process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. /* $Id: process.c,v 1.131 2002/02/09 19:49:30 davem Exp $
  2. * arch/sparc64/kernel/process.c
  3. *
  4. * Copyright (C) 1995, 1996 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. /*
  9. * This file handles the architecture-dependent parts of process handling..
  10. */
  11. #include <stdarg.h>
  12. #include <linux/errno.h>
  13. #include <linux/module.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/kallsyms.h>
  17. #include <linux/mm.h>
  18. #include <linux/smp.h>
  19. #include <linux/smp_lock.h>
  20. #include <linux/stddef.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/slab.h>
  23. #include <linux/user.h>
  24. #include <linux/a.out.h>
  25. #include <linux/reboot.h>
  26. #include <linux/delay.h>
  27. #include <linux/compat.h>
  28. #include <linux/init.h>
  29. #include <asm/oplib.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/system.h>
  32. #include <asm/page.h>
  33. #include <asm/pgalloc.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/processor.h>
  36. #include <asm/pstate.h>
  37. #include <asm/elf.h>
  38. #include <asm/fpumacro.h>
  39. #include <asm/head.h>
  40. #include <asm/cpudata.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/unistd.h>
  43. #include <asm/hypervisor.h>
  44. /* #define VERBOSE_SHOWREGS */
  45. static void sparc64_yield(void)
  46. {
  47. if (tlb_type != hypervisor)
  48. return;
  49. clear_thread_flag(TIF_POLLING_NRFLAG);
  50. smp_mb__after_clear_bit();
  51. while (!need_resched()) {
  52. unsigned long pstate;
  53. /* Disable interrupts. */
  54. __asm__ __volatile__(
  55. "rdpr %%pstate, %0\n\t"
  56. "andn %0, %1, %0\n\t"
  57. "wrpr %0, %%g0, %%pstate"
  58. : "=&r" (pstate)
  59. : "i" (PSTATE_IE));
  60. if (!need_resched())
  61. sun4v_cpu_yield();
  62. /* Re-enable interrupts. */
  63. __asm__ __volatile__(
  64. "rdpr %%pstate, %0\n\t"
  65. "or %0, %1, %0\n\t"
  66. "wrpr %0, %%g0, %%pstate"
  67. : "=&r" (pstate)
  68. : "i" (PSTATE_IE));
  69. }
  70. set_thread_flag(TIF_POLLING_NRFLAG);
  71. }
  72. /* The idle loop on sparc64. */
  73. void cpu_idle(void)
  74. {
  75. set_thread_flag(TIF_POLLING_NRFLAG);
  76. while(1) {
  77. if (need_resched()) {
  78. preempt_enable_no_resched();
  79. schedule();
  80. preempt_disable();
  81. }
  82. sparc64_yield();
  83. }
  84. }
  85. extern char reboot_command [];
  86. extern void (*prom_palette)(int);
  87. extern void (*prom_keyboard)(void);
  88. void machine_halt(void)
  89. {
  90. if (!serial_console && prom_palette)
  91. prom_palette (1);
  92. if (prom_keyboard)
  93. prom_keyboard();
  94. prom_halt();
  95. panic("Halt failed!");
  96. }
  97. void machine_alt_power_off(void)
  98. {
  99. if (!serial_console && prom_palette)
  100. prom_palette(1);
  101. if (prom_keyboard)
  102. prom_keyboard();
  103. prom_halt_power_off();
  104. panic("Power-off failed!");
  105. }
  106. void machine_restart(char * cmd)
  107. {
  108. char *p;
  109. p = strchr (reboot_command, '\n');
  110. if (p) *p = 0;
  111. if (!serial_console && prom_palette)
  112. prom_palette (1);
  113. if (prom_keyboard)
  114. prom_keyboard();
  115. if (cmd)
  116. prom_reboot(cmd);
  117. if (*reboot_command)
  118. prom_reboot(reboot_command);
  119. prom_reboot("");
  120. panic("Reboot failed!");
  121. }
  122. #ifdef CONFIG_COMPAT
  123. static void show_regwindow32(struct pt_regs *regs)
  124. {
  125. struct reg_window32 __user *rw;
  126. struct reg_window32 r_w;
  127. mm_segment_t old_fs;
  128. __asm__ __volatile__ ("flushw");
  129. rw = compat_ptr((unsigned)regs->u_regs[14]);
  130. old_fs = get_fs();
  131. set_fs (USER_DS);
  132. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  133. set_fs (old_fs);
  134. return;
  135. }
  136. set_fs (old_fs);
  137. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  138. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  139. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  140. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  141. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  142. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  143. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  144. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  145. }
  146. #else
  147. #define show_regwindow32(regs) do { } while (0)
  148. #endif
  149. static void show_regwindow(struct pt_regs *regs)
  150. {
  151. struct reg_window __user *rw;
  152. struct reg_window *rwk;
  153. struct reg_window r_w;
  154. mm_segment_t old_fs;
  155. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  156. __asm__ __volatile__ ("flushw");
