intel_display.c 304 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  45. struct intel_crtc_config *pipe_config);
  46. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  47. struct intel_crtc_config *pipe_config);
  48. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  49. int x, int y, struct drm_framebuffer *old_fb);
  50. typedef struct {
  51. int min, max;
  52. } intel_range_t;
  53. typedef struct {
  54. int dot_limit;
  55. int p2_slow, p2_fast;
  56. } intel_p2_t;
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. int
  63. intel_pch_rawclk(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. WARN_ON(!HAS_PCH_SPLIT(dev));
  67. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  68. }
  69. static inline u32 /* units of 100MHz */
  70. intel_fdi_link_freq(struct drm_device *dev)
  71. {
  72. if (IS_GEN5(dev)) {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  75. } else
  76. return 27;
  77. }
  78. static const intel_limit_t intel_limits_i8xx_dac = {
  79. .dot = { .min = 25000, .max = 350000 },
  80. .vco = { .min = 930000, .max = 1400000 },
  81. .n = { .min = 3, .max = 16 },
  82. .m = { .min = 96, .max = 140 },
  83. .m1 = { .min = 18, .max = 26 },
  84. .m2 = { .min = 6, .max = 16 },
  85. .p = { .min = 4, .max = 128 },
  86. .p1 = { .min = 2, .max = 33 },
  87. .p2 = { .dot_limit = 165000,
  88. .p2_slow = 4, .p2_fast = 2 },
  89. };
  90. static const intel_limit_t intel_limits_i8xx_dvo = {
  91. .dot = { .min = 25000, .max = 350000 },
  92. .vco = { .min = 930000, .max = 1400000 },
  93. .n = { .min = 3, .max = 16 },
  94. .m = { .min = 96, .max = 140 },
  95. .m1 = { .min = 18, .max = 26 },
  96. .m2 = { .min = 6, .max = 16 },
  97. .p = { .min = 4, .max = 128 },
  98. .p1 = { .min = 2, .max = 33 },
  99. .p2 = { .dot_limit = 165000,
  100. .p2_slow = 4, .p2_fast = 4 },
  101. };
  102. static const intel_limit_t intel_limits_i8xx_lvds = {
  103. .dot = { .min = 25000, .max = 350000 },
  104. .vco = { .min = 930000, .max = 1400000 },
  105. .n = { .min = 3, .max = 16 },
  106. .m = { .min = 96, .max = 140 },
  107. .m1 = { .min = 18, .max = 26 },
  108. .m2 = { .min = 6, .max = 16 },
  109. .p = { .min = 4, .max = 128 },
  110. .p1 = { .min = 1, .max = 6 },
  111. .p2 = { .dot_limit = 165000,
  112. .p2_slow = 14, .p2_fast = 7 },
  113. };
  114. static const intel_limit_t intel_limits_i9xx_sdvo = {
  115. .dot = { .min = 20000, .max = 400000 },
  116. .vco = { .min = 1400000, .max = 2800000 },
  117. .n = { .min = 1, .max = 6 },
  118. .m = { .min = 70, .max = 120 },
  119. .m1 = { .min = 8, .max = 18 },
  120. .m2 = { .min = 3, .max = 7 },
  121. .p = { .min = 5, .max = 80 },
  122. .p1 = { .min = 1, .max = 8 },
  123. .p2 = { .dot_limit = 200000,
  124. .p2_slow = 10, .p2_fast = 5 },
  125. };
  126. static const intel_limit_t intel_limits_i9xx_lvds = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 8, .max = 18 },
  132. .m2 = { .min = 3, .max = 7 },
  133. .p = { .min = 7, .max = 98 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 112000,
  136. .p2_slow = 14, .p2_fast = 7 },
  137. };
  138. static const intel_limit_t intel_limits_g4x_sdvo = {
  139. .dot = { .min = 25000, .max = 270000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 17, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 10, .max = 30 },
  146. .p1 = { .min = 1, .max = 3},
  147. .p2 = { .dot_limit = 270000,
  148. .p2_slow = 10,
  149. .p2_fast = 10
  150. },
  151. };
  152. static const intel_limit_t intel_limits_g4x_hdmi = {
  153. .dot = { .min = 22000, .max = 400000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 16, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 5, .max = 80 },
  160. .p1 = { .min = 1, .max = 8},
  161. .p2 = { .dot_limit = 165000,
  162. .p2_slow = 10, .p2_fast = 5 },
  163. };
  164. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  165. .dot = { .min = 20000, .max = 115000 },
  166. .vco = { .min = 1750000, .max = 3500000 },
  167. .n = { .min = 1, .max = 3 },
  168. .m = { .min = 104, .max = 138 },
  169. .m1 = { .min = 17, .max = 23 },
  170. .m2 = { .min = 5, .max = 11 },
  171. .p = { .min = 28, .max = 112 },
  172. .p1 = { .min = 2, .max = 8 },
  173. .p2 = { .dot_limit = 0,
  174. .p2_slow = 14, .p2_fast = 14
  175. },
  176. };
  177. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  178. .dot = { .min = 80000, .max = 224000 },
  179. .vco = { .min = 1750000, .max = 3500000 },
  180. .n = { .min = 1, .max = 3 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 14, .max = 42 },
  185. .p1 = { .min = 2, .max = 6 },
  186. .p2 = { .dot_limit = 0,
  187. .p2_slow = 7, .p2_fast = 7
  188. },
  189. };
  190. static const intel_limit_t intel_limits_pineview_sdvo = {
  191. .dot = { .min = 20000, .max = 400000},
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. /* Pineview's Ncounter is a ring counter */
  194. .n = { .min = 3, .max = 6 },
  195. .m = { .min = 2, .max = 256 },
  196. /* Pineview only has one combined m divider, which we treat as m2. */
  197. .m1 = { .min = 0, .max = 0 },
  198. .m2 = { .min = 0, .max = 254 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8 },
  201. .p2 = { .dot_limit = 200000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. };
  204. static const intel_limit_t intel_limits_pineview_lvds = {
  205. .dot = { .min = 20000, .max = 400000 },
  206. .vco = { .min = 1700000, .max = 3500000 },
  207. .n = { .min = 3, .max = 6 },
  208. .m = { .min = 2, .max = 256 },
  209. .m1 = { .min = 0, .max = 0 },
  210. .m2 = { .min = 0, .max = 254 },
  211. .p = { .min = 7, .max = 112 },
  212. .p1 = { .min = 1, .max = 8 },
  213. .p2 = { .dot_limit = 112000,
  214. .p2_slow = 14, .p2_fast = 14 },
  215. };
  216. /* Ironlake / Sandybridge
  217. *
  218. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  219. * the range value for them is (actual_value - 2).
  220. */
  221. static const intel_limit_t intel_limits_ironlake_dac = {
  222. .dot = { .min = 25000, .max = 350000 },
  223. .vco = { .min = 1760000, .max = 3510000 },
  224. .n = { .min = 1, .max = 5 },
  225. .m = { .min = 79, .max = 127 },
  226. .m1 = { .min = 12, .max = 22 },
  227. .m2 = { .min = 5, .max = 9 },
  228. .p = { .min = 5, .max = 80 },
  229. .p1 = { .min = 1, .max = 8 },
  230. .p2 = { .dot_limit = 225000,
  231. .p2_slow = 10, .p2_fast = 5 },
  232. };
  233. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  234. .dot = { .min = 25000, .max = 350000 },
  235. .vco = { .min = 1760000, .max = 3510000 },
  236. .n = { .min = 1, .max = 3 },
  237. .m = { .min = 79, .max = 118 },
  238. .m1 = { .min = 12, .max = 22 },
  239. .m2 = { .min = 5, .max = 9 },
  240. .p = { .min = 28, .max = 112 },
  241. .p1 = { .min = 2, .max = 8 },
  242. .p2 = { .dot_limit = 225000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. };
  245. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  246. .dot = { .min = 25000, .max = 350000 },
  247. .vco = { .min = 1760000, .max = 3510000 },
  248. .n = { .min = 1, .max = 3 },
  249. .m = { .min = 79, .max = 127 },
  250. .m1 = { .min = 12, .max = 22 },
  251. .m2 = { .min = 5, .max = 9 },
  252. .p = { .min = 14, .max = 56 },
  253. .p1 = { .min = 2, .max = 8 },
  254. .p2 = { .dot_limit = 225000,
  255. .p2_slow = 7, .p2_fast = 7 },
  256. };
  257. /* LVDS 100mhz refclk limits. */
  258. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  259. .dot = { .min = 25000, .max = 350000 },
  260. .vco = { .min = 1760000, .max = 3510000 },
  261. .n = { .min = 1, .max = 2 },
  262. .m = { .min = 79, .max = 126 },
  263. .m1 = { .min = 12, .max = 22 },
  264. .m2 = { .min = 5, .max = 9 },
  265. .p = { .min = 28, .max = 112 },
  266. .p1 = { .min = 2, .max = 8 },
  267. .p2 = { .dot_limit = 225000,
  268. .p2_slow = 14, .p2_fast = 14 },
  269. };
  270. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 126 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 14, .max = 42 },
  278. .p1 = { .min = 2, .max = 6 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 7, .p2_fast = 7 },
  281. };
  282. static const intel_limit_t intel_limits_vlv = {
  283. /*
  284. * These are the data rate limits (measured in fast clocks)
  285. * since those are the strictest limits we have. The fast
  286. * clock and actual rate limits are more relaxed, so checking
  287. * them would make no difference.
  288. */
  289. .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  290. .vco = { .min = 4000000, .max = 6000000 },
  291. .n = { .min = 1, .max = 7 },
  292. .m1 = { .min = 2, .max = 3 },
  293. .m2 = { .min = 11, .max = 156 },
  294. .p1 = { .min = 2, .max = 3 },
  295. .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  296. };
  297. static void vlv_clock(int refclk, intel_clock_t *clock)
  298. {
  299. clock->m = clock->m1 * clock->m2;
  300. clock->p = clock->p1 * clock->p2;
  301. clock->vco = refclk * clock->m / clock->n;
  302. clock->dot = clock->vco / clock->p;
  303. }
  304. /**
  305. * Returns whether any output on the specified pipe is of the specified type
  306. */
  307. static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  308. {
  309. struct drm_device *dev = crtc->dev;
  310. struct intel_encoder *encoder;
  311. for_each_encoder_on_crtc(dev, crtc, encoder)
  312. if (encoder->type == type)
  313. return true;
  314. return false;
  315. }
  316. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  317. int refclk)
  318. {
  319. struct drm_device *dev = crtc->dev;
  320. const intel_limit_t *limit;
  321. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  322. if (intel_is_dual_link_lvds(dev)) {
  323. if (refclk == 100000)
  324. limit = &intel_limits_ironlake_dual_lvds_100m;
  325. else
  326. limit = &intel_limits_ironlake_dual_lvds;
  327. } else {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_single_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_single_lvds;
  332. }
  333. } else
  334. limit = &intel_limits_ironlake_dac;
  335. return limit;
  336. }
  337. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  338. {
  339. struct drm_device *dev = crtc->dev;
  340. const intel_limit_t *limit;
  341. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  342. if (intel_is_dual_link_lvds(dev))
  343. limit = &intel_limits_g4x_dual_channel_lvds;
  344. else
  345. limit = &intel_limits_g4x_single_channel_lvds;
  346. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  347. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  348. limit = &intel_limits_g4x_hdmi;
  349. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  350. limit = &intel_limits_g4x_sdvo;
  351. } else /* The option is for other outputs */
  352. limit = &intel_limits_i9xx_sdvo;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. const intel_limit_t *limit;
  359. if (HAS_PCH_SPLIT(dev))
  360. limit = intel_ironlake_limit(crtc, refclk);
  361. else if (IS_G4X(dev)) {
  362. limit = intel_g4x_limit(crtc);
  363. } else if (IS_PINEVIEW(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_pineview_lvds;
  366. else
  367. limit = &intel_limits_pineview_sdvo;
  368. } else if (IS_VALLEYVIEW(dev)) {
  369. limit = &intel_limits_vlv;
  370. } else if (!IS_GEN2(dev)) {
  371. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  372. limit = &intel_limits_i9xx_lvds;
  373. else
  374. limit = &intel_limits_i9xx_sdvo;
  375. } else {
  376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  377. limit = &intel_limits_i8xx_lvds;
  378. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  379. limit = &intel_limits_i8xx_dvo;
  380. else
  381. limit = &intel_limits_i8xx_dac;
  382. }
  383. return limit;
  384. }
  385. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  386. static void pineview_clock(int refclk, intel_clock_t *clock)
  387. {
  388. clock->m = clock->m2 + 2;
  389. clock->p = clock->p1 * clock->p2;
  390. clock->vco = refclk * clock->m / clock->n;
  391. clock->dot = clock->vco / clock->p;
  392. }
  393. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  394. {
  395. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  396. }
  397. static void i9xx_clock(int refclk, intel_clock_t *clock)
  398. {
  399. clock->m = i9xx_dpll_compute_m(clock);
  400. clock->p = clock->p1 * clock->p2;
  401. clock->vco = refclk * clock->m / (clock->n + 2);
  402. clock->dot = clock->vco / clock->p;
  403. }
  404. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  405. /**
  406. * Returns whether the given set of divisors are valid for a given refclk with
  407. * the given connectors.
  408. */
  409. static bool intel_PLL_is_valid(struct drm_device *dev,
  410. const intel_limit_t *limit,
  411. const intel_clock_t *clock)
  412. {
  413. if (clock->n < limit->n.min || limit->n.max < clock->n)
  414. INTELPllInvalid("n out of range\n");
  415. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  416. INTELPllInvalid("p1 out of range\n");
  417. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  418. INTELPllInvalid("m2 out of range\n");
  419. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  420. INTELPllInvalid("m1 out of range\n");
  421. if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
  422. if (clock->m1 <= clock->m2)
  423. INTELPllInvalid("m1 <= m2\n");
  424. if (!IS_VALLEYVIEW(dev)) {
  425. if (clock->p < limit->p.min || limit->p.max < clock->p)
  426. INTELPllInvalid("p out of range\n");
  427. if (clock->m < limit->m.min || limit->m.max < clock->m)
  428. INTELPllInvalid("m out of range\n");
  429. }
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. intel_clock_t clock;
  604. unsigned int bestppm = 1000000;
  605. /* min update 19.2 MHz */
  606. int max_n = min(limit->n.max, refclk / 19200);
  607. bool found = false;
  608. target *= 5; /* fast clock */
  609. memset(best_clock, 0, sizeof(*best_clock));
  610. /* based on hardware requirement, prefer smaller n to precision */
  611. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  612. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  613. for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  614. clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  615. clock.p = clock.p1 * clock.p2;
  616. /* based on hardware requirement, prefer bigger m1,m2 values */
  617. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  618. unsigned int ppm, diff;
  619. clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  620. refclk * clock.m1);
  621. vlv_clock(refclk, &clock);
  622. if (!intel_PLL_is_valid(dev, limit,
  623. &clock))
  624. continue;
  625. diff = abs(clock.dot - target);
  626. ppm = div_u64(1000000ULL * diff, target);
  627. if (ppm < 100 && clock.p > best_clock->p) {
  628. bestppm = 0;
  629. *best_clock = clock;
  630. found = true;
  631. }
  632. if (bestppm >= 10 && ppm < bestppm - 10) {
  633. bestppm = ppm;
  634. *best_clock = clock;
  635. found = true;
  636. }
  637. }
  638. }
  639. }
  640. }
  641. return found;
  642. }
  643. bool intel_crtc_active(struct drm_crtc *crtc)
  644. {
  645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  646. /* Be paranoid as we can arrive here with only partial
  647. * state retrieved from the hardware during setup.
  648. *
  649. * We can ditch the adjusted_mode.crtc_clock check as soon
  650. * as Haswell has gained clock readout/fastboot support.
  651. *
  652. * We can ditch the crtc->fb check as soon as we can
  653. * properly reconstruct framebuffers.
  654. */
  655. return intel_crtc->active && crtc->fb &&
  656. intel_crtc->config.adjusted_mode.crtc_clock;
  657. }
  658. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  659. enum pipe pipe)
  660. {
  661. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  663. return intel_crtc->config.cpu_transcoder;
  664. }
  665. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. u32 frame, frame_reg = PIPEFRAME(pipe);
  669. frame = I915_READ(frame_reg);
  670. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  671. DRM_DEBUG_KMS("vblank wait timed out\n");
  672. }
  673. /**
  674. * intel_wait_for_vblank - wait for vblank on a given pipe
  675. * @dev: drm device
  676. * @pipe: pipe to wait for
  677. *
  678. * Wait for vblank to occur on a given pipe. Needed for various bits of
  679. * mode setting code.
  680. */
  681. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. int pipestat_reg = PIPESTAT(pipe);
  685. if (INTEL_INFO(dev)->gen >= 5) {
  686. ironlake_wait_for_vblank(dev, pipe);
  687. return;
  688. }
  689. /* Clear existing vblank status. Note this will clear any other
  690. * sticky status fields as well.
  691. *
  692. * This races with i915_driver_irq_handler() with the result
  693. * that either function could miss a vblank event. Here it is not
  694. * fatal, as we will either wait upon the next vblank interrupt or
  695. * timeout. Generally speaking intel_wait_for_vblank() is only
  696. * called during modeset at which time the GPU should be idle and
  697. * should *not* be performing page flips and thus not waiting on
  698. * vblanks...
  699. * Currently, the result of us stealing a vblank from the irq
  700. * handler is that a single frame will be skipped during swapbuffers.
  701. */
  702. I915_WRITE(pipestat_reg,
  703. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  704. /* Wait for vblank interrupt bit to set */
  705. if (wait_for(I915_READ(pipestat_reg) &
  706. PIPE_VBLANK_INTERRUPT_STATUS,
  707. 50))
  708. DRM_DEBUG_KMS("vblank wait timed out\n");
  709. }
  710. /*
  711. * intel_wait_for_pipe_off - wait for pipe to turn off
  712. * @dev: drm device
  713. * @pipe: pipe to wait for
  714. *
  715. * After disabling a pipe, we can't wait for vblank in the usual way,
  716. * spinning on the vblank interrupt status bit, since we won't actually
  717. * see an interrupt when the pipe is disabled.
  718. *
  719. * On Gen4 and above:
  720. * wait for the pipe register state bit to turn off
  721. *
  722. * Otherwise:
  723. * wait for the display line value to settle (it usually
  724. * ends up stopping at the start of the next frame).
  725. *
  726. */
  727. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  731. pipe);
  732. if (INTEL_INFO(dev)->gen >= 4) {
  733. int reg = PIPECONF(cpu_transcoder);
  734. /* Wait for the Pipe State to go off */
  735. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  736. 100))
  737. WARN(1, "pipe_off wait timed out\n");
  738. } else {
  739. u32 last_line, line_mask;
  740. int reg = PIPEDSL(pipe);
  741. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  742. if (IS_GEN2(dev))
  743. line_mask = DSL_LINEMASK_GEN2;
  744. else
  745. line_mask = DSL_LINEMASK_GEN3;
  746. /* Wait for the display line to settle */
  747. do {
  748. last_line = I915_READ(reg) & line_mask;
  749. mdelay(5);
  750. } while (((I915_READ(reg) & line_mask) != last_line) &&
  751. time_after(timeout, jiffies));
  752. if (time_after(jiffies, timeout))
  753. WARN(1, "pipe_off wait timed out\n");
  754. }
  755. }
  756. /*
  757. * ibx_digital_port_connected - is the specified port connected?
  758. * @dev_priv: i915 private structure
  759. * @port: the port to test
  760. *
  761. * Returns true if @port is connected, false otherwise.
  762. */
  763. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  764. struct intel_digital_port *port)
  765. {
  766. u32 bit;
  767. if (HAS_PCH_IBX(dev_priv->dev)) {
  768. switch(port->port) {
  769. case PORT_B:
  770. bit = SDE_PORTB_HOTPLUG;
  771. break;
  772. case PORT_C:
  773. bit = SDE_PORTC_HOTPLUG;
  774. break;
  775. case PORT_D:
  776. bit = SDE_PORTD_HOTPLUG;
  777. break;
  778. default:
  779. return true;
  780. }
  781. } else {
  782. switch(port->port) {
  783. case PORT_B:
  784. bit = SDE_PORTB_HOTPLUG_CPT;
  785. break;
  786. case PORT_C:
  787. bit = SDE_PORTC_HOTPLUG_CPT;
  788. break;
  789. case PORT_D:
  790. bit = SDE_PORTD_HOTPLUG_CPT;
  791. break;
  792. default:
  793. return true;
  794. }
  795. }
  796. return I915_READ(SDEISR) & bit;
  797. }
  798. static const char *state_string(bool enabled)
  799. {
  800. return enabled ? "on" : "off";
  801. }
  802. /* Only for pre-ILK configs */
  803. void assert_pll(struct drm_i915_private *dev_priv,
  804. enum pipe pipe, bool state)
  805. {
  806. int reg;
  807. u32 val;
  808. bool cur_state;
  809. reg = DPLL(pipe);
  810. val = I915_READ(reg);
  811. cur_state = !!(val & DPLL_VCO_ENABLE);
  812. WARN(cur_state != state,
  813. "PLL state assertion failure (expected %s, current %s)\n",
  814. state_string(state), state_string(cur_state));
  815. }
  816. /* XXX: the dsi pll is shared between MIPI DSI ports */
  817. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  818. {
  819. u32 val;
  820. bool cur_state;
  821. mutex_lock(&dev_priv->dpio_lock);
  822. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  823. mutex_unlock(&dev_priv->dpio_lock);
  824. cur_state = val & DSI_PLL_VCO_EN;
  825. WARN(cur_state != state,
  826. "DSI PLL state assertion failure (expected %s, current %s)\n",
  827. state_string(state), state_string(cur_state));
  828. }
  829. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  830. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  831. struct intel_shared_dpll *
  832. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  833. {
  834. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  835. if (crtc->config.shared_dpll < 0)
  836. return NULL;
  837. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  838. }
  839. /* For ILK+ */
  840. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  841. struct intel_shared_dpll *pll,
  842. bool state)
  843. {
  844. bool cur_state;
  845. struct intel_dpll_hw_state hw_state;
  846. if (HAS_PCH_LPT(dev_priv->dev)) {
  847. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  848. return;
  849. }
  850. if (WARN (!pll,
  851. "asserting DPLL %s with no DPLL\n", state_string(state)))
  852. return;
  853. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  854. WARN(cur_state != state,
  855. "%s assertion failure (expected %s, current %s)\n",
  856. pll->name, state_string(state), state_string(cur_state));
  857. }
  858. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  859. enum pipe pipe, bool state)
  860. {
  861. int reg;
  862. u32 val;
  863. bool cur_state;
  864. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  865. pipe);
  866. if (HAS_DDI(dev_priv->dev)) {
  867. /* DDI does not have a specific FDI_TX register */
  868. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  869. val = I915_READ(reg);
  870. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  871. } else {
  872. reg = FDI_TX_CTL(pipe);
  873. val = I915_READ(reg);
  874. cur_state = !!(val & FDI_TX_ENABLE);
  875. }
  876. WARN(cur_state != state,
  877. "FDI TX state assertion failure (expected %s, current %s)\n",
  878. state_string(state), state_string(cur_state));
  879. }
  880. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  881. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  882. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  883. enum pipe pipe, bool state)
  884. {
  885. int reg;
  886. u32 val;
  887. bool cur_state;
  888. reg = FDI_RX_CTL(pipe);
  889. val = I915_READ(reg);
  890. cur_state = !!(val & FDI_RX_ENABLE);
  891. WARN(cur_state != state,
  892. "FDI RX state assertion failure (expected %s, current %s)\n",
  893. state_string(state), state_string(cur_state));
  894. }
  895. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  896. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  897. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  898. enum pipe pipe)
  899. {
  900. int reg;
  901. u32 val;
  902. /* ILK FDI PLL is always enabled */
  903. if (dev_priv->info->gen == 5)
  904. return;
  905. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  906. if (HAS_DDI(dev_priv->dev))
  907. return;
  908. reg = FDI_TX_CTL(pipe);
  909. val = I915_READ(reg);
  910. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  911. }
  912. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  913. enum pipe pipe, bool state)
  914. {
  915. int reg;
  916. u32 val;
  917. bool cur_state;
  918. reg = FDI_RX_CTL(pipe);
  919. val = I915_READ(reg);
  920. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  921. WARN(cur_state != state,
  922. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  923. state_string(state), state_string(cur_state));
  924. }
  925. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  926. enum pipe pipe)
  927. {
  928. int pp_reg, lvds_reg;
  929. u32 val;
  930. enum pipe panel_pipe = PIPE_A;
  931. bool locked = true;
  932. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  933. pp_reg = PCH_PP_CONTROL;
  934. lvds_reg = PCH_LVDS;
  935. } else {
  936. pp_reg = PP_CONTROL;
  937. lvds_reg = LVDS;
  938. }
  939. val = I915_READ(pp_reg);
  940. if (!(val & PANEL_POWER_ON) ||
  941. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  942. locked = false;
  943. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  944. panel_pipe = PIPE_B;
  945. WARN(panel_pipe == pipe && locked,
  946. "panel assertion failure, pipe %c regs locked\n",
  947. pipe_name(pipe));
  948. }
  949. static void assert_cursor(struct drm_i915_private *dev_priv,
  950. enum pipe pipe, bool state)
  951. {
  952. struct drm_device *dev = dev_priv->dev;
  953. bool cur_state;
  954. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  955. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  956. else if (IS_845G(dev) || IS_I865G(dev))
  957. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  958. else
  959. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  960. WARN(cur_state != state,
  961. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  962. pipe_name(pipe), state_string(state), state_string(cur_state));
  963. }
  964. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  965. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  966. void assert_pipe(struct drm_i915_private *dev_priv,
  967. enum pipe pipe, bool state)
  968. {
  969. int reg;
  970. u32 val;
  971. bool cur_state;
  972. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  973. pipe);
  974. /* if we need the pipe A quirk it must be always on */
  975. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  976. state = true;
  977. if (!intel_display_power_enabled(dev_priv->dev,
  978. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  979. cur_state = false;
  980. } else {
  981. reg = PIPECONF(cpu_transcoder);
  982. val = I915_READ(reg);
  983. cur_state = !!(val & PIPECONF_ENABLE);
  984. }
  985. WARN(cur_state != state,
  986. "pipe %c assertion failure (expected %s, current %s)\n",
  987. pipe_name(pipe), state_string(state), state_string(cur_state));
  988. }
  989. static void assert_plane(struct drm_i915_private *dev_priv,
  990. enum plane plane, bool state)
  991. {
  992. int reg;
  993. u32 val;
  994. bool cur_state;
  995. reg = DSPCNTR(plane);
  996. val = I915_READ(reg);
  997. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  998. WARN(cur_state != state,
  999. "plane %c assertion failure (expected %s, current %s)\n",
  1000. plane_name(plane), state_string(state), state_string(cur_state));
  1001. }
  1002. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1003. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1004. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1005. enum pipe pipe)
  1006. {
  1007. struct drm_device *dev = dev_priv->dev;
  1008. int reg, i;
  1009. u32 val;
  1010. int cur_pipe;
  1011. /* Primary planes are fixed to pipes on gen4+ */
  1012. if (INTEL_INFO(dev)->gen >= 4) {
  1013. reg = DSPCNTR(pipe);
  1014. val = I915_READ(reg);
  1015. WARN((val & DISPLAY_PLANE_ENABLE),
  1016. "plane %c assertion failure, should be disabled but not\n",
  1017. plane_name(pipe));
  1018. return;
  1019. }
  1020. /* Need to check both planes against the pipe */
  1021. for_each_pipe(i) {
  1022. reg = DSPCNTR(i);
  1023. val = I915_READ(reg);
  1024. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1025. DISPPLANE_SEL_PIPE_SHIFT;
  1026. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1027. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(i), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1032. enum pipe pipe)
  1033. {
  1034. struct drm_device *dev = dev_priv->dev;
  1035. int reg, i;
  1036. u32 val;
  1037. if (IS_VALLEYVIEW(dev)) {
  1038. for (i = 0; i < dev_priv->num_plane; i++) {
  1039. reg = SPCNTR(pipe, i);
  1040. val = I915_READ(reg);
  1041. WARN((val & SP_ENABLE),
  1042. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1043. sprite_name(pipe, i), pipe_name(pipe));
  1044. }
  1045. } else if (INTEL_INFO(dev)->gen >= 7) {
  1046. reg = SPRCTL(pipe);
  1047. val = I915_READ(reg);
  1048. WARN((val & SPRITE_ENABLE),
  1049. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1050. plane_name(pipe), pipe_name(pipe));
  1051. } else if (INTEL_INFO(dev)->gen >= 5) {
  1052. reg = DVSCNTR(pipe);
  1053. val = I915_READ(reg);
  1054. WARN((val & DVS_ENABLE),
  1055. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1056. plane_name(pipe), pipe_name(pipe));
  1057. }
  1058. }
  1059. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1060. {
  1061. u32 val;
  1062. bool enabled;
  1063. if (HAS_PCH_LPT(dev_priv->dev)) {
  1064. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1065. return;
  1066. }
  1067. val = I915_READ(PCH_DREF_CONTROL);
  1068. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1069. DREF_SUPERSPREAD_SOURCE_MASK));
  1070. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1071. }
  1072. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1073. enum pipe pipe)
  1074. {
  1075. int reg;
  1076. u32 val;
  1077. bool enabled;
  1078. reg = PCH_TRANSCONF(pipe);
  1079. val = I915_READ(reg);
  1080. enabled = !!(val & TRANS_ENABLE);
  1081. WARN(enabled,
  1082. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1083. pipe_name(pipe));
  1084. }
  1085. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1086. enum pipe pipe, u32 port_sel, u32 val)
  1087. {
  1088. if ((val & DP_PORT_EN) == 0)
  1089. return false;
  1090. if (HAS_PCH_CPT(dev_priv->dev)) {
  1091. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1092. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1093. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1094. return false;
  1095. } else {
  1096. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & SDVO_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, u32 val)
  1117. {
  1118. if ((val & LVDS_PORT_EN) == 0)
  1119. return false;
  1120. if (HAS_PCH_CPT(dev_priv->dev)) {
  1121. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1122. return false;
  1123. } else {
  1124. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1125. return false;
  1126. }
  1127. return true;
  1128. }
  1129. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1130. enum pipe pipe, u32 val)
  1131. {
  1132. if ((val & ADPA_DAC_ENABLE) == 0)
  1133. return false;
  1134. if (HAS_PCH_CPT(dev_priv->dev)) {
  1135. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1136. return false;
  1137. } else {
  1138. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1139. return false;
  1140. }
  1141. return true;
  1142. }
  1143. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1144. enum pipe pipe, int reg, u32 port_sel)
  1145. {
  1146. u32 val = I915_READ(reg);
  1147. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1148. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1149. reg, pipe_name(pipe));
  1150. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1151. && (val & DP_PIPEB_SELECT),
  1152. "IBX PCH dp port still using transcoder B\n");
  1153. }
  1154. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1155. enum pipe pipe, int reg)
  1156. {
  1157. u32 val = I915_READ(reg);
  1158. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1159. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1160. reg, pipe_name(pipe));
  1161. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1162. && (val & SDVO_PIPE_B_SELECT),
  1163. "IBX PCH hdmi port still using transcoder B\n");
  1164. }
  1165. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1166. enum pipe pipe)
  1167. {
  1168. int reg;
  1169. u32 val;
  1170. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1171. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1172. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1173. reg = PCH_ADPA;
  1174. val = I915_READ(reg);
  1175. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1176. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1177. pipe_name(pipe));
  1178. reg = PCH_LVDS;
  1179. val = I915_READ(reg);
  1180. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1181. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1182. pipe_name(pipe));
  1183. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1184. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1185. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1186. }
  1187. static void intel_init_dpio(struct drm_device *dev)
  1188. {
  1189. struct drm_i915_private *dev_priv = dev->dev_private;
  1190. if (!IS_VALLEYVIEW(dev))
  1191. return;
  1192. /*
  1193. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  1194. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  1195. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  1196. * b. The other bits such as sfr settings / modesel may all be set
  1197. * to 0.
  1198. *
  1199. * This should only be done on init and resume from S3 with both
  1200. * PLLs disabled, or we risk losing DPIO and PLL synchronization.
  1201. */
  1202. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  1203. }
  1204. static void vlv_enable_pll(struct intel_crtc *crtc)
  1205. {
  1206. struct drm_device *dev = crtc->base.dev;
  1207. struct drm_i915_private *dev_priv = dev->dev_private;
  1208. int reg = DPLL(crtc->pipe);
  1209. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1210. assert_pipe_disabled(dev_priv, crtc->pipe);
  1211. /* No really, not for ILK+ */
  1212. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1213. /* PLL is protected by panel, make sure we can write it */
  1214. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1215. assert_panel_unlocked(dev_priv, crtc->pipe);
  1216. I915_WRITE(reg, dpll);
  1217. POSTING_READ(reg);
  1218. udelay(150);
  1219. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1220. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1221. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1222. POSTING_READ(DPLL_MD(crtc->pipe));
  1223. /* We do this three times for luck */
  1224. I915_WRITE(reg, dpll);
  1225. POSTING_READ(reg);
  1226. udelay(150); /* wait for warmup */
  1227. I915_WRITE(reg, dpll);
  1228. POSTING_READ(reg);
  1229. udelay(150); /* wait for warmup */
  1230. I915_WRITE(reg, dpll);
  1231. POSTING_READ(reg);
  1232. udelay(150); /* wait for warmup */
  1233. }
  1234. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1235. {
  1236. struct drm_device *dev = crtc->base.dev;
  1237. struct drm_i915_private *dev_priv = dev->dev_private;
  1238. int reg = DPLL(crtc->pipe);
  1239. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1240. assert_pipe_disabled(dev_priv, crtc->pipe);
  1241. /* No really, not for ILK+ */
  1242. BUG_ON(dev_priv->info->gen >= 5);
  1243. /* PLL is protected by panel, make sure we can write it */
  1244. if (IS_MOBILE(dev) && !IS_I830(dev))
  1245. assert_panel_unlocked(dev_priv, crtc->pipe);
  1246. I915_WRITE(reg, dpll);
  1247. /* Wait for the clocks to stabilize. */
  1248. POSTING_READ(reg);
  1249. udelay(150);
  1250. if (INTEL_INFO(dev)->gen >= 4) {
  1251. I915_WRITE(DPLL_MD(crtc->pipe),
  1252. crtc->config.dpll_hw_state.dpll_md);
  1253. } else {
  1254. /* The pixel multiplier can only be updated once the
  1255. * DPLL is enabled and the clocks are stable.
  1256. *
  1257. * So write it again.
  1258. */
  1259. I915_WRITE(reg, dpll);
  1260. }
  1261. /* We do this three times for luck */
  1262. I915_WRITE(reg, dpll);
  1263. POSTING_READ(reg);
  1264. udelay(150); /* wait for warmup */
  1265. I915_WRITE(reg, dpll);
  1266. POSTING_READ(reg);
  1267. udelay(150); /* wait for warmup */
  1268. I915_WRITE(reg, dpll);
  1269. POSTING_READ(reg);
  1270. udelay(150); /* wait for warmup */
  1271. }
  1272. /**
  1273. * i9xx_disable_pll - disable a PLL
  1274. * @dev_priv: i915 private structure
  1275. * @pipe: pipe PLL to disable
  1276. *
  1277. * Disable the PLL for @pipe, making sure the pipe is off first.
  1278. *
  1279. * Note! This is for pre-ILK only.
  1280. */
  1281. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1282. {
  1283. /* Don't disable pipe A or pipe A PLLs if needed */
  1284. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1285. return;
  1286. /* Make sure the pipe isn't still relying on us */
  1287. assert_pipe_disabled(dev_priv, pipe);
  1288. I915_WRITE(DPLL(pipe), 0);
  1289. POSTING_READ(DPLL(pipe));
  1290. }
  1291. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1292. {
  1293. u32 val = 0;
  1294. /* Make sure the pipe isn't still relying on us */
  1295. assert_pipe_disabled(dev_priv, pipe);
  1296. /* Leave integrated clock source enabled */
  1297. if (pipe == PIPE_B)
  1298. val = DPLL_INTEGRATED_CRI_CLK_VLV;
  1299. I915_WRITE(DPLL(pipe), val);
  1300. POSTING_READ(DPLL(pipe));
  1301. }
  1302. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1303. {
  1304. u32 port_mask;
  1305. if (!port)
  1306. port_mask = DPLL_PORTB_READY_MASK;
  1307. else
  1308. port_mask = DPLL_PORTC_READY_MASK;
  1309. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1310. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1311. 'B' + port, I915_READ(DPLL(0)));
  1312. }
  1313. /**
  1314. * ironlake_enable_shared_dpll - enable PCH PLL
  1315. * @dev_priv: i915 private structure
  1316. * @pipe: pipe PLL to enable
  1317. *
  1318. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1319. * drives the transcoder clock.
  1320. */
  1321. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1322. {
  1323. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1324. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1325. /* PCH PLLs only available on ILK, SNB and IVB */
  1326. BUG_ON(dev_priv->info->gen < 5);
  1327. if (WARN_ON(pll == NULL))
  1328. return;
  1329. if (WARN_ON(pll->refcount == 0))
  1330. return;
  1331. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1332. pll->name, pll->active, pll->on,
  1333. crtc->base.base.id);
  1334. if (pll->active++) {
  1335. WARN_ON(!pll->on);
  1336. assert_shared_dpll_enabled(dev_priv, pll);
  1337. return;
  1338. }
  1339. WARN_ON(pll->on);
  1340. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1341. pll->enable(dev_priv, pll);
  1342. pll->on = true;
  1343. }
  1344. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1345. {
  1346. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1347. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1348. /* PCH only available on ILK+ */
  1349. BUG_ON(dev_priv->info->gen < 5);
  1350. if (WARN_ON(pll == NULL))
  1351. return;
  1352. if (WARN_ON(pll->refcount == 0))
  1353. return;
  1354. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1355. pll->name, pll->active, pll->on,
  1356. crtc->base.base.id);
  1357. if (WARN_ON(pll->active == 0)) {
  1358. assert_shared_dpll_disabled(dev_priv, pll);
  1359. return;
  1360. }
  1361. assert_shared_dpll_enabled(dev_priv, pll);
  1362. WARN_ON(!pll->on);
  1363. if (--pll->active)
  1364. return;
  1365. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1366. pll->disable(dev_priv, pll);
  1367. pll->on = false;
  1368. }
  1369. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1370. enum pipe pipe)
  1371. {
  1372. struct drm_device *dev = dev_priv->dev;
  1373. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1375. uint32_t reg, val, pipeconf_val;
  1376. /* PCH only available on ILK+ */
  1377. BUG_ON(dev_priv->info->gen < 5);
  1378. /* Make sure PCH DPLL is enabled */
  1379. assert_shared_dpll_enabled(dev_priv,
  1380. intel_crtc_to_shared_dpll(intel_crtc));
  1381. /* FDI must be feeding us bits for PCH ports */
  1382. assert_fdi_tx_enabled(dev_priv, pipe);
  1383. assert_fdi_rx_enabled(dev_priv, pipe);
  1384. if (HAS_PCH_CPT(dev)) {
  1385. /* Workaround: Set the timing override bit before enabling the
  1386. * pch transcoder. */
  1387. reg = TRANS_CHICKEN2(pipe);
  1388. val = I915_READ(reg);
  1389. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1390. I915_WRITE(reg, val);
  1391. }
  1392. reg = PCH_TRANSCONF(pipe);
  1393. val = I915_READ(reg);
  1394. pipeconf_val = I915_READ(PIPECONF(pipe));
  1395. if (HAS_PCH_IBX(dev_priv->dev)) {
  1396. /*
  1397. * make the BPC in transcoder be consistent with
  1398. * that in pipeconf reg.
