skge.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/mii.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.10"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. #define LINK_HZ (HZ/2)
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static int skge_get_regs_len(struct net_device *dev)
  100. {
  101. return 0x4000;
  102. }
  103. /*
  104. * Returns copy of whole control register region
  105. * Note: skip RAM address register because accessing it will
  106. * cause bus hangs!
  107. */
  108. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  109. void *p)
  110. {
  111. const struct skge_port *skge = netdev_priv(dev);
  112. const void __iomem *io = skge->hw->regs;
  113. regs->version = 1;
  114. memset(p, 0, regs->len);
  115. memcpy_fromio(p, io, B3_RAM_ADDR);
  116. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  117. regs->len - B3_RI_WTO_R1);
  118. }
  119. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  120. static u32 wol_supported(const struct skge_hw *hw)
  121. {
  122. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev != 0)
  123. return WAKE_MAGIC | WAKE_PHY;
  124. else
  125. return 0;
  126. }
  127. static u32 pci_wake_enabled(struct pci_dev *dev)
  128. {
  129. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  130. u16 value;
  131. /* If device doesn't support PM Capabilities, but request is to disable
  132. * wake events, it's a nop; otherwise fail */
  133. if (!pm)
  134. return 0;
  135. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  136. value &= PCI_PM_CAP_PME_MASK;
  137. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  138. return value != 0;
  139. }
  140. static void skge_wol_init(struct skge_port *skge)
  141. {
  142. struct skge_hw *hw = skge->hw;
  143. int port = skge->port;
  144. enum pause_control save_mode;
  145. u32 ctrl;
  146. /* Bring hardware out of reset */
  147. skge_write16(hw, B0_CTST, CS_RST_CLR);
  148. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  149. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
  150. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  151. /* Force to 10/100 skge_reset will re-enable on resume */
  152. save_mode = skge->flow_control;
  153. skge->flow_control = FLOW_MODE_SYMMETRIC;
  154. ctrl = skge->advertising;
  155. skge->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  156. skge_phy_reset(skge);
  157. skge->flow_control = save_mode;
  158. skge->advertising = ctrl;
  159. /* Set GMAC to no flow control and auto update for speed/duplex */
  160. gma_write16(hw, port, GM_GP_CTRL,
  161. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  162. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  163. /* Set WOL address */
  164. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  165. skge->netdev->dev_addr, ETH_ALEN);
  166. /* Turn on appropriate WOL control bits */
  167. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  168. ctrl = 0;
  169. if (skge->wol & WAKE_PHY)
  170. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  171. else
  172. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  173. if (skge->wol & WAKE_MAGIC)
  174. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  175. else
  176. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  177. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  178. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  179. /* block receiver */
  180. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  181. }
  182. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  183. {
  184. struct skge_port *skge = netdev_priv(dev);
  185. wol->supported = wol_supported(skge->hw);
  186. wol->wolopts = skge->wol;
  187. }
  188. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  189. {
  190. struct skge_port *skge = netdev_priv(dev);
  191. struct skge_hw *hw = skge->hw;
  192. if (wol->wolopts & wol_supported(hw))
  193. return -EOPNOTSUPP;
  194. skge->wol = wol->wolopts;
  195. if (!netif_running(dev))
  196. skge_wol_init(skge);
  197. return 0;
  198. }
  199. /* Determine supported/advertised modes based on hardware.
  200. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  201. */
  202. static u32 skge_supported_modes(const struct skge_hw *hw)
  203. {
  204. u32 supported;
  205. if (hw->copper) {
  206. supported = SUPPORTED_10baseT_Half
  207. | SUPPORTED_10baseT_Full
  208. | SUPPORTED_100baseT_Half
  209. | SUPPORTED_100baseT_Full
  210. | SUPPORTED_1000baseT_Half
  211. | SUPPORTED_1000baseT_Full
  212. | SUPPORTED_Autoneg| SUPPORTED_TP;
  213. if (hw->chip_id == CHIP_ID_GENESIS)
  214. supported &= ~(SUPPORTED_10baseT_Half
  215. | SUPPORTED_10baseT_Full
  216. | SUPPORTED_100baseT_Half
  217. | SUPPORTED_100baseT_Full);
  218. else if (hw->chip_id == CHIP_ID_YUKON)
  219. supported &= ~SUPPORTED_1000baseT_Half;
  220. } else
  221. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  222. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  223. return supported;
  224. }
  225. static int skge_get_settings(struct net_device *dev,
  226. struct ethtool_cmd *ecmd)
  227. {
  228. struct skge_port *skge = netdev_priv(dev);
  229. struct skge_hw *hw = skge->hw;
  230. ecmd->transceiver = XCVR_INTERNAL;
  231. ecmd->supported = skge_supported_modes(hw);
  232. if (hw->copper) {
  233. ecmd->port = PORT_TP;
  234. ecmd->phy_address = hw->phy_addr;
  235. } else
  236. ecmd->port = PORT_FIBRE;
  237. ecmd->advertising = skge->advertising;
  238. ecmd->autoneg = skge->autoneg;
  239. ecmd->speed = skge->speed;
  240. ecmd->duplex = skge->duplex;
  241. return 0;
  242. }
  243. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. const struct skge_hw *hw = skge->hw;
  247. u32 supported = skge_supported_modes(hw);
  248. if (ecmd->autoneg == AUTONEG_ENABLE) {
  249. ecmd->advertising = supported;
  250. skge->duplex = -1;
  251. skge->speed = -1;
  252. } else {
  253. u32 setting;
  254. switch (ecmd->speed) {
  255. case SPEED_1000:
  256. if (ecmd->duplex == DUPLEX_FULL)
  257. setting = SUPPORTED_1000baseT_Full;
  258. else if (ecmd->duplex == DUPLEX_HALF)
  259. setting = SUPPORTED_1000baseT_Half;
  260. else
  261. return -EINVAL;
  262. break;
  263. case SPEED_100:
  264. if (ecmd->duplex == DUPLEX_FULL)
  265. setting = SUPPORTED_100baseT_Full;
  266. else if (ecmd->duplex == DUPLEX_HALF)
  267. setting = SUPPORTED_100baseT_Half;
  268. else
  269. return -EINVAL;
  270. break;
  271. case SPEED_10:
  272. if (ecmd->duplex == DUPLEX_FULL)
  273. setting = SUPPORTED_10baseT_Full;
  274. else if (ecmd->duplex == DUPLEX_HALF)
  275. setting = SUPPORTED_10baseT_Half;
  276. else
  277. return -EINVAL;
  278. break;
  279. default:
  280. return -EINVAL;
  281. }
  282. if ((setting & supported) == 0)
  283. return -EINVAL;
  284. skge->speed = ecmd->speed;
  285. skge->duplex = ecmd->duplex;
  286. }
  287. skge->autoneg = ecmd->autoneg;
  288. skge->advertising = ecmd->advertising;
  289. if (netif_running(dev))
  290. skge_phy_reset(skge);
  291. return (0);
  292. }
  293. static void skge_get_drvinfo(struct net_device *dev,
  294. struct ethtool_drvinfo *info)
  295. {
  296. struct skge_port *skge = netdev_priv(dev);
  297. strcpy(info->driver, DRV_NAME);
  298. strcpy(info->version, DRV_VERSION);
  299. strcpy(info->fw_version, "N/A");
  300. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  301. }
  302. static const struct skge_stat {
  303. char name[ETH_GSTRING_LEN];
  304. u16 xmac_offset;
  305. u16 gma_offset;
  306. } skge_stats[] = {
  307. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  308. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  309. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  310. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  311. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  312. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  313. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  314. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  315. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  316. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  317. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  318. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  319. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  320. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  321. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  322. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  323. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  324. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  325. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  326. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  327. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  328. };
  329. static int skge_get_stats_count(struct net_device *dev)
  330. {
  331. return ARRAY_SIZE(skge_stats);
  332. }
  333. static void skge_get_ethtool_stats(struct net_device *dev,
  334. struct ethtool_stats *stats, u64 *data)
  335. {
  336. struct skge_port *skge = netdev_priv(dev);
  337. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  338. genesis_get_stats(skge, data);
  339. else
  340. yukon_get_stats(skge, data);
  341. }
  342. /* Use hardware MIB variables for critical path statistics and
  343. * transmit feedback not reported at interrupt.
  344. * Other errors are accounted for in interrupt handler.
  345. */
  346. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  347. {
  348. struct skge_port *skge = netdev_priv(dev);
  349. u64 data[ARRAY_SIZE(skge_stats)];
  350. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  351. genesis_get_stats(skge, data);
  352. else
  353. yukon_get_stats(skge, data);
  354. skge->net_stats.tx_bytes = data[0];
  355. skge->net_stats.rx_bytes = data[1];
  356. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  357. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  358. skge->net_stats.multicast = data[3] + data[5];
  359. skge->net_stats.collisions = data[10];
  360. skge->net_stats.tx_aborted_errors = data[12];
  361. return &skge->net_stats;
  362. }
  363. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  364. {
  365. int i;
  366. switch (stringset) {
  367. case ETH_SS_STATS:
  368. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  369. memcpy(data + i * ETH_GSTRING_LEN,
  370. skge_stats[i].name, ETH_GSTRING_LEN);
  371. break;
  372. }
  373. }
  374. static void skge_get_ring_param(struct net_device *dev,
  375. struct ethtool_ringparam *p)
  376. {
  377. struct skge_port *skge = netdev_priv(dev);
  378. p->rx_max_pending = MAX_RX_RING_SIZE;
  379. p->tx_max_pending = MAX_TX_RING_SIZE;
  380. p->rx_mini_max_pending = 0;
  381. p->rx_jumbo_max_pending = 0;
  382. p->rx_pending = skge->rx_ring.count;
  383. p->tx_pending = skge->tx_ring.count;
  384. p->rx_mini_pending = 0;
  385. p->rx_jumbo_pending = 0;
  386. }
  387. static int skge_set_ring_param(struct net_device *dev,
  388. struct ethtool_ringparam *p)
  389. {
  390. struct skge_port *skge = netdev_priv(dev);
  391. int err;
  392. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  393. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  394. return -EINVAL;
  395. skge->rx_ring.count = p->rx_pending;
  396. skge->tx_ring.count = p->tx_pending;
  397. if (netif_running(dev)) {
  398. skge_down(dev);
  399. err = skge_up(dev);
  400. if (err)
  401. dev_close(dev);
  402. }
  403. return 0;
  404. }
  405. static u32 skge_get_msglevel(struct net_device *netdev)
  406. {
  407. struct skge_port *skge = netdev_priv(netdev);
  408. return skge->msg_enable;
  409. }
  410. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  411. {
  412. struct skge_port *skge = netdev_priv(netdev);
  413. skge->msg_enable = value;
  414. }
  415. static int skge_nway_reset(struct net_device *dev)
  416. {
  417. struct skge_port *skge = netdev_priv(dev);