  157. rw = (struct reg_window __user *)
  158. (regs->u_regs[14] + STACK_BIAS);
  159. rwk = (struct reg_window *)
  160. (regs->u_regs[14] + STACK_BIAS);
  161. if (!(regs->tstate & TSTATE_PRIV)) {
  162. old_fs = get_fs();
  163. set_fs (USER_DS);
  164. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  165. set_fs (old_fs);
  166. return;
  167. }
  168. rwk = &r_w;
  169. set_fs (old_fs);
  170. }
  171. } else {
  172. show_regwindow32(regs);
  173. return;
  174. }
  175. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  176. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  177. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  178. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  179. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  180. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  181. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  182. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  183. if (regs->tstate & TSTATE_PRIV)
  184. print_symbol("I7: <%s>\n", rwk->ins[7]);
  185. }
  186. void show_stackframe(struct sparc_stackf *sf)
  187. {
  188. unsigned long size;
  189. unsigned long *stk;
  190. int i;
  191. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n"
  192. "l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  193. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
  194. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  195. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n"
  196. "i4: %016lx i5: %016lx fp: %016lx ret_pc: %016lx\n",
  197. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
  198. sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
  199. printk("sp: %016lx x0: %016lx x1: %016lx x2: %016lx\n"
  200. "x3: %016lx x4: %016lx x5: %016lx xx: %016lx\n",
  201. (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
  202. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  203. sf->xxargs[0]);
  204. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  205. size -= STACKFRAME_SZ;
  206. stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
  207. i = 0;
  208. do {
  209. printk("s%d: %016lx\n", i++, *stk++);
  210. } while ((size -= sizeof(unsigned long)));
  211. }
  212. void show_stackframe32(struct sparc_stackf32 *sf)
  213. {
  214. unsigned long size;
  215. unsigned *stk;
  216. int i;
  217. printk("l0: %08x l1: %08x l2: %08x l3: %08x\n",
  218. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3]);
  219. printk("l4: %08x l5: %08x l6: %08x l7: %08x\n",
  220. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  221. printk("i0: %08x i1: %08x i2: %08x i3: %08x\n",
  222. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3]);
  223. printk("i4: %08x i5: %08x fp: %08x ret_pc: %08x\n",
  224. sf->ins[4], sf->ins[5], sf->fp, sf->callers_pc);
  225. printk("sp: %08x x0: %08x x1: %08x x2: %08x\n"
  226. "x3: %08x x4: %08x x5: %08x xx: %08x\n",
  227. sf->structptr, sf->xargs[0], sf->xargs[1],
  228. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  229. sf->xxargs[0]);
  230. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  231. size -= STACKFRAME32_SZ;
  232. stk = (unsigned *)((unsigned long)sf + STACKFRAME32_SZ);
  233. i = 0;
  234. do {
  235. printk("s%d: %08x\n", i++, *stk++);
  236. } while ((size -= sizeof(unsigned)));
  237. }
  238. #ifdef CONFIG_SMP
  239. static DEFINE_SPINLOCK(regdump_lock);
  240. #endif
  241. void __show_regs(struct pt_regs * regs)
  242. {
  243. #ifdef CONFIG_SMP
  244. unsigned long flags;
  245. /* Protect against xcall ipis which might lead to livelock on the lock */
  246. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  247. "wrpr %0, %1, %%pstate"
  248. : "=r" (flags)
  249. : "i" (PSTATE_IE));
  250. spin_lock(&regdump_lock);
  251. #endif
  252. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  253. regs->tpc, regs->tnpc, regs->y, print_tainted());
  254. print_symbol("TPC: <%s>\n", regs->tpc);
  255. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  256. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  257. regs->u_regs[3]);
  258. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  259. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  260. regs->u_regs[7]);
  261. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  262. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  263. regs->u_regs[11]);
  264. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  265. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  266. regs->u_regs[15]);
  267. print_symbol("RPC: <%s>\n", regs->u_regs[15]);
  268. show_regwindow(regs);
  269. #ifdef CONFIG_SMP
