {
  145. shadow_trap_nonpresent_pte = trap_pte;
  146. shadow_notrap_nonpresent_pte = notrap_pte;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  149. void kvm_mmu_set_base_ptes(u64 base_pte)
  150. {
  151. shadow_base_present_pte = base_pte;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  154. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  155. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  156. {
  157. shadow_user_mask = user_mask;
  158. shadow_accessed_mask = accessed_mask;
  159. shadow_dirty_mask = dirty_mask;
  160. shadow_nx_mask = nx_mask;
  161. shadow_x_mask = x_mask;
  162. shadow_mt_mask = mt_mask;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  165. static int is_write_protection(struct kvm_vcpu *vcpu)
  166. {
  167. return vcpu->arch.cr0 & X86_CR0_WP;
  168. }
  169. static int is_cpuid_PSE36(void)
  170. {
  171. return 1;
  172. }
  173. static int is_nx(struct kvm_vcpu *vcpu)
  174. {
  175. return vcpu->arch.shadow_efer & EFER_NX;
  176. }
  177. static int is_shadow_present_pte(u64 pte)
  178. {
  179. return pte != shadow_trap_nonpresent_pte
  180. && pte != shadow_notrap_nonpresent_pte;
  181. }
  182. static int is_large_pte(u64 pte)
  183. {
  184. return pte & PT_PAGE_SIZE_MASK;
  185. }
  186. static int is_writeble_pte(unsigned long pte)
  187. {
  188. return pte & PT_WRITABLE_MASK;
  189. }
  190. static int is_dirty_pte(unsigned long pte)
  191. {
  192. return pte & shadow_dirty_mask;
  193. }
  194. static int is_rmap_pte(u64 pte)
  195. {
  196. return is_shadow_present_pte(pte);
  197. }
  198. static pfn_t spte_to_pfn(u64 pte)
  199. {
  200. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  201. }
  202. static gfn_t pse36_gfn_delta(u32 gpte)
  203. {
  204. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  205. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  206. }
  207. static void set_shadow_pte(u64 *sptep, u64 spte)
  208. {
  209. #ifdef CONFIG_X86_64
  210. set_64bit((unsigned long *)sptep, spte);
  211. #else
  212. set_64bit((unsigned long long *)sptep, spte);
  213. #endif
  214. }
  215. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  216. struct kmem_cache *base_cache, int min)
  217. {
  218. void *obj;
  219. if (cache->nobjs >= min)
  220. return 0;
  221. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  222. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  223. if (!obj)
  224. return -ENOMEM;
  225. cache->objects[cache->nobjs++] = obj;
  226. }
  227. return 0;
  228. }
  229. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  230. {
  231. while (mc->nobjs)
  232. kfree(mc->objects[--mc->nobjs]);
  233. }
  234. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  235. int min)
  236. {
  237. struct page *page;
  238. if (cache->nobjs >= min)
  239. return 0;
  240. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  241. page = alloc_page(GFP_KERNEL);
  242. if (!page)
  243. return -ENOMEM;
  244. set_page_private(page, 0);
  245. cache->objects[cache->nobjs++] = page_address(page);
  246. }
  247. return 0;
  248. }
  249. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  250. {
  251. while (mc->nobjs)
  252. free_page((unsigned long)mc->objects[--mc->nobjs]);
  253. }
  254. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  255. {
  256. int r;
  257. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  258. pte_chain_cache, 4);
  259. if (r)
  260. goto out;
  261. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  262. rmap_desc_cache, 4);
  263. if (r)
  264. goto out;
  265. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  266. if (r)
  267. goto out;
  268. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  269. mmu_page_header_cache, 4);
  270. out:
  271. return r;
  272. }
  273. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  274. {
  275. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  276. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  277. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  278. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  279. }
  280. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  281. size_t size)
  282. {
  283. void *p;
  284. BUG_ON(!mc->nobjs);
  285. p = mc->objects[--mc->nobjs];
  286. return p;
  287. }
  288. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  289. {
  290. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  291. sizeof(struct kvm_pte_chain));
  292. }
  293. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  294. {
  295. kfree(pc);
  296. }
  297. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  298. {
  299. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  300. sizeof(struct kvm_rmap_desc));
  301. }
  302. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  303. {
  304. kfree(rd);
  305. }
  306. /*
  307. * Return the pointer to the largepage write count for a given
  308. * gfn, handling slots that are not large page aligned.
  309. */
  310. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  311. {
  312. unsigned long idx;
  313. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  314. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  315. return &slot->lpage_info[idx].write_count;
  316. }
  317. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  318. {
  319. int *write_count;
  320. gfn = unalias_gfn(kvm, gfn);
  321. write_count = slot_largepage_idx(gfn,
  322. gfn_to_memslot_unaliased(kvm, gfn));
  323. *write_count += 1;
  324. }
  325. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  326. {
  327. int *write_count;
  328. gfn = unalias_gfn(kvm, gfn);
  329. write_count = slot_largepage_idx(gfn,
  330. gfn_to_memslot_unaliased(kvm, gfn));
  331. *write_count -= 1;
  332. WARN_ON(*write_count < 0);
  333. }
  334. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  335. {
  336. struct kvm_memory_slot *slot;
  337. int *largepage_idx;
  338. gfn = unalias_gfn(kvm, gfn);
  339. slot = gfn_to_memslot_unaliased(kvm, gfn);
  340. if (slot) {
  341. largepage_idx = slot_largepage_idx(gfn, slot);
  342. return *largepage_idx;
  343. }
  344. return 1;
  345. }
  346. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  347. {
  348. struct vm_area_struct *vma;
  349. unsigned long addr;
  350. int ret = 0;
  351. addr = gfn_to_hva(kvm, gfn);
  352. if (kvm_is_error_hva(addr))
  353. return ret;
  354. down_read(&current->mm->mmap_sem);
  355. vma = find_vma(current->mm, addr);
  356. if (vma && is_vm_hugetlb_page(vma))
  357. ret = 1;
  358. up_read(&current->mm->mmap_sem);
  359. return ret;
  360. }
  361. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  362. {
  363. struct kvm_memory_slot *slot;
  364. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  365. return 0;
  366. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  367. return 0;
  368. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  369. if (slot && slot->dirty_bitmap)
  370. return 0;
  371. return 1;
  372. }
  373. /*
  374. * Take gfn and return the reverse mapping to it.
  375. * Note: gfn must be unaliased before this function get called
  376. */
  377. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  378. {
  379. struct kvm_memory_slot *slot;
  380. unsigned long idx;
  381. slot = gfn_to_memslot(kvm, gfn);
  382. if (!lpage)
  383. return &slot->rmap[gfn - slot->base_gfn];
  384. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  385. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  386. return &slot->lpage_info[idx].rmap_pde;
  387. }
  388. /*
  389. * Reverse mapping data structures:
  390. *
  391. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  392. * that points to page_address(page).
  393. *
  394. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  395. * containing more mappings.
  396. */
  397. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  398. {
  399. struct kvm_mmu_page *sp;
  400. struct kvm_rmap_desc *desc;
  401. unsigned long *rmapp;
  402. int i;
  403. if (!is_rmap_pte(*spte))
  404. return;
  405. gfn = unalias_gfn(vcpu->kvm, gfn);
  406. sp = page_header(__pa(spte));
  407. sp->gfns[spte - sp->spt] = gfn;
  408. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  409. if (!*rmapp) {
  410. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  411. *rmapp = (unsigned long)spte;
  412. } else if (!(*rmapp & 1)) {
  413. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  414. desc = mmu_alloc_rmap_desc(vcpu);
  415. desc->shadow_ptes[0] = (u64 *)*rmapp;
  416. desc->shadow_ptes[1] = spte;
  417. *rmapp = (unsigned long)desc | 1;
  418. } else {
  419. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  420. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  421. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  422. desc = desc->more;
  423. if (desc->shadow_ptes[RMAP_EXT-1]) {
  424. desc->more = mmu_alloc_rmap_desc(vcpu);
  425. desc = desc->more;
  426. }
  427. for (i = 0; desc->shadow_ptes[i]; ++i)
  428. ;
  429. desc->shadow_ptes[i] = spte;
  430. }
  431. }
  432. static void rmap_desc_remove_entry(unsigned long *rmapp,
  433. struct kvm_rmap_desc *desc,
  434. int i,
  435. struct kvm_rmap_desc *prev_desc)
  436. {
  437. int j;
  438. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  439. ;
  440. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  441. desc->shadow_ptes[j] = NULL;
  442. if (j != 0)
  443. return;
  444. if (!prev_desc && !desc->more)
  445. *rmapp = (unsigned long)desc->shadow_ptes[0];
  446. else
  447. if (prev_desc)
  448. prev_desc->more = desc->more;
  449. else
  450. *rmapp = (unsigned long)desc->more | 1;
  451. mmu_free_rmap_desc(desc);
  452. }
  453. static void rmap_remove(struct kvm *kvm, u64 *spte)
  454. {
  455. struct kvm_rmap_desc *desc;
  456. struct kvm_rmap_desc *prev_desc;
  457. struct kvm_mmu_page *sp;
  458. pfn_t pfn;
  459. unsigned long *rmapp;
  460. int i;
  461. if (!is_rmap_pte(*spte))
  462. return;
  463. sp = page_header(__pa(spte));
  464. pfn = spte_to_pfn(*spte);
  465. if (*spte & shadow_accessed_mask)
  466. kvm_set_pfn_accessed(pfn);
  467. if (is_writeble_pte(*spte))
  468. kvm_release_pfn_dirty(pfn);
  469. else
  470. kvm_release_pfn_clean(pfn);
  471. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  472. if (!*rmapp) {
  473. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  474. BUG();
  475. } else if (!(*rmapp & 1)) {
  476. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  477. if ((u64 *)*rmapp != spte) {
  478. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  479. spte, *spte);
  480. BUG();
  481. }
  482. *rmapp = 0;
  483. } else {
  484. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  485. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  486. prev_desc = NULL;
  487. while (desc) {