  418. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  419. return -EINVAL;
  420. skge_phy_reset(skge);
  421. return 0;
  422. }
  423. static int skge_set_sg(struct net_device *dev, u32 data)
  424. {
  425. struct skge_port *skge = netdev_priv(dev);
  426. struct skge_hw *hw = skge->hw;
  427. if (hw->chip_id == CHIP_ID_GENESIS && data)
  428. return -EOPNOTSUPP;
  429. return ethtool_op_set_sg(dev, data);
  430. }
  431. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  432. {
  433. struct skge_port *skge = netdev_priv(dev);
  434. struct skge_hw *hw = skge->hw;
  435. if (hw->chip_id == CHIP_ID_GENESIS && data)
  436. return -EOPNOTSUPP;
  437. return ethtool_op_set_tx_csum(dev, data);
  438. }
  439. static u32 skge_get_rx_csum(struct net_device *dev)
  440. {
  441. struct skge_port *skge = netdev_priv(dev);
  442. return skge->rx_csum;
  443. }
  444. /* Only Yukon supports checksum offload. */
  445. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  449. return -EOPNOTSUPP;
  450. skge->rx_csum = data;
  451. return 0;
  452. }
  453. static void skge_get_pauseparam(struct net_device *dev,
  454. struct ethtool_pauseparam *ecmd)
  455. {
  456. struct skge_port *skge = netdev_priv(dev);
  457. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  458. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  459. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  460. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  461. }
  462. static int skge_set_pauseparam(struct net_device *dev,
  463. struct ethtool_pauseparam *ecmd)
  464. {
  465. struct skge_port *skge = netdev_priv(dev);
  466. struct ethtool_pauseparam old;
  467. skge_get_pauseparam(dev, &old);
  468. if (ecmd->autoneg != old.autoneg)
  469. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  470. else {
  471. if (ecmd->rx_pause && ecmd->tx_pause)
  472. skge->flow_control = FLOW_MODE_SYMMETRIC;
  473. else if (ecmd->rx_pause && !ecmd->tx_pause)
  474. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  475. else if (!ecmd->rx_pause && ecmd->tx_pause)
  476. skge->flow_control = FLOW_MODE_LOC_SEND;
  477. else
  478. skge->flow_control = FLOW_MODE_NONE;
  479. }
  480. if (netif_running(dev))
  481. skge_phy_reset(skge);
  482. return 0;
  483. }
  484. /* Chip internal frequency for clock calculations */
  485. static inline u32 hwkhz(const struct skge_hw *hw)
  486. {
  487. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  488. }
  489. /* Chip HZ to microseconds */
  490. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  491. {
  492. return (ticks * 1000) / hwkhz(hw);
  493. }
  494. /* Microseconds to chip HZ */
  495. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  496. {
  497. return hwkhz(hw) * usec / 1000;
  498. }
  499. static int skge_get_coalesce(struct net_device *dev,
  500. struct ethtool_coalesce *ecmd)
  501. {
  502. struct skge_port *skge = netdev_priv(dev);
  503. struct skge_hw *hw = skge->hw;
  504. int port = skge->port;
  505. ecmd->rx_coalesce_usecs = 0;
  506. ecmd->tx_coalesce_usecs = 0;
  507. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  508. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  509. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  510. if (msk & rxirqmask[port])
  511. ecmd->rx_coalesce_usecs = delay;
  512. if (msk & txirqmask[port])
  513. ecmd->tx_coalesce_usecs = delay;
  514. }
  515. return 0;
  516. }
  517. /* Note: interrupt timer is per board, but can turn on/off per port */
  518. static int skge_set_coalesce(struct net_device *dev,
  519. struct ethtool_coalesce *ecmd)
  520. {
  521. struct skge_port *skge = netdev_priv(dev);
  522. struct skge_hw *hw = skge->hw;
  523. int port = skge->port;
  524. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  525. u32 delay = 25;
  526. if (ecmd->rx_coalesce_usecs == 0)
  527. msk &= ~rxirqmask[port];
  528. else if (ecmd->rx_coalesce_usecs < 25 ||
  529. ecmd->rx_coalesce_usecs > 33333)
  530. return -EINVAL;
  531. else {
  532. msk |= rxirqmask[port];
  533. delay = ecmd->rx_coalesce_usecs;
  534. }
  535. if (ecmd->tx_coalesce_usecs == 0)
  536. msk &= ~txirqmask[port];
  537. else if (ecmd->tx_coalesce_usecs < 25 ||
  538. ecmd->tx_coalesce_usecs > 33333)
  539. return -EINVAL;
  540. else {
  541. msk |= txirqmask[port];
  542. delay = min(delay, ecmd->rx_coalesce_usecs);
  543. }
  544. skge_write32(hw, B2_IRQM_MSK, msk);
  545. if (msk == 0)
  546. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  547. else {
  548. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  549. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  550. }
  551. return 0;
  552. }
  553. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  554. static void skge_led(struct skge_port *skge, enum led_mode mode)
  555. {
  556. struct skge_hw *hw = skge->hw;
  557. int port = skge->port;
  558. mutex_lock(&hw->phy_mutex);
  559. if (hw->chip_id == CHIP_ID_GENESIS) {
  560. switch (mode) {
  561. case LED_MODE_OFF:
  562. if (hw->phy_type == SK_PHY_BCOM)
  563. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  564. else {
  565. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  566. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  567. }
  568. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  569. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  570. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  571. break;
  572. case LED_MODE_ON:
  573. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  574. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  575. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  576. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  577. break;
  578. case LED_MODE_TST:
  579. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  580. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  581. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  582. if (hw->phy_type == SK_PHY_BCOM)
  583. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  584. else {
  585. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  586. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  587. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  588. }
  589. }
  590. } else {
  591. switch (mode) {
  592. case LED_MODE_OFF:
  593. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  594. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  595. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  596. PHY_M_LED_MO_10(MO_LED_OFF) |
  597. PHY_M_LED_MO_100(MO_LED_OFF) |
  598. PHY_M_LED_MO_1000(MO_LED_OFF) |
  599. PHY_M_LED_MO_RX(MO_LED_OFF));
  600. break;
  601. case LED_MODE_ON:
  602. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  603. PHY_M_LED_PULS_DUR(PULS_170MS) |
  604. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  605. PHY_M_LEDC_TX_CTRL |
  606. PHY_M_LEDC_DP_CTRL);
  607. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  608. PHY_M_LED_MO_RX(MO_LED_OFF) |
  609. (skge->speed == SPEED_100 ?
  610. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  611. break;
  612. case LED_MODE_TST:
  613. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  614. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  615. PHY_M_LED_MO_DUP(MO_LED_ON) |
  616. PHY_M_LED_MO_10(MO_LED_ON) |
  617. PHY_M_LED_MO_100(MO_LED_ON) |
  618. PHY_M_LED_MO_1000(MO_LED_ON) |
  619. PHY_M_LED_MO_RX(MO_LED_ON));
  620. }
  621. }
  622. mutex_unlock(&hw->phy_mutex);
  623. }
  624. /* blink LED's for finding board */
  625. static int skge_phys_id(struct net_device *dev, u32 data)
  626. {
  627. struct skge_port *skge = netdev_priv(dev);
  628. unsigned long ms;
  629. enum led_mode mode = LED_MODE_TST;
  630. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  631. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  632. else
  633. ms = data * 1000;
  634. while (ms > 0) {
  635. skge_led(skge, mode);
  636. mode ^= LED_MODE_TST;
  637. if (msleep_interruptible(BLINK_MS))
  638. break;
  639. ms -= BLINK_MS;
  640. }
  641. /* back to regular LED state */
  642. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  643. return 0;
  644. }
  645. static const struct ethtool_ops skge_ethtool_ops = {
  646. .get_settings = skge_get_settings,
  647. .set_settings = skge_set_settings,
  648. .get_drvinfo = skge_get_drvinfo,
  649. .get_regs_len = skge_get_regs_len,
  650. .get_regs = skge_get_regs,
  651. .get_wol = skge_get_wol,
  652. .set_wol = skge_set_wol,
  653. .get_msglevel = skge_get_msglevel,
  654. .set_msglevel = skge_set_msglevel,
  655. .nway_reset = skge_nway_reset,
  656. .get_link = ethtool_op_get_link,
  657. .get_ringparam = skge_get_ring_param,
  658. .set_ringparam = skge_set_ring_param,
  659. .get_pauseparam = skge_get_pauseparam,
  660. .set_pauseparam = skge_set_pauseparam,
  661. .get_coalesce = skge_get_coalesce,
  662. .set_coalesce = skge_set_coalesce,
  663. .get_sg = ethtool_op_get_sg,
  664. .set_sg = skge_set_sg,
  665. .get_tx_csum = ethtool_op_get_tx_csum,
  666. .set_tx_csum = skge_set_tx_csum,
  667. .get_rx_csum = skge_get_rx_csum,
  668. .set_rx_csum = skge_set_rx_csum,
  669. .get_strings = skge_get_strings,
  670. .phys_id = skge_phys_id,
  671. .get_stats_count = skge_get_stats_count,
  672. .get_ethtool_stats = skge_get_ethtool_stats,
  673. .get_perm_addr = ethtool_op_get_perm_addr,
  674. };
  675. /*
  676. * Allocate ring elements and chain them together
  677. * One-to-one association of board descriptors with ring elements
  678. */
  679. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  680. {
  681. struct skge_tx_desc *d;
  682. struct skge_element *e;
  683. int i;
  684. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  685. if (!ring->start)
  686. return -ENOMEM;
  687. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  688. e->desc = d;
  689. if (i == ring->count - 1) {
  690. e->next = ring->start;
  691. d->next_offset = base;
  692. } else {
  693. e->next = e + 1;
  694. d->next_offset = base + (i+1) * sizeof(*d);
  695. }
  696. }
  697. ring->to_use = ring->to_clean = ring->start;
  698. return 0;
  699. }
  700. /* Allocate and setup a new buffer for receiving */
  701. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  702. struct sk_buff *skb, unsigned int bufsize)
  703. {
  704. struct skge_rx_desc *rd = e->desc;
  705. u64 map;
  706. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  707. PCI_DMA_FROMDEVICE);
  708. rd->dma_lo = map;
  709. rd->dma_hi = map >> 32;
  710. e->skb = skb;
  711. rd->csum1_start = ETH_HLEN;
  712. rd->csum2_start = ETH_HLEN;
  713. rd->csum1 = 0;
  714. rd->csum2 = 0;
  715. wmb();
  716. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  717. pci_unmap_addr_set(e, mapaddr, map);
  718. pci_unmap_len_set(e, maplen, bufsize);
  719. }
  720. /* Resume receiving using existing skb,
  721. * Note: DMA address is not changed by chip.
  722. * MTU not changed while receiver active.
  723. */
  724. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  725. {
  726. struct skge_rx_desc *rd = e->desc;
  727. rd->csum2 = 0;
  728. rd->csum2_start = ETH_HLEN;
  729. wmb();
  730. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  731. }
  732. /* Free all buffers in receive ring, assumes receiver stopped */
  733. static void skge_rx_clean(struct skge_port *skge)
  734. {
  735. struct skge_hw *hw = skge->hw;
  736. struct skge_ring *ring = &skge->rx_ring;
  737. struct skge_element *e;
  738. e = ring->start;
  739. do {
  740. struct skge_rx_desc *rd = e->desc;
  741. rd->control = 0;
  742. if (e->skb) {
  743. pci_unmap_single(hw->pdev,
  744. pci_unmap_addr(e, mapaddr),
  745. pci_unmap_len(e, maplen),
  746. PCI_DMA_FROMDEVICE);
  747. dev_kfree_skb(e->skb);
  748. e->skb = NULL;
  749. }
  750. } while ((e = e->next) != ring->start);
  751. }
  752. /* Allocate buffers for receive ring
  753. * For receive: to_clean is next received frame.
