ar9002_calib.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "hw-ops.h"
  18. #include "ar9002_phy.h"
  19. #define AR9285_CLCAL_REDO_THRESH 1
  20. static void ar9002_hw_setup_calibration(struct ath_hw *ah,
  21. struct ath9k_cal_list *currCal)
  22. {
  23. struct ath_common *common = ath9k_hw_common(ah);
  24. REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0),
  25. AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
  26. currCal->calData->calCountMax);
  27. switch (currCal->calData->calType) {
  28. case IQ_MISMATCH_CAL:
  29. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
  30. ath_print(common, ATH_DBG_CALIBRATE,
  31. "starting IQ Mismatch Calibration\n");
  32. break;
  33. case ADC_GAIN_CAL:
  34. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
  35. ath_print(common, ATH_DBG_CALIBRATE,
  36. "starting ADC Gain Calibration\n");
  37. break;
  38. case ADC_DC_CAL:
  39. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
  40. ath_print(common, ATH_DBG_CALIBRATE,
  41. "starting ADC DC Calibration\n");
  42. break;
  43. case ADC_DC_INIT_CAL:
  44. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
  45. ath_print(common, ATH_DBG_CALIBRATE,
  46. "starting Init ADC DC Calibration\n");
  47. break;
  48. case TEMP_COMP_CAL:
  49. break; /* Not supported */
  50. }
  51. REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
  52. AR_PHY_TIMING_CTRL4_DO_CAL);
  53. }
  54. static bool ar9002_hw_per_calibration(struct ath_hw *ah,
  55. struct ath9k_channel *ichan,
  56. u8 rxchainmask,
  57. struct ath9k_cal_list *currCal)
  58. {
  59. struct ath9k_hw_cal_data *caldata = ah->caldata;
  60. bool iscaldone = false;
  61. if (currCal->calState == CAL_RUNNING) {
  62. if (!(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  63. AR_PHY_TIMING_CTRL4_DO_CAL)) {
  64. currCal->calData->calCollect(ah);
  65. ah->cal_samples++;
  66. if (ah->cal_samples >=
  67. currCal->calData->calNumSamples) {
  68. int i, numChains = 0;
  69. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  70. if (rxchainmask & (1 << i))
  71. numChains++;
  72. }
  73. currCal->calData->calPostProc(ah, numChains);
  74. caldata->CalValid |= currCal->calData->calType;
  75. currCal->calState = CAL_DONE;
  76. iscaldone = true;
  77. } else {
  78. ar9002_hw_setup_calibration(ah, currCal);
  79. }
  80. }
  81. } else if (!(caldata->CalValid & currCal->calData->calType)) {
  82. ath9k_hw_reset_calibration(ah, currCal);
  83. }
  84. return iscaldone;
  85. }
  86. /* Assumes you are talking about the currently configured channel */
  87. static bool ar9002_hw_iscal_supported(struct ath_hw *ah,
  88. enum ath9k_cal_types calType)
  89. {
  90. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  91. switch (calType & ah->supp_cals) {
  92. case IQ_MISMATCH_CAL: /* Both 2 GHz and 5 GHz support OFDM */
  93. return true;
  94. case ADC_GAIN_CAL:
  95. case ADC_DC_CAL:
  96. if (!(conf->channel->band == IEEE80211_BAND_2GHZ &&
  97. conf_is_ht20(conf)))
  98. return true;
  99. break;
  100. }
  101. return false;
  102. }
  103. static void ar9002_hw_iqcal_collect(struct ath_hw *ah)
  104. {
  105. int i;
  106. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  107. ah->totalPowerMeasI[i] +=
  108. REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  109. ah->totalPowerMeasQ[i] +=
  110. REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  111. ah->totalIqCorrMeas[i] +=
  112. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  113. ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
  114. "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
  115. ah->cal_samples, i, ah->totalPowerMeasI[i],
  116. ah->totalPowerMeasQ[i],
  117. ah->totalIqCorrMeas[i]);
  118. }
  119. }
  120. static void ar9002_hw_adc_gaincal_collect(struct ath_hw *ah)
  121. {
  122. int i;
  123. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  124. ah->totalAdcIOddPhase[i] +=
  125. REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  126. ah->totalAdcIEvenPhase[i] +=
  127. REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  128. ah->totalAdcQOddPhase[i] +=
  129. REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  130. ah->totalAdcQEvenPhase[i] +=
  131. REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