  488. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  489. if (desc->shadow_ptes[i] == spte) {
  490. rmap_desc_remove_entry(rmapp,
  491. desc, i,
  492. prev_desc);
  493. return;
  494. }
  495. prev_desc = desc;
  496. desc = desc->more;
  497. }
  498. BUG();
  499. }
  500. }
  501. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  502. {
  503. struct kvm_rmap_desc *desc;
  504. struct kvm_rmap_desc *prev_desc;
  505. u64 *prev_spte;
  506. int i;
  507. if (!*rmapp)
  508. return NULL;
  509. else if (!(*rmapp & 1)) {
  510. if (!spte)
  511. return (u64 *)*rmapp;
  512. return NULL;
  513. }
  514. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  515. prev_desc = NULL;
  516. prev_spte = NULL;
  517. while (desc) {
  518. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  519. if (prev_spte == spte)
  520. return desc->shadow_ptes[i];
  521. prev_spte = desc->shadow_ptes[i];
  522. }
  523. desc = desc->more;
  524. }
  525. return NULL;
  526. }
  527. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  528. {
  529. unsigned long *rmapp;
  530. u64 *spte;
  531. int write_protected = 0;
  532. gfn = unalias_gfn(kvm, gfn);
  533. rmapp = gfn_to_rmap(kvm, gfn, 0);
  534. spte = rmap_next(kvm, rmapp, NULL);
  535. while (spte) {
  536. BUG_ON(!spte);
  537. BUG_ON(!(*spte & PT_PRESENT_MASK));
  538. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  539. if (is_writeble_pte(*spte)) {
  540. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  541. write_protected = 1;
  542. }
  543. spte = rmap_next(kvm, rmapp, spte);
  544. }
  545. if (write_protected) {
  546. pfn_t pfn;
  547. spte = rmap_next(kvm, rmapp, NULL);
  548. pfn = spte_to_pfn(*spte);
  549. kvm_set_pfn_dirty(pfn);
  550. }
  551. /* check for huge page mappings */
  552. rmapp = gfn_to_rmap(kvm, gfn, 1);
  553. spte = rmap_next(kvm, rmapp, NULL);
  554. while (spte) {
  555. BUG_ON(!spte);
  556. BUG_ON(!(*spte & PT_PRESENT_MASK));
  557. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  558. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  559. if (is_writeble_pte(*spte)) {
  560. rmap_remove(kvm, spte);
  561. --kvm->stat.lpages;
  562. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  563. spte = NULL;
  564. write_protected = 1;
  565. }
  566. spte = rmap_next(kvm, rmapp, spte);
  567. }
  568. return write_protected;
  569. }
  570. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  571. {
  572. u64 *spte;
  573. int need_tlb_flush = 0;
  574. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  575. BUG_ON(!(*spte & PT_PRESENT_MASK));
  576. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  577. rmap_remove(kvm, spte);
  578. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  579. need_tlb_flush = 1;
  580. }
  581. return need_tlb_flush;
  582. }
  583. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  584. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  585. {
  586. int i;
  587. int retval = 0;
  588. /*
  589. * If mmap_sem isn't taken, we can look the memslots with only
  590. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  591. */
  592. for (i = 0; i < kvm->nmemslots; i++) {
  593. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  594. unsigned long start = memslot->userspace_addr;
  595. unsigned long end;
  596. /* mmu_lock protects userspace_addr */
  597. if (!start)
  598. continue;
  599. end = start + (memslot->npages << PAGE_SHIFT);
  600. if (hva >= start && hva < end) {
  601. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  602. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  603. retval |= handler(kvm,
  604. &memslot->lpage_info[
  605. gfn_offset /
  606. KVM_PAGES_PER_HPAGE].rmap_pde);
  607. }
  608. }
  609. return retval;
  610. }
  611. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  612. {
  613. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  614. }
  615. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  616. {
  617. u64 *spte;
  618. int young = 0;
  619. /* always return old for EPT */
  620. if (!shadow_accessed_mask)
  621. return 0;
  622. spte = rmap_next(kvm, rmapp, NULL);
  623. while (spte) {
  624. int _young;
  625. u64 _spte = *spte;
  626. BUG_ON(!(_spte & PT_PRESENT_MASK));
  627. _young = _spte & PT_ACCESSED_MASK;
  628. if (_young) {
  629. young = 1;
  630. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  631. }
  632. spte = rmap_next(kvm, rmapp, spte);
  633. }
  634. return young;
  635. }
  636. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  637. {
  638. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  639. }
  640. #ifdef MMU_DEBUG
  641. static int is_empty_shadow_page(u64 *spt)
  642. {
  643. u64 *pos;
  644. u64 *end;
  645. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  646. if (is_shadow_present_pte(*pos)) {
  647. printk(KERN_ERR "%s: %p %llx\n", __func__,
  648. pos, *pos);
  649. return 0;
  650. }
  651. return 1;
  652. }
  653. #endif
  654. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  655. {
  656. ASSERT(is_empty_shadow_page(sp->spt));
  657. list_del(&sp->link);
  658. __free_page(virt_to_page(sp->spt));
  659. __free_page(virt_to_page(sp->gfns));
  660. kfree(sp);
  661. ++kvm->arch.n_free_mmu_pages;
  662. }
  663. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  664. {
  665. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  666. }
  667. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  668. u64 *parent_pte)
  669. {
  670. struct kvm_mmu_page *sp;
  671. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  672. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  673. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  674. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  675. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  676. INIT_LIST_HEAD(&sp->oos_link);
  677. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  678. sp->multimapped = 0;
  679. sp->parent_pte = parent_pte;
  680. --vcpu->kvm->arch.n_free_mmu_pages;
  681. return sp;
  682. }
  683. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  684. struct kvm_mmu_page *sp, u64 *parent_pte)
  685. {
  686. struct kvm_pte_chain *pte_chain;
  687. struct hlist_node *node;
  688. int i;
  689. if (!parent_pte)
  690. return;
  691. if (!sp->multimapped) {
  692. u64 *old = sp->parent_pte;
  693. if (!old) {
  694. sp->parent_pte = parent_pte;
  695. return;
  696. }
  697. sp->multimapped = 1;
  698. pte_chain = mmu_alloc_pte_chain(vcpu);
  699. INIT_HLIST_HEAD(&sp->parent_ptes);
  700. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  701. pte_chain->parent_ptes[0] = old;
  702. }
  703. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  704. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  705. continue;
  706. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  707. if (!pte_chain->parent_ptes[i]) {
  708. pte_chain->parent_ptes[i] = parent_pte;
  709. return;
  710. }
  711. }
  712. pte_chain = mmu_alloc_pte_chain(vcpu);
  713. BUG_ON(!pte_chain);
  714. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  715. pte_chain->parent_ptes[0] = parent_pte;
  716. }
  717. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  718. u64 *parent_pte)
  719. {
  720. struct kvm_pte_chain *pte_chain;
  721. struct hlist_node *node;
  722. int i;
  723. if (!sp->multimapped) {
  724. BUG_ON(sp->parent_pte != parent_pte);
  725. sp->parent_pte = NULL;
  726. return;
  727. }
  728. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  729. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  730. if (!pte_chain->parent_ptes[i])
  731. break;
  732. if (pte_chain->parent_ptes[i] != parent_pte)
  733. continue;
  734. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  735. && pte_chain->parent_ptes[i + 1]) {
  736. pte_chain->parent_ptes[i]
  737. = pte_chain->parent_ptes[i + 1];
  738. ++i;
  739. }
  740. pte_chain->parent_ptes[i] = NULL;
  741. if (i == 0) {
  742. hlist_del(&pte_chain->link);
  743. mmu_free_pte_chain(pte_chain);
  744. if (hlist_empty(&sp->parent_ptes)) {
  745. sp->multimapped = 0;
  746. sp->parent_pte = NULL;
  747. }
  748. }
  749. return;
  750. }
  751. BUG();
  752. }
  753. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  754. mmu_parent_walk_fn fn)
  755. {
  756. struct kvm_pte_chain *pte_chain;
  757. struct hlist_node *node;
  758. struct kvm_mmu_page *parent_sp;
  759. int i;
  760. if (!sp->multimapped && sp->parent_pte) {
  761. parent_sp = page_header(__pa(sp->parent_pte));
  762. fn(vcpu, parent_sp);
  763. mmu_parent_walk(vcpu, parent_sp, fn);
  764. return;
  765. }
  766. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  767. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  768. if (!pte_chain->parent_ptes[i])
  769. break;
  770. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  771. fn(vcpu, parent_sp);
  772. mmu_parent_walk(vcpu, parent_sp, fn);
  773. }
  774. }
  775. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  776. {
  777. unsigned int index;
  778. struct kvm_mmu_page *sp = page_header(__pa(spte));
  779. index = spte - sp->spt;
  780. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  781. sp->unsync_children++;
  782. WARN_ON(!sp->unsync_children);
  783. }
  784. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  785. {
  786. struct kvm_pte_chain *pte_chain;
  787. struct hlist_node *node;
  788. int i;
  789. if (!sp->parent_pte)
  790. return;
  791. if (!sp->multimapped) {
  792. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  793. return;
  794. }
  795. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  796. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  797. if (!pte_chain->parent_ptes[i])
  798. break;
  799. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  800. }
  801. }
  802. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  803. {
  804. kvm_mmu_update_parents_unsync(sp);
  805. return 1;
  806. }
  807. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  808. struct kvm_mmu_page *sp)
  809. {
  810. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  811. kvm_mmu_update_parents_unsync(sp);
  812. }
  813. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  814. struct kvm_mmu_page *sp)
  815. {
  816. int i;
  817. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  818. sp->spt[i] = shadow_trap_nonpresent_pte;
  819. }
  820. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  821. struct kvm_mmu_page *sp)
  822. {
  823. return 1;
  824. }
  825. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  826. {
  827. }
  828. #define KVM_PAGE_ARRAY_NR 16
  829. struct kvm_mmu_pages {
  830. struct mmu_page_and_offset {
  831. struct kvm_mmu_page *sp;
  832. unsigned int idx;
  833. } page[KVM_PAGE_ARRAY_NR];
  834. unsigned int nr;
  835. };
  836. #define for_each_unsync_children(bitmap, idx) \