  754. */
  755. static int skge_rx_fill(struct net_device *dev)
  756. {
  757. struct skge_port *skge = netdev_priv(dev);
  758. struct skge_ring *ring = &skge->rx_ring;
  759. struct skge_element *e;
  760. e = ring->start;
  761. do {
  762. struct sk_buff *skb;
  763. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  764. GFP_KERNEL);
  765. if (!skb)
  766. return -ENOMEM;
  767. skb_reserve(skb, NET_IP_ALIGN);
  768. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  769. } while ( (e = e->next) != ring->start);
  770. ring->to_clean = ring->start;
  771. return 0;
  772. }
  773. static const char *skge_pause(enum pause_status status)
  774. {
  775. switch(status) {
  776. case FLOW_STAT_NONE:
  777. return "none";
  778. case FLOW_STAT_REM_SEND:
  779. return "rx only";
  780. case FLOW_STAT_LOC_SEND:
  781. return "tx_only";
  782. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  783. return "both";
  784. default:
  785. return "indeterminated";
  786. }
  787. }
  788. static void skge_link_up(struct skge_port *skge)
  789. {
  790. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  791. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  792. netif_carrier_on(skge->netdev);
  793. netif_wake_queue(skge->netdev);
  794. if (netif_msg_link(skge)) {
  795. printk(KERN_INFO PFX
  796. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  797. skge->netdev->name, skge->speed,
  798. skge->duplex == DUPLEX_FULL ? "full" : "half",
  799. skge_pause(skge->flow_status));
  800. }
  801. }
  802. static void skge_link_down(struct skge_port *skge)
  803. {
  804. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  805. netif_carrier_off(skge->netdev);
  806. netif_stop_queue(skge->netdev);
  807. if (netif_msg_link(skge))
  808. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  809. }
  810. static void xm_link_down(struct skge_hw *hw, int port)
  811. {
  812. struct net_device *dev = hw->dev[port];
  813. struct skge_port *skge = netdev_priv(dev);
  814. u16 cmd, msk;
  815. if (hw->phy_type == SK_PHY_XMAC) {
  816. msk = xm_read16(hw, port, XM_IMSK);
  817. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  818. xm_write16(hw, port, XM_IMSK, msk);
  819. }
  820. cmd = xm_read16(hw, port, XM_MMU_CMD);
  821. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  822. xm_write16(hw, port, XM_MMU_CMD, cmd);
  823. /* dummy read to ensure writing */
  824. (void) xm_read16(hw, port, XM_MMU_CMD);
  825. if (netif_carrier_ok(dev))
  826. skge_link_down(skge);
  827. }
  828. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  829. {
  830. int i;
  831. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  832. *val = xm_read16(hw, port, XM_PHY_DATA);
  833. if (hw->phy_type == SK_PHY_XMAC)
  834. goto ready;
  835. for (i = 0; i < PHY_RETRIES; i++) {
  836. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  837. goto ready;
  838. udelay(1);
  839. }
  840. return -ETIMEDOUT;
  841. ready:
  842. *val = xm_read16(hw, port, XM_PHY_DATA);
  843. return 0;
  844. }
  845. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  846. {
  847. u16 v = 0;
  848. if (__xm_phy_read(hw, port, reg, &v))
  849. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  850. hw->dev[port]->name);
  851. return v;
  852. }
  853. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  854. {
  855. int i;
  856. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  857. for (i = 0; i < PHY_RETRIES; i++) {
  858. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  859. goto ready;
  860. udelay(1);
  861. }
  862. return -EIO;
  863. ready:
  864. xm_write16(hw, port, XM_PHY_DATA, val);
  865. for (i = 0; i < PHY_RETRIES; i++) {
  866. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  867. return 0;
  868. udelay(1);
  869. }
  870. return -ETIMEDOUT;
  871. }
  872. static void genesis_init(struct skge_hw *hw)
  873. {
  874. /* set blink source counter */
  875. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  876. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  877. /* configure mac arbiter */
  878. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  879. /* configure mac arbiter timeout values */
  880. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  881. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  882. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  883. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  884. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  885. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  886. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  887. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  888. /* configure packet arbiter timeout */
  889. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  890. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  891. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  892. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  893. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  894. }
  895. static void genesis_reset(struct skge_hw *hw, int port)
  896. {
  897. const u8 zero[8] = { 0 };
  898. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  899. /* reset the statistics module */
  900. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  901. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  902. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  903. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  904. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  905. /* disable Broadcom PHY IRQ */
  906. if (hw->phy_type == SK_PHY_BCOM)
  907. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  908. xm_outhash(hw, port, XM_HSM, zero);
  909. }
  910. /* Convert mode to MII values */
  911. static const u16 phy_pause_map[] = {
  912. [FLOW_MODE_NONE] = 0,
  913. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  914. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  915. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  916. };
  917. /* special defines for FIBER (88E1011S only) */
  918. static const u16 fiber_pause_map[] = {
  919. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  920. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  921. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  922. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  923. };
  924. /* Check status of Broadcom phy link */
  925. static void bcom_check_link(struct skge_hw *hw, int port)
  926. {
  927. struct net_device *dev = hw->dev[port];
  928. struct skge_port *skge = netdev_priv(dev);
  929. u16 status;
  930. /* read twice because of latch */
  931. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  932. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  933. if ((status & PHY_ST_LSYNC) == 0) {
  934. xm_link_down(hw, port);
  935. return;
  936. }
  937. if (skge->autoneg == AUTONEG_ENABLE) {
  938. u16 lpa, aux;
  939. if (!(status & PHY_ST_AN_OVER))
  940. return;
  941. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  942. if (lpa & PHY_B_AN_RF) {
  943. printk(KERN_NOTICE PFX "%s: remote fault\n",
  944. dev->name);
  945. return;
  946. }
  947. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  948. /* Check Duplex mismatch */
  949. switch (aux & PHY_B_AS_AN_RES_MSK) {
  950. case PHY_B_RES_1000FD:
  951. skge->duplex = DUPLEX_FULL;
  952. break;
  953. case PHY_B_RES_1000HD:
  954. skge->duplex = DUPLEX_HALF;
  955. break;
  956. default:
  957. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  958. dev->name);
  959. return;
  960. }
  961. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  962. switch (aux & PHY_B_AS_PAUSE_MSK) {
  963. case PHY_B_AS_PAUSE_MSK:
  964. skge->flow_status = FLOW_STAT_SYMMETRIC;
  965. break;
  966. case PHY_B_AS_PRR:
  967. skge->flow_status = FLOW_STAT_REM_SEND;
  968. break;
  969. case PHY_B_AS_PRT:
  970. skge->flow_status = FLOW_STAT_LOC_SEND;
  971. break;
  972. default:
  973. skge->flow_status = FLOW_STAT_NONE;
  974. }
  975. skge->speed = SPEED_1000;
  976. }
  977. if (!netif_carrier_ok(dev))
  978. genesis_link_up(skge);
  979. }
  980. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  981. * Phy on for 100 or 10Mbit operation
  982. */
  983. static void bcom_phy_init(struct skge_port *skge)
  984. {
  985. struct skge_hw *hw = skge->hw;
  986. int port = skge->port;
  987. int i;
  988. u16 id1, r, ext, ctl;
  989. /* magic workaround patterns for Broadcom */
  990. static const struct {
  991. u16 reg;
  992. u16 val;
  993. } A1hack[] = {
  994. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  995. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  996. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  997. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  998. }, C0hack[] = {
  999. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1000. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1001. };
  1002. /* read Id from external PHY (all have the same address) */
  1003. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1004. /* Optimize MDIO transfer by suppressing preamble. */
  1005. r = xm_read16(hw, port, XM_MMU_CMD);
  1006. r |= XM_MMU_NO_PRE;
  1007. xm_write16(hw, port, XM_MMU_CMD,r);
  1008. switch (id1) {
  1009. case PHY_BCOM_ID1_C0:
  1010. /*
  1011. * Workaround BCOM Errata for the C0 type.
  1012. * Write magic patterns to reserved registers.
  1013. */
  1014. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1015. xm_phy_write(hw, port,
  1016. C0hack[i].reg, C0hack[i].val);
  1017. break;
  1018. case PHY_BCOM_ID1_A1:
  1019. /*
  1020. * Workaround BCOM Errata for the A1 type.
  1021. * Write magic patterns to reserved registers.
  1022. */
  1023. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1024. xm_phy_write(hw, port,
  1025. A1hack[i].reg, A1hack[i].val);
  1026. break;
  1027. }
  1028. /*
  1029. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1030. * Disable Power Management after reset.
  1031. */
  1032. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1033. r |= PHY_B_AC_DIS_PM;
  1034. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1035. /* Dummy read */
  1036. xm_read16(hw, port, XM_ISRC);
  1037. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1038. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1039. if (skge->autoneg == AUTONEG_ENABLE) {
  1040. /*
  1041. * Workaround BCOM Errata #1 for the C5 type.
  1042. * 1000Base-T Link Acquisition Failure in Slave Mode
  1043. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1044. */
  1045. u16 adv = PHY_B_1000C_RD;
  1046. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1047. adv |= PHY_B_1000C_AHD;
  1048. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1049. adv |= PHY_B_1000C_AFD;
  1050. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1051. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1052. } else {
  1053. if (skge->duplex == DUPLEX_FULL)
  1054. ctl |= PHY_CT_DUP_MD;
  1055. /* Force to slave */
  1056. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1057. }
  1058. /* Set autonegotiation pause parameters */
  1059. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1060. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1061. /* Handle Jumbo frames */
  1062. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1063. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1064. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1065. ext |= PHY_B_PEC_HIGH_LA;
  1066. }
  1067. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1068. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1069. /* Use link status change interrupt */
  1070. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1071. }
  1072. static void xm_phy_init(struct skge_port *skge)
  1073. {
  1074. struct skge_hw *hw = skge->hw;
  1075. int port = skge->port;
  1076. u16 ctrl = 0;
  1077. if (skge->autoneg == AUTONEG_ENABLE) {
  1078. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1079. ctrl |= PHY_X_AN_HD;
  1080. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1081. ctrl |= PHY_X_AN_FD;
  1082. ctrl |= fiber_pause_map[skge->flow_control];
  1083. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1084. /* Restart Auto-negotiation */
  1085. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1086. } else {
  1087. /* Set DuplexMode in Config register */
  1088. if (skge->duplex == DUPLEX_FULL)
  1089. ctrl |= PHY_CT_DUP_MD;
  1090. /*
  1091. * Do NOT enable Auto-negotiation here. This would hold
  1092. * the link down because no IDLEs are transmitted
  1093. */
  1094. }
  1095. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1096. /* Poll PHY for status changes */
  1097. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1098. }
  1099. static void xm_check_link(struct net_device *dev)
  1100. {
  1101. struct skge_port *skge = netdev_priv(dev);
  1102. struct skge_hw *hw = skge->hw;
  1103. int port = skge->port;
  1104. u16 status;
  1105. /* read twice because of latch */
  1106. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1107. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1108. if ((status & PHY_ST_LSYNC) == 0) {
  1109. xm_link_down(hw, port);
  1110. return;
  1111. }
  1112. if (skge->autoneg == AUTONEG_ENABLE) {
  1113. u16 lpa, res;
  1114. if (!(status & PHY_ST_AN_OVER))
  1115. return;
  1116. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1117. if (lpa & PHY_B_AN_RF) {
  1118. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1119. dev->name);
  1120. return;
  1121. }
  1122. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1123. /* Check Duplex mismatch */
  1124. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1125. case PHY_X_RS_FD:
  1126. skge->duplex = DUPLEX_FULL;
  1127. break;
  1128. case PHY_X_RS_HD:
  1129. skge->duplex = DUPLEX_HALF;
  1130. break;
  1131. default:
  1132. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1133. dev->name);
  1134. return;
  1135. }
  1136. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1137. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1138. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1139. (lpa & PHY_X_P_SYM_MD))
  1140. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1141. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1142. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1143. /* Enable PAUSE receive, disable PAUSE transmit */
  1144. skge->flow_status = FLOW_STAT_REM_SEND;
  1145. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1146. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1147. /* Disable PAUSE receive, enable PAUSE transmit */
  1148. skge->flow_status = FLOW_STAT_LOC_SEND;
  1149. else
  1150. skge->flow_status = FLOW_STAT_NONE;
  1151. skge->speed = SPEED_1000;
  1152. }
  1153. if (!netif_carrier_ok(dev))
  1154. genesis_link_up(skge);
  1155. }
  1156. /* Poll to check for link coming up.
  1157. * Since internal PHY is wired to a level triggered pin, can't
  1158. * get an interrupt when carrier is detected.
  1159. */
  1160. static void xm_link_timer(struct work_struct *work)
  1161. {
  1162. struct skge_port *skge =
  1163. container_of(work, struct skge_port, link_thread.work);
  1164. struct net_device *dev = skge->netdev;
  1165. struct skge_hw *hw = skge->hw;
  1166. int port = skge->port;
  1167. if (!netif_running(dev))
  1168. return;
  1169. if (netif_carrier_ok(dev)) {
  1170. xm_read16(hw, port, XM_ISRC);
  1171. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1172. goto nochange;
  1173. } else {
  1174. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1175. goto nochange;
  1176. xm_read16(hw, port, XM_ISRC);
  1177. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1178. goto nochange;
  1179. }
  1180. mutex_lock(&hw->phy_mutex);
  1181. xm_check_link(dev);
  1182. mutex_unlock(&hw->phy_mutex);
  1183. nochange:
  1184. if (netif_running(dev))
  1185. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1186. }
  1187. static void genesis_mac_init(struct skge_hw *hw, int port)
  1188. {
  1189. struct net_device *dev = hw->dev[port];
  1190. struct skge_port *skge = netdev_priv(dev);
  1191. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1192. int i;
  1193. u32 r;
  1194. const u8 zero[6] = { 0 };
  1195. for (i = 0; i < 10; i++) {
  1196. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1197. MFF_SET_MAC_RST);
  1198. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1199. goto reset_ok;
  1200. udelay(1);
  1201. }
  1202. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1203. reset_ok:
  1204. /* Unreset the XMAC. */
  1205. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1206. /*
  1207. * Perform additional initialization for external PHYs,
  1208. * namely for the 1000baseTX cards that use the XMAC's
  1209. * GMII mode.
  1210. */
  1211. if (hw->phy_type != SK_PHY_XMAC) {
  1212. /* Take external Phy out of reset */
  1213. r = skge_read32(hw, B2_GP_IO);
  1214. if (port == 0)
  1215. r |= GP_DIR_0|GP_IO_0;
  1216. else
  1217. r |= GP_DIR_2|GP_IO_2;
  1218. skge_write32(hw, B2_GP_IO, r);
  1219. /* Enable GMII interface */
  1220. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1221. }
  1222. switch(hw->phy_type) {
  1223. case SK_PHY_XMAC:
  1224. xm_phy_init(skge);
  1225. break;
  1226. case SK_PHY_BCOM:
  1227. bcom_phy_init(skge);
  1228. bcom_check_link(hw, port);
  1229. }
  1230. /* Set Station Address */
  1231. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1232. /* We don't use match addresses so clear */
  1233. for (i = 1; i < 16; i++)
  1234. xm_outaddr(hw, port, XM_EXM(i), zero);
  1235. /* Clear MIB counters */
  1236. xm_write16(hw, port, XM_STAT_CMD,
  1237. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1238. /* Clear two times according to Errata #3 */
  1239. xm_write16(hw, port, XM_STAT_CMD,
  1240. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1241. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1242. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1243. /* We don't need the FCS appended to the packet. */
  1244. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1245. if (jumbo)
  1246. r |= XM_RX_BIG_PK_OK;
  1247. if (skge->duplex == DUPLEX_HALF) {
  1248. /*
  1249. * If in manual half duplex mode the other side might be in
  1250. * full duplex mode, so ignore if a carrier extension is not seen
  1251. * on frames received
  1252. */
  1253. r |= XM_RX_DIS_CEXT;
  1254. }
  1255. xm_write16(hw, port, XM_RX_CMD, r);
  1256. /* We want short frames padded to 60 bytes. */
  1257. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1258. /*
  1259. * Bump up the transmit threshold. This helps hold off transmit
  1260. * underruns when we're blasting traffic from both ports at once.
