free-space-cache.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include "ctree.h"
  23. #include "free-space-cache.h"
  24. #include "transaction.h"
  25. #include "disk-io.h"
  26. #include "extent_io.h"
  27. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  28. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  29. static void recalculate_thresholds(struct btrfs_block_group_cache
  30. *block_group);
  31. static int link_free_space(struct btrfs_block_group_cache *block_group,
  32. struct btrfs_free_space *info);
  33. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  34. struct btrfs_block_group_cache
  35. *block_group, struct btrfs_path *path)
  36. {
  37. struct btrfs_key key;
  38. struct btrfs_key location;
  39. struct btrfs_disk_key disk_key;
  40. struct btrfs_free_space_header *header;
  41. struct extent_buffer *leaf;
  42. struct inode *inode = NULL;
  43. int ret;
  44. spin_lock(&block_group->lock);
  45. if (block_group->inode)
  46. inode = igrab(block_group->inode);
  47. spin_unlock(&block_group->lock);
  48. if (inode)
  49. return inode;
  50. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  51. key.offset = block_group->key.objectid;
  52. key.type = 0;
  53. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  54. if (ret < 0)
  55. return ERR_PTR(ret);
  56. if (ret > 0) {
  57. btrfs_release_path(root, path);
  58. return ERR_PTR(-ENOENT);
  59. }
  60. leaf = path->nodes[0];
  61. header = btrfs_item_ptr(leaf, path->slots[0],
  62. struct btrfs_free_space_header);
  63. btrfs_free_space_key(leaf, header, &disk_key);
  64. btrfs_disk_key_to_cpu(&location, &disk_key);
  65. btrfs_release_path(root, path);
  66. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  67. if (!inode)
  68. return ERR_PTR(-ENOENT);
  69. if (IS_ERR(inode))
  70. return inode;
  71. if (is_bad_inode(inode)) {
  72. iput(inode);
  73. return ERR_PTR(-ENOENT);
  74. }
  75. inode->i_mapping->flags &= ~__GFP_FS;
  76. spin_lock(&block_group->lock);
  77. if (!root->fs_info->closing) {
  78. block_group->inode = igrab(inode);
  79. block_group->iref = 1;
  80. }
  81. spin_unlock(&block_group->lock);
  82. return inode;
  83. }
  84. int create_free_space_inode(struct btrfs_root *root,
  85. struct btrfs_trans_handle *trans,
  86. struct btrfs_block_group_cache *block_group,
  87. struct btrfs_path *path)
  88. {
  89. struct btrfs_key key;
  90. struct btrfs_disk_key disk_key;
  91. struct btrfs_free_space_header *header;
  92. struct btrfs_inode_item *inode_item;
  93. struct extent_buffer *leaf;
  94. u64 objectid;
  95. int ret;
  96. ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
  97. if (ret < 0)
  98. return ret;
  99. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  100. if (ret)
  101. return ret;
  102. leaf = path->nodes[0];
  103. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  104. struct btrfs_inode_item);
  105. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  106. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  107. sizeof(*inode_item));
  108. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  109. btrfs_set_inode_size(leaf, inode_item, 0);
  110. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  111. btrfs_set_inode_uid(leaf, inode_item, 0);
  112. btrfs_set_inode_gid(leaf, inode_item, 0);
  113. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  114. btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
  115. BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
  116. btrfs_set_inode_nlink(leaf, inode_item, 1);
  117. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  118. btrfs_set_inode_block_group(leaf, inode_item,
  119. block_group->key.objectid);
  120. btrfs_mark_buffer_dirty(leaf);
  121. btrfs_release_path(root, path);
  122. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  123. key.offset = block_group->key.objectid;
  124. key.type = 0;
  125. ret = btrfs_insert_empty_item(trans, root, path, &key,
  126. sizeof(struct btrfs_free_space_header));
  127. if (ret < 0) {
  128. btrfs_release_path(root, path);
  129. return ret;
  130. }
  131. leaf = path->nodes[0];
  132. header = btrfs_item_ptr(leaf, path->slots[0],
  133. struct btrfs_free_space_header);
  134. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  135. btrfs_set_free_space_key(leaf, header, &disk_key);
  136. btrfs_mark_buffer_dirty(leaf);
  137. btrfs_release_path(root, path);
  138. return 0;
  139. }
  140. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  141. struct btrfs_trans_handle *trans,
  142. struct btrfs_path *path,
  143. struct inode *inode)
  144. {
  145. loff_t oldsize;
  146. int ret = 0;
  147. trans->block_rsv = root->orphan_block_rsv;
  148. ret = btrfs_block_rsv_check(trans, root,
  149. root->orphan_block_rsv,
  150. 0, 5);
  151. if (ret)
  152. return ret;
  153. oldsize = i_size_read(inode);
  154. btrfs_i_size_write(inode, 0);
  155. truncate_pagecache(inode, oldsize, 0);
  156. /*
  157. * We don't need an orphan item because truncating the free space cache
  158. * will never be split across transactions.
  159. */
  160. ret = btrfs_truncate_inode_items(trans, root, inode,
  161. 0, BTRFS_EXTENT_DATA_KEY);
  162. if (ret) {
  163. WARN_ON(1);
  164. return ret;
  165. }
  166. return btrfs_update_inode(trans, root, inode);
  167. }
  168. static int readahead_cache(struct inode *inode)
  169. {
  170. struct file_ra_state *ra;
  171. unsigned long last_index;
  172. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  173. if (!ra)
  174. return -ENOMEM;
  175. file_ra_state_init(ra, inode->i_mapping);
  176. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  177. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  178. kfree(ra);
  179. return 0;
  180. }
  181. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  182. struct btrfs_block_group_cache *block_group)
  183. {
  184. struct btrfs_root *root = fs_info->tree_root;
  185. struct inode *inode;
  186. struct btrfs_free_space_header *header;
  187. struct extent_buffer *leaf;
  188. struct page *page;
  189. struct btrfs_path *path;
  190. u32 *checksums = NULL, *crc;
  191. char *disk_crcs = NULL;
  192. struct btrfs_key key;
  193. struct list_head bitmaps;
  194. u64 num_entries;
  195. u64 num_bitmaps;
  196. u64 generation;
  197. u64 used = btrfs_block_group_used(&block_group->item);
  198. u32 cur_crc = ~(u32)0;
  199. pgoff_t index = 0;
  200. unsigned long first_page_offset;
  201. int num_checksums;
  202. int ret = 0;
  203. /*
  204. * If we're unmounting then just return, since this does a search on the
  205. * normal root and not the commit root and we could deadlock.
  206. */
  207. smp_mb();
  208. if (fs_info->closing)
  209. return 0;
  210. /*
  211. * If this block group has been marked to be cleared for one reason or
  212. * another then we can't trust the on disk cache, so just return.