  837. for (idx = find_first_bit(bitmap, 512); \
  838. idx < 512; \
  839. idx = find_next_bit(bitmap, 512, idx+1))
  840. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  841. int idx)
  842. {
  843. int i;
  844. if (sp->unsync)
  845. for (i=0; i < pvec->nr; i++)
  846. if (pvec->page[i].sp == sp)
  847. return 0;
  848. pvec->page[pvec->nr].sp = sp;
  849. pvec->page[pvec->nr].idx = idx;
  850. pvec->nr++;
  851. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  852. }
  853. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  854. struct kvm_mmu_pages *pvec)
  855. {
  856. int i, ret, nr_unsync_leaf = 0;
  857. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  858. u64 ent = sp->spt[i];
  859. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  860. struct kvm_mmu_page *child;
  861. child = page_header(ent & PT64_BASE_ADDR_MASK);
  862. if (child->unsync_children) {
  863. if (mmu_pages_add(pvec, child, i))
  864. return -ENOSPC;
  865. ret = __mmu_unsync_walk(child, pvec);
  866. if (!ret)
  867. __clear_bit(i, sp->unsync_child_bitmap);
  868. else if (ret > 0)
  869. nr_unsync_leaf += ret;
  870. else
  871. return ret;
  872. }
  873. if (child->unsync) {
  874. nr_unsync_leaf++;
  875. if (mmu_pages_add(pvec, child, i))
  876. return -ENOSPC;
  877. }
  878. }
  879. }
  880. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  881. sp->unsync_children = 0;
  882. return nr_unsync_leaf;
  883. }
  884. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  885. struct kvm_mmu_pages *pvec)
  886. {
  887. if (!sp->unsync_children)
  888. return 0;
  889. mmu_pages_add(pvec, sp, 0);
  890. return __mmu_unsync_walk(sp, pvec);
  891. }
  892. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  893. {
  894. unsigned index;
  895. struct hlist_head *bucket;
  896. struct kvm_mmu_page *sp;
  897. struct hlist_node *node;
  898. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  899. index = kvm_page_table_hashfn(gfn);
  900. bucket = &kvm->arch.mmu_page_hash[index];
  901. hlist_for_each_entry(sp, node, bucket, hash_link)
  902. if (sp->gfn == gfn && !sp->role.direct
  903. && !sp->role.invalid) {
  904. pgprintk("%s: found role %x\n",
  905. __func__, sp->role.word);
  906. return sp;
  907. }
  908. return NULL;
  909. }
  910. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  911. {
  912. list_del(&sp->oos_link);
  913. --kvm->stat.mmu_unsync_global;
  914. }
  915. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  916. {
  917. WARN_ON(!sp->unsync);
  918. sp->unsync = 0;
  919. if (sp->global)
  920. kvm_unlink_unsync_global(kvm, sp);
  921. --kvm->stat.mmu_unsync;
  922. }
  923. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  924. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  925. {
  926. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  927. kvm_mmu_zap_page(vcpu->kvm, sp);
  928. return 1;
  929. }
  930. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  931. kvm_flush_remote_tlbs(vcpu->kvm);
  932. kvm_unlink_unsync_page(vcpu->kvm, sp);
  933. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  934. kvm_mmu_zap_page(vcpu->kvm, sp);
  935. return 1;
  936. }
  937. kvm_mmu_flush_tlb(vcpu);
  938. return 0;
  939. }
  940. struct mmu_page_path {
  941. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  942. unsigned int idx[PT64_ROOT_LEVEL-1];
  943. };
  944. #define for_each_sp(pvec, sp, parents, i) \
  945. for (i = mmu_pages_next(&pvec, &parents, -1), \
  946. sp = pvec.page[i].sp; \
  947. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  948. i = mmu_pages_next(&pvec, &parents, i))
  949. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  950. struct mmu_page_path *parents,
  951. int i)
  952. {
  953. int n;
  954. for (n = i+1; n < pvec->nr; n++) {
  955. struct kvm_mmu_page *sp = pvec->page[n].sp;
  956. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  957. parents->idx[0] = pvec->page[n].idx;
  958. return n;
  959. }
  960. parents->parent[sp->role.level-2] = sp;
  961. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  962. }
  963. return n;
  964. }
  965. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  966. {
  967. struct kvm_mmu_page *sp;
  968. unsigned int level = 0;
  969. do {
  970. unsigned int idx = parents->idx[level];
  971. sp = parents->parent[level];
  972. if (!sp)
  973. return;
  974. --sp->unsync_children;
  975. WARN_ON((int)sp->unsync_children < 0);
  976. __clear_bit(idx, sp->unsync_child_bitmap);
  977. level++;
  978. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  979. }
  980. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  981. struct mmu_page_path *parents,
  982. struct kvm_mmu_pages *pvec)
  983. {
  984. parents->parent[parent->role.level-1] = NULL;
  985. pvec->nr = 0;
  986. }
  987. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  988. struct kvm_mmu_page *parent)
  989. {
  990. int i;
  991. struct kvm_mmu_page *sp;
  992. struct mmu_page_path parents;
  993. struct kvm_mmu_pages pages;
  994. kvm_mmu_pages_init(parent, &parents, &pages);
  995. while (mmu_unsync_walk(parent, &pages)) {
  996. int protected = 0;
  997. for_each_sp(pages, sp, parents, i)
  998. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  999. if (protected)
  1000. kvm_flush_remote_tlbs(vcpu->kvm);
  1001. for_each_sp(pages, sp, parents, i) {
  1002. kvm_sync_page(vcpu, sp);
  1003. mmu_pages_clear_parents(&parents);
  1004. }
  1005. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1006. kvm_mmu_pages_init(parent, &parents, &pages);
  1007. }
  1008. }
  1009. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1010. gfn_t gfn,
  1011. gva_t gaddr,
  1012. unsigned level,
  1013. int direct,
  1014. unsigned access,
  1015. u64 *parent_pte)
  1016. {
  1017. union kvm_mmu_page_role role;
  1018. unsigned index;
  1019. unsigned quadrant;
  1020. struct hlist_head *bucket;
  1021. struct kvm_mmu_page *sp;
  1022. struct hlist_node *node, *tmp;
  1023. role = vcpu->arch.mmu.base_role;
  1024. role.level = level;
  1025. role.direct = direct;
  1026. role.access = access;
  1027. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1028. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1029. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1030. role.quadrant = quadrant;
  1031. }
  1032. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1033. gfn, role.word);
  1034. index = kvm_page_table_hashfn(gfn);
  1035. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1036. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1037. if (sp->gfn == gfn) {
  1038. if (sp->unsync)
  1039. if (kvm_sync_page(vcpu, sp))
  1040. continue;
  1041. if (sp->role.word != role.word)
  1042. continue;
  1043. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1044. if (sp->unsync_children) {
  1045. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1046. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1047. }
  1048. pgprintk("%s: found\n", __func__);
  1049. return sp;
  1050. }
  1051. ++vcpu->kvm->stat.mmu_cache_miss;
  1052. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1053. if (!sp)
  1054. return sp;
  1055. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1056. sp->gfn = gfn;
  1057. sp->role = role;
  1058. sp->global = 0;
  1059. hlist_add_head(&sp->hash_link, bucket);
  1060. if (!direct) {
  1061. if (rmap_write_protect(vcpu->kvm, gfn))
  1062. kvm_flush_remote_tlbs(vcpu->kvm);
  1063. account_shadowed(vcpu->kvm, gfn);
  1064. }
  1065. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1066. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1067. else
  1068. nonpaging_prefetch_page(vcpu, sp);
  1069. return sp;
  1070. }
  1071. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1072. struct kvm_vcpu *vcpu, u64 addr)
  1073. {
  1074. iterator->addr = addr;
  1075. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1076. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1077. if (iterator->level == PT32E_ROOT_LEVEL) {
  1078. iterator->shadow_addr
  1079. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1080. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1081. --iterator->level;
  1082. if (!iterator->shadow_addr)
  1083. iterator->level = 0;
  1084. }
  1085. }
  1086. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1087. {
  1088. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1089. return false;
  1090. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1091. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1092. return true;
  1093. }
  1094. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1095. {
  1096. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1097. --iterator->level;
  1098. }
  1099. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1100. struct kvm_mmu_page *sp)
  1101. {
  1102. unsigned i;
  1103. u64 *pt;
  1104. u64 ent;
  1105. pt = sp->spt;
  1106. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1107. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1108. if (is_shadow_present_pte(pt[i]))
  1109. rmap_remove(kvm, &pt[i]);
  1110. pt[i] = shadow_trap_nonpresent_pte;
  1111. }
  1112. return;
  1113. }
  1114. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1115. ent = pt[i];
  1116. if (is_shadow_present_pte(ent)) {
  1117. if (!is_large_pte(ent)) {
  1118. ent &= PT64_BASE_ADDR_MASK;
  1119. mmu_page_remove_parent_pte(page_header(ent),
  1120. &pt[i]);
  1121. } else {
  1122. --kvm->stat.lpages;
  1123. rmap_remove(kvm, &pt[i]);
  1124. }
  1125. }
  1126. pt[i] = shadow_trap_nonpresent_pte;
  1127. }
  1128. }
  1129. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1130. {
  1131. mmu_page_remove_parent_pte(sp, parent_pte);
  1132. }
  1133. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1134. {
  1135. int i;
  1136. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1137. if (kvm->vcpus[i])
  1138. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1139. }
  1140. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1141. {
  1142. u64 *parent_pte;
  1143. while (sp->multimapped || sp->parent_pte) {
  1144. if (!sp->multimapped)
  1145. parent_pte = sp->parent_pte;
  1146. else {
  1147. struct kvm_pte_chain *chain;
  1148. chain = container_of(sp->parent_ptes.first,
  1149. struct kvm_pte_chain, link);
  1150. parent_pte = chain->parent_ptes[0];
  1151. }
  1152. BUG_ON(!parent_pte);
  1153. kvm_mmu_put_page(sp, parent_pte);
  1154. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1155. }
  1156. }
  1157. static int mmu_zap_unsync_children(struct kvm *kvm,
  1158. struct kvm_mmu_page *parent)
  1159. {
  1160. int i, zapped = 0;
  1161. struct mmu_page_path parents;
  1162. struct kvm_mmu_pages pages;
  1163. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1164. return 0;
  1165. kvm_mmu_pages_init(parent, &parents, &pages);