  1261. */
  1262. xm_write16(hw, port, XM_TX_THR, 512);
  1263. /*
  1264. * Enable the reception of all error frames. This is is
  1265. * a necessary evil due to the design of the XMAC. The
  1266. * XMAC's receive FIFO is only 8K in size, however jumbo
  1267. * frames can be up to 9000 bytes in length. When bad
  1268. * frame filtering is enabled, the XMAC's RX FIFO operates
  1269. * in 'store and forward' mode. For this to work, the
  1270. * entire frame has to fit into the FIFO, but that means
  1271. * that jumbo frames larger than 8192 bytes will be
  1272. * truncated. Disabling all bad frame filtering causes
  1273. * the RX FIFO to operate in streaming mode, in which
  1274. * case the XMAC will start transferring frames out of the
  1275. * RX FIFO as soon as the FIFO threshold is reached.
  1276. */
  1277. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1278. /*
  1279. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1280. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1281. * and 'Octets Rx OK Hi Cnt Ov'.
  1282. */
  1283. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1284. /*
  1285. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1286. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1287. * and 'Octets Tx OK Hi Cnt Ov'.
  1288. */
  1289. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1290. /* Configure MAC arbiter */
  1291. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1292. /* configure timeout values */
  1293. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1294. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1295. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1296. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1297. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1298. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1299. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1300. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1301. /* Configure Rx MAC FIFO */
  1302. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1303. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1304. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1305. /* Configure Tx MAC FIFO */
  1306. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1307. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1308. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1309. if (jumbo) {
  1310. /* Enable frame flushing if jumbo frames used */
  1311. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1312. } else {
  1313. /* enable timeout timers if normal frames */
  1314. skge_write16(hw, B3_PA_CTRL,
  1315. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1316. }
  1317. }
  1318. static void genesis_stop(struct skge_port *skge)
  1319. {
  1320. struct skge_hw *hw = skge->hw;
  1321. int port = skge->port;
  1322. u32 reg;
  1323. genesis_reset(hw, port);
  1324. /* Clear Tx packet arbiter timeout IRQ */
  1325. skge_write16(hw, B3_PA_CTRL,
  1326. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1327. /*
  1328. * If the transfer sticks at the MAC the STOP command will not
  1329. * terminate if we don't flush the XMAC's transmit FIFO !
  1330. */
  1331. xm_write32(hw, port, XM_MODE,
  1332. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1333. /* Reset the MAC */
  1334. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1335. /* For external PHYs there must be special handling */
  1336. if (hw->phy_type != SK_PHY_XMAC) {
  1337. reg = skge_read32(hw, B2_GP_IO);
  1338. if (port == 0) {
  1339. reg |= GP_DIR_0;
  1340. reg &= ~GP_IO_0;
  1341. } else {
  1342. reg |= GP_DIR_2;
  1343. reg &= ~GP_IO_2;
  1344. }
  1345. skge_write32(hw, B2_GP_IO, reg);
  1346. skge_read32(hw, B2_GP_IO);
  1347. }
  1348. xm_write16(hw, port, XM_MMU_CMD,
  1349. xm_read16(hw, port, XM_MMU_CMD)
  1350. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1351. xm_read16(hw, port, XM_MMU_CMD);
  1352. }
  1353. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1354. {
  1355. struct skge_hw *hw = skge->hw;
  1356. int port = skge->port;
  1357. int i;
  1358. unsigned long timeout = jiffies + HZ;
  1359. xm_write16(hw, port,
  1360. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1361. /* wait for update to complete */
  1362. while (xm_read16(hw, port, XM_STAT_CMD)
  1363. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1364. if (time_after(jiffies, timeout))
  1365. break;
  1366. udelay(10);
  1367. }
  1368. /* special case for 64 bit octet counter */
  1369. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1370. | xm_read32(hw, port, XM_TXO_OK_LO);
  1371. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1372. | xm_read32(hw, port, XM_RXO_OK_LO);
  1373. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1374. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1375. }
  1376. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1377. {
  1378. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1379. u16 status = xm_read16(hw, port, XM_ISRC);
  1380. if (netif_msg_intr(skge))
  1381. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1382. skge->netdev->name, status);
  1383. if (hw->phy_type == SK_PHY_XMAC &&
  1384. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1385. xm_link_down(hw, port);
  1386. if (status & XM_IS_TXF_UR) {
  1387. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1388. ++skge->net_stats.tx_fifo_errors;
  1389. }
  1390. if (status & XM_IS_RXF_OV) {
  1391. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1392. ++skge->net_stats.rx_fifo_errors;
  1393. }
  1394. }
  1395. static void genesis_link_up(struct skge_port *skge)
  1396. {
  1397. struct skge_hw *hw = skge->hw;
  1398. int port = skge->port;
  1399. u16 cmd, msk;
  1400. u32 mode;
  1401. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1402. /*
  1403. * enabling pause frame reception is required for 1000BT
  1404. * because the XMAC is not reset if the link is going down
  1405. */
  1406. if (skge->flow_status == FLOW_STAT_NONE ||
  1407. skge->flow_status == FLOW_STAT_LOC_SEND)
  1408. /* Disable Pause Frame Reception */
  1409. cmd |= XM_MMU_IGN_PF;
  1410. else
  1411. /* Enable Pause Frame Reception */
  1412. cmd &= ~XM_MMU_IGN_PF;
  1413. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1414. mode = xm_read32(hw, port, XM_MODE);
  1415. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1416. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1417. /*
  1418. * Configure Pause Frame Generation
  1419. * Use internal and external Pause Frame Generation.
  1420. * Sending pause frames is edge triggered.
  1421. * Send a Pause frame with the maximum pause time if
  1422. * internal oder external FIFO full condition occurs.
  1423. * Send a zero pause time frame to re-start transmission.
  1424. */
  1425. /* XM_PAUSE_DA = '010000C28001' (default) */
  1426. /* XM_MAC_PTIME = 0xffff (maximum) */
  1427. /* remember this value is defined in big endian (!) */
  1428. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1429. mode |= XM_PAUSE_MODE;
  1430. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1431. } else {
  1432. /*
  1433. * disable pause frame generation is required for 1000BT
  1434. * because the XMAC is not reset if the link is going down
  1435. */
  1436. /* Disable Pause Mode in Mode Register */
  1437. mode &= ~XM_PAUSE_MODE;
  1438. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1439. }
  1440. xm_write32(hw, port, XM_MODE, mode);
  1441. msk = XM_DEF_MSK;
  1442. if (hw->phy_type != SK_PHY_XMAC)
  1443. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1444. xm_write16(hw, port, XM_IMSK, msk);
  1445. xm_read16(hw, port, XM_ISRC);
  1446. /* get MMU Command Reg. */
  1447. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1448. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1449. cmd |= XM_MMU_GMII_FD;
  1450. /*
  1451. * Workaround BCOM Errata (#10523) for all BCom Phys
  1452. * Enable Power Management after link up
  1453. */
  1454. if (hw->phy_type == SK_PHY_BCOM) {
  1455. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1456. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1457. & ~PHY_B_AC_DIS_PM);
  1458. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1459. }
  1460. /* enable Rx/Tx */
  1461. xm_write16(hw, port, XM_MMU_CMD,
  1462. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1463. skge_link_up(skge);
  1464. }
  1465. static inline void bcom_phy_intr(struct skge_port *skge)
  1466. {
  1467. struct skge_hw *hw = skge->hw;
  1468. int port = skge->port;
  1469. u16 isrc;
  1470. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1471. if (netif_msg_intr(skge))
  1472. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1473. skge->netdev->name, isrc);
  1474. if (isrc & PHY_B_IS_PSE)
  1475. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1476. hw->dev[port]->name);
  1477. /* Workaround BCom Errata:
  1478. * enable and disable loopback mode if "NO HCD" occurs.
  1479. */
  1480. if (isrc & PHY_B_IS_NO_HDCL) {
  1481. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1482. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1483. ctrl | PHY_CT_LOOP);
  1484. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1485. ctrl & ~PHY_CT_LOOP);
  1486. }
  1487. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1488. bcom_check_link(hw, port);
  1489. }
  1490. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1491. {
  1492. int i;
  1493. gma_write16(hw, port, GM_SMI_DATA, val);
  1494. gma_write16(hw, port, GM_SMI_CTRL,
  1495. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1496. for (i = 0; i < PHY_RETRIES; i++) {
  1497. udelay(1);
  1498. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1499. return 0;
  1500. }
  1501. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1502. hw->dev[port]->name);
  1503. return -EIO;
  1504. }
  1505. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1506. {
  1507. int i;
  1508. gma_write16(hw, port, GM_SMI_CTRL,
  1509. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1510. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1511. for (i = 0; i < PHY_RETRIES; i++) {
  1512. udelay(1);
  1513. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1514. goto ready;
  1515. }
  1516. return -ETIMEDOUT;
  1517. ready:
  1518. *val = gma_read16(hw, port, GM_SMI_DATA);
  1519. return 0;
  1520. }
  1521. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1522. {
  1523. u16 v = 0;
  1524. if (__gm_phy_read(hw, port, reg, &v))
  1525. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1526. hw->dev[port]->name);
  1527. return v;
  1528. }
  1529. /* Marvell Phy Initialization */
  1530. static void yukon_init(struct skge_hw *hw, int port)
  1531. {
  1532. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1533. u16 ctrl, ct1000, adv;
  1534. if (skge->autoneg == AUTONEG_ENABLE) {
  1535. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1536. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1537. PHY_M_EC_MAC_S_MSK);
  1538. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1539. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1540. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1541. }
  1542. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1543. if (skge->autoneg == AUTONEG_DISABLE)
  1544. ctrl &= ~PHY_CT_ANE;
  1545. ctrl |= PHY_CT_RESET;
  1546. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1547. ctrl = 0;
  1548. ct1000 = 0;
  1549. adv = PHY_AN_CSMA;
  1550. if (skge->autoneg == AUTONEG_ENABLE) {
  1551. if (hw->copper) {
  1552. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1553. ct1000 |= PHY_M_1000C_AFD;
  1554. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1555. ct1000 |= PHY_M_1000C_AHD;
  1556. if (skge->advertising & ADVERTISED_100baseT_Full)
  1557. adv |= PHY_M_AN_100_FD;
  1558. if (skge->advertising & ADVERTISED_100baseT_Half)
  1559. adv |= PHY_M_AN_100_HD;
  1560. if (skge->advertising & ADVERTISED_10baseT_Full)
  1561. adv |= PHY_M_AN_10_FD;
  1562. if (skge->advertising & ADVERTISED_10baseT_Half)
  1563. adv |= PHY_M_AN_10_HD;
  1564. /* Set Flow-control capabilities */
  1565. adv |= phy_pause_map[skge->flow_control];
  1566. } else {
  1567. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1568. adv |= PHY_M_AN_1000X_AFD;
  1569. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1570. adv |= PHY_M_AN_1000X_AHD;
  1571. adv |= fiber_pause_map[skge->flow_control];
  1572. }
  1573. /* Restart Auto-negotiation */
  1574. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1575. } else {
  1576. /* forced speed/duplex settings */
  1577. ct1000 = PHY_M_1000C_MSE;
  1578. if (skge->duplex == DUPLEX_FULL)
  1579. ctrl |= PHY_CT_DUP_MD;
  1580. switch (skge->speed) {
  1581. case SPEED_1000:
  1582. ctrl |= PHY_CT_SP1000;
  1583. break;
  1584. case SPEED_100:
  1585. ctrl |= PHY_CT_SP100;
  1586. break;
  1587. }
  1588. ctrl |= PHY_CT_RESET;
  1589. }
  1590. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1591. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1592. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1593. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1594. if (skge->autoneg == AUTONEG_ENABLE)
  1595. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1596. else
  1597. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1598. }
  1599. static void yukon_reset(struct skge_hw *hw, int port)
  1600. {
  1601. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1602. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1603. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1604. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1605. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1606. gma_write16(hw, port, GM_RX_CTRL,
  1607. gma_read16(hw, port, GM_RX_CTRL)
  1608. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1609. }
  1610. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1611. static int is_yukon_lite_a0(struct skge_hw *hw)