  213. */
  214. spin_lock(&block_group->lock);
  215. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  216. spin_unlock(&block_group->lock);
  217. return 0;
  218. }
  219. spin_unlock(&block_group->lock);
  220. INIT_LIST_HEAD(&bitmaps);
  221. path = btrfs_alloc_path();
  222. if (!path)
  223. return 0;
  224. inode = lookup_free_space_inode(root, block_group, path);
  225. if (IS_ERR(inode)) {
  226. btrfs_free_path(path);
  227. return 0;
  228. }
  229. /* Nothing in the space cache, goodbye */
  230. if (!i_size_read(inode)) {
  231. btrfs_free_path(path);
  232. goto out;
  233. }
  234. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  235. key.offset = block_group->key.objectid;
  236. key.type = 0;
  237. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  238. if (ret) {
  239. btrfs_free_path(path);
  240. goto out;
  241. }
  242. leaf = path->nodes[0];
  243. header = btrfs_item_ptr(leaf, path->slots[0],
  244. struct btrfs_free_space_header);
  245. num_entries = btrfs_free_space_entries(leaf, header);
  246. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  247. generation = btrfs_free_space_generation(leaf, header);
  248. btrfs_free_path(path);
  249. if (BTRFS_I(inode)->generation != generation) {
  250. printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
  251. " not match free space cache generation (%llu) for "
  252. "block group %llu\n",
  253. (unsigned long long)BTRFS_I(inode)->generation,
  254. (unsigned long long)generation,
  255. (unsigned long long)block_group->key.objectid);
  256. goto free_cache;
  257. }
  258. if (!num_entries)
  259. goto out;
  260. /* Setup everything for doing checksumming */
  261. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  262. checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  263. if (!checksums)
  264. goto out;
  265. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  266. disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
  267. if (!disk_crcs)
  268. goto out;
  269. ret = readahead_cache(inode);
  270. if (ret) {
  271. ret = 0;
  272. goto out;
  273. }
  274. while (1) {
  275. struct btrfs_free_space_entry *entry;
  276. struct btrfs_free_space *e;
  277. void *addr;
  278. unsigned long offset = 0;
  279. unsigned long start_offset = 0;
  280. int need_loop = 0;
  281. if (!num_entries && !num_bitmaps)
  282. break;
  283. if (index == 0) {
  284. start_offset = first_page_offset;
  285. offset = start_offset;
  286. }
  287. page = grab_cache_page(inode->i_mapping, index);
  288. if (!page) {
  289. ret = 0;
  290. goto free_cache;
  291. }
  292. if (!PageUptodate(page)) {
  293. btrfs_readpage(NULL, page);
  294. lock_page(page);
  295. if (!PageUptodate(page)) {
  296. unlock_page(page);
  297. page_cache_release(page);
  298. printk(KERN_ERR "btrfs: error reading free "
  299. "space cache: %llu\n",
  300. (unsigned long long)
  301. block_group->key.objectid);
  302. goto free_cache;
  303. }
  304. }
  305. addr = kmap(page);
  306. if (index == 0) {
  307. u64 *gen;
  308. memcpy(disk_crcs, addr, first_page_offset);
  309. gen = addr + (sizeof(u32) * num_checksums);
  310. if (*gen != BTRFS_I(inode)->generation) {
  311. printk(KERN_ERR "btrfs: space cache generation"
  312. " (%llu) does not match inode (%llu) "
  313. "for block group %llu\n",
  314. (unsigned long long)*gen,
  315. (unsigned long long)
  316. BTRFS_I(inode)->generation,
  317. (unsigned long long)
  318. block_group->key.objectid);
  319. kunmap(page);
  320. unlock_page(page);
  321. page_cache_release(page);
  322. goto free_cache;
  323. }
  324. crc = (u32 *)disk_crcs;
  325. }
  326. entry = addr + start_offset;
  327. /* First lets check our crc before we do anything fun */
  328. cur_crc = ~(u32)0;
  329. cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
  330. PAGE_CACHE_SIZE - start_offset);
  331. btrfs_csum_final(cur_crc, (char *)&cur_crc);
  332. if (cur_crc != *crc) {
  333. printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
  334. "block group %llu\n", index,
  335. (unsigned long long)block_group->key.objectid);
  336. kunmap(page);
  337. unlock_page(page);
  338. page_cache_release(page);
  339. goto free_cache;
  340. }
  341. crc++;
  342. while (1) {
  343. if (!num_entries)
  344. break;
  345. need_loop = 1;
  346. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  347. GFP_NOFS);
  348. if (!e) {
  349. kunmap(page);
  350. unlock_page(page);
  351. page_cache_release(page);
  352. goto free_cache;
  353. }
  354. e->offset = le64_to_cpu(entry->offset);
  355. e->bytes = le64_to_cpu(entry->bytes);
  356. if (!e->bytes) {
  357. kunmap(page);
  358. kmem_cache_free(btrfs_free_space_cachep, e);
  359. unlock_page(page);
  360. page_cache_release(page);
  361. goto free_cache;
  362. }
  363. if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
  364. spin_lock(&block_group->tree_lock);
  365. ret = link_free_space(block_group, e);
  366. spin_unlock(&block_group->tree_lock);
  367. if (ret) {
  368. printk(KERN_ERR "Duplicate entries in "
  369. "free space cache, dumping\n");
  370. kunmap(page);
  371. unlock_page(page);
  372. page_cache_release(page);
  373. goto free_cache;
  374. }
  375. } else {
  376. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  377. if (!e->bitmap) {
  378. kunmap(page);
  379. kmem_cache_free(
  380. btrfs_free_space_cachep, e);
  381. unlock_page(page);
  382. page_cache_release(page);
  383. goto free_cache;
  384. }
  385. spin_lock(&block_group->tree_lock);
  386. ret = link_free_space(block_group, e);
  387. block_group->total_bitmaps++;
  388. recalculate_thresholds(block_group);
  389. spin_unlock(&block_group->tree_lock);
  390. list_add_tail(&e->list, &bitmaps);
  391. if (ret) {
  392. printk(KERN_ERR "Duplicate entries in "
  393. "free space cache, dumping\n");
  394. kunmap(page);
  395. unlock_page(page);
  396. page_cache_release(page);
  397. goto free_cache;
  398. }
  399. }
  400. num_entries--;
  401. offset += sizeof(struct btrfs_free_space_entry);
  402. if (offset + sizeof(struct btrfs_free_space_entry) >=
  403. PAGE_CACHE_SIZE)
  404. break;
  405. entry++;
  406. }
  407. /*
  408. * We read an entry out of this page, we need to move on to the
  409. * next page.
  410. */
  411. if (need_loop) {
  412. kunmap(page);
  413. goto next;
  414. }
  415. /*
  416. * We add the bitmaps at the end of the entries in order that
  417. * the bitmap entries are added to the cache.