  1166. while (mmu_unsync_walk(parent, &pages)) {
  1167. struct kvm_mmu_page *sp;
  1168. for_each_sp(pages, sp, parents, i) {
  1169. kvm_mmu_zap_page(kvm, sp);
  1170. mmu_pages_clear_parents(&parents);
  1171. }
  1172. zapped += pages.nr;
  1173. kvm_mmu_pages_init(parent, &parents, &pages);
  1174. }
  1175. return zapped;
  1176. }
  1177. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1178. {
  1179. int ret;
  1180. ++kvm->stat.mmu_shadow_zapped;
  1181. ret = mmu_zap_unsync_children(kvm, sp);
  1182. kvm_mmu_page_unlink_children(kvm, sp);
  1183. kvm_mmu_unlink_parents(kvm, sp);
  1184. kvm_flush_remote_tlbs(kvm);
  1185. if (!sp->role.invalid && !sp->role.direct)
  1186. unaccount_shadowed(kvm, sp->gfn);
  1187. if (sp->unsync)
  1188. kvm_unlink_unsync_page(kvm, sp);
  1189. if (!sp->root_count) {
  1190. hlist_del(&sp->hash_link);
  1191. kvm_mmu_free_page(kvm, sp);
  1192. } else {
  1193. sp->role.invalid = 1;
  1194. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1195. kvm_reload_remote_mmus(kvm);
  1196. }
  1197. kvm_mmu_reset_last_pte_updated(kvm);
  1198. return ret;
  1199. }
  1200. /*
  1201. * Changing the number of mmu pages allocated to the vm
  1202. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1203. */
  1204. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1205. {
  1206. /*
  1207. * If we set the number of mmu pages to be smaller be than the
  1208. * number of actived pages , we must to free some mmu pages before we
  1209. * change the value
  1210. */
  1211. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1212. kvm_nr_mmu_pages) {
  1213. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1214. - kvm->arch.n_free_mmu_pages;
  1215. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1216. struct kvm_mmu_page *page;
  1217. page = container_of(kvm->arch.active_mmu_pages.prev,
  1218. struct kvm_mmu_page, link);
  1219. kvm_mmu_zap_page(kvm, page);
  1220. n_used_mmu_pages--;
  1221. }
  1222. kvm->arch.n_free_mmu_pages = 0;
  1223. }
  1224. else
  1225. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1226. - kvm->arch.n_alloc_mmu_pages;
  1227. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1228. }
  1229. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1230. {
  1231. unsigned index;
  1232. struct hlist_head *bucket;
  1233. struct kvm_mmu_page *sp;
  1234. struct hlist_node *node, *n;
  1235. int r;
  1236. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1237. r = 0;
  1238. index = kvm_page_table_hashfn(gfn);
  1239. bucket = &kvm->arch.mmu_page_hash[index];
  1240. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1241. if (sp->gfn == gfn && !sp->role.direct) {
  1242. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1243. sp->role.word);
  1244. r = 1;
  1245. if (kvm_mmu_zap_page(kvm, sp))
  1246. n = bucket->first;
  1247. }
  1248. return r;
  1249. }
  1250. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1251. {
  1252. unsigned index;
  1253. struct hlist_head *bucket;
  1254. struct kvm_mmu_page *sp;
  1255. struct hlist_node *node, *nn;
  1256. index = kvm_page_table_hashfn(gfn);
  1257. bucket = &kvm->arch.mmu_page_hash[index];
  1258. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1259. if (sp->gfn == gfn && !sp->role.direct
  1260. && !sp->role.invalid) {
  1261. pgprintk("%s: zap %lx %x\n",
  1262. __func__, gfn, sp->role.word);
  1263. kvm_mmu_zap_page(kvm, sp);
  1264. }
  1265. }
  1266. }
  1267. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1268. {
  1269. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1270. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1271. __set_bit(slot, sp->slot_bitmap);
  1272. }
  1273. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1274. {
  1275. int i;
  1276. u64 *pt = sp->spt;
  1277. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1278. return;
  1279. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1280. if (pt[i] == shadow_notrap_nonpresent_pte)
  1281. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1282. }
  1283. }
  1284. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1285. {
  1286. struct page *page;
  1287. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1288. if (gpa == UNMAPPED_GVA)
  1289. return NULL;
  1290. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1291. return page;
  1292. }
  1293. /*
  1294. * The function is based on mtrr_type_lookup() in
  1295. * arch/x86/kernel/cpu/mtrr/generic.c
  1296. */
  1297. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1298. u64 start, u64 end)
  1299. {
  1300. int i;
  1301. u64 base, mask;
  1302. u8 prev_match, curr_match;
  1303. int num_var_ranges = KVM_NR_VAR_MTRR;
  1304. if (!mtrr_state->enabled)
  1305. return 0xFF;
  1306. /* Make end inclusive end, instead of exclusive */
  1307. end--;
  1308. /* Look in fixed ranges. Just return the type as per start */
  1309. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1310. int idx;
  1311. if (start < 0x80000) {
  1312. idx = 0;
  1313. idx += (start >> 16);
  1314. return mtrr_state->fixed_ranges[idx];
  1315. } else if (start < 0xC0000) {
  1316. idx = 1 * 8;
  1317. idx += ((start - 0x80000) >> 14);
  1318. return mtrr_state->fixed_ranges[idx];
  1319. } else if (start < 0x1000000) {
  1320. idx = 3 * 8;
  1321. idx += ((start - 0xC0000) >> 12);
  1322. return mtrr_state->fixed_ranges[idx];
  1323. }
  1324. }
  1325. /*
  1326. * Look in variable ranges
  1327. * Look of multiple ranges matching this address and pick type
  1328. * as per MTRR precedence
  1329. */
  1330. if (!(mtrr_state->enabled & 2))
  1331. return mtrr_state->def_type;
  1332. prev_match = 0xFF;
  1333. for (i = 0; i < num_var_ranges; ++i) {
  1334. unsigned short start_state, end_state;
  1335. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1336. continue;
  1337. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1338. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1339. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1340. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1341. start_state = ((start & mask) == (base & mask));
  1342. end_state = ((end & mask) == (base & mask));
  1343. if (start_state != end_state)
  1344. return 0xFE;
  1345. if ((start & mask) != (base & mask))
  1346. continue;
  1347. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1348. if (prev_match == 0xFF) {
  1349. prev_match = curr_match;
  1350. continue;
  1351. }
  1352. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1353. curr_match == MTRR_TYPE_UNCACHABLE)
  1354. return MTRR_TYPE_UNCACHABLE;
  1355. if ((prev_match == MTRR_TYPE_WRBACK &&
  1356. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1357. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1358. curr_match == MTRR_TYPE_WRBACK)) {
  1359. prev_match = MTRR_TYPE_WRTHROUGH;
  1360. curr_match = MTRR_TYPE_WRTHROUGH;
  1361. }
  1362. if (prev_match != curr_match)
  1363. return MTRR_TYPE_UNCACHABLE;
  1364. }
  1365. if (prev_match != 0xFF)
  1366. return prev_match;
  1367. return mtrr_state->def_type;
  1368. }
  1369. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1370. {
  1371. u8 mtrr;
  1372. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1373. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1374. if (mtrr == 0xfe || mtrr == 0xff)
  1375. mtrr = MTRR_TYPE_WRBACK;
  1376. return mtrr;
  1377. }
  1378. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1379. {
  1380. unsigned index;
  1381. struct hlist_head *bucket;
  1382. struct kvm_mmu_page *s;
  1383. struct hlist_node *node, *n;
  1384. index = kvm_page_table_hashfn(sp->gfn);
  1385. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1386. /* don't unsync if pagetable is shadowed with multiple roles */
  1387. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1388. if (s->gfn != sp->gfn || s->role.direct)
  1389. continue;
  1390. if (s->role.word != sp->role.word)
  1391. return 1;
  1392. }
  1393. ++vcpu->kvm->stat.mmu_unsync;
  1394. sp->unsync = 1;
  1395. if (sp->global) {
  1396. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1397. ++vcpu->kvm->stat.mmu_unsync_global;
  1398. } else
  1399. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1400. mmu_convert_notrap(sp);
  1401. return 0;
  1402. }
  1403. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1404. bool can_unsync)
  1405. {
  1406. struct kvm_mmu_page *shadow;
  1407. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1408. if (shadow) {
  1409. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1410. return 1;
  1411. if (shadow->unsync)
  1412. return 0;
  1413. if (can_unsync && oos_shadow)
  1414. return kvm_unsync_page(vcpu, shadow);
  1415. return 1;
  1416. }
  1417. return 0;
  1418. }
  1419. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1420. unsigned pte_access, int user_fault,
  1421. int write_fault, int dirty, int largepage,
  1422. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1423. bool can_unsync)
  1424. {
  1425. u64 spte;
  1426. int ret = 0;
  1427. u64 mt_mask = shadow_mt_mask;
  1428. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1429. if (!global && sp->global) {
  1430. sp->global = 0;
  1431. if (sp->unsync) {
  1432. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1433. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1434. }
  1435. }
  1436. /*
  1437. * We don't set the accessed bit, since we sometimes want to see
  1438. * whether the guest actually used the pte (in order to detect
  1439. * demand paging).
  1440. */
  1441. spte = shadow_base_present_pte | shadow_dirty_mask;
  1442. if (!speculative)
  1443. spte |= shadow_accessed_mask;
  1444. if (!dirty)
  1445. pte_access &= ~ACC_WRITE_MASK;
  1446. if (pte_access & ACC_EXEC_MASK)
  1447. spte |= shadow_x_mask;
  1448. else
  1449. spte |= shadow_nx_mask;
  1450. if (pte_access & ACC_USER_MASK)
  1451. spte |= shadow_user_mask;
  1452. if (largepage)
  1453. spte |= PT_PAGE_SIZE_MASK;
  1454. if (mt_mask) {
  1455. if (!kvm_is_mmio_pfn(pfn)) {
  1456. mt_mask = get_memory_type(vcpu, gfn) <<
  1457. kvm_x86_ops->get_mt_mask_shift();
  1458. mt_mask |= VMX_EPT_IGMT_BIT;
  1459. } else
  1460. mt_mask = MTRR_TYPE_UNCACHABLE <<
  1461. kvm_x86_ops->get_mt_mask_shift();
  1462. spte |= mt_mask;
  1463. }
  1464. spte |= (u64)pfn << PAGE_SHIFT;
  1465. if ((pte_access & ACC_WRITE_MASK)
  1466. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1467. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1468. ret = 1;
  1469. spte = shadow_trap_nonpresent_pte;
  1470. goto set_pte;
  1471. }
  1472. spte |= PT_WRITABLE_MASK;
  1473. /*
  1474. * Optimization: for pte sync, if spte was writable the hash
  1475. * lookup is unnecessary (and expensive). Write protection
  1476. * is responsibility of mmu_get_page / kvm_sync_page.
