unaligned.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /* $Id: unaligned.c,v 1.24 2002/02/09 19:49:31 davem Exp $
  2. * unaligned.c: Unaligned load/store trap handling with special
  3. * cases for the kernel to do them more quickly.
  4. *
  5. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  6. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <asm/asi.h>
  13. #include <asm/ptrace.h>
  14. #include <asm/pstate.h>
  15. #include <asm/processor.h>
  16. #include <asm/system.h>
  17. #include <asm/uaccess.h>
  18. #include <linux/smp.h>
  19. #include <linux/smp_lock.h>
  20. #include <linux/bitops.h>
  21. #include <linux/kallsyms.h>
  22. #include <asm/fpumacro.h>
  23. /* #define DEBUG_MNA */
  24. enum direction {
  25. load, /* ld, ldd, ldh, ldsh */
  26. store, /* st, std, sth, stsh */
  27. both, /* Swap, ldstub, cas, ... */
  28. fpld,
  29. fpst,
  30. invalid,
  31. };
  32. #ifdef DEBUG_MNA
  33. static char *dirstrings[] = {
  34. "load", "store", "both", "fpload", "fpstore", "invalid"
  35. };
  36. #endif
  37. static inline enum direction decode_direction(unsigned int insn)
  38. {
  39. unsigned long tmp = (insn >> 21) & 1;
  40. if (!tmp)
  41. return load;
  42. else {
  43. switch ((insn>>19)&0xf) {
  44. case 15: /* swap* */
  45. return both;
  46. default:
  47. return store;
  48. }
  49. }
  50. }
  51. /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
  52. static inline int decode_access_size(unsigned int insn)
  53. {
  54. unsigned int tmp;
  55. tmp = ((insn >> 19) & 0xf);
  56. if (tmp == 11 || tmp == 14) /* ldx/stx */
  57. return 8;
  58. tmp &= 3;
  59. if (!tmp)
  60. return 4;
  61. else if (tmp == 3)
  62. return 16; /* ldd/std - Although it is actually 8 */
  63. else if (tmp == 2)
  64. return 2;
  65. else {
  66. printk("Impossible unaligned trap. insn=%08x\n", insn);
  67. die_if_kernel("Byte sized unaligned access?!?!", current_thread_info()->kregs);
  68. /* GCC should never warn that control reaches the end
  69. * of this function without returning a value because
  70. * die_if_kernel() is marked with attribute 'noreturn'.
  71. * Alas, some versions do...
  72. */
  73. return 0;
  74. }
  75. }
  76. static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
  77. {
  78. if (insn & 0x800000) {
  79. if (insn & 0x2000)
  80. return (unsigned char)(regs->tstate >> 24); /* %asi */
  81. else
  82. return (unsigned char)(insn >> 5); /* imm_asi */
  83. } else
  84. return ASI_P;
  85. }
  86. /* 0x400000 = signed, 0 = unsigned */
  87. static inline int decode_signedness(unsigned int insn)
  88. {
  89. return (insn & 0x400000);
  90. }
  91. static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
  92. unsigned int rd, int from_kernel)
  93. {
  94. if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
  95. if (from_kernel != 0)
  96. __asm__ __volatile__("flushw");
  97. else
  98. flushw_user();
  99. }
  100. }
  101. static inline long sign_extend_imm13(long imm)
  102. {
  103. return imm << 51 >> 51;
  104. }
  105. static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
  106. {
  107. unsigned long value;
  108. if (reg < 16)
  109. return (!reg ? 0 : regs->u_regs[reg]);
  110. if (regs->tstate & TSTATE_PRIV) {
  111. struct reg_window *win;
  112. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  113. value = win->locals[reg - 16];
  114. } else if (test_thread_flag(TIF_32BIT)) {
  115. struct reg_window32 __user *win32;
  116. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  117. get_user(value, &win32->locals[reg - 16]);
  118. } else {
  119. struct reg_window __user *win;
  120. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  121. get_user(value, &win->locals[reg - 16]);
  122. }
  123. return value;
  124. }
  125. static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
  126. {
  127. if (reg < 16)
  128. return &regs->u_regs[reg];
  129. if (regs->tstate & TSTATE_PRIV) {