  132. ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
  133. "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
  134. "oddq=0x%08x; evenq=0x%08x;\n",
  135. ah->cal_samples, i,
  136. ah->totalAdcIOddPhase[i],
  137. ah->totalAdcIEvenPhase[i],
  138. ah->totalAdcQOddPhase[i],
  139. ah->totalAdcQEvenPhase[i]);
  140. }
  141. }
  142. static void ar9002_hw_adc_dccal_collect(struct ath_hw *ah)
  143. {
  144. int i;
  145. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  146. ah->totalAdcDcOffsetIOddPhase[i] +=
  147. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  148. ah->totalAdcDcOffsetIEvenPhase[i] +=
  149. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  150. ah->totalAdcDcOffsetQOddPhase[i] +=
  151. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  152. ah->totalAdcDcOffsetQEvenPhase[i] +=
  153. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
  154. ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
  155. "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
  156. "oddq=0x%08x; evenq=0x%08x;\n",
  157. ah->cal_samples, i,
  158. ah->totalAdcDcOffsetIOddPhase[i],
  159. ah->totalAdcDcOffsetIEvenPhase[i],
  160. ah->totalAdcDcOffsetQOddPhase[i],
  161. ah->totalAdcDcOffsetQEvenPhase[i]);
  162. }
  163. }
  164. static void ar9002_hw_iqcalibrate(struct ath_hw *ah, u8 numChains)
  165. {
  166. struct ath_common *common = ath9k_hw_common(ah);
  167. u32 powerMeasQ, powerMeasI, iqCorrMeas;
  168. u32 qCoffDenom, iCoffDenom;
  169. int32_t qCoff, iCoff;
  170. int iqCorrNeg, i;
  171. for (i = 0; i < numChains; i++) {
  172. powerMeasI = ah->totalPowerMeasI[i];
  173. powerMeasQ = ah->totalPowerMeasQ[i];
  174. iqCorrMeas = ah->totalIqCorrMeas[i];
  175. ath_print(common, ATH_DBG_CALIBRATE,
  176. "Starting IQ Cal and Correction for Chain %d\n",
  177. i);
  178. ath_print(common, ATH_DBG_CALIBRATE,
  179. "Orignal: Chn %diq_corr_meas = 0x%08x\n",
  180. i, ah->totalIqCorrMeas[i]);
  181. iqCorrNeg = 0;
  182. if (iqCorrMeas > 0x80000000) {
  183. iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
  184. iqCorrNeg = 1;
  185. }
  186. ath_print(common, ATH_DBG_CALIBRATE,
  187. "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI);
  188. ath_print(common, ATH_DBG_CALIBRATE,
  189. "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ);
  190. ath_print(common, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n",
  191. iqCorrNeg);
  192. iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
  193. qCoffDenom = powerMeasQ / 64;
  194. if ((powerMeasQ != 0) && (iCoffDenom != 0) &&
  195. (qCoffDenom != 0)) {
  196. iCoff = iqCorrMeas / iCoffDenom;
  197. qCoff = powerMeasI / qCoffDenom - 64;
  198. ath_print(common, ATH_DBG_CALIBRATE,
  199. "Chn %d iCoff = 0x%08x\n", i, iCoff);
  200. ath_print(common, ATH_DBG_CALIBRATE,
  201. "Chn %d qCoff = 0x%08x\n", i, qCoff);
  202. iCoff = iCoff & 0x3f;
  203. ath_print(common, ATH_DBG_CALIBRATE,
  204. "New: Chn %d iCoff = 0x%08x\n", i, iCoff);
  205. if (iqCorrNeg == 0x0)
  206. iCoff = 0x40 - iCoff;
  207. if (qCoff > 15)
  208. qCoff = 15;
  209. else if (qCoff <= -16)
  210. qCoff = -16;
  211. ath_print(common, ATH_DBG_CALIBRATE,
  212. "Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
  213. i, iCoff, qCoff);
  214. REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
  215. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
  216. iCoff);
  217. REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
  218. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
  219. qCoff);
  220. ath_print(common, ATH_DBG_CALIBRATE,
  221. "IQ Cal and Correction done for Chain %d\n",
  222. i);
  223. }
  224. }
  225. REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
  226. AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
  227. }
  228. static void ar9002_hw_adc_gaincal_calibrate(struct ath_hw *ah, u8 numChains)
  229. {
  230. struct ath_common *common = ath9k_hw_common(ah);
  231. u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset, qEvenMeasOffset;
  232. u32 qGainMismatch, iGainMismatch, val, i;
  233. for (i = 0; i < numChains; i++) {
  234. iOddMeasOffset = ah->totalAdcIOddPhase[i];
  235. iEvenMeasOffset = ah->totalAdcIEvenPhase[i];