  418. */
  419. e = list_entry(bitmaps.next, struct btrfs_free_space, list);
  420. list_del_init(&e->list);
  421. memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
  422. kunmap(page);
  423. num_bitmaps--;
  424. next:
  425. unlock_page(page);
  426. page_cache_release(page);
  427. index++;
  428. }
  429. spin_lock(&block_group->tree_lock);
  430. if (block_group->free_space != (block_group->key.offset - used -
  431. block_group->bytes_super)) {
  432. spin_unlock(&block_group->tree_lock);
  433. printk(KERN_ERR "block group %llu has an wrong amount of free "
  434. "space\n", block_group->key.objectid);
  435. ret = 0;
  436. goto free_cache;
  437. }
  438. spin_unlock(&block_group->tree_lock);
  439. ret = 1;
  440. out:
  441. kfree(checksums);
  442. kfree(disk_crcs);
  443. iput(inode);
  444. return ret;
  445. free_cache:
  446. /* This cache is bogus, make sure it gets cleared */
  447. spin_lock(&block_group->lock);
  448. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  449. spin_unlock(&block_group->lock);
  450. btrfs_remove_free_space_cache(block_group);
  451. goto out;
  452. }
  453. int btrfs_write_out_cache(struct btrfs_root *root,
  454. struct btrfs_trans_handle *trans,
  455. struct btrfs_block_group_cache *block_group,
  456. struct btrfs_path *path)
  457. {
  458. struct btrfs_free_space_header *header;
  459. struct extent_buffer *leaf;
  460. struct inode *inode;
  461. struct rb_node *node;
  462. struct list_head *pos, *n;
  463. struct page **pages;
  464. struct page *page;
  465. struct extent_state *cached_state = NULL;
  466. struct btrfs_free_cluster *cluster = NULL;
  467. struct extent_io_tree *unpin = NULL;
  468. struct list_head bitmap_list;
  469. struct btrfs_key key;
  470. u64 start, end, len;
  471. u64 bytes = 0;
  472. u32 *crc, *checksums;
  473. unsigned long first_page_offset;
  474. int index = 0, num_pages = 0;
  475. int entries = 0;
  476. int bitmaps = 0;
  477. int ret = 0;
  478. bool next_page = false;
  479. bool out_of_space = false;
  480. root = root->fs_info->tree_root;
  481. INIT_LIST_HEAD(&bitmap_list);
  482. spin_lock(&block_group->lock);
  483. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  484. spin_unlock(&block_group->lock);
  485. return 0;
  486. }
  487. spin_unlock(&block_group->lock);
  488. inode = lookup_free_space_inode(root, block_group, path);
  489. if (IS_ERR(inode))
  490. return 0;
  491. if (!i_size_read(inode)) {
  492. iput(inode);
  493. return 0;
  494. }
  495. node = rb_first(&block_group->free_space_offset);
  496. if (!node) {
  497. iput(inode);
  498. return 0;
  499. }
  500. num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
  501. PAGE_CACHE_SHIFT;
  502. filemap_write_and_wait(inode->i_mapping);
  503. btrfs_wait_ordered_range(inode, inode->i_size &
  504. ~(root->sectorsize - 1), (u64)-1);
  505. /* We need a checksum per page. */
  506. crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
  507. if (!crc) {
  508. iput(inode);
  509. return 0;
  510. }
  511. pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
  512. if (!pages) {
  513. kfree(crc);
  514. iput(inode);
  515. return 0;
  516. }
  517. /* Since the first page has all of our checksums and our generation we
  518. * need to calculate the offset into the page that we can start writing
  519. * our entries.
  520. */
  521. first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
  522. /* Get the cluster for this block_group if it exists */
  523. if (!list_empty(&block_group->cluster_list))
  524. cluster = list_entry(block_group->cluster_list.next,
  525. struct btrfs_free_cluster,
  526. block_group_list);
  527. /*
  528. * We shouldn't have switched the pinned extents yet so this is the
  529. * right one
  530. */
  531. unpin = root->fs_info->pinned_extents;
  532. /*
  533. * Lock all pages first so we can lock the extent safely.
  534. *
  535. * NOTE: Because we hold the ref the entire time we're going to write to
  536. * the page find_get_page should never fail, so we don't do a check
  537. * after find_get_page at this point. Just putting this here so people
  538. * know and don't freak out.
  539. */
  540. while (index < num_pages) {
  541. page = grab_cache_page(inode->i_mapping, index);
  542. if (!page) {
  543. int i;
  544. for (i = 0; i < num_pages; i++) {
  545. unlock_page(pages[i]);
  546. page_cache_release(pages[i]);
  547. }
  548. goto out_free;
  549. }
  550. pages[index] = page;
  551. index++;
  552. }
  553. index = 0;
  554. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  555. 0, &cached_state, GFP_NOFS);
  556. /*
  557. * When searching for pinned extents, we need to start at our start
  558. * offset.
  559. */
  560. start = block_group->key.objectid;
  561. /* Write out the extent entries */
  562. do {
  563. struct btrfs_free_space_entry *entry;
  564. void *addr;
  565. unsigned long offset = 0;
  566. unsigned long start_offset = 0;
  567. next_page = false;
  568. if (index == 0) {
  569. start_offset = first_page_offset;
  570. offset = start_offset;
  571. }
  572. if (index >= num_pages) {
  573. out_of_space = true;
  574. break;
  575. }
  576. page = pages[index];
  577. addr = kmap(page);
  578. entry = addr + start_offset;
  579. memset(addr, 0, PAGE_CACHE_SIZE);
  580. while (node && !next_page) {
  581. struct btrfs_free_space *e;
  582. e = rb_entry(node, struct btrfs_free_space, offset_index);
  583. entries++;
  584. entry->offset = cpu_to_le64(e->offset);
  585. entry->bytes = cpu_to_le64(e->bytes);
  586. if (e->bitmap) {
  587. entry->type = BTRFS_FREE_SPACE_BITMAP;
  588. list_add_tail(&e->list, &bitmap_list);
  589. bitmaps++;
  590. } else {
  591. entry->type = BTRFS_FREE_SPACE_EXTENT;
  592. }
  593. node = rb_next(node);
  594. if (!node && cluster) {
  595. node = rb_first(&cluster->root);
  596. cluster = NULL;
  597. }
  598. offset += sizeof(struct btrfs_free_space_entry);
  599. if (offset + sizeof(struct btrfs_free_space_entry) >=
  600. PAGE_CACHE_SIZE)
  601. next_page = true;
  602. entry++;
  603. }
  604. /*
  605. * We want to add any pinned extents to our free space cache
  606. * so we don't leak the space
  607. */
  608. while (!next_page && (start < block_group->key.objectid +
  609. block_group->key.offset)) {
  610. ret = find_first_extent_bit(unpin, start, &start, &end,
  611. EXTENT_DIRTY);
  612. if (ret) {
  613. ret = 0;
  614. break;
  615. }
  616. /* This pinned extent is out of our range */
  617. if (start >= block_group->key.objectid +
  618. block_group->key.offset)
  619. break;
  620. len = block_group->key.objectid +
  621. block_group->key.offset - start;
  622. len = min(len, end + 1 - start);
  623. entries++;
  624. entry->offset = cpu_to_le64(start);
  625. entry->bytes = cpu_to_le64(len);