  1612. {
  1613. u32 reg;
  1614. int ret;
  1615. if (hw->chip_id != CHIP_ID_YUKON)
  1616. return 0;
  1617. reg = skge_read32(hw, B2_FAR);
  1618. skge_write8(hw, B2_FAR + 3, 0xff);
  1619. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1620. skge_write32(hw, B2_FAR, reg);
  1621. return ret;
  1622. }
  1623. static void yukon_mac_init(struct skge_hw *hw, int port)
  1624. {
  1625. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1626. int i;
  1627. u32 reg;
  1628. const u8 *addr = hw->dev[port]->dev_addr;
  1629. /* WA code for COMA mode -- set PHY reset */
  1630. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1631. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1632. reg = skge_read32(hw, B2_GP_IO);
  1633. reg |= GP_DIR_9 | GP_IO_9;
  1634. skge_write32(hw, B2_GP_IO, reg);
  1635. }
  1636. /* hard reset */
  1637. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1638. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1639. /* WA code for COMA mode -- clear PHY reset */
  1640. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1641. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1642. reg = skge_read32(hw, B2_GP_IO);
  1643. reg |= GP_DIR_9;
  1644. reg &= ~GP_IO_9;
  1645. skge_write32(hw, B2_GP_IO, reg);
  1646. }
  1647. /* Set hardware config mode */
  1648. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1649. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1650. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1651. /* Clear GMC reset */
  1652. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1653. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1654. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1655. if (skge->autoneg == AUTONEG_DISABLE) {
  1656. reg = GM_GPCR_AU_ALL_DIS;
  1657. gma_write16(hw, port, GM_GP_CTRL,
  1658. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1659. switch (skge->speed) {
  1660. case SPEED_1000:
  1661. reg &= ~GM_GPCR_SPEED_100;
  1662. reg |= GM_GPCR_SPEED_1000;
  1663. break;
  1664. case SPEED_100:
  1665. reg &= ~GM_GPCR_SPEED_1000;
  1666. reg |= GM_GPCR_SPEED_100;
  1667. break;
  1668. case SPEED_10:
  1669. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1670. break;
  1671. }
  1672. if (skge->duplex == DUPLEX_FULL)
  1673. reg |= GM_GPCR_DUP_FULL;
  1674. } else
  1675. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1676. switch (skge->flow_control) {
  1677. case FLOW_MODE_NONE:
  1678. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1679. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1680. break;
  1681. case FLOW_MODE_LOC_SEND:
  1682. /* disable Rx flow-control */
  1683. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1684. break;
  1685. case FLOW_MODE_SYMMETRIC:
  1686. case FLOW_MODE_SYM_OR_REM:
  1687. /* enable Tx & Rx flow-control */
  1688. break;
  1689. }
  1690. gma_write16(hw, port, GM_GP_CTRL, reg);
  1691. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1692. yukon_init(hw, port);
  1693. /* MIB clear */
  1694. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1695. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1696. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1697. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1698. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1699. /* transmit control */
  1700. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1701. /* receive control reg: unicast + multicast + no FCS */
  1702. gma_write16(hw, port, GM_RX_CTRL,
  1703. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1704. /* transmit flow control */
  1705. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1706. /* transmit parameter */
  1707. gma_write16(hw, port, GM_TX_PARAM,
  1708. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1709. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1710. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1711. /* serial mode register */
  1712. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1713. if (hw->dev[port]->mtu > 1500)
  1714. reg |= GM_SMOD_JUMBO_ENA;
  1715. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1716. /* physical address: used for pause frames */
  1717. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1718. /* virtual address for data */
  1719. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1720. /* enable interrupt mask for counter overflows */
  1721. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1722. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1723. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1724. /* Initialize Mac Fifo */
  1725. /* Configure Rx MAC FIFO */
  1726. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1727. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1728. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1729. if (is_yukon_lite_a0(hw))
  1730. reg &= ~GMF_RX_F_FL_ON;
  1731. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1732. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1733. /*
  1734. * because Pause Packet Truncation in GMAC is not working
  1735. * we have to increase the Flush Threshold to 64 bytes
  1736. * in order to flush pause packets in Rx FIFO on Yukon-1
  1737. */
  1738. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1739. /* Configure Tx MAC FIFO */
  1740. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1741. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1742. }
  1743. /* Go into power down mode */
  1744. static void yukon_suspend(struct skge_hw *hw, int port)
  1745. {
  1746. u16 ctrl;
  1747. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1748. ctrl |= PHY_M_PC_POL_R_DIS;
  1749. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1750. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1751. ctrl |= PHY_CT_RESET;
  1752. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1753. /* switch IEEE compatible power down mode on */
  1754. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1755. ctrl |= PHY_CT_PDOWN;
  1756. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1757. }
  1758. static void yukon_stop(struct skge_port *skge)
  1759. {
  1760. struct skge_hw *hw = skge->hw;
  1761. int port = skge->port;
  1762. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1763. yukon_reset(hw, port);
  1764. gma_write16(hw, port, GM_GP_CTRL,
  1765. gma_read16(hw, port, GM_GP_CTRL)
  1766. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1767. gma_read16(hw, port, GM_GP_CTRL);
  1768. yukon_suspend(hw, port);
  1769. /* set GPHY Control reset */
  1770. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1771. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1772. }
  1773. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1774. {
  1775. struct skge_hw *hw = skge->hw;
  1776. int port = skge->port;
  1777. int i;
  1778. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1779. | gma_read32(hw, port, GM_TXO_OK_LO);
  1780. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1781. | gma_read32(hw, port, GM_RXO_OK_LO);
  1782. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1783. data[i] = gma_read32(hw, port,
  1784. skge_stats[i].gma_offset);
  1785. }
  1786. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1787. {
  1788. struct net_device *dev = hw->dev[port];
  1789. struct skge_port *skge = netdev_priv(dev);
  1790. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1791. if (netif_msg_intr(skge))
  1792. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1793. dev->name, status);
  1794. if (status & GM_IS_RX_FF_OR) {
  1795. ++skge->net_stats.rx_fifo_errors;
  1796. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1797. }
  1798. if (status & GM_IS_TX_FF_UR) {
  1799. ++skge->net_stats.tx_fifo_errors;
  1800. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1801. }
  1802. }
  1803. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1804. {
  1805. switch (aux & PHY_M_PS_SPEED_MSK) {
  1806. case PHY_M_PS_SPEED_1000:
  1807. return SPEED_1000;
  1808. case PHY_M_PS_SPEED_100:
  1809. return SPEED_100;
  1810. default:
  1811. return SPEED_10;
  1812. }
  1813. }
  1814. static void yukon_link_up(struct skge_port *skge)
  1815. {
  1816. struct skge_hw *hw = skge->hw;
  1817. int port = skge->port;
  1818. u16 reg;
  1819. /* Enable Transmit FIFO Underrun */
  1820. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1821. reg = gma_read16(hw, port, GM_GP_CTRL);
  1822. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1823. reg |= GM_GPCR_DUP_FULL;
  1824. /* enable Rx/Tx */
  1825. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1826. gma_write16(hw, port, GM_GP_CTRL, reg);
  1827. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1828. skge_link_up(skge);
  1829. }
  1830. static void yukon_link_down(struct skge_port *skge)
  1831. {
  1832. struct skge_hw *hw = skge->hw;
  1833. int port = skge->port;
  1834. u16 ctrl;
  1835. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1836. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1837. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1838. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1839. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1840. ctrl |= PHY_M_AN_ASP;
  1841. /* restore Asymmetric Pause bit */
  1842. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1843. }
  1844. skge_link_down(skge);
  1845. yukon_init(hw, port);
  1846. }
  1847. static void yukon_phy_intr(struct skge_port *skge)
  1848. {
  1849. struct skge_hw *hw = skge->hw;
  1850. int port = skge->port;
  1851. const char *reason = NULL;
  1852. u16 istatus, phystat;
  1853. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1854. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1855. if (netif_msg_intr(skge))
  1856. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1857. skge->netdev->name, istatus, phystat);
  1858. if (istatus & PHY_M_IS_AN_COMPL) {
  1859. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1860. & PHY_M_AN_RF) {
  1861. reason = "remote fault";
  1862. goto failed;
  1863. }
  1864. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1865. reason = "master/slave fault";
  1866. goto failed;
  1867. }
  1868. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1869. reason = "speed/duplex";
  1870. goto failed;
  1871. }
  1872. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1873. ? DUPLEX_FULL : DUPLEX_HALF;
  1874. skge->speed = yukon_speed(hw, phystat);
  1875. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1876. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1877. case PHY_M_PS_PAUSE_MSK:
  1878. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1879. break;
  1880. case PHY_M_PS_RX_P_EN:
  1881. skge->flow_status = FLOW_STAT_REM_SEND;
  1882. break;
  1883. case PHY_M_PS_TX_P_EN:
  1884. skge->flow_status = FLOW_STAT_LOC_SEND;
  1885. break;
  1886. default:
  1887. skge->flow_status = FLOW_STAT_NONE;
  1888. }
  1889. if (skge->flow_status == FLOW_STAT_NONE ||
  1890. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1891. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1892. else
  1893. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1894. yukon_link_up(skge);
  1895. return;
  1896. }
  1897. if (istatus & PHY_M_IS_LSP_CHANGE)
  1898. skge->speed = yukon_speed(hw, phystat);
  1899. if (istatus & PHY_M_IS_DUP_CHANGE)
  1900. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1901. if (istatus & PHY_M_IS_LST_CHANGE) {
  1902. if (phystat & PHY_M_PS_LINK_UP)
  1903. yukon_link_up(skge);
  1904. else
  1905. yukon_link_down(skge);
  1906. }
  1907. return;
  1908. failed:
  1909. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1910. skge->netdev->name, reason);
  1911. /* XXX restart autonegotiation? */
  1912. }
  1913. static void skge_phy_reset(struct skge_port *skge)
  1914. {
  1915. struct skge_hw *hw = skge->hw;
  1916. int port = skge->port;
  1917. struct net_device *dev = hw->dev[port];
  1918. netif_stop_queue(skge->netdev);
  1919. netif_carrier_off(skge->netdev);
  1920. mutex_lock(&hw->phy_mutex);
  1921. if (hw->chip_id == CHIP_ID_GENESIS) {
  1922. genesis_reset(hw, port);
  1923. genesis_mac_init(hw, port);
  1924. } else {
  1925. yukon_reset(hw, port);
  1926. yukon_init(hw, port);
  1927. }
  1928. mutex_unlock(&hw->phy_mutex);
  1929. dev->set_multicast_list(dev);
  1930. }
  1931. /* Basic MII support */
  1932. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1933. {
  1934. struct mii_ioctl_data *data = if_mii(ifr);
  1935. struct skge_port *skge = netdev_priv(dev);
  1936. struct skge_hw *hw = skge->hw;
  1937. int err = -EOPNOTSUPP;
  1938. if (!netif_running(dev))
  1939. return -ENODEV; /* Phy still in reset */
  1940. switch(cmd) {
  1941. case SIOCGMIIPHY:
  1942. data->phy_id = hw->phy_addr;
  1943. /* fallthru */
  1944. case SIOCGMIIREG: {
  1945. u16 val = 0;
  1946. mutex_lock(&hw->phy_mutex);
  1947. if (hw->chip_id == CHIP_ID_GENESIS)
  1948. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1949. else
  1950. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1951. mutex_unlock(&hw->phy_mutex);
  1952. data->val_out = val;
  1953. break;
  1954. }
  1955. case SIOCSMIIREG:
  1956. if (!capable(CAP_NET_ADMIN))
  1957. return -EPERM;
  1958. mutex_lock(&hw->phy_mutex);
  1959. if (hw->chip_id == CHIP_ID_GENESIS)
  1960. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1961. data->val_in);
  1962. else
  1963. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1964. data->val_in);
  1965. mutex_unlock(&hw->phy_mutex);
  1966. break;
  1967. }
  1968. return err;
  1969. }
  1970. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1971. {
  1972. u32 end;
  1973. start /= 8;
  1974. len /= 8;
  1975. end = start + len - 1;
  1976. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1977. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1978. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1979. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1980. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1981. if (q == Q_R1 || q == Q_R2) {