  1477. * Same reasoning can be applied to dirty page accounting.
  1478. */
  1479. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1480. goto set_pte;
  1481. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1482. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1483. __func__, gfn);
  1484. ret = 1;
  1485. pte_access &= ~ACC_WRITE_MASK;
  1486. if (is_writeble_pte(spte))
  1487. spte &= ~PT_WRITABLE_MASK;
  1488. }
  1489. }
  1490. if (pte_access & ACC_WRITE_MASK)
  1491. mark_page_dirty(vcpu->kvm, gfn);
  1492. set_pte:
  1493. set_shadow_pte(shadow_pte, spte);
  1494. return ret;
  1495. }
  1496. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1497. unsigned pt_access, unsigned pte_access,
  1498. int user_fault, int write_fault, int dirty,
  1499. int *ptwrite, int largepage, int global,
  1500. gfn_t gfn, pfn_t pfn, bool speculative)
  1501. {
  1502. int was_rmapped = 0;
  1503. int was_writeble = is_writeble_pte(*shadow_pte);
  1504. pgprintk("%s: spte %llx access %x write_fault %d"
  1505. " user_fault %d gfn %lx\n",
  1506. __func__, *shadow_pte, pt_access,
  1507. write_fault, user_fault, gfn);
  1508. if (is_rmap_pte(*shadow_pte)) {
  1509. /*
  1510. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1511. * the parent of the now unreachable PTE.
  1512. */
  1513. if (largepage && !is_large_pte(*shadow_pte)) {
  1514. struct kvm_mmu_page *child;
  1515. u64 pte = *shadow_pte;
  1516. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1517. mmu_page_remove_parent_pte(child, shadow_pte);
  1518. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1519. pgprintk("hfn old %lx new %lx\n",
  1520. spte_to_pfn(*shadow_pte), pfn);
  1521. rmap_remove(vcpu->kvm, shadow_pte);
  1522. } else
  1523. was_rmapped = 1;
  1524. }
  1525. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1526. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1527. if (write_fault)
  1528. *ptwrite = 1;
  1529. kvm_x86_ops->tlb_flush(vcpu);
  1530. }
  1531. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1532. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1533. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1534. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1535. *shadow_pte, shadow_pte);
  1536. if (!was_rmapped && is_large_pte(*shadow_pte))
  1537. ++vcpu->kvm->stat.lpages;
  1538. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1539. if (!was_rmapped) {
  1540. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1541. if (!is_rmap_pte(*shadow_pte))
  1542. kvm_release_pfn_clean(pfn);
  1543. } else {
  1544. if (was_writeble)
  1545. kvm_release_pfn_dirty(pfn);
  1546. else
  1547. kvm_release_pfn_clean(pfn);
  1548. }
  1549. if (speculative) {
  1550. vcpu->arch.last_pte_updated = shadow_pte;
  1551. vcpu->arch.last_pte_gfn = gfn;
  1552. }
  1553. }
  1554. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1555. {
  1556. }
  1557. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1558. int largepage, gfn_t gfn, pfn_t pfn)
  1559. {
  1560. struct kvm_shadow_walk_iterator iterator;
  1561. struct kvm_mmu_page *sp;
  1562. int pt_write = 0;
  1563. gfn_t pseudo_gfn;
  1564. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1565. if (iterator.level == PT_PAGE_TABLE_LEVEL
  1566. || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
  1567. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1568. 0, write, 1, &pt_write,
  1569. largepage, 0, gfn, pfn, false);
  1570. ++vcpu->stat.pf_fixed;
  1571. break;
  1572. }
  1573. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1574. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1575. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1576. iterator.level - 1,
  1577. 1, ACC_ALL, iterator.sptep);
  1578. if (!sp) {
  1579. pgprintk("nonpaging_map: ENOMEM\n");
  1580. kvm_release_pfn_clean(pfn);
  1581. return -ENOMEM;
  1582. }
  1583. set_shadow_pte(iterator.sptep,
  1584. __pa(sp->spt)
  1585. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1586. | shadow_user_mask | shadow_x_mask);
  1587. }
  1588. }
  1589. return pt_write;
  1590. }
  1591. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1592. {
  1593. int r;
  1594. int largepage = 0;
  1595. pfn_t pfn;
  1596. unsigned long mmu_seq;
  1597. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1598. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1599. largepage = 1;
  1600. }
  1601. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1602. smp_rmb();
  1603. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1604. /* mmio */
  1605. if (is_error_pfn(pfn)) {
  1606. kvm_release_pfn_clean(pfn);
  1607. return 1;
  1608. }
  1609. spin_lock(&vcpu->kvm->mmu_lock);
  1610. if (mmu_notifier_retry(vcpu, mmu_seq))
  1611. goto out_unlock;
  1612. kvm_mmu_free_some_pages(vcpu);
  1613. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1614. spin_unlock(&vcpu->kvm->mmu_lock);
  1615. return r;
  1616. out_unlock:
  1617. spin_unlock(&vcpu->kvm->mmu_lock);
  1618. kvm_release_pfn_clean(pfn);
  1619. return 0;
  1620. }
  1621. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1622. {
  1623. int i;
  1624. struct kvm_mmu_page *sp;
  1625. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1626. return;
  1627. spin_lock(&vcpu->kvm->mmu_lock);
  1628. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1629. hpa_t root = vcpu->arch.mmu.root_hpa;
  1630. sp = page_header(root);
  1631. --sp->root_count;
  1632. if (!sp->root_count && sp->role.invalid)
  1633. kvm_mmu_zap_page(vcpu->kvm, sp);
  1634. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1635. spin_unlock(&vcpu->kvm->mmu_lock);
  1636. return;
  1637. }
  1638. for (i = 0; i < 4; ++i) {
  1639. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1640. if (root) {
  1641. root &= PT64_BASE_ADDR_MASK;
  1642. sp = page_header(root);
  1643. --sp->root_count;
  1644. if (!sp->root_count && sp->role.invalid)
  1645. kvm_mmu_zap_page(vcpu->kvm, sp);
  1646. }
  1647. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1648. }
  1649. spin_unlock(&vcpu->kvm->mmu_lock);
  1650. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1651. }
  1652. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1653. {
  1654. int i;
  1655. gfn_t root_gfn;
  1656. struct kvm_mmu_page *sp;
  1657. int direct = 0;
  1658. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1659. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1660. hpa_t root = vcpu->arch.mmu.root_hpa;
  1661. ASSERT(!VALID_PAGE(root));
  1662. if (tdp_enabled)
  1663. direct = 1;
  1664. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1665. PT64_ROOT_LEVEL, direct,
  1666. ACC_ALL, NULL);
  1667. root = __pa(sp->spt);
  1668. ++sp->root_count;
  1669. vcpu->arch.mmu.root_hpa = root;
  1670. return;
  1671. }
  1672. direct = !is_paging(vcpu);
  1673. if (tdp_enabled)
  1674. direct = 1;
  1675. for (i = 0; i < 4; ++i) {
  1676. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1677. ASSERT(!VALID_PAGE(root));
  1678. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1679. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1680. vcpu->arch.mmu.pae_root[i] = 0;
  1681. continue;
  1682. }
  1683. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1684. } else if (vcpu->arch.mmu.root_level == 0)
  1685. root_gfn = 0;
  1686. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1687. PT32_ROOT_LEVEL, direct,
  1688. ACC_ALL, NULL);
  1689. root = __pa(sp->spt);
  1690. ++sp->root_count;
  1691. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1692. }
  1693. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1694. }
  1695. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1696. {
  1697. int i;
  1698. struct kvm_mmu_page *sp;
  1699. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1700. return;
  1701. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1702. hpa_t root = vcpu->arch.mmu.root_hpa;
  1703. sp = page_header(root);
  1704. mmu_sync_children(vcpu, sp);
  1705. return;
  1706. }
  1707. for (i = 0; i < 4; ++i) {
  1708. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1709. if (root) {
  1710. root &= PT64_BASE_ADDR_MASK;
  1711. sp = page_header(root);
  1712. mmu_sync_children(vcpu, sp);
  1713. }
  1714. }
  1715. }
  1716. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1717. {
  1718. struct kvm *kvm = vcpu->kvm;
  1719. struct kvm_mmu_page *sp, *n;
  1720. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1721. kvm_sync_page(vcpu, sp);
  1722. }
  1723. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1724. {
  1725. spin_lock(&vcpu->kvm->mmu_lock);
  1726. mmu_sync_roots(vcpu);
  1727. spin_unlock(&vcpu->kvm->mmu_lock);
  1728. }
  1729. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1730. {
  1731. spin_lock(&vcpu->kvm->mmu_lock);
  1732. mmu_sync_global(vcpu);
  1733. spin_unlock(&vcpu->kvm->mmu_lock);
  1734. }
  1735. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1736. {
  1737. return vaddr;
  1738. }
  1739. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1740. u32 error_code)
  1741. {
  1742. gfn_t gfn;
  1743. int r;
  1744. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1745. r = mmu_topup_memory_caches(vcpu);
  1746. if (r)
  1747. return r;
  1748. ASSERT(vcpu);
  1749. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1750. gfn = gva >> PAGE_SHIFT;
  1751. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1752. error_code & PFERR_WRITE_MASK, gfn);
  1753. }
  1754. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1755. u32 error_code)
  1756. {
  1757. pfn_t pfn;
  1758. int r;
  1759. int largepage = 0;
  1760. gfn_t gfn = gpa >> PAGE_SHIFT;
  1761. unsigned long mmu_seq;
  1762. ASSERT(vcpu);
  1763. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1764. r = mmu_topup_memory_caches(vcpu);
  1765. if (r)
  1766. return r;
  1767. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1768. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1769. largepage = 1;
  1770. }
  1771. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1772. smp_rmb();
  1773. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1774. if (is_error_pfn(pfn)) {
  1775. kvm_release_pfn_clean(pfn);
  1776. return 1;
  1777. }
  1778. spin_lock(&vcpu->kvm->mmu_lock);
  1779. if (mmu_notifier_retry(vcpu, mmu_seq))
  1780. goto out_unlock;
  1781. kvm_mmu_free_some_pages(vcpu);
  1782. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1783. largepage, gfn, pfn);
  1784. spin_unlock(&vcpu->kvm->mmu_lock);
  1785. return r;
  1786. out_unlock:
  1787. spin_unlock(&vcpu->kvm->mmu_lock);
  1788. kvm_release_pfn_clean(pfn);
  1789. return 0;
  1790. }
  1791. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1792. {
  1793. mmu_free_roots(vcpu);
  1794. }
  1795. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1796. {
  1797. struct kvm_mmu *context = &vcpu->arch.mmu;