  1399. */
  1400. val &= ~PIPECONF_BPC_MASK;
  1401. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1402. }
  1403. val &= ~TRANS_INTERLACE_MASK;
  1404. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1405. if (HAS_PCH_IBX(dev_priv->dev) &&
  1406. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1407. val |= TRANS_LEGACY_INTERLACED_ILK;
  1408. else
  1409. val |= TRANS_INTERLACED;
  1410. else
  1411. val |= TRANS_PROGRESSIVE;
  1412. I915_WRITE(reg, val | TRANS_ENABLE);
  1413. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1414. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1415. }
  1416. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1417. enum transcoder cpu_transcoder)
  1418. {
  1419. u32 val, pipeconf_val;
  1420. /* PCH only available on ILK+ */
  1421. BUG_ON(dev_priv->info->gen < 5);
  1422. /* FDI must be feeding us bits for PCH ports */
  1423. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1424. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1425. /* Workaround: set timing override bit. */
  1426. val = I915_READ(_TRANSA_CHICKEN2);
  1427. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1428. I915_WRITE(_TRANSA_CHICKEN2, val);
  1429. val = TRANS_ENABLE;
  1430. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1431. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1432. PIPECONF_INTERLACED_ILK)
  1433. val |= TRANS_INTERLACED;
  1434. else
  1435. val |= TRANS_PROGRESSIVE;
  1436. I915_WRITE(LPT_TRANSCONF, val);
  1437. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1438. DRM_ERROR("Failed to enable PCH transcoder\n");
  1439. }
  1440. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1441. enum pipe pipe)
  1442. {
  1443. struct drm_device *dev = dev_priv->dev;
  1444. uint32_t reg, val;
  1445. /* FDI relies on the transcoder */
  1446. assert_fdi_tx_disabled(dev_priv, pipe);
  1447. assert_fdi_rx_disabled(dev_priv, pipe);
  1448. /* Ports must be off as well */
  1449. assert_pch_ports_disabled(dev_priv, pipe);
  1450. reg = PCH_TRANSCONF(pipe);
  1451. val = I915_READ(reg);
  1452. val &= ~TRANS_ENABLE;
  1453. I915_WRITE(reg, val);
  1454. /* wait for PCH transcoder off, transcoder state */
  1455. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1456. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1457. if (!HAS_PCH_IBX(dev)) {
  1458. /* Workaround: Clear the timing override chicken bit again. */
  1459. reg = TRANS_CHICKEN2(pipe);
  1460. val = I915_READ(reg);
  1461. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1462. I915_WRITE(reg, val);
  1463. }
  1464. }
  1465. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1466. {
  1467. u32 val;
  1468. val = I915_READ(LPT_TRANSCONF);
  1469. val &= ~TRANS_ENABLE;
  1470. I915_WRITE(LPT_TRANSCONF, val);
  1471. /* wait for PCH transcoder off, transcoder state */
  1472. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1473. DRM_ERROR("Failed to disable PCH transcoder\n");
  1474. /* Workaround: clear timing override bit. */
  1475. val = I915_READ(_TRANSA_CHICKEN2);
  1476. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1477. I915_WRITE(_TRANSA_CHICKEN2, val);
  1478. }
  1479. /**
  1480. * intel_enable_pipe - enable a pipe, asserting requirements
  1481. * @dev_priv: i915 private structure
  1482. * @pipe: pipe to enable
  1483. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1484. *
  1485. * Enable @pipe, making sure that various hardware specific requirements
  1486. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1487. *
  1488. * @pipe should be %PIPE_A or %PIPE_B.
  1489. *
  1490. * Will wait until the pipe is actually running (i.e. first vblank) before
  1491. * returning.
  1492. */
  1493. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1494. bool pch_port, bool dsi)
  1495. {
  1496. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1497. pipe);
  1498. enum pipe pch_transcoder;
  1499. int reg;
  1500. u32 val;
  1501. assert_planes_disabled(dev_priv, pipe);
  1502. assert_cursor_disabled(dev_priv, pipe);
  1503. assert_sprites_disabled(dev_priv, pipe);
  1504. if (HAS_PCH_LPT(dev_priv->dev))
  1505. pch_transcoder = TRANSCODER_A;
  1506. else
  1507. pch_transcoder = pipe;
  1508. /*
  1509. * A pipe without a PLL won't actually be able to drive bits from
  1510. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1511. * need the check.
  1512. */
  1513. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1514. if (dsi)
  1515. assert_dsi_pll_enabled(dev_priv);
  1516. else
  1517. assert_pll_enabled(dev_priv, pipe);
  1518. else {
  1519. if (pch_port) {
  1520. /* if driving the PCH, we need FDI enabled */
  1521. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1522. assert_fdi_tx_pll_enabled(dev_priv,
  1523. (enum pipe) cpu_transcoder);
  1524. }
  1525. /* FIXME: assert CPU port conditions for SNB+ */
  1526. }
  1527. reg = PIPECONF(cpu_transcoder);
  1528. val = I915_READ(reg);
  1529. if (val & PIPECONF_ENABLE)
  1530. return;
  1531. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1532. intel_wait_for_vblank(dev_priv->dev, pipe);
  1533. }
  1534. /**
  1535. * intel_disable_pipe - disable a pipe, asserting requirements
  1536. * @dev_priv: i915 private structure
  1537. * @pipe: pipe to disable
  1538. *
  1539. * Disable @pipe, making sure that various hardware specific requirements
  1540. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1541. *
  1542. * @pipe should be %PIPE_A or %PIPE_B.
  1543. *
  1544. * Will wait until the pipe has shut down before returning.
  1545. */
  1546. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1547. enum pipe pipe)
  1548. {
  1549. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1550. pipe);
  1551. int reg;
  1552. u32 val;
  1553. /*
  1554. * Make sure planes won't keep trying to pump pixels to us,
  1555. * or we might hang the display.
  1556. */
  1557. assert_planes_disabled(dev_priv, pipe);
  1558. assert_cursor_disabled(dev_priv, pipe);
  1559. assert_sprites_disabled(dev_priv, pipe);
  1560. /* Don't disable pipe A or pipe A PLLs if needed */
  1561. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1562. return;
  1563. reg = PIPECONF(cpu_transcoder);
  1564. val = I915_READ(reg);
  1565. if ((val & PIPECONF_ENABLE) == 0)
  1566. return;
  1567. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1568. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1569. }
  1570. /*
  1571. * Plane regs are double buffered, going from enabled->disabled needs a
  1572. * trigger in order to latch. The display address reg provides this.
  1573. */
  1574. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1575. enum plane plane)
  1576. {
  1577. if (dev_priv->info->gen >= 4)
  1578. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1579. else
  1580. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1581. }
  1582. /**
  1583. * intel_enable_plane - enable a display plane on a given pipe
  1584. * @dev_priv: i915 private structure
  1585. * @plane: plane to enable
  1586. * @pipe: pipe being fed
  1587. *
  1588. * Enable @plane on @pipe, making sure that @pipe is running first.
  1589. */
  1590. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1591. enum plane plane, enum pipe pipe)
  1592. {
  1593. struct intel_crtc *intel_crtc =
  1594. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1595. int reg;
  1596. u32 val;
  1597. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1598. assert_pipe_enabled(dev_priv, pipe);
  1599. intel_crtc->primary_disabled = false;
  1600. reg = DSPCNTR(plane);
  1601. val = I915_READ(reg);
  1602. if (val & DISPLAY_PLANE_ENABLE)
  1603. return;
  1604. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1605. intel_flush_display_plane(dev_priv, plane);
  1606. intel_wait_for_vblank(dev_priv->dev, pipe);
  1607. }
  1608. /**
  1609. * intel_disable_plane - disable a display plane
  1610. * @dev_priv: i915 private structure
  1611. * @plane: plane to disable
  1612. * @pipe: pipe consuming the data
  1613. *
  1614. * Disable @plane; should be an independent operation.
  1615. */
  1616. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1617. enum plane plane, enum pipe pipe)
  1618. {
  1619. struct intel_crtc *intel_crtc =
  1620. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1621. int reg;
  1622. u32 val;
  1623. intel_crtc->primary_disabled = true;
  1624. reg = DSPCNTR(plane);
  1625. val = I915_READ(reg);
  1626. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1627. return;
  1628. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1629. intel_flush_display_plane(dev_priv, plane);
  1630. intel_wait_for_vblank(dev_priv->dev, pipe);
  1631. }
  1632. static bool need_vtd_wa(struct drm_device *dev)
  1633. {
  1634. #ifdef CONFIG_INTEL_IOMMU
  1635. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1636. return true;
  1637. #endif
  1638. return false;
  1639. }
  1640. int
  1641. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1642. struct drm_i915_gem_object *obj,
  1643. struct intel_ring_buffer *pipelined)
  1644. {
  1645. struct drm_i915_private *dev_priv = dev->dev_private;
  1646. u32 alignment;
  1647. int ret;
  1648. switch (obj->tiling_mode) {
  1649. case I915_TILING_NONE:
  1650. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1651. alignment = 128 * 1024;
  1652. else if (INTEL_INFO(dev)->gen >= 4)
  1653. alignment = 4 * 1024;
  1654. else
  1655. alignment = 64 * 1024;
  1656. break;
  1657. case I915_TILING_X:
  1658. /* pin() will align the object as required by fence */
  1659. alignment = 0;
  1660. break;
  1661. case I915_TILING_Y:
  1662. /* Despite that we check this in framebuffer_init userspace can
  1663. * screw us over and change the tiling after the fact. Only
  1664. * pinned buffers can't change their tiling. */
  1665. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1666. return -EINVAL;
  1667. default:
  1668. BUG();
  1669. }
  1670. /* Note that the w/a also requires 64 PTE of padding following the
  1671. * bo. We currently fill all unused PTE with the shadow page and so
  1672. * we should always have valid PTE following the scanout preventing
  1673. * the VT-d warning.
  1674. */
  1675. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1676. alignment = 256 * 1024;
  1677. dev_priv->mm.interruptible = false;
  1678. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1679. if (ret)
  1680. goto err_interruptible;
  1681. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1682. * fence, whereas 965+ only requires a fence if using
  1683. * framebuffer compression. For simplicity, we always install
  1684. * a fence as the cost is not that onerous.
  1685. */
  1686. ret = i915_gem_object_get_fence(obj);
  1687. if (ret)
  1688. goto err_unpin;
  1689. i915_gem_object_pin_fence(obj);
  1690. dev_priv->mm.interruptible = true;
  1691. return 0;
  1692. err_unpin:
  1693. i915_gem_object_unpin_from_display_plane(obj);
  1694. err_interruptible:
  1695. dev_priv->mm.interruptible = true;
  1696. return ret;
  1697. }
  1698. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1699. {
  1700. i915_gem_object_unpin_fence(obj);
  1701. i915_gem_object_unpin_from_display_plane(obj);
  1702. }
  1703. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1704. * is assumed to be a power-of-two. */
  1705. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1706. unsigned int tiling_mode,
  1707. unsigned int cpp,
  1708. unsigned int pitch)
  1709. {
  1710. if (tiling_mode != I915_TILING_NONE) {
  1711. unsigned int tile_rows, tiles;
  1712. tile_rows = *y / 8;
  1713. *y %= 8;
  1714. tiles = *x / (512/cpp);
  1715. *x %= 512/cpp;
  1716. return tile_rows * pitch * 8 + tiles * 4096;
  1717. } else {
  1718. unsigned int offset;
  1719. offset = *y * pitch + *x * cpp;
  1720. *y = 0;
  1721. *x = (offset & 4095) / cpp;
  1722. return offset & -4096;
  1723. }
  1724. }
  1725. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1726. int x, int y)
  1727. {
  1728. struct drm_device *dev = crtc->dev;
  1729. struct drm_i915_private *dev_priv = dev->dev_private;
  1730. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1731. struct intel_framebuffer *intel_fb;
  1732. struct drm_i915_gem_object *obj;
  1733. int plane = intel_crtc->plane;
  1734. unsigned long linear_offset;
  1735. u32 dspcntr;
  1736. u32 reg;
  1737. switch (plane) {
  1738. case 0:
  1739. case 1:
  1740. break;
  1741. default:
  1742. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1743. return -EINVAL;
  1744. }
  1745. intel_fb = to_intel_framebuffer(fb);
  1746. obj = intel_fb->obj;
  1747. reg = DSPCNTR(plane);
  1748. dspcntr = I915_READ(reg);
  1749. /* Mask out pixel format bits in case we change it */
  1750. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1751. switch (fb->pixel_format) {
  1752. case DRM_FORMAT_C8:
  1753. dspcntr |= DISPPLANE_8BPP;
  1754. break;
  1755. case DRM_FORMAT_XRGB1555:
  1756. case DRM_FORMAT_ARGB1555:
  1757. dspcntr |= DISPPLANE_BGRX555;
  1758. break;
  1759. case DRM_FORMAT_RGB565:
  1760. dspcntr |= DISPPLANE_BGRX565;
  1761. break;
  1762. case DRM_FORMAT_XRGB8888:
  1763. case DRM_FORMAT_ARGB8888:
  1764. dspcntr |= DISPPLANE_BGRX888;
  1765. break;
  1766. case DRM_FORMAT_XBGR8888:
  1767. case DRM_FORMAT_ABGR8888:
  1768. dspcntr |= DISPPLANE_RGBX888;
  1769. break;
  1770. case DRM_FORMAT_XRGB2101010:
  1771. case DRM_FORMAT_ARGB2101010:
  1772. dspcntr |= DISPPLANE_BGRX101010;
  1773. break;
  1774. case DRM_FORMAT_XBGR2101010:
  1775. case DRM_FORMAT_ABGR2101010:
  1776. dspcntr |= DISPPLANE_RGBX101010;
  1777. break;
  1778. default:
  1779. BUG();
  1780. }
  1781. if (INTEL_INFO(dev)->gen >= 4) {
  1782. if (obj->tiling_mode != I915_TILING_NONE)
  1783. dspcntr |= DISPPLANE_TILED;
  1784. else
  1785. dspcntr &= ~DISPPLANE_TILED;
  1786. }
  1787. if (IS_G4X(dev))
  1788. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1789. I915_WRITE(reg, dspcntr);
  1790. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1791. if (INTEL_INFO(dev)->gen >= 4) {
  1792. intel_crtc->dspaddr_offset =
  1793. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1794. fb->bits_per_pixel / 8,
  1795. fb->pitches[0]);
  1796. linear_offset -= intel_crtc->dspaddr_offset;
  1797. } else {
  1798. intel_crtc->dspaddr_offset = linear_offset;
  1799. }
  1800. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1801. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1802. fb->pitches[0]);
  1803. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1804. if (INTEL_INFO(dev)->gen >= 4) {
  1805. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1806. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1807. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1808. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1809. } else
  1810. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1811. POSTING_READ(reg);
  1812. return 0;
  1813. }
  1814. static int ironlake_update_plane(struct drm_crtc *crtc,
  1815. struct drm_framebuffer *fb, int x, int y)
  1816. {
  1817. struct drm_device *dev = crtc->dev;
  1818. struct drm_i915_private *dev_priv = dev->dev_private;
  1819. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1820. struct intel_framebuffer *intel_fb;
  1821. struct drm_i915_gem_object *obj;
  1822. int plane = intel_crtc->plane;
  1823. unsigned long linear_offset;
  1824. u32 dspcntr;
  1825. u32 reg;
  1826. switch (plane) {
  1827. case 0:
  1828. case 1:
  1829. case 2:
  1830. break;
  1831. default:
  1832. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1833. return -EINVAL;
  1834. }
  1835. intel_fb = to_intel_framebuffer(fb);
  1836. obj = intel_fb->obj;
  1837. reg = DSPCNTR(plane);
  1838. dspcntr = I915_READ(reg);
  1839. /* Mask out pixel format bits in case we change it */
  1840. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1841. switch (fb->pixel_format) {
  1842. case DRM_FORMAT_C8:
  1843. dspcntr |= DISPPLANE_8BPP;
  1844. break;
  1845. case DRM_FORMAT_RGB565:
  1846. dspcntr |= DISPPLANE_BGRX565;
  1847. break;
  1848. case DRM_FORMAT_XRGB8888:
  1849. case DRM_FORMAT_ARGB8888:
  1850. dspcntr |= DISPPLANE_BGRX888;
  1851. break;
  1852. case DRM_FORMAT_XBGR8888:
  1853. case DRM_FORMAT_ABGR8888:
  1854. dspcntr |= DISPPLANE_RGBX888;
  1855. break;
  1856. case DRM_FORMAT_XRGB2101010:
  1857. case DRM_FORMAT_ARGB2101010:
  1858. dspcntr |= DISPPLANE_BGRX101010;
  1859. break;
  1860. case DRM_FORMAT_XBGR2101010:
  1861. case DRM_FORMAT_ABGR2101010:
  1862. dspcntr |= DISPPLANE_RGBX101010;
  1863. break;
  1864. default:
  1865. BUG();
  1866. }
  1867. if (obj->tiling_mode != I915_TILING_NONE)
  1868. dspcntr |= DISPPLANE_TILED;
  1869. else
  1870. dspcntr &= ~DISPPLANE_TILED;
  1871. if (IS_HASWELL(dev))
  1872. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1873. else
  1874. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1875. I915_WRITE(reg, dspcntr);
  1876. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1877. intel_crtc->dspaddr_offset =
  1878. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1879. fb->bits_per_pixel / 8,
  1880. fb->pitches[0]);
  1881. linear_offset -= intel_crtc->dspaddr_offset;
  1882. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1883. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1884. fb->pitches[0]);
  1885. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1886. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1887. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1888. if (IS_HASWELL(dev)) {
  1889. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1890. } else {
  1891. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1892. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1893. }
  1894. POSTING_READ(reg);
  1895. return 0;
  1896. }
  1897. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1898. static int
  1899. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1900. int x, int y, enum mode_set_atomic state)
  1901. {
  1902. struct drm_device *dev = crtc->dev;
  1903. struct drm_i915_private *dev_priv = dev->dev_private;
  1904. if (dev_priv->display.disable_fbc)
  1905. dev_priv->display.disable_fbc(dev);
  1906. intel_increase_pllclock(crtc);
  1907. return dev_priv->display.update_plane(crtc, fb, x, y);
  1908. }
  1909. void intel_display_handle_reset(struct drm_device *dev)
  1910. {
  1911. struct drm_i915_private *dev_priv = dev->dev_private;
  1912. struct drm_crtc *crtc;
  1913. /*
  1914. * Flips in the rings have been nuked by the reset,
  1915. * so complete all pending flips so that user space
  1916. * will get its events and not get stuck.
  1917. *
  1918. * Also update the base address of all primary
  1919. * planes to the the last fb to make sure we're
  1920. * showing the correct fb after a reset.
  1921. *
  1922. * Need to make two loops over the crtcs so that we
  1923. * don't try to grab a crtc mutex before the
  1924. * pending_flip_queue really got woken up.
  1925. */
  1926. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1927. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1928. enum plane plane = intel_crtc->plane;
  1929. intel_prepare_page_flip(dev, plane);
  1930. intel_finish_page_flip_plane(dev, plane);
  1931. }
  1932. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1933. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1934. mutex_lock(&crtc->mutex);
  1935. if (intel_crtc->active)
  1936. dev_priv->display.update_plane(crtc, crtc->fb,
  1937. crtc->x, crtc->y);
  1938. mutex_unlock(&crtc->mutex);
  1939. }
  1940. }
  1941. static int
  1942. intel_finish_fb(struct drm_framebuffer *old_fb)
  1943. {
  1944. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1945. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1946. bool was_interruptible = dev_priv->mm.interruptible;
  1947. int ret;
  1948. /* Big Hammer, we also need to ensure that any pending
  1949. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1950. * current scanout is retired before unpinning the old
  1951. * framebuffer.
  1952. *
  1953. * This should only fail upon a hung GPU, in which case we
  1954. * can safely continue.
  1955. */
  1956. dev_priv->mm.interruptible = false;
  1957. ret = i915_gem_object_finish_gpu(obj);
  1958. dev_priv->mm.interruptible = was_interruptible;
  1959. return ret;
  1960. }
  1961. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1962. {
  1963. struct drm_device *dev = crtc->dev;
  1964. struct drm_i915_master_private *master_priv;
  1965. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1966. if (!dev->primary->master)
  1967. return;
  1968. master_priv = dev->primary->master->driver_priv;
  1969. if (!master_priv->sarea_priv)
  1970. return;
  1971. switch (intel_crtc->pipe) {
  1972. case 0:
  1973. master_priv->sarea_priv->pipeA_x = x;
  1974. master_priv->sarea_priv->pipeA_y = y;
  1975. break;
  1976. case 1:
  1977. master_priv->sarea_priv->pipeB_x = x;
  1978. master_priv->sarea_priv->pipeB_y = y;
  1979. break;
  1980. default:
  1981. break;
  1982. }
  1983. }
  1984. static int
  1985. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1986. struct drm_framebuffer *fb)
  1987. {
  1988. struct drm_device *dev = crtc->dev;
  1989. struct drm_i915_private *dev_priv = dev->dev_private;
  1990. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1991. struct drm_framebuffer *old_fb;
  1992. int ret;
  1993. /* no fb bound */
  1994. if (!fb) {
  1995. DRM_ERROR("No FB bound\n");
  1996. return 0;
  1997. }
  1998. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1999. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2000. plane_name(intel_crtc->plane),
  2001. INTEL_INFO(dev)->num_pipes);
  2002. return -EINVAL;
  2003. }
  2004. mutex_lock(&dev->struct_mutex);
  2005. ret = intel_pin_and_fence_fb_obj(dev,
  2006. to_intel_framebuffer(fb)->obj,
  2007. NULL);
  2008. if (ret != 0) {
  2009. mutex_unlock(&dev->struct_mutex);
  2010. DRM_ERROR("pin & fence failed\n");
  2011. return ret;
  2012. }
  2013. /*
  2014. * Update pipe size and adjust fitter if needed: the reason for this is
  2015. * that in compute_mode_changes we check the native mode (not the pfit
  2016. * mode) to see if we can flip rather than do a full mode set. In the
  2017. * fastboot case, we'll flip, but if we don't update the pipesrc and
  2018. * pfit state, we'll end up with a big fb scanned out into the wrong
  2019. * sized surface.
  2020. *
  2021. * To fix this properly, we need to hoist the checks up into
  2022. * compute_mode_changes (or above), check the actual pfit state and
  2023. * whether the platform allows pfit disable with pipe active, and only
  2024. * then update the pipesrc and pfit state, even on the flip path.
  2025. */
  2026. if (i915_fastboot) {
  2027. const struct drm_display_mode *adjusted_mode =
  2028. &intel_crtc->config.adjusted_mode;
  2029. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2030. ((adjusted_mode->crtc_hdisplay - 1) << 16) |
  2031. (adjusted_mode->crtc_vdisplay - 1));
  2032. if (!intel_crtc->config.pch_pfit.enabled &&
  2033. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2034. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2035. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2036. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2037. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2038. }
  2039. }
  2040. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2041. if (ret) {
  2042. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2043. mutex_unlock(&dev->struct_mutex);
  2044. DRM_ERROR("failed to update base address\n");
  2045. return ret;
  2046. }
  2047. old_fb = crtc->fb;
  2048. crtc->fb = fb;
  2049. crtc->x = x;
  2050. crtc->y = y;
  2051. if (old_fb) {
  2052. if (intel_crtc->active && old_fb != fb)
  2053. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2054. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2055. }
  2056. intel_update_fbc(dev);
  2057. intel_edp_psr_update(dev);
  2058. mutex_unlock(&dev->struct_mutex);
  2059. intel_crtc_update_sarea_pos(crtc, x, y);
  2060. return 0;
  2061. }
  2062. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2063. {
  2064. struct drm_device *dev = crtc->dev;
  2065. struct drm_i915_private *dev_priv = dev->dev_private;
  2066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2067. int pipe = intel_crtc->pipe;
  2068. u32 reg, temp;
  2069. /* enable normal train */
  2070. reg = FDI_TX_CTL(pipe);
  2071. temp = I915_READ(reg);
  2072. if (IS_IVYBRIDGE(dev)) {
  2073. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2074. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2075. } else {
  2076. temp &= ~FDI_LINK_TRAIN_NONE;
  2077. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2078. }
  2079. I915_WRITE(reg, temp);
  2080. reg = FDI_RX_CTL(pipe);
  2081. temp = I915_READ(reg);
  2082. if (HAS_PCH_CPT(dev)) {
  2083. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2084. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2085. } else {
  2086. temp &= ~FDI_LINK_TRAIN_NONE;
  2087. temp |= FDI_LINK_TRAIN_NONE;
  2088. }
  2089. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2090. /* wait one idle pattern time */
  2091. POSTING_READ(reg);
  2092. udelay(1000);
  2093. /* IVB wants error correction enabled */
  2094. if (IS_IVYBRIDGE(dev))
  2095. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2096. FDI_FE_ERRC_ENABLE);
  2097. }
  2098. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2099. {
  2100. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2101. }
  2102. static void ivb_modeset_global_resources(struct drm_device *dev)
  2103. {
  2104. struct drm_i915_private *dev_priv = dev->dev_private;
  2105. struct intel_crtc *pipe_B_crtc =
  2106. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2107. struct intel_crtc *pipe_C_crtc =
  2108. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2109. uint32_t temp;
  2110. /*
  2111. * When everything is off disable fdi C so that we could enable fdi B
  2112. * with all lanes. Note that we don't care about enabled pipes without
  2113. * an enabled pch encoder.
  2114. */
  2115. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2116. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2117. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2118. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2119. temp = I915_READ(SOUTH_CHICKEN1);
  2120. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2121. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2122. I915_WRITE(SOUTH_CHICKEN1, temp);
  2123. }
  2124. }
  2125. /* The FDI link training functions for ILK/Ibexpeak. */
  2126. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2127. {
  2128. struct drm_device *dev = crtc->dev;
  2129. struct drm_i915_private *dev_priv = dev->dev_private;
  2130. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2131. int pipe = intel_crtc->pipe;
  2132. int plane = intel_crtc->plane;
  2133. u32 reg, temp, tries;
  2134. /* FDI needs bits from pipe & plane first */
  2135. assert_pipe_enabled(dev_priv, pipe);
  2136. assert_plane_enabled(dev_priv, plane);
  2137. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2138. for train result */
  2139. reg = FDI_RX_IMR(pipe);
  2140. temp = I915_READ(reg);
  2141. temp &= ~FDI_RX_SYMBOL_LOCK;
  2142. temp &= ~FDI_RX_BIT_LOCK;
  2143. I915_WRITE(reg, temp);
  2144. I915_READ(reg);
  2145. udelay(150);
  2146. /* enable CPU FDI TX and PCH FDI RX */
  2147. reg = FDI_TX_CTL(pipe);
  2148. temp = I915_READ(reg);
  2149. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2150. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2151. temp &= ~FDI_LINK_TRAIN_NONE;
  2152. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2153. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2154. reg = FDI_RX_CTL(pipe);
  2155. temp = I915_READ(reg);
  2156. temp &= ~FDI_LINK_TRAIN_NONE;
  2157. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2158. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2159. POSTING_READ(reg);
  2160. udelay(150);
  2161. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2162. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2163. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2164. FDI_RX_PHASE_SYNC_POINTER_EN);
  2165. reg = FDI_RX_IIR(pipe);
  2166. for (tries = 0; tries < 5; tries++) {
  2167. temp = I915_READ(reg);
  2168. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2169. if ((temp & FDI_RX_BIT_LOCK)) {
  2170. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2171. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2172. break;
  2173. }
  2174. }
  2175. if (tries == 5)
  2176. DRM_ERROR("FDI train 1 fail!\n");
  2177. /* Train 2 */
  2178. reg = FDI_TX_CTL(pipe);
  2179. temp = I915_READ(reg);
  2180. temp &= ~FDI_LINK_TRAIN_NONE;
  2181. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2182. I915_WRITE(reg, temp);
  2183. reg = FDI_RX_CTL(pipe);
  2184. temp = I915_READ(reg);
  2185. temp &= ~FDI_LINK_TRAIN_NONE;
  2186. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2187. I915_WRITE(reg, temp);
  2188. POSTING_READ(reg);
  2189. udelay(150);
  2190. reg = FDI_RX_IIR(pipe);
  2191. for (tries = 0; tries < 5; tries++) {
  2192. temp = I915_READ(reg);
  2193. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2194. if (temp & FDI_RX_SYMBOL_LOCK) {
  2195. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2196. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2197. break;
  2198. }
  2199. }
  2200. if (tries == 5)
  2201. DRM_ERROR("FDI train 2 fail!\n");
  2202. DRM_DEBUG_KMS("FDI train done\n");
  2203. }
  2204. static const int snb_b_fdi_train_param[] = {
  2205. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2206. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2207. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2208. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2209. };
  2210. /* The FDI link training functions for SNB/Cougarpoint. */
  2211. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2212. {
  2213. struct drm_device *dev = crtc->dev;
  2214. struct drm_i915_private *dev_priv = dev->dev_private;
  2215. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2216. int pipe = intel_crtc->pipe;
  2217. u32 reg, temp, i, retry;
  2218. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2219. for train result */
  2220. reg = FDI_RX_IMR(pipe);
  2221. temp = I915_READ(reg);
  2222. temp &= ~FDI_RX_SYMBOL_LOCK;
  2223. temp &= ~FDI_RX_BIT_LOCK;
  2224. I915_WRITE(reg, temp);
  2225. POSTING_READ(reg);
  2226. udelay(150);
  2227. /* enable CPU FDI TX and PCH FDI RX */
  2228. reg = FDI_TX_CTL(pipe);
  2229. temp = I915_READ(reg);
  2230. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2231. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2232. temp &= ~FDI_LINK_TRAIN_NONE;
  2233. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2234. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2235. /* SNB-B */
  2236. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2237. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2238. I915_WRITE(FDI_RX_MISC(pipe),
  2239. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2240. reg = FDI_RX_CTL(pipe);
  2241. temp = I915_READ(reg);
  2242. if (HAS_PCH_CPT(dev)) {
  2243. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2244. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2245. } else {
  2246. temp &= ~FDI_LINK_TRAIN_NONE;
  2247. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2248. }
  2249. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2250. POSTING_READ(reg);
  2251. udelay(150);
  2252. for (i = 0; i < 4; i++) {
  2253. reg = FDI_TX_CTL(pipe);
  2254. temp = I915_READ(reg);
  2255. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2256. temp |= snb_b_fdi_train_param[i];
  2257. I915_WRITE(reg, temp);
  2258. POSTING_READ(reg);
  2259. udelay(500);
  2260. for (retry = 0; retry < 5; retry++) {
  2261. reg = FDI_RX_IIR(pipe);
  2262. temp = I915_READ(reg);
  2263. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2264. if (temp & FDI_RX_BIT_LOCK) {
  2265. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2266. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2267. break;
  2268. }
  2269. udelay(50);
  2270. }
  2271. if (retry < 5)
  2272. break;
  2273. }
  2274. if (i == 4)
  2275. DRM_ERROR("FDI train 1 fail!\n");
  2276. /* Train 2 */
  2277. reg = FDI_TX_CTL(pipe);
  2278. temp = I915_READ(reg);
  2279. temp &= ~FDI_LINK_TRAIN_NONE;
  2280. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2281. if (IS_GEN6(dev)) {
  2282. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2283. /* SNB-B */
  2284. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2285. }
  2286. I915_WRITE(reg, temp);
  2287. reg = FDI_RX_CTL(pipe);
  2288. temp = I915_READ(reg);
  2289. if (HAS_PCH_CPT(dev)) {
  2290. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2291. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2292. } else {
  2293. temp &= ~FDI_LINK_TRAIN_NONE;
  2294. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2295. }
  2296. I915_WRITE(reg, temp);
  2297. POSTING_READ(reg);
  2298. udelay(150);
  2299. for (i = 0; i < 4; i++) {
  2300. reg = FDI_TX_CTL(pipe);
  2301. temp = I915_READ(reg);
  2302. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2303. temp |= snb_b_fdi_train_param[i];
  2304. I915_WRITE(reg, temp);
  2305. POSTING_READ(reg);
  2306. udelay(500);
  2307. for (retry = 0; retry < 5; retry++) {
  2308. reg = FDI_RX_IIR(pipe);
  2309. temp = I915_READ(reg);
  2310. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2311. if (temp & FDI_RX_SYMBOL_LOCK) {
  2312. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2313. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2314. break;
  2315. }
  2316. udelay(50);
  2317. }
  2318. if (retry < 5)
  2319. break;
  2320. }
  2321. if (i == 4)
  2322. DRM_ERROR("FDI train 2 fail!\n");
  2323. DRM_DEBUG_KMS("FDI train done.\n");
  2324. }
  2325. /* Manual link training for Ivy Bridge A0 parts */
  2326. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2327. {
  2328. struct drm_device *dev = crtc->dev;
  2329. struct drm_i915_private *dev_priv = dev->dev_private;
  2330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2331. int pipe = intel_crtc->pipe;
  2332. u32 reg, temp, i, j;
  2333. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2334. for train result */
  2335. reg = FDI_RX_IMR(pipe);
  2336. temp = I915_READ(reg);
  2337. temp &= ~FDI_RX_SYMBOL_LOCK;
  2338. temp &= ~FDI_RX_BIT_LOCK;
  2339. I915_WRITE(reg, temp);
  2340. POSTING_READ(reg);
  2341. udelay(150);
  2342. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2343. I915_READ(FDI_RX_IIR(pipe)));
  2344. /* Try each vswing and preemphasis setting twice before moving on */
  2345. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2346. /* disable first in case we need to retry */
  2347. reg = FDI_TX_CTL(pipe);
  2348. temp = I915_READ(reg);
  2349. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2350. temp &= ~FDI_TX_ENABLE;
  2351. I915_WRITE(reg, temp);
  2352. reg = FDI_RX_CTL(pipe);
  2353. temp = I915_READ(reg);
  2354. temp &= ~FDI_LINK_TRAIN_AUTO;
  2355. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2356. temp &= ~FDI_RX_ENABLE;
  2357. I915_WRITE(reg, temp);
  2358. /* enable CPU FDI TX and PCH FDI RX */
  2359. reg = FDI_TX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2362. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2363. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2364. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2365. temp |= snb_b_fdi_train_param[j/2];
  2366. temp |= FDI_COMPOSITE_SYNC;
  2367. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2368. I915_WRITE(FDI_RX_MISC(pipe),
  2369. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2370. reg = FDI_RX_CTL(pipe);
  2371. temp = I915_READ(reg);
  2372. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2373. temp |= FDI_COMPOSITE_SYNC;
  2374. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2375. POSTING_READ(reg);
  2376. udelay(1); /* should be 0.5us */
  2377. for (i = 0; i < 4; i++) {
  2378. reg = FDI_RX_IIR(pipe);
  2379. temp = I915_READ(reg);
  2380. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2381. if (temp & FDI_RX_BIT_LOCK ||
  2382. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2383. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2384. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2385. i);
  2386. break;
  2387. }
  2388. udelay(1); /* should be 0.5us */
  2389. }
  2390. if (i == 4) {
  2391. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2392. continue;
  2393. }
  2394. /* Train 2 */
  2395. reg = FDI_TX_CTL(pipe);
  2396. temp = I915_READ(reg);
  2397. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2398. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2399. I915_WRITE(reg, temp);
  2400. reg = FDI_RX_CTL(pipe);
  2401. temp = I915_READ(reg);
  2402. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2403. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2404. I915_WRITE(reg, temp);
  2405. POSTING_READ(reg);
  2406. udelay(2); /* should be 1.5us */
  2407. for (i = 0; i < 4; i++) {
  2408. reg = FDI_RX_IIR(pipe);
  2409. temp = I915_READ(reg);
  2410. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2411. if (temp & FDI_RX_SYMBOL_LOCK ||
  2412. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2413. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2414. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2415. i);
  2416. goto train_done;
  2417. }
  2418. udelay(2); /* should be 1.5us */
  2419. }
  2420. if (i == 4)
  2421. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2422. }
  2423. train_done:
  2424. DRM_DEBUG_KMS("FDI train done.\n");
  2425. }
  2426. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2427. {
  2428. struct drm_device *dev = intel_crtc->base.dev;
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. int pipe = intel_crtc->pipe;
  2431. u32 reg, temp;
  2432. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2433. reg = FDI_RX_CTL(pipe);
  2434. temp = I915_READ(reg);
  2435. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2436. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2437. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2438. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2439. POSTING_READ(reg);
  2440. udelay(200);
  2441. /* Switch from Rawclk to PCDclk */
  2442. temp = I915_READ(reg);
  2443. I915_WRITE(reg, temp | FDI_PCDCLK);
  2444. POSTING_READ(reg);
  2445. udelay(200);
  2446. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2447. reg = FDI_TX_CTL(pipe);
  2448. temp = I915_READ(reg);
  2449. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2450. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2451. POSTING_READ(reg);
  2452. udelay(100);
  2453. }
  2454. }
  2455. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2456. {
  2457. struct drm_device *dev = intel_crtc->base.dev;
  2458. struct drm_i915_private *dev_priv = dev->dev_private;
  2459. int pipe = intel_crtc->pipe;
  2460. u32 reg, temp;
  2461. /* Switch from PCDclk to Rawclk */
  2462. reg = FDI_RX_CTL(pipe);
  2463. temp = I915_READ(reg);
  2464. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2465. /* Disable CPU FDI TX PLL */
  2466. reg = FDI_TX_CTL(pipe);
  2467. temp = I915_READ(reg);
  2468. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2469. POSTING_READ(reg);
  2470. udelay(100);
  2471. reg = FDI_RX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2474. /* Wait for the clocks to turn off. */
  2475. POSTING_READ(reg);
  2476. udelay(100);
  2477. }
  2478. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2479. {
  2480. struct drm_device *dev = crtc->dev;
  2481. struct drm_i915_private *dev_priv = dev->dev_private;
  2482. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2483. int pipe = intel_crtc->pipe;
  2484. u32 reg, temp;
  2485. /* disable CPU FDI tx and PCH FDI rx */
  2486. reg = FDI_TX_CTL(pipe);
  2487. temp = I915_READ(reg);
  2488. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2489. POSTING_READ(reg);
  2490. reg = FDI_RX_CTL(pipe);
  2491. temp = I915_READ(reg);
  2492. temp &= ~(0x7 << 16);
  2493. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2494. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2495. POSTING_READ(reg);
  2496. udelay(100);
  2497. /* Ironlake workaround, disable clock pointer after downing FDI */
  2498. if (HAS_PCH_IBX(dev)) {
  2499. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2500. }
  2501. /* still set train pattern 1 */
  2502. reg = FDI_TX_CTL(pipe);
  2503. temp = I915_READ(reg);
  2504. temp &= ~FDI_LINK_TRAIN_NONE;
  2505. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2506. I915_WRITE(reg, temp);
  2507. reg = FDI_RX_CTL(pipe);
  2508. temp = I915_READ(reg);
  2509. if (HAS_PCH_CPT(dev)) {
  2510. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2511. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2512. } else {
  2513. temp &= ~FDI_LINK_TRAIN_NONE;
  2514. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2515. }
  2516. /* BPC in FDI rx is consistent with that in PIPECONF */
  2517. temp &= ~(0x07 << 16);
  2518. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2519. I915_WRITE(reg, temp);
  2520. POSTING_READ(reg);
  2521. udelay(100);
  2522. }
  2523. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2524. {
  2525. struct drm_device *dev = crtc->dev;
  2526. struct drm_i915_private *dev_priv = dev->dev_private;
  2527. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2528. unsigned long flags;
  2529. bool pending;
  2530. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2531. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2532. return false;
  2533. spin_lock_irqsave(&dev->event_lock, flags);
  2534. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2535. spin_unlock_irqrestore(&dev->event_lock, flags);
  2536. return pending;
  2537. }
  2538. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2539. {
  2540. struct drm_device *dev = crtc->dev;
  2541. struct drm_i915_private *dev_priv = dev->dev_private;
  2542. if (crtc->fb == NULL)
  2543. return;
  2544. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2545. wait_event(dev_priv->pending_flip_queue,
  2546. !intel_crtc_has_pending_flip(crtc));
  2547. mutex_lock(&dev->struct_mutex);
  2548. intel_finish_fb(crtc->fb);
  2549. mutex_unlock(&dev->struct_mutex);
  2550. }
  2551. /* Program iCLKIP clock to the desired frequency */
  2552. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2553. {
  2554. struct drm_device *dev = crtc->dev;
  2555. struct drm_i915_private *dev_priv = dev->dev_private;
  2556. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2557. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2558. u32 temp;
  2559. mutex_lock(&dev_priv->dpio_lock);
  2560. /* It is necessary to ungate the pixclk gate prior to programming
  2561. * the divisors, and gate it back when it is done.