  270. spin_unlock(&regdump_lock);
  271. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  272. : : "r" (flags));
  273. #endif
  274. }
  275. #ifdef VERBOSE_SHOWREGS
  276. static void idump_from_user (unsigned int *pc)
  277. {
  278. int i;
  279. int code;
  280. if((((unsigned long) pc) & 3))
  281. return;
  282. pc -= 3;
  283. for(i = -3; i < 6; i++) {
  284. get_user(code, pc);
  285. printk("%c%08x%c",i?' ':'<',code,i?' ':'>');
  286. pc++;
  287. }
  288. printk("\n");
  289. }
  290. #endif
  291. void show_regs(struct pt_regs *regs)
  292. {
  293. #ifdef VERBOSE_SHOWREGS
  294. extern long etrap, etraptl1;
  295. #endif
  296. __show_regs(regs);
  297. #if 0
  298. #ifdef CONFIG_SMP
  299. {
  300. extern void smp_report_regs(void);
  301. smp_report_regs();
  302. }
  303. #endif
  304. #endif
  305. #ifdef VERBOSE_SHOWREGS
  306. if (regs->tpc >= &etrap && regs->tpc < &etraptl1 &&
  307. regs->u_regs[14] >= (long)current - PAGE_SIZE &&
  308. regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) {
  309. printk ("*********parent**********\n");
  310. __show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF));
  311. idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc);
  312. printk ("*********endpar**********\n");
  313. }
  314. #endif
  315. }
  316. void show_regs32(struct pt_regs32 *regs)
  317. {
  318. printk("PSR: %08x PC: %08x NPC: %08x Y: %08x %s\n", regs->psr,
  319. regs->pc, regs->npc, regs->y, print_tainted());
  320. printk("g0: %08x g1: %08x g2: %08x g3: %08x ",
  321. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  322. regs->u_regs[3]);
  323. printk("g4: %08x g5: %08x g6: %08x g7: %08x\n",
  324. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  325. regs->u_regs[7]);
  326. printk("o0: %08x o1: %08x o2: %08x o3: %08x ",
  327. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  328. regs->u_regs[11]);
  329. printk("o4: %08x o5: %08x sp: %08x ret_pc: %08x\n",
  330. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  331. regs->u_regs[15]);
  332. }
  333. unsigned long thread_saved_pc(struct task_struct *tsk)
  334. {
  335. struct thread_info *ti = task_thread_info(tsk);
  336. unsigned long ret = 0xdeadbeefUL;
  337. if (ti && ti->ksp) {
  338. unsigned long *sp;
  339. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  340. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  341. sp[14]) {
  342. unsigned long *fp;
  343. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  344. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  345. ret = fp[15];
  346. }
  347. }
  348. return ret;
  349. }
  350. /* Free current thread data structures etc.. */
  351. void exit_thread(void)
  352. {
  353. struct thread_info *t = current_thread_info();
  354. if (t->utraps) {
  355. if (t->utraps[0] < 2)
  356. kfree (t->utraps);
  357. else
  358. t->utraps[0]--;
  359. }
  360. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  361. t->user_cntd0 = t->user_cntd1 = NULL;
  362. t->pcr_reg = 0;
  363. write_pcr(0);
  364. }
  365. }
  366. void flush_thread(void)
  367. {
  368. struct thread_info *t = current_thread_info();
  369. struct mm_struct *mm;
  370. if (t->flags & _TIF_ABI_PENDING)
  371. t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
  372. mm = t->task->mm;
  373. if (mm)
  374. tsb_context_switch(mm);
  375. set_thread_wsaved(0);
  376. /* Turn off performance counters if on. */
  377. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  378. t->user_cntd0 = t->user_cntd1 = NULL;
  379. t->pcr_reg = 0;
  380. write_pcr(0);
  381. }
  382. /* Clear FPU register state. */
  383. t->fpsaved[0] = 0;
  384. if (get_thread_current_ds() != ASI_AIUS)
  385. set_fs(USER_DS);
  386. /* Init new signal delivery disposition. */
  387. clear_thread_flag(TIF_NEWSIGNALS);
  388. }
  389. /* It's a bit more tricky when 64-bit tasks are involved... */
  390. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  391. {
  392. unsigned long fp, distance, rval;
  393. if (!(test_thread_flag(TIF_32BIT))) {
  394. csp += STACK_BIAS;
  395. psp += STACK_BIAS;
  396. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  397. fp += STACK_BIAS;
  398. } else
  399. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  400. /* Now 8-byte align the stack as this is mandatory in the
  401. * Sparc ABI due to how register windows work. This hides
  402. * the restriction from thread libraries etc. -DaveM
  403. */
  404. csp &= ~7UL;
  405. distance = fp - psp;
  406. rval = (csp - distance);
  407. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  408. rval = 0;
  409. else if (test_thread_flag(TIF_32BIT)) {