  1798. context->new_cr3 = nonpaging_new_cr3;
  1799. context->page_fault = nonpaging_page_fault;
  1800. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1801. context->free = nonpaging_free;
  1802. context->prefetch_page = nonpaging_prefetch_page;
  1803. context->sync_page = nonpaging_sync_page;
  1804. context->invlpg = nonpaging_invlpg;
  1805. context->root_level = 0;
  1806. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1807. context->root_hpa = INVALID_PAGE;
  1808. return 0;
  1809. }
  1810. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1811. {
  1812. ++vcpu->stat.tlb_flush;
  1813. kvm_x86_ops->tlb_flush(vcpu);
  1814. }
  1815. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1816. {
  1817. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1818. mmu_free_roots(vcpu);
  1819. }
  1820. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1821. u64 addr,
  1822. u32 err_code)
  1823. {
  1824. kvm_inject_page_fault(vcpu, addr, err_code);
  1825. }
  1826. static void paging_free(struct kvm_vcpu *vcpu)
  1827. {
  1828. nonpaging_free(vcpu);
  1829. }
  1830. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1831. {
  1832. int bit7;
  1833. bit7 = (gpte >> 7) & 1;
  1834. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1835. }
  1836. #define PTTYPE 64
  1837. #include "paging_tmpl.h"
  1838. #undef PTTYPE
  1839. #define PTTYPE 32
  1840. #include "paging_tmpl.h"
  1841. #undef PTTYPE
  1842. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1843. {
  1844. struct kvm_mmu *context = &vcpu->arch.mmu;
  1845. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1846. u64 exb_bit_rsvd = 0;
  1847. if (!is_nx(vcpu))
  1848. exb_bit_rsvd = rsvd_bits(63, 63);
  1849. switch (level) {
  1850. case PT32_ROOT_LEVEL:
  1851. /* no rsvd bits for 2 level 4K page table entries */
  1852. context->rsvd_bits_mask[0][1] = 0;
  1853. context->rsvd_bits_mask[0][0] = 0;
  1854. if (is_cpuid_PSE36())
  1855. /* 36bits PSE 4MB page */
  1856. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1857. else
  1858. /* 32 bits PSE 4MB page */
  1859. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1860. context->rsvd_bits_mask[1][0] = ~0ull;
  1861. break;
  1862. case PT32E_ROOT_LEVEL:
  1863. context->rsvd_bits_mask[0][2] =
  1864. rsvd_bits(maxphyaddr, 63) |
  1865. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1866. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1867. rsvd_bits(maxphyaddr, 62); /* PDE */
  1868. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1869. rsvd_bits(maxphyaddr, 62); /* PTE */
  1870. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1871. rsvd_bits(maxphyaddr, 62) |
  1872. rsvd_bits(13, 20); /* large page */
  1873. context->rsvd_bits_mask[1][0] = ~0ull;
  1874. break;
  1875. case PT64_ROOT_LEVEL:
  1876. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1877. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1878. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1879. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1880. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1881. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1882. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1883. rsvd_bits(maxphyaddr, 51);
  1884. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1885. context->rsvd_bits_mask[1][2] = context->rsvd_bits_mask[0][2];
  1886. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1887. rsvd_bits(maxphyaddr, 51) | rsvd_bits(13, 20);
  1888. context->rsvd_bits_mask[1][0] = ~0ull;
  1889. break;
  1890. }
  1891. }
  1892. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1893. {
  1894. struct kvm_mmu *context = &vcpu->arch.mmu;
  1895. ASSERT(is_pae(vcpu));
  1896. context->new_cr3 = paging_new_cr3;
  1897. context->page_fault = paging64_page_fault;
  1898. context->gva_to_gpa = paging64_gva_to_gpa;
  1899. context->prefetch_page = paging64_prefetch_page;
  1900. context->sync_page = paging64_sync_page;
  1901. context->invlpg = paging64_invlpg;
  1902. context->free = paging_free;
  1903. context->root_level = level;
  1904. context->shadow_root_level = level;
  1905. context->root_hpa = INVALID_PAGE;
  1906. return 0;
  1907. }
  1908. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1909. {
  1910. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1911. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1912. }
  1913. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1914. {
  1915. struct kvm_mmu *context = &vcpu->arch.mmu;
  1916. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1917. context->new_cr3 = paging_new_cr3;
  1918. context->page_fault = paging32_page_fault;
  1919. context->gva_to_gpa = paging32_gva_to_gpa;
  1920. context->free = paging_free;
  1921. context->prefetch_page = paging32_prefetch_page;
  1922. context->sync_page = paging32_sync_page;
  1923. context->invlpg = paging32_invlpg;
  1924. context->root_level = PT32_ROOT_LEVEL;
  1925. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1926. context->root_hpa = INVALID_PAGE;
  1927. return 0;
  1928. }
  1929. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1930. {
  1931. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1932. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1933. }
  1934. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1935. {
  1936. struct kvm_mmu *context = &vcpu->arch.mmu;
  1937. context->new_cr3 = nonpaging_new_cr3;
  1938. context->page_fault = tdp_page_fault;
  1939. context->free = nonpaging_free;
  1940. context->prefetch_page = nonpaging_prefetch_page;
  1941. context->sync_page = nonpaging_sync_page;
  1942. context->invlpg = nonpaging_invlpg;
  1943. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1944. context->root_hpa = INVALID_PAGE;
  1945. if (!is_paging(vcpu)) {
  1946. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1947. context->root_level = 0;
  1948. } else if (is_long_mode(vcpu)) {
  1949. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1950. context->gva_to_gpa = paging64_gva_to_gpa;
  1951. context->root_level = PT64_ROOT_LEVEL;
  1952. } else if (is_pae(vcpu)) {
  1953. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1954. context->gva_to_gpa = paging64_gva_to_gpa;
  1955. context->root_level = PT32E_ROOT_LEVEL;
  1956. } else {
  1957. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1958. context->gva_to_gpa = paging32_gva_to_gpa;
  1959. context->root_level = PT32_ROOT_LEVEL;
  1960. }
  1961. return 0;
  1962. }
  1963. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1964. {
  1965. int r;
  1966. ASSERT(vcpu);
  1967. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1968. if (!is_paging(vcpu))
  1969. r = nonpaging_init_context(vcpu);
  1970. else if (is_long_mode(vcpu))
  1971. r = paging64_init_context(vcpu);
  1972. else if (is_pae(vcpu))
  1973. r = paging32E_init_context(vcpu);
  1974. else
  1975. r = paging32_init_context(vcpu);
  1976. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  1977. return r;
  1978. }
  1979. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1980. {
  1981. vcpu->arch.update_pte.pfn = bad_pfn;
  1982. if (tdp_enabled)
  1983. return init_kvm_tdp_mmu(vcpu);
  1984. else
  1985. return init_kvm_softmmu(vcpu);
  1986. }
  1987. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1988. {
  1989. ASSERT(vcpu);
  1990. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1991. vcpu->arch.mmu.free(vcpu);
  1992. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1993. }
  1994. }
  1995. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1996. {
  1997. destroy_kvm_mmu(vcpu);
  1998. return init_kvm_mmu(vcpu);
  1999. }
  2000. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2001. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2002. {
  2003. int r;
  2004. r = mmu_topup_memory_caches(vcpu);
  2005. if (r)
  2006. goto out;
  2007. spin_lock(&vcpu->kvm->mmu_lock);
  2008. kvm_mmu_free_some_pages(vcpu);
  2009. mmu_alloc_roots(vcpu);
  2010. mmu_sync_roots(vcpu);
  2011. spin_unlock(&vcpu->kvm->mmu_lock);
  2012. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2013. kvm_mmu_flush_tlb(vcpu);
  2014. out:
  2015. return r;
  2016. }
  2017. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2018. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2019. {
  2020. mmu_free_roots(vcpu);
  2021. }
  2022. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2023. struct kvm_mmu_page *sp,
  2024. u64 *spte)
  2025. {
  2026. u64 pte;
  2027. struct kvm_mmu_page *child;
  2028. pte = *spte;
  2029. if (is_shadow_present_pte(pte)) {
  2030. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  2031. is_large_pte(pte))
  2032. rmap_remove(vcpu->kvm, spte);
  2033. else {
  2034. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2035. mmu_page_remove_parent_pte(child, spte);
  2036. }
  2037. }
  2038. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  2039. if (is_large_pte(pte))
  2040. --vcpu->kvm->stat.lpages;
  2041. }
  2042. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2043. struct kvm_mmu_page *sp,
  2044. u64 *spte,
  2045. const void *new)
  2046. {
  2047. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2048. if (!vcpu->arch.update_pte.largepage ||
  2049. sp->role.glevels == PT32_ROOT_LEVEL) {
  2050. ++vcpu->kvm->stat.mmu_pde_zapped;
  2051. return;
  2052. }
  2053. }
  2054. ++vcpu->kvm->stat.mmu_pte_updated;
  2055. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2056. paging32_update_pte(vcpu, sp, spte, new);
  2057. else
  2058. paging64_update_pte(vcpu, sp, spte, new);
  2059. }
  2060. static bool need_remote_flush(u64 old, u64 new)
  2061. {
  2062. if (!is_shadow_present_pte(old))
  2063. return false;
  2064. if (!is_shadow_present_pte(new))
  2065. return true;
  2066. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2067. return true;
  2068. old ^= PT64_NX_MASK;
  2069. new ^= PT64_NX_MASK;
  2070. return (old & ~new & PT64_PERM_MASK) != 0;
  2071. }
  2072. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2073. {
  2074. if (need_remote_flush(old, new))
  2075. kvm_flush_remote_tlbs(vcpu->kvm);
  2076. else
  2077. kvm_mmu_flush_tlb(vcpu);
  2078. }
  2079. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2080. {
  2081. u64 *spte = vcpu->arch.last_pte_updated;
  2082. return !!(spte && (*spte & shadow_accessed_mask));
  2083. }
  2084. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2085. const u8 *new, int bytes)
  2086. {
  2087. gfn_t gfn;
  2088. int r;
  2089. u64 gpte = 0;
  2090. pfn_t pfn;
  2091. vcpu->arch.update_pte.largepage = 0;
  2092. if (bytes != 4 && bytes != 8)
  2093. return;
  2094. /*
  2095. * Assume that the pte write on a page table of the same type
  2096. * as the current vcpu paging mode. This is nearly always true
  2097. * (might be false while changing modes). Note it is verified later
  2098. * by update_pte().