  2562. */
  2563. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2564. /* Disable SSCCTL */
  2565. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2566. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2567. SBI_SSCCTL_DISABLE,
  2568. SBI_ICLK);
  2569. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2570. if (clock == 20000) {
  2571. auxdiv = 1;
  2572. divsel = 0x41;
  2573. phaseinc = 0x20;
  2574. } else {
  2575. /* The iCLK virtual clock root frequency is in MHz,
  2576. * but the adjusted_mode->crtc_clock in in KHz. To get the
  2577. * divisors, it is necessary to divide one by another, so we
  2578. * convert the virtual clock precision to KHz here for higher
  2579. * precision.
  2580. */
  2581. u32 iclk_virtual_root_freq = 172800 * 1000;
  2582. u32 iclk_pi_range = 64;
  2583. u32 desired_divisor, msb_divisor_value, pi_value;
  2584. desired_divisor = (iclk_virtual_root_freq / clock);
  2585. msb_divisor_value = desired_divisor / iclk_pi_range;
  2586. pi_value = desired_divisor % iclk_pi_range;
  2587. auxdiv = 0;
  2588. divsel = msb_divisor_value - 2;
  2589. phaseinc = pi_value;
  2590. }
  2591. /* This should not happen with any sane values */
  2592. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2593. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2594. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2595. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2596. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2597. clock,
  2598. auxdiv,
  2599. divsel,
  2600. phasedir,
  2601. phaseinc);
  2602. /* Program SSCDIVINTPHASE6 */
  2603. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2604. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2605. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2606. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2607. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2608. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2609. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2610. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2611. /* Program SSCAUXDIV */
  2612. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2613. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2614. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2615. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2616. /* Enable modulator and associated divider */
  2617. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2618. temp &= ~SBI_SSCCTL_DISABLE;
  2619. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2620. /* Wait for initialization time */
  2621. udelay(24);
  2622. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2623. mutex_unlock(&dev_priv->dpio_lock);
  2624. }
  2625. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2626. enum pipe pch_transcoder)
  2627. {
  2628. struct drm_device *dev = crtc->base.dev;
  2629. struct drm_i915_private *dev_priv = dev->dev_private;
  2630. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2631. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2632. I915_READ(HTOTAL(cpu_transcoder)));
  2633. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2634. I915_READ(HBLANK(cpu_transcoder)));
  2635. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2636. I915_READ(HSYNC(cpu_transcoder)));
  2637. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2638. I915_READ(VTOTAL(cpu_transcoder)));
  2639. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2640. I915_READ(VBLANK(cpu_transcoder)));
  2641. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2642. I915_READ(VSYNC(cpu_transcoder)));
  2643. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2644. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2645. }
  2646. /*
  2647. * Enable PCH resources required for PCH ports:
  2648. * - PCH PLLs
  2649. * - FDI training & RX/TX
  2650. * - update transcoder timings
  2651. * - DP transcoding bits
  2652. * - transcoder
  2653. */
  2654. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2655. {
  2656. struct drm_device *dev = crtc->dev;
  2657. struct drm_i915_private *dev_priv = dev->dev_private;
  2658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2659. int pipe = intel_crtc->pipe;
  2660. u32 reg, temp;
  2661. assert_pch_transcoder_disabled(dev_priv, pipe);
  2662. /* Write the TU size bits before fdi link training, so that error
  2663. * detection works. */
  2664. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2665. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2666. /* For PCH output, training FDI link */
  2667. dev_priv->display.fdi_link_train(crtc);
  2668. /* We need to program the right clock selection before writing the pixel
  2669. * mutliplier into the DPLL. */
  2670. if (HAS_PCH_CPT(dev)) {
  2671. u32 sel;
  2672. temp = I915_READ(PCH_DPLL_SEL);
  2673. temp |= TRANS_DPLL_ENABLE(pipe);
  2674. sel = TRANS_DPLLB_SEL(pipe);
  2675. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2676. temp |= sel;
  2677. else
  2678. temp &= ~sel;
  2679. I915_WRITE(PCH_DPLL_SEL, temp);
  2680. }
  2681. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2682. * transcoder, and we actually should do this to not upset any PCH
  2683. * transcoder that already use the clock when we share it.
  2684. *
  2685. * Note that enable_shared_dpll tries to do the right thing, but
  2686. * get_shared_dpll unconditionally resets the pll - we need that to have
  2687. * the right LVDS enable sequence. */
  2688. ironlake_enable_shared_dpll(intel_crtc);
  2689. /* set transcoder timing, panel must allow it */
  2690. assert_panel_unlocked(dev_priv, pipe);
  2691. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2692. intel_fdi_normal_train(crtc);
  2693. /* For PCH DP, enable TRANS_DP_CTL */
  2694. if (HAS_PCH_CPT(dev) &&
  2695. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2696. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2697. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2698. reg = TRANS_DP_CTL(pipe);
  2699. temp = I915_READ(reg);
  2700. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2701. TRANS_DP_SYNC_MASK |
  2702. TRANS_DP_BPC_MASK);
  2703. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2704. TRANS_DP_ENH_FRAMING);
  2705. temp |= bpc << 9; /* same format but at 11:9 */
  2706. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2707. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2708. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2709. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2710. switch (intel_trans_dp_port_sel(crtc)) {
  2711. case PCH_DP_B:
  2712. temp |= TRANS_DP_PORT_SEL_B;
  2713. break;
  2714. case PCH_DP_C:
  2715. temp |= TRANS_DP_PORT_SEL_C;
  2716. break;
  2717. case PCH_DP_D:
  2718. temp |= TRANS_DP_PORT_SEL_D;
  2719. break;
  2720. default:
  2721. BUG();
  2722. }
  2723. I915_WRITE(reg, temp);
  2724. }
  2725. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2726. }
  2727. static void lpt_pch_enable(struct drm_crtc *crtc)
  2728. {
  2729. struct drm_device *dev = crtc->dev;
  2730. struct drm_i915_private *dev_priv = dev->dev_private;
  2731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2732. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2733. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2734. lpt_program_iclkip(crtc);
  2735. /* Set transcoder timing. */
  2736. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2737. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2738. }
  2739. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2740. {
  2741. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2742. if (pll == NULL)
  2743. return;
  2744. if (pll->refcount == 0) {
  2745. WARN(1, "bad %s refcount\n", pll->name);
  2746. return;
  2747. }
  2748. if (--pll->refcount == 0) {
  2749. WARN_ON(pll->on);
  2750. WARN_ON(pll->active);
  2751. }
  2752. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2753. }
  2754. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2755. {
  2756. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2757. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2758. enum intel_dpll_id i;
  2759. if (pll) {
  2760. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2761. crtc->base.base.id, pll->name);
  2762. intel_put_shared_dpll(crtc);
  2763. }
  2764. if (HAS_PCH_IBX(dev_priv->dev)) {
  2765. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2766. i = (enum intel_dpll_id) crtc->pipe;
  2767. pll = &dev_priv->shared_dplls[i];
  2768. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2769. crtc->base.base.id, pll->name);
  2770. goto found;
  2771. }
  2772. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2773. pll = &dev_priv->shared_dplls[i];
  2774. /* Only want to check enabled timings first */
  2775. if (pll->refcount == 0)
  2776. continue;
  2777. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2778. sizeof(pll->hw_state)) == 0) {
  2779. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2780. crtc->base.base.id,
  2781. pll->name, pll->refcount, pll->active);
  2782. goto found;
  2783. }
  2784. }
  2785. /* Ok no matching timings, maybe there's a free one? */
  2786. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2787. pll = &dev_priv->shared_dplls[i];
  2788. if (pll->refcount == 0) {
  2789. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2790. crtc->base.base.id, pll->name);
  2791. goto found;
  2792. }
  2793. }
  2794. return NULL;
  2795. found:
  2796. crtc->config.shared_dpll = i;
  2797. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2798. pipe_name(crtc->pipe));
  2799. if (pll->active == 0) {
  2800. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2801. sizeof(pll->hw_state));
  2802. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2803. WARN_ON(pll->on);
  2804. assert_shared_dpll_disabled(dev_priv, pll);
  2805. pll->mode_set(dev_priv, pll);
  2806. }
  2807. pll->refcount++;
  2808. return pll;
  2809. }
  2810. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2811. {
  2812. struct drm_i915_private *dev_priv = dev->dev_private;
  2813. int dslreg = PIPEDSL(pipe);
  2814. u32 temp;
  2815. temp = I915_READ(dslreg);
  2816. udelay(500);
  2817. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2818. if (wait_for(I915_READ(dslreg) != temp, 5))
  2819. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2820. }
  2821. }
  2822. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2823. {
  2824. struct drm_device *dev = crtc->base.dev;
  2825. struct drm_i915_private *dev_priv = dev->dev_private;
  2826. int pipe = crtc->pipe;
  2827. if (crtc->config.pch_pfit.enabled) {
  2828. /* Force use of hard-coded filter coefficients
  2829. * as some pre-programmed values are broken,
  2830. * e.g. x201.
  2831. */
  2832. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2833. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2834. PF_PIPE_SEL_IVB(pipe));
  2835. else
  2836. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2837. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2838. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2839. }
  2840. }
  2841. static void intel_enable_planes(struct drm_crtc *crtc)
  2842. {
  2843. struct drm_device *dev = crtc->dev;
  2844. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2845. struct intel_plane *intel_plane;
  2846. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2847. if (intel_plane->pipe == pipe)
  2848. intel_plane_restore(&intel_plane->base);
  2849. }
  2850. static void intel_disable_planes(struct drm_crtc *crtc)
  2851. {
  2852. struct drm_device *dev = crtc->dev;
  2853. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2854. struct intel_plane *intel_plane;
  2855. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2856. if (intel_plane->pipe == pipe)
  2857. intel_plane_disable(&intel_plane->base);
  2858. }
  2859. void hsw_enable_ips(struct intel_crtc *crtc)
  2860. {
  2861. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2862. if (!crtc->config.ips_enabled)
  2863. return;
  2864. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2865. * We guarantee that the plane is enabled by calling intel_enable_ips
  2866. * only after intel_enable_plane. And intel_enable_plane already waits
  2867. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2868. assert_plane_enabled(dev_priv, crtc->plane);
  2869. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2870. }
  2871. void hsw_disable_ips(struct intel_crtc *crtc)
  2872. {
  2873. struct drm_device *dev = crtc->base.dev;
  2874. struct drm_i915_private *dev_priv = dev->dev_private;
  2875. if (!crtc->config.ips_enabled)
  2876. return;
  2877. assert_plane_enabled(dev_priv, crtc->plane);
  2878. I915_WRITE(IPS_CTL, 0);
  2879. POSTING_READ(IPS_CTL);
  2880. /* We need to wait for a vblank before we can disable the plane. */
  2881. intel_wait_for_vblank(dev, crtc->pipe);
  2882. }
  2883. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2884. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  2885. {
  2886. struct drm_device *dev = crtc->dev;
  2887. struct drm_i915_private *dev_priv = dev->dev_private;
  2888. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2889. enum pipe pipe = intel_crtc->pipe;
  2890. int palreg = PALETTE(pipe);
  2891. int i;
  2892. bool reenable_ips = false;
  2893. /* The clocks have to be on to load the palette. */
  2894. if (!crtc->enabled || !intel_crtc->active)
  2895. return;
  2896. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  2897. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2898. assert_dsi_pll_enabled(dev_priv);
  2899. else
  2900. assert_pll_enabled(dev_priv, pipe);
  2901. }
  2902. /* use legacy palette for Ironlake */
  2903. if (HAS_PCH_SPLIT(dev))
  2904. palreg = LGC_PALETTE(pipe);
  2905. /* Workaround : Do not read or write the pipe palette/gamma data while
  2906. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  2907. */
  2908. if (intel_crtc->config.ips_enabled &&
  2909. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  2910. GAMMA_MODE_MODE_SPLIT)) {
  2911. hsw_disable_ips(intel_crtc);
  2912. reenable_ips = true;
  2913. }
  2914. for (i = 0; i < 256; i++) {
  2915. I915_WRITE(palreg + 4 * i,
  2916. (intel_crtc->lut_r[i] << 16) |
  2917. (intel_crtc->lut_g[i] << 8) |
  2918. intel_crtc->lut_b[i]);
  2919. }
  2920. if (reenable_ips)
  2921. hsw_enable_ips(intel_crtc);
  2922. }
  2923. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2924. {
  2925. struct drm_device *dev = crtc->dev;
  2926. struct drm_i915_private *dev_priv = dev->dev_private;
  2927. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2928. struct intel_encoder *encoder;
  2929. int pipe = intel_crtc->pipe;
  2930. int plane = intel_crtc->plane;
  2931. WARN_ON(!crtc->enabled);
  2932. if (intel_crtc->active)
  2933. return;
  2934. intel_crtc->active = true;
  2935. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2936. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2937. for_each_encoder_on_crtc(dev, crtc, encoder)
  2938. if (encoder->pre_enable)
  2939. encoder->pre_enable(encoder);
  2940. if (intel_crtc->config.has_pch_encoder) {
  2941. /* Note: FDI PLL enabling _must_ be done before we enable the
  2942. * cpu pipes, hence this is separate from all the other fdi/pch
  2943. * enabling. */
  2944. ironlake_fdi_pll_enable(intel_crtc);
  2945. } else {
  2946. assert_fdi_tx_disabled(dev_priv, pipe);
  2947. assert_fdi_rx_disabled(dev_priv, pipe);
  2948. }
  2949. ironlake_pfit_enable(intel_crtc);
  2950. /*
  2951. * On ILK+ LUT must be loaded before the pipe is running but with
  2952. * clocks enabled
  2953. */
  2954. intel_crtc_load_lut(crtc);
  2955. intel_update_watermarks(crtc);
  2956. intel_enable_pipe(dev_priv, pipe,
  2957. intel_crtc->config.has_pch_encoder, false);
  2958. intel_enable_plane(dev_priv, plane, pipe);
  2959. intel_enable_planes(crtc);
  2960. intel_crtc_update_cursor(crtc, true);
  2961. if (intel_crtc->config.has_pch_encoder)
  2962. ironlake_pch_enable(crtc);
  2963. mutex_lock(&dev->struct_mutex);
  2964. intel_update_fbc(dev);
  2965. mutex_unlock(&dev->struct_mutex);
  2966. for_each_encoder_on_crtc(dev, crtc, encoder)
  2967. encoder->enable(encoder);
  2968. if (HAS_PCH_CPT(dev))
  2969. cpt_verify_modeset(dev, intel_crtc->pipe);
  2970. /*
  2971. * There seems to be a race in PCH platform hw (at least on some
  2972. * outputs) where an enabled pipe still completes any pageflip right
  2973. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2974. * as the first vblank happend, everything works as expected. Hence just
  2975. * wait for one vblank before returning to avoid strange things
  2976. * happening.
  2977. */
  2978. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2979. }
  2980. /* IPS only exists on ULT machines and is tied to pipe A. */
  2981. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2982. {
  2983. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2984. }
  2985. static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. int pipe = intel_crtc->pipe;
  2991. int plane = intel_crtc->plane;
  2992. intel_enable_plane(dev_priv, plane, pipe);
  2993. intel_enable_planes(crtc);
  2994. intel_crtc_update_cursor(crtc, true);
  2995. hsw_enable_ips(intel_crtc);
  2996. mutex_lock(&dev->struct_mutex);
  2997. intel_update_fbc(dev);
  2998. mutex_unlock(&dev->struct_mutex);
  2999. }
  3000. static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
  3001. {
  3002. struct drm_device *dev = crtc->dev;
  3003. struct drm_i915_private *dev_priv = dev->dev_private;
  3004. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3005. int pipe = intel_crtc->pipe;
  3006. int plane = intel_crtc->plane;
  3007. intel_crtc_wait_for_pending_flips(crtc);
  3008. drm_vblank_off(dev, pipe);
  3009. /* FBC must be disabled before disabling the plane on HSW. */
  3010. if (dev_priv->fbc.plane == plane)
  3011. intel_disable_fbc(dev);
  3012. hsw_disable_ips(intel_crtc);
  3013. intel_crtc_update_cursor(crtc, false);
  3014. intel_disable_planes(crtc);
  3015. intel_disable_plane(dev_priv, plane, pipe);
  3016. }
  3017. /*
  3018. * This implements the workaround described in the "notes" section of the mode
  3019. * set sequence documentation. When going from no pipes or single pipe to
  3020. * multiple pipes, and planes are enabled after the pipe, we need to wait at
  3021. * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  3022. */
  3023. static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
  3024. {
  3025. struct drm_device *dev = crtc->base.dev;
  3026. struct intel_crtc *crtc_it, *other_active_crtc = NULL;
  3027. /* We want to get the other_active_crtc only if there's only 1 other
  3028. * active crtc. */
  3029. list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
  3030. if (!crtc_it->active || crtc_it == crtc)
  3031. continue;
  3032. if (other_active_crtc)
  3033. return;
  3034. other_active_crtc = crtc_it;
  3035. }
  3036. if (!other_active_crtc)
  3037. return;
  3038. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3039. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3040. }
  3041. static void haswell_crtc_enable(struct drm_crtc *crtc)
  3042. {
  3043. struct drm_device *dev = crtc->dev;
  3044. struct drm_i915_private *dev_priv = dev->dev_private;
  3045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3046. struct intel_encoder *encoder;
  3047. int pipe = intel_crtc->pipe;
  3048. WARN_ON(!crtc->enabled);
  3049. if (intel_crtc->active)
  3050. return;
  3051. intel_crtc->active = true;
  3052. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  3053. if (intel_crtc->config.has_pch_encoder)
  3054. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3055. if (intel_crtc->config.has_pch_encoder)
  3056. dev_priv->display.fdi_link_train(crtc);
  3057. for_each_encoder_on_crtc(dev, crtc, encoder)
  3058. if (encoder->pre_enable)
  3059. encoder->pre_enable(encoder);
  3060. intel_ddi_enable_pipe_clock(intel_crtc);
  3061. ironlake_pfit_enable(intel_crtc);
  3062. /*
  3063. * On ILK+ LUT must be loaded before the pipe is running but with
  3064. * clocks enabled
  3065. */
  3066. intel_crtc_load_lut(crtc);
  3067. intel_ddi_set_pipe_settings(crtc);
  3068. intel_ddi_enable_transcoder_func(crtc);
  3069. intel_update_watermarks(crtc);
  3070. intel_enable_pipe(dev_priv, pipe,
  3071. intel_crtc->config.has_pch_encoder, false);
  3072. if (intel_crtc->config.has_pch_encoder)
  3073. lpt_pch_enable(crtc);
  3074. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3075. encoder->enable(encoder);
  3076. intel_opregion_notify_encoder(encoder, true);
  3077. }
  3078. /* If we change the relative order between pipe/planes enabling, we need
  3079. * to change the workaround. */
  3080. haswell_mode_set_planes_workaround(intel_crtc);
  3081. haswell_crtc_enable_planes(crtc);
  3082. /*
  3083. * There seems to be a race in PCH platform hw (at least on some
  3084. * outputs) where an enabled pipe still completes any pageflip right
  3085. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3086. * as the first vblank happend, everything works as expected. Hence just
  3087. * wait for one vblank before returning to avoid strange things
  3088. * happening.
  3089. */
  3090. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3091. }
  3092. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3093. {
  3094. struct drm_device *dev = crtc->base.dev;
  3095. struct drm_i915_private *dev_priv = dev->dev_private;
  3096. int pipe = crtc->pipe;
  3097. /* To avoid upsetting the power well on haswell only disable the pfit if
  3098. * it's in use. The hw state code will make sure we get this right. */
  3099. if (crtc->config.pch_pfit.enabled) {
  3100. I915_WRITE(PF_CTL(pipe), 0);
  3101. I915_WRITE(PF_WIN_POS(pipe), 0);
  3102. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3103. }
  3104. }
  3105. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3106. {
  3107. struct drm_device *dev = crtc->dev;
  3108. struct drm_i915_private *dev_priv = dev->dev_private;
  3109. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3110. struct intel_encoder *encoder;
  3111. int pipe = intel_crtc->pipe;
  3112. int plane = intel_crtc->plane;
  3113. u32 reg, temp;
  3114. if (!intel_crtc->active)
  3115. return;
  3116. for_each_encoder_on_crtc(dev, crtc, encoder)
  3117. encoder->disable(encoder);
  3118. intel_crtc_wait_for_pending_flips(crtc);
  3119. drm_vblank_off(dev, pipe);
  3120. if (dev_priv->fbc.plane == plane)
  3121. intel_disable_fbc(dev);
  3122. intel_crtc_update_cursor(crtc, false);
  3123. intel_disable_planes(crtc);
  3124. intel_disable_plane(dev_priv, plane, pipe);
  3125. if (intel_crtc->config.has_pch_encoder)
  3126. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3127. intel_disable_pipe(dev_priv, pipe);
  3128. ironlake_pfit_disable(intel_crtc);
  3129. for_each_encoder_on_crtc(dev, crtc, encoder)
  3130. if (encoder->post_disable)
  3131. encoder->post_disable(encoder);
  3132. if (intel_crtc->config.has_pch_encoder) {
  3133. ironlake_fdi_disable(crtc);
  3134. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3135. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3136. if (HAS_PCH_CPT(dev)) {
  3137. /* disable TRANS_DP_CTL */
  3138. reg = TRANS_DP_CTL(pipe);
  3139. temp = I915_READ(reg);
  3140. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3141. TRANS_DP_PORT_SEL_MASK);
  3142. temp |= TRANS_DP_PORT_SEL_NONE;
  3143. I915_WRITE(reg, temp);
  3144. /* disable DPLL_SEL */
  3145. temp = I915_READ(PCH_DPLL_SEL);
  3146. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3147. I915_WRITE(PCH_DPLL_SEL, temp);
  3148. }
  3149. /* disable PCH DPLL */
  3150. intel_disable_shared_dpll(intel_crtc);
  3151. ironlake_fdi_pll_disable(intel_crtc);
  3152. }
  3153. intel_crtc->active = false;
  3154. intel_update_watermarks(crtc);
  3155. mutex_lock(&dev->struct_mutex);
  3156. intel_update_fbc(dev);
  3157. mutex_unlock(&dev->struct_mutex);
  3158. }
  3159. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3160. {
  3161. struct drm_device *dev = crtc->dev;
  3162. struct drm_i915_private *dev_priv = dev->dev_private;
  3163. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3164. struct intel_encoder *encoder;
  3165. int pipe = intel_crtc->pipe;
  3166. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3167. if (!intel_crtc->active)
  3168. return;
  3169. haswell_crtc_disable_planes(crtc);
  3170. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3171. intel_opregion_notify_encoder(encoder, false);
  3172. encoder->disable(encoder);
  3173. }
  3174. if (intel_crtc->config.has_pch_encoder)
  3175. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3176. intel_disable_pipe(dev_priv, pipe);
  3177. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3178. ironlake_pfit_disable(intel_crtc);
  3179. intel_ddi_disable_pipe_clock(intel_crtc);
  3180. for_each_encoder_on_crtc(dev, crtc, encoder)
  3181. if (encoder->post_disable)
  3182. encoder->post_disable(encoder);
  3183. if (intel_crtc->config.has_pch_encoder) {
  3184. lpt_disable_pch_transcoder(dev_priv);
  3185. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3186. intel_ddi_fdi_disable(crtc);
  3187. }
  3188. intel_crtc->active = false;
  3189. intel_update_watermarks(crtc);
  3190. mutex_lock(&dev->struct_mutex);
  3191. intel_update_fbc(dev);
  3192. mutex_unlock(&dev->struct_mutex);
  3193. }
  3194. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3195. {
  3196. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3197. intel_put_shared_dpll(intel_crtc);
  3198. }
  3199. static void haswell_crtc_off(struct drm_crtc *crtc)
  3200. {
  3201. intel_ddi_put_crtc_pll(crtc);
  3202. }
  3203. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3204. {
  3205. if (!enable && intel_crtc->overlay) {
  3206. struct drm_device *dev = intel_crtc->base.dev;
  3207. struct drm_i915_private *dev_priv = dev->dev_private;
  3208. mutex_lock(&dev->struct_mutex);
  3209. dev_priv->mm.interruptible = false;
  3210. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3211. dev_priv->mm.interruptible = true;
  3212. mutex_unlock(&dev->struct_mutex);
  3213. }
  3214. /* Let userspace switch the overlay on again. In most cases userspace
  3215. * has to recompute where to put it anyway.
  3216. */
  3217. }
  3218. /**
  3219. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3220. * cursor plane briefly if not already running after enabling the display
  3221. * plane.
  3222. * This workaround avoids occasional blank screens when self refresh is
  3223. * enabled.
  3224. */
  3225. static void
  3226. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3227. {
  3228. u32 cntl = I915_READ(CURCNTR(pipe));
  3229. if ((cntl & CURSOR_MODE) == 0) {
  3230. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3231. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3232. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3233. intel_wait_for_vblank(dev_priv->dev, pipe);
  3234. I915_WRITE(CURCNTR(pipe), cntl);
  3235. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3236. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3237. }
  3238. }
  3239. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3240. {
  3241. struct drm_device *dev = crtc->base.dev;
  3242. struct drm_i915_private *dev_priv = dev->dev_private;
  3243. struct intel_crtc_config *pipe_config = &crtc->config;
  3244. if (!crtc->config.gmch_pfit.control)
  3245. return;
  3246. /*
  3247. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3248. * according to register description and PRM.
  3249. */
  3250. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3251. assert_pipe_disabled(dev_priv, crtc->pipe);
  3252. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3253. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3254. /* Border color in case we don't scale up to the full screen. Black by
  3255. * default, change to something else for debugging. */
  3256. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3257. }
  3258. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3259. {
  3260. struct drm_device *dev = crtc->dev;
  3261. struct drm_i915_private *dev_priv = dev->dev_private;
  3262. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3263. struct intel_encoder *encoder;
  3264. int pipe = intel_crtc->pipe;
  3265. int plane = intel_crtc->plane;
  3266. bool is_dsi;
  3267. WARN_ON(!crtc->enabled);
  3268. if (intel_crtc->active)
  3269. return;
  3270. intel_crtc->active = true;
  3271. for_each_encoder_on_crtc(dev, crtc, encoder)
  3272. if (encoder->pre_pll_enable)
  3273. encoder->pre_pll_enable(encoder);
  3274. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3275. if (!is_dsi)
  3276. vlv_enable_pll(intel_crtc);
  3277. for_each_encoder_on_crtc(dev, crtc, encoder)
  3278. if (encoder->pre_enable)
  3279. encoder->pre_enable(encoder);
  3280. i9xx_pfit_enable(intel_crtc);
  3281. intel_crtc_load_lut(crtc);
  3282. intel_update_watermarks(crtc);
  3283. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3284. intel_enable_plane(dev_priv, plane, pipe);
  3285. intel_enable_planes(crtc);
  3286. intel_crtc_update_cursor(crtc, true);
  3287. intel_update_fbc(dev);
  3288. for_each_encoder_on_crtc(dev, crtc, encoder)
  3289. encoder->enable(encoder);
  3290. }
  3291. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3292. {
  3293. struct drm_device *dev = crtc->dev;
  3294. struct drm_i915_private *dev_priv = dev->dev_private;
  3295. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3296. struct intel_encoder *encoder;
  3297. int pipe = intel_crtc->pipe;
  3298. int plane = intel_crtc->plane;
  3299. WARN_ON(!crtc->enabled);
  3300. if (intel_crtc->active)
  3301. return;
  3302. intel_crtc->active = true;
  3303. for_each_encoder_on_crtc(dev, crtc, encoder)
  3304. if (encoder->pre_enable)
  3305. encoder->pre_enable(encoder);
  3306. i9xx_enable_pll(intel_crtc);
  3307. i9xx_pfit_enable(intel_crtc);
  3308. intel_crtc_load_lut(crtc);
  3309. intel_update_watermarks(crtc);
  3310. intel_enable_pipe(dev_priv, pipe, false, false);
  3311. intel_enable_plane(dev_priv, plane, pipe);
  3312. intel_enable_planes(crtc);
  3313. /* The fixup needs to happen before cursor is enabled */
  3314. if (IS_G4X(dev))
  3315. g4x_fixup_plane(dev_priv, pipe);
  3316. intel_crtc_update_cursor(crtc, true);
  3317. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3318. intel_crtc_dpms_overlay(intel_crtc, true);
  3319. intel_update_fbc(dev);
  3320. for_each_encoder_on_crtc(dev, crtc, encoder)
  3321. encoder->enable(encoder);
  3322. }
  3323. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3324. {
  3325. struct drm_device *dev = crtc->base.dev;
  3326. struct drm_i915_private *dev_priv = dev->dev_private;
  3327. if (!crtc->config.gmch_pfit.control)
  3328. return;
  3329. assert_pipe_disabled(dev_priv, crtc->pipe);
  3330. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3331. I915_READ(PFIT_CONTROL));
  3332. I915_WRITE(PFIT_CONTROL, 0);
  3333. }
  3334. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3335. {
  3336. struct drm_device *dev = crtc->dev;
  3337. struct drm_i915_private *dev_priv = dev->dev_private;
  3338. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3339. struct intel_encoder *encoder;
  3340. int pipe = intel_crtc->pipe;
  3341. int plane = intel_crtc->plane;
  3342. if (!intel_crtc->active)
  3343. return;
  3344. for_each_encoder_on_crtc(dev, crtc, encoder)
  3345. encoder->disable(encoder);
  3346. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3347. intel_crtc_wait_for_pending_flips(crtc);
  3348. drm_vblank_off(dev, pipe);
  3349. if (dev_priv->fbc.plane == plane)
  3350. intel_disable_fbc(dev);
  3351. intel_crtc_dpms_overlay(intel_crtc, false);
  3352. intel_crtc_update_cursor(crtc, false);
  3353. intel_disable_planes(crtc);
  3354. intel_disable_plane(dev_priv, plane, pipe);
  3355. intel_disable_pipe(dev_priv, pipe);
  3356. i9xx_pfit_disable(intel_crtc);
  3357. for_each_encoder_on_crtc(dev, crtc, encoder)
  3358. if (encoder->post_disable)
  3359. encoder->post_disable(encoder);
  3360. if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3361. vlv_disable_pll(dev_priv, pipe);
  3362. else if (!IS_VALLEYVIEW(dev))
  3363. i9xx_disable_pll(dev_priv, pipe);
  3364. intel_crtc->active = false;
  3365. intel_update_watermarks(crtc);
  3366. intel_update_fbc(dev);
  3367. }
  3368. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3369. {
  3370. }
  3371. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3372. bool enabled)
  3373. {
  3374. struct drm_device *dev = crtc->dev;
  3375. struct drm_i915_master_private *master_priv;
  3376. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3377. int pipe = intel_crtc->pipe;
  3378. if (!dev->primary->master)
  3379. return;
  3380. master_priv = dev->primary->master->driver_priv;
  3381. if (!master_priv->sarea_priv)
  3382. return;
  3383. switch (pipe) {
  3384. case 0:
  3385. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3386. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3387. break;
  3388. case 1:
  3389. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3390. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3391. break;
  3392. default:
  3393. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3394. break;
  3395. }
  3396. }
  3397. /**
  3398. * Sets the power management mode of the pipe and plane.
  3399. */
  3400. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3401. {
  3402. struct drm_device *dev = crtc->dev;
  3403. struct drm_i915_private *dev_priv = dev->dev_private;
  3404. struct intel_encoder *intel_encoder;
  3405. bool enable = false;
  3406. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3407. enable |= intel_encoder->connectors_active;
  3408. if (enable)
  3409. dev_priv->display.crtc_enable(crtc);
  3410. else
  3411. dev_priv->display.crtc_disable(crtc);
  3412. intel_crtc_update_sarea(crtc, enable);
  3413. }
  3414. static void intel_crtc_disable(struct drm_crtc *crtc)
  3415. {
  3416. struct drm_device *dev = crtc->dev;
  3417. struct drm_connector *connector;
  3418. struct drm_i915_private *dev_priv = dev->dev_private;
  3419. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3420. /* crtc should still be enabled when we disable it. */
  3421. WARN_ON(!crtc->enabled);
  3422. dev_priv->display.crtc_disable(crtc);
  3423. intel_crtc->eld_vld = false;
  3424. intel_crtc_update_sarea(crtc, false);
  3425. dev_priv->display.off(crtc);
  3426. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3427. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3428. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3429. if (crtc->fb) {
  3430. mutex_lock(&dev->struct_mutex);
  3431. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3432. mutex_unlock(&dev->struct_mutex);
  3433. crtc->fb = NULL;
  3434. }
  3435. /* Update computed state. */
  3436. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3437. if (!connector->encoder || !connector->encoder->crtc)
  3438. continue;
  3439. if (connector->encoder->crtc != crtc)
  3440. continue;
  3441. connector->dpms = DRM_MODE_DPMS_OFF;
  3442. to_intel_encoder(connector->encoder)->connectors_active = false;
  3443. }
  3444. }
  3445. void intel_encoder_destroy(struct drm_encoder *encoder)
  3446. {
  3447. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3448. drm_encoder_cleanup(encoder);
  3449. kfree(intel_encoder);
  3450. }
  3451. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3452. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3453. * state of the entire output pipe. */
  3454. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3455. {
  3456. if (mode == DRM_MODE_DPMS_ON) {
  3457. encoder->connectors_active = true;
  3458. intel_crtc_update_dpms(encoder->base.crtc);
  3459. } else {
  3460. encoder->connectors_active = false;
  3461. intel_crtc_update_dpms(encoder->base.crtc);
  3462. }
  3463. }
  3464. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3465. * internal consistency). */
  3466. static void intel_connector_check_state(struct intel_connector *connector)
  3467. {
  3468. if (connector->get_hw_state(connector)) {
  3469. struct intel_encoder *encoder = connector->encoder;
  3470. struct drm_crtc *crtc;
  3471. bool encoder_enabled;
  3472. enum pipe pipe;
  3473. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3474. connector->base.base.id,
  3475. drm_get_connector_name(&connector->base));
  3476. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3477. "wrong connector dpms state\n");
  3478. WARN(connector->base.encoder != &encoder->base,
  3479. "active connector not linked to encoder\n");
  3480. WARN(!encoder->connectors_active,
  3481. "encoder->connectors_active not set\n");
  3482. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3483. WARN(!encoder_enabled, "encoder not enabled\n");
  3484. if (WARN_ON(!encoder->base.crtc))
  3485. return;
  3486. crtc = encoder->base.crtc;
  3487. WARN(!crtc->enabled, "crtc not enabled\n");
  3488. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3489. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3490. "encoder active on the wrong pipe\n");
  3491. }
  3492. }
  3493. /* Even simpler default implementation, if there's really no special case to
  3494. * consider. */
  3495. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3496. {
  3497. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3498. /* All the simple cases only support two dpms states. */
  3499. if (mode != DRM_MODE_DPMS_ON)
  3500. mode = DRM_MODE_DPMS_OFF;
  3501. if (mode == connector->dpms)
  3502. return;
  3503. connector->dpms = mode;
  3504. /* Only need to change hw state when actually enabled */
  3505. if (encoder->base.crtc)
  3506. intel_encoder_dpms(encoder, mode);
  3507. else
  3508. WARN_ON(encoder->connectors_active != false);
  3509. intel_modeset_check_state(connector->dev);
  3510. }
  3511. /* Simple connector->get_hw_state implementation for encoders that support only
  3512. * one connector and no cloning and hence the encoder state determines the state
  3513. * of the connector. */
  3514. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3515. {
  3516. enum pipe pipe = 0;
  3517. struct intel_encoder *encoder = connector->encoder;
  3518. return encoder->get_hw_state(encoder, &pipe);
  3519. }
  3520. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3521. struct intel_crtc_config *pipe_config)
  3522. {
  3523. struct drm_i915_private *dev_priv = dev->dev_private;
  3524. struct intel_crtc *pipe_B_crtc =
  3525. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3526. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3527. pipe_name(pipe), pipe_config->fdi_lanes);
  3528. if (pipe_config->fdi_lanes > 4) {
  3529. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3530. pipe_name(pipe), pipe_config->fdi_lanes);
  3531. return false;
  3532. }
  3533. if (IS_HASWELL(dev)) {
  3534. if (pipe_config->fdi_lanes > 2) {
  3535. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3536. pipe_config->fdi_lanes);
  3537. return false;
  3538. } else {
  3539. return true;
  3540. }
  3541. }
  3542. if (INTEL_INFO(dev)->num_pipes == 2)
  3543. return true;
  3544. /* Ivybridge 3 pipe is really complicated */
  3545. switch (pipe) {
  3546. case PIPE_A:
  3547. return true;
  3548. case PIPE_B:
  3549. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3550. pipe_config->fdi_lanes > 2) {
  3551. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3552. pipe_name(pipe), pipe_config->fdi_lanes);
  3553. return false;
  3554. }
  3555. return true;
  3556. case PIPE_C:
  3557. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3558. pipe_B_crtc->config.fdi_lanes <= 2) {
  3559. if (pipe_config->fdi_lanes > 2) {
  3560. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3561. pipe_name(pipe), pipe_config->fdi_lanes);
  3562. return false;
  3563. }
  3564. } else {
  3565. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3566. return false;
  3567. }
  3568. return true;
  3569. default:
  3570. BUG();
  3571. }
  3572. }
  3573. #define RETRY 1
  3574. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3575. struct intel_crtc_config *pipe_config)
  3576. {
  3577. struct drm_device *dev = intel_crtc->base.dev;
  3578. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3579. int lane, link_bw, fdi_dotclock;
  3580. bool setup_ok, needs_recompute = false;
  3581. retry:
  3582. /* FDI is a binary signal running at ~2.7GHz, encoding
  3583. * each output octet as 10 bits. The actual frequency
  3584. * is stored as a divider into a 100MHz clock, and the
  3585. * mode pixel clock is stored in units of 1KHz.