  130. struct reg_window *win;
  131. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  132. return &win->locals[reg - 16];
  133. } else if (test_thread_flag(TIF_32BIT)) {
  134. struct reg_window32 *win32;
  135. win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  136. return (unsigned long *)&win32->locals[reg - 16];
  137. } else {
  138. struct reg_window *win;
  139. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  140. return &win->locals[reg - 16];
  141. }
  142. }
  143. unsigned long compute_effective_address(struct pt_regs *regs,
  144. unsigned int insn, unsigned int rd)
  145. {
  146. unsigned int rs1 = (insn >> 14) & 0x1f;
  147. unsigned int rs2 = insn & 0x1f;
  148. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  149. if (insn & 0x2000) {
  150. maybe_flush_windows(rs1, 0, rd, from_kernel);
  151. return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
  152. } else {
  153. maybe_flush_windows(rs1, rs2, rd, from_kernel);
  154. return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
  155. }
  156. }
  157. /* This is just to make gcc think die_if_kernel does return... */
  158. static void __attribute_used__ unaligned_panic(char *str, struct pt_regs *regs)
  159. {
  160. die_if_kernel(str, regs);
  161. }
  162. extern int do_int_load(unsigned long *dest_reg, int size,
  163. unsigned long *saddr, int is_signed, int asi);
  164. extern int __do_int_store(unsigned long *dst_addr, int size,
  165. unsigned long src_val, int asi);
  166. static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
  167. struct pt_regs *regs, int asi, int orig_asi)
  168. {
  169. unsigned long zero = 0;
  170. unsigned long *src_val_p = &zero;
  171. unsigned long src_val;
  172. if (size == 16) {
  173. size = 8;
  174. zero = (((long)(reg_num ?
  175. (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
  176. (unsigned)fetch_reg(reg_num + 1, regs);
  177. } else if (reg_num) {
  178. src_val_p = fetch_reg_addr(reg_num, regs);
  179. }
  180. src_val = *src_val_p;
  181. if (unlikely(asi != orig_asi)) {
  182. switch (size) {
  183. case 2:
  184. src_val = swab16(src_val);
  185. break;
  186. case 4:
  187. src_val = swab32(src_val);
  188. break;
  189. case 8:
  190. src_val = swab64(src_val);
  191. break;
  192. case 16:
  193. default:
  194. BUG();
  195. break;
  196. };
  197. }
  198. return __do_int_store(dst_addr, size, src_val, asi);
  199. }
  200. static inline void advance(struct pt_regs *regs)
  201. {
  202. regs->tpc = regs->tnpc;
  203. regs->tnpc += 4;
  204. if (test_thread_flag(TIF_32BIT)) {
  205. regs->tpc &= 0xffffffff;
  206. regs->tnpc &= 0xffffffff;
  207. }
  208. }
  209. static inline int floating_point_load_or_store_p(unsigned int insn)
  210. {
  211. return (insn >> 24) & 1;
  212. }
  213. static inline int ok_for_kernel(unsigned int insn)
  214. {
  215. return !floating_point_load_or_store_p(insn);
  216. }
  217. static void kernel_mna_trap_fault(void)
  218. {
  219. struct pt_regs *regs = current_thread_info()->kern_una_regs;
  220. unsigned int insn = current_thread_info()->kern_una_insn;
  221. const struct exception_table_entry *entry;
  222. entry = search_exception_tables(regs->tpc);
  223. if (!entry) {
  224. unsigned long address;
  225. address = compute_effective_address(regs, insn,
  226. ((insn >> 25) & 0x1f));
  227. if (address < PAGE_SIZE) {
  228. printk(KERN_ALERT "Unable to handle kernel NULL "
  229. "pointer dereference in mna handler");
  230. } else
  231. printk(KERN_ALERT "Unable to handle kernel paging "
  232. "request in mna handler");
  233. printk(KERN_ALERT " at virtual address %016lx\n",address);
  234. printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
  235. (current->mm ? CTX_HWBITS(current->mm->context) :
  236. CTX_HWBITS(current->active_mm->context)));
  237. printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
  238. (current->mm ? (unsigned long) current->mm->pgd :