  1982. /* Set thresholds on receive queue's */
  1983. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1984. start + (2*len)/3);
  1985. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1986. start + (len/3));
  1987. } else {
  1988. /* Enable store & forward on Tx queue's because
  1989. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1990. */
  1991. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1992. }
  1993. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1994. }
  1995. /* Setup Bus Memory Interface */
  1996. static void skge_qset(struct skge_port *skge, u16 q,
  1997. const struct skge_element *e)
  1998. {
  1999. struct skge_hw *hw = skge->hw;
  2000. u32 watermark = 0x600;
  2001. u64 base = skge->dma + (e->desc - skge->mem);
  2002. /* optimization to reduce window on 32bit/33mhz */
  2003. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2004. watermark /= 2;
  2005. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2006. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2007. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2008. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2009. }
  2010. static int skge_up(struct net_device *dev)
  2011. {
  2012. struct skge_port *skge = netdev_priv(dev);
  2013. struct skge_hw *hw = skge->hw;
  2014. int port = skge->port;
  2015. u32 chunk, ram_addr;
  2016. size_t rx_size, tx_size;
  2017. int err;
  2018. if (!is_valid_ether_addr(dev->dev_addr))
  2019. return -EINVAL;
  2020. if (netif_msg_ifup(skge))
  2021. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2022. if (dev->mtu > RX_BUF_SIZE)
  2023. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2024. else
  2025. skge->rx_buf_size = RX_BUF_SIZE;
  2026. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2027. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2028. skge->mem_size = tx_size + rx_size;
  2029. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2030. if (!skge->mem)
  2031. return -ENOMEM;
  2032. BUG_ON(skge->dma & 7);
  2033. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2034. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2035. err = -EINVAL;
  2036. goto free_pci_mem;
  2037. }
  2038. memset(skge->mem, 0, skge->mem_size);
  2039. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2040. if (err)
  2041. goto free_pci_mem;
  2042. err = skge_rx_fill(dev);
  2043. if (err)
  2044. goto free_rx_ring;
  2045. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2046. skge->dma + rx_size);
  2047. if (err)
  2048. goto free_rx_ring;
  2049. /* Initialize MAC */
  2050. mutex_lock(&hw->phy_mutex);
  2051. if (hw->chip_id == CHIP_ID_GENESIS)
  2052. genesis_mac_init(hw, port);
  2053. else
  2054. yukon_mac_init(hw, port);
  2055. mutex_unlock(&hw->phy_mutex);
  2056. /* Configure RAMbuffers */
  2057. chunk = hw->ram_size / ((hw->ports + 1)*2);
  2058. ram_addr = hw->ram_offset + 2 * chunk * port;
  2059. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2060. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2061. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2062. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2063. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2064. /* Start receiver BMU */
  2065. wmb();
  2066. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2067. skge_led(skge, LED_MODE_ON);
  2068. netif_poll_enable(dev);
  2069. return 0;
  2070. free_rx_ring:
  2071. skge_rx_clean(skge);
  2072. kfree(skge->rx_ring.start);
  2073. free_pci_mem:
  2074. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2075. skge->mem = NULL;
  2076. return err;
  2077. }
  2078. static int skge_down(struct net_device *dev)
  2079. {
  2080. struct skge_port *skge = netdev_priv(dev);
  2081. struct skge_hw *hw = skge->hw;
  2082. int port = skge->port;
  2083. if (skge->mem == NULL)
  2084. return 0;
  2085. if (netif_msg_ifdown(skge))
  2086. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2087. netif_stop_queue(dev);
  2088. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2089. cancel_delayed_work(&skge->link_thread);
  2090. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2091. if (hw->chip_id == CHIP_ID_GENESIS)
  2092. genesis_stop(skge);
  2093. else
  2094. yukon_stop(skge);
  2095. /* Stop transmitter */
  2096. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2097. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2098. RB_RST_SET|RB_DIS_OP_MD);
  2099. /* Disable Force Sync bit and Enable Alloc bit */
  2100. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2101. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2102. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2103. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2104. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2105. /* Reset PCI FIFO */
  2106. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2107. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2108. /* Reset the RAM Buffer async Tx queue */
  2109. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2110. /* stop receiver */
  2111. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2112. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2113. RB_RST_SET|RB_DIS_OP_MD);
  2114. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2115. if (hw->chip_id == CHIP_ID_GENESIS) {
  2116. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2117. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2118. } else {
  2119. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2120. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2121. }
  2122. skge_led(skge, LED_MODE_OFF);
  2123. netif_poll_disable(dev);
  2124. skge_tx_clean(dev);
  2125. skge_rx_clean(skge);
  2126. kfree(skge->rx_ring.start);
  2127. kfree(skge->tx_ring.start);
  2128. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2129. skge->mem = NULL;
  2130. return 0;
  2131. }
  2132. static inline int skge_avail(const struct skge_ring *ring)
  2133. {
  2134. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2135. + (ring->to_clean - ring->to_use) - 1;
  2136. }
  2137. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2138. {
  2139. struct skge_port *skge = netdev_priv(dev);
  2140. struct skge_hw *hw = skge->hw;
  2141. struct skge_element *e;
  2142. struct skge_tx_desc *td;
  2143. int i;
  2144. u32 control, len;
  2145. u64 map;
  2146. if (skb_padto(skb, ETH_ZLEN))
  2147. return NETDEV_TX_OK;
  2148. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2149. return NETDEV_TX_BUSY;
  2150. e = skge->tx_ring.to_use;
  2151. td = e->desc;
  2152. BUG_ON(td->control & BMU_OWN);
  2153. e->skb = skb;
  2154. len = skb_headlen(skb);
  2155. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2156. pci_unmap_addr_set(e, mapaddr, map);
  2157. pci_unmap_len_set(e, maplen, len);
  2158. td->dma_lo = map;
  2159. td->dma_hi = map >> 32;
  2160. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2161. int offset = skb->h.raw - skb->data;
  2162. /* This seems backwards, but it is what the sk98lin
  2163. * does. Looks like hardware is wrong?
  2164. */
  2165. if (skb->h.ipiph->protocol == IPPROTO_UDP
  2166. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2167. control = BMU_TCP_CHECK;
  2168. else
  2169. control = BMU_UDP_CHECK;
  2170. td->csum_offs = 0;
  2171. td->csum_start = offset;
  2172. td->csum_write = offset + skb->csum_offset;
  2173. } else
  2174. control = BMU_CHECK;
  2175. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2176. control |= BMU_EOF| BMU_IRQ_EOF;
  2177. else {
  2178. struct skge_tx_desc *tf = td;
  2179. control |= BMU_STFWD;
  2180. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2181. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2182. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2183. frag->size, PCI_DMA_TODEVICE);
  2184. e = e->next;
  2185. e->skb = skb;
  2186. tf = e->desc;
  2187. BUG_ON(tf->control & BMU_OWN);
  2188. tf->dma_lo = map;
  2189. tf->dma_hi = (u64) map >> 32;
  2190. pci_unmap_addr_set(e, mapaddr, map);
  2191. pci_unmap_len_set(e, maplen, frag->size);
  2192. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2193. }
  2194. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2195. }
  2196. /* Make sure all the descriptors written */
  2197. wmb();
  2198. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2199. wmb();
  2200. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2201. if (unlikely(netif_msg_tx_queued(skge)))
  2202. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2203. dev->name, e - skge->tx_ring.start, skb->len);
  2204. skge->tx_ring.to_use = e->next;
  2205. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2206. pr_debug("%s: transmit queue full\n", dev->name);
  2207. netif_stop_queue(dev);
  2208. }
  2209. dev->trans_start = jiffies;
  2210. return NETDEV_TX_OK;
  2211. }
  2212. /* Free resources associated with this reing element */
  2213. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2214. u32 control)
  2215. {
  2216. struct pci_dev *pdev = skge->hw->pdev;
  2217. BUG_ON(!e->skb);
  2218. /* skb header vs. fragment */
  2219. if (control & BMU_STF)
  2220. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2221. pci_unmap_len(e, maplen),
  2222. PCI_DMA_TODEVICE);
  2223. else
  2224. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2225. pci_unmap_len(e, maplen),
  2226. PCI_DMA_TODEVICE);
  2227. if (control & BMU_EOF) {
  2228. if (unlikely(netif_msg_tx_done(skge)))
  2229. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2230. skge->netdev->name, e - skge->tx_ring.start);
  2231. dev_kfree_skb(e->skb);
  2232. }
  2233. e->skb = NULL;
  2234. }
  2235. /* Free all buffers in transmit ring */
  2236. static void skge_tx_clean(struct net_device *dev)
  2237. {
  2238. struct skge_port *skge = netdev_priv(dev);
  2239. struct skge_element *e;
  2240. netif_tx_lock_bh(dev);
  2241. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2242. struct skge_tx_desc *td = e->desc;
  2243. skge_tx_free(skge, e, td->control);
  2244. td->control = 0;
  2245. }
  2246. skge->tx_ring.to_clean = e;
  2247. netif_wake_queue(dev);
  2248. netif_tx_unlock_bh(dev);
  2249. }
  2250. static void skge_tx_timeout(struct net_device *dev)
  2251. {
  2252. struct skge_port *skge = netdev_priv(dev);
  2253. if (netif_msg_timer(skge))
  2254. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2255. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2256. skge_tx_clean(dev);
  2257. }
  2258. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2259. {
  2260. int err;
  2261. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2262. return -EINVAL;
  2263. if (!netif_running(dev)) {
  2264. dev->mtu = new_mtu;
  2265. return 0;
  2266. }
  2267. skge_down(dev);
  2268. dev->mtu = new_mtu;
  2269. err = skge_up(dev);
  2270. if (err)
  2271. dev_close(dev);
  2272. return err;
  2273. }
  2274. static void genesis_set_multicast(struct net_device *dev)
  2275. {
  2276. struct skge_port *skge = netdev_priv(dev);
  2277. struct skge_hw *hw = skge->hw;
  2278. int port = skge->port;
  2279. int i, count = dev->mc_count;
  2280. struct dev_mc_list *list = dev->mc_list;
  2281. u32 mode;
  2282. u8 filter[8];
  2283. mode = xm_read32(hw, port, XM_MODE);
  2284. mode |= XM_MD_ENA_HASH;
  2285. if (dev->flags & IFF_PROMISC)
  2286. mode |= XM_MD_ENA_PROM;
  2287. else
  2288. mode &= ~XM_MD_ENA_PROM;
  2289. if (dev->flags & IFF_ALLMULTI)
  2290. memset(filter, 0xff, sizeof(filter));
  2291. else {
  2292. memset(filter, 0, sizeof(filter));
  2293. for (i = 0; list && i < count; i++, list = list->next) {
  2294. u32 crc, bit;
  2295. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2296. bit = ~crc & 0x3f;
  2297. filter[bit/8] |= 1 << (bit%8);
  2298. }
  2299. }
  2300. xm_write32(hw, port, XM_MODE, mode);
  2301. xm_outhash(hw, port, XM_HSM, filter);
  2302. }
  2303. static void yukon_set_multicast(struct net_device *dev)
  2304. {
  2305. struct skge_port *skge = netdev_priv(dev);
  2306. struct skge_hw *hw = skge->hw;
  2307. int port = skge->port;
  2308. struct dev_mc_list *list = dev->mc_list;
  2309. u16 reg;
  2310. u8 filter[8];
  2311. memset(filter, 0, sizeof(filter));
  2312. reg = gma_read16(hw, port, GM_RX_CTRL);
  2313. reg |= GM_RXCR_UCF_ENA;
  2314. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2315. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2316. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2317. memset(filter, 0xff, sizeof(filter));
  2318. else if (dev->mc_count == 0) /* no multicast */
  2319. reg &= ~GM_RXCR_MCF_ENA;
  2320. else {
  2321. int i;
  2322. reg |= GM_RXCR_MCF_ENA;
  2323. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2324. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2325. filter[bit/8] |= 1 << (bit%8);
  2326. }
  2327. }
  2328. gma_write16(hw, port, GM_MC_ADDR_H1,
  2329. (u16)filter[0] | ((u16)filter[1] << 8));
  2330. gma_write16(hw, port, GM_MC_ADDR_H2,
  2331. (u16)filter[2] | ((u16)filter[3] << 8));
  2332. gma_write16(hw, port, GM_MC_ADDR_H3,
  2333. (u16)filter[4] | ((u16)filter[5] << 8));
  2334. gma_write16(hw, port, GM_MC_ADDR_H4,
  2335. (u16)filter[6] | ((u16)filter[7] << 8));
  2336. gma_write16(hw, port, GM_RX_CTRL, reg);
  2337. }
  2338. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2339. {
  2340. if (hw->chip_id == CHIP_ID_GENESIS)
  2341. return status >> XMR_FS_LEN_SHIFT;
  2342. else
  2343. return status >> GMR_FS_LEN_SHIFT;
  2344. }
  2345. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2346. {
  2347. if (hw->chip_id == CHIP_ID_GENESIS)
  2348. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2349. else
  2350. return (status & GMR_FS_ANY_ERR) ||
  2351. (status & GMR_FS_RX_OK) == 0;
  2352. }
  2353. /* Get receive buffer from descriptor.