  2099. */
  2100. if (is_pae(vcpu)) {
  2101. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2102. if ((bytes == 4) && (gpa % 4 == 0)) {
  2103. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2104. if (r)
  2105. return;
  2106. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2107. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2108. memcpy((void *)&gpte, new, 8);
  2109. }
  2110. } else {
  2111. if ((bytes == 4) && (gpa % 4 == 0))
  2112. memcpy((void *)&gpte, new, 4);
  2113. }
  2114. if (!is_present_pte(gpte))
  2115. return;
  2116. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2117. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2118. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2119. vcpu->arch.update_pte.largepage = 1;
  2120. }
  2121. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2122. smp_rmb();
  2123. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2124. if (is_error_pfn(pfn)) {
  2125. kvm_release_pfn_clean(pfn);
  2126. return;
  2127. }
  2128. vcpu->arch.update_pte.gfn = gfn;
  2129. vcpu->arch.update_pte.pfn = pfn;
  2130. }
  2131. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2132. {
  2133. u64 *spte = vcpu->arch.last_pte_updated;
  2134. if (spte
  2135. && vcpu->arch.last_pte_gfn == gfn
  2136. && shadow_accessed_mask
  2137. && !(*spte & shadow_accessed_mask)
  2138. && is_shadow_present_pte(*spte))
  2139. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2140. }
  2141. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2142. const u8 *new, int bytes,
  2143. bool guest_initiated)
  2144. {
  2145. gfn_t gfn = gpa >> PAGE_SHIFT;
  2146. struct kvm_mmu_page *sp;
  2147. struct hlist_node *node, *n;
  2148. struct hlist_head *bucket;
  2149. unsigned index;
  2150. u64 entry, gentry;
  2151. u64 *spte;
  2152. unsigned offset = offset_in_page(gpa);
  2153. unsigned pte_size;
  2154. unsigned page_offset;
  2155. unsigned misaligned;
  2156. unsigned quadrant;
  2157. int level;
  2158. int flooded = 0;
  2159. int npte;
  2160. int r;
  2161. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2162. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2163. spin_lock(&vcpu->kvm->mmu_lock);
  2164. kvm_mmu_access_page(vcpu, gfn);
  2165. kvm_mmu_free_some_pages(vcpu);
  2166. ++vcpu->kvm->stat.mmu_pte_write;
  2167. kvm_mmu_audit(vcpu, "pre pte write");
  2168. if (guest_initiated) {
  2169. if (gfn == vcpu->arch.last_pt_write_gfn
  2170. && !last_updated_pte_accessed(vcpu)) {
  2171. ++vcpu->arch.last_pt_write_count;
  2172. if (vcpu->arch.last_pt_write_count >= 3)
  2173. flooded = 1;
  2174. } else {
  2175. vcpu->arch.last_pt_write_gfn = gfn;
  2176. vcpu->arch.last_pt_write_count = 1;
  2177. vcpu->arch.last_pte_updated = NULL;
  2178. }
  2179. }
  2180. index = kvm_page_table_hashfn(gfn);
  2181. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2182. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2183. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2184. continue;
  2185. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2186. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2187. misaligned |= bytes < 4;
  2188. if (misaligned || flooded) {
  2189. /*
  2190. * Misaligned accesses are too much trouble to fix
  2191. * up; also, they usually indicate a page is not used
  2192. * as a page table.
  2193. *
  2194. * If we're seeing too many writes to a page,
  2195. * it may no longer be a page table, or we may be
  2196. * forking, in which case it is better to unmap the
  2197. * page.
  2198. */
  2199. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2200. gpa, bytes, sp->role.word);
  2201. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2202. n = bucket->first;
  2203. ++vcpu->kvm->stat.mmu_flooded;
  2204. continue;
  2205. }
  2206. page_offset = offset;
  2207. level = sp->role.level;
  2208. npte = 1;
  2209. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2210. page_offset <<= 1; /* 32->64 */
  2211. /*
  2212. * A 32-bit pde maps 4MB while the shadow pdes map
  2213. * only 2MB. So we need to double the offset again
  2214. * and zap two pdes instead of one.
  2215. */
  2216. if (level == PT32_ROOT_LEVEL) {
  2217. page_offset &= ~7; /* kill rounding error */
  2218. page_offset <<= 1;
  2219. npte = 2;
  2220. }
  2221. quadrant = page_offset >> PAGE_SHIFT;
  2222. page_offset &= ~PAGE_MASK;
  2223. if (quadrant != sp->role.quadrant)
  2224. continue;
  2225. }
  2226. spte = &sp->spt[page_offset / sizeof(*spte)];
  2227. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2228. gentry = 0;
  2229. r = kvm_read_guest_atomic(vcpu->kvm,
  2230. gpa & ~(u64)(pte_size - 1),
  2231. &gentry, pte_size);
  2232. new = (const void *)&gentry;
  2233. if (r < 0)
  2234. new = NULL;
  2235. }
  2236. while (npte--) {
  2237. entry = *spte;
  2238. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2239. if (new)
  2240. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2241. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2242. ++spte;
  2243. }
  2244. }
  2245. kvm_mmu_audit(vcpu, "post pte write");
  2246. spin_unlock(&vcpu->kvm->mmu_lock);
  2247. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2248. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2249. vcpu->arch.update_pte.pfn = bad_pfn;
  2250. }
  2251. }
  2252. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2253. {
  2254. gpa_t gpa;
  2255. int r;
  2256. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2257. spin_lock(&vcpu->kvm->mmu_lock);
  2258. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2259. spin_unlock(&vcpu->kvm->mmu_lock);
  2260. return r;
  2261. }
  2262. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2263. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2264. {
  2265. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2266. struct kvm_mmu_page *sp;
  2267. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2268. struct kvm_mmu_page, link);
  2269. kvm_mmu_zap_page(vcpu->kvm, sp);
  2270. ++vcpu->kvm->stat.mmu_recycled;
  2271. }
  2272. }
  2273. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2274. {
  2275. int r;
  2276. enum emulation_result er;
  2277. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2278. if (r < 0)
  2279. goto out;
  2280. if (!r) {
  2281. r = 1;
  2282. goto out;
  2283. }
  2284. r = mmu_topup_memory_caches(vcpu);
  2285. if (r)
  2286. goto out;
  2287. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2288. switch (er) {
  2289. case EMULATE_DONE:
  2290. return 1;
  2291. case EMULATE_DO_MMIO:
  2292. ++vcpu->stat.mmio_exits;
  2293. return 0;
  2294. case EMULATE_FAIL:
  2295. kvm_report_emulation_failure(vcpu, "pagetable");
  2296. return 1;
  2297. default:
  2298. BUG();
  2299. }
  2300. out:
  2301. return r;
  2302. }
  2303. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2304. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2305. {
  2306. vcpu->arch.mmu.invlpg(vcpu, gva);
  2307. kvm_mmu_flush_tlb(vcpu);
  2308. ++vcpu->stat.invlpg;
  2309. }
  2310. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2311. void kvm_enable_tdp(void)
  2312. {
  2313. tdp_enabled = true;
  2314. }
  2315. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2316. void kvm_disable_tdp(void)
  2317. {
  2318. tdp_enabled = false;
  2319. }
  2320. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2321. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2322. {
  2323. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2324. }
  2325. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2326. {
  2327. struct page *page;
  2328. int i;
  2329. ASSERT(vcpu);
  2330. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2331. vcpu->kvm->arch.n_free_mmu_pages =
  2332. vcpu->kvm->arch.n_requested_mmu_pages;
  2333. else
  2334. vcpu->kvm->arch.n_free_mmu_pages =
  2335. vcpu->kvm->arch.n_alloc_mmu_pages;
  2336. /*
  2337. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2338. * Therefore we need to allocate shadow page tables in the first
  2339. * 4GB of memory, which happens to fit the DMA32 zone.