  3586. * Hence the bw of each lane in terms of the mode signal
  3587. * is:
  3588. */
  3589. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3590. fdi_dotclock = adjusted_mode->crtc_clock;
  3591. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3592. pipe_config->pipe_bpp);
  3593. pipe_config->fdi_lanes = lane;
  3594. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3595. link_bw, &pipe_config->fdi_m_n);
  3596. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3597. intel_crtc->pipe, pipe_config);
  3598. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3599. pipe_config->pipe_bpp -= 2*3;
  3600. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3601. pipe_config->pipe_bpp);
  3602. needs_recompute = true;
  3603. pipe_config->bw_constrained = true;
  3604. goto retry;
  3605. }
  3606. if (needs_recompute)
  3607. return RETRY;
  3608. return setup_ok ? 0 : -EINVAL;
  3609. }
  3610. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3611. struct intel_crtc_config *pipe_config)
  3612. {
  3613. pipe_config->ips_enabled = i915_enable_ips &&
  3614. hsw_crtc_supports_ips(crtc) &&
  3615. pipe_config->pipe_bpp <= 24;
  3616. }
  3617. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3618. struct intel_crtc_config *pipe_config)
  3619. {
  3620. struct drm_device *dev = crtc->base.dev;
  3621. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3622. /* FIXME should check pixel clock limits on all platforms */
  3623. if (INTEL_INFO(dev)->gen < 4) {
  3624. struct drm_i915_private *dev_priv = dev->dev_private;
  3625. int clock_limit =
  3626. dev_priv->display.get_display_clock_speed(dev);
  3627. /*
  3628. * Enable pixel doubling when the dot clock
  3629. * is > 90% of the (display) core speed.
  3630. *
  3631. * GDG double wide on either pipe,
  3632. * otherwise pipe A only.
  3633. */
  3634. if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  3635. adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  3636. clock_limit *= 2;
  3637. pipe_config->double_wide = true;
  3638. }
  3639. if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  3640. return -EINVAL;
  3641. }
  3642. /*
  3643. * Pipe horizontal size must be even in:
  3644. * - DVO ganged mode
  3645. * - LVDS dual channel mode
  3646. * - Double wide pipe
  3647. */
  3648. if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3649. intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  3650. pipe_config->pipe_src_w &= ~1;
  3651. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3652. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3653. */
  3654. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3655. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3656. return -EINVAL;
  3657. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3658. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3659. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3660. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3661. * for lvds. */
  3662. pipe_config->pipe_bpp = 8*3;
  3663. }
  3664. if (HAS_IPS(dev))
  3665. hsw_compute_ips_config(crtc, pipe_config);
  3666. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3667. * clock survives for now. */
  3668. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3669. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3670. if (pipe_config->has_pch_encoder)
  3671. return ironlake_fdi_compute_config(crtc, pipe_config);
  3672. return 0;
  3673. }
  3674. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3675. {
  3676. return 400000; /* FIXME */
  3677. }
  3678. static int i945_get_display_clock_speed(struct drm_device *dev)
  3679. {
  3680. return 400000;
  3681. }
  3682. static int i915_get_display_clock_speed(struct drm_device *dev)
  3683. {
  3684. return 333000;
  3685. }
  3686. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3687. {
  3688. return 200000;
  3689. }
  3690. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3691. {
  3692. u16 gcfgc = 0;
  3693. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3694. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3695. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3696. return 267000;
  3697. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3698. return 333000;
  3699. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3700. return 444000;
  3701. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3702. return 200000;
  3703. default:
  3704. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3705. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3706. return 133000;
  3707. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3708. return 167000;
  3709. }
  3710. }
  3711. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3712. {
  3713. u16 gcfgc = 0;
  3714. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3715. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3716. return 133000;
  3717. else {
  3718. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3719. case GC_DISPLAY_CLOCK_333_MHZ:
  3720. return 333000;
  3721. default:
  3722. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3723. return 190000;
  3724. }
  3725. }
  3726. }
  3727. static int i865_get_display_clock_speed(struct drm_device *dev)
  3728. {
  3729. return 266000;
  3730. }
  3731. static int i855_get_display_clock_speed(struct drm_device *dev)
  3732. {
  3733. u16 hpllcc = 0;
  3734. /* Assume that the hardware is in the high speed state. This
  3735. * should be the default.
  3736. */
  3737. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3738. case GC_CLOCK_133_200:
  3739. case GC_CLOCK_100_200:
  3740. return 200000;
  3741. case GC_CLOCK_166_250:
  3742. return 250000;
  3743. case GC_CLOCK_100_133:
  3744. return 133000;
  3745. }
  3746. /* Shouldn't happen */
  3747. return 0;
  3748. }
  3749. static int i830_get_display_clock_speed(struct drm_device *dev)
  3750. {
  3751. return 133000;
  3752. }
  3753. static void
  3754. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3755. {
  3756. while (*num > DATA_LINK_M_N_MASK ||
  3757. *den > DATA_LINK_M_N_MASK) {
  3758. *num >>= 1;
  3759. *den >>= 1;
  3760. }
  3761. }
  3762. static void compute_m_n(unsigned int m, unsigned int n,
  3763. uint32_t *ret_m, uint32_t *ret_n)
  3764. {
  3765. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3766. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3767. intel_reduce_m_n_ratio(ret_m, ret_n);
  3768. }
  3769. void
  3770. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3771. int pixel_clock, int link_clock,
  3772. struct intel_link_m_n *m_n)
  3773. {
  3774. m_n->tu = 64;
  3775. compute_m_n(bits_per_pixel * pixel_clock,
  3776. link_clock * nlanes * 8,
  3777. &m_n->gmch_m, &m_n->gmch_n);
  3778. compute_m_n(pixel_clock, link_clock,
  3779. &m_n->link_m, &m_n->link_n);
  3780. }
  3781. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3782. {
  3783. if (i915_panel_use_ssc >= 0)
  3784. return i915_panel_use_ssc != 0;
  3785. return dev_priv->vbt.lvds_use_ssc
  3786. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3787. }
  3788. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3789. {
  3790. struct drm_device *dev = crtc->dev;
  3791. struct drm_i915_private *dev_priv = dev->dev_private;
  3792. int refclk;
  3793. if (IS_VALLEYVIEW(dev)) {
  3794. refclk = 100000;
  3795. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3796. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3797. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3798. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3799. refclk / 1000);
  3800. } else if (!IS_GEN2(dev)) {
  3801. refclk = 96000;
  3802. } else {
  3803. refclk = 48000;
  3804. }
  3805. return refclk;
  3806. }
  3807. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3808. {
  3809. return (1 << dpll->n) << 16 | dpll->m2;
  3810. }
  3811. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3812. {
  3813. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3814. }
  3815. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3816. intel_clock_t *reduced_clock)
  3817. {
  3818. struct drm_device *dev = crtc->base.dev;
  3819. struct drm_i915_private *dev_priv = dev->dev_private;
  3820. int pipe = crtc->pipe;
  3821. u32 fp, fp2 = 0;
  3822. if (IS_PINEVIEW(dev)) {
  3823. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3824. if (reduced_clock)
  3825. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3826. } else {
  3827. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3828. if (reduced_clock)
  3829. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3830. }
  3831. I915_WRITE(FP0(pipe), fp);
  3832. crtc->config.dpll_hw_state.fp0 = fp;
  3833. crtc->lowfreq_avail = false;
  3834. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3835. reduced_clock && i915_powersave) {
  3836. I915_WRITE(FP1(pipe), fp2);
  3837. crtc->config.dpll_hw_state.fp1 = fp2;
  3838. crtc->lowfreq_avail = true;
  3839. } else {
  3840. I915_WRITE(FP1(pipe), fp);
  3841. crtc->config.dpll_hw_state.fp1 = fp;
  3842. }
  3843. }
  3844. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3845. pipe)
  3846. {
  3847. u32 reg_val;
  3848. /*
  3849. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3850. * and set it to a reasonable value instead.
  3851. */
  3852. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3853. reg_val &= 0xffffff00;
  3854. reg_val |= 0x00000030;
  3855. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3856. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3857. reg_val &= 0x8cffffff;
  3858. reg_val = 0x8c000000;
  3859. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3860. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3861. reg_val &= 0xffffff00;
  3862. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3863. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3864. reg_val &= 0x00ffffff;
  3865. reg_val |= 0xb0000000;
  3866. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3867. }
  3868. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3869. struct intel_link_m_n *m_n)
  3870. {
  3871. struct drm_device *dev = crtc->base.dev;
  3872. struct drm_i915_private *dev_priv = dev->dev_private;
  3873. int pipe = crtc->pipe;
  3874. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3875. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3876. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3877. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3878. }
  3879. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3880. struct intel_link_m_n *m_n)
  3881. {
  3882. struct drm_device *dev = crtc->base.dev;
  3883. struct drm_i915_private *dev_priv = dev->dev_private;
  3884. int pipe = crtc->pipe;
  3885. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3886. if (INTEL_INFO(dev)->gen >= 5) {
  3887. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3888. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3889. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3890. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3891. } else {
  3892. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3893. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3894. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3895. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3896. }
  3897. }
  3898. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3899. {
  3900. if (crtc->config.has_pch_encoder)
  3901. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3902. else
  3903. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3904. }
  3905. static void vlv_update_pll(struct intel_crtc *crtc)
  3906. {
  3907. struct drm_device *dev = crtc->base.dev;
  3908. struct drm_i915_private *dev_priv = dev->dev_private;
  3909. int pipe = crtc->pipe;
  3910. u32 dpll, mdiv;
  3911. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3912. u32 coreclk, reg_val, dpll_md;
  3913. mutex_lock(&dev_priv->dpio_lock);
  3914. bestn = crtc->config.dpll.n;
  3915. bestm1 = crtc->config.dpll.m1;
  3916. bestm2 = crtc->config.dpll.m2;
  3917. bestp1 = crtc->config.dpll.p1;
  3918. bestp2 = crtc->config.dpll.p2;
  3919. /* See eDP HDMI DPIO driver vbios notes doc */
  3920. /* PLL B needs special handling */
  3921. if (pipe)
  3922. vlv_pllb_recal_opamp(dev_priv, pipe);
  3923. /* Set up Tx target for periodic Rcomp update */
  3924. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3925. /* Disable target IRef on PLL */
  3926. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3927. reg_val &= 0x00ffffff;
  3928. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3929. /* Disable fast lock */
  3930. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3931. /* Set idtafcrecal before PLL is enabled */
  3932. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3933. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3934. mdiv |= ((bestn << DPIO_N_SHIFT));
  3935. mdiv |= (1 << DPIO_K_SHIFT);
  3936. /*
  3937. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3938. * but we don't support that).
  3939. * Note: don't use the DAC post divider as it seems unstable.
  3940. */
  3941. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3942. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3943. mdiv |= DPIO_ENABLE_CALIBRATION;
  3944. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3945. /* Set HBR and RBR LPF coefficients */
  3946. if (crtc->config.port_clock == 162000 ||
  3947. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3948. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3949. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3950. 0x009f0003);
  3951. else
  3952. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3953. 0x00d0000f);
  3954. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3955. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3956. /* Use SSC source */
  3957. if (!pipe)
  3958. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3959. 0x0df40000);
  3960. else
  3961. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3962. 0x0df70000);
  3963. } else { /* HDMI or VGA */
  3964. /* Use bend source */
  3965. if (!pipe)
  3966. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3967. 0x0df70000);
  3968. else
  3969. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3970. 0x0df40000);
  3971. }
  3972. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3973. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3974. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3975. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3976. coreclk |= 0x01000000;
  3977. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3978. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3979. /* Enable DPIO clock input */
  3980. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3981. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3982. /* We should never disable this, set it here for state tracking */
  3983. if (pipe == PIPE_B)
  3984. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3985. dpll |= DPLL_VCO_ENABLE;
  3986. crtc->config.dpll_hw_state.dpll = dpll;
  3987. dpll_md = (crtc->config.pixel_multiplier - 1)
  3988. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3989. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3990. if (crtc->config.has_dp_encoder)
  3991. intel_dp_set_m_n(crtc);
  3992. mutex_unlock(&dev_priv->dpio_lock);
  3993. }
  3994. static void i9xx_update_pll(struct intel_crtc *crtc,
  3995. intel_clock_t *reduced_clock,
  3996. int num_connectors)
  3997. {
  3998. struct drm_device *dev = crtc->base.dev;
  3999. struct drm_i915_private *dev_priv = dev->dev_private;
  4000. u32 dpll;
  4001. bool is_sdvo;
  4002. struct dpll *clock = &crtc->config.dpll;
  4003. i9xx_update_pll_dividers(crtc, reduced_clock);
  4004. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  4005. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  4006. dpll = DPLL_VGA_MODE_DIS;
  4007. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  4008. dpll |= DPLLB_MODE_LVDS;
  4009. else
  4010. dpll |= DPLLB_MODE_DAC_SERIAL;
  4011. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4012. dpll |= (crtc->config.pixel_multiplier - 1)
  4013. << SDVO_MULTIPLIER_SHIFT_HIRES;
  4014. }
  4015. if (is_sdvo)
  4016. dpll |= DPLL_SDVO_HIGH_SPEED;
  4017. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  4018. dpll |= DPLL_SDVO_HIGH_SPEED;
  4019. /* compute bitmask from p1 value */
  4020. if (IS_PINEVIEW(dev))
  4021. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4022. else {
  4023. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4024. if (IS_G4X(dev) && reduced_clock)
  4025. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4026. }
  4027. switch (clock->p2) {
  4028. case 5:
  4029. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4030. break;
  4031. case 7:
  4032. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4033. break;
  4034. case 10:
  4035. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4036. break;
  4037. case 14:
  4038. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4039. break;
  4040. }
  4041. if (INTEL_INFO(dev)->gen >= 4)
  4042. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4043. if (crtc->config.sdvo_tv_clock)
  4044. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4045. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4046. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4047. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4048. else
  4049. dpll |= PLL_REF_INPUT_DREFCLK;
  4050. dpll |= DPLL_VCO_ENABLE;
  4051. crtc->config.dpll_hw_state.dpll = dpll;
  4052. if (INTEL_INFO(dev)->gen >= 4) {
  4053. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  4054. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4055. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4056. }
  4057. if (crtc->config.has_dp_encoder)
  4058. intel_dp_set_m_n(crtc);
  4059. }
  4060. static void i8xx_update_pll(struct intel_crtc *crtc,
  4061. intel_clock_t *reduced_clock,
  4062. int num_connectors)
  4063. {
  4064. struct drm_device *dev = crtc->base.dev;
  4065. struct drm_i915_private *dev_priv = dev->dev_private;
  4066. u32 dpll;
  4067. struct dpll *clock = &crtc->config.dpll;
  4068. i9xx_update_pll_dividers(crtc, reduced_clock);
  4069. dpll = DPLL_VGA_MODE_DIS;
  4070. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  4071. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4072. } else {
  4073. if (clock->p1 == 2)
  4074. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4075. else
  4076. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4077. if (clock->p2 == 4)
  4078. dpll |= PLL_P2_DIVIDE_BY_4;
  4079. }
  4080. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4081. dpll |= DPLL_DVO_2X_MODE;
  4082. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4083. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4084. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4085. else
  4086. dpll |= PLL_REF_INPUT_DREFCLK;
  4087. dpll |= DPLL_VCO_ENABLE;
  4088. crtc->config.dpll_hw_state.dpll = dpll;
  4089. }
  4090. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4091. {
  4092. struct drm_device *dev = intel_crtc->base.dev;
  4093. struct drm_i915_private *dev_priv = dev->dev_private;
  4094. enum pipe pipe = intel_crtc->pipe;
  4095. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4096. struct drm_display_mode *adjusted_mode =
  4097. &intel_crtc->config.adjusted_mode;
  4098. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4099. /* We need to be careful not to changed the adjusted mode, for otherwise
  4100. * the hw state checker will get angry at the mismatch. */
  4101. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4102. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4103. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4104. /* the chip adds 2 halflines automatically */
  4105. crtc_vtotal -= 1;
  4106. crtc_vblank_end -= 1;
  4107. vsyncshift = adjusted_mode->crtc_hsync_start
  4108. - adjusted_mode->crtc_htotal / 2;
  4109. } else {
  4110. vsyncshift = 0;
  4111. }
  4112. if (INTEL_INFO(dev)->gen > 3)
  4113. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4114. I915_WRITE(HTOTAL(cpu_transcoder),
  4115. (adjusted_mode->crtc_hdisplay - 1) |
  4116. ((adjusted_mode->crtc_htotal - 1) << 16));
  4117. I915_WRITE(HBLANK(cpu_transcoder),
  4118. (adjusted_mode->crtc_hblank_start - 1) |
  4119. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4120. I915_WRITE(HSYNC(cpu_transcoder),
  4121. (adjusted_mode->crtc_hsync_start - 1) |
  4122. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4123. I915_WRITE(VTOTAL(cpu_transcoder),
  4124. (adjusted_mode->crtc_vdisplay - 1) |
  4125. ((crtc_vtotal - 1) << 16));
  4126. I915_WRITE(VBLANK(cpu_transcoder),
  4127. (adjusted_mode->crtc_vblank_start - 1) |
  4128. ((crtc_vblank_end - 1) << 16));
  4129. I915_WRITE(VSYNC(cpu_transcoder),
  4130. (adjusted_mode->crtc_vsync_start - 1) |
  4131. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4132. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4133. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4134. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4135. * bits. */
  4136. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4137. (pipe == PIPE_B || pipe == PIPE_C))
  4138. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4139. /* pipesrc controls the size that is scaled from, which should
  4140. * always be the user's requested size.
  4141. */
  4142. I915_WRITE(PIPESRC(pipe),
  4143. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4144. (intel_crtc->config.pipe_src_h - 1));
  4145. }
  4146. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4147. struct intel_crtc_config *pipe_config)
  4148. {
  4149. struct drm_device *dev = crtc->base.dev;
  4150. struct drm_i915_private *dev_priv = dev->dev_private;
  4151. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4152. uint32_t tmp;
  4153. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4154. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4155. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4156. tmp = I915_READ(HBLANK(cpu_transcoder));
  4157. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4158. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4159. tmp = I915_READ(HSYNC(cpu_transcoder));
  4160. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4161. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4162. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4163. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4164. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4165. tmp = I915_READ(VBLANK(cpu_transcoder));
  4166. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4167. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4168. tmp = I915_READ(VSYNC(cpu_transcoder));
  4169. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4170. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4171. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4172. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4173. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4174. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4175. }
  4176. tmp = I915_READ(PIPESRC(crtc->pipe));
  4177. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4178. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4179. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4180. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4181. }
  4182. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4183. struct intel_crtc_config *pipe_config)
  4184. {
  4185. struct drm_crtc *crtc = &intel_crtc->base;
  4186. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4187. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4188. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4189. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4190. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4191. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4192. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4193. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4194. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4195. crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
  4196. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4197. }
  4198. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4199. {
  4200. struct drm_device *dev = intel_crtc->base.dev;
  4201. struct drm_i915_private *dev_priv = dev->dev_private;
  4202. uint32_t pipeconf;
  4203. pipeconf = 0;
  4204. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4205. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4206. pipeconf |= PIPECONF_ENABLE;
  4207. if (intel_crtc->config.double_wide)
  4208. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4209. /* only g4x and later have fancy bpc/dither controls */
  4210. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4211. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4212. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4213. pipeconf |= PIPECONF_DITHER_EN |
  4214. PIPECONF_DITHER_TYPE_SP;
  4215. switch (intel_crtc->config.pipe_bpp) {
  4216. case 18:
  4217. pipeconf |= PIPECONF_6BPC;
  4218. break;
  4219. case 24:
  4220. pipeconf |= PIPECONF_8BPC;
  4221. break;
  4222. case 30:
  4223. pipeconf |= PIPECONF_10BPC;
  4224. break;
  4225. default:
  4226. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4227. BUG();
  4228. }
  4229. }
  4230. if (HAS_PIPE_CXSR(dev)) {
  4231. if (intel_crtc->lowfreq_avail) {
  4232. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4233. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4234. } else {
  4235. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4236. }
  4237. }
  4238. if (!IS_GEN2(dev) &&
  4239. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4240. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4241. else
  4242. pipeconf |= PIPECONF_PROGRESSIVE;
  4243. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4244. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4245. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4246. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4247. }
  4248. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4249. int x, int y,
  4250. struct drm_framebuffer *fb)
  4251. {
  4252. struct drm_device *dev = crtc->dev;
  4253. struct drm_i915_private *dev_priv = dev->dev_private;
  4254. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4255. int pipe = intel_crtc->pipe;
  4256. int plane = intel_crtc->plane;
  4257. int refclk, num_connectors = 0;
  4258. intel_clock_t clock, reduced_clock;
  4259. u32 dspcntr;
  4260. bool ok, has_reduced_clock = false;
  4261. bool is_lvds = false, is_dsi = false;
  4262. struct intel_encoder *encoder;
  4263. const intel_limit_t *limit;
  4264. int ret;
  4265. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4266. switch (encoder->type) {
  4267. case INTEL_OUTPUT_LVDS:
  4268. is_lvds = true;
  4269. break;
  4270. case INTEL_OUTPUT_DSI:
  4271. is_dsi = true;
  4272. break;
  4273. }
  4274. num_connectors++;
  4275. }
  4276. if (is_dsi)
  4277. goto skip_dpll;
  4278. if (!intel_crtc->config.clock_set) {
  4279. refclk = i9xx_get_refclk(crtc, num_connectors);
  4280. /*
  4281. * Returns a set of divisors for the desired target clock with
  4282. * the given refclk, or FALSE. The returned values represent
  4283. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4284. * 2) / p1 / p2.
  4285. */
  4286. limit = intel_limit(crtc, refclk);
  4287. ok = dev_priv->display.find_dpll(limit, crtc,
  4288. intel_crtc->config.port_clock,
  4289. refclk, NULL, &clock);
  4290. if (!ok) {
  4291. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4292. return -EINVAL;
  4293. }
  4294. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4295. /*
  4296. * Ensure we match the reduced clock's P to the target
  4297. * clock. If the clocks don't match, we can't switch
  4298. * the display clock by using the FP0/FP1. In such case
  4299. * we will disable the LVDS downclock feature.
  4300. */
  4301. has_reduced_clock =
  4302. dev_priv->display.find_dpll(limit, crtc,
  4303. dev_priv->lvds_downclock,
  4304. refclk, &clock,
  4305. &reduced_clock);
  4306. }
  4307. /* Compat-code for transition, will disappear. */
  4308. intel_crtc->config.dpll.n = clock.n;
  4309. intel_crtc->config.dpll.m1 = clock.m1;
  4310. intel_crtc->config.dpll.m2 = clock.m2;
  4311. intel_crtc->config.dpll.p1 = clock.p1;
  4312. intel_crtc->config.dpll.p2 = clock.p2;
  4313. }
  4314. if (IS_GEN2(dev)) {
  4315. i8xx_update_pll(intel_crtc,
  4316. has_reduced_clock ? &reduced_clock : NULL,
  4317. num_connectors);
  4318. } else if (IS_VALLEYVIEW(dev)) {
  4319. vlv_update_pll(intel_crtc);
  4320. } else {
  4321. i9xx_update_pll(intel_crtc,
  4322. has_reduced_clock ? &reduced_clock : NULL,
  4323. num_connectors);
  4324. }
  4325. skip_dpll:
  4326. /* Set up the display plane register */
  4327. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4328. if (!IS_VALLEYVIEW(dev)) {
  4329. if (pipe == 0)
  4330. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4331. else
  4332. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4333. }
  4334. intel_set_pipe_timings(intel_crtc);
  4335. /* pipesrc and dspsize control the size that is scaled from,
  4336. * which should always be the user's requested size.
  4337. */
  4338. I915_WRITE(DSPSIZE(plane),
  4339. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4340. (intel_crtc->config.pipe_src_w - 1));
  4341. I915_WRITE(DSPPOS(plane), 0);
  4342. i9xx_set_pipeconf(intel_crtc);
  4343. I915_WRITE(DSPCNTR(plane), dspcntr);
  4344. POSTING_READ(DSPCNTR(plane));
  4345. ret = intel_pipe_set_base(crtc, x, y, fb);
  4346. return ret;
  4347. }
  4348. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4349. struct intel_crtc_config *pipe_config)
  4350. {
  4351. struct drm_device *dev = crtc->base.dev;
  4352. struct drm_i915_private *dev_priv = dev->dev_private;
  4353. uint32_t tmp;
  4354. tmp = I915_READ(PFIT_CONTROL);
  4355. if (!(tmp & PFIT_ENABLE))
  4356. return;
  4357. /* Check whether the pfit is attached to our pipe. */
  4358. if (INTEL_INFO(dev)->gen < 4) {
  4359. if (crtc->pipe != PIPE_B)
  4360. return;
  4361. } else {
  4362. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4363. return;
  4364. }
  4365. pipe_config->gmch_pfit.control = tmp;
  4366. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4367. if (INTEL_INFO(dev)->gen < 5)
  4368. pipe_config->gmch_pfit.lvds_border_bits =
  4369. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4370. }
  4371. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  4372. struct intel_crtc_config *pipe_config)
  4373. {
  4374. struct drm_device *dev = crtc->base.dev;
  4375. struct drm_i915_private *dev_priv = dev->dev_private;
  4376. int pipe = pipe_config->cpu_transcoder;
  4377. intel_clock_t clock;
  4378. u32 mdiv;
  4379. int refclk = 100000;
  4380. mutex_lock(&dev_priv->dpio_lock);
  4381. mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
  4382. mutex_unlock(&dev_priv->dpio_lock);
  4383. clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  4384. clock.m2 = mdiv & DPIO_M2DIV_MASK;
  4385. clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  4386. clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  4387. clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  4388. clock.vco = refclk * clock.m1 * clock.m2 / clock.n;
  4389. clock.dot = 2 * clock.vco / (clock.p1 * clock.p2);
  4390. pipe_config->port_clock = clock.dot / 10;
  4391. }
  4392. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4393. struct intel_crtc_config *pipe_config)
  4394. {
  4395. struct drm_device *dev = crtc->base.dev;
  4396. struct drm_i915_private *dev_priv = dev->dev_private;
  4397. uint32_t tmp;
  4398. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4399. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4400. tmp = I915_READ(PIPECONF(crtc->pipe));
  4401. if (!(tmp & PIPECONF_ENABLE))
  4402. return false;
  4403. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4404. switch (tmp & PIPECONF_BPC_MASK) {
  4405. case PIPECONF_6BPC:
  4406. pipe_config->pipe_bpp = 18;
  4407. break;
  4408. case PIPECONF_8BPC:
  4409. pipe_config->pipe_bpp = 24;
  4410. break;
  4411. case PIPECONF_10BPC:
  4412. pipe_config->pipe_bpp = 30;
  4413. break;
  4414. default:
  4415. break;
  4416. }
  4417. }
  4418. if (INTEL_INFO(dev)->gen < 4)
  4419. pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  4420. intel_get_pipe_timings(crtc, pipe_config);
  4421. i9xx_get_pfit_config(crtc, pipe_config);
  4422. if (INTEL_INFO(dev)->gen >= 4) {
  4423. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4424. pipe_config->pixel_multiplier =
  4425. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4426. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4427. pipe_config->dpll_hw_state.dpll_md = tmp;
  4428. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4429. tmp = I915_READ(DPLL(crtc->pipe));
  4430. pipe_config->pixel_multiplier =
  4431. ((tmp & SDVO_MULTIPLIER_MASK)
  4432. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4433. } else {
  4434. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4435. * port and will be fixed up in the encoder->get_config
  4436. * function. */
  4437. pipe_config->pixel_multiplier = 1;
  4438. }
  4439. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4440. if (!IS_VALLEYVIEW(dev)) {
  4441. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4442. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4443. } else {
  4444. /* Mask out read-only status bits. */
  4445. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4446. DPLL_PORTC_READY_MASK |
  4447. DPLL_PORTB_READY_MASK);
  4448. }
  4449. if (IS_VALLEYVIEW(dev))
  4450. vlv_crtc_clock_get(crtc, pipe_config);
  4451. else
  4452. i9xx_crtc_clock_get(crtc, pipe_config);
  4453. return true;
  4454. }
  4455. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4456. {
  4457. struct drm_i915_private *dev_priv = dev->dev_private;
  4458. struct drm_mode_config *mode_config = &dev->mode_config;
  4459. struct intel_encoder *encoder;
  4460. u32 val, final;
  4461. bool has_lvds = false;
  4462. bool has_cpu_edp = false;
  4463. bool has_panel = false;
  4464. bool has_ck505 = false;
  4465. bool can_ssc = false;
  4466. /* We need to take the global config into account */
  4467. list_for_each_entry(encoder, &mode_config->encoder_list,
  4468. base.head) {
  4469. switch (encoder->type) {
  4470. case INTEL_OUTPUT_LVDS:
  4471. has_panel = true;
  4472. has_lvds = true;
  4473. break;
  4474. case INTEL_OUTPUT_EDP:
  4475. has_panel = true;
  4476. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4477. has_cpu_edp = true;
  4478. break;
  4479. }
  4480. }
  4481. if (HAS_PCH_IBX(dev)) {
  4482. has_ck505 = dev_priv->vbt.display_clock_mode;
  4483. can_ssc = has_ck505;
  4484. } else {
  4485. has_ck505 = false;
  4486. can_ssc = true;
  4487. }
  4488. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4489. has_panel, has_lvds, has_ck505);
  4490. /* Ironlake: try to setup display ref clock before DPLL
  4491. * enabling. This is only under driver's control after
  4492. * PCH B stepping, previous chipset stepping should be
  4493. * ignoring this setting.
  4494. */
  4495. val = I915_READ(PCH_DREF_CONTROL);
  4496. /* As we must carefully and slowly disable/enable each source in turn,
  4497. * compute the final state we want first and check if we need to
  4498. * make any changes at all.
  4499. */
  4500. final = val;
  4501. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4502. if (has_ck505)
  4503. final |= DREF_NONSPREAD_CK505_ENABLE;
  4504. else
  4505. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4506. final &= ~DREF_SSC_SOURCE_MASK;
  4507. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4508. final &= ~DREF_SSC1_ENABLE;
  4509. if (has_panel) {
  4510. final |= DREF_SSC_SOURCE_ENABLE;
  4511. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4512. final |= DREF_SSC1_ENABLE;
  4513. if (has_cpu_edp) {
  4514. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4515. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4516. else
  4517. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4518. } else
  4519. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4520. } else {
  4521. final |= DREF_SSC_SOURCE_DISABLE;
  4522. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4523. }
  4524. if (final == val)
  4525. return;
  4526. /* Always enable nonspread source */
  4527. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4528. if (has_ck505)
  4529. val |= DREF_NONSPREAD_CK505_ENABLE;
  4530. else
  4531. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4532. if (has_panel) {
  4533. val &= ~DREF_SSC_SOURCE_MASK;
  4534. val |= DREF_SSC_SOURCE_ENABLE;
  4535. /* SSC must be turned on before enabling the CPU output */
  4536. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4537. DRM_DEBUG_KMS("Using SSC on panel\n");
  4538. val |= DREF_SSC1_ENABLE;
  4539. } else
  4540. val &= ~DREF_SSC1_ENABLE;
  4541. /* Get SSC going before enabling the outputs */
  4542. I915_WRITE(PCH_DREF_CONTROL, val);
  4543. POSTING_READ(PCH_DREF_CONTROL);
  4544. udelay(200);
  4545. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4546. /* Enable CPU source on CPU attached eDP */
  4547. if (has_cpu_edp) {
  4548. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4549. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4550. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4551. }
  4552. else
  4553. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4554. } else
  4555. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4556. I915_WRITE(PCH_DREF_CONTROL, val);
  4557. POSTING_READ(PCH_DREF_CONTROL);
  4558. udelay(200);
  4559. } else {
  4560. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4561. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4562. /* Turn off CPU output */
  4563. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4564. I915_WRITE(PCH_DREF_CONTROL, val);
  4565. POSTING_READ(PCH_DREF_CONTROL);
  4566. udelay(200);
  4567. /* Turn off the SSC source */
  4568. val &= ~DREF_SSC_SOURCE_MASK;
  4569. val |= DREF_SSC_SOURCE_DISABLE;
  4570. /* Turn off SSC1 */
  4571. val &= ~DREF_SSC1_ENABLE;
  4572. I915_WRITE(PCH_DREF_CONTROL, val);
  4573. POSTING_READ(PCH_DREF_CONTROL);
  4574. udelay(200);
  4575. }
  4576. BUG_ON(val != final);
  4577. }
  4578. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4579. {
  4580. uint32_t tmp;
  4581. tmp = I915_READ(SOUTH_CHICKEN2);
  4582. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4583. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4584. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4585. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4586. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4587. tmp = I915_READ(SOUTH_CHICKEN2);
  4588. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4589. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4590. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4591. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4592. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4593. }
  4594. /* WaMPhyProgramming:hsw */
  4595. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4596. {
  4597. uint32_t tmp;
  4598. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4599. tmp &= ~(0xFF << 24);
  4600. tmp |= (0x12 << 24);
  4601. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4602. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4603. tmp |= (1 << 11);
  4604. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4605. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4606. tmp |= (1 << 11);
  4607. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4608. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4609. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4610. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4611. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4612. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4613. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4614. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4615. tmp &= ~(7 << 13);
  4616. tmp |= (5 << 13);
  4617. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4618. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4619. tmp &= ~(7 << 13);
  4620. tmp |= (5 << 13);
  4621. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4622. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4623. tmp &= ~0xFF;
  4624. tmp |= 0x1C;
  4625. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4626. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4627. tmp &= ~0xFF;
  4628. tmp |= 0x1C;
  4629. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4630. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4631. tmp &= ~(0xFF << 16);
  4632. tmp |= (0x1C << 16);
  4633. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4634. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4635. tmp &= ~(0xFF << 16);
  4636. tmp |= (0x1C << 16);
  4637. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4638. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4639. tmp |= (1 << 27);
  4640. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4641. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4642. tmp |= (1 << 27);
  4643. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4644. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4645. tmp &= ~(0xF << 28);
  4646. tmp |= (4 << 28);
  4647. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4648. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4649. tmp &= ~(0xF << 28);
  4650. tmp |= (4 << 28);
  4651. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4652. }
  4653. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4654. * Programming" based on the parameters passed:
  4655. * - Sequence to enable CLKOUT_DP
  4656. * - Sequence to enable CLKOUT_DP without spread
  4657. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4658. */
  4659. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4660. bool with_fdi)
  4661. {
  4662. struct drm_i915_private *dev_priv = dev->dev_private;
  4663. uint32_t reg, tmp;
  4664. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4665. with_spread = true;
  4666. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4667. with_fdi, "LP PCH doesn't have FDI\n"))
  4668. with_fdi = false;
  4669. mutex_lock(&dev_priv->dpio_lock);
  4670. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4671. tmp &= ~SBI_SSCCTL_DISABLE;
  4672. tmp |= SBI_SSCCTL_PATHALT;
  4673. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4674. udelay(24);
  4675. if (with_spread) {
  4676. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4677. tmp &= ~SBI_SSCCTL_PATHALT;
  4678. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4679. if (with_fdi) {
  4680. lpt_reset_fdi_mphy(dev_priv);
  4681. lpt_program_fdi_mphy(dev_priv);
  4682. }
  4683. }
  4684. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4685. SBI_GEN0 : SBI_DBUFF0;
  4686. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4687. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4688. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4689. mutex_unlock(&dev_priv->dpio_lock);
  4690. }
  4691. /* Sequence to disable CLKOUT_DP */
  4692. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4693. {
  4694. struct drm_i915_private *dev_priv = dev->dev_private;
  4695. uint32_t reg, tmp;
  4696. mutex_lock(&dev_priv->dpio_lock);
  4697. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4698. SBI_GEN0 : SBI_DBUFF0;
  4699. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4700. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4701. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4702. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4703. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4704. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4705. tmp |= SBI_SSCCTL_PATHALT;
  4706. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4707. udelay(32);
  4708. }
  4709. tmp |= SBI_SSCCTL_DISABLE;
  4710. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4711. }
  4712. mutex_unlock(&dev_priv->dpio_lock);
  4713. }
  4714. static void lpt_init_pch_refclk(struct drm_device *dev)
  4715. {
  4716. struct drm_mode_config *mode_config = &dev->mode_config;
  4717. struct intel_encoder *encoder;
  4718. bool has_vga = false;
  4719. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4720. switch (encoder->type) {
  4721. case INTEL_OUTPUT_ANALOG:
  4722. has_vga = true;
  4723. break;
  4724. }
  4725. }
  4726. if (has_vga)
  4727. lpt_enable_clkout_dp(dev, true, true);
  4728. else
  4729. lpt_disable_clkout_dp(dev);
  4730. }
  4731. /*
  4732. * Initialize reference clocks when the driver loads
  4733. */
  4734. void intel_init_pch_refclk(struct drm_device *dev)
  4735. {
  4736. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4737. ironlake_init_pch_refclk(dev);
  4738. else if (HAS_PCH_LPT(dev))
  4739. lpt_init_pch_refclk(dev);
  4740. }
  4741. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4742. {
  4743. struct drm_device *dev = crtc->dev;
  4744. struct drm_i915_private *dev_priv = dev->dev_private;
  4745. struct intel_encoder *encoder;
  4746. int num_connectors = 0;
  4747. bool is_lvds = false;
  4748. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4749. switch (encoder->type) {
  4750. case INTEL_OUTPUT_LVDS:
  4751. is_lvds = true;
  4752. break;
  4753. }
  4754. num_connectors++;
  4755. }
  4756. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4757. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4758. dev_priv->vbt.lvds_ssc_freq);
  4759. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4760. }
  4761. return 120000;
  4762. }
  4763. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4764. {
  4765. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4766. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4767. int pipe = intel_crtc->pipe;
  4768. uint32_t val;
  4769. val = 0;
  4770. switch (intel_crtc->config.pipe_bpp) {
  4771. case 18:
  4772. val |= PIPECONF_6BPC;
  4773. break;
  4774. case 24:
  4775. val |= PIPECONF_8BPC;
  4776. break;
  4777. case 30:
  4778. val |= PIPECONF_10BPC;
  4779. break;
  4780. case 36:
  4781. val |= PIPECONF_12BPC;
  4782. break;
  4783. default:
  4784. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4785. BUG();
  4786. }
  4787. if (intel_crtc->config.dither)
  4788. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4789. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4790. val |= PIPECONF_INTERLACED_ILK;
  4791. else
  4792. val |= PIPECONF_PROGRESSIVE;
  4793. if (intel_crtc->config.limited_color_range)
  4794. val |= PIPECONF_COLOR_RANGE_SELECT;
  4795. I915_WRITE(PIPECONF(pipe), val);
  4796. POSTING_READ(PIPECONF(pipe));
  4797. }
  4798. /*
  4799. * Set up the pipe CSC unit.