  236. qOddMeasOffset = ah->totalAdcQOddPhase[i];
  237. qEvenMeasOffset = ah->totalAdcQEvenPhase[i];
  238. ath_print(common, ATH_DBG_CALIBRATE,
  239. "Starting ADC Gain Cal for Chain %d\n", i);
  240. ath_print(common, ATH_DBG_CALIBRATE,
  241. "Chn %d pwr_meas_odd_i = 0x%08x\n", i,
  242. iOddMeasOffset);
  243. ath_print(common, ATH_DBG_CALIBRATE,
  244. "Chn %d pwr_meas_even_i = 0x%08x\n", i,
  245. iEvenMeasOffset);
  246. ath_print(common, ATH_DBG_CALIBRATE,
  247. "Chn %d pwr_meas_odd_q = 0x%08x\n", i,
  248. qOddMeasOffset);
  249. ath_print(common, ATH_DBG_CALIBRATE,
  250. "Chn %d pwr_meas_even_q = 0x%08x\n", i,
  251. qEvenMeasOffset);
  252. if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
  253. iGainMismatch =
  254. ((iEvenMeasOffset * 32) /
  255. iOddMeasOffset) & 0x3f;
  256. qGainMismatch =
  257. ((qOddMeasOffset * 32) /
  258. qEvenMeasOffset) & 0x3f;
  259. ath_print(common, ATH_DBG_CALIBRATE,
  260. "Chn %d gain_mismatch_i = 0x%08x\n", i,
  261. iGainMismatch);
  262. ath_print(common, ATH_DBG_CALIBRATE,
  263. "Chn %d gain_mismatch_q = 0x%08x\n", i,
  264. qGainMismatch);
  265. val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
  266. val &= 0xfffff000;
  267. val |= (qGainMismatch) | (iGainMismatch << 6);
  268. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
  269. ath_print(common, ATH_DBG_CALIBRATE,
  270. "ADC Gain Cal done for Chain %d\n", i);
  271. }
  272. }
  273. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
  274. REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
  275. AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
  276. }
  277. static void ar9002_hw_adc_dccal_calibrate(struct ath_hw *ah, u8 numChains)
  278. {
  279. struct ath_common *common = ath9k_hw_common(ah);
  280. u32 iOddMeasOffset, iEvenMeasOffset, val, i;
  281. int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch;
  282. const struct ath9k_percal_data *calData =
  283. ah->cal_list_curr->calData;
  284. u32 numSamples =
  285. (1 << (calData->calCountMax + 5)) * calData->calNumSamples;
  286. for (i = 0; i < numChains; i++) {
  287. iOddMeasOffset = ah->totalAdcDcOffsetIOddPhase[i];
  288. iEvenMeasOffset = ah->totalAdcDcOffsetIEvenPhase[i];
  289. qOddMeasOffset = ah->totalAdcDcOffsetQOddPhase[i];
  290. qEvenMeasOffset = ah->totalAdcDcOffsetQEvenPhase[i];
  291. ath_print(common, ATH_DBG_CALIBRATE,
  292. "Starting ADC DC Offset Cal for Chain %d\n", i);
  293. ath_print(common, ATH_DBG_CALIBRATE,
  294. "Chn %d pwr_meas_odd_i = %d\n", i,
  295. iOddMeasOffset);
  296. ath_print(common, ATH_DBG_CALIBRATE,
  297. "Chn %d pwr_meas_even_i = %d\n", i,
  298. iEvenMeasOffset);
  299. ath_print(common, ATH_DBG_CALIBRATE,
  300. "Chn %d pwr_meas_odd_q = %d\n", i,
  301. qOddMeasOffset);
  302. ath_print(common, ATH_DBG_CALIBRATE,
  303. "Chn %d pwr_meas_even_q = %d\n", i,
  304. qEvenMeasOffset);
  305. iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
  306. numSamples) & 0x1ff;
  307. qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
  308. numSamples) & 0x1ff;
  309. ath_print(common, ATH_DBG_CALIBRATE,
  310. "Chn %d dc_offset_mismatch_i = 0x%08x\n", i,
  311. iDcMismatch);
  312. ath_print(common, ATH_DBG_CALIBRATE,
  313. "Chn %d dc_offset_mismatch_q = 0x%08x\n", i,
  314. qDcMismatch);
  315. val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
  316. val &= 0xc0000fff;
  317. val |= (qDcMismatch << 12) | (iDcMismatch << 21);
  318. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
  319. ath_print(common, ATH_DBG_CALIBRATE,
  320. "ADC DC Offset Cal done for Chain %d\n", i);
  321. }
  322. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
  323. REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
  324. AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
  325. }
  326. static void ar9287_hw_olc_temp_compensation(struct ath_hw *ah)
  327. {
  328. u32 rddata;
  329. int32_t delta, currPDADC, slope;
  330. rddata = REG_READ(ah, AR_PHY_TX_PWRCTRL4);
  331. currPDADC = MS(rddata, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
  332. if (ah->initPDADC == 0 || currPDADC == 0) {
  333. /*
  334. * Zero value indicates that no frames have been transmitted
  335. * yet, can't do temperature compensation until frames are
  336. * transmitted.