  239. (unsigned long) current->active_mm->pgd));
  240. die_if_kernel("Oops", regs);
  241. /* Not reached */
  242. }
  243. regs->tpc = entry->fixup;
  244. regs->tnpc = regs->tpc + 4;
  245. regs->tstate &= ~TSTATE_ASI;
  246. regs->tstate |= (ASI_AIUS << 24UL);
  247. }
  248. asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
  249. {
  250. static unsigned long count, last_time;
  251. enum direction dir = decode_direction(insn);
  252. int size = decode_access_size(insn);
  253. current_thread_info()->kern_una_regs = regs;
  254. current_thread_info()->kern_una_insn = insn;
  255. if (jiffies - last_time > 5 * HZ)
  256. count = 0;
  257. if (count < 5) {
  258. last_time = jiffies;
  259. count++;
  260. printk("Kernel unaligned access at TPC[%lx] ", regs->tpc);
  261. print_symbol("%s\n", regs->tpc);
  262. }
  263. if (!ok_for_kernel(insn) || dir == both) {
  264. printk("Unsupported unaligned load/store trap for kernel "
  265. "at <%016lx>.\n", regs->tpc);
  266. unaligned_panic("Kernel does fpu/atomic "
  267. "unaligned load/store.", regs);
  268. kernel_mna_trap_fault();
  269. } else {
  270. unsigned long addr, *reg_addr;
  271. int orig_asi, asi, err;
  272. addr = compute_effective_address(regs, insn,
  273. ((insn >> 25) & 0x1f));
  274. #ifdef DEBUG_MNA
  275. printk("KMNA: pc=%016lx [dir=%s addr=%016lx size=%d] "
  276. "retpc[%016lx]\n",
  277. regs->tpc, dirstrings[dir], addr, size,
  278. regs->u_regs[UREG_RETPC]);
  279. #endif
  280. orig_asi = asi = decode_asi(insn, regs);
  281. switch (asi) {
  282. case ASI_NL:
  283. case ASI_AIUPL:
  284. case ASI_AIUSL:
  285. case ASI_PL:
  286. case ASI_SL:
  287. case ASI_PNFL:
  288. case ASI_SNFL:
  289. asi &= ~0x08;
  290. break;
  291. };
  292. switch (dir) {
  293. case load:
  294. reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
  295. err = do_int_load(reg_addr, size,
  296. (unsigned long *) addr,
  297. decode_signedness(insn), asi);
  298. if (likely(!err) && unlikely(asi != orig_asi)) {
  299. unsigned long val_in = *reg_addr;
  300. switch (size) {
  301. case 2:
  302. val_in = swab16(val_in);
  303. break;
  304. case 4:
  305. val_in = swab32(val_in);
  306. break;
  307. case 8:
  308. val_in = swab64(val_in);
  309. break;
  310. case 16:
  311. default:
  312. BUG();
  313. break;
  314. };
  315. *reg_addr = val_in;
  316. }
  317. break;
  318. case store:
  319. err = do_int_store(((insn>>25)&0x1f), size,
  320. (unsigned long *) addr, regs,
  321. asi, orig_asi);
  322. break;
  323. default:
  324. panic("Impossible kernel unaligned trap.");
  325. /* Not reached... */
  326. }
  327. if (unlikely(err))
  328. kernel_mna_trap_fault();
  329. else
  330. advance(regs);
  331. }
  332. }
  333. static char popc_helper[] = {
  334. 0, 1, 1, 2, 1, 2, 2, 3,
  335. 1, 2, 2, 3, 2, 3, 3, 4,
  336. };
  337. int handle_popc(u32 insn, struct pt_regs *regs)
  338. {
  339. u64 value;
  340. int ret, i, rd = ((insn >> 25) & 0x1f);
  341. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  342. if (insn & 0x2000) {
  343. maybe_flush_windows(0, 0, rd, from_kernel);
  344. value = sign_extend_imm13(insn);
  345. } else {
  346. maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
  347. value = fetch_reg(insn & 0x1f, regs);
  348. }
  349. for (ret = 0, i = 0; i < 16; i++) {
  350. ret += popc_helper[value & 0xf];
  351. value >>= 4;
  352. }
  353. if (rd < 16) {
  354. if (rd)
  355. regs->u_regs[rd] = ret;
  356. } else {
  357. if (test_thread_flag(TIF_32BIT)) {
  358. struct reg_window32 __user *win32;
  359. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  360. put_user(ret, &win32->locals[rd - 16]);
  361. } else {
  362. struct reg_window __user *win;
  363. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  364. put_user(ret, &win->locals[rd - 16]);
  365. }
  366. }
  367. advance(regs);
  368. return 1;
  369. }
  370. extern void do_fpother(struct pt_regs *regs);