  4800. *
  4801. * Currently only full range RGB to limited range RGB conversion
  4802. * is supported, but eventually this should handle various
  4803. * RGB<->YCbCr scenarios as well.
  4804. */
  4805. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4806. {
  4807. struct drm_device *dev = crtc->dev;
  4808. struct drm_i915_private *dev_priv = dev->dev_private;
  4809. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4810. int pipe = intel_crtc->pipe;
  4811. uint16_t coeff = 0x7800; /* 1.0 */
  4812. /*
  4813. * TODO: Check what kind of values actually come out of the pipe
  4814. * with these coeff/postoff values and adjust to get the best
  4815. * accuracy. Perhaps we even need to take the bpc value into
  4816. * consideration.
  4817. */
  4818. if (intel_crtc->config.limited_color_range)
  4819. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4820. /*
  4821. * GY/GU and RY/RU should be the other way around according
  4822. * to BSpec, but reality doesn't agree. Just set them up in
  4823. * a way that results in the correct picture.
  4824. */
  4825. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4826. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4827. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4828. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4829. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4830. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4831. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4832. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4833. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4834. if (INTEL_INFO(dev)->gen > 6) {
  4835. uint16_t postoff = 0;
  4836. if (intel_crtc->config.limited_color_range)
  4837. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4838. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4839. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4840. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4841. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4842. } else {
  4843. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4844. if (intel_crtc->config.limited_color_range)
  4845. mode |= CSC_BLACK_SCREEN_OFFSET;
  4846. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4847. }
  4848. }
  4849. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4850. {
  4851. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4852. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4853. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4854. uint32_t val;
  4855. val = 0;
  4856. if (intel_crtc->config.dither)
  4857. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4858. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4859. val |= PIPECONF_INTERLACED_ILK;
  4860. else
  4861. val |= PIPECONF_PROGRESSIVE;
  4862. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4863. POSTING_READ(PIPECONF(cpu_transcoder));
  4864. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4865. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4866. }
  4867. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4868. intel_clock_t *clock,
  4869. bool *has_reduced_clock,
  4870. intel_clock_t *reduced_clock)
  4871. {
  4872. struct drm_device *dev = crtc->dev;
  4873. struct drm_i915_private *dev_priv = dev->dev_private;
  4874. struct intel_encoder *intel_encoder;
  4875. int refclk;
  4876. const intel_limit_t *limit;
  4877. bool ret, is_lvds = false;
  4878. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4879. switch (intel_encoder->type) {
  4880. case INTEL_OUTPUT_LVDS:
  4881. is_lvds = true;
  4882. break;
  4883. }
  4884. }
  4885. refclk = ironlake_get_refclk(crtc);
  4886. /*
  4887. * Returns a set of divisors for the desired target clock with the given
  4888. * refclk, or FALSE. The returned values represent the clock equation:
  4889. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4890. */
  4891. limit = intel_limit(crtc, refclk);
  4892. ret = dev_priv->display.find_dpll(limit, crtc,
  4893. to_intel_crtc(crtc)->config.port_clock,
  4894. refclk, NULL, clock);
  4895. if (!ret)
  4896. return false;
  4897. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4898. /*
  4899. * Ensure we match the reduced clock's P to the target clock.
  4900. * If the clocks don't match, we can't switch the display clock
  4901. * by using the FP0/FP1. In such case we will disable the LVDS
  4902. * downclock feature.
  4903. */
  4904. *has_reduced_clock =
  4905. dev_priv->display.find_dpll(limit, crtc,
  4906. dev_priv->lvds_downclock,
  4907. refclk, clock,
  4908. reduced_clock);
  4909. }
  4910. return true;
  4911. }
  4912. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4913. {
  4914. struct drm_i915_private *dev_priv = dev->dev_private;
  4915. uint32_t temp;
  4916. temp = I915_READ(SOUTH_CHICKEN1);
  4917. if (temp & FDI_BC_BIFURCATION_SELECT)
  4918. return;
  4919. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4920. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4921. temp |= FDI_BC_BIFURCATION_SELECT;
  4922. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4923. I915_WRITE(SOUTH_CHICKEN1, temp);
  4924. POSTING_READ(SOUTH_CHICKEN1);
  4925. }
  4926. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4927. {
  4928. struct drm_device *dev = intel_crtc->base.dev;
  4929. struct drm_i915_private *dev_priv = dev->dev_private;
  4930. switch (intel_crtc->pipe) {
  4931. case PIPE_A:
  4932. break;
  4933. case PIPE_B:
  4934. if (intel_crtc->config.fdi_lanes > 2)
  4935. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4936. else
  4937. cpt_enable_fdi_bc_bifurcation(dev);
  4938. break;
  4939. case PIPE_C:
  4940. cpt_enable_fdi_bc_bifurcation(dev);
  4941. break;
  4942. default:
  4943. BUG();
  4944. }
  4945. }
  4946. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4947. {
  4948. /*
  4949. * Account for spread spectrum to avoid
  4950. * oversubscribing the link. Max center spread
  4951. * is 2.5%; use 5% for safety's sake.
  4952. */
  4953. u32 bps = target_clock * bpp * 21 / 20;
  4954. return bps / (link_bw * 8) + 1;
  4955. }
  4956. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4957. {
  4958. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4959. }
  4960. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4961. u32 *fp,
  4962. intel_clock_t *reduced_clock, u32 *fp2)
  4963. {
  4964. struct drm_crtc *crtc = &intel_crtc->base;
  4965. struct drm_device *dev = crtc->dev;
  4966. struct drm_i915_private *dev_priv = dev->dev_private;
  4967. struct intel_encoder *intel_encoder;
  4968. uint32_t dpll;
  4969. int factor, num_connectors = 0;
  4970. bool is_lvds = false, is_sdvo = false;
  4971. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4972. switch (intel_encoder->type) {
  4973. case INTEL_OUTPUT_LVDS:
  4974. is_lvds = true;
  4975. break;
  4976. case INTEL_OUTPUT_SDVO:
  4977. case INTEL_OUTPUT_HDMI:
  4978. is_sdvo = true;
  4979. break;
  4980. }
  4981. num_connectors++;
  4982. }
  4983. /* Enable autotuning of the PLL clock (if permissible) */
  4984. factor = 21;
  4985. if (is_lvds) {
  4986. if ((intel_panel_use_ssc(dev_priv) &&
  4987. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4988. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4989. factor = 25;
  4990. } else if (intel_crtc->config.sdvo_tv_clock)
  4991. factor = 20;
  4992. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4993. *fp |= FP_CB_TUNE;
  4994. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4995. *fp2 |= FP_CB_TUNE;
  4996. dpll = 0;
  4997. if (is_lvds)
  4998. dpll |= DPLLB_MODE_LVDS;
  4999. else
  5000. dpll |= DPLLB_MODE_DAC_SERIAL;
  5001. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  5002. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5003. if (is_sdvo)
  5004. dpll |= DPLL_SDVO_HIGH_SPEED;
  5005. if (intel_crtc->config.has_dp_encoder)
  5006. dpll |= DPLL_SDVO_HIGH_SPEED;
  5007. /* compute bitmask from p1 value */
  5008. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5009. /* also FPA1 */
  5010. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5011. switch (intel_crtc->config.dpll.p2) {
  5012. case 5:
  5013. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5014. break;
  5015. case 7:
  5016. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5017. break;
  5018. case 10:
  5019. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5020. break;
  5021. case 14:
  5022. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5023. break;
  5024. }
  5025. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5026. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5027. else
  5028. dpll |= PLL_REF_INPUT_DREFCLK;
  5029. return dpll | DPLL_VCO_ENABLE;
  5030. }
  5031. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5032. int x, int y,
  5033. struct drm_framebuffer *fb)
  5034. {
  5035. struct drm_device *dev = crtc->dev;
  5036. struct drm_i915_private *dev_priv = dev->dev_private;
  5037. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5038. int pipe = intel_crtc->pipe;
  5039. int plane = intel_crtc->plane;
  5040. int num_connectors = 0;
  5041. intel_clock_t clock, reduced_clock;
  5042. u32 dpll = 0, fp = 0, fp2 = 0;
  5043. bool ok, has_reduced_clock = false;
  5044. bool is_lvds = false;
  5045. struct intel_encoder *encoder;
  5046. struct intel_shared_dpll *pll;
  5047. int ret;
  5048. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5049. switch (encoder->type) {
  5050. case INTEL_OUTPUT_LVDS:
  5051. is_lvds = true;
  5052. break;
  5053. }
  5054. num_connectors++;
  5055. }
  5056. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  5057. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  5058. ok = ironlake_compute_clocks(crtc, &clock,
  5059. &has_reduced_clock, &reduced_clock);
  5060. if (!ok && !intel_crtc->config.clock_set) {
  5061. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5062. return -EINVAL;
  5063. }
  5064. /* Compat-code for transition, will disappear. */
  5065. if (!intel_crtc->config.clock_set) {
  5066. intel_crtc->config.dpll.n = clock.n;
  5067. intel_crtc->config.dpll.m1 = clock.m1;
  5068. intel_crtc->config.dpll.m2 = clock.m2;
  5069. intel_crtc->config.dpll.p1 = clock.p1;
  5070. intel_crtc->config.dpll.p2 = clock.p2;
  5071. }
  5072. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  5073. if (intel_crtc->config.has_pch_encoder) {
  5074. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  5075. if (has_reduced_clock)
  5076. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  5077. dpll = ironlake_compute_dpll(intel_crtc,
  5078. &fp, &reduced_clock,
  5079. has_reduced_clock ? &fp2 : NULL);
  5080. intel_crtc->config.dpll_hw_state.dpll = dpll;
  5081. intel_crtc->config.dpll_hw_state.fp0 = fp;
  5082. if (has_reduced_clock)
  5083. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  5084. else
  5085. intel_crtc->config.dpll_hw_state.fp1 = fp;
  5086. pll = intel_get_shared_dpll(intel_crtc);
  5087. if (pll == NULL) {
  5088. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  5089. pipe_name(pipe));
  5090. return -EINVAL;
  5091. }
  5092. } else
  5093. intel_put_shared_dpll(intel_crtc);
  5094. if (intel_crtc->config.has_dp_encoder)
  5095. intel_dp_set_m_n(intel_crtc);
  5096. if (is_lvds && has_reduced_clock && i915_powersave)
  5097. intel_crtc->lowfreq_avail = true;
  5098. else
  5099. intel_crtc->lowfreq_avail = false;
  5100. if (intel_crtc->config.has_pch_encoder) {
  5101. pll = intel_crtc_to_shared_dpll(intel_crtc);
  5102. }
  5103. intel_set_pipe_timings(intel_crtc);
  5104. if (intel_crtc->config.has_pch_encoder) {
  5105. intel_cpu_transcoder_set_m_n(intel_crtc,
  5106. &intel_crtc->config.fdi_m_n);
  5107. }
  5108. if (IS_IVYBRIDGE(dev))
  5109. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  5110. ironlake_set_pipeconf(crtc);
  5111. /* Set up the display plane register */
  5112. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5113. POSTING_READ(DSPCNTR(plane));
  5114. ret = intel_pipe_set_base(crtc, x, y, fb);
  5115. return ret;
  5116. }
  5117. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  5118. struct intel_link_m_n *m_n)
  5119. {
  5120. struct drm_device *dev = crtc->base.dev;
  5121. struct drm_i915_private *dev_priv = dev->dev_private;
  5122. enum pipe pipe = crtc->pipe;
  5123. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  5124. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  5125. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  5126. & ~TU_SIZE_MASK;
  5127. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  5128. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  5129. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5130. }
  5131. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  5132. enum transcoder transcoder,
  5133. struct intel_link_m_n *m_n)
  5134. {
  5135. struct drm_device *dev = crtc->base.dev;
  5136. struct drm_i915_private *dev_priv = dev->dev_private;
  5137. enum pipe pipe = crtc->pipe;
  5138. if (INTEL_INFO(dev)->gen >= 5) {
  5139. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5140. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5141. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5142. & ~TU_SIZE_MASK;
  5143. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5144. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5145. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5146. } else {
  5147. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5148. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5149. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5150. & ~TU_SIZE_MASK;
  5151. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5152. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5153. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5154. }
  5155. }
  5156. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5157. struct intel_crtc_config *pipe_config)
  5158. {
  5159. if (crtc->config.has_pch_encoder)
  5160. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5161. else
  5162. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5163. &pipe_config->dp_m_n);
  5164. }
  5165. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5166. struct intel_crtc_config *pipe_config)
  5167. {
  5168. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5169. &pipe_config->fdi_m_n);
  5170. }
  5171. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5172. struct intel_crtc_config *pipe_config)
  5173. {
  5174. struct drm_device *dev = crtc->base.dev;
  5175. struct drm_i915_private *dev_priv = dev->dev_private;
  5176. uint32_t tmp;
  5177. tmp = I915_READ(PF_CTL(crtc->pipe));
  5178. if (tmp & PF_ENABLE) {
  5179. pipe_config->pch_pfit.enabled = true;
  5180. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5181. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5182. /* We currently do not free assignements of panel fitters on
  5183. * ivb/hsw (since we don't use the higher upscaling modes which
  5184. * differentiates them) so just WARN about this case for now. */
  5185. if (IS_GEN7(dev)) {
  5186. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5187. PF_PIPE_SEL_IVB(crtc->pipe));
  5188. }
  5189. }
  5190. }
  5191. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5192. struct intel_crtc_config *pipe_config)
  5193. {
  5194. struct drm_device *dev = crtc->base.dev;
  5195. struct drm_i915_private *dev_priv = dev->dev_private;
  5196. uint32_t tmp;
  5197. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5198. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5199. tmp = I915_READ(PIPECONF(crtc->pipe));
  5200. if (!(tmp & PIPECONF_ENABLE))
  5201. return false;
  5202. switch (tmp & PIPECONF_BPC_MASK) {
  5203. case PIPECONF_6BPC:
  5204. pipe_config->pipe_bpp = 18;
  5205. break;
  5206. case PIPECONF_8BPC:
  5207. pipe_config->pipe_bpp = 24;
  5208. break;
  5209. case PIPECONF_10BPC:
  5210. pipe_config->pipe_bpp = 30;
  5211. break;
  5212. case PIPECONF_12BPC:
  5213. pipe_config->pipe_bpp = 36;
  5214. break;
  5215. default:
  5216. break;
  5217. }
  5218. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5219. struct intel_shared_dpll *pll;
  5220. pipe_config->has_pch_encoder = true;
  5221. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5222. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5223. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5224. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5225. if (HAS_PCH_IBX(dev_priv->dev)) {
  5226. pipe_config->shared_dpll =
  5227. (enum intel_dpll_id) crtc->pipe;
  5228. } else {
  5229. tmp = I915_READ(PCH_DPLL_SEL);
  5230. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5231. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5232. else
  5233. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5234. }
  5235. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5236. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5237. &pipe_config->dpll_hw_state));
  5238. tmp = pipe_config->dpll_hw_state.dpll;
  5239. pipe_config->pixel_multiplier =
  5240. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5241. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5242. ironlake_pch_clock_get(crtc, pipe_config);
  5243. } else {
  5244. pipe_config->pixel_multiplier = 1;
  5245. }
  5246. intel_get_pipe_timings(crtc, pipe_config);
  5247. ironlake_get_pfit_config(crtc, pipe_config);
  5248. return true;
  5249. }
  5250. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5251. {
  5252. struct drm_device *dev = dev_priv->dev;
  5253. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5254. struct intel_crtc *crtc;
  5255. unsigned long irqflags;
  5256. uint32_t val;
  5257. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5258. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5259. pipe_name(crtc->pipe));
  5260. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5261. WARN(plls->spll_refcount, "SPLL enabled\n");
  5262. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5263. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5264. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5265. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5266. "CPU PWM1 enabled\n");
  5267. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5268. "CPU PWM2 enabled\n");
  5269. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5270. "PCH PWM1 enabled\n");
  5271. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5272. "Utility pin enabled\n");
  5273. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5274. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5275. val = I915_READ(DEIMR);
  5276. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5277. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5278. val = I915_READ(SDEIMR);
  5279. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5280. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5281. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5282. }
  5283. /*
  5284. * This function implements pieces of two sequences from BSpec:
  5285. * - Sequence for display software to disable LCPLL
  5286. * - Sequence for display software to allow package C8+
  5287. * The steps implemented here are just the steps that actually touch the LCPLL
  5288. * register. Callers should take care of disabling all the display engine
  5289. * functions, doing the mode unset, fixing interrupts, etc.
  5290. */
  5291. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5292. bool switch_to_fclk, bool allow_power_down)
  5293. {
  5294. uint32_t val;
  5295. assert_can_disable_lcpll(dev_priv);
  5296. val = I915_READ(LCPLL_CTL);
  5297. if (switch_to_fclk) {
  5298. val |= LCPLL_CD_SOURCE_FCLK;
  5299. I915_WRITE(LCPLL_CTL, val);
  5300. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5301. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5302. DRM_ERROR("Switching to FCLK failed\n");
  5303. val = I915_READ(LCPLL_CTL);
  5304. }
  5305. val |= LCPLL_PLL_DISABLE;
  5306. I915_WRITE(LCPLL_CTL, val);
  5307. POSTING_READ(LCPLL_CTL);
  5308. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5309. DRM_ERROR("LCPLL still locked\n");
  5310. val = I915_READ(D_COMP);
  5311. val |= D_COMP_COMP_DISABLE;
  5312. mutex_lock(&dev_priv->rps.hw_lock);
  5313. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5314. DRM_ERROR("Failed to disable D_COMP\n");
  5315. mutex_unlock(&dev_priv->rps.hw_lock);
  5316. POSTING_READ(D_COMP);
  5317. ndelay(100);
  5318. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5319. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5320. if (allow_power_down) {
  5321. val = I915_READ(LCPLL_CTL);
  5322. val |= LCPLL_POWER_DOWN_ALLOW;
  5323. I915_WRITE(LCPLL_CTL, val);
  5324. POSTING_READ(LCPLL_CTL);
  5325. }
  5326. }
  5327. /*
  5328. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5329. * source.
  5330. */
  5331. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5332. {
  5333. uint32_t val;
  5334. val = I915_READ(LCPLL_CTL);
  5335. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5336. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5337. return;
  5338. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5339. * we'll hang the machine! */
  5340. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5341. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5342. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5343. I915_WRITE(LCPLL_CTL, val);
  5344. POSTING_READ(LCPLL_CTL);
  5345. }
  5346. val = I915_READ(D_COMP);
  5347. val |= D_COMP_COMP_FORCE;
  5348. val &= ~D_COMP_COMP_DISABLE;
  5349. mutex_lock(&dev_priv->rps.hw_lock);
  5350. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5351. DRM_ERROR("Failed to enable D_COMP\n");
  5352. mutex_unlock(&dev_priv->rps.hw_lock);
  5353. POSTING_READ(D_COMP);
  5354. val = I915_READ(LCPLL_CTL);
  5355. val &= ~LCPLL_PLL_DISABLE;
  5356. I915_WRITE(LCPLL_CTL, val);
  5357. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5358. DRM_ERROR("LCPLL not locked yet\n");
  5359. if (val & LCPLL_CD_SOURCE_FCLK) {
  5360. val = I915_READ(LCPLL_CTL);
  5361. val &= ~LCPLL_CD_SOURCE_FCLK;
  5362. I915_WRITE(LCPLL_CTL, val);
  5363. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5364. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5365. DRM_ERROR("Switching back to LCPLL failed\n");
  5366. }
  5367. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5368. }
  5369. void hsw_enable_pc8_work(struct work_struct *__work)
  5370. {
  5371. struct drm_i915_private *dev_priv =
  5372. container_of(to_delayed_work(__work), struct drm_i915_private,
  5373. pc8.enable_work);
  5374. struct drm_device *dev = dev_priv->dev;
  5375. uint32_t val;
  5376. if (dev_priv->pc8.enabled)
  5377. return;
  5378. DRM_DEBUG_KMS("Enabling package C8+\n");
  5379. dev_priv->pc8.enabled = true;
  5380. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5381. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5382. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5383. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5384. }
  5385. lpt_disable_clkout_dp(dev);
  5386. hsw_pc8_disable_interrupts(dev);
  5387. hsw_disable_lcpll(dev_priv, true, true);
  5388. }
  5389. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5390. {
  5391. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5392. WARN(dev_priv->pc8.disable_count < 1,
  5393. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5394. dev_priv->pc8.disable_count--;
  5395. if (dev_priv->pc8.disable_count != 0)
  5396. return;
  5397. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5398. msecs_to_jiffies(i915_pc8_timeout));
  5399. }
  5400. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5401. {
  5402. struct drm_device *dev = dev_priv->dev;
  5403. uint32_t val;
  5404. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5405. WARN(dev_priv->pc8.disable_count < 0,
  5406. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5407. dev_priv->pc8.disable_count++;
  5408. if (dev_priv->pc8.disable_count != 1)
  5409. return;
  5410. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5411. if (!dev_priv->pc8.enabled)
  5412. return;
  5413. DRM_DEBUG_KMS("Disabling package C8+\n");
  5414. hsw_restore_lcpll(dev_priv);
  5415. hsw_pc8_restore_interrupts(dev);
  5416. lpt_init_pch_refclk(dev);
  5417. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5418. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5419. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5420. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5421. }
  5422. intel_prepare_ddi(dev);
  5423. i915_gem_init_swizzling(dev);
  5424. mutex_lock(&dev_priv->rps.hw_lock);
  5425. gen6_update_ring_freq(dev);
  5426. mutex_unlock(&dev_priv->rps.hw_lock);
  5427. dev_priv->pc8.enabled = false;
  5428. }
  5429. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5430. {
  5431. mutex_lock(&dev_priv->pc8.lock);
  5432. __hsw_enable_package_c8(dev_priv);
  5433. mutex_unlock(&dev_priv->pc8.lock);
  5434. }
  5435. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5436. {
  5437. mutex_lock(&dev_priv->pc8.lock);
  5438. __hsw_disable_package_c8(dev_priv);
  5439. mutex_unlock(&dev_priv->pc8.lock);
  5440. }
  5441. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5442. {
  5443. struct drm_device *dev = dev_priv->dev;
  5444. struct intel_crtc *crtc;
  5445. uint32_t val;
  5446. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5447. if (crtc->base.enabled)
  5448. return false;
  5449. /* This case is still possible since we have the i915.disable_power_well
  5450. * parameter and also the KVMr or something else might be requesting the
  5451. * power well. */
  5452. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5453. if (val != 0) {
  5454. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5455. return false;
  5456. }
  5457. return true;
  5458. }
  5459. /* Since we're called from modeset_global_resources there's no way to
  5460. * symmetrically increase and decrease the refcount, so we use
  5461. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5462. * or not.
  5463. */
  5464. static void hsw_update_package_c8(struct drm_device *dev)
  5465. {
  5466. struct drm_i915_private *dev_priv = dev->dev_private;
  5467. bool allow;
  5468. if (!i915_enable_pc8)
  5469. return;
  5470. mutex_lock(&dev_priv->pc8.lock);
  5471. allow = hsw_can_enable_package_c8(dev_priv);
  5472. if (allow == dev_priv->pc8.requirements_met)
  5473. goto done;
  5474. dev_priv->pc8.requirements_met = allow;
  5475. if (allow)
  5476. __hsw_enable_package_c8(dev_priv);
  5477. else
  5478. __hsw_disable_package_c8(dev_priv);
  5479. done:
  5480. mutex_unlock(&dev_priv->pc8.lock);
  5481. }
  5482. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5483. {
  5484. if (!dev_priv->pc8.gpu_idle) {
  5485. dev_priv->pc8.gpu_idle = true;
  5486. hsw_enable_package_c8(dev_priv);
  5487. }
  5488. }
  5489. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5490. {
  5491. if (dev_priv->pc8.gpu_idle) {
  5492. dev_priv->pc8.gpu_idle = false;
  5493. hsw_disable_package_c8(dev_priv);
  5494. }
  5495. }
  5496. static void haswell_modeset_global_resources(struct drm_device *dev)
  5497. {
  5498. bool enable = false;
  5499. struct intel_crtc *crtc;
  5500. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5501. if (!crtc->base.enabled)
  5502. continue;
  5503. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  5504. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5505. enable = true;
  5506. }
  5507. intel_set_power_well(dev, enable);
  5508. hsw_update_package_c8(dev);
  5509. }
  5510. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5511. int x, int y,
  5512. struct drm_framebuffer *fb)
  5513. {
  5514. struct drm_device *dev = crtc->dev;
  5515. struct drm_i915_private *dev_priv = dev->dev_private;
  5516. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5517. int plane = intel_crtc->plane;
  5518. int ret;
  5519. if (!intel_ddi_pll_mode_set(crtc))
  5520. return -EINVAL;
  5521. if (intel_crtc->config.has_dp_encoder)
  5522. intel_dp_set_m_n(intel_crtc);
  5523. intel_crtc->lowfreq_avail = false;
  5524. intel_set_pipe_timings(intel_crtc);
  5525. if (intel_crtc->config.has_pch_encoder) {
  5526. intel_cpu_transcoder_set_m_n(intel_crtc,
  5527. &intel_crtc->config.fdi_m_n);
  5528. }
  5529. haswell_set_pipeconf(crtc);
  5530. intel_set_pipe_csc(crtc);
  5531. /* Set up the display plane register */
  5532. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5533. POSTING_READ(DSPCNTR(plane));
  5534. ret = intel_pipe_set_base(crtc, x, y, fb);
  5535. return ret;
  5536. }
  5537. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5538. struct intel_crtc_config *pipe_config)
  5539. {
  5540. struct drm_device *dev = crtc->base.dev;
  5541. struct drm_i915_private *dev_priv = dev->dev_private;
  5542. enum intel_display_power_domain pfit_domain;
  5543. uint32_t tmp;
  5544. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5545. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5546. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5547. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5548. enum pipe trans_edp_pipe;
  5549. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5550. default:
  5551. WARN(1, "unknown pipe linked to edp transcoder\n");
  5552. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5553. case TRANS_DDI_EDP_INPUT_A_ON:
  5554. trans_edp_pipe = PIPE_A;
  5555. break;
  5556. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5557. trans_edp_pipe = PIPE_B;
  5558. break;
  5559. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5560. trans_edp_pipe = PIPE_C;
  5561. break;
  5562. }
  5563. if (trans_edp_pipe == crtc->pipe)
  5564. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5565. }
  5566. if (!intel_display_power_enabled(dev,
  5567. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5568. return false;
  5569. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5570. if (!(tmp & PIPECONF_ENABLE))
  5571. return false;
  5572. /*
  5573. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5574. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5575. * the PCH transcoder is on.
  5576. */
  5577. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5578. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5579. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5580. pipe_config->has_pch_encoder = true;
  5581. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5582. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5583. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5584. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5585. }
  5586. intel_get_pipe_timings(crtc, pipe_config);
  5587. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5588. if (intel_display_power_enabled(dev, pfit_domain))
  5589. ironlake_get_pfit_config(crtc, pipe_config);
  5590. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5591. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5592. pipe_config->pixel_multiplier = 1;
  5593. return true;
  5594. }
  5595. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5596. int x, int y,
  5597. struct drm_framebuffer *fb)
  5598. {
  5599. struct drm_device *dev = crtc->dev;
  5600. struct drm_i915_private *dev_priv = dev->dev_private;
  5601. struct intel_encoder *encoder;
  5602. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5603. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5604. int pipe = intel_crtc->pipe;
  5605. int ret;
  5606. drm_vblank_pre_modeset(dev, pipe);
  5607. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5608. drm_vblank_post_modeset(dev, pipe);
  5609. if (ret != 0)
  5610. return ret;
  5611. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5612. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5613. encoder->base.base.id,
  5614. drm_get_encoder_name(&encoder->base),
  5615. mode->base.id, mode->name);
  5616. encoder->mode_set(encoder);
  5617. }
  5618. return 0;
  5619. }
  5620. static bool intel_eld_uptodate(struct drm_connector *connector,
  5621. int reg_eldv, uint32_t bits_eldv,
  5622. int reg_elda, uint32_t bits_elda,
  5623. int reg_edid)
  5624. {
  5625. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5626. uint8_t *eld = connector->eld;
  5627. uint32_t i;
  5628. i = I915_READ(reg_eldv);
  5629. i &= bits_eldv;
  5630. if (!eld[0])
  5631. return !i;
  5632. if (!i)
  5633. return false;
  5634. i = I915_READ(reg_elda);
  5635. i &= ~bits_elda;
  5636. I915_WRITE(reg_elda, i);
  5637. for (i = 0; i < eld[2]; i++)
  5638. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5639. return false;
  5640. return true;
  5641. }
  5642. static void g4x_write_eld(struct drm_connector *connector,
  5643. struct drm_crtc *crtc)
  5644. {
  5645. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5646. uint8_t *eld = connector->eld;
  5647. uint32_t eldv;
  5648. uint32_t len;
  5649. uint32_t i;
  5650. i = I915_READ(G4X_AUD_VID_DID);
  5651. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5652. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5653. else
  5654. eldv = G4X_ELDV_DEVCTG;
  5655. if (intel_eld_uptodate(connector,
  5656. G4X_AUD_CNTL_ST, eldv,
  5657. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5658. G4X_HDMIW_HDMIEDID))
  5659. return;
  5660. i = I915_READ(G4X_AUD_CNTL_ST);
  5661. i &= ~(eldv | G4X_ELD_ADDR);
  5662. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5663. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5664. if (!eld[0])
  5665. return;
  5666. len = min_t(uint8_t, eld[2], len);
  5667. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5668. for (i = 0; i < len; i++)
  5669. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5670. i = I915_READ(G4X_AUD_CNTL_ST);
  5671. i |= eldv;
  5672. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5673. }
  5674. static void haswell_write_eld(struct drm_connector *connector,
  5675. struct drm_crtc *crtc)
  5676. {
  5677. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5678. uint8_t *eld = connector->eld;
  5679. struct drm_device *dev = crtc->dev;
  5680. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5681. uint32_t eldv;
  5682. uint32_t i;
  5683. int len;
  5684. int pipe = to_intel_crtc(crtc)->pipe;
  5685. int tmp;
  5686. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5687. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5688. int aud_config = HSW_AUD_CFG(pipe);
  5689. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5690. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5691. /* Audio output enable */
  5692. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5693. tmp = I915_READ(aud_cntrl_st2);
  5694. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5695. I915_WRITE(aud_cntrl_st2, tmp);
  5696. /* Wait for 1 vertical blank */
  5697. intel_wait_for_vblank(dev, pipe);
  5698. /* Set ELD valid state */
  5699. tmp = I915_READ(aud_cntrl_st2);
  5700. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5701. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5702. I915_WRITE(aud_cntrl_st2, tmp);
  5703. tmp = I915_READ(aud_cntrl_st2);
  5704. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5705. /* Enable HDMI mode */
  5706. tmp = I915_READ(aud_config);
  5707. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5708. /* clear N_programing_enable and N_value_index */
  5709. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5710. I915_WRITE(aud_config, tmp);
  5711. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5712. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5713. intel_crtc->eld_vld = true;
  5714. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5715. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5716. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5717. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5718. } else
  5719. I915_WRITE(aud_config, 0);
  5720. if (intel_eld_uptodate(connector,
  5721. aud_cntrl_st2, eldv,
  5722. aud_cntl_st, IBX_ELD_ADDRESS,
  5723. hdmiw_hdmiedid))
  5724. return;
  5725. i = I915_READ(aud_cntrl_st2);
  5726. i &= ~eldv;
  5727. I915_WRITE(aud_cntrl_st2, i);
  5728. if (!eld[0])
  5729. return;
  5730. i = I915_READ(aud_cntl_st);
  5731. i &= ~IBX_ELD_ADDRESS;
  5732. I915_WRITE(aud_cntl_st, i);
  5733. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5734. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5735. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5736. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5737. for (i = 0; i < len; i++)
  5738. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5739. i = I915_READ(aud_cntrl_st2);
  5740. i |= eldv;
  5741. I915_WRITE(aud_cntrl_st2, i);
  5742. }
  5743. static void ironlake_write_eld(struct drm_connector *connector,
  5744. struct drm_crtc *crtc)
  5745. {
  5746. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5747. uint8_t *eld = connector->eld;
  5748. uint32_t eldv;
  5749. uint32_t i;
  5750. int len;
  5751. int hdmiw_hdmiedid;
  5752. int aud_config;
  5753. int aud_cntl_st;
  5754. int aud_cntrl_st2;
  5755. int pipe = to_intel_crtc(crtc)->pipe;
  5756. if (HAS_PCH_IBX(connector->dev)) {
  5757. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5758. aud_config = IBX_AUD_CFG(pipe);
  5759. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5760. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5761. } else {
  5762. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5763. aud_config = CPT_AUD_CFG(pipe);
  5764. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5765. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5766. }
  5767. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5768. i = I915_READ(aud_cntl_st);
  5769. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5770. if (!i) {
  5771. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5772. /* operate blindly on all ports */
  5773. eldv = IBX_ELD_VALIDB;
  5774. eldv |= IBX_ELD_VALIDB << 4;
  5775. eldv |= IBX_ELD_VALIDB << 8;
  5776. } else {
  5777. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5778. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5779. }
  5780. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5781. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5782. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5783. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5784. } else
  5785. I915_WRITE(aud_config, 0);
  5786. if (intel_eld_uptodate(connector,
  5787. aud_cntrl_st2, eldv,
  5788. aud_cntl_st, IBX_ELD_ADDRESS,
  5789. hdmiw_hdmiedid))
  5790. return;
  5791. i = I915_READ(aud_cntrl_st2);
  5792. i &= ~eldv;
  5793. I915_WRITE(aud_cntrl_st2, i);
  5794. if (!eld[0])
  5795. return;
  5796. i = I915_READ(aud_cntl_st);
  5797. i &= ~IBX_ELD_ADDRESS;
  5798. I915_WRITE(aud_cntl_st, i);
  5799. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5800. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5801. for (i = 0; i < len; i++)
  5802. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5803. i = I915_READ(aud_cntrl_st2);
  5804. i |= eldv;
  5805. I915_WRITE(aud_cntrl_st2, i);
  5806. }
  5807. void intel_write_eld(struct drm_encoder *encoder,
  5808. struct drm_display_mode *mode)
  5809. {
  5810. struct drm_crtc *crtc = encoder->crtc;
  5811. struct drm_connector *connector;
  5812. struct drm_device *dev = encoder->dev;
  5813. struct drm_i915_private *dev_priv = dev->dev_private;
  5814. connector = drm_select_eld(encoder, mode);
  5815. if (!connector)
  5816. return;
  5817. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5818. connector->base.id,
  5819. drm_get_connector_name(connector),
  5820. connector->encoder->base.id,
  5821. drm_get_encoder_name(connector->encoder));
  5822. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5823. if (dev_priv->display.write_eld)
  5824. dev_priv->display.write_eld(connector, crtc);
  5825. }
  5826. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5827. {
  5828. struct drm_device *dev = crtc->dev;
  5829. struct drm_i915_private *dev_priv = dev->dev_private;
  5830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5831. bool visible = base != 0;
  5832. u32 cntl;
  5833. if (intel_crtc->cursor_visible == visible)
  5834. return;
  5835. cntl = I915_READ(_CURACNTR);
  5836. if (visible) {
  5837. /* On these chipsets we can only modify the base whilst
  5838. * the cursor is disabled.