  410. if (put_user(((u32)csp),
  411. &(((struct reg_window32 __user *)rval)->ins[6])))
  412. rval = 0;
  413. } else {
  414. if (put_user(((u64)csp - STACK_BIAS),
  415. &(((struct reg_window __user *)rval)->ins[6])))
  416. rval = 0;
  417. else
  418. rval = rval - STACK_BIAS;
  419. }
  420. return rval;
  421. }
  422. /* Standard stuff. */
  423. static inline void shift_window_buffer(int first_win, int last_win,
  424. struct thread_info *t)
  425. {
  426. int i;
  427. for (i = first_win; i < last_win; i++) {
  428. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  429. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  430. sizeof(struct reg_window));
  431. }
  432. }
  433. void synchronize_user_stack(void)
  434. {
  435. struct thread_info *t = current_thread_info();
  436. unsigned long window;
  437. flush_user_windows();
  438. if ((window = get_thread_wsaved()) != 0) {
  439. int winsize = sizeof(struct reg_window);
  440. int bias = 0;
  441. if (test_thread_flag(TIF_32BIT))
  442. winsize = sizeof(struct reg_window32);
  443. else
  444. bias = STACK_BIAS;
  445. window -= 1;
  446. do {
  447. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  448. struct reg_window *rwin = &t->reg_window[window];
  449. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  450. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  451. set_thread_wsaved(get_thread_wsaved() - 1);
  452. }
  453. } while (window--);
  454. }
  455. }
  456. static void stack_unaligned(unsigned long sp)
  457. {
  458. siginfo_t info;
  459. info.si_signo = SIGBUS;
  460. info.si_errno = 0;
  461. info.si_code = BUS_ADRALN;
  462. info.si_addr = (void __user *) sp;
  463. info.si_trapno = 0;
  464. force_sig_info(SIGBUS, &info, current);
  465. }
  466. void fault_in_user_windows(void)
  467. {
  468. struct thread_info *t = current_thread_info();
  469. unsigned long window;
  470. int winsize = sizeof(struct reg_window);
  471. int bias = 0;
  472. if (test_thread_flag(TIF_32BIT))
  473. winsize = sizeof(struct reg_window32);
  474. else
  475. bias = STACK_BIAS;
  476. flush_user_windows();
  477. window = get_thread_wsaved();
  478. if (likely(window != 0)) {
  479. window -= 1;
  480. do {
  481. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  482. struct reg_window *rwin = &t->reg_window[window];
  483. if (unlikely(sp & 0x7UL))
  484. stack_unaligned(sp);
  485. if (unlikely(copy_to_user((char __user *)sp,
  486. rwin, winsize)))
  487. goto barf;
  488. } while (window--);
  489. }
  490. set_thread_wsaved(0);
  491. return;
  492. barf:
  493. set_thread_wsaved(window + 1);
  494. do_exit(SIGILL);
  495. }
  496. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  497. unsigned long stack_start,
  498. struct pt_regs *regs,
  499. unsigned long stack_size)
  500. {
  501. int __user *parent_tid_ptr, *child_tid_ptr;
  502. #ifdef CONFIG_COMPAT
  503. if (test_thread_flag(TIF_32BIT)) {
  504. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  505. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  506. } else
  507. #endif
  508. {
  509. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  510. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  511. }
  512. return do_fork(clone_flags, stack_start,
  513. regs, stack_size,
  514. parent_tid_ptr, child_tid_ptr);
  515. }
  516. /* Copy a Sparc thread. The fork() return value conventions
  517. * under SunOS are nothing short of bletcherous:
  518. * Parent --> %o0 == childs pid, %o1 == 0
  519. * Child --> %o0 == parents pid, %o1 == 1
  520. */
  521. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  522. unsigned long unused,
  523. struct task_struct *p, struct pt_regs *regs)
  524. {
  525. struct thread_info *t = task_thread_info(p);
  526. char *child_trap_frame;
  527. /* Calculate offset to stack_frame & pt_regs */
  528. child_trap_frame = task_stack_page(p) + (THREAD_SIZE - (TRACEREG_SZ+STACKFRAME_SZ));
  529. memcpy(child_trap_frame, (((struct sparc_stackf *)regs)-1), (TRACEREG_SZ+STACKFRAME_SZ));
  530. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  531. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  532. t->new_child = 1;
  533. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  534. t->kregs = (struct pt_regs *)(child_trap_frame+sizeof(struct sparc_stackf));
  535. t->fpsaved[0] = 0;
  536. if (regs->tstate & TSTATE_PRIV) {
  537. /* Special case, if we are spawning a kernel thread from
  538. * a userspace task (via KMOD, NFS, or similar) we must
  539. * disable performance counters in the child because the
  540. * address space and protection realm are changing.