  337. */
  338. return;
  339. } else {
  340. slope = ah->eep_ops->get_eeprom(ah, EEP_TEMPSENSE_SLOPE);
  341. if (slope == 0) { /* to avoid divide by zero case */
  342. delta = 0;
  343. } else {
  344. delta = ((currPDADC - ah->initPDADC)*4) / slope;
  345. }
  346. REG_RMW_FIELD(ah, AR_PHY_CH0_TX_PWRCTRL11,
  347. AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, delta);
  348. REG_RMW_FIELD(ah, AR_PHY_CH1_TX_PWRCTRL11,
  349. AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, delta);
  350. }
  351. }
  352. static void ar9280_hw_olc_temp_compensation(struct ath_hw *ah)
  353. {
  354. u32 rddata, i;
  355. int delta, currPDADC, regval;
  356. rddata = REG_READ(ah, AR_PHY_TX_PWRCTRL4);
  357. currPDADC = MS(rddata, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
  358. if (ah->initPDADC == 0 || currPDADC == 0)
  359. return;
  360. if (ah->eep_ops->get_eeprom(ah, EEP_DAC_HPWR_5G))
  361. delta = (currPDADC - ah->initPDADC + 4) / 8;
  362. else
  363. delta = (currPDADC - ah->initPDADC + 5) / 10;
  364. if (delta != ah->PDADCdelta) {
  365. ah->PDADCdelta = delta;
  366. for (i = 1; i < AR9280_TX_GAIN_TABLE_SIZE; i++) {
  367. regval = ah->originalGain[i] - delta;
  368. if (regval < 0)
  369. regval = 0;
  370. REG_RMW_FIELD(ah,
  371. AR_PHY_TX_GAIN_TBL1 + i * 4,
  372. AR_PHY_TX_GAIN, regval);
  373. }
  374. }
  375. }
  376. static void ar9271_hw_pa_cal(struct ath_hw *ah, bool is_reset)
  377. {
  378. u32 regVal;
  379. unsigned int i;
  380. u32 regList[][2] = {
  381. { 0x786c, 0 },
  382. { 0x7854, 0 },
  383. { 0x7820, 0 },
  384. { 0x7824, 0 },
  385. { 0x7868, 0 },
  386. { 0x783c, 0 },
  387. { 0x7838, 0 } ,
  388. { 0x7828, 0 } ,
  389. };
  390. for (i = 0; i < ARRAY_SIZE(regList); i++)
  391. regList[i][1] = REG_READ(ah, regList[i][0]);
  392. regVal = REG_READ(ah, 0x7834);
  393. regVal &= (~(0x1));
  394. REG_WRITE(ah, 0x7834, regVal);
  395. regVal = REG_READ(ah, 0x9808);
  396. regVal |= (0x1 << 27);
  397. REG_WRITE(ah, 0x9808, regVal);
  398. /* 786c,b23,1, pwddac=1 */
  399. REG_RMW_FIELD(ah, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC, 1);
  400. /* 7854, b5,1, pdrxtxbb=1 */
  401. REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1, 1);
  402. /* 7854, b7,1, pdv2i=1 */
  403. REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I, 1);
  404. /* 7854, b8,1, pddacinterface=1 */
  405. REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF, 1);
  406. /* 7824,b12,0, offcal=0 */
  407. REG_RMW_FIELD(ah, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL, 0);
  408. /* 7838, b1,0, pwddb=0 */
  409. REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB, 0);
  410. /* 7820,b11,0, enpacal=0 */
  411. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL, 0);
  412. /* 7820,b25,1, pdpadrv1=0 */
  413. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1, 0);
  414. /* 7820,b24,0, pdpadrv2=0 */
  415. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2, 0);
  416. /* 7820,b23,0, pdpaout=0 */
  417. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT, 0);
  418. /* 783c,b14-16,7, padrvgn2tab_0=7 */
  419. REG_RMW_FIELD(ah, AR9285_AN_RF2G8, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
  420. /*
  421. * 7838,b29-31,0, padrvgn1tab_0=0
  422. * does not matter since we turn it off
  423. */
  424. REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
  425. REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9271_AN_RF2G3_CCOMP, 0xfff);
  426. /* Set:
  427. * localmode=1,bmode=1,bmoderxtx=1,synthon=1,
  428. * txon=1,paon=1,oscon=1,synthon_force=1
  429. */
  430. REG_WRITE(ah, AR9285_AN_TOP2, 0xca0358a0);
  431. udelay(30);
  432. REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS, 0);
  433. /* find off_6_1; */
  434. for (i = 6; i > 0; i--) {
  435. regVal = REG_READ(ah, 0x7834);
  436. regVal |= (1 << (20 + i));
  437. REG_WRITE(ah, 0x7834, regVal);
  438. udelay(1);
  439. /* regVal = REG_READ(ah, 0x7834); */
  440. regVal &= (~(0x1 << (20 + i)));
  441. regVal |= (MS(REG_READ(ah, 0x7840), AR9285_AN_RXTXBB1_SPARE9)
  442. << (20 + i));