  2354. * Handles copy of small buffers and reallocation failures
  2355. */
  2356. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2357. struct skge_element *e,
  2358. u32 control, u32 status, u16 csum)
  2359. {
  2360. struct skge_port *skge = netdev_priv(dev);
  2361. struct sk_buff *skb;
  2362. u16 len = control & BMU_BBC;
  2363. if (unlikely(netif_msg_rx_status(skge)))
  2364. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2365. dev->name, e - skge->rx_ring.start,
  2366. status, len);
  2367. if (len > skge->rx_buf_size)
  2368. goto error;
  2369. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2370. goto error;
  2371. if (bad_phy_status(skge->hw, status))
  2372. goto error;
  2373. if (phy_length(skge->hw, status) != len)
  2374. goto error;
  2375. if (len < RX_COPY_THRESHOLD) {
  2376. skb = netdev_alloc_skb(dev, len + 2);
  2377. if (!skb)
  2378. goto resubmit;
  2379. skb_reserve(skb, 2);
  2380. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2381. pci_unmap_addr(e, mapaddr),
  2382. len, PCI_DMA_FROMDEVICE);
  2383. memcpy(skb->data, e->skb->data, len);
  2384. pci_dma_sync_single_for_device(skge->hw->pdev,
  2385. pci_unmap_addr(e, mapaddr),
  2386. len, PCI_DMA_FROMDEVICE);
  2387. skge_rx_reuse(e, skge->rx_buf_size);
  2388. } else {
  2389. struct sk_buff *nskb;
  2390. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2391. if (!nskb)
  2392. goto resubmit;
  2393. skb_reserve(nskb, NET_IP_ALIGN);
  2394. pci_unmap_single(skge->hw->pdev,
  2395. pci_unmap_addr(e, mapaddr),
  2396. pci_unmap_len(e, maplen),
  2397. PCI_DMA_FROMDEVICE);
  2398. skb = e->skb;
  2399. prefetch(skb->data);
  2400. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2401. }
  2402. skb_put(skb, len);
  2403. if (skge->rx_csum) {
  2404. skb->csum = csum;
  2405. skb->ip_summed = CHECKSUM_COMPLETE;
  2406. }
  2407. skb->protocol = eth_type_trans(skb, dev);
  2408. return skb;
  2409. error:
  2410. if (netif_msg_rx_err(skge))
  2411. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2412. dev->name, e - skge->rx_ring.start,
  2413. control, status);
  2414. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2415. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2416. skge->net_stats.rx_length_errors++;
  2417. if (status & XMR_FS_FRA_ERR)
  2418. skge->net_stats.rx_frame_errors++;
  2419. if (status & XMR_FS_FCS_ERR)
  2420. skge->net_stats.rx_crc_errors++;
  2421. } else {
  2422. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2423. skge->net_stats.rx_length_errors++;
  2424. if (status & GMR_FS_FRAGMENT)
  2425. skge->net_stats.rx_frame_errors++;
  2426. if (status & GMR_FS_CRC_ERR)
  2427. skge->net_stats.rx_crc_errors++;
  2428. }
  2429. resubmit:
  2430. skge_rx_reuse(e, skge->rx_buf_size);
  2431. return NULL;
  2432. }
  2433. /* Free all buffers in Tx ring which are no longer owned by device */
  2434. static void skge_tx_done(struct net_device *dev)
  2435. {
  2436. struct skge_port *skge = netdev_priv(dev);
  2437. struct skge_ring *ring = &skge->tx_ring;
  2438. struct skge_element *e;
  2439. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2440. netif_tx_lock(dev);
  2441. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2442. struct skge_tx_desc *td = e->desc;
  2443. if (td->control & BMU_OWN)
  2444. break;
  2445. skge_tx_free(skge, e, td->control);
  2446. }
  2447. skge->tx_ring.to_clean = e;
  2448. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2449. netif_wake_queue(dev);
  2450. netif_tx_unlock(dev);
  2451. }
  2452. static int skge_poll(struct net_device *dev, int *budget)
  2453. {
  2454. struct skge_port *skge = netdev_priv(dev);
  2455. struct skge_hw *hw = skge->hw;
  2456. struct skge_ring *ring = &skge->rx_ring;
  2457. struct skge_element *e;
  2458. unsigned long flags;
  2459. int to_do = min(dev->quota, *budget);
  2460. int work_done = 0;
  2461. skge_tx_done(dev);
  2462. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2463. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2464. struct skge_rx_desc *rd = e->desc;
  2465. struct sk_buff *skb;
  2466. u32 control;
  2467. rmb();
  2468. control = rd->control;
  2469. if (control & BMU_OWN)
  2470. break;
  2471. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2472. if (likely(skb)) {
  2473. dev->last_rx = jiffies;
  2474. netif_receive_skb(skb);
  2475. ++work_done;
  2476. }
  2477. }
  2478. ring->to_clean = e;
  2479. /* restart receiver */
  2480. wmb();
  2481. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2482. *budget -= work_done;
  2483. dev->quota -= work_done;
  2484. if (work_done >= to_do)
  2485. return 1; /* not done */
  2486. spin_lock_irqsave(&hw->hw_lock, flags);
  2487. __netif_rx_complete(dev);
  2488. hw->intr_mask |= irqmask[skge->port];
  2489. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2490. skge_read32(hw, B0_IMSK);
  2491. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2492. return 0;
  2493. }
  2494. /* Parity errors seem to happen when Genesis is connected to a switch
  2495. * with no other ports present. Heartbeat error??
  2496. */
  2497. static void skge_mac_parity(struct skge_hw *hw, int port)
  2498. {
  2499. struct net_device *dev = hw->dev[port];
  2500. if (dev) {
  2501. struct skge_port *skge = netdev_priv(dev);
  2502. ++skge->net_stats.tx_heartbeat_errors;
  2503. }
  2504. if (hw->chip_id == CHIP_ID_GENESIS)
  2505. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2506. MFF_CLR_PERR);
  2507. else
  2508. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2509. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2510. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2511. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2512. }
  2513. static void skge_mac_intr(struct skge_hw *hw, int port)
  2514. {
  2515. if (hw->chip_id == CHIP_ID_GENESIS)
  2516. genesis_mac_intr(hw, port);
  2517. else
  2518. yukon_mac_intr(hw, port);
  2519. }
  2520. /* Handle device specific framing and timeout interrupts */
  2521. static void skge_error_irq(struct skge_hw *hw)
  2522. {
  2523. struct pci_dev *pdev = hw->pdev;
  2524. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2525. if (hw->chip_id == CHIP_ID_GENESIS) {
  2526. /* clear xmac errors */
  2527. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2528. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2529. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2530. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2531. } else {
  2532. /* Timestamp (unused) overflow */
  2533. if (hwstatus & IS_IRQ_TIST_OV)
  2534. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2535. }
  2536. if (hwstatus & IS_RAM_RD_PAR) {
  2537. dev_err(&pdev->dev, "Ram read data parity error\n");
  2538. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2539. }
  2540. if (hwstatus & IS_RAM_WR_PAR) {
  2541. dev_err(&pdev->dev, "Ram write data parity error\n");
  2542. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2543. }
  2544. if (hwstatus & IS_M1_PAR_ERR)
  2545. skge_mac_parity(hw, 0);
  2546. if (hwstatus & IS_M2_PAR_ERR)
  2547. skge_mac_parity(hw, 1);
  2548. if (hwstatus & IS_R1_PAR_ERR) {
  2549. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2550. hw->dev[0]->name);
  2551. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2552. }
  2553. if (hwstatus & IS_R2_PAR_ERR) {
  2554. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2555. hw->dev[1]->name);
  2556. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2557. }
  2558. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2559. u16 pci_status, pci_cmd;
  2560. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2561. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2562. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2563. pci_cmd, pci_status);
  2564. /* Write the error bits back to clear them. */
  2565. pci_status &= PCI_STATUS_ERROR_BITS;
  2566. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2567. pci_write_config_word(pdev, PCI_COMMAND,
  2568. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2569. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2570. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2571. /* if error still set then just ignore it */
  2572. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2573. if (hwstatus & IS_IRQ_STAT) {
  2574. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2575. hw->intr_mask &= ~IS_HW_ERR;
  2576. }
  2577. }
  2578. }
  2579. /*
  2580. * Interrupt from PHY are handled in work queue
  2581. * because accessing phy registers requires spin wait which might
  2582. * cause excess interrupt latency.
  2583. */
  2584. static void skge_extirq(struct work_struct *work)
  2585. {
  2586. struct skge_hw *hw = container_of(work, struct skge_hw, phy_work);
  2587. int port;
  2588. mutex_lock(&hw->phy_mutex);
  2589. for (port = 0; port < hw->ports; port++) {
  2590. struct net_device *dev = hw->dev[port];
  2591. struct skge_port *skge = netdev_priv(dev);
  2592. if (netif_running(dev)) {
  2593. if (hw->chip_id != CHIP_ID_GENESIS)
  2594. yukon_phy_intr(skge);
  2595. else if (hw->phy_type == SK_PHY_BCOM)
  2596. bcom_phy_intr(skge);
  2597. }
  2598. }
  2599. mutex_unlock(&hw->phy_mutex);
  2600. spin_lock_irq(&hw->hw_lock);
  2601. hw->intr_mask |= IS_EXT_REG;
  2602. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2603. skge_read32(hw, B0_IMSK);
  2604. spin_unlock_irq(&hw->hw_lock);
  2605. }
  2606. static irqreturn_t skge_intr(int irq, void *dev_id)
  2607. {
  2608. struct skge_hw *hw = dev_id;
  2609. u32 status;
  2610. int handled = 0;
  2611. spin_lock(&hw->hw_lock);
  2612. /* Reading this register masks IRQ */
  2613. status = skge_read32(hw, B0_SP_ISRC);
  2614. if (status == 0 || status == ~0)
  2615. goto out;
  2616. handled = 1;
  2617. status &= hw->intr_mask;
  2618. if (status & IS_EXT_REG) {
  2619. hw->intr_mask &= ~IS_EXT_REG;
  2620. schedule_work(&hw->phy_work);
  2621. }
  2622. if (status & (IS_XA1_F|IS_R1_F)) {
  2623. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2624. netif_rx_schedule(hw->dev[0]);
  2625. }
  2626. if (status & IS_PA_TO_TX1)
  2627. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2628. if (status & IS_PA_TO_RX1) {
  2629. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2630. ++skge->net_stats.rx_over_errors;
  2631. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2632. }
  2633. if (status & IS_MAC1)
  2634. skge_mac_intr(hw, 0);
  2635. if (hw->dev[1]) {
  2636. if (status & (IS_XA2_F|IS_R2_F)) {
  2637. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2638. netif_rx_schedule(hw->dev[1]);
  2639. }
  2640. if (status & IS_PA_TO_RX2) {
  2641. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2642. ++skge->net_stats.rx_over_errors;
  2643. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2644. }
  2645. if (status & IS_PA_TO_TX2)
  2646. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2647. if (status & IS_MAC2)
  2648. skge_mac_intr(hw, 1);
  2649. }
  2650. if (status & IS_HW_ERR)
  2651. skge_error_irq(hw);
  2652. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2653. skge_read32(hw, B0_IMSK);
  2654. out:
  2655. spin_unlock(&hw->hw_lock);
  2656. return IRQ_RETVAL(handled);
  2657. }
  2658. #ifdef CONFIG_NET_POLL_CONTROLLER
  2659. static void skge_netpoll(struct net_device *dev)
  2660. {
  2661. struct skge_port *skge = netdev_priv(dev);
  2662. disable_irq(dev->irq);
  2663. skge_intr(dev->irq, skge->hw);
  2664. enable_irq(dev->irq);
  2665. }
  2666. #endif
  2667. static int skge_set_mac_address(struct net_device *dev, void *p)
  2668. {
  2669. struct skge_port *skge = netdev_priv(dev);
  2670. struct skge_hw *hw = skge->hw;
  2671. unsigned port = skge->port;
  2672. const struct sockaddr *addr = p;
  2673. if (!is_valid_ether_addr(addr->sa_data))
  2674. return -EADDRNOTAVAIL;
  2675. mutex_lock(&hw->phy_mutex);
  2676. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2677. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2678. dev->dev_addr, ETH_ALEN);
  2679. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2680. dev->dev_addr, ETH_ALEN);
  2681. if (hw->chip_id == CHIP_ID_GENESIS)
  2682. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2683. else {
  2684. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2685. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2686. }
  2687. mutex_unlock(&hw->phy_mutex);
  2688. return 0;
  2689. }
  2690. static const struct {
  2691. u8 id;
  2692. const char *name;
  2693. } skge_chips[] = {
  2694. { CHIP_ID_GENESIS, "Genesis" },
  2695. { CHIP_ID_YUKON, "Yukon" },
  2696. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2697. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2698. };
  2699. static const char *skge_board_name(const struct skge_hw *hw)
  2700. {
  2701. int i;
  2702. static char buf[16];
  2703. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2704. if (skge_chips[i].id == hw->chip_id)
  2705. return skge_chips[i].name;
  2706. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2707. return buf;
  2708. }
  2709. /*
  2710. * Setup the board data structure, but don't bring up
  2711. * the port(s)
  2712. */
  2713. static int skge_reset(struct skge_hw *hw)
  2714. {
  2715. u32 reg;
  2716. u16 ctst, pci_status;
  2717. u8 t8, mac_cfg, pmd_type;
  2718. int i;
  2719. ctst = skge_read16(hw, B0_CTST);
  2720. /* do a SW reset */
  2721. skge_write8(hw, B0_CTST, CS_RST_SET);
  2722. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2723. /* clear PCI errors, if any */
  2724. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2725. skge_write8(hw, B2_TST_CTRL2, 0);
  2726. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2727. pci_write_config_word(hw->pdev, PCI_STATUS,
  2728. pci_status | PCI_STATUS_ERROR_BITS);
  2729. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2730. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2731. /* restore CLK_RUN bits (for Yukon-Lite) */
  2732. skge_write16(hw, B0_CTST,
  2733. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2734. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2735. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2736. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2737. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2738. switch (hw->chip_id) {