  541. */
  542. if (t->flags & _TIF_PERFCTR) {
  543. t->user_cntd0 = t->user_cntd1 = NULL;
  544. t->pcr_reg = 0;
  545. t->flags &= ~_TIF_PERFCTR;
  546. }
  547. t->kregs->u_regs[UREG_FP] = t->ksp;
  548. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  549. flush_register_windows();
  550. memcpy((void *)(t->ksp + STACK_BIAS),
  551. (void *)(regs->u_regs[UREG_FP] + STACK_BIAS),
  552. sizeof(struct sparc_stackf));
  553. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  554. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  555. } else {
  556. if (t->flags & _TIF_32BIT) {
  557. sp &= 0x00000000ffffffffUL;
  558. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  559. }
  560. t->kregs->u_regs[UREG_FP] = sp;
  561. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  562. if (sp != regs->u_regs[UREG_FP]) {
  563. unsigned long csp;
  564. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  565. if (!csp)
  566. return -EFAULT;
  567. t->kregs->u_regs[UREG_FP] = csp;
  568. }
  569. if (t->utraps)
  570. t->utraps[0]++;
  571. }
  572. /* Set the return value for the child. */
  573. t->kregs->u_regs[UREG_I0] = current->pid;
  574. t->kregs->u_regs[UREG_I1] = 1;
  575. /* Set the second return value for the parent. */
  576. regs->u_regs[UREG_I1] = 0;
  577. if (clone_flags & CLONE_SETTLS)
  578. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  579. return 0;
  580. }
  581. /*
  582. * This is the mechanism for creating a new kernel thread.
  583. *
  584. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  585. * who haven't done an "execve()") should use this: it will work within
  586. * a system call from a "real" process, but the process memory space will
  587. * not be free'd until both the parent and the child have exited.
  588. */
  589. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  590. {
  591. long retval;
  592. /* If the parent runs before fn(arg) is called by the child,
  593. * the input registers of this function can be clobbered.
  594. * So we stash 'fn' and 'arg' into global registers which
  595. * will not be modified by the parent.
  596. */
  597. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  598. "mov %5, %%g3\n\t" /* Save ARG into global */
  599. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  600. "mov %2, %%o0\n\t" /* Clone flags. */
  601. "mov 0, %%o1\n\t" /* usp arg == 0 */
  602. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  603. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  604. " mov %%o0, %0\n\t"
  605. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  606. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  607. "mov %3, %%g1\n\t"
  608. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  609. /* Notreached by child. */
  610. "1:" :
  611. "=r" (retval) :
  612. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  613. "i" (__NR_exit), "r" (fn), "r" (arg) :
  614. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  615. return retval;
  616. }
  617. /*
  618. * fill in the user structure for a core dump..
  619. */
  620. void dump_thread(struct pt_regs * regs, struct user * dump)
  621. {
  622. /* Only should be used for SunOS and ancient a.out
  623. * SparcLinux binaries... Not worth implementing.