  5839. */
  5840. I915_WRITE(_CURABASE, base);
  5841. cntl &= ~(CURSOR_FORMAT_MASK);
  5842. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5843. cntl |= CURSOR_ENABLE |
  5844. CURSOR_GAMMA_ENABLE |
  5845. CURSOR_FORMAT_ARGB;
  5846. } else
  5847. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5848. I915_WRITE(_CURACNTR, cntl);
  5849. intel_crtc->cursor_visible = visible;
  5850. }
  5851. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5852. {
  5853. struct drm_device *dev = crtc->dev;
  5854. struct drm_i915_private *dev_priv = dev->dev_private;
  5855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5856. int pipe = intel_crtc->pipe;
  5857. bool visible = base != 0;
  5858. if (intel_crtc->cursor_visible != visible) {
  5859. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5860. if (base) {
  5861. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5862. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5863. cntl |= pipe << 28; /* Connect to correct pipe */
  5864. } else {
  5865. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5866. cntl |= CURSOR_MODE_DISABLE;
  5867. }
  5868. I915_WRITE(CURCNTR(pipe), cntl);
  5869. intel_crtc->cursor_visible = visible;
  5870. }
  5871. /* and commit changes on next vblank */
  5872. I915_WRITE(CURBASE(pipe), base);
  5873. }
  5874. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5875. {
  5876. struct drm_device *dev = crtc->dev;
  5877. struct drm_i915_private *dev_priv = dev->dev_private;
  5878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5879. int pipe = intel_crtc->pipe;
  5880. bool visible = base != 0;
  5881. if (intel_crtc->cursor_visible != visible) {
  5882. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5883. if (base) {
  5884. cntl &= ~CURSOR_MODE;
  5885. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5886. } else {
  5887. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5888. cntl |= CURSOR_MODE_DISABLE;
  5889. }
  5890. if (IS_HASWELL(dev)) {
  5891. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5892. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5893. }
  5894. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5895. intel_crtc->cursor_visible = visible;
  5896. }
  5897. /* and commit changes on next vblank */
  5898. I915_WRITE(CURBASE_IVB(pipe), base);
  5899. }
  5900. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5901. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5902. bool on)
  5903. {
  5904. struct drm_device *dev = crtc->dev;
  5905. struct drm_i915_private *dev_priv = dev->dev_private;
  5906. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5907. int pipe = intel_crtc->pipe;
  5908. int x = intel_crtc->cursor_x;
  5909. int y = intel_crtc->cursor_y;
  5910. u32 base = 0, pos = 0;
  5911. bool visible;
  5912. if (on)
  5913. base = intel_crtc->cursor_addr;
  5914. if (x >= intel_crtc->config.pipe_src_w)
  5915. base = 0;
  5916. if (y >= intel_crtc->config.pipe_src_h)
  5917. base = 0;
  5918. if (x < 0) {
  5919. if (x + intel_crtc->cursor_width <= 0)
  5920. base = 0;
  5921. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5922. x = -x;
  5923. }
  5924. pos |= x << CURSOR_X_SHIFT;
  5925. if (y < 0) {
  5926. if (y + intel_crtc->cursor_height <= 0)
  5927. base = 0;
  5928. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5929. y = -y;
  5930. }
  5931. pos |= y << CURSOR_Y_SHIFT;
  5932. visible = base != 0;
  5933. if (!visible && !intel_crtc->cursor_visible)
  5934. return;
  5935. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5936. I915_WRITE(CURPOS_IVB(pipe), pos);
  5937. ivb_update_cursor(crtc, base);
  5938. } else {
  5939. I915_WRITE(CURPOS(pipe), pos);
  5940. if (IS_845G(dev) || IS_I865G(dev))
  5941. i845_update_cursor(crtc, base);
  5942. else
  5943. i9xx_update_cursor(crtc, base);
  5944. }
  5945. }
  5946. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5947. struct drm_file *file,
  5948. uint32_t handle,
  5949. uint32_t width, uint32_t height)
  5950. {
  5951. struct drm_device *dev = crtc->dev;
  5952. struct drm_i915_private *dev_priv = dev->dev_private;
  5953. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5954. struct drm_i915_gem_object *obj;
  5955. uint32_t addr;
  5956. int ret;
  5957. /* if we want to turn off the cursor ignore width and height */
  5958. if (!handle) {
  5959. DRM_DEBUG_KMS("cursor off\n");
  5960. addr = 0;
  5961. obj = NULL;
  5962. mutex_lock(&dev->struct_mutex);
  5963. goto finish;
  5964. }
  5965. /* Currently we only support 64x64 cursors */
  5966. if (width != 64 || height != 64) {
  5967. DRM_ERROR("we currently only support 64x64 cursors\n");
  5968. return -EINVAL;
  5969. }
  5970. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5971. if (&obj->base == NULL)
  5972. return -ENOENT;
  5973. if (obj->base.size < width * height * 4) {
  5974. DRM_ERROR("buffer is to small\n");
  5975. ret = -ENOMEM;
  5976. goto fail;
  5977. }
  5978. /* we only need to pin inside GTT if cursor is non-phy */
  5979. mutex_lock(&dev->struct_mutex);
  5980. if (!dev_priv->info->cursor_needs_physical) {
  5981. unsigned alignment;
  5982. if (obj->tiling_mode) {
  5983. DRM_ERROR("cursor cannot be tiled\n");
  5984. ret = -EINVAL;
  5985. goto fail_locked;
  5986. }
  5987. /* Note that the w/a also requires 2 PTE of padding following
  5988. * the bo. We currently fill all unused PTE with the shadow
  5989. * page and so we should always have valid PTE following the
  5990. * cursor preventing the VT-d warning.
  5991. */
  5992. alignment = 0;
  5993. if (need_vtd_wa(dev))
  5994. alignment = 64*1024;
  5995. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5996. if (ret) {
  5997. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5998. goto fail_locked;
  5999. }
  6000. ret = i915_gem_object_put_fence(obj);
  6001. if (ret) {
  6002. DRM_ERROR("failed to release fence for cursor");
  6003. goto fail_unpin;
  6004. }
  6005. addr = i915_gem_obj_ggtt_offset(obj);
  6006. } else {
  6007. int align = IS_I830(dev) ? 16 * 1024 : 256;
  6008. ret = i915_gem_attach_phys_object(dev, obj,
  6009. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  6010. align);
  6011. if (ret) {
  6012. DRM_ERROR("failed to attach phys object\n");
  6013. goto fail_locked;
  6014. }
  6015. addr = obj->phys_obj->handle->busaddr;
  6016. }
  6017. if (IS_GEN2(dev))
  6018. I915_WRITE(CURSIZE, (height << 12) | width);
  6019. finish:
  6020. if (intel_crtc->cursor_bo) {
  6021. if (dev_priv->info->cursor_needs_physical) {
  6022. if (intel_crtc->cursor_bo != obj)
  6023. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  6024. } else
  6025. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  6026. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  6027. }
  6028. mutex_unlock(&dev->struct_mutex);
  6029. intel_crtc->cursor_addr = addr;
  6030. intel_crtc->cursor_bo = obj;
  6031. intel_crtc->cursor_width = width;
  6032. intel_crtc->cursor_height = height;
  6033. if (intel_crtc->active)
  6034. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6035. return 0;
  6036. fail_unpin:
  6037. i915_gem_object_unpin_from_display_plane(obj);
  6038. fail_locked:
  6039. mutex_unlock(&dev->struct_mutex);
  6040. fail:
  6041. drm_gem_object_unreference_unlocked(&obj->base);
  6042. return ret;
  6043. }
  6044. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  6045. {
  6046. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6047. intel_crtc->cursor_x = x;
  6048. intel_crtc->cursor_y = y;
  6049. if (intel_crtc->active)
  6050. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6051. return 0;
  6052. }
  6053. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  6054. u16 *blue, uint32_t start, uint32_t size)
  6055. {
  6056. int end = (start + size > 256) ? 256 : start + size, i;
  6057. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6058. for (i = start; i < end; i++) {
  6059. intel_crtc->lut_r[i] = red[i] >> 8;
  6060. intel_crtc->lut_g[i] = green[i] >> 8;
  6061. intel_crtc->lut_b[i] = blue[i] >> 8;
  6062. }
  6063. intel_crtc_load_lut(crtc);
  6064. }
  6065. /* VESA 640x480x72Hz mode to set on the pipe */
  6066. static struct drm_display_mode load_detect_mode = {
  6067. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  6068. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  6069. };
  6070. static struct drm_framebuffer *
  6071. intel_framebuffer_create(struct drm_device *dev,
  6072. struct drm_mode_fb_cmd2 *mode_cmd,
  6073. struct drm_i915_gem_object *obj)
  6074. {
  6075. struct intel_framebuffer *intel_fb;
  6076. int ret;
  6077. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  6078. if (!intel_fb) {
  6079. drm_gem_object_unreference_unlocked(&obj->base);
  6080. return ERR_PTR(-ENOMEM);
  6081. }
  6082. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  6083. if (ret) {
  6084. drm_gem_object_unreference_unlocked(&obj->base);
  6085. kfree(intel_fb);
  6086. return ERR_PTR(ret);
  6087. }
  6088. return &intel_fb->base;
  6089. }
  6090. static u32
  6091. intel_framebuffer_pitch_for_width(int width, int bpp)
  6092. {
  6093. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6094. return ALIGN(pitch, 64);
  6095. }
  6096. static u32
  6097. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6098. {
  6099. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6100. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6101. }
  6102. static struct drm_framebuffer *
  6103. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6104. struct drm_display_mode *mode,
  6105. int depth, int bpp)
  6106. {
  6107. struct drm_i915_gem_object *obj;
  6108. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6109. obj = i915_gem_alloc_object(dev,
  6110. intel_framebuffer_size_for_mode(mode, bpp));
  6111. if (obj == NULL)
  6112. return ERR_PTR(-ENOMEM);
  6113. mode_cmd.width = mode->hdisplay;
  6114. mode_cmd.height = mode->vdisplay;
  6115. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6116. bpp);
  6117. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6118. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6119. }
  6120. static struct drm_framebuffer *
  6121. mode_fits_in_fbdev(struct drm_device *dev,
  6122. struct drm_display_mode *mode)
  6123. {
  6124. struct drm_i915_private *dev_priv = dev->dev_private;
  6125. struct drm_i915_gem_object *obj;
  6126. struct drm_framebuffer *fb;
  6127. if (dev_priv->fbdev == NULL)
  6128. return NULL;
  6129. obj = dev_priv->fbdev->ifb.obj;
  6130. if (obj == NULL)
  6131. return NULL;
  6132. fb = &dev_priv->fbdev->ifb.base;
  6133. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6134. fb->bits_per_pixel))
  6135. return NULL;
  6136. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6137. return NULL;
  6138. return fb;
  6139. }
  6140. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6141. struct drm_display_mode *mode,
  6142. struct intel_load_detect_pipe *old)
  6143. {
  6144. struct intel_crtc *intel_crtc;
  6145. struct intel_encoder *intel_encoder =
  6146. intel_attached_encoder(connector);
  6147. struct drm_crtc *possible_crtc;
  6148. struct drm_encoder *encoder = &intel_encoder->base;
  6149. struct drm_crtc *crtc = NULL;
  6150. struct drm_device *dev = encoder->dev;
  6151. struct drm_framebuffer *fb;
  6152. int i = -1;
  6153. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6154. connector->base.id, drm_get_connector_name(connector),
  6155. encoder->base.id, drm_get_encoder_name(encoder));
  6156. /*
  6157. * Algorithm gets a little messy:
  6158. *
  6159. * - if the connector already has an assigned crtc, use it (but make
  6160. * sure it's on first)
  6161. *
  6162. * - try to find the first unused crtc that can drive this connector,
  6163. * and use that if we find one
  6164. */
  6165. /* See if we already have a CRTC for this connector */
  6166. if (encoder->crtc) {
  6167. crtc = encoder->crtc;
  6168. mutex_lock(&crtc->mutex);
  6169. old->dpms_mode = connector->dpms;
  6170. old->load_detect_temp = false;
  6171. /* Make sure the crtc and connector are running */
  6172. if (connector->dpms != DRM_MODE_DPMS_ON)
  6173. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6174. return true;
  6175. }
  6176. /* Find an unused one (if possible) */
  6177. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6178. i++;
  6179. if (!(encoder->possible_crtcs & (1 << i)))
  6180. continue;
  6181. if (!possible_crtc->enabled) {
  6182. crtc = possible_crtc;
  6183. break;
  6184. }
  6185. }
  6186. /*
  6187. * If we didn't find an unused CRTC, don't use any.
  6188. */
  6189. if (!crtc) {
  6190. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6191. return false;
  6192. }
  6193. mutex_lock(&crtc->mutex);
  6194. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6195. to_intel_connector(connector)->new_encoder = intel_encoder;
  6196. intel_crtc = to_intel_crtc(crtc);
  6197. old->dpms_mode = connector->dpms;
  6198. old->load_detect_temp = true;
  6199. old->release_fb = NULL;
  6200. if (!mode)
  6201. mode = &load_detect_mode;
  6202. /* We need a framebuffer large enough to accommodate all accesses
  6203. * that the plane may generate whilst we perform load detection.
  6204. * We can not rely on the fbcon either being present (we get called
  6205. * during its initialisation to detect all boot displays, or it may
  6206. * not even exist) or that it is large enough to satisfy the
  6207. * requested mode.
  6208. */
  6209. fb = mode_fits_in_fbdev(dev, mode);
  6210. if (fb == NULL) {
  6211. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6212. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6213. old->release_fb = fb;
  6214. } else
  6215. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6216. if (IS_ERR(fb)) {
  6217. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6218. mutex_unlock(&crtc->mutex);
  6219. return false;
  6220. }
  6221. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6222. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6223. if (old->release_fb)
  6224. old->release_fb->funcs->destroy(old->release_fb);
  6225. mutex_unlock(&crtc->mutex);
  6226. return false;
  6227. }
  6228. /* let the connector get through one full cycle before testing */
  6229. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6230. return true;
  6231. }
  6232. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6233. struct intel_load_detect_pipe *old)
  6234. {
  6235. struct intel_encoder *intel_encoder =
  6236. intel_attached_encoder(connector);
  6237. struct drm_encoder *encoder = &intel_encoder->base;
  6238. struct drm_crtc *crtc = encoder->crtc;
  6239. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6240. connector->base.id, drm_get_connector_name(connector),
  6241. encoder->base.id, drm_get_encoder_name(encoder));
  6242. if (old->load_detect_temp) {
  6243. to_intel_connector(connector)->new_encoder = NULL;
  6244. intel_encoder->new_crtc = NULL;
  6245. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6246. if (old->release_fb) {
  6247. drm_framebuffer_unregister_private(old->release_fb);
  6248. drm_framebuffer_unreference(old->release_fb);
  6249. }
  6250. mutex_unlock(&crtc->mutex);
  6251. return;
  6252. }
  6253. /* Switch crtc and encoder back off if necessary */
  6254. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6255. connector->funcs->dpms(connector, old->dpms_mode);
  6256. mutex_unlock(&crtc->mutex);
  6257. }
  6258. static int i9xx_pll_refclk(struct drm_device *dev,
  6259. const struct intel_crtc_config *pipe_config)
  6260. {
  6261. struct drm_i915_private *dev_priv = dev->dev_private;
  6262. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6263. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6264. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6265. else if (HAS_PCH_SPLIT(dev))
  6266. return 120000;
  6267. else if (!IS_GEN2(dev))
  6268. return 96000;
  6269. else
  6270. return 48000;
  6271. }
  6272. /* Returns the clock of the currently programmed mode of the given pipe. */
  6273. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6274. struct intel_crtc_config *pipe_config)
  6275. {
  6276. struct drm_device *dev = crtc->base.dev;
  6277. struct drm_i915_private *dev_priv = dev->dev_private;
  6278. int pipe = pipe_config->cpu_transcoder;
  6279. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6280. u32 fp;
  6281. intel_clock_t clock;
  6282. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6283. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6284. fp = pipe_config->dpll_hw_state.fp0;
  6285. else
  6286. fp = pipe_config->dpll_hw_state.fp1;
  6287. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6288. if (IS_PINEVIEW(dev)) {
  6289. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6290. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6291. } else {
  6292. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6293. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6294. }
  6295. if (!IS_GEN2(dev)) {
  6296. if (IS_PINEVIEW(dev))
  6297. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6298. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6299. else
  6300. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6301. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6302. switch (dpll & DPLL_MODE_MASK) {
  6303. case DPLLB_MODE_DAC_SERIAL:
  6304. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6305. 5 : 10;
  6306. break;
  6307. case DPLLB_MODE_LVDS:
  6308. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6309. 7 : 14;
  6310. break;
  6311. default:
  6312. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6313. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6314. return;
  6315. }
  6316. if (IS_PINEVIEW(dev))
  6317. pineview_clock(refclk, &clock);
  6318. else
  6319. i9xx_clock(refclk, &clock);
  6320. } else {
  6321. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6322. if (is_lvds) {
  6323. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6324. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6325. clock.p2 = 14;
  6326. } else {
  6327. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6328. clock.p1 = 2;
  6329. else {
  6330. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6331. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6332. }
  6333. if (dpll & PLL_P2_DIVIDE_BY_4)
  6334. clock.p2 = 4;
  6335. else
  6336. clock.p2 = 2;
  6337. }
  6338. i9xx_clock(refclk, &clock);
  6339. }
  6340. /*
  6341. * This value includes pixel_multiplier. We will use
  6342. * port_clock to compute adjusted_mode.crtc_clock in the
  6343. * encoder's get_config() function.
  6344. */
  6345. pipe_config->port_clock = clock.dot;
  6346. }
  6347. int intel_dotclock_calculate(int link_freq,
  6348. const struct intel_link_m_n *m_n)
  6349. {
  6350. /*
  6351. * The calculation for the data clock is:
  6352. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6353. * But we want to avoid losing precison if possible, so:
  6354. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6355. *
  6356. * and the link clock is simpler:
  6357. * link_clock = (m * link_clock) / n
  6358. */
  6359. if (!m_n->link_n)
  6360. return 0;
  6361. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6362. }
  6363. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6364. struct intel_crtc_config *pipe_config)
  6365. {
  6366. struct drm_device *dev = crtc->base.dev;
  6367. /* read out port_clock from the DPLL */
  6368. i9xx_crtc_clock_get(crtc, pipe_config);
  6369. /*
  6370. * This value does not include pixel_multiplier.
  6371. * We will check that port_clock and adjusted_mode.crtc_clock
  6372. * agree once we know their relationship in the encoder's
  6373. * get_config() function.
  6374. */
  6375. pipe_config->adjusted_mode.crtc_clock =
  6376. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6377. &pipe_config->fdi_m_n);
  6378. }
  6379. /** Returns the currently programmed mode of the given pipe. */
  6380. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6381. struct drm_crtc *crtc)
  6382. {
  6383. struct drm_i915_private *dev_priv = dev->dev_private;
  6384. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6385. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6386. struct drm_display_mode *mode;
  6387. struct intel_crtc_config pipe_config;
  6388. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6389. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6390. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6391. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6392. enum pipe pipe = intel_crtc->pipe;
  6393. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6394. if (!mode)
  6395. return NULL;
  6396. /*
  6397. * Construct a pipe_config sufficient for getting the clock info
  6398. * back out of crtc_clock_get.
  6399. *
  6400. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6401. * to use a real value here instead.
  6402. */
  6403. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6404. pipe_config.pixel_multiplier = 1;
  6405. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6406. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6407. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6408. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6409. mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  6410. mode->hdisplay = (htot & 0xffff) + 1;
  6411. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6412. mode->hsync_start = (hsync & 0xffff) + 1;
  6413. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6414. mode->vdisplay = (vtot & 0xffff) + 1;
  6415. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6416. mode->vsync_start = (vsync & 0xffff) + 1;
  6417. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6418. drm_mode_set_name(mode);
  6419. return mode;
  6420. }
  6421. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6422. {
  6423. struct drm_device *dev = crtc->dev;
  6424. drm_i915_private_t *dev_priv = dev->dev_private;
  6425. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6426. int pipe = intel_crtc->pipe;
  6427. int dpll_reg = DPLL(pipe);
  6428. int dpll;
  6429. if (HAS_PCH_SPLIT(dev))
  6430. return;
  6431. if (!dev_priv->lvds_downclock_avail)
  6432. return;
  6433. dpll = I915_READ(dpll_reg);
  6434. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6435. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6436. assert_panel_unlocked(dev_priv, pipe);
  6437. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6438. I915_WRITE(dpll_reg, dpll);
  6439. intel_wait_for_vblank(dev, pipe);
  6440. dpll = I915_READ(dpll_reg);
  6441. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6442. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6443. }
  6444. }
  6445. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6446. {
  6447. struct drm_device *dev = crtc->dev;
  6448. drm_i915_private_t *dev_priv = dev->dev_private;
  6449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6450. if (HAS_PCH_SPLIT(dev))
  6451. return;
  6452. if (!dev_priv->lvds_downclock_avail)
  6453. return;
  6454. /*
  6455. * Since this is called by a timer, we should never get here in
  6456. * the manual case.
  6457. */
  6458. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6459. int pipe = intel_crtc->pipe;
  6460. int dpll_reg = DPLL(pipe);
  6461. int dpll;
  6462. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6463. assert_panel_unlocked(dev_priv, pipe);
  6464. dpll = I915_READ(dpll_reg);
  6465. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6466. I915_WRITE(dpll_reg, dpll);
  6467. intel_wait_for_vblank(dev, pipe);
  6468. dpll = I915_READ(dpll_reg);
  6469. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6470. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6471. }
  6472. }
  6473. void intel_mark_busy(struct drm_device *dev)
  6474. {
  6475. struct drm_i915_private *dev_priv = dev->dev_private;
  6476. hsw_package_c8_gpu_busy(dev_priv);
  6477. i915_update_gfx_val(dev_priv);
  6478. }
  6479. void intel_mark_idle(struct drm_device *dev)
  6480. {
  6481. struct drm_i915_private *dev_priv = dev->dev_private;
  6482. struct drm_crtc *crtc;
  6483. hsw_package_c8_gpu_idle(dev_priv);
  6484. if (!i915_powersave)
  6485. return;
  6486. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6487. if (!crtc->fb)
  6488. continue;
  6489. intel_decrease_pllclock(crtc);
  6490. }
  6491. if (dev_priv->info->gen >= 6)
  6492. gen6_rps_idle(dev->dev_private);
  6493. }
  6494. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6495. struct intel_ring_buffer *ring)
  6496. {
  6497. struct drm_device *dev = obj->base.dev;
  6498. struct drm_crtc *crtc;
  6499. if (!i915_powersave)
  6500. return;
  6501. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6502. if (!crtc->fb)
  6503. continue;
  6504. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6505. continue;
  6506. intel_increase_pllclock(crtc);
  6507. if (ring && intel_fbc_enabled(dev))
  6508. ring->fbc_dirty = true;
  6509. }
  6510. }
  6511. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6512. {
  6513. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6514. struct drm_device *dev = crtc->dev;
  6515. struct intel_unpin_work *work;
  6516. unsigned long flags;
  6517. spin_lock_irqsave(&dev->event_lock, flags);
  6518. work = intel_crtc->unpin_work;
  6519. intel_crtc->unpin_work = NULL;
  6520. spin_unlock_irqrestore(&dev->event_lock, flags);
  6521. if (work) {
  6522. cancel_work_sync(&work->work);
  6523. kfree(work);
  6524. }
  6525. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6526. drm_crtc_cleanup(crtc);
  6527. kfree(intel_crtc);
  6528. }
  6529. static void intel_unpin_work_fn(struct work_struct *__work)
  6530. {
  6531. struct intel_unpin_work *work =
  6532. container_of(__work, struct intel_unpin_work, work);
  6533. struct drm_device *dev = work->crtc->dev;
  6534. mutex_lock(&dev->struct_mutex);
  6535. intel_unpin_fb_obj(work->old_fb_obj);
  6536. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6537. drm_gem_object_unreference(&work->old_fb_obj->base);
  6538. intel_update_fbc(dev);
  6539. mutex_unlock(&dev->struct_mutex);
  6540. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6541. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6542. kfree(work);
  6543. }
  6544. static void do_intel_finish_page_flip(struct drm_device *dev,
  6545. struct drm_crtc *crtc)
  6546. {
  6547. drm_i915_private_t *dev_priv = dev->dev_private;
  6548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6549. struct intel_unpin_work *work;
  6550. unsigned long flags;
  6551. /* Ignore early vblank irqs */
  6552. if (intel_crtc == NULL)
  6553. return;
  6554. spin_lock_irqsave(&dev->event_lock, flags);
  6555. work = intel_crtc->unpin_work;
  6556. /* Ensure we don't miss a work->pending update ... */
  6557. smp_rmb();
  6558. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6559. spin_unlock_irqrestore(&dev->event_lock, flags);
  6560. return;
  6561. }
  6562. /* and that the unpin work is consistent wrt ->pending. */
  6563. smp_rmb();
  6564. intel_crtc->unpin_work = NULL;
  6565. if (work->event)
  6566. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6567. drm_vblank_put(dev, intel_crtc->pipe);
  6568. spin_unlock_irqrestore(&dev->event_lock, flags);
  6569. wake_up_all(&dev_priv->pending_flip_queue);
  6570. queue_work(dev_priv->wq, &work->work);
  6571. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6572. }
  6573. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6574. {
  6575. drm_i915_private_t *dev_priv = dev->dev_private;
  6576. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6577. do_intel_finish_page_flip(dev, crtc);
  6578. }
  6579. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6580. {
  6581. drm_i915_private_t *dev_priv = dev->dev_private;
  6582. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6583. do_intel_finish_page_flip(dev, crtc);
  6584. }
  6585. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6586. {
  6587. drm_i915_private_t *dev_priv = dev->dev_private;
  6588. struct intel_crtc *intel_crtc =
  6589. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6590. unsigned long flags;
  6591. /* NB: An MMIO update of the plane base pointer will also
  6592. * generate a page-flip completion irq, i.e. every modeset
  6593. * is also accompanied by a spurious intel_prepare_page_flip().
  6594. */
  6595. spin_lock_irqsave(&dev->event_lock, flags);
  6596. if (intel_crtc->unpin_work)
  6597. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6598. spin_unlock_irqrestore(&dev->event_lock, flags);
  6599. }
  6600. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6601. {
  6602. /* Ensure that the work item is consistent when activating it ... */
  6603. smp_wmb();
  6604. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6605. /* and that it is marked active as soon as the irq could fire. */
  6606. smp_wmb();
  6607. }
  6608. static int intel_gen2_queue_flip(struct drm_device *dev,
  6609. struct drm_crtc *crtc,
  6610. struct drm_framebuffer *fb,
  6611. struct drm_i915_gem_object *obj,
  6612. uint32_t flags)
  6613. {
  6614. struct drm_i915_private *dev_priv = dev->dev_private;
  6615. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6616. u32 flip_mask;
  6617. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6618. int ret;
  6619. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6620. if (ret)
  6621. goto err;
  6622. ret = intel_ring_begin(ring, 6);
  6623. if (ret)
  6624. goto err_unpin;
  6625. /* Can't queue multiple flips, so wait for the previous
  6626. * one to finish before executing the next.
  6627. */
  6628. if (intel_crtc->plane)
  6629. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6630. else
  6631. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6632. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6633. intel_ring_emit(ring, MI_NOOP);
  6634. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6635. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6636. intel_ring_emit(ring, fb->pitches[0]);
  6637. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6638. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6639. intel_mark_page_flip_active(intel_crtc);
  6640. __intel_ring_advance(ring);
  6641. return 0;
  6642. err_unpin:
  6643. intel_unpin_fb_obj(obj);
  6644. err:
  6645. return ret;
  6646. }
  6647. static int intel_gen3_queue_flip(struct drm_device *dev,
  6648. struct drm_crtc *crtc,
  6649. struct drm_framebuffer *fb,
  6650. struct drm_i915_gem_object *obj,
  6651. uint32_t flags)
  6652. {
  6653. struct drm_i915_private *dev_priv = dev->dev_private;
  6654. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6655. u32 flip_mask;
  6656. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6657. int ret;
  6658. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6659. if (ret)
  6660. goto err;
  6661. ret = intel_ring_begin(ring, 6);
  6662. if (ret)
  6663. goto err_unpin;
  6664. if (intel_crtc->plane)
  6665. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6666. else
  6667. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6668. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6669. intel_ring_emit(ring, MI_NOOP);
  6670. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6671. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6672. intel_ring_emit(ring, fb->pitches[0]);
  6673. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6674. intel_ring_emit(ring, MI_NOOP);
  6675. intel_mark_page_flip_active(intel_crtc);
  6676. __intel_ring_advance(ring);
  6677. return 0;
  6678. err_unpin:
  6679. intel_unpin_fb_obj(obj);
  6680. err:
  6681. return ret;
  6682. }
  6683. static int intel_gen4_queue_flip(struct drm_device *dev,
  6684. struct drm_crtc *crtc,
  6685. struct drm_framebuffer *fb,
  6686. struct drm_i915_gem_object *obj,
  6687. uint32_t flags)
  6688. {
  6689. struct drm_i915_private *dev_priv = dev->dev_private;
  6690. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6691. uint32_t pf, pipesrc;
  6692. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6693. int ret;
  6694. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6695. if (ret)
  6696. goto err;
  6697. ret = intel_ring_begin(ring, 4);
  6698. if (ret)
  6699. goto err_unpin;
  6700. /* i965+ uses the linear or tiled offsets from the
  6701. * Display Registers (which do not change across a page-flip)
  6702. * so we need only reprogram the base address.
  6703. */
  6704. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6705. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6706. intel_ring_emit(ring, fb->pitches[0]);
  6707. intel_ring_emit(ring,
  6708. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6709. obj->tiling_mode);
  6710. /* XXX Enabling the panel-fitter across page-flip is so far
  6711. * untested on non-native modes, so ignore it for now.
  6712. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6713. */
  6714. pf = 0;
  6715. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6716. intel_ring_emit(ring, pf | pipesrc);
  6717. intel_mark_page_flip_active(intel_crtc);
  6718. __intel_ring_advance(ring);
  6719. return 0;
  6720. err_unpin:
  6721. intel_unpin_fb_obj(obj);
  6722. err:
  6723. return ret;
  6724. }
  6725. static int intel_gen6_queue_flip(struct drm_device *dev,
  6726. struct drm_crtc *crtc,
  6727. struct drm_framebuffer *fb,
  6728. struct drm_i915_gem_object *obj,
  6729. uint32_t flags)
  6730. {
  6731. struct drm_i915_private *dev_priv = dev->dev_private;
  6732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6733. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6734. uint32_t pf, pipesrc;
  6735. int ret;
  6736. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6737. if (ret)
  6738. goto err;
  6739. ret = intel_ring_begin(ring, 4);
  6740. if (ret)
  6741. goto err_unpin;
  6742. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6743. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6744. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6745. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6746. /* Contrary to the suggestions in the documentation,
  6747. * "Enable Panel Fitter" does not seem to be required when page
  6748. * flipping with a non-native mode, and worse causes a normal
  6749. * modeset to fail.
  6750. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6751. */
  6752. pf = 0;
  6753. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6754. intel_ring_emit(ring, pf | pipesrc);
  6755. intel_mark_page_flip_active(intel_crtc);
  6756. __intel_ring_advance(ring);
  6757. return 0;
  6758. err_unpin:
  6759. intel_unpin_fb_obj(obj);
  6760. err:
  6761. return ret;
  6762. }
  6763. static int intel_gen7_queue_flip(struct drm_device *dev,
  6764. struct drm_crtc *crtc,
  6765. struct drm_framebuffer *fb,
  6766. struct drm_i915_gem_object *obj,
  6767. uint32_t flags)
  6768. {
  6769. struct drm_i915_private *dev_priv = dev->dev_private;
  6770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6771. struct intel_ring_buffer *ring;
  6772. uint32_t plane_bit = 0;
  6773. int len, ret;
  6774. ring = obj->ring;
  6775. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6776. ring = &dev_priv->ring[BCS];
  6777. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6778. if (ret)
  6779. goto err;
  6780. switch(intel_crtc->plane) {
  6781. case PLANE_A:
  6782. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6783. break;
  6784. case PLANE_B:
  6785. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6786. break;
  6787. case PLANE_C:
  6788. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6789. break;
  6790. default:
  6791. WARN_ONCE(1, "unknown plane in flip command\n");
  6792. ret = -ENODEV;
  6793. goto err_unpin;
  6794. }
  6795. len = 4;
  6796. if (ring->id == RCS)
  6797. len += 6;
  6798. ret = intel_ring_begin(ring, len);
  6799. if (ret)
  6800. goto err_unpin;
  6801. /* Unmask the flip-done completion message. Note that the bspec says that
  6802. * we should do this for both the BCS and RCS, and that we must not unmask
  6803. * more than one flip event at any time (or ensure that one flip message
  6804. * can be sent by waiting for flip-done prior to queueing new flips).
  6805. * Experimentation says that BCS works despite DERRMR masking all
  6806. * flip-done completion events and that unmasking all planes at once
  6807. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6808. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6809. */
  6810. if (ring->id == RCS) {
  6811. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6812. intel_ring_emit(ring, DERRMR);
  6813. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6814. DERRMR_PIPEB_PRI_FLIP_DONE |
  6815. DERRMR_PIPEC_PRI_FLIP_DONE));
  6816. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6817. intel_ring_emit(ring, DERRMR);
  6818. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6819. }
  6820. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6821. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6822. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6823. intel_ring_emit(ring, (MI_NOOP));
  6824. intel_mark_page_flip_active(intel_crtc);
  6825. __intel_ring_advance(ring);
  6826. return 0;
  6827. err_unpin:
  6828. intel_unpin_fb_obj(obj);
  6829. err:
  6830. return ret;
  6831. }
  6832. static int intel_default_queue_flip(struct drm_device *dev,
  6833. struct drm_crtc *crtc,
  6834. struct drm_framebuffer *fb,
  6835. struct drm_i915_gem_object *obj,
  6836. uint32_t flags)
  6837. {
  6838. return -ENODEV;
  6839. }
  6840. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6841. struct drm_framebuffer *fb,
  6842. struct drm_pending_vblank_event *event,
  6843. uint32_t page_flip_flags)
  6844. {
  6845. struct drm_device *dev = crtc->dev;
  6846. struct drm_i915_private *dev_priv = dev->dev_private;
  6847. struct drm_framebuffer *old_fb = crtc->fb;
  6848. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6849. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6850. struct intel_unpin_work *work;
  6851. unsigned long flags;
  6852. int ret;
  6853. /* Can't change pixel format via MI display flips. */
  6854. if (fb->pixel_format != crtc->fb->pixel_format)
  6855. return -EINVAL;
  6856. /*
  6857. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6858. * Note that pitch changes could also affect these register.
  6859. */
  6860. if (INTEL_INFO(dev)->gen > 3 &&
  6861. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6862. fb->pitches[0] != crtc->fb->pitches[0]))
  6863. return -EINVAL;
  6864. work = kzalloc(sizeof(*work), GFP_KERNEL);
  6865. if (work == NULL)
  6866. return -ENOMEM;
  6867. work->event = event;
  6868. work->crtc = crtc;
  6869. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6870. INIT_WORK(&work->work, intel_unpin_work_fn);
  6871. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6872. if (ret)
  6873. goto free_work;
  6874. /* We borrow the event spin lock for protecting unpin_work */
  6875. spin_lock_irqsave(&dev->event_lock, flags);
  6876. if (intel_crtc->unpin_work) {
  6877. spin_unlock_irqrestore(&dev->event_lock, flags);
  6878. kfree(work);
  6879. drm_vblank_put(dev, intel_crtc->pipe);
  6880. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6881. return -EBUSY;
  6882. }
  6883. intel_crtc->unpin_work = work;
  6884. spin_unlock_irqrestore(&dev->event_lock, flags);
  6885. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6886. flush_workqueue(dev_priv->wq);
  6887. ret = i915_mutex_lock_interruptible(dev);
  6888. if (ret)
  6889. goto cleanup;
  6890. /* Reference the objects for the scheduled work. */
  6891. drm_gem_object_reference(&work->old_fb_obj->base);
  6892. drm_gem_object_reference(&obj->base);
  6893. crtc->fb = fb;
  6894. work->pending_flip_obj = obj;
  6895. work->enable_stall_check = true;
  6896. atomic_inc(&intel_crtc->unpin_work_count);
  6897. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6898. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6899. if (ret)
  6900. goto cleanup_pending;
  6901. intel_disable_fbc(dev);
  6902. intel_mark_fb_busy(obj, NULL);
  6903. mutex_unlock(&dev->struct_mutex);
  6904. trace_i915_flip_request(intel_crtc->plane, obj);
  6905. return 0;
  6906. cleanup_pending:
  6907. atomic_dec(&intel_crtc->unpin_work_count);
  6908. crtc->fb = old_fb;
  6909. drm_gem_object_unreference(&work->old_fb_obj->base);
  6910. drm_gem_object_unreference(&obj->base);
  6911. mutex_unlock(&dev->struct_mutex);
  6912. cleanup:
  6913. spin_lock_irqsave(&dev->event_lock, flags);
  6914. intel_crtc->unpin_work = NULL;
  6915. spin_unlock_irqrestore(&dev->event_lock, flags);
  6916. drm_vblank_put(dev, intel_crtc->pipe);
  6917. free_work:
  6918. kfree(work);
  6919. return ret;
  6920. }
  6921. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6922. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6923. .load_lut = intel_crtc_load_lut,
  6924. };
  6925. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6926. struct drm_crtc *crtc)
  6927. {
  6928. struct drm_device *dev;
  6929. struct drm_crtc *tmp;
  6930. int crtc_mask = 1;
  6931. WARN(!crtc, "checking null crtc?\n");
  6932. dev = crtc->dev;
  6933. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6934. if (tmp == crtc)
  6935. break;
  6936. crtc_mask <<= 1;
  6937. }
  6938. if (encoder->possible_crtcs & crtc_mask)
  6939. return true;
  6940. return false;
  6941. }
  6942. /**
  6943. * intel_modeset_update_staged_output_state
  6944. *
  6945. * Updates the staged output configuration state, e.g. after we've read out the
  6946. * current hw state.
  6947. */
  6948. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6949. {
  6950. struct intel_encoder *encoder;
  6951. struct intel_connector *connector;
  6952. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6953. base.head) {
  6954. connector->new_encoder =
  6955. to_intel_encoder(connector->base.encoder);
  6956. }
  6957. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6958. base.head) {
  6959. encoder->new_crtc =
  6960. to_intel_crtc(encoder->base.crtc);
  6961. }
  6962. }
  6963. /**
  6964. * intel_modeset_commit_output_state
  6965. *
  6966. * This function copies the stage display pipe configuration to the real one.