  443. REG_WRITE(ah, 0x7834, regVal);
  444. }
  445. regVal = (regVal >> 20) & 0x7f;
  446. /* Update PA cal info */
  447. if ((!is_reset) && (ah->pacal_info.prev_offset == regVal)) {
  448. if (ah->pacal_info.max_skipcount < MAX_PACAL_SKIPCOUNT)
  449. ah->pacal_info.max_skipcount =
  450. 2 * ah->pacal_info.max_skipcount;
  451. ah->pacal_info.skipcount = ah->pacal_info.max_skipcount;
  452. } else {
  453. ah->pacal_info.max_skipcount = 1;
  454. ah->pacal_info.skipcount = 0;
  455. ah->pacal_info.prev_offset = regVal;
  456. }
  457. ENABLE_REGWRITE_BUFFER(ah);
  458. regVal = REG_READ(ah, 0x7834);
  459. regVal |= 0x1;
  460. REG_WRITE(ah, 0x7834, regVal);
  461. regVal = REG_READ(ah, 0x9808);
  462. regVal &= (~(0x1 << 27));
  463. REG_WRITE(ah, 0x9808, regVal);
  464. for (i = 0; i < ARRAY_SIZE(regList); i++)
  465. REG_WRITE(ah, regList[i][0], regList[i][1]);
  466. REGWRITE_BUFFER_FLUSH(ah);
  467. DISABLE_REGWRITE_BUFFER(ah);
  468. }
  469. static inline void ar9285_hw_pa_cal(struct ath_hw *ah, bool is_reset)
  470. {
  471. struct ath_common *common = ath9k_hw_common(ah);
  472. u32 regVal;
  473. int i, offset, offs_6_1, offs_0;
  474. u32 ccomp_org, reg_field;
  475. u32 regList[][2] = {
  476. { 0x786c, 0 },
  477. { 0x7854, 0 },
  478. { 0x7820, 0 },
  479. { 0x7824, 0 },
  480. { 0x7868, 0 },
  481. { 0x783c, 0 },
  482. { 0x7838, 0 },
  483. };
  484. ath_print(common, ATH_DBG_CALIBRATE, "Running PA Calibration\n");
  485. /* PA CAL is not needed for high power solution */
  486. if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) ==
  487. AR5416_EEP_TXGAIN_HIGH_POWER)
  488. return;
  489. if (AR_SREV_9285_11(ah)) {
  490. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  491. udelay(10);
  492. }
  493. for (i = 0; i < ARRAY_SIZE(regList); i++)
  494. regList[i][1] = REG_READ(ah, regList[i][0]);
  495. regVal = REG_READ(ah, 0x7834);
  496. regVal &= (~(0x1));
  497. REG_WRITE(ah, 0x7834, regVal);
  498. regVal = REG_READ(ah, 0x9808);
  499. regVal |= (0x1 << 27);
  500. REG_WRITE(ah, 0x9808, regVal);
  501. REG_RMW_FIELD(ah, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC, 1);
  502. REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1, 1);
  503. REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I, 1);
  504. REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF, 1);
  505. REG_RMW_FIELD(ah, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL, 0);
  506. REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB, 0);
  507. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL, 0);
  508. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1, 0);
  509. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2, 0);
  510. REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT, 0);
  511. REG_RMW_FIELD(ah, AR9285_AN_RF2G8, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
  512. REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
  513. ccomp_org = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_CCOMP);
  514. REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, 0xf);
  515. REG_WRITE(ah, AR9285_AN_TOP2, 0xca0358a0);
  516. udelay(30);
  517. REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, 0);
  518. REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 0);
  519. for (i = 6; i > 0; i--) {
  520. regVal = REG_READ(ah, 0x7834);
  521. regVal |= (1 << (19 + i));
  522. REG_WRITE(ah, 0x7834, regVal);
  523. udelay(1);
  524. regVal = REG_READ(ah, 0x7834);
  525. regVal &= (~(0x1 << (19 + i)));
  526. reg_field = MS(REG_READ(ah, 0x7840), AR9285_AN_RXTXBB1_SPARE9);
  527. regVal |= (reg_field << (19 + i));
  528. REG_WRITE(ah, 0x7834, regVal);
  529. }
  530. REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 1);
  531. udelay(1);
  532. reg_field = MS(REG_READ(ah, AR9285_AN_RF2G9), AR9285_AN_RXTXBB1_SPARE9);
  533. REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, reg_field);
  534. offs_6_1 = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_OFFS);
  535. offs_0 = MS(REG_READ(ah, AR9285_AN_RF2G3), AR9285_AN_RF2G3_PDVCCOMP);
  536. offset = (offs_6_1<<1) | offs_0;