  626. entry->type = BTRFS_FREE_SPACE_EXTENT;
  627. start = end + 1;
  628. offset += sizeof(struct btrfs_free_space_entry);
  629. if (offset + sizeof(struct btrfs_free_space_entry) >=
  630. PAGE_CACHE_SIZE)
  631. next_page = true;
  632. entry++;
  633. }
  634. *crc = ~(u32)0;
  635. *crc = btrfs_csum_data(root, addr + start_offset, *crc,
  636. PAGE_CACHE_SIZE - start_offset);
  637. kunmap(page);
  638. btrfs_csum_final(*crc, (char *)crc);
  639. crc++;
  640. bytes += PAGE_CACHE_SIZE;
  641. index++;
  642. } while (node || next_page);
  643. /* Write out the bitmaps */
  644. list_for_each_safe(pos, n, &bitmap_list) {
  645. void *addr;
  646. struct btrfs_free_space *entry =
  647. list_entry(pos, struct btrfs_free_space, list);
  648. if (index >= num_pages) {
  649. out_of_space = true;
  650. break;
  651. }
  652. page = pages[index];
  653. addr = kmap(page);
  654. memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
  655. *crc = ~(u32)0;
  656. *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
  657. kunmap(page);
  658. btrfs_csum_final(*crc, (char *)crc);
  659. crc++;
  660. bytes += PAGE_CACHE_SIZE;
  661. list_del_init(&entry->list);
  662. index++;
  663. }
  664. if (out_of_space) {
  665. btrfs_drop_pages(pages, num_pages);
  666. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  667. i_size_read(inode) - 1, &cached_state,
  668. GFP_NOFS);
  669. ret = 0;
  670. goto out_free;
  671. }
  672. /* Zero out the rest of the pages just to make sure */
  673. while (index < num_pages) {
  674. void *addr;
  675. page = pages[index];
  676. addr = kmap(page);
  677. memset(addr, 0, PAGE_CACHE_SIZE);
  678. kunmap(page);
  679. bytes += PAGE_CACHE_SIZE;
  680. index++;
  681. }
  682. /* Write the checksums and trans id to the first page */
  683. {
  684. void *addr;
  685. u64 *gen;
  686. page = pages[0];
  687. addr = kmap(page);
  688. memcpy(addr, checksums, sizeof(u32) * num_pages);
  689. gen = addr + (sizeof(u32) * num_pages);
  690. *gen = trans->transid;
  691. kunmap(page);
  692. }
  693. ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
  694. bytes, &cached_state);
  695. btrfs_drop_pages(pages, num_pages);
  696. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  697. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  698. if (ret) {
  699. ret = 0;
  700. goto out_free;
  701. }
  702. BTRFS_I(inode)->generation = trans->transid;
  703. filemap_write_and_wait(inode->i_mapping);
  704. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  705. key.offset = block_group->key.objectid;
  706. key.type = 0;
  707. ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
  708. if (ret < 0) {
  709. ret = 0;
  710. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  711. EXTENT_DIRTY | EXTENT_DELALLOC |
  712. EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
  713. goto out_free;
  714. }
  715. leaf = path->nodes[0];
  716. if (ret > 0) {
  717. struct btrfs_key found_key;
  718. BUG_ON(!path->slots[0]);
  719. path->slots[0]--;
  720. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  721. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  722. found_key.offset != block_group->key.objectid) {
  723. ret = 0;
  724. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  725. EXTENT_DIRTY | EXTENT_DELALLOC |
  726. EXTENT_DO_ACCOUNTING, 0, 0, NULL,
  727. GFP_NOFS);
  728. btrfs_release_path(root, path);
  729. goto out_free;
  730. }
  731. }
  732. header = btrfs_item_ptr(leaf, path->slots[0],
  733. struct btrfs_free_space_header);
  734. btrfs_set_free_space_entries(leaf, header, entries);
  735. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  736. btrfs_set_free_space_generation(leaf, header, trans->transid);
  737. btrfs_mark_buffer_dirty(leaf);
  738. btrfs_release_path(root, path);
  739. ret = 1;
  740. out_free:
  741. if (ret == 0) {
  742. invalidate_inode_pages2_range(inode->i_mapping, 0, index);
  743. spin_lock(&block_group->lock);
  744. block_group->disk_cache_state = BTRFS_DC_ERROR;
  745. spin_unlock(&block_group->lock);
  746. BTRFS_I(inode)->generation = 0;
  747. }
  748. kfree(checksums);
  749. kfree(pages);
  750. btrfs_update_inode(trans, root, inode);
  751. iput(inode);
  752. return ret;
  753. }
  754. static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
  755. u64 offset)
  756. {
  757. BUG_ON(offset < bitmap_start);
  758. offset -= bitmap_start;
  759. return (unsigned long)(div64_u64(offset, sectorsize));
  760. }
  761. static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
  762. {
  763. return (unsigned long)(div64_u64(bytes, sectorsize));
  764. }
  765. static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
  766. u64 offset)
  767. {
  768. u64 bitmap_start;
  769. u64 bytes_per_bitmap;
  770. bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
  771. bitmap_start = offset - block_group->key.objectid;
  772. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  773. bitmap_start *= bytes_per_bitmap;
  774. bitmap_start += block_group->key.objectid;
  775. return bitmap_start;
  776. }
  777. static int tree_insert_offset(struct rb_root *root, u64 offset,
  778. struct rb_node *node, int bitmap)
  779. {
  780. struct rb_node **p = &root->rb_node;
  781. struct rb_node *parent = NULL;
  782. struct btrfs_free_space *info;
  783. while (*p) {
  784. parent = *p;
  785. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  786. if (offset < info->offset) {
  787. p = &(*p)->rb_left;
  788. } else if (offset > info->offset) {
  789. p = &(*p)->rb_right;
  790. } else {
  791. /*
  792. * we could have a bitmap entry and an extent entry
  793. * share the same offset. If this is the case, we want
  794. * the extent entry to always be found first if we do a
  795. * linear search through the tree, since we want to have
  796. * the quickest allocation time, and allocating from an
  797. * extent is faster than allocating from a bitmap. So
  798. * if we're inserting a bitmap and we find an entry at
  799. * this offset, we want to go right, or after this entry
  800. * logically. If we are inserting an extent and we've
  801. * found a bitmap, we want to go left, or before
  802. * logically.
  803. */
  804. if (bitmap) {
  805. if (info->bitmap) {
  806. WARN_ON_ONCE(1);
  807. return -EEXIST;
  808. }
  809. p = &(*p)->rb_right;
  810. } else {
  811. if (!info->bitmap) {
  812. WARN_ON_ONCE(1);
  813. return -EEXIST;
  814. }
  815. p = &(*p)->rb_left;
  816. }
  817. }
  818. }
  819. rb_link_node(node, parent, p);
  820. rb_insert_color(node, root);
  821. return 0;
  822. }
  823. /*
  824. * searches the tree for the given offset.
  825. *
  826. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  827. * want a section that has at least bytes size and comes at or after the given
  828. * offset.