  624. */
  625. memset(dump, 0, sizeof(struct user));
  626. }
  627. typedef struct {
  628. union {
  629. unsigned int pr_regs[32];
  630. unsigned long pr_dregs[16];
  631. } pr_fr;
  632. unsigned int __unused;
  633. unsigned int pr_fsr;
  634. unsigned char pr_qcnt;
  635. unsigned char pr_q_entrysize;
  636. unsigned char pr_en;
  637. unsigned int pr_q[64];
  638. } elf_fpregset_t32;
  639. /*
  640. * fill in the fpu structure for a core dump.
  641. */
  642. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  643. {
  644. unsigned long *kfpregs = current_thread_info()->fpregs;
  645. unsigned long fprs = current_thread_info()->fpsaved[0];
  646. if (test_thread_flag(TIF_32BIT)) {
  647. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  648. if (fprs & FPRS_DL)
  649. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  650. sizeof(unsigned int) * 32);
  651. else
  652. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  653. sizeof(unsigned int) * 32);
  654. fpregs32->pr_qcnt = 0;
  655. fpregs32->pr_q_entrysize = 8;
  656. memset(&fpregs32->pr_q[0], 0,
  657. (sizeof(unsigned int) * 64));
  658. if (fprs & FPRS_FEF) {
  659. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  660. fpregs32->pr_en = 1;
  661. } else {
  662. fpregs32->pr_fsr = 0;
  663. fpregs32->pr_en = 0;
  664. }
  665. } else {
  666. if(fprs & FPRS_DL)
  667. memcpy(&fpregs->pr_regs[0], kfpregs,
  668. sizeof(unsigned int) * 32);
  669. else
  670. memset(&fpregs->pr_regs[0], 0,
  671. sizeof(unsigned int) * 32);
  672. if(fprs & FPRS_DU)
  673. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  674. sizeof(unsigned int) * 32);
  675. else
  676. memset(&fpregs->pr_regs[16], 0,
  677. sizeof(unsigned int) * 32);
  678. if(fprs & FPRS_FEF) {
  679. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  680. fpregs->pr_gsr = current_thread_info()->gsr[0];
  681. } else {
  682. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  683. }
  684. fpregs->pr_fprs = fprs;
  685. }
  686. return 1;
  687. }
  688. /*
  689. * sparc_execve() executes a new program after the asm stub has set
  690. * things up for us. This should basically do what I want it to.
  691. */
  692. asmlinkage int sparc_execve(struct pt_regs *regs)
  693. {
  694. int error, base = 0;
  695. char *filename;
  696. /* User register window flush is done by entry.S */
  697. /* Check for indirect call. */
  698. if (regs->u_regs[UREG_G1] == 0)
  699. base = 1;
  700. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  701. error = PTR_ERR(filename);
  702. if (IS_ERR(filename))
  703. goto out;
  704. error = do_execve(filename,
  705. (char __user * __user *)
  706. regs->u_regs[base + UREG_I1],
  707. (char __user * __user *)
  708. regs->u_regs[base + UREG_I2], regs);
  709. putname(filename);
  710. if (!error) {
  711. fprs_write(0);
  712. current_thread_info()->xfsr[0] = 0;
  713. current_thread_info()->fpsaved[0] = 0;
  714. regs->tstate &= ~TSTATE_PEF;
  715. task_lock(current);
  716. current->ptrace &= ~PT_DTRACE;
  717. task_unlock(current);
  718. }
  719. out:
  720. return error;
  721. }
  722. unsigned long get_wchan(struct task_struct *task)
  723. {
  724. unsigned long pc, fp, bias = 0;
  725. unsigned long thread_info_base;
  726. struct reg_window *rw;
  727. unsigned long ret = 0;
  728. int count = 0;
  729. if (!task || task == current ||
  730. task->state == TASK_RUNNING)
  731. goto out;
  732. thread_info_base = (unsigned long) task_stack_page(task);
  733. bias = STACK_BIAS;
  734. fp = task_thread_info(task)->ksp + bias;
  735. do {
  736. /* Bogus frame pointer? */
  737. if (fp < (thread_info_base + sizeof(struct thread_info)) ||
  738. fp >= (thread_info_base + THREAD_SIZE))
  739. break;
  740. rw = (struct reg_window *) fp;
  741. pc = rw->ins[7];
  742. if (!in_sched_functions(pc)) {
  743. ret = pc;
  744. goto out;
  745. }
  746. fp = rw->ins[6] + bias;
  747. } while (++count < 16);
  748. out:
  749. return ret;
  750. }