  6967. */
  6968. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6969. {
  6970. struct intel_encoder *encoder;
  6971. struct intel_connector *connector;
  6972. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6973. base.head) {
  6974. connector->base.encoder = &connector->new_encoder->base;
  6975. }
  6976. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6977. base.head) {
  6978. encoder->base.crtc = &encoder->new_crtc->base;
  6979. }
  6980. }
  6981. static void
  6982. connected_sink_compute_bpp(struct intel_connector * connector,
  6983. struct intel_crtc_config *pipe_config)
  6984. {
  6985. int bpp = pipe_config->pipe_bpp;
  6986. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6987. connector->base.base.id,
  6988. drm_get_connector_name(&connector->base));
  6989. /* Don't use an invalid EDID bpc value */
  6990. if (connector->base.display_info.bpc &&
  6991. connector->base.display_info.bpc * 3 < bpp) {
  6992. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6993. bpp, connector->base.display_info.bpc*3);
  6994. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6995. }
  6996. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6997. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6998. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6999. bpp);
  7000. pipe_config->pipe_bpp = 24;
  7001. }
  7002. }
  7003. static int
  7004. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  7005. struct drm_framebuffer *fb,
  7006. struct intel_crtc_config *pipe_config)
  7007. {
  7008. struct drm_device *dev = crtc->base.dev;
  7009. struct intel_connector *connector;
  7010. int bpp;
  7011. switch (fb->pixel_format) {
  7012. case DRM_FORMAT_C8:
  7013. bpp = 8*3; /* since we go through a colormap */
  7014. break;
  7015. case DRM_FORMAT_XRGB1555:
  7016. case DRM_FORMAT_ARGB1555:
  7017. /* checked in intel_framebuffer_init already */
  7018. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  7019. return -EINVAL;
  7020. case DRM_FORMAT_RGB565:
  7021. bpp = 6*3; /* min is 18bpp */
  7022. break;
  7023. case DRM_FORMAT_XBGR8888:
  7024. case DRM_FORMAT_ABGR8888:
  7025. /* checked in intel_framebuffer_init already */
  7026. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7027. return -EINVAL;
  7028. case DRM_FORMAT_XRGB8888:
  7029. case DRM_FORMAT_ARGB8888:
  7030. bpp = 8*3;
  7031. break;
  7032. case DRM_FORMAT_XRGB2101010:
  7033. case DRM_FORMAT_ARGB2101010:
  7034. case DRM_FORMAT_XBGR2101010:
  7035. case DRM_FORMAT_ABGR2101010:
  7036. /* checked in intel_framebuffer_init already */
  7037. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7038. return -EINVAL;
  7039. bpp = 10*3;
  7040. break;
  7041. /* TODO: gen4+ supports 16 bpc floating point, too. */
  7042. default:
  7043. DRM_DEBUG_KMS("unsupported depth\n");
  7044. return -EINVAL;
  7045. }
  7046. pipe_config->pipe_bpp = bpp;
  7047. /* Clamp display bpp to EDID value */
  7048. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7049. base.head) {
  7050. if (!connector->new_encoder ||
  7051. connector->new_encoder->new_crtc != crtc)
  7052. continue;
  7053. connected_sink_compute_bpp(connector, pipe_config);
  7054. }
  7055. return bpp;
  7056. }
  7057. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  7058. {
  7059. DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  7060. "type: 0x%x flags: 0x%x\n",
  7061. mode->crtc_clock,
  7062. mode->crtc_hdisplay, mode->crtc_hsync_start,
  7063. mode->crtc_hsync_end, mode->crtc_htotal,
  7064. mode->crtc_vdisplay, mode->crtc_vsync_start,
  7065. mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  7066. }
  7067. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  7068. struct intel_crtc_config *pipe_config,
  7069. const char *context)
  7070. {
  7071. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  7072. context, pipe_name(crtc->pipe));
  7073. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  7074. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  7075. pipe_config->pipe_bpp, pipe_config->dither);
  7076. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7077. pipe_config->has_pch_encoder,
  7078. pipe_config->fdi_lanes,
  7079. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  7080. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  7081. pipe_config->fdi_m_n.tu);
  7082. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7083. pipe_config->has_dp_encoder,
  7084. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  7085. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  7086. pipe_config->dp_m_n.tu);
  7087. DRM_DEBUG_KMS("requested mode:\n");
  7088. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  7089. DRM_DEBUG_KMS("adjusted mode:\n");
  7090. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  7091. intel_dump_crtc_timings(&pipe_config->adjusted_mode);
  7092. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  7093. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  7094. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  7095. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  7096. pipe_config->gmch_pfit.control,
  7097. pipe_config->gmch_pfit.pgm_ratios,
  7098. pipe_config->gmch_pfit.lvds_border_bits);
  7099. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  7100. pipe_config->pch_pfit.pos,
  7101. pipe_config->pch_pfit.size,
  7102. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  7103. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7104. DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  7105. }
  7106. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7107. {
  7108. int num_encoders = 0;
  7109. bool uncloneable_encoders = false;
  7110. struct intel_encoder *encoder;
  7111. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7112. base.head) {
  7113. if (&encoder->new_crtc->base != crtc)
  7114. continue;
  7115. num_encoders++;
  7116. if (!encoder->cloneable)
  7117. uncloneable_encoders = true;
  7118. }
  7119. return !(num_encoders > 1 && uncloneable_encoders);
  7120. }
  7121. static struct intel_crtc_config *
  7122. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7123. struct drm_framebuffer *fb,
  7124. struct drm_display_mode *mode)
  7125. {
  7126. struct drm_device *dev = crtc->dev;
  7127. struct intel_encoder *encoder;
  7128. struct intel_crtc_config *pipe_config;
  7129. int plane_bpp, ret = -EINVAL;
  7130. bool retry = true;
  7131. if (!check_encoder_cloning(crtc)) {
  7132. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7133. return ERR_PTR(-EINVAL);
  7134. }
  7135. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7136. if (!pipe_config)
  7137. return ERR_PTR(-ENOMEM);
  7138. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7139. drm_mode_copy(&pipe_config->requested_mode, mode);
  7140. pipe_config->cpu_transcoder =
  7141. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7142. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7143. /*
  7144. * Sanitize sync polarity flags based on requested ones. If neither
  7145. * positive or negative polarity is requested, treat this as meaning
  7146. * negative polarity.
  7147. */
  7148. if (!(pipe_config->adjusted_mode.flags &
  7149. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7150. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7151. if (!(pipe_config->adjusted_mode.flags &
  7152. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7153. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7154. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7155. * plane pixel format and any sink constraints into account. Returns the
  7156. * source plane bpp so that dithering can be selected on mismatches
  7157. * after encoders and crtc also have had their say. */
  7158. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7159. fb, pipe_config);
  7160. if (plane_bpp < 0)
  7161. goto fail;
  7162. /*
  7163. * Determine the real pipe dimensions. Note that stereo modes can
  7164. * increase the actual pipe size due to the frame doubling and
  7165. * insertion of additional space for blanks between the frame. This
  7166. * is stored in the crtc timings. We use the requested mode to do this
  7167. * computation to clearly distinguish it from the adjusted mode, which
  7168. * can be changed by the connectors in the below retry loop.
  7169. */
  7170. drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
  7171. pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
  7172. pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
  7173. encoder_retry:
  7174. /* Ensure the port clock defaults are reset when retrying. */
  7175. pipe_config->port_clock = 0;
  7176. pipe_config->pixel_multiplier = 1;
  7177. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7178. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
  7179. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7180. * adjust it according to limitations or connector properties, and also
  7181. * a chance to reject the mode entirely.
  7182. */
  7183. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7184. base.head) {
  7185. if (&encoder->new_crtc->base != crtc)
  7186. continue;
  7187. if (!(encoder->compute_config(encoder, pipe_config))) {
  7188. DRM_DEBUG_KMS("Encoder config failure\n");
  7189. goto fail;
  7190. }
  7191. }
  7192. /* Set default port clock if not overwritten by the encoder. Needs to be
  7193. * done afterwards in case the encoder adjusts the mode. */
  7194. if (!pipe_config->port_clock)
  7195. pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
  7196. * pipe_config->pixel_multiplier;
  7197. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7198. if (ret < 0) {
  7199. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7200. goto fail;
  7201. }
  7202. if (ret == RETRY) {
  7203. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7204. ret = -EINVAL;
  7205. goto fail;
  7206. }
  7207. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7208. retry = false;
  7209. goto encoder_retry;
  7210. }
  7211. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7212. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7213. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7214. return pipe_config;
  7215. fail:
  7216. kfree(pipe_config);
  7217. return ERR_PTR(ret);
  7218. }
  7219. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7220. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7221. static void
  7222. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7223. unsigned *prepare_pipes, unsigned *disable_pipes)
  7224. {
  7225. struct intel_crtc *intel_crtc;
  7226. struct drm_device *dev = crtc->dev;
  7227. struct intel_encoder *encoder;
  7228. struct intel_connector *connector;
  7229. struct drm_crtc *tmp_crtc;
  7230. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7231. /* Check which crtcs have changed outputs connected to them, these need
  7232. * to be part of the prepare_pipes mask. We don't (yet) support global
  7233. * modeset across multiple crtcs, so modeset_pipes will only have one
  7234. * bit set at most. */
  7235. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7236. base.head) {
  7237. if (connector->base.encoder == &connector->new_encoder->base)
  7238. continue;
  7239. if (connector->base.encoder) {
  7240. tmp_crtc = connector->base.encoder->crtc;
  7241. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7242. }
  7243. if (connector->new_encoder)
  7244. *prepare_pipes |=
  7245. 1 << connector->new_encoder->new_crtc->pipe;
  7246. }
  7247. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7248. base.head) {
  7249. if (encoder->base.crtc == &encoder->new_crtc->base)
  7250. continue;
  7251. if (encoder->base.crtc) {
  7252. tmp_crtc = encoder->base.crtc;
  7253. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7254. }
  7255. if (encoder->new_crtc)
  7256. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7257. }
  7258. /* Check for any pipes that will be fully disabled ... */
  7259. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7260. base.head) {
  7261. bool used = false;
  7262. /* Don't try to disable disabled crtcs. */
  7263. if (!intel_crtc->base.enabled)
  7264. continue;
  7265. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7266. base.head) {
  7267. if (encoder->new_crtc == intel_crtc)
  7268. used = true;
  7269. }
  7270. if (!used)
  7271. *disable_pipes |= 1 << intel_crtc->pipe;
  7272. }
  7273. /* set_mode is also used to update properties on life display pipes. */
  7274. intel_crtc = to_intel_crtc(crtc);
  7275. if (crtc->enabled)
  7276. *prepare_pipes |= 1 << intel_crtc->pipe;
  7277. /*
  7278. * For simplicity do a full modeset on any pipe where the output routing
  7279. * changed. We could be more clever, but that would require us to be
  7280. * more careful with calling the relevant encoder->mode_set functions.
  7281. */
  7282. if (*prepare_pipes)
  7283. *modeset_pipes = *prepare_pipes;
  7284. /* ... and mask these out. */
  7285. *modeset_pipes &= ~(*disable_pipes);
  7286. *prepare_pipes &= ~(*disable_pipes);
  7287. /*
  7288. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7289. * obies this rule, but the modeset restore mode of
  7290. * intel_modeset_setup_hw_state does not.
  7291. */
  7292. *modeset_pipes &= 1 << intel_crtc->pipe;
  7293. *prepare_pipes &= 1 << intel_crtc->pipe;
  7294. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7295. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7296. }
  7297. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7298. {
  7299. struct drm_encoder *encoder;
  7300. struct drm_device *dev = crtc->dev;
  7301. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7302. if (encoder->crtc == crtc)
  7303. return true;
  7304. return false;
  7305. }
  7306. static void
  7307. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7308. {
  7309. struct intel_encoder *intel_encoder;
  7310. struct intel_crtc *intel_crtc;
  7311. struct drm_connector *connector;
  7312. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7313. base.head) {
  7314. if (!intel_encoder->base.crtc)
  7315. continue;
  7316. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7317. if (prepare_pipes & (1 << intel_crtc->pipe))
  7318. intel_encoder->connectors_active = false;
  7319. }
  7320. intel_modeset_commit_output_state(dev);
  7321. /* Update computed state. */
  7322. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7323. base.head) {
  7324. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7325. }
  7326. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7327. if (!connector->encoder || !connector->encoder->crtc)
  7328. continue;
  7329. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7330. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7331. struct drm_property *dpms_property =
  7332. dev->mode_config.dpms_property;
  7333. connector->dpms = DRM_MODE_DPMS_ON;
  7334. drm_object_property_set_value(&connector->base,
  7335. dpms_property,
  7336. DRM_MODE_DPMS_ON);
  7337. intel_encoder = to_intel_encoder(connector->encoder);
  7338. intel_encoder->connectors_active = true;
  7339. }
  7340. }
  7341. }
  7342. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7343. {
  7344. int diff;
  7345. if (clock1 == clock2)
  7346. return true;
  7347. if (!clock1 || !clock2)
  7348. return false;
  7349. diff = abs(clock1 - clock2);
  7350. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7351. return true;
  7352. return false;
  7353. }
  7354. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7355. list_for_each_entry((intel_crtc), \
  7356. &(dev)->mode_config.crtc_list, \
  7357. base.head) \
  7358. if (mask & (1 <<(intel_crtc)->pipe))
  7359. static bool
  7360. intel_pipe_config_compare(struct drm_device *dev,
  7361. struct intel_crtc_config *current_config,
  7362. struct intel_crtc_config *pipe_config)
  7363. {
  7364. #define PIPE_CONF_CHECK_X(name) \
  7365. if (current_config->name != pipe_config->name) { \
  7366. DRM_ERROR("mismatch in " #name " " \
  7367. "(expected 0x%08x, found 0x%08x)\n", \
  7368. current_config->name, \
  7369. pipe_config->name); \
  7370. return false; \
  7371. }
  7372. #define PIPE_CONF_CHECK_I(name) \
  7373. if (current_config->name != pipe_config->name) { \
  7374. DRM_ERROR("mismatch in " #name " " \
  7375. "(expected %i, found %i)\n", \
  7376. current_config->name, \
  7377. pipe_config->name); \
  7378. return false; \
  7379. }
  7380. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7381. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7382. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7383. "(expected %i, found %i)\n", \
  7384. current_config->name & (mask), \
  7385. pipe_config->name & (mask)); \
  7386. return false; \
  7387. }
  7388. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7389. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7390. DRM_ERROR("mismatch in " #name " " \
  7391. "(expected %i, found %i)\n", \
  7392. current_config->name, \
  7393. pipe_config->name); \
  7394. return false; \
  7395. }
  7396. #define PIPE_CONF_QUIRK(quirk) \
  7397. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7398. PIPE_CONF_CHECK_I(cpu_transcoder);
  7399. PIPE_CONF_CHECK_I(has_pch_encoder);
  7400. PIPE_CONF_CHECK_I(fdi_lanes);
  7401. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7402. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7403. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7404. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7405. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7406. PIPE_CONF_CHECK_I(has_dp_encoder);
  7407. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7408. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7409. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7410. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7411. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7412. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7413. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7414. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7415. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7416. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7417. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7418. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7419. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7420. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7421. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7422. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7423. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7424. PIPE_CONF_CHECK_I(pixel_multiplier);
  7425. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7426. DRM_MODE_FLAG_INTERLACE);
  7427. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7428. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7429. DRM_MODE_FLAG_PHSYNC);
  7430. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7431. DRM_MODE_FLAG_NHSYNC);
  7432. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7433. DRM_MODE_FLAG_PVSYNC);
  7434. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7435. DRM_MODE_FLAG_NVSYNC);
  7436. }
  7437. PIPE_CONF_CHECK_I(pipe_src_w);
  7438. PIPE_CONF_CHECK_I(pipe_src_h);
  7439. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7440. /* pfit ratios are autocomputed by the hw on gen4+ */
  7441. if (INTEL_INFO(dev)->gen < 4)
  7442. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7443. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7444. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7445. if (current_config->pch_pfit.enabled) {
  7446. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7447. PIPE_CONF_CHECK_I(pch_pfit.size);
  7448. }
  7449. PIPE_CONF_CHECK_I(ips_enabled);
  7450. PIPE_CONF_CHECK_I(double_wide);
  7451. PIPE_CONF_CHECK_I(shared_dpll);
  7452. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7453. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7454. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7455. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7456. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7457. PIPE_CONF_CHECK_I(pipe_bpp);
  7458. if (!IS_HASWELL(dev)) {
  7459. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
  7460. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7461. }
  7462. #undef PIPE_CONF_CHECK_X
  7463. #undef PIPE_CONF_CHECK_I
  7464. #undef PIPE_CONF_CHECK_FLAGS
  7465. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7466. #undef PIPE_CONF_QUIRK
  7467. return true;
  7468. }
  7469. static void
  7470. check_connector_state(struct drm_device *dev)
  7471. {
  7472. struct intel_connector *connector;
  7473. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7474. base.head) {
  7475. /* This also checks the encoder/connector hw state with the
  7476. * ->get_hw_state callbacks. */
  7477. intel_connector_check_state(connector);
  7478. WARN(&connector->new_encoder->base != connector->base.encoder,
  7479. "connector's staged encoder doesn't match current encoder\n");
  7480. }
  7481. }
  7482. static void
  7483. check_encoder_state(struct drm_device *dev)
  7484. {
  7485. struct intel_encoder *encoder;
  7486. struct intel_connector *connector;
  7487. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7488. base.head) {
  7489. bool enabled = false;
  7490. bool active = false;
  7491. enum pipe pipe, tracked_pipe;
  7492. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7493. encoder->base.base.id,
  7494. drm_get_encoder_name(&encoder->base));
  7495. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7496. "encoder's stage crtc doesn't match current crtc\n");
  7497. WARN(encoder->connectors_active && !encoder->base.crtc,
  7498. "encoder's active_connectors set, but no crtc\n");
  7499. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7500. base.head) {
  7501. if (connector->base.encoder != &encoder->base)
  7502. continue;
  7503. enabled = true;
  7504. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7505. active = true;
  7506. }
  7507. WARN(!!encoder->base.crtc != enabled,
  7508. "encoder's enabled state mismatch "
  7509. "(expected %i, found %i)\n",
  7510. !!encoder->base.crtc, enabled);
  7511. WARN(active && !encoder->base.crtc,
  7512. "active encoder with no crtc\n");
  7513. WARN(encoder->connectors_active != active,
  7514. "encoder's computed active state doesn't match tracked active state "
  7515. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7516. active = encoder->get_hw_state(encoder, &pipe);
  7517. WARN(active != encoder->connectors_active,
  7518. "encoder's hw state doesn't match sw tracking "
  7519. "(expected %i, found %i)\n",
  7520. encoder->connectors_active, active);
  7521. if (!encoder->base.crtc)
  7522. continue;
  7523. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7524. WARN(active && pipe != tracked_pipe,
  7525. "active encoder's pipe doesn't match"
  7526. "(expected %i, found %i)\n",
  7527. tracked_pipe, pipe);
  7528. }
  7529. }
  7530. static void
  7531. check_crtc_state(struct drm_device *dev)
  7532. {
  7533. drm_i915_private_t *dev_priv = dev->dev_private;
  7534. struct intel_crtc *crtc;
  7535. struct intel_encoder *encoder;
  7536. struct intel_crtc_config pipe_config;
  7537. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7538. base.head) {
  7539. bool enabled = false;
  7540. bool active = false;
  7541. memset(&pipe_config, 0, sizeof(pipe_config));
  7542. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7543. crtc->base.base.id);
  7544. WARN(crtc->active && !crtc->base.enabled,
  7545. "active crtc, but not enabled in sw tracking\n");
  7546. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7547. base.head) {
  7548. if (encoder->base.crtc != &crtc->base)
  7549. continue;
  7550. enabled = true;
  7551. if (encoder->connectors_active)
  7552. active = true;
  7553. }
  7554. WARN(active != crtc->active,
  7555. "crtc's computed active state doesn't match tracked active state "
  7556. "(expected %i, found %i)\n", active, crtc->active);
  7557. WARN(enabled != crtc->base.enabled,
  7558. "crtc's computed enabled state doesn't match tracked enabled state "
  7559. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7560. active = dev_priv->display.get_pipe_config(crtc,
  7561. &pipe_config);
  7562. /* hw state is inconsistent with the pipe A quirk */
  7563. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7564. active = crtc->active;
  7565. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7566. base.head) {
  7567. enum pipe pipe;
  7568. if (encoder->base.crtc != &crtc->base)
  7569. continue;
  7570. if (encoder->get_config &&
  7571. encoder->get_hw_state(encoder, &pipe))
  7572. encoder->get_config(encoder, &pipe_config);
  7573. }
  7574. WARN(crtc->active != active,
  7575. "crtc active state doesn't match with hw state "
  7576. "(expected %i, found %i)\n", crtc->active, active);
  7577. if (active &&
  7578. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7579. WARN(1, "pipe state doesn't match!\n");
  7580. intel_dump_pipe_config(crtc, &pipe_config,
  7581. "[hw state]");
  7582. intel_dump_pipe_config(crtc, &crtc->config,
  7583. "[sw state]");
  7584. }
  7585. }
  7586. }
  7587. static void
  7588. check_shared_dpll_state(struct drm_device *dev)
  7589. {
  7590. drm_i915_private_t *dev_priv = dev->dev_private;
  7591. struct intel_crtc *crtc;
  7592. struct intel_dpll_hw_state dpll_hw_state;
  7593. int i;
  7594. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7595. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7596. int enabled_crtcs = 0, active_crtcs = 0;
  7597. bool active;
  7598. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7599. DRM_DEBUG_KMS("%s\n", pll->name);
  7600. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7601. WARN(pll->active > pll->refcount,
  7602. "more active pll users than references: %i vs %i\n",
  7603. pll->active, pll->refcount);
  7604. WARN(pll->active && !pll->on,
  7605. "pll in active use but not on in sw tracking\n");
  7606. WARN(pll->on && !pll->active,
  7607. "pll in on but not on in use in sw tracking\n");
  7608. WARN(pll->on != active,
  7609. "pll on state mismatch (expected %i, found %i)\n",
  7610. pll->on, active);
  7611. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7612. base.head) {
  7613. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7614. enabled_crtcs++;
  7615. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7616. active_crtcs++;
  7617. }
  7618. WARN(pll->active != active_crtcs,
  7619. "pll active crtcs mismatch (expected %i, found %i)\n",
  7620. pll->active, active_crtcs);
  7621. WARN(pll->refcount != enabled_crtcs,
  7622. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7623. pll->refcount, enabled_crtcs);
  7624. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7625. sizeof(dpll_hw_state)),
  7626. "pll hw state mismatch\n");
  7627. }
  7628. }
  7629. void
  7630. intel_modeset_check_state(struct drm_device *dev)
  7631. {
  7632. check_connector_state(dev);
  7633. check_encoder_state(dev);
  7634. check_crtc_state(dev);
  7635. check_shared_dpll_state(dev);
  7636. }
  7637. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7638. int dotclock)
  7639. {
  7640. /*
  7641. * FDI already provided one idea for the dotclock.
  7642. * Yell if the encoder disagrees.
  7643. */
  7644. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
  7645. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7646. pipe_config->adjusted_mode.crtc_clock, dotclock);
  7647. }
  7648. static int __intel_set_mode(struct drm_crtc *crtc,
  7649. struct drm_display_mode *mode,
  7650. int x, int y, struct drm_framebuffer *fb)
  7651. {
  7652. struct drm_device *dev = crtc->dev;
  7653. drm_i915_private_t *dev_priv = dev->dev_private;
  7654. struct drm_display_mode *saved_mode, *saved_hwmode;
  7655. struct intel_crtc_config *pipe_config = NULL;
  7656. struct intel_crtc *intel_crtc;
  7657. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7658. int ret = 0;
  7659. saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
  7660. if (!saved_mode)
  7661. return -ENOMEM;
  7662. saved_hwmode = saved_mode + 1;
  7663. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7664. &prepare_pipes, &disable_pipes);
  7665. *saved_hwmode = crtc->hwmode;
  7666. *saved_mode = crtc->mode;
  7667. /* Hack: Because we don't (yet) support global modeset on multiple
  7668. * crtcs, we don't keep track of the new mode for more than one crtc.
  7669. * Hence simply check whether any bit is set in modeset_pipes in all the
  7670. * pieces of code that are not yet converted to deal with mutliple crtcs
  7671. * changing their mode at the same time. */
  7672. if (modeset_pipes) {
  7673. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7674. if (IS_ERR(pipe_config)) {
  7675. ret = PTR_ERR(pipe_config);
  7676. pipe_config = NULL;
  7677. goto out;
  7678. }
  7679. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7680. "[modeset]");
  7681. }
  7682. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7683. intel_crtc_disable(&intel_crtc->base);
  7684. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7685. if (intel_crtc->base.enabled)
  7686. dev_priv->display.crtc_disable(&intel_crtc->base);
  7687. }
  7688. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7689. * to set it here already despite that we pass it down the callchain.
  7690. */
  7691. if (modeset_pipes) {
  7692. crtc->mode = *mode;
  7693. /* mode_set/enable/disable functions rely on a correct pipe
  7694. * config. */
  7695. to_intel_crtc(crtc)->config = *pipe_config;
  7696. }
  7697. /* Only after disabling all output pipelines that will be changed can we
  7698. * update the the output configuration. */
  7699. intel_modeset_update_state(dev, prepare_pipes);
  7700. if (dev_priv->display.modeset_global_resources)
  7701. dev_priv->display.modeset_global_resources(dev);
  7702. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7703. * on the DPLL.
  7704. */
  7705. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7706. ret = intel_crtc_mode_set(&intel_crtc->base,
  7707. x, y, fb);
  7708. if (ret)
  7709. goto done;
  7710. }
  7711. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7712. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7713. dev_priv->display.crtc_enable(&intel_crtc->base);
  7714. if (modeset_pipes) {
  7715. /* Store real post-adjustment hardware mode. */
  7716. crtc->hwmode = pipe_config->adjusted_mode;
  7717. /* Calculate and store various constants which
  7718. * are later needed by vblank and swap-completion
  7719. * timestamping. They are derived from true hwmode.
  7720. */
  7721. drm_calc_timestamping_constants(crtc);
  7722. }
  7723. /* FIXME: add subpixel order */
  7724. done:
  7725. if (ret && crtc->enabled) {
  7726. crtc->hwmode = *saved_hwmode;
  7727. crtc->mode = *saved_mode;
  7728. }
  7729. out:
  7730. kfree(pipe_config);
  7731. kfree(saved_mode);
  7732. return ret;
  7733. }
  7734. static int intel_set_mode(struct drm_crtc *crtc,
  7735. struct drm_display_mode *mode,
  7736. int x, int y, struct drm_framebuffer *fb)
  7737. {
  7738. int ret;
  7739. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7740. if (ret == 0)
  7741. intel_modeset_check_state(crtc->dev);
  7742. return ret;
  7743. }
  7744. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7745. {
  7746. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7747. }
  7748. #undef for_each_intel_crtc_masked
  7749. static void intel_set_config_free(struct intel_set_config *config)
  7750. {
  7751. if (!config)
  7752. return;
  7753. kfree(config->save_connector_encoders);
  7754. kfree(config->save_encoder_crtcs);
  7755. kfree(config);
  7756. }
  7757. static int intel_set_config_save_state(struct drm_device *dev,
  7758. struct intel_set_config *config)
  7759. {
  7760. struct drm_encoder *encoder;
  7761. struct drm_connector *connector;
  7762. int count;
  7763. config->save_encoder_crtcs =
  7764. kcalloc(dev->mode_config.num_encoder,
  7765. sizeof(struct drm_crtc *), GFP_KERNEL);
  7766. if (!config->save_encoder_crtcs)
  7767. return -ENOMEM;
  7768. config->save_connector_encoders =
  7769. kcalloc(dev->mode_config.num_connector,
  7770. sizeof(struct drm_encoder *), GFP_KERNEL);
  7771. if (!config->save_connector_encoders)
  7772. return -ENOMEM;
  7773. /* Copy data. Note that driver private data is not affected.
  7774. * Should anything bad happen only the expected state is
  7775. * restored, not the drivers personal bookkeeping.
  7776. */
  7777. count = 0;
  7778. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7779. config->save_encoder_crtcs[count++] = encoder->crtc;
  7780. }
  7781. count = 0;
  7782. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7783. config->save_connector_encoders[count++] = connector->encoder;
  7784. }
  7785. return 0;
  7786. }
  7787. static void intel_set_config_restore_state(struct drm_device *dev,
  7788. struct intel_set_config *config)
  7789. {
  7790. struct intel_encoder *encoder;
  7791. struct intel_connector *connector;
  7792. int count;
  7793. count = 0;
  7794. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7795. encoder->new_crtc =
  7796. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7797. }
  7798. count = 0;
  7799. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7800. connector->new_encoder =
  7801. to_intel_encoder(config->save_connector_encoders[count++]);
  7802. }
  7803. }
  7804. static bool
  7805. is_crtc_connector_off(struct drm_mode_set *set)
  7806. {
  7807. int i;
  7808. if (set->num_connectors == 0)
  7809. return false;
  7810. if (WARN_ON(set->connectors == NULL))
  7811. return false;
  7812. for (i = 0; i < set->num_connectors; i++)
  7813. if (set->connectors[i]->encoder &&
  7814. set->connectors[i]->encoder->crtc == set->crtc &&
  7815. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7816. return true;
  7817. return false;
  7818. }
  7819. static void
  7820. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7821. struct intel_set_config *config)
  7822. {
  7823. /* We should be able to check here if the fb has the same properties
  7824. * and then just flip_or_move it */
  7825. if (is_crtc_connector_off(set)) {
  7826. config->mode_changed = true;
  7827. } else if (set->crtc->fb != set->fb) {
  7828. /* If we have no fb then treat it as a full mode set */
  7829. if (set->crtc->fb == NULL) {
  7830. struct intel_crtc *intel_crtc =
  7831. to_intel_crtc(set->crtc);
  7832. if (intel_crtc->active && i915_fastboot) {
  7833. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7834. config->fb_changed = true;
  7835. } else {
  7836. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7837. config->mode_changed = true;
  7838. }
  7839. } else if (set->fb == NULL) {
  7840. config->mode_changed = true;
  7841. } else if (set->fb->pixel_format !=
  7842. set->crtc->fb->pixel_format) {
  7843. config->mode_changed = true;
  7844. } else {
  7845. config->fb_changed = true;
  7846. }
  7847. }
  7848. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7849. config->fb_changed = true;
  7850. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7851. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7852. drm_mode_debug_printmodeline(&set->crtc->mode);
  7853. drm_mode_debug_printmodeline(set->mode);
  7854. config->mode_changed = true;
  7855. }
  7856. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7857. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7858. }
  7859. static int
  7860. intel_modeset_stage_output_state(struct drm_device *dev,
  7861. struct drm_mode_set *set,
  7862. struct intel_set_config *config)
  7863. {
  7864. struct drm_crtc *new_crtc;
  7865. struct intel_connector *connector;
  7866. struct intel_encoder *encoder;
  7867. int ro;
  7868. /* The upper layers ensure that we either disable a crtc or have a list
  7869. * of connectors. For paranoia, double-check this. */
  7870. WARN_ON(!set->fb && (set->num_connectors != 0));
  7871. WARN_ON(set->fb && (set->num_connectors == 0));
  7872. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7873. base.head) {
  7874. /* Otherwise traverse passed in connector list and get encoders
  7875. * for them. */
  7876. for (ro = 0; ro < set->num_connectors; ro++) {
  7877. if (set->connectors[ro] == &connector->base) {
  7878. connector->new_encoder = connector->encoder;
  7879. break;
  7880. }
  7881. }
  7882. /* If we disable the crtc, disable all its connectors. Also, if
  7883. * the connector is on the changing crtc but not on the new
  7884. * connector list, disable it. */
  7885. if ((!set->fb || ro == set->num_connectors) &&
  7886. connector->base.encoder &&
  7887. connector->base.encoder->crtc == set->crtc) {
  7888. connector->new_encoder = NULL;
  7889. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7890. connector->base.base.id,
  7891. drm_get_connector_name(&connector->base));
  7892. }
  7893. if (&connector->new_encoder->base != connector->base.encoder) {
  7894. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7895. config->mode_changed = true;
  7896. }
  7897. }
  7898. /* connector->new_encoder is now updated for all connectors. */
  7899. /* Update crtc of enabled connectors. */
  7900. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7901. base.head) {
  7902. if (!connector->new_encoder)
  7903. continue;
  7904. new_crtc = connector->new_encoder->base.crtc;
  7905. for (ro = 0; ro < set->num_connectors; ro++) {
  7906. if (set->connectors[ro] == &connector->base)
  7907. new_crtc = set->crtc;
  7908. }
  7909. /* Make sure the new CRTC will work with the encoder */
  7910. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7911. new_crtc)) {
  7912. return -EINVAL;
  7913. }
  7914. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7915. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7916. connector->base.base.id,
  7917. drm_get_connector_name(&connector->base),
  7918. new_crtc->base.id);
  7919. }
  7920. /* Check for any encoders that needs to be disabled. */
  7921. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7922. base.head) {
  7923. list_for_each_entry(connector,
  7924. &dev->mode_config.connector_list,
  7925. base.head) {
  7926. if (connector->new_encoder == encoder) {
  7927. WARN_ON(!connector->new_encoder->new_crtc);
  7928. goto next_encoder;
  7929. }
  7930. }
  7931. encoder->new_crtc = NULL;
  7932. next_encoder:
  7933. /* Only now check for crtc changes so we don't miss encoders
  7934. * that will be disabled. */
  7935. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7936. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7937. config->mode_changed = true;
  7938. }
  7939. }
  7940. /* Now we've also updated encoder->new_crtc for all encoders. */
  7941. return 0;
  7942. }
  7943. static int intel_crtc_set_config(struct drm_mode_set *set)
  7944. {
  7945. struct drm_device *dev;
  7946. struct drm_mode_set save_set;
  7947. struct intel_set_config *config;
  7948. int ret;
  7949. BUG_ON(!set);
  7950. BUG_ON(!set->crtc);
  7951. BUG_ON(!set->crtc->helper_private);
  7952. /* Enforce sane interface api - has been abused by the fb helper. */
  7953. BUG_ON(!set->mode && set->fb);
  7954. BUG_ON(set->fb && set->num_connectors == 0);
  7955. if (set->fb) {
  7956. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7957. set->crtc->base.id, set->fb->base.id,
  7958. (int)set->num_connectors, set->x, set->y);
  7959. } else {
  7960. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7961. }
  7962. dev = set->crtc->dev;
  7963. ret = -ENOMEM;
  7964. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7965. if (!config)
  7966. goto out_config;
  7967. ret = intel_set_config_save_state(dev, config);
  7968. if (ret)
  7969. goto out_config;
  7970. save_set.crtc = set->crtc;
  7971. save_set.mode = &set->crtc->mode;
  7972. save_set.x = set->crtc->x;
  7973. save_set.y = set->crtc->y;
  7974. save_set.fb = set->crtc->fb;
  7975. /* Compute whether we need a full modeset, only an fb base update or no
  7976. * change at all. In the future we might also check whether only the
  7977. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7978. * such cases. */
  7979. intel_set_config_compute_mode_changes(set, config);
  7980. ret = intel_modeset_stage_output_state(dev, set, config);
  7981. if (ret)
  7982. goto fail;
  7983. if (config->mode_changed) {
  7984. ret = intel_set_mode(set->crtc, set->mode,
  7985. set->x, set->y, set->fb);
  7986. } else if (config->fb_changed) {
  7987. intel_crtc_wait_for_pending_flips(set->crtc);
  7988. ret = intel_pipe_set_base(set->crtc,
  7989. set->x, set->y, set->fb);
  7990. }
  7991. if (ret) {
  7992. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7993. set->crtc->base.id, ret);
  7994. fail:
  7995. intel_set_config_restore_state(dev, config);
  7996. /* Try to restore the config */
  7997. if (config->mode_changed &&
  7998. intel_set_mode(save_set.crtc, save_set.mode,
  7999. save_set.x, save_set.y, save_set.fb))
  8000. DRM_ERROR("failed to restore config after modeset failure\n");
  8001. }
  8002. out_config:
  8003. intel_set_config_free(config);
  8004. return ret;
  8005. }
  8006. static const struct drm_crtc_funcs intel_crtc_funcs = {
  8007. .cursor_set = intel_crtc_cursor_set,
  8008. .cursor_move = intel_crtc_cursor_move,
  8009. .gamma_set = intel_crtc_gamma_set,
  8010. .set_config = intel_crtc_set_config,
  8011. .destroy = intel_crtc_destroy,
  8012. .page_flip = intel_crtc_page_flip,
  8013. };
  8014. static void intel_cpu_pll_init(struct drm_device *dev)
  8015. {
  8016. if (HAS_DDI(dev))
  8017. intel_ddi_pll_init(dev);
  8018. }
  8019. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  8020. struct intel_shared_dpll *pll,
  8021. struct intel_dpll_hw_state *hw_state)
  8022. {
  8023. uint32_t val;
  8024. val = I915_READ(PCH_DPLL(pll->id));
  8025. hw_state->dpll = val;
  8026. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  8027. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  8028. return val & DPLL_VCO_ENABLE;
  8029. }
  8030. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  8031. struct intel_shared_dpll *pll)
  8032. {
  8033. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  8034. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  8035. }
  8036. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  8037. struct intel_shared_dpll *pll)
  8038. {
  8039. /* PCH refclock must be enabled first */
  8040. assert_pch_refclk_enabled(dev_priv);
  8041. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8042. /* Wait for the clocks to stabilize. */
  8043. POSTING_READ(PCH_DPLL(pll->id));
  8044. udelay(150);
  8045. /* The pixel multiplier can only be updated once the
  8046. * DPLL is enabled and the clocks are stable.
  8047. *
  8048. * So write it again.