  829. */
  830. static struct btrfs_free_space *
  831. tree_search_offset(struct btrfs_block_group_cache *block_group,
  832. u64 offset, int bitmap_only, int fuzzy)
  833. {
  834. struct rb_node *n = block_group->free_space_offset.rb_node;
  835. struct btrfs_free_space *entry, *prev = NULL;
  836. /* find entry that is closest to the 'offset' */
  837. while (1) {
  838. if (!n) {
  839. entry = NULL;
  840. break;
  841. }
  842. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  843. prev = entry;
  844. if (offset < entry->offset)
  845. n = n->rb_left;
  846. else if (offset > entry->offset)
  847. n = n->rb_right;
  848. else
  849. break;
  850. }
  851. if (bitmap_only) {
  852. if (!entry)
  853. return NULL;
  854. if (entry->bitmap)
  855. return entry;
  856. /*
  857. * bitmap entry and extent entry may share same offset,
  858. * in that case, bitmap entry comes after extent entry.
  859. */
  860. n = rb_next(n);
  861. if (!n)
  862. return NULL;
  863. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  864. if (entry->offset != offset)
  865. return NULL;
  866. WARN_ON(!entry->bitmap);
  867. return entry;
  868. } else if (entry) {
  869. if (entry->bitmap) {
  870. /*
  871. * if previous extent entry covers the offset,
  872. * we should return it instead of the bitmap entry
  873. */
  874. n = &entry->offset_index;
  875. while (1) {
  876. n = rb_prev(n);
  877. if (!n)
  878. break;
  879. prev = rb_entry(n, struct btrfs_free_space,
  880. offset_index);
  881. if (!prev->bitmap) {
  882. if (prev->offset + prev->bytes > offset)
  883. entry = prev;
  884. break;
  885. }
  886. }
  887. }
  888. return entry;
  889. }
  890. if (!prev)
  891. return NULL;
  892. /* find last entry before the 'offset' */
  893. entry = prev;
  894. if (entry->offset > offset) {
  895. n = rb_prev(&entry->offset_index);
  896. if (n) {
  897. entry = rb_entry(n, struct btrfs_free_space,
  898. offset_index);
  899. BUG_ON(entry->offset > offset);
  900. } else {
  901. if (fuzzy)
  902. return entry;
  903. else
  904. return NULL;
  905. }
  906. }
  907. if (entry->bitmap) {
  908. n = &entry->offset_index;
  909. while (1) {
  910. n = rb_prev(n);
  911. if (!n)
  912. break;
  913. prev = rb_entry(n, struct btrfs_free_space,
  914. offset_index);
  915. if (!prev->bitmap) {
  916. if (prev->offset + prev->bytes > offset)
  917. return prev;
  918. break;
  919. }
  920. }
  921. if (entry->offset + BITS_PER_BITMAP *
  922. block_group->sectorsize > offset)
  923. return entry;
  924. } else if (entry->offset + entry->bytes > offset)
  925. return entry;
  926. if (!fuzzy)
  927. return NULL;
  928. while (1) {
  929. if (entry->bitmap) {
  930. if (entry->offset + BITS_PER_BITMAP *
  931. block_group->sectorsize > offset)
  932. break;
  933. } else {
  934. if (entry->offset + entry->bytes > offset)
  935. break;
  936. }
  937. n = rb_next(&entry->offset_index);
  938. if (!n)
  939. return NULL;
  940. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  941. }
  942. return entry;
  943. }
  944. static inline void
  945. __unlink_free_space(struct btrfs_block_group_cache *block_group,
  946. struct btrfs_free_space *info)
  947. {
  948. rb_erase(&info->offset_index, &block_group->free_space_offset);
  949. block_group->free_extents--;
  950. }
  951. static void unlink_free_space(struct btrfs_block_group_cache *block_group,
  952. struct btrfs_free_space *info)
  953. {
  954. __unlink_free_space(block_group, info);
  955. block_group->free_space -= info->bytes;
  956. }
  957. static int link_free_space(struct btrfs_block_group_cache *block_group,
  958. struct btrfs_free_space *info)
  959. {
  960. int ret = 0;
  961. BUG_ON(!info->bitmap && !info->bytes);
  962. ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
  963. &info->offset_index, (info->bitmap != NULL));
  964. if (ret)
  965. return ret;
  966. block_group->free_space += info->bytes;
  967. block_group->free_extents++;
  968. return ret;
  969. }
  970. static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
  971. {
  972. u64 max_bytes;
  973. u64 bitmap_bytes;
  974. u64 extent_bytes;
  975. u64 size = block_group->key.offset;
  976. /*
  977. * The goal is to keep the total amount of memory used per 1gb of space
  978. * at or below 32k, so we need to adjust how much memory we allow to be
  979. * used by extent based free space tracking
  980. */
  981. if (size < 1024 * 1024 * 1024)
  982. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  983. else
  984. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  985. div64_u64(size, 1024 * 1024 * 1024);
  986. /*
  987. * we want to account for 1 more bitmap than what we have so we can make
  988. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  989. * we add more bitmaps.
  990. */
  991. bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  992. if (bitmap_bytes >= max_bytes) {
  993. block_group->extents_thresh = 0;
  994. return;
  995. }
  996. /*
  997. * we want the extent entry threshold to always be at most 1/2 the maxw
  998. * bytes we can have, or whatever is less than that.