  537. offset = offset - 0;
  538. offs_6_1 = offset>>1;
  539. offs_0 = offset & 1;
  540. if ((!is_reset) && (ah->pacal_info.prev_offset == offset)) {
  541. if (ah->pacal_info.max_skipcount < MAX_PACAL_SKIPCOUNT)
  542. ah->pacal_info.max_skipcount =
  543. 2 * ah->pacal_info.max_skipcount;
  544. ah->pacal_info.skipcount = ah->pacal_info.max_skipcount;
  545. } else {
  546. ah->pacal_info.max_skipcount = 1;
  547. ah->pacal_info.skipcount = 0;
  548. ah->pacal_info.prev_offset = offset;
  549. }
  550. REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, offs_6_1);
  551. REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, offs_0);
  552. regVal = REG_READ(ah, 0x7834);
  553. regVal |= 0x1;
  554. REG_WRITE(ah, 0x7834, regVal);
  555. regVal = REG_READ(ah, 0x9808);
  556. regVal &= (~(0x1 << 27));
  557. REG_WRITE(ah, 0x9808, regVal);
  558. for (i = 0; i < ARRAY_SIZE(regList); i++)
  559. REG_WRITE(ah, regList[i][0], regList[i][1]);
  560. REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, ccomp_org);
  561. if (AR_SREV_9285_11(ah))
  562. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  563. }
  564. static void ar9002_hw_pa_cal(struct ath_hw *ah, bool is_reset)
  565. {
  566. if (AR_SREV_9271(ah)) {
  567. if (is_reset || !ah->pacal_info.skipcount)
  568. ar9271_hw_pa_cal(ah, is_reset);
  569. else
  570. ah->pacal_info.skipcount--;
  571. } else if (AR_SREV_9285_11_OR_LATER(ah)) {
  572. if (is_reset || !ah->pacal_info.skipcount)
  573. ar9285_hw_pa_cal(ah, is_reset);
  574. else
  575. ah->pacal_info.skipcount--;
  576. }
  577. }
  578. static void ar9002_hw_olc_temp_compensation(struct ath_hw *ah)
  579. {
  580. if (OLC_FOR_AR9287_10_LATER)
  581. ar9287_hw_olc_temp_compensation(ah);
  582. else if (OLC_FOR_AR9280_20_LATER)
  583. ar9280_hw_olc_temp_compensation(ah);
  584. }
  585. static bool ar9002_hw_calibrate(struct ath_hw *ah,
  586. struct ath9k_channel *chan,
  587. u8 rxchainmask,
  588. bool longcal)
  589. {
  590. bool iscaldone = true;
  591. struct ath9k_cal_list *currCal = ah->cal_list_curr;
  592. if (currCal &&
  593. (currCal->calState == CAL_RUNNING ||
  594. currCal->calState == CAL_WAITING)) {
  595. iscaldone = ar9002_hw_per_calibration(ah, chan,
  596. rxchainmask, currCal);
  597. if (iscaldone) {
  598. ah->cal_list_curr = currCal = currCal->calNext;
  599. if (currCal->calState == CAL_WAITING) {
  600. iscaldone = false;
  601. ath9k_hw_reset_calibration(ah, currCal);
  602. }
  603. }
  604. }
  605. /* Do NF cal only at longer intervals */
  606. if (longcal) {
  607. /* Do periodic PAOffset Cal */
  608. ar9002_hw_pa_cal(ah, false);
  609. ar9002_hw_olc_temp_compensation(ah);
  610. /*
  611. * Get the value from the previous NF cal and update
  612. * history buffer.
  613. */
  614. ath9k_hw_getnf(ah, chan);
  615. /*
  616. * Load the NF from history buffer of the current channel.
  617. * NF is slow time-variant, so it is OK to use a historical
  618. * value.
  619. */
  620. ath9k_hw_loadnf(ah, ah->curchan);
  621. ath9k_hw_start_nfcal(ah, false);
  622. }
  623. return iscaldone;
  624. }
  625. /* Carrier leakage Calibration fix */
  626. static bool ar9285_hw_cl_cal(struct ath_hw *ah, struct ath9k_channel *chan)
  627. {
  628. struct ath_common *common = ath9k_hw_common(ah);
  629. REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
  630. if (IS_CHAN_HT20(chan)) {
  631. REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
  632. REG_SET_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
  633. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
  634. AR_PHY_AGC_CONTROL_FLTR_CAL);
  635. REG_CLR_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
  636. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
  637. if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
  638. AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT)) {
  639. ath_print(common, ATH_DBG_CALIBRATE, "offset "
  640. "calibration failed to complete in "
  641. "1ms; noisy ??\n");
  642. return false;
  643. }
  644. REG_CLR_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