  8049. */
  8050. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8051. POSTING_READ(PCH_DPLL(pll->id));
  8052. udelay(200);
  8053. }
  8054. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  8055. struct intel_shared_dpll *pll)
  8056. {
  8057. struct drm_device *dev = dev_priv->dev;
  8058. struct intel_crtc *crtc;
  8059. /* Make sure no transcoder isn't still depending on us. */
  8060. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  8061. if (intel_crtc_to_shared_dpll(crtc) == pll)
  8062. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  8063. }
  8064. I915_WRITE(PCH_DPLL(pll->id), 0);
  8065. POSTING_READ(PCH_DPLL(pll->id));
  8066. udelay(200);
  8067. }
  8068. static char *ibx_pch_dpll_names[] = {
  8069. "PCH DPLL A",
  8070. "PCH DPLL B",
  8071. };
  8072. static void ibx_pch_dpll_init(struct drm_device *dev)
  8073. {
  8074. struct drm_i915_private *dev_priv = dev->dev_private;
  8075. int i;
  8076. dev_priv->num_shared_dpll = 2;
  8077. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8078. dev_priv->shared_dplls[i].id = i;
  8079. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  8080. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  8081. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  8082. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  8083. dev_priv->shared_dplls[i].get_hw_state =
  8084. ibx_pch_dpll_get_hw_state;
  8085. }
  8086. }
  8087. static void intel_shared_dpll_init(struct drm_device *dev)
  8088. {
  8089. struct drm_i915_private *dev_priv = dev->dev_private;
  8090. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8091. ibx_pch_dpll_init(dev);
  8092. else
  8093. dev_priv->num_shared_dpll = 0;
  8094. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  8095. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  8096. dev_priv->num_shared_dpll);
  8097. }
  8098. static void intel_crtc_init(struct drm_device *dev, int pipe)
  8099. {
  8100. drm_i915_private_t *dev_priv = dev->dev_private;
  8101. struct intel_crtc *intel_crtc;
  8102. int i;
  8103. intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  8104. if (intel_crtc == NULL)
  8105. return;
  8106. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  8107. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  8108. for (i = 0; i < 256; i++) {
  8109. intel_crtc->lut_r[i] = i;
  8110. intel_crtc->lut_g[i] = i;
  8111. intel_crtc->lut_b[i] = i;
  8112. }
  8113. /* Swap pipes & planes for FBC on pre-965 */
  8114. intel_crtc->pipe = pipe;
  8115. intel_crtc->plane = pipe;
  8116. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  8117. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8118. intel_crtc->plane = !pipe;
  8119. }
  8120. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8121. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8122. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8123. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8124. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8125. }
  8126. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8127. struct drm_file *file)
  8128. {
  8129. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8130. struct drm_mode_object *drmmode_obj;
  8131. struct intel_crtc *crtc;
  8132. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8133. return -ENODEV;
  8134. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8135. DRM_MODE_OBJECT_CRTC);
  8136. if (!drmmode_obj) {
  8137. DRM_ERROR("no such CRTC id\n");
  8138. return -EINVAL;
  8139. }
  8140. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8141. pipe_from_crtc_id->pipe = crtc->pipe;
  8142. return 0;
  8143. }
  8144. static int intel_encoder_clones(struct intel_encoder *encoder)
  8145. {
  8146. struct drm_device *dev = encoder->base.dev;
  8147. struct intel_encoder *source_encoder;
  8148. int index_mask = 0;
  8149. int entry = 0;
  8150. list_for_each_entry(source_encoder,
  8151. &dev->mode_config.encoder_list, base.head) {
  8152. if (encoder == source_encoder)
  8153. index_mask |= (1 << entry);
  8154. /* Intel hw has only one MUX where enocoders could be cloned. */
  8155. if (encoder->cloneable && source_encoder->cloneable)
  8156. index_mask |= (1 << entry);
  8157. entry++;
  8158. }
  8159. return index_mask;
  8160. }
  8161. static bool has_edp_a(struct drm_device *dev)
  8162. {
  8163. struct drm_i915_private *dev_priv = dev->dev_private;
  8164. if (!IS_MOBILE(dev))
  8165. return false;
  8166. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8167. return false;
  8168. if (IS_GEN5(dev) &&
  8169. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8170. return false;
  8171. return true;
  8172. }
  8173. static void intel_setup_outputs(struct drm_device *dev)
  8174. {
  8175. struct drm_i915_private *dev_priv = dev->dev_private;
  8176. struct intel_encoder *encoder;
  8177. bool dpd_is_edp = false;
  8178. intel_lvds_init(dev);
  8179. if (!IS_ULT(dev))
  8180. intel_crt_init(dev);
  8181. if (HAS_DDI(dev)) {
  8182. int found;
  8183. /* Haswell uses DDI functions to detect digital outputs */
  8184. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8185. /* DDI A only supports eDP */
  8186. if (found)
  8187. intel_ddi_init(dev, PORT_A);
  8188. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8189. * register */
  8190. found = I915_READ(SFUSE_STRAP);
  8191. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8192. intel_ddi_init(dev, PORT_B);
  8193. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8194. intel_ddi_init(dev, PORT_C);
  8195. if (found & SFUSE_STRAP_DDID_DETECTED)
  8196. intel_ddi_init(dev, PORT_D);
  8197. } else if (HAS_PCH_SPLIT(dev)) {
  8198. int found;
  8199. dpd_is_edp = intel_dpd_is_edp(dev);
  8200. if (has_edp_a(dev))
  8201. intel_dp_init(dev, DP_A, PORT_A);
  8202. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8203. /* PCH SDVOB multiplex with HDMIB */
  8204. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8205. if (!found)
  8206. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8207. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8208. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8209. }
  8210. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8211. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8212. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8213. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8214. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8215. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8216. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8217. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8218. } else if (IS_VALLEYVIEW(dev)) {
  8219. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8220. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8221. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8222. PORT_C);
  8223. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8224. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8225. PORT_C);
  8226. }
  8227. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8228. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8229. PORT_B);
  8230. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8231. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8232. }
  8233. intel_dsi_init(dev);
  8234. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8235. bool found = false;
  8236. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8237. DRM_DEBUG_KMS("probing SDVOB\n");
  8238. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8239. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8240. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8241. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8242. }
  8243. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8244. intel_dp_init(dev, DP_B, PORT_B);
  8245. }
  8246. /* Before G4X SDVOC doesn't have its own detect register */
  8247. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8248. DRM_DEBUG_KMS("probing SDVOC\n");
  8249. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8250. }
  8251. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8252. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8253. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8254. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8255. }
  8256. if (SUPPORTS_INTEGRATED_DP(dev))
  8257. intel_dp_init(dev, DP_C, PORT_C);
  8258. }
  8259. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8260. (I915_READ(DP_D) & DP_DETECTED))
  8261. intel_dp_init(dev, DP_D, PORT_D);
  8262. } else if (IS_GEN2(dev))
  8263. intel_dvo_init(dev);
  8264. if (SUPPORTS_TV(dev))
  8265. intel_tv_init(dev);
  8266. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8267. encoder->base.possible_crtcs = encoder->crtc_mask;
  8268. encoder->base.possible_clones =
  8269. intel_encoder_clones(encoder);
  8270. }
  8271. intel_init_pch_refclk(dev);
  8272. drm_helper_move_panel_connectors_to_head(dev);
  8273. }
  8274. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8275. {
  8276. drm_framebuffer_cleanup(&fb->base);
  8277. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8278. }
  8279. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8280. {
  8281. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8282. intel_framebuffer_fini(intel_fb);
  8283. kfree(intel_fb);
  8284. }
  8285. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8286. struct drm_file *file,
  8287. unsigned int *handle)
  8288. {
  8289. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8290. struct drm_i915_gem_object *obj = intel_fb->obj;
  8291. return drm_gem_handle_create(file, &obj->base, handle);
  8292. }
  8293. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8294. .destroy = intel_user_framebuffer_destroy,
  8295. .create_handle = intel_user_framebuffer_create_handle,
  8296. };
  8297. int intel_framebuffer_init(struct drm_device *dev,
  8298. struct intel_framebuffer *intel_fb,
  8299. struct drm_mode_fb_cmd2 *mode_cmd,
  8300. struct drm_i915_gem_object *obj)
  8301. {
  8302. int pitch_limit;
  8303. int ret;
  8304. if (obj->tiling_mode == I915_TILING_Y) {
  8305. DRM_DEBUG("hardware does not support tiling Y\n");
  8306. return -EINVAL;
  8307. }
  8308. if (mode_cmd->pitches[0] & 63) {
  8309. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8310. mode_cmd->pitches[0]);
  8311. return -EINVAL;
  8312. }
  8313. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8314. pitch_limit = 32*1024;
  8315. } else if (INTEL_INFO(dev)->gen >= 4) {
  8316. if (obj->tiling_mode)
  8317. pitch_limit = 16*1024;
  8318. else
  8319. pitch_limit = 32*1024;
  8320. } else if (INTEL_INFO(dev)->gen >= 3) {
  8321. if (obj->tiling_mode)
  8322. pitch_limit = 8*1024;
  8323. else
  8324. pitch_limit = 16*1024;
  8325. } else
  8326. /* XXX DSPC is limited to 4k tiled */
  8327. pitch_limit = 8*1024;
  8328. if (mode_cmd->pitches[0] > pitch_limit) {
  8329. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8330. obj->tiling_mode ? "tiled" : "linear",
  8331. mode_cmd->pitches[0], pitch_limit);
  8332. return -EINVAL;
  8333. }
  8334. if (obj->tiling_mode != I915_TILING_NONE &&
  8335. mode_cmd->pitches[0] != obj->stride) {
  8336. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8337. mode_cmd->pitches[0], obj->stride);
  8338. return -EINVAL;
  8339. }
  8340. /* Reject formats not supported by any plane early. */
  8341. switch (mode_cmd->pixel_format) {
  8342. case DRM_FORMAT_C8:
  8343. case DRM_FORMAT_RGB565:
  8344. case DRM_FORMAT_XRGB8888:
  8345. case DRM_FORMAT_ARGB8888:
  8346. break;
  8347. case DRM_FORMAT_XRGB1555:
  8348. case DRM_FORMAT_ARGB1555:
  8349. if (INTEL_INFO(dev)->gen > 3) {
  8350. DRM_DEBUG("unsupported pixel format: %s\n",
  8351. drm_get_format_name(mode_cmd->pixel_format));
  8352. return -EINVAL;
  8353. }
  8354. break;
  8355. case DRM_FORMAT_XBGR8888:
  8356. case DRM_FORMAT_ABGR8888:
  8357. case DRM_FORMAT_XRGB2101010:
  8358. case DRM_FORMAT_ARGB2101010:
  8359. case DRM_FORMAT_XBGR2101010:
  8360. case DRM_FORMAT_ABGR2101010:
  8361. if (INTEL_INFO(dev)->gen < 4) {
  8362. DRM_DEBUG("unsupported pixel format: %s\n",
  8363. drm_get_format_name(mode_cmd->pixel_format));
  8364. return -EINVAL;
  8365. }
  8366. break;
  8367. case DRM_FORMAT_YUYV:
  8368. case DRM_FORMAT_UYVY:
  8369. case DRM_FORMAT_YVYU:
  8370. case DRM_FORMAT_VYUY:
  8371. if (INTEL_INFO(dev)->gen < 5) {
  8372. DRM_DEBUG("unsupported pixel format: %s\n",
  8373. drm_get_format_name(mode_cmd->pixel_format));
  8374. return -EINVAL;
  8375. }
  8376. break;
  8377. default:
  8378. DRM_DEBUG("unsupported pixel format: %s\n",
  8379. drm_get_format_name(mode_cmd->pixel_format));
  8380. return -EINVAL;
  8381. }
  8382. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8383. if (mode_cmd->offsets[0] != 0)
  8384. return -EINVAL;
  8385. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8386. intel_fb->obj = obj;
  8387. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8388. if (ret) {
  8389. DRM_ERROR("framebuffer init failed %d\n", ret);
  8390. return ret;
  8391. }
  8392. return 0;
  8393. }
  8394. static struct drm_framebuffer *
  8395. intel_user_framebuffer_create(struct drm_device *dev,
  8396. struct drm_file *filp,
  8397. struct drm_mode_fb_cmd2 *mode_cmd)
  8398. {
  8399. struct drm_i915_gem_object *obj;
  8400. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8401. mode_cmd->handles[0]));
  8402. if (&obj->base == NULL)
  8403. return ERR_PTR(-ENOENT);
  8404. return intel_framebuffer_create(dev, mode_cmd, obj);
  8405. }
  8406. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8407. .fb_create = intel_user_framebuffer_create,
  8408. .output_poll_changed = intel_fb_output_poll_changed,
  8409. };
  8410. /* Set up chip specific display functions */
  8411. static void intel_init_display(struct drm_device *dev)
  8412. {
  8413. struct drm_i915_private *dev_priv = dev->dev_private;
  8414. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8415. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8416. else if (IS_VALLEYVIEW(dev))
  8417. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8418. else if (IS_PINEVIEW(dev))
  8419. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8420. else
  8421. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8422. if (HAS_DDI(dev)) {
  8423. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8424. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8425. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8426. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8427. dev_priv->display.off = haswell_crtc_off;
  8428. dev_priv->display.update_plane = ironlake_update_plane;
  8429. } else if (HAS_PCH_SPLIT(dev)) {
  8430. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8431. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8432. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8433. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8434. dev_priv->display.off = ironlake_crtc_off;
  8435. dev_priv->display.update_plane = ironlake_update_plane;
  8436. } else if (IS_VALLEYVIEW(dev)) {
  8437. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8438. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8439. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8440. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8441. dev_priv->display.off = i9xx_crtc_off;
  8442. dev_priv->display.update_plane = i9xx_update_plane;
  8443. } else {
  8444. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8445. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8446. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8447. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8448. dev_priv->display.off = i9xx_crtc_off;
  8449. dev_priv->display.update_plane = i9xx_update_plane;
  8450. }
  8451. /* Returns the core display clock speed */
  8452. if (IS_VALLEYVIEW(dev))
  8453. dev_priv->display.get_display_clock_speed =
  8454. valleyview_get_display_clock_speed;
  8455. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8456. dev_priv->display.get_display_clock_speed =
  8457. i945_get_display_clock_speed;
  8458. else if (IS_I915G(dev))
  8459. dev_priv->display.get_display_clock_speed =
  8460. i915_get_display_clock_speed;
  8461. else if (IS_I945GM(dev) || IS_845G(dev))
  8462. dev_priv->display.get_display_clock_speed =
  8463. i9xx_misc_get_display_clock_speed;
  8464. else if (IS_PINEVIEW(dev))
  8465. dev_priv->display.get_display_clock_speed =
  8466. pnv_get_display_clock_speed;
  8467. else if (IS_I915GM(dev))
  8468. dev_priv->display.get_display_clock_speed =
  8469. i915gm_get_display_clock_speed;
  8470. else if (IS_I865G(dev))
  8471. dev_priv->display.get_display_clock_speed =
  8472. i865_get_display_clock_speed;
  8473. else if (IS_I85X(dev))
  8474. dev_priv->display.get_display_clock_speed =
  8475. i855_get_display_clock_speed;
  8476. else /* 852, 830 */
  8477. dev_priv->display.get_display_clock_speed =
  8478. i830_get_display_clock_speed;
  8479. if (HAS_PCH_SPLIT(dev)) {
  8480. if (IS_GEN5(dev)) {
  8481. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8482. dev_priv->display.write_eld = ironlake_write_eld;
  8483. } else if (IS_GEN6(dev)) {
  8484. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8485. dev_priv->display.write_eld = ironlake_write_eld;
  8486. } else if (IS_IVYBRIDGE(dev)) {
  8487. /* FIXME: detect B0+ stepping and use auto training */
  8488. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8489. dev_priv->display.write_eld = ironlake_write_eld;
  8490. dev_priv->display.modeset_global_resources =
  8491. ivb_modeset_global_resources;
  8492. } else if (IS_HASWELL(dev)) {
  8493. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8494. dev_priv->display.write_eld = haswell_write_eld;
  8495. dev_priv->display.modeset_global_resources =
  8496. haswell_modeset_global_resources;
  8497. }
  8498. } else if (IS_G4X(dev)) {
  8499. dev_priv->display.write_eld = g4x_write_eld;
  8500. }
  8501. /* Default just returns -ENODEV to indicate unsupported */
  8502. dev_priv->display.queue_flip = intel_default_queue_flip;
  8503. switch (INTEL_INFO(dev)->gen) {
  8504. case 2:
  8505. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8506. break;
  8507. case 3:
  8508. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8509. break;
  8510. case 4:
  8511. case 5:
  8512. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8513. break;
  8514. case 6:
  8515. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8516. break;
  8517. case 7:
  8518. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8519. break;
  8520. }
  8521. }
  8522. /*
  8523. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8524. * resume, or other times. This quirk makes sure that's the case for
  8525. * affected systems.
  8526. */
  8527. static void quirk_pipea_force(struct drm_device *dev)
  8528. {
  8529. struct drm_i915_private *dev_priv = dev->dev_private;
  8530. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8531. DRM_INFO("applying pipe a force quirk\n");
  8532. }
  8533. /*
  8534. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8535. */
  8536. static void quirk_ssc_force_disable(struct drm_device *dev)
  8537. {
  8538. struct drm_i915_private *dev_priv = dev->dev_private;
  8539. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8540. DRM_INFO("applying lvds SSC disable quirk\n");
  8541. }
  8542. /*
  8543. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8544. * brightness value
  8545. */
  8546. static void quirk_invert_brightness(struct drm_device *dev)
  8547. {
  8548. struct drm_i915_private *dev_priv = dev->dev_private;
  8549. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8550. DRM_INFO("applying inverted panel brightness quirk\n");
  8551. }
  8552. /*
  8553. * Some machines (Dell XPS13) suffer broken backlight controls if
  8554. * BLM_PCH_PWM_ENABLE is set.
  8555. */
  8556. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8557. {
  8558. struct drm_i915_private *dev_priv = dev->dev_private;
  8559. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8560. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8561. }
  8562. struct intel_quirk {
  8563. int device;
  8564. int subsystem_vendor;
  8565. int subsystem_device;
  8566. void (*hook)(struct drm_device *dev);
  8567. };
  8568. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8569. struct intel_dmi_quirk {
  8570. void (*hook)(struct drm_device *dev);
  8571. const struct dmi_system_id (*dmi_id_list)[];
  8572. };
  8573. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8574. {
  8575. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8576. return 1;
  8577. }
  8578. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8579. {
  8580. .dmi_id_list = &(const struct dmi_system_id[]) {
  8581. {
  8582. .callback = intel_dmi_reverse_brightness,
  8583. .ident = "NCR Corporation",
  8584. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8585. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8586. },
  8587. },
  8588. { } /* terminating entry */
  8589. },
  8590. .hook = quirk_invert_brightness,
  8591. },
  8592. };
  8593. static struct intel_quirk intel_quirks[] = {
  8594. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8595. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8596. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8597. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8598. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8599. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8600. /* 830/845 need to leave pipe A & dpll A up */
  8601. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8602. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8603. /* Lenovo U160 cannot use SSC on LVDS */
  8604. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8605. /* Sony Vaio Y cannot use SSC on LVDS */
  8606. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8607. /*
  8608. * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
  8609. * seem to use inverted backlight PWM.
  8610. */
  8611. { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
  8612. /* Dell XPS13 HD Sandy Bridge */
  8613. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8614. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8615. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8616. };
  8617. static void intel_init_quirks(struct drm_device *dev)
  8618. {
  8619. struct pci_dev *d = dev->pdev;
  8620. int i;
  8621. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8622. struct intel_quirk *q = &intel_quirks[i];
  8623. if (d->device == q->device &&
  8624. (d->subsystem_vendor == q->subsystem_vendor ||
  8625. q->subsystem_vendor == PCI_ANY_ID) &&
  8626. (d->subsystem_device == q->subsystem_device ||
  8627. q->subsystem_device == PCI_ANY_ID))
  8628. q->hook(dev);
  8629. }
  8630. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8631. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8632. intel_dmi_quirks[i].hook(dev);
  8633. }
  8634. }
  8635. /* Disable the VGA plane that we never use */
  8636. static void i915_disable_vga(struct drm_device *dev)
  8637. {
  8638. struct drm_i915_private *dev_priv = dev->dev_private;
  8639. u8 sr1;
  8640. u32 vga_reg = i915_vgacntrl_reg(dev);
  8641. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8642. outb(SR01, VGA_SR_INDEX);
  8643. sr1 = inb(VGA_SR_DATA);
  8644. outb(sr1 | 1<<5, VGA_SR_DATA);
  8645. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8646. udelay(300);
  8647. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8648. POSTING_READ(vga_reg);
  8649. }
  8650. static void i915_enable_vga_mem(struct drm_device *dev)
  8651. {
  8652. /* Enable VGA memory on Intel HD */
  8653. if (HAS_PCH_SPLIT(dev)) {
  8654. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8655. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8656. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8657. VGA_RSRC_LEGACY_MEM |
  8658. VGA_RSRC_NORMAL_IO |
  8659. VGA_RSRC_NORMAL_MEM);
  8660. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8661. }
  8662. }
  8663. void i915_disable_vga_mem(struct drm_device *dev)
  8664. {
  8665. /* Disable VGA memory on Intel HD */
  8666. if (HAS_PCH_SPLIT(dev)) {
  8667. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8668. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8669. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8670. VGA_RSRC_NORMAL_IO |
  8671. VGA_RSRC_NORMAL_MEM);
  8672. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8673. }
  8674. }
  8675. void intel_modeset_init_hw(struct drm_device *dev)
  8676. {
  8677. struct drm_i915_private *dev_priv = dev->dev_private;
  8678. intel_prepare_ddi(dev);
  8679. intel_init_clock_gating(dev);
  8680. /* Enable the CRI clock source so we can get at the display */
  8681. if (IS_VALLEYVIEW(dev))
  8682. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  8683. DPLL_INTEGRATED_CRI_CLK_VLV);
  8684. intel_init_dpio(dev);
  8685. mutex_lock(&dev->struct_mutex);
  8686. intel_enable_gt_powersave(dev);
  8687. mutex_unlock(&dev->struct_mutex);
  8688. }
  8689. void intel_modeset_suspend_hw(struct drm_device *dev)
  8690. {
  8691. intel_suspend_hw(dev);
  8692. }
  8693. void intel_modeset_init(struct drm_device *dev)
  8694. {
  8695. struct drm_i915_private *dev_priv = dev->dev_private;
  8696. int i, j, ret;
  8697. drm_mode_config_init(dev);
  8698. dev->mode_config.min_width = 0;
  8699. dev->mode_config.min_height = 0;
  8700. dev->mode_config.preferred_depth = 24;
  8701. dev->mode_config.prefer_shadow = 1;
  8702. dev->mode_config.funcs = &intel_mode_funcs;
  8703. intel_init_quirks(dev);
  8704. intel_init_pm(dev);
  8705. if (INTEL_INFO(dev)->num_pipes == 0)
  8706. return;
  8707. intel_init_display(dev);
  8708. if (IS_GEN2(dev)) {
  8709. dev->mode_config.max_width = 2048;
  8710. dev->mode_config.max_height = 2048;
  8711. } else if (IS_GEN3(dev)) {
  8712. dev->mode_config.max_width = 4096;
  8713. dev->mode_config.max_height = 4096;
  8714. } else {
  8715. dev->mode_config.max_width = 8192;
  8716. dev->mode_config.max_height = 8192;
  8717. }
  8718. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8719. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8720. INTEL_INFO(dev)->num_pipes,
  8721. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8722. for_each_pipe(i) {
  8723. intel_crtc_init(dev, i);
  8724. for (j = 0; j < dev_priv->num_plane; j++) {
  8725. ret = intel_plane_init(dev, i, j);
  8726. if (ret)
  8727. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8728. pipe_name(i), sprite_name(i, j), ret);
  8729. }
  8730. }
  8731. intel_cpu_pll_init(dev);
  8732. intel_shared_dpll_init(dev);
  8733. /* Just disable it once at startup */
  8734. i915_disable_vga(dev);
  8735. intel_setup_outputs(dev);
  8736. /* Just in case the BIOS is doing something questionable. */
  8737. intel_disable_fbc(dev);
  8738. }
  8739. static void
  8740. intel_connector_break_all_links(struct intel_connector *connector)
  8741. {
  8742. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8743. connector->base.encoder = NULL;
  8744. connector->encoder->connectors_active = false;
  8745. connector->encoder->base.crtc = NULL;
  8746. }
  8747. static void intel_enable_pipe_a(struct drm_device *dev)
  8748. {
  8749. struct intel_connector *connector;
  8750. struct drm_connector *crt = NULL;
  8751. struct intel_load_detect_pipe load_detect_temp;
  8752. /* We can't just switch on the pipe A, we need to set things up with a
  8753. * proper mode and output configuration. As a gross hack, enable pipe A
  8754. * by enabling the load detect pipe once. */
  8755. list_for_each_entry(connector,
  8756. &dev->mode_config.connector_list,
  8757. base.head) {
  8758. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8759. crt = &connector->base;
  8760. break;
  8761. }
  8762. }
  8763. if (!crt)
  8764. return;
  8765. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8766. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8767. }
  8768. static bool
  8769. intel_check_plane_mapping(struct intel_crtc *crtc)
  8770. {
  8771. struct drm_device *dev = crtc->base.dev;
  8772. struct drm_i915_private *dev_priv = dev->dev_private;
  8773. u32 reg, val;
  8774. if (INTEL_INFO(dev)->num_pipes == 1)
  8775. return true;
  8776. reg = DSPCNTR(!crtc->plane);
  8777. val = I915_READ(reg);
  8778. if ((val & DISPLAY_PLANE_ENABLE) &&
  8779. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8780. return false;
  8781. return true;
  8782. }
  8783. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8784. {
  8785. struct drm_device *dev = crtc->base.dev;
  8786. struct drm_i915_private *dev_priv = dev->dev_private;
  8787. u32 reg;
  8788. /* Clear any frame start delays used for debugging left by the BIOS */
  8789. reg = PIPECONF(crtc->config.cpu_transcoder);
  8790. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8791. /* We need to sanitize the plane -> pipe mapping first because this will
  8792. * disable the crtc (and hence change the state) if it is wrong. Note
  8793. * that gen4+ has a fixed plane -> pipe mapping. */
  8794. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8795. struct intel_connector *connector;
  8796. bool plane;
  8797. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8798. crtc->base.base.id);
  8799. /* Pipe has the wrong plane attached and the plane is active.
  8800. * Temporarily change the plane mapping and disable everything
  8801. * ... */
  8802. plane = crtc->plane;
  8803. crtc->plane = !plane;
  8804. dev_priv->display.crtc_disable(&crtc->base);
  8805. crtc->plane = plane;
  8806. /* ... and break all links. */
  8807. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8808. base.head) {
  8809. if (connector->encoder->base.crtc != &crtc->base)
  8810. continue;
  8811. intel_connector_break_all_links(connector);
  8812. }
  8813. WARN_ON(crtc->active);
  8814. crtc->base.enabled = false;
  8815. }
  8816. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8817. crtc->pipe == PIPE_A && !crtc->active) {
  8818. /* BIOS forgot to enable pipe A, this mostly happens after
  8819. * resume. Force-enable the pipe to fix this, the update_dpms
  8820. * call below we restore the pipe to the right state, but leave
  8821. * the required bits on. */
  8822. intel_enable_pipe_a(dev);
  8823. }
  8824. /* Adjust the state of the output pipe according to whether we
  8825. * have active connectors/encoders. */
  8826. intel_crtc_update_dpms(&crtc->base);
  8827. if (crtc->active != crtc->base.enabled) {
  8828. struct intel_encoder *encoder;
  8829. /* This can happen either due to bugs in the get_hw_state
  8830. * functions or because the pipe is force-enabled due to the
  8831. * pipe A quirk. */
  8832. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8833. crtc->base.base.id,
  8834. crtc->base.enabled ? "enabled" : "disabled",
  8835. crtc->active ? "enabled" : "disabled");
  8836. crtc->base.enabled = crtc->active;
  8837. /* Because we only establish the connector -> encoder ->
  8838. * crtc links if something is active, this means the
  8839. * crtc is now deactivated. Break the links. connector
  8840. * -> encoder links are only establish when things are
  8841. * actually up, hence no need to break them. */
  8842. WARN_ON(crtc->active);
  8843. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8844. WARN_ON(encoder->connectors_active);
  8845. encoder->base.crtc = NULL;
  8846. }
  8847. }
  8848. }
  8849. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8850. {
  8851. struct intel_connector *connector;
  8852. struct drm_device *dev = encoder->base.dev;
  8853. /* We need to check both for a crtc link (meaning that the
  8854. * encoder is active and trying to read from a pipe) and the
  8855. * pipe itself being active. */
  8856. bool has_active_crtc = encoder->base.crtc &&
  8857. to_intel_crtc(encoder->base.crtc)->active;
  8858. if (encoder->connectors_active && !has_active_crtc) {
  8859. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8860. encoder->base.base.id,
  8861. drm_get_encoder_name(&encoder->base));
  8862. /* Connector is active, but has no active pipe. This is
  8863. * fallout from our resume register restoring. Disable
  8864. * the encoder manually again. */
  8865. if (encoder->base.crtc) {
  8866. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8867. encoder->base.base.id,
  8868. drm_get_encoder_name(&encoder->base));
  8869. encoder->disable(encoder);
  8870. }
  8871. /* Inconsistent output/port/pipe state happens presumably due to
  8872. * a bug in one of the get_hw_state functions. Or someplace else
  8873. * in our code, like the register restore mess on resume. Clamp
  8874. * things to off as a safer default. */
  8875. list_for_each_entry(connector,
  8876. &dev->mode_config.connector_list,
  8877. base.head) {
  8878. if (connector->encoder != encoder)
  8879. continue;
  8880. intel_connector_break_all_links(connector);
  8881. }
  8882. }
  8883. /* Enabled encoders without active connectors will be fixed in
  8884. * the crtc fixup. */
  8885. }
  8886. void i915_redisable_vga(struct drm_device *dev)
  8887. {
  8888. struct drm_i915_private *dev_priv = dev->dev_private;
  8889. u32 vga_reg = i915_vgacntrl_reg(dev);
  8890. /* This function can be called both from intel_modeset_setup_hw_state or
  8891. * at a very early point in our resume sequence, where the power well
  8892. * structures are not yet restored. Since this function is at a very
  8893. * paranoid "someone might have enabled VGA while we were not looking"
  8894. * level, just check if the power well is enabled instead of trying to
  8895. * follow the "don't touch the power well if we don't need it" policy
  8896. * the rest of the driver uses. */
  8897. if (HAS_POWER_WELL(dev) &&
  8898. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8899. return;
  8900. if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  8901. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8902. i915_disable_vga(dev);
  8903. i915_disable_vga_mem(dev);
  8904. }
  8905. }
  8906. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8907. {
  8908. struct drm_i915_private *dev_priv = dev->dev_private;
  8909. enum pipe pipe;
  8910. struct intel_crtc *crtc;
  8911. struct intel_encoder *encoder;
  8912. struct intel_connector *connector;
  8913. int i;
  8914. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8915. base.head) {
  8916. memset(&crtc->config, 0, sizeof(crtc->config));
  8917. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8918. &crtc->config);
  8919. crtc->base.enabled = crtc->active;
  8920. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8921. crtc->base.base.id,
  8922. crtc->active ? "enabled" : "disabled");
  8923. }
  8924. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8925. if (HAS_DDI(dev))
  8926. intel_ddi_setup_hw_pll_state(dev);
  8927. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8928. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8929. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8930. pll->active = 0;
  8931. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8932. base.head) {
  8933. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8934. pll->active++;
  8935. }
  8936. pll->refcount = pll->active;
  8937. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8938. pll->name, pll->refcount, pll->on);
  8939. }
  8940. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8941. base.head) {
  8942. pipe = 0;
  8943. if (encoder->get_hw_state(encoder, &pipe)) {
  8944. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8945. encoder->base.crtc = &crtc->base;
  8946. if (encoder->get_config)
  8947. encoder->get_config(encoder, &crtc->config);
  8948. } else {
  8949. encoder->base.crtc = NULL;
  8950. }
  8951. encoder->connectors_active = false;
  8952. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8953. encoder->base.base.id,
  8954. drm_get_encoder_name(&encoder->base),
  8955. encoder->base.crtc ? "enabled" : "disabled",
  8956. pipe);
  8957. }
  8958. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8959. base.head) {
  8960. if (connector->get_hw_state(connector)) {
  8961. connector->base.dpms = DRM_MODE_DPMS_ON;
  8962. connector->encoder->connectors_active = true;
  8963. connector->base.encoder = &connector->encoder->base;
  8964. } else {
  8965. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8966. connector->base.encoder = NULL;
  8967. }
  8968. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8969. connector->base.base.id,
  8970. drm_get_connector_name(&connector->base),
  8971. connector->base.encoder ? "enabled" : "disabled");
  8972. }
  8973. }
  8974. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8975. * and i915 state tracking structures. */
  8976. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8977. bool force_restore)
  8978. {
  8979. struct drm_i915_private *dev_priv = dev->dev_private;
  8980. enum pipe pipe;
  8981. struct intel_crtc *crtc;
  8982. struct intel_encoder *encoder;
  8983. int i;
  8984. intel_modeset_readout_hw_state(dev);
  8985. /*
  8986. * Now that we have the config, copy it to each CRTC struct
  8987. * Note that this could go away if we move to using crtc_config
  8988. * checking everywhere.
  8989. */
  8990. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8991. base.head) {
  8992. if (crtc->active && i915_fastboot) {
  8993. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8994. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8995. crtc->base.base.id);
  8996. drm_mode_debug_printmodeline(&crtc->base.mode);
  8997. }
  8998. }
  8999. /* HW state is read out, now we need to sanitize this mess. */
  9000. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9001. base.head) {
  9002. intel_sanitize_encoder(encoder);
  9003. }
  9004. for_each_pipe(pipe) {
  9005. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  9006. intel_sanitize_crtc(crtc);
  9007. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  9008. }
  9009. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9010. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  9011. if (!pll->on || pll->active)
  9012. continue;
  9013. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  9014. pll->disable(dev_priv, pll);
  9015. pll->on = false;
  9016. }
  9017. if (force_restore) {
  9018. i915_redisable_vga(dev);
  9019. /*
  9020. * We need to use raw interfaces for restoring state to avoid
  9021. * checking (bogus) intermediate states.
  9022. */
  9023. for_each_pipe(pipe) {
  9024. struct drm_crtc *crtc =
  9025. dev_priv->pipe_to_crtc_mapping[pipe];
  9026. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  9027. crtc->fb);
  9028. }
  9029. } else {
  9030. intel_modeset_update_staged_output_state(dev);
  9031. }
  9032. intel_modeset_check_state(dev);
  9033. drm_mode_config_reset(dev);
  9034. }
  9035. void intel_modeset_gem_init(struct drm_device *dev)
  9036. {
  9037. intel_modeset_init_hw(dev);
  9038. intel_setup_overlay(dev);
  9039. intel_modeset_setup_hw_state(dev, false);
  9040. }
  9041. void intel_modeset_cleanup(struct drm_device *dev)
  9042. {
  9043. struct drm_i915_private *dev_priv = dev->dev_private;
  9044. struct drm_crtc *crtc;
  9045. struct drm_connector *connector;
  9046. /*
  9047. * Interrupts and polling as the first thing to avoid creating havoc.
  9048. * Too much stuff here (turning of rps, connectors, ...) would
  9049. * experience fancy races otherwise.
  9050. */
  9051. drm_irq_uninstall(dev);
  9052. cancel_work_sync(&dev_priv->hotplug_work);
  9053. /*
  9054. * Due to the hpd irq storm handling the hotplug work can re-arm the
  9055. * poll handlers. Hence disable polling after hpd handling is shut down.
  9056. */
  9057. drm_kms_helper_poll_fini(dev);
  9058. mutex_lock(&dev->struct_mutex);
  9059. intel_unregister_dsm_handler();
  9060. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  9061. /* Skip inactive CRTCs */
  9062. if (!crtc->fb)
  9063. continue;
  9064. intel_increase_pllclock(crtc);
  9065. }
  9066. intel_disable_fbc(dev);
  9067. i915_enable_vga_mem(dev);
  9068. intel_disable_gt_powersave(dev);
  9069. ironlake_teardown_rc6(dev);
  9070. mutex_unlock(&dev->struct_mutex);
  9071. /* flush any delayed tasks or pending work */
  9072. flush_scheduled_work();
  9073. /* destroy backlight, if any, before the connectors */
  9074. intel_panel_destroy_backlight(dev);
  9075. /* destroy the sysfs files before encoders/connectors */
  9076. list_for_each_entry(connector, &dev->mode_config.connector_list, head)
  9077. drm_sysfs_connector_remove(connector);
  9078. drm_mode_config_cleanup(dev);
  9079. intel_cleanup_overlay(dev);
  9080. }
  9081. /*
  9082. * Return which encoder is currently attached for connector.
  9083. */
  9084. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  9085. {
  9086. return &intel_attached_encoder(connector)->base;
  9087. }
  9088. void intel_connector_attach_encoder(struct intel_connector *connector,
  9089. struct intel_encoder *encoder)
  9090. {
  9091. connector->encoder = encoder;
  9092. drm_mode_connector_attach_encoder(&connector->base,
  9093. &encoder->base);
  9094. }
  9095. /*
  9096. * set vga decode state - true == enable VGA decode
  9097. */
  9098. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  9099. {
  9100. struct drm_i915_private *dev_priv = dev->dev_private;
  9101. u16 gmch_ctrl;
  9102. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  9103. if (state)
  9104. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  9105. else
  9106. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  9107. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  9108. return 0;
  9109. }
  9110. struct intel_display_error_state {
  9111. u32 power_well_driver;
  9112. int num_transcoders;
  9113. struct intel_cursor_error_state {
  9114. u32 control;
  9115. u32 position;
  9116. u32 base;
  9117. u32 size;
  9118. } cursor[I915_MAX_PIPES];
  9119. struct intel_pipe_error_state {
  9120. u32 source;
  9121. } pipe[I915_MAX_PIPES];
  9122. struct intel_plane_error_state {
  9123. u32 control;
  9124. u32 stride;
  9125. u32 size;
  9126. u32 pos;
  9127. u32 addr;
  9128. u32 surface;
  9129. u32 tile_offset;
  9130. } plane[I915_MAX_PIPES];
  9131. struct intel_transcoder_error_state {
  9132. enum transcoder cpu_transcoder;
  9133. u32 conf;
  9134. u32 htotal;
  9135. u32 hblank;
  9136. u32 hsync;
  9137. u32 vtotal;
  9138. u32 vblank;
  9139. u32 vsync;
  9140. } transcoder[4];
  9141. };
  9142. struct intel_display_error_state *
  9143. intel_display_capture_error_state(struct drm_device *dev)
  9144. {
  9145. drm_i915_private_t *dev_priv = dev->dev_private;
  9146. struct intel_display_error_state *error;
  9147. int transcoders[] = {
  9148. TRANSCODER_A,
  9149. TRANSCODER_B,
  9150. TRANSCODER_C,
  9151. TRANSCODER_EDP,
  9152. };
  9153. int i;
  9154. if (INTEL_INFO(dev)->num_pipes == 0)
  9155. return NULL;
  9156. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9157. if (error == NULL)
  9158. return NULL;
  9159. if (HAS_POWER_WELL(dev))
  9160. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9161. for_each_pipe(i) {
  9162. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9163. error->cursor[i].control = I915_READ(CURCNTR(i));
  9164. error->cursor[i].position = I915_READ(CURPOS(i));
  9165. error->cursor[i].base = I915_READ(CURBASE(i));
  9166. } else {
  9167. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9168. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9169. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9170. }
  9171. error->plane[i].control = I915_READ(DSPCNTR(i));
  9172. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9173. if (INTEL_INFO(dev)->gen <= 3) {
  9174. error->plane[i].size = I915_READ(DSPSIZE(i));
  9175. error->plane[i].pos = I915_READ(DSPPOS(i));
  9176. }
  9177. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9178. error->plane[i].addr = I915_READ(DSPADDR(i));
  9179. if (INTEL_INFO(dev)->gen >= 4) {
  9180. error->plane[i].surface = I915_READ(DSPSURF(i));
  9181. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9182. }
  9183. error->pipe[i].source = I915_READ(PIPESRC(i));
  9184. }
  9185. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9186. if (HAS_DDI(dev_priv->dev))
  9187. error->num_transcoders++; /* Account for eDP. */
  9188. for (i = 0; i < error->num_transcoders; i++) {
  9189. enum transcoder cpu_transcoder = transcoders[i];
  9190. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9191. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9192. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9193. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9194. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9195. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9196. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9197. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9198. }
  9199. /* In the code above we read the registers without checking if the power
  9200. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9201. * prevent the next I915_WRITE from detecting it and printing an error
  9202. * message. */
  9203. intel_uncore_clear_errors(dev);
  9204. return error;
  9205. }
  9206. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9207. void
  9208. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9209. struct drm_device *dev,
  9210. struct intel_display_error_state *error)
  9211. {
  9212. int i;
  9213. if (!error)
  9214. return;
  9215. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9216. if (HAS_POWER_WELL(dev))
  9217. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9218. error->power_well_driver);
  9219. for_each_pipe(i) {
  9220. err_printf(m, "Pipe [%d]:\n", i);
  9221. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9222. err_printf(m, "Plane [%d]:\n", i);
  9223. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9224. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9225. if (INTEL_INFO(dev)->gen <= 3) {
  9226. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9227. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9228. }
  9229. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9230. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9231. if (INTEL_INFO(dev)->gen >= 4) {
  9232. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9233. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9234. }
  9235. err_printf(m, "Cursor [%d]:\n", i);
  9236. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9237. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9238. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9239. }
  9240. for (i = 0; i < error->num_transcoders; i++) {
  9241. err_printf(m, " CPU transcoder: %c\n",
  9242. transcoder_name(error->transcoder[i].cpu_transcoder));
  9243. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9244. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9245. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9246. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9247. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9248. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9249. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9250. }
  9251. }