  999. */
  1000. extent_bytes = max_bytes - bitmap_bytes;
  1001. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  1002. block_group->extents_thresh =
  1003. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  1004. }
  1005. static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
  1006. struct btrfs_free_space *info, u64 offset,
  1007. u64 bytes)
  1008. {
  1009. unsigned long start, end;
  1010. unsigned long i;
  1011. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  1012. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  1013. BUG_ON(end > BITS_PER_BITMAP);
  1014. for (i = start; i < end; i++)
  1015. clear_bit(i, info->bitmap);
  1016. info->bytes -= bytes;
  1017. block_group->free_space -= bytes;
  1018. }
  1019. static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
  1020. struct btrfs_free_space *info, u64 offset,
  1021. u64 bytes)
  1022. {
  1023. unsigned long start, end;
  1024. unsigned long i;
  1025. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  1026. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  1027. BUG_ON(end > BITS_PER_BITMAP);
  1028. for (i = start; i < end; i++)
  1029. set_bit(i, info->bitmap);
  1030. info->bytes += bytes;
  1031. block_group->free_space += bytes;
  1032. }
  1033. static int search_bitmap(struct btrfs_block_group_cache *block_group,
  1034. struct btrfs_free_space *bitmap_info, u64 *offset,
  1035. u64 *bytes)
  1036. {
  1037. unsigned long found_bits = 0;
  1038. unsigned long bits, i;
  1039. unsigned long next_zero;
  1040. i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
  1041. max_t(u64, *offset, bitmap_info->offset));
  1042. bits = bytes_to_bits(*bytes, block_group->sectorsize);
  1043. for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
  1044. i < BITS_PER_BITMAP;
  1045. i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
  1046. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  1047. BITS_PER_BITMAP, i);
  1048. if ((next_zero - i) >= bits) {
  1049. found_bits = next_zero - i;
  1050. break;
  1051. }
  1052. i = next_zero;
  1053. }
  1054. if (found_bits) {
  1055. *offset = (u64)(i * block_group->sectorsize) +
  1056. bitmap_info->offset;
  1057. *bytes = (u64)(found_bits) * block_group->sectorsize;
  1058. return 0;
  1059. }
  1060. return -1;
  1061. }
  1062. static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
  1063. *block_group, u64 *offset,
  1064. u64 *bytes, int debug)
  1065. {
  1066. struct btrfs_free_space *entry;
  1067. struct rb_node *node;
  1068. int ret;
  1069. if (!block_group->free_space_offset.rb_node)
  1070. return NULL;
  1071. entry = tree_search_offset(block_group,
  1072. offset_to_bitmap(block_group, *offset),
  1073. 0, 1);
  1074. if (!entry)
  1075. return NULL;
  1076. for (node = &entry->offset_index; node; node = rb_next(node)) {
  1077. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1078. if (entry->bytes < *bytes)
  1079. continue;
  1080. if (entry->bitmap) {
  1081. ret = search_bitmap(block_group, entry, offset, bytes);
  1082. if (!ret)
  1083. return entry;
  1084. continue;
  1085. }
  1086. *offset = entry->offset;
  1087. *bytes = entry->bytes;
  1088. return entry;
  1089. }
  1090. return NULL;
  1091. }
  1092. static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
  1093. struct btrfs_free_space *info, u64 offset)
  1094. {
  1095. u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
  1096. int max_bitmaps = (int)div64_u64(block_group->key.offset +
  1097. bytes_per_bg - 1, bytes_per_bg);
  1098. BUG_ON(block_group->total_bitmaps >= max_bitmaps);
  1099. info->offset = offset_to_bitmap(block_group, offset);
  1100. info->bytes = 0;
  1101. link_free_space(block_group, info);
  1102. block_group->total_bitmaps++;
  1103. recalculate_thresholds(block_group);
  1104. }
  1105. static void free_bitmap(struct btrfs_block_group_cache *block_group,
  1106. struct btrfs_free_space *bitmap_info)
  1107. {
  1108. unlink_free_space(block_group, bitmap_info);
  1109. kfree(bitmap_info->bitmap);
  1110. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1111. block_group->total_bitmaps--;
  1112. recalculate_thresholds(block_group);
  1113. }
  1114. static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
  1115. struct btrfs_free_space *bitmap_info,
  1116. u64 *offset, u64 *bytes)
  1117. {
  1118. u64 end;
  1119. u64 search_start, search_bytes;
  1120. int ret;
  1121. again:
  1122. end = bitmap_info->offset +
  1123. (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
  1124. /*
  1125. * XXX - this can go away after a few releases.
  1126. *
  1127. * since the only user of btrfs_remove_free_space is the tree logging
  1128. * stuff, and the only way to test that is under crash conditions, we
  1129. * want to have this debug stuff here just in case somethings not
  1130. * working. Search the bitmap for the space we are trying to use to
  1131. * make sure its actually there. If its not there then we need to stop
  1132. * because something has gone wrong.
  1133. */
  1134. search_start = *offset;
  1135. search_bytes = *bytes;
  1136. search_bytes = min(search_bytes, end - search_start + 1);
  1137. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1138. &search_bytes);
  1139. BUG_ON(ret < 0 || search_start != *offset);
  1140. if (*offset > bitmap_info->offset && *offset + *bytes > end) {
  1141. bitmap_clear_bits(block_group, bitmap_info, *offset,
  1142. end - *offset + 1);
  1143. *bytes -= end - *offset + 1;
  1144. *offset = end + 1;
  1145. } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
  1146. bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
  1147. *bytes = 0;
  1148. }
  1149. if (*bytes) {
  1150. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1151. if (!bitmap_info->bytes)
  1152. free_bitmap(block_group, bitmap_info);
  1153. /*
  1154. * no entry after this bitmap, but we still have bytes to
  1155. * remove, so something has gone wrong.
  1156. */
  1157. if (!next)
  1158. return -EINVAL;
  1159. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1160. offset_index);
  1161. /*
  1162. * if the next entry isn't a bitmap we need to return to let the
  1163. * extent stuff do its work.
  1164. */
  1165. if (!bitmap_info->bitmap)
  1166. return -EAGAIN;
  1167. /*
  1168. * Ok the next item is a bitmap, but it may not actually hold
  1169. * the information for the rest of this free space stuff, so
  1170. * look for it, and if we don't find it return so we can try
  1171. * everything over again.
  1172. */
  1173. search_start = *offset;
  1174. search_bytes = *bytes;
  1175. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1176. &search_bytes);
  1177. if (ret < 0 || search_start != *offset)
  1178. return -EAGAIN;
  1179. goto again;
  1180. } else if (!bitmap_info->bytes)
  1181. free_bitmap(block_group, bitmap_info);
  1182. return 0;
  1183. }
  1184. static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
  1185. struct btrfs_free_space *info)
  1186. {
  1187. struct btrfs_free_space *bitmap_info;
  1188. int added = 0;
  1189. u64 bytes, offset, end;
  1190. int ret;
  1191. /*
  1192. * If we are below the extents threshold then we can add this as an
  1193. * extent, and don't have to deal with the bitmap
  1194. */
  1195. if (block_group->free_extents < block_group->extents_thresh) {
  1196. /*
  1197. * If this block group has some small extents we don't want to
  1198. * use up all of our free slots in the cache with them, we want
  1199. * to reserve them to larger extents, however if we have plent
  1200. * of cache left then go ahead an dadd them, no sense in adding
  1201. * the overhead of a bitmap if we don't have to.