  645. REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
  646. REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
  647. }
  648. REG_CLR_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
  649. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
  650. REG_SET_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
  651. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
  652. if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL,
  653. 0, AH_WAIT_TIMEOUT)) {
  654. ath_print(common, ATH_DBG_CALIBRATE, "offset calibration "
  655. "failed to complete in 1ms; noisy ??\n");
  656. return false;
  657. }
  658. REG_SET_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
  659. REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
  660. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
  661. return true;
  662. }
  663. static bool ar9285_hw_clc(struct ath_hw *ah, struct ath9k_channel *chan)
  664. {
  665. int i;
  666. u_int32_t txgain_max;
  667. u_int32_t clc_gain, gain_mask = 0, clc_num = 0;
  668. u_int32_t reg_clc_I0, reg_clc_Q0;
  669. u_int32_t i0_num = 0;
  670. u_int32_t q0_num = 0;
  671. u_int32_t total_num = 0;
  672. u_int32_t reg_rf2g5_org;
  673. bool retv = true;
  674. if (!(ar9285_hw_cl_cal(ah, chan)))
  675. return false;
  676. txgain_max = MS(REG_READ(ah, AR_PHY_TX_PWRCTRL7),
  677. AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX);
  678. for (i = 0; i < (txgain_max+1); i++) {
  679. clc_gain = (REG_READ(ah, (AR_PHY_TX_GAIN_TBL1+(i<<2))) &
  680. AR_PHY_TX_GAIN_CLC) >> AR_PHY_TX_GAIN_CLC_S;
  681. if (!(gain_mask & (1 << clc_gain))) {
  682. gain_mask |= (1 << clc_gain);
  683. clc_num++;
  684. }
  685. }
  686. for (i = 0; i < clc_num; i++) {
  687. reg_clc_I0 = (REG_READ(ah, (AR_PHY_CLC_TBL1 + (i << 2)))
  688. & AR_PHY_CLC_I0) >> AR_PHY_CLC_I0_S;
  689. reg_clc_Q0 = (REG_READ(ah, (AR_PHY_CLC_TBL1 + (i << 2)))
  690. & AR_PHY_CLC_Q0) >> AR_PHY_CLC_Q0_S;
  691. if (reg_clc_I0 == 0)
  692. i0_num++;
  693. if (reg_clc_Q0 == 0)
  694. q0_num++;
  695. }
  696. total_num = i0_num + q0_num;
  697. if (total_num > AR9285_CLCAL_REDO_THRESH) {
  698. reg_rf2g5_org = REG_READ(ah, AR9285_RF2G5);
  699. if (AR_SREV_9285E_20(ah)) {
  700. REG_WRITE(ah, AR9285_RF2G5,
  701. (reg_rf2g5_org & AR9285_RF2G5_IC50TX) |
  702. AR9285_RF2G5_IC50TX_XE_SET);
  703. } else {
  704. REG_WRITE(ah, AR9285_RF2G5,
  705. (reg_rf2g5_org & AR9285_RF2G5_IC50TX) |
  706. AR9285_RF2G5_IC50TX_SET);
  707. }
  708. retv = ar9285_hw_cl_cal(ah, chan);
  709. REG_WRITE(ah, AR9285_RF2G5, reg_rf2g5_org);
  710. }
  711. return retv;
  712. }
  713. static bool ar9002_hw_init_cal(struct ath_hw *ah, struct ath9k_channel *chan)
  714. {
  715. struct ath_common *common = ath9k_hw_common(ah);
  716. if (AR_SREV_9271(ah) || AR_SREV_9285_12_OR_LATER(ah)) {
  717. if (!ar9285_hw_clc(ah, chan))
  718. return false;
  719. } else {
  720. if (AR_SREV_9280_10_OR_LATER(ah)) {
  721. if (!AR_SREV_9287_10_OR_LATER(ah))
  722. REG_CLR_BIT(ah, AR_PHY_ADC_CTL,
  723. AR_PHY_ADC_CTL_OFF_PWDADC);
  724. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
  725. AR_PHY_AGC_CONTROL_FLTR_CAL);
  726. }
  727. /* Calibrate the AGC */
  728. REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  729. REG_READ(ah, AR_PHY_AGC_CONTROL) |
  730. AR_PHY_AGC_CONTROL_CAL);
  731. /* Poll for offset calibration complete */
  732. if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
  733. AR_PHY_AGC_CONTROL_CAL,
  734. 0, AH_WAIT_TIMEOUT)) {
  735. ath_print(common, ATH_DBG_CALIBRATE,
  736. "offset calibration failed to "
  737. "complete in 1ms; noisy environment?\n");
  738. return false;
  739. }
  740. if (AR_SREV_9280_10_OR_LATER(ah)) {
  741. if (!AR_SREV_9287_10_OR_LATER(ah))
  742. REG_SET_BIT(ah, AR_PHY_ADC_CTL,
  743. AR_PHY_ADC_CTL_OFF_PWDADC);
  744. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
  745. AR_PHY_AGC_CONTROL_FLTR_CAL);
  746. }
  747. }
  748. /* Do PA Calibration */
  749. ar9002_hw_pa_cal(ah, true);
  750. /* Do NF Calibration after DC offset and other calibrations */