  2340. */
  2341. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2342. if (!page)
  2343. goto error_1;
  2344. vcpu->arch.mmu.pae_root = page_address(page);
  2345. for (i = 0; i < 4; ++i)
  2346. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2347. return 0;
  2348. error_1:
  2349. free_mmu_pages(vcpu);
  2350. return -ENOMEM;
  2351. }
  2352. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2353. {
  2354. ASSERT(vcpu);
  2355. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2356. return alloc_mmu_pages(vcpu);
  2357. }
  2358. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2359. {
  2360. ASSERT(vcpu);
  2361. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2362. return init_kvm_mmu(vcpu);
  2363. }
  2364. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2365. {
  2366. ASSERT(vcpu);
  2367. destroy_kvm_mmu(vcpu);
  2368. free_mmu_pages(vcpu);
  2369. mmu_free_memory_caches(vcpu);
  2370. }
  2371. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2372. {
  2373. struct kvm_mmu_page *sp;
  2374. spin_lock(&kvm->mmu_lock);
  2375. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2376. int i;
  2377. u64 *pt;
  2378. if (!test_bit(slot, sp->slot_bitmap))
  2379. continue;
  2380. pt = sp->spt;
  2381. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2382. /* avoid RMW */
  2383. if (pt[i] & PT_WRITABLE_MASK)
  2384. pt[i] &= ~PT_WRITABLE_MASK;
  2385. }
  2386. kvm_flush_remote_tlbs(kvm);
  2387. spin_unlock(&kvm->mmu_lock);
  2388. }
  2389. void kvm_mmu_zap_all(struct kvm *kvm)
  2390. {
  2391. struct kvm_mmu_page *sp, *node;
  2392. spin_lock(&kvm->mmu_lock);
  2393. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2394. if (kvm_mmu_zap_page(kvm, sp))
  2395. node = container_of(kvm->arch.active_mmu_pages.next,
  2396. struct kvm_mmu_page, link);
  2397. spin_unlock(&kvm->mmu_lock);
  2398. kvm_flush_remote_tlbs(kvm);
  2399. }
  2400. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2401. {
  2402. struct kvm_mmu_page *page;
  2403. page = container_of(kvm->arch.active_mmu_pages.prev,
  2404. struct kvm_mmu_page, link);
  2405. kvm_mmu_zap_page(kvm, page);
  2406. }
  2407. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2408. {
  2409. struct kvm *kvm;
  2410. struct kvm *kvm_freed = NULL;
  2411. int cache_count = 0;
  2412. spin_lock(&kvm_lock);
  2413. list_for_each_entry(kvm, &vm_list, vm_list) {
  2414. int npages;
  2415. if (!down_read_trylock(&kvm->slots_lock))
  2416. continue;
  2417. spin_lock(&kvm->mmu_lock);
  2418. npages = kvm->arch.n_alloc_mmu_pages -
  2419. kvm->arch.n_free_mmu_pages;
  2420. cache_count += npages;
  2421. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2422. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2423. cache_count--;
  2424. kvm_freed = kvm;
  2425. }
  2426. nr_to_scan--;
  2427. spin_unlock(&kvm->mmu_lock);
  2428. up_read(&kvm->slots_lock);
  2429. }
  2430. if (kvm_freed)
  2431. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2432. spin_unlock(&kvm_lock);
  2433. return cache_count;
  2434. }
  2435. static struct shrinker mmu_shrinker = {
  2436. .shrink = mmu_shrink,
  2437. .seeks = DEFAULT_SEEKS * 10,
  2438. };
  2439. static void mmu_destroy_caches(void)
  2440. {
  2441. if (pte_chain_cache)
  2442. kmem_cache_destroy(pte_chain_cache);
  2443. if (rmap_desc_cache)
  2444. kmem_cache_destroy(rmap_desc_cache);
  2445. if (mmu_page_header_cache)
  2446. kmem_cache_destroy(mmu_page_header_cache);
  2447. }
  2448. void kvm_mmu_module_exit(void)
  2449. {
  2450. mmu_destroy_caches();
  2451. unregister_shrinker(&mmu_shrinker);
  2452. }
  2453. int kvm_mmu_module_init(void)
  2454. {
  2455. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2456. sizeof(struct kvm_pte_chain),
  2457. 0, 0, NULL);
  2458. if (!pte_chain_cache)
  2459. goto nomem;
  2460. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2461. sizeof(struct kvm_rmap_desc),
  2462. 0, 0, NULL);
  2463. if (!rmap_desc_cache)
  2464. goto nomem;
  2465. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2466. sizeof(struct kvm_mmu_page),
  2467. 0, 0, NULL);
  2468. if (!mmu_page_header_cache)
  2469. goto nomem;
  2470. register_shrinker(&mmu_shrinker);
  2471. return 0;
  2472. nomem:
  2473. mmu_destroy_caches();
  2474. return -ENOMEM;
  2475. }
  2476. /*
  2477. * Caculate mmu pages needed for kvm.
  2478. */
  2479. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2480. {
  2481. int i;
  2482. unsigned int nr_mmu_pages;
  2483. unsigned int nr_pages = 0;
  2484. for (i = 0; i < kvm->nmemslots; i++)
  2485. nr_pages += kvm->memslots[i].npages;
  2486. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2487. nr_mmu_pages = max(nr_mmu_pages,
  2488. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2489. return nr_mmu_pages;
  2490. }
  2491. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2492. unsigned len)
  2493. {
  2494. if (len > buffer->len)
  2495. return NULL;
  2496. return buffer->ptr;
  2497. }
  2498. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2499. unsigned len)
  2500. {
  2501. void *ret;
  2502. ret = pv_mmu_peek_buffer(buffer, len);
  2503. if (!ret)
  2504. return ret;
  2505. buffer->ptr += len;
  2506. buffer->len -= len;
  2507. buffer->processed += len;
  2508. return ret;
  2509. }
  2510. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2511. gpa_t addr, gpa_t value)
  2512. {
  2513. int bytes = 8;
  2514. int r;
  2515. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2516. bytes = 4;
  2517. r = mmu_topup_memory_caches(vcpu);
  2518. if (r)
  2519. return r;
  2520. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2521. return -EFAULT;
  2522. return 1;
  2523. }
  2524. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2525. {
  2526. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2527. return 1;
  2528. }
  2529. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2530. {
  2531. spin_lock(&vcpu->kvm->mmu_lock);
  2532. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2533. spin_unlock(&vcpu->kvm->mmu_lock);
  2534. return 1;
  2535. }
  2536. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2537. struct kvm_pv_mmu_op_buffer *buffer)
  2538. {
  2539. struct kvm_mmu_op_header *header;
  2540. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2541. if (!header)
  2542. return 0;
  2543. switch (header->op) {
  2544. case KVM_MMU_OP_WRITE_PTE: {
  2545. struct kvm_mmu_op_write_pte *wpte;
  2546. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2547. if (!wpte)
  2548. return 0;
  2549. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2550. wpte->pte_val);
  2551. }
  2552. case KVM_MMU_OP_FLUSH_TLB: {
  2553. struct kvm_mmu_op_flush_tlb *ftlb;
  2554. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2555. if (!ftlb)
  2556. return 0;
  2557. return kvm_pv_mmu_flush_tlb(vcpu);
  2558. }
  2559. case KVM_MMU_OP_RELEASE_PT: {
  2560. struct kvm_mmu_op_release_pt *rpt;
  2561. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2562. if (!rpt)
  2563. return 0;
  2564. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2565. }
  2566. default: return 0;
  2567. }
  2568. }
  2569. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2570. gpa_t addr, unsigned long *ret)
  2571. {
  2572. int r;
  2573. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2574. buffer->ptr = buffer->buf;
  2575. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2576. buffer->processed = 0;
  2577. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2578. if (r)
  2579. goto out;
  2580. while (buffer->len) {
  2581. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2582. if (r < 0)
  2583. goto out;
  2584. if (r == 0)
  2585. break;
  2586. }
  2587. r = 1;
  2588. out:
  2589. *ret = buffer->processed;
  2590. return r;
  2591. }
  2592. #ifdef AUDIT
  2593. static const char *audit_msg;
  2594. static gva_t canonicalize(gva_t gva)
  2595. {
  2596. #ifdef CONFIG_X86_64
  2597. gva = (long long)(gva << 16) >> 16;
  2598. #endif
  2599. return gva;
  2600. }
  2601. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2602. gva_t va, int level)
  2603. {
  2604. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2605. int i;
  2606. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2607. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2608. u64 ent = pt[i];
  2609. if (ent == shadow_trap_nonpresent_pte)
  2610. continue;
  2611. va = canonicalize(va);
  2612. if (level > 1) {
  2613. if (ent == shadow_notrap_nonpresent_pte)
  2614. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2615. " in nonleaf level: levels %d gva %lx"
  2616. " level %d pte %llx\n", audit_msg,
  2617. vcpu->arch.mmu.root_level, va, level, ent);
  2618. audit_mappings_page(vcpu, ent, va, level - 1);
  2619. } else {
  2620. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2621. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2622. if (is_shadow_present_pte(ent)
  2623. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2624. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2625. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2626. audit_msg, vcpu->arch.mmu.root_level,
  2627. va, gpa, hpa, ent,
  2628. is_shadow_present_pte(ent));
  2629. else if (ent == shadow_notrap_nonpresent_pte
  2630. && !is_error_hpa(hpa))
  2631. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2632. " valid guest gva %lx\n", audit_msg, va);
  2633. kvm_release_pfn_clean(pfn);
  2634. }
  2635. }
  2636. }
  2637. static void audit_mappings(struct kvm_vcpu *vcpu)
  2638. {
  2639. unsigned i;
  2640. if (vcpu->arch.mmu.root_level == 4)
  2641. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2642. else
  2643. for (i = 0; i < 4; ++i)
  2644. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2645. audit_mappings_page(vcpu,
  2646. vcpu->arch.mmu.pae_root[i],
  2647. i << 30,
  2648. 2);
  2649. }
  2650. static int count_rmaps(struct kvm_vcpu *vcpu)
  2651. {
  2652. int nmaps = 0;
  2653. int i, j, k;
  2654. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2655. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2656. struct kvm_rmap_desc *d;
  2657. for (j = 0; j < m->npages; ++j) {
  2658. unsigned long *rmapp = &m->rmap[j];
  2659. if (!*rmapp)
  2660. continue;
  2661. if (!(*rmapp & 1)) {
  2662. ++nmaps;
  2663. continue;
  2664. }
  2665. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2666. while (d) {
  2667. for (k = 0; k < RMAP_EXT; ++k)
  2668. if (d->shadow_ptes[k])
  2669. ++nmaps;
  2670. else
  2671. break;
  2672. d = d->more;
  2673. }
  2674. }
  2675. }
  2676. return nmaps;
  2677. }
  2678. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2679. {
  2680. int nmaps = 0;
  2681. struct kvm_mmu_page *sp;
  2682. int i;
  2683. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2684. u64 *pt = sp->spt;
  2685. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2686. continue;
  2687. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2688. u64 ent = pt[i];
  2689. if (!(ent & PT_PRESENT_MASK))
  2690. continue;
  2691. if (!(ent & PT_WRITABLE_MASK))
  2692. continue;
  2693. ++nmaps;
  2694. }
  2695. }
  2696. return nmaps;
  2697. }
  2698. static void audit_rmap(struct kvm_vcpu *vcpu)
  2699. {
  2700. int n_rmap = count_rmaps(vcpu);
  2701. int n_actual = count_writable_mappings(vcpu);
  2702. if (n_rmap != n_actual)
  2703. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2704. __func__, audit_msg, n_rmap, n_actual);
  2705. }
  2706. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2707. {
  2708. struct kvm_mmu_page *sp;
  2709. struct kvm_memory_slot *slot;
  2710. unsigned long *rmapp;
  2711. gfn_t gfn;
  2712. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2713. if (sp->role.direct)
  2714. continue;
  2715. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2716. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2717. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2718. if (*rmapp)
  2719. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2720. " mappings: gfn %lx role %x\n",
  2721. __func__, audit_msg, sp->gfn,
  2722. sp->role.word);
  2723. }
  2724. }
  2725. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2726. {
  2727. int olddbg = dbg;
  2728. dbg = 0;
  2729. audit_msg = msg;
  2730. audit_rmap(vcpu);
  2731. audit_write_protection(vcpu);
  2732. audit_mappings(vcpu);
  2733. dbg = olddbg;
  2734. }
  2735. #endif