  371. extern void do_privact(struct pt_regs *regs);
  372. extern void spitfire_data_access_exception(struct pt_regs *regs,
  373. unsigned long sfsr,
  374. unsigned long sfar);
  375. extern void sun4v_data_access_exception(struct pt_regs *regs,
  376. unsigned long addr,
  377. unsigned long type_ctx);
  378. int handle_ldf_stq(u32 insn, struct pt_regs *regs)
  379. {
  380. unsigned long addr = compute_effective_address(regs, insn, 0);
  381. int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  382. struct fpustate *f = FPUSTATE;
  383. int asi = decode_asi(insn, regs);
  384. int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  385. save_and_clear_fpu();
  386. current_thread_info()->xfsr[0] &= ~0x1c000;
  387. if (freg & 3) {
  388. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  389. do_fpother(regs);
  390. return 0;
  391. }
  392. if (insn & 0x200000) {
  393. /* STQ */
  394. u64 first = 0, second = 0;
  395. if (current_thread_info()->fpsaved[0] & flag) {
  396. first = *(u64 *)&f->regs[freg];
  397. second = *(u64 *)&f->regs[freg+2];
  398. }
  399. if (asi < 0x80) {
  400. do_privact(regs);
  401. return 1;
  402. }
  403. switch (asi) {
  404. case ASI_P:
  405. case ASI_S: break;
  406. case ASI_PL:
  407. case ASI_SL:
  408. {
  409. /* Need to convert endians */
  410. u64 tmp = __swab64p(&first);
  411. first = __swab64p(&second);
  412. second = tmp;
  413. break;
  414. }
  415. default:
  416. if (tlb_type == hypervisor)
  417. sun4v_data_access_exception(regs, addr, 0);
  418. else
  419. spitfire_data_access_exception(regs, 0, addr);
  420. return 1;
  421. }
  422. if (put_user (first >> 32, (u32 __user *)addr) ||
  423. __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
  424. __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
  425. __put_user ((u32)second, (u32 __user *)(addr + 12))) {
  426. if (tlb_type == hypervisor)
  427. sun4v_data_access_exception(regs, addr, 0);
  428. else
  429. spitfire_data_access_exception(regs, 0, addr);
  430. return 1;
  431. }
  432. } else {
  433. /* LDF, LDDF, LDQF */
  434. u32 data[4] __attribute__ ((aligned(8)));
  435. int size, i;
  436. int err;
  437. if (asi < 0x80) {
  438. do_privact(regs);
  439. return 1;
  440. } else if (asi > ASI_SNFL) {
  441. if (tlb_type == hypervisor)
  442. sun4v_data_access_exception(regs, addr, 0);
  443. else
  444. spitfire_data_access_exception(regs, 0, addr);
  445. return 1;
  446. }
  447. switch (insn & 0x180000) {
  448. case 0x000000: size = 1; break;
  449. case 0x100000: size = 4; break;
  450. default: size = 2; break;
  451. }
  452. for (i = 0; i < size; i++)
  453. data[i] = 0;
  454. err = get_user (data[0], (u32 __user *) addr);
  455. if (!err) {
  456. for (i = 1; i < size; i++)
  457. err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
  458. }
  459. if (err && !(asi & 0x2 /* NF */)) {
  460. if (tlb_type == hypervisor)
  461. sun4v_data_access_exception(regs, addr, 0);
  462. else
  463. spitfire_data_access_exception(regs, 0, addr);
  464. return 1;
  465. }
  466. if (asi & 0x8) /* Little */ {
  467. u64 tmp;
  468. switch (size) {
  469. case 1: data[0] = le32_to_cpup(data + 0); break;
  470. default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
  471. break;
  472. case 4: tmp = le64_to_cpup((u64 *)(data + 0));
  473. *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
  474. *(u64 *)(data + 2) = tmp;
  475. break;
  476. }
  477. }
  478. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  479. current_thread_info()->fpsaved[0] = FPRS_FEF;
  480. current_thread_info()->gsr[0] = 0;
  481. }
  482. if (!(current_thread_info()->fpsaved[0] & flag)) {
  483. if (freg < 32)
  484. memset(f->regs, 0, 32*sizeof(u32));
  485. else
  486. memset(f->regs+32, 0, 32*sizeof(u32));
  487. }
  488. memcpy(f->regs + freg, data, size * 4);
  489. current_thread_info()->fpsaved[0] |= flag;
  490. }
  491. advance(regs);
  492. return 1;