  1202. */
  1203. if (info->bytes <= block_group->sectorsize * 4) {
  1204. if (block_group->free_extents * 2 <=
  1205. block_group->extents_thresh)
  1206. return 0;
  1207. } else {
  1208. return 0;
  1209. }
  1210. }
  1211. /*
  1212. * some block groups are so tiny they can't be enveloped by a bitmap, so
  1213. * don't even bother to create a bitmap for this
  1214. */
  1215. if (BITS_PER_BITMAP * block_group->sectorsize >
  1216. block_group->key.offset)
  1217. return 0;
  1218. bytes = info->bytes;
  1219. offset = info->offset;
  1220. again:
  1221. bitmap_info = tree_search_offset(block_group,
  1222. offset_to_bitmap(block_group, offset),
  1223. 1, 0);
  1224. if (!bitmap_info) {
  1225. BUG_ON(added);
  1226. goto new_bitmap;
  1227. }
  1228. end = bitmap_info->offset +
  1229. (u64)(BITS_PER_BITMAP * block_group->sectorsize);
  1230. if (offset >= bitmap_info->offset && offset + bytes > end) {
  1231. bitmap_set_bits(block_group, bitmap_info, offset,
  1232. end - offset);
  1233. bytes -= end - offset;
  1234. offset = end;
  1235. added = 0;
  1236. } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
  1237. bitmap_set_bits(block_group, bitmap_info, offset, bytes);
  1238. bytes = 0;
  1239. } else {
  1240. BUG();
  1241. }
  1242. if (!bytes) {
  1243. ret = 1;
  1244. goto out;
  1245. } else
  1246. goto again;
  1247. new_bitmap:
  1248. if (info && info->bitmap) {
  1249. add_new_bitmap(block_group, info, offset);
  1250. added = 1;
  1251. info = NULL;
  1252. goto again;
  1253. } else {
  1254. spin_unlock(&block_group->tree_lock);
  1255. /* no pre-allocated info, allocate a new one */
  1256. if (!info) {
  1257. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1258. GFP_NOFS);
  1259. if (!info) {
  1260. spin_lock(&block_group->tree_lock);
  1261. ret = -ENOMEM;
  1262. goto out;
  1263. }
  1264. }
  1265. /* allocate the bitmap */
  1266. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1267. spin_lock(&block_group->tree_lock);
  1268. if (!info->bitmap) {
  1269. ret = -ENOMEM;
  1270. goto out;
  1271. }
  1272. goto again;
  1273. }
  1274. out:
  1275. if (info) {
  1276. if (info->bitmap)
  1277. kfree(info->bitmap);
  1278. kmem_cache_free(btrfs_free_space_cachep, info);
  1279. }
  1280. return ret;
  1281. }
  1282. bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
  1283. struct btrfs_free_space *info, bool update_stat)
  1284. {
  1285. struct btrfs_free_space *left_info;
  1286. struct btrfs_free_space *right_info;
  1287. bool merged = false;
  1288. u64 offset = info->offset;
  1289. u64 bytes = info->bytes;
  1290. /*
  1291. * first we want to see if there is free space adjacent to the range we
  1292. * are adding, if there is remove that struct and add a new one to
  1293. * cover the entire range
  1294. */
  1295. right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
  1296. if (right_info && rb_prev(&right_info->offset_index))
  1297. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1298. struct btrfs_free_space, offset_index);
  1299. else
  1300. left_info = tree_search_offset(block_group, offset - 1, 0, 0);
  1301. if (right_info && !right_info->bitmap) {
  1302. if (update_stat)
  1303. unlink_free_space(block_group, right_info);
  1304. else
  1305. __unlink_free_space(block_group, right_info);
  1306. info->bytes += right_info->bytes;
  1307. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1308. merged = true;
  1309. }
  1310. if (left_info && !left_info->bitmap &&
  1311. left_info->offset + left_info->bytes == offset) {
  1312. if (update_stat)
  1313. unlink_free_space(block_group, left_info);
  1314. else
  1315. __unlink_free_space(block_group, left_info);
  1316. info->offset = left_info->offset;
  1317. info->bytes += left_info->bytes;
  1318. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1319. merged = true;
  1320. }
  1321. return merged;
  1322. }
  1323. int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
  1324. u64 offset, u64 bytes)
  1325. {
  1326. struct btrfs_free_space *info;
  1327. int ret = 0;
  1328. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1329. if (!info)
  1330. return -ENOMEM;
  1331. info->offset = offset;
  1332. info->bytes = bytes;
  1333. spin_lock(&block_group->tree_lock);
  1334. if (try_merge_free_space(block_group, info, true))
  1335. goto link;
  1336. /*
  1337. * There was no extent directly to the left or right of this new
  1338. * extent then we know we're going to have to allocate a new extent, so
  1339. * before we do that see if we need to drop this into a bitmap
  1340. */
  1341. ret = insert_into_bitmap(block_group, info);
  1342. if (ret < 0) {
  1343. goto out;
  1344. } else if (ret) {
  1345. ret = 0;
  1346. goto out;
  1347. }
  1348. link:
  1349. ret = link_free_space(block_group, info);
  1350. if (ret)
  1351. kmem_cache_free(btrfs_free_space_cachep, info);
  1352. out:
  1353. spin_unlock(&block_group->tree_lock);
  1354. if (ret) {
  1355. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1356. BUG_ON(ret == -EEXIST);
  1357. }
  1358. return ret;
  1359. }
  1360. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1361. u64 offset, u64 bytes)
  1362. {
  1363. struct btrfs_free_space *info;
  1364. struct btrfs_free_space *next_info = NULL;
  1365. int ret = 0;
  1366. spin_lock(&block_group->tree_lock);
  1367. again:
  1368. info = tree_search_offset(block_group, offset, 0, 0);
  1369. if (!info) {
  1370. /*
  1371. * oops didn't find an extent that matched the space we wanted
  1372. * to remove, look for a bitmap instead
  1373. */
  1374. info = tree_search_offset(block_group,
  1375. offset_to_bitmap(block_group, offset),
  1376. 1, 0);
  1377. if (!info) {
  1378. WARN_ON(1);
  1379. goto out_lock;
  1380. }
  1381. }
  1382. if (info->bytes < bytes && rb_next(&info->offset_index)) {
  1383. u64 end;
  1384. next_info = rb_entry(rb_next(&info->offset_index),
  1385. struct btrfs_free_space,
  1386. offset_index);
  1387. if (next_info->bitmap)
  1388. end = next_info->offset + BITS_PER_BITMAP *
  1389. block_group->sectorsize - 1;
  1390. else
  1391. end = next_info->offset + next_info->bytes;
  1392. if (next_info->bytes < bytes ||
  1393. next_info->offset > offset || offset > end) {
  1394. printk(KERN_CRIT "Found free space at %llu, size %llu,"
  1395. " trying to use %llu\n",
  1396. (unsigned long long)info->offset,
  1397. (unsigned long long)info->bytes,
  1398. (unsigned long long)bytes);
  1399. WARN_ON(1);
  1400. ret = -EINVAL;
  1401. goto out_lock;
  1402. }
  1403. info = next_info;
  1404. }
  1405. if (info->bytes == bytes) {
  1406. unlink_free_space(block_group, info);
  1407. if (info->bitmap) {
  1408. kfree(info->bitmap);
  1409. block_group->total_bitmaps--;
  1410. }
  1411. kmem_cache_free(btrfs_free_space_cachep, info);
  1412. goto out_lock;
  1413. }
  1414. if (!info->bitmap && info->offset == offset) {
  1415. unlink_free_space(block_group, info);
  1416. info->offset += bytes;
  1417. info->bytes -= bytes;
  1418. link_free_space(block_group, info);
  1419. goto out_lock;
  1420. }
  1421. if (!info->bitmap && info->offset <= offset &&
  1422. info->offset + info->bytes >= offset + bytes) {
  1423. u64 old_start = info->offset;
  1424. /*
  1425. * we're freeing space in the middle of the info,