  2739. case CHIP_ID_GENESIS:
  2740. switch (hw->phy_type) {
  2741. case SK_PHY_XMAC:
  2742. hw->phy_addr = PHY_ADDR_XMAC;
  2743. break;
  2744. case SK_PHY_BCOM:
  2745. hw->phy_addr = PHY_ADDR_BCOM;
  2746. break;
  2747. default:
  2748. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2749. hw->phy_type);
  2750. return -EOPNOTSUPP;
  2751. }
  2752. break;
  2753. case CHIP_ID_YUKON:
  2754. case CHIP_ID_YUKON_LITE:
  2755. case CHIP_ID_YUKON_LP:
  2756. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2757. hw->copper = 1;
  2758. hw->phy_addr = PHY_ADDR_MARV;
  2759. break;
  2760. default:
  2761. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2762. hw->chip_id);
  2763. return -EOPNOTSUPP;
  2764. }
  2765. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2766. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2767. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2768. /* read the adapters RAM size */
  2769. t8 = skge_read8(hw, B2_E_0);
  2770. if (hw->chip_id == CHIP_ID_GENESIS) {
  2771. if (t8 == 3) {
  2772. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2773. hw->ram_size = 0x100000;
  2774. hw->ram_offset = 0x80000;
  2775. } else
  2776. hw->ram_size = t8 * 512;
  2777. }
  2778. else if (t8 == 0)
  2779. hw->ram_size = 0x20000;
  2780. else
  2781. hw->ram_size = t8 * 4096;
  2782. hw->intr_mask = IS_HW_ERR | IS_PORT_1;
  2783. if (hw->ports > 1)
  2784. hw->intr_mask |= IS_PORT_2;
  2785. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2786. hw->intr_mask |= IS_EXT_REG;
  2787. if (hw->chip_id == CHIP_ID_GENESIS)
  2788. genesis_init(hw);
  2789. else {
  2790. /* switch power to VCC (WA for VAUX problem) */
  2791. skge_write8(hw, B0_POWER_CTRL,
  2792. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2793. /* avoid boards with stuck Hardware error bits */
  2794. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2795. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2796. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2797. hw->intr_mask &= ~IS_HW_ERR;
  2798. }
  2799. /* Clear PHY COMA */
  2800. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2801. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2802. reg &= ~PCI_PHY_COMA;
  2803. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2804. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2805. for (i = 0; i < hw->ports; i++) {
  2806. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2807. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2808. }
  2809. }
  2810. /* turn off hardware timer (unused) */
  2811. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2812. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2813. skge_write8(hw, B0_LED, LED_STAT_ON);
  2814. /* enable the Tx Arbiters */
  2815. for (i = 0; i < hw->ports; i++)
  2816. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2817. /* Initialize ram interface */
  2818. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2819. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2820. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2821. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2822. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2823. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2824. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2825. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2826. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2827. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2828. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2829. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2830. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2831. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2832. /* Set interrupt moderation for Transmit only
  2833. * Receive interrupts avoided by NAPI
  2834. */
  2835. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2836. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2837. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2838. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2839. mutex_lock(&hw->phy_mutex);
  2840. for (i = 0; i < hw->ports; i++) {
  2841. if (hw->chip_id == CHIP_ID_GENESIS)
  2842. genesis_reset(hw, i);
  2843. else
  2844. yukon_reset(hw, i);
  2845. }
  2846. mutex_unlock(&hw->phy_mutex);
  2847. return 0;
  2848. }
  2849. /* Initialize network device */
  2850. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2851. int highmem)
  2852. {
  2853. struct skge_port *skge;
  2854. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2855. if (!dev) {
  2856. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  2857. return NULL;
  2858. }
  2859. SET_MODULE_OWNER(dev);
  2860. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2861. dev->open = skge_up;
  2862. dev->stop = skge_down;
  2863. dev->do_ioctl = skge_ioctl;
  2864. dev->hard_start_xmit = skge_xmit_frame;
  2865. dev->get_stats = skge_get_stats;
  2866. if (hw->chip_id == CHIP_ID_GENESIS)
  2867. dev->set_multicast_list = genesis_set_multicast;
  2868. else
  2869. dev->set_multicast_list = yukon_set_multicast;
  2870. dev->set_mac_address = skge_set_mac_address;
  2871. dev->change_mtu = skge_change_mtu;
  2872. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2873. dev->tx_timeout = skge_tx_timeout;
  2874. dev->watchdog_timeo = TX_WATCHDOG;
  2875. dev->poll = skge_poll;
  2876. dev->weight = NAPI_WEIGHT;
  2877. #ifdef CONFIG_NET_POLL_CONTROLLER
  2878. dev->poll_controller = skge_netpoll;
  2879. #endif
  2880. dev->irq = hw->pdev->irq;
  2881. if (highmem)
  2882. dev->features |= NETIF_F_HIGHDMA;
  2883. skge = netdev_priv(dev);
  2884. skge->netdev = dev;
  2885. skge->hw = hw;
  2886. skge->msg_enable = netif_msg_init(debug, default_msg);
  2887. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2888. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2889. /* Auto speed and flow control */
  2890. skge->autoneg = AUTONEG_ENABLE;
  2891. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2892. skge->duplex = -1;
  2893. skge->speed = -1;
  2894. skge->advertising = skge_supported_modes(hw);
  2895. skge->wol = pci_wake_enabled(hw->pdev) ? wol_supported(hw) : 0;
  2896. hw->dev[port] = dev;
  2897. skge->port = port;
  2898. /* Only used for Genesis XMAC */
  2899. INIT_DELAYED_WORK(&skge->link_thread, xm_link_timer);
  2900. if (hw->chip_id != CHIP_ID_GENESIS) {
  2901. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2902. skge->rx_csum = 1;
  2903. }
  2904. /* read the mac address */
  2905. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2906. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2907. /* device is off until link detection */
  2908. netif_carrier_off(dev);
  2909. netif_stop_queue(dev);
  2910. return dev;
  2911. }
  2912. static void __devinit skge_show_addr(struct net_device *dev)
  2913. {
  2914. const struct skge_port *skge = netdev_priv(dev);
  2915. if (netif_msg_probe(skge))
  2916. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2917. dev->name,
  2918. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2919. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2920. }
  2921. static int __devinit skge_probe(struct pci_dev *pdev,
  2922. const struct pci_device_id *ent)
  2923. {
  2924. struct net_device *dev, *dev1;
  2925. struct skge_hw *hw;
  2926. int err, using_dac = 0;
  2927. err = pci_enable_device(pdev);
  2928. if (err) {
  2929. dev_err(&pdev->dev, "cannot enable PCI device\n");
  2930. goto err_out;
  2931. }
  2932. err = pci_request_regions(pdev, DRV_NAME);
  2933. if (err) {
  2934. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  2935. goto err_out_disable_pdev;
  2936. }
  2937. pci_set_master(pdev);
  2938. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2939. using_dac = 1;
  2940. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2941. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2942. using_dac = 0;
  2943. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2944. }
  2945. if (err) {
  2946. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2947. goto err_out_free_regions;
  2948. }
  2949. #ifdef __BIG_ENDIAN
  2950. /* byte swap descriptors in hardware */
  2951. {
  2952. u32 reg;
  2953. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2954. reg |= PCI_REV_DESC;
  2955. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2956. }
  2957. #endif
  2958. err = -ENOMEM;
  2959. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2960. if (!hw) {
  2961. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  2962. goto err_out_free_regions;
  2963. }
  2964. hw->pdev = pdev;
  2965. mutex_init(&hw->phy_mutex);
  2966. INIT_WORK(&hw->phy_work, skge_extirq);
  2967. spin_lock_init(&hw->hw_lock);
  2968. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2969. if (!hw->regs) {
  2970. dev_err(&pdev->dev, "cannot map device registers\n");
  2971. goto err_out_free_hw;
  2972. }
  2973. err = skge_reset(hw);
  2974. if (err)
  2975. goto err_out_iounmap;
  2976. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2977. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2978. skge_board_name(hw), hw->chip_rev);
  2979. dev = skge_devinit(hw, 0, using_dac);
  2980. if (!dev)
  2981. goto err_out_led_off;
  2982. /* Some motherboards are broken and has zero in ROM. */
  2983. if (!is_valid_ether_addr(dev->dev_addr))
  2984. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  2985. err = register_netdev(dev);
  2986. if (err) {
  2987. dev_err(&pdev->dev, "cannot register net device\n");
  2988. goto err_out_free_netdev;
  2989. }
  2990. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2991. if (err) {
  2992. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  2993. dev->name, pdev->irq);
  2994. goto err_out_unregister;
  2995. }
  2996. skge_show_addr(dev);
  2997. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2998. if (register_netdev(dev1) == 0)
  2999. skge_show_addr(dev1);
  3000. else {
  3001. /* Failure to register second port need not be fatal */
  3002. dev_warn(&pdev->dev, "register of second port failed\n");
  3003. hw->dev[1] = NULL;
  3004. free_netdev(dev1);
  3005. }
  3006. }
  3007. pci_set_drvdata(pdev, hw);
  3008. return 0;
  3009. err_out_unregister:
  3010. unregister_netdev(dev);
  3011. err_out_free_netdev:
  3012. free_netdev(dev);
  3013. err_out_led_off:
  3014. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3015. err_out_iounmap:
  3016. iounmap(hw->regs);
  3017. err_out_free_hw:
  3018. kfree(hw);
  3019. err_out_free_regions:
  3020. pci_release_regions(pdev);
  3021. err_out_disable_pdev:
  3022. pci_disable_device(pdev);
  3023. pci_set_drvdata(pdev, NULL);
  3024. err_out:
  3025. return err;
  3026. }
  3027. static void __devexit skge_remove(struct pci_dev *pdev)
  3028. {
  3029. struct skge_hw *hw = pci_get_drvdata(pdev);
  3030. struct net_device *dev0, *dev1;
  3031. if (!hw)
  3032. return;
  3033. flush_scheduled_work();
  3034. if ((dev1 = hw->dev[1]))
  3035. unregister_netdev(dev1);
  3036. dev0 = hw->dev[0];
  3037. unregister_netdev(dev0);
  3038. spin_lock_irq(&hw->hw_lock);
  3039. hw->intr_mask = 0;
  3040. skge_write32(hw, B0_IMSK, 0);
  3041. skge_read32(hw, B0_IMSK);
  3042. spin_unlock_irq(&hw->hw_lock);
  3043. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3044. skge_write8(hw, B0_CTST, CS_RST_SET);
  3045. free_irq(pdev->irq, hw);
  3046. pci_release_regions(pdev);
  3047. pci_disable_device(pdev);
  3048. if (dev1)
  3049. free_netdev(dev1);
  3050. free_netdev(dev0);
  3051. iounmap(hw->regs);
  3052. kfree(hw);
  3053. pci_set_drvdata(pdev, NULL);
  3054. }
  3055. #ifdef CONFIG_PM
  3056. static int vaux_avail(struct pci_dev *pdev)
  3057. {
  3058. int pm_cap;
  3059. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3060. if (pm_cap) {
  3061. u16 ctl;
  3062. pci_read_config_word(pdev, pm_cap + PCI_PM_PMC, &ctl);
  3063. if (ctl & PCI_PM_CAP_AUX_POWER)
  3064. return 1;
  3065. }
  3066. return 0;
  3067. }
  3068. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3069. {
  3070. struct skge_hw *hw = pci_get_drvdata(pdev);
  3071. int i, err, wol = 0;
  3072. err = pci_save_state(pdev);
  3073. if (err)
  3074. return err;
  3075. for (i = 0; i < hw->ports; i++) {
  3076. struct net_device *dev = hw->dev[i];
  3077. struct skge_port *skge = netdev_priv(dev);
  3078. if (netif_running(dev))
  3079. skge_down(dev);
  3080. if (skge->wol)
  3081. skge_wol_init(skge);
  3082. wol |= skge->wol;
  3083. }
  3084. if (wol && vaux_avail(pdev))
  3085. skge_write8(hw, B0_POWER_CTRL,
  3086. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  3087. skge_write32(hw, B0_IMSK, 0);
  3088. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3089. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3090. return 0;
  3091. }
  3092. static int skge_resume(struct pci_dev *pdev)
  3093. {
  3094. struct skge_hw *hw = pci_get_drvdata(pdev);
  3095. int i, err;
  3096. err = pci_set_power_state(pdev, PCI_D0);
  3097. if (err)
  3098. goto out;
  3099. err = pci_restore_state(pdev);
  3100. if (err)
  3101. goto out;
  3102. pci_enable_wake(pdev, PCI_D0, 0);
  3103. err = skge_reset(hw);
  3104. if (err)
  3105. goto out;
  3106. for (i = 0; i < hw->ports; i++) {
  3107. struct net_device *dev = hw->dev[i];
  3108. if (netif_running(dev)) {
  3109. err = skge_up(dev);
  3110. if (err) {
  3111. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3112. dev->name, err);
  3113. dev_close(dev);
  3114. goto out;
  3115. }
  3116. }
  3117. }
  3118. out:
  3119. return err;
  3120. }
  3121. #endif
  3122. static struct pci_driver skge_driver = {
  3123. .name = DRV_NAME,
  3124. .id_table = skge_id_table,
  3125. .probe = skge_probe,
  3126. .remove = __devexit_p(skge_remove),
  3127. #ifdef CONFIG_PM
  3128. .suspend = skge_suspend,
  3129. .resume = skge_resume,
  3130. #endif
  3131. };
  3132. static int __init skge_init_module(void)
  3133. {
  3134. return pci_register_driver(&skge_driver);
  3135. }
  3136. static void __exit skge_cleanup_module(void)
  3137. {
  3138. pci_unregister_driver(&skge_driver);
  3139. }
  3140. module_init(skge_init_module);
  3141. module_exit(skge_cleanup_module);