  751. ath9k_hw_start_nfcal(ah, true);
  752. ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
  753. /* Enable IQ, ADC Gain and ADC DC offset CALs */
  754. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) {
  755. if (ar9002_hw_iscal_supported(ah, ADC_GAIN_CAL)) {
  756. INIT_CAL(&ah->adcgain_caldata);
  757. INSERT_CAL(ah, &ah->adcgain_caldata);
  758. ath_print(common, ATH_DBG_CALIBRATE,
  759. "enabling ADC Gain Calibration.\n");
  760. }
  761. if (ar9002_hw_iscal_supported(ah, ADC_DC_CAL)) {
  762. INIT_CAL(&ah->adcdc_caldata);
  763. INSERT_CAL(ah, &ah->adcdc_caldata);
  764. ath_print(common, ATH_DBG_CALIBRATE,
  765. "enabling ADC DC Calibration.\n");
  766. }
  767. if (ar9002_hw_iscal_supported(ah, IQ_MISMATCH_CAL)) {
  768. INIT_CAL(&ah->iq_caldata);
  769. INSERT_CAL(ah, &ah->iq_caldata);
  770. ath_print(common, ATH_DBG_CALIBRATE,
  771. "enabling IQ Calibration.\n");
  772. }
  773. ah->cal_list_curr = ah->cal_list;
  774. if (ah->cal_list_curr)
  775. ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
  776. }
  777. if (ah->caldata)
  778. ah->caldata->CalValid = 0;
  779. return true;
  780. }
  781. static const struct ath9k_percal_data iq_cal_multi_sample = {
  782. IQ_MISMATCH_CAL,
  783. MAX_CAL_SAMPLES,
  784. PER_MIN_LOG_COUNT,
  785. ar9002_hw_iqcal_collect,
  786. ar9002_hw_iqcalibrate
  787. };
  788. static const struct ath9k_percal_data iq_cal_single_sample = {
  789. IQ_MISMATCH_CAL,
  790. MIN_CAL_SAMPLES,
  791. PER_MAX_LOG_COUNT,
  792. ar9002_hw_iqcal_collect,
  793. ar9002_hw_iqcalibrate
  794. };
  795. static const struct ath9k_percal_data adc_gain_cal_multi_sample = {
  796. ADC_GAIN_CAL,
  797. MAX_CAL_SAMPLES,
  798. PER_MIN_LOG_COUNT,
  799. ar9002_hw_adc_gaincal_collect,
  800. ar9002_hw_adc_gaincal_calibrate
  801. };
  802. static const struct ath9k_percal_data adc_gain_cal_single_sample = {
  803. ADC_GAIN_CAL,
  804. MIN_CAL_SAMPLES,
  805. PER_MAX_LOG_COUNT,
  806. ar9002_hw_adc_gaincal_collect,
  807. ar9002_hw_adc_gaincal_calibrate
  808. };
  809. static const struct ath9k_percal_data adc_dc_cal_multi_sample = {
  810. ADC_DC_CAL,
  811. MAX_CAL_SAMPLES,
  812. PER_MIN_LOG_COUNT,
  813. ar9002_hw_adc_dccal_collect,
  814. ar9002_hw_adc_dccal_calibrate
  815. };
  816. static const struct ath9k_percal_data adc_dc_cal_single_sample = {
  817. ADC_DC_CAL,
  818. MIN_CAL_SAMPLES,
  819. PER_MAX_LOG_COUNT,
  820. ar9002_hw_adc_dccal_collect,
  821. ar9002_hw_adc_dccal_calibrate
  822. };
  823. static const struct ath9k_percal_data adc_init_dc_cal = {
  824. ADC_DC_INIT_CAL,
  825. MIN_CAL_SAMPLES,
  826. INIT_LOG_COUNT,
  827. ar9002_hw_adc_dccal_collect,
  828. ar9002_hw_adc_dccal_calibrate
  829. };
  830. static void ar9002_hw_init_cal_settings(struct ath_hw *ah)
  831. {
  832. if (AR_SREV_9100(ah)) {
  833. ah->iq_caldata.calData = &iq_cal_multi_sample;
  834. ah->supp_cals = IQ_MISMATCH_CAL;
  835. return;
  836. }
  837. if (AR_SREV_9160_10_OR_LATER(ah)) {
  838. if (AR_SREV_9280_10_OR_LATER(ah)) {
  839. ah->iq_caldata.calData = &iq_cal_single_sample;
  840. ah->adcgain_caldata.calData =
  841. &adc_gain_cal_single_sample;
  842. ah->adcdc_caldata.calData =
  843. &adc_dc_cal_single_sample;
  844. ah->adcdc_calinitdata.calData =
  845. &adc_init_dc_cal;
  846. } else {
  847. ah->iq_caldata.calData = &iq_cal_multi_sample;
  848. ah->adcgain_caldata.calData =
  849. &adc_gain_cal_multi_sample;
  850. ah->adcdc_caldata.calData =
  851. &adc_dc_cal_multi_sample;
  852. ah->adcdc_calinitdata.calData =
  853. &adc_init_dc_cal;
  854. }
  855. ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  856. }
  857. }
  858. void ar9002_hw_attach_calib_ops(struct ath_hw *ah)
  859. {
  860. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  861. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  862. priv_ops->init_cal_settings = ar9002_hw_init_cal_settings;
  863. priv_ops->init_cal = ar9002_hw_init_cal;
  864. priv_ops->setup_calibration = ar9002_hw_setup_calibration;
  865. priv_ops->iscal_supported = ar9002_hw_iscal_supported;
  866. ops->calibrate = ar9002_hw_calibrate;
  867. }