  493. }
  494. void handle_ld_nf(u32 insn, struct pt_regs *regs)
  495. {
  496. int rd = ((insn >> 25) & 0x1f);
  497. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  498. unsigned long *reg;
  499. maybe_flush_windows(0, 0, rd, from_kernel);
  500. reg = fetch_reg_addr(rd, regs);
  501. if (from_kernel || rd < 16) {
  502. reg[0] = 0;
  503. if ((insn & 0x780000) == 0x180000)
  504. reg[1] = 0;
  505. } else if (test_thread_flag(TIF_32BIT)) {
  506. put_user(0, (int __user *) reg);
  507. if ((insn & 0x780000) == 0x180000)
  508. put_user(0, ((int __user *) reg) + 1);
  509. } else {
  510. put_user(0, (unsigned long __user *) reg);
  511. if ((insn & 0x780000) == 0x180000)
  512. put_user(0, (unsigned long __user *) reg + 1);
  513. }
  514. advance(regs);
  515. }
  516. void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  517. {
  518. unsigned long pc = regs->tpc;
  519. unsigned long tstate = regs->tstate;
  520. u32 insn;
  521. u32 first, second;
  522. u64 value;
  523. u8 freg;
  524. int flag;
  525. struct fpustate *f = FPUSTATE;
  526. if (tstate & TSTATE_PRIV)
  527. die_if_kernel("lddfmna from kernel", regs);
  528. if (test_thread_flag(TIF_32BIT))
  529. pc = (u32)pc;
  530. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  531. int asi = decode_asi(insn, regs);
  532. if ((asi > ASI_SNFL) ||
  533. (asi < ASI_P))
  534. goto daex;
  535. if (get_user(first, (u32 __user *)sfar) ||
  536. get_user(second, (u32 __user *)(sfar + 4))) {
  537. if (asi & 0x2) /* NF */ {
  538. first = 0; second = 0;
  539. } else
  540. goto daex;
  541. }
  542. save_and_clear_fpu();
  543. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  544. value = (((u64)first) << 32) | second;
  545. if (asi & 0x8) /* Little */
  546. value = __swab64p(&value);
  547. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  548. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  549. current_thread_info()->fpsaved[0] = FPRS_FEF;
  550. current_thread_info()->gsr[0] = 0;
  551. }
  552. if (!(current_thread_info()->fpsaved[0] & flag)) {
  553. if (freg < 32)
  554. memset(f->regs, 0, 32*sizeof(u32));
  555. else
  556. memset(f->regs+32, 0, 32*sizeof(u32));
  557. }
  558. *(u64 *)(f->regs + freg) = value;
  559. current_thread_info()->fpsaved[0] |= flag;
  560. } else {
  561. daex:
  562. if (tlb_type == hypervisor)
  563. sun4v_data_access_exception(regs, sfar, sfsr);
  564. else
  565. spitfire_data_access_exception(regs, sfsr, sfar);
  566. return;
  567. }
  568. advance(regs);
  569. return;
  570. }
  571. void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  572. {
  573. unsigned long pc = regs->tpc;
  574. unsigned long tstate = regs->tstate;
  575. u32 insn;
  576. u64 value;
  577. u8 freg;
  578. int flag;
  579. struct fpustate *f = FPUSTATE;
  580. if (tstate & TSTATE_PRIV)
  581. die_if_kernel("stdfmna from kernel", regs);
  582. if (test_thread_flag(TIF_32BIT))
  583. pc = (u32)pc;
  584. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  585. int asi = decode_asi(insn, regs);
  586. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  587. value = 0;
  588. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  589. if ((asi > ASI_SNFL) ||
  590. (asi < ASI_P))
  591. goto daex;
  592. save_and_clear_fpu();
  593. if (current_thread_info()->fpsaved[0] & flag)
  594. value = *(u64 *)&f->regs[freg];
  595. switch (asi) {
  596. case ASI_P:
  597. case ASI_S: break;
  598. case ASI_PL:
  599. case ASI_SL:
  600. value = __swab64p(&value); break;
  601. default: goto daex;
  602. }
  603. if (put_user (value >> 32, (u32 __user *) sfar) ||
  604. __put_user ((u32)value, (u32 __user *)(sfar + 4)))
  605. goto daex;
  606. } else {
  607. daex:
  608. if (tlb_type == hypervisor)
  609. sun4v_data_access_exception(regs, sfar, sfsr);
  610. else
  611. spitfire_data_access_exception(regs, sfsr, sfar);
  612. return;
  613. }
  614. advance(regs);
  615. return;
  616. }