  1426. * this can happen during tree log replay
  1427. *
  1428. * first unlink the old info and then
  1429. * insert it again after the hole we're creating
  1430. */
  1431. unlink_free_space(block_group, info);
  1432. if (offset + bytes < info->offset + info->bytes) {
  1433. u64 old_end = info->offset + info->bytes;
  1434. info->offset = offset + bytes;
  1435. info->bytes = old_end - info->offset;
  1436. ret = link_free_space(block_group, info);
  1437. WARN_ON(ret);
  1438. if (ret)
  1439. goto out_lock;
  1440. } else {
  1441. /* the hole we're creating ends at the end
  1442. * of the info struct, just free the info
  1443. */
  1444. kmem_cache_free(btrfs_free_space_cachep, info);
  1445. }
  1446. spin_unlock(&block_group->tree_lock);
  1447. /* step two, insert a new info struct to cover
  1448. * anything before the hole
  1449. */
  1450. ret = btrfs_add_free_space(block_group, old_start,
  1451. offset - old_start);
  1452. WARN_ON(ret);
  1453. goto out;
  1454. }
  1455. ret = remove_from_bitmap(block_group, info, &offset, &bytes);
  1456. if (ret == -EAGAIN)
  1457. goto again;
  1458. BUG_ON(ret);
  1459. out_lock:
  1460. spin_unlock(&block_group->tree_lock);
  1461. out:
  1462. return ret;
  1463. }
  1464. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1465. u64 bytes)
  1466. {
  1467. struct btrfs_free_space *info;
  1468. struct rb_node *n;
  1469. int count = 0;
  1470. for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
  1471. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1472. if (info->bytes >= bytes)
  1473. count++;
  1474. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1475. (unsigned long long)info->offset,
  1476. (unsigned long long)info->bytes,
  1477. (info->bitmap) ? "yes" : "no");
  1478. }
  1479. printk(KERN_INFO "block group has cluster?: %s\n",
  1480. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1481. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1482. "\n", count);
  1483. }
  1484. u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
  1485. {
  1486. struct btrfs_free_space *info;
  1487. struct rb_node *n;
  1488. u64 ret = 0;
  1489. for (n = rb_first(&block_group->free_space_offset); n;
  1490. n = rb_next(n)) {
  1491. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1492. ret += info->bytes;
  1493. }
  1494. return ret;
  1495. }
  1496. /*
  1497. * for a given cluster, put all of its extents back into the free
  1498. * space cache. If the block group passed doesn't match the block group
  1499. * pointed to by the cluster, someone else raced in and freed the
  1500. * cluster already. In that case, we just return without changing anything
  1501. */
  1502. static int
  1503. __btrfs_return_cluster_to_free_space(
  1504. struct btrfs_block_group_cache *block_group,
  1505. struct btrfs_free_cluster *cluster)
  1506. {
  1507. struct btrfs_free_space *entry;
  1508. struct rb_node *node;
  1509. spin_lock(&cluster->lock);
  1510. if (cluster->block_group != block_group)
  1511. goto out;
  1512. cluster->block_group = NULL;
  1513. cluster->window_start = 0;
  1514. list_del_init(&cluster->block_group_list);
  1515. node = rb_first(&cluster->root);
  1516. while (node) {
  1517. bool bitmap;
  1518. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1519. node = rb_next(&entry->offset_index);
  1520. rb_erase(&entry->offset_index, &cluster->root);
  1521. bitmap = (entry->bitmap != NULL);
  1522. if (!bitmap)
  1523. try_merge_free_space(block_group, entry, false);
  1524. tree_insert_offset(&block_group->free_space_offset,
  1525. entry->offset, &entry->offset_index, bitmap);
  1526. }
  1527. cluster->root = RB_ROOT;
  1528. out:
  1529. spin_unlock(&cluster->lock);
  1530. btrfs_put_block_group(block_group);
  1531. return 0;
  1532. }
  1533. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1534. {
  1535. struct btrfs_free_space *info;
  1536. struct rb_node *node;
  1537. struct btrfs_free_cluster *cluster;
  1538. struct list_head *head;
  1539. spin_lock(&block_group->tree_lock);
  1540. while ((head = block_group->cluster_list.next) !=
  1541. &block_group->cluster_list) {
  1542. cluster = list_entry(head, struct btrfs_free_cluster,
  1543. block_group_list);
  1544. WARN_ON(cluster->block_group != block_group);
  1545. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1546. if (need_resched()) {
  1547. spin_unlock(&block_group->tree_lock);
  1548. cond_resched();
  1549. spin_lock(&block_group->tree_lock);
  1550. }
  1551. }
  1552. while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
  1553. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1554. if (!info->bitmap) {
  1555. unlink_free_space(block_group, info);
  1556. kmem_cache_free(btrfs_free_space_cachep, info);
  1557. } else {
  1558. free_bitmap(block_group, info);
  1559. }
  1560. if (need_resched()) {
  1561. spin_unlock(&block_group->tree_lock);
  1562. cond_resched();
  1563. spin_lock(&block_group->tree_lock);
  1564. }
  1565. }
  1566. spin_unlock(&block_group->tree_lock);
  1567. }
  1568. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1569. u64 offset, u64 bytes, u64 empty_size)
  1570. {
  1571. struct btrfs_free_space *entry = NULL;
  1572. u64 bytes_search = bytes + empty_size;
  1573. u64 ret = 0;
  1574. spin_lock(&block_group->tree_lock);
  1575. entry = find_free_space(block_group, &offset, &bytes_search, 0);
  1576. if (!entry)
  1577. goto out;
  1578. ret = offset;
  1579. if (entry->bitmap) {
  1580. bitmap_clear_bits(block_group, entry, offset, bytes);
  1581. if (!entry->bytes)
  1582. free_bitmap(block_group, entry);
  1583. } else {
  1584. unlink_free_space(block_group, entry);
  1585. entry->offset += bytes;
  1586. entry->bytes -= bytes;
  1587. if (!entry->bytes)
  1588. kmem_cache_free(btrfs_free_space_cachep, entry);
  1589. else
  1590. link_free_space(block_group, entry);
  1591. }
  1592. out:
  1593. spin_unlock(&block_group->tree_lock);
  1594. return ret;
  1595. }
  1596. /*
  1597. * given a cluster, put all of its extents back into the free space
  1598. * cache. If a block group is passed, this function will only free
  1599. * a cluster that belongs to the passed block group.
  1600. *
  1601. * Otherwise, it'll get a reference on the block group pointed to by the
  1602. * cluster and remove the cluster from it.
  1603. */
  1604. int btrfs_return_cluster_to_free_space(
  1605. struct btrfs_block_group_cache *block_group,
  1606. struct btrfs_free_cluster *cluster)
  1607. {
  1608. int ret;
  1609. /* first, get a safe pointer to the block group */
  1610. spin_lock(&cluster->lock);
  1611. if (!block_group) {
  1612. block_group = cluster->block_group;
  1613. if (!block_group) {
  1614. spin_unlock(&cluster->lock);
  1615. return 0;
  1616. }
  1617. } else if (cluster->block_group != block_group) {
  1618. /* someone else has already freed it don't redo their work */
  1619. spin_unlock(&cluster->lock);
  1620. return 0;
  1621. }
  1622. atomic_inc(&block_group->count);
  1623. spin_unlock(&cluster->lock);
  1624. /* now return any extents the cluster had on it */
  1625. spin_lock(&block_group->tree_lock);
  1626. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1627. spin_unlock(&block_group->tree_lock);
  1628. /* finally drop our ref */
  1629. btrfs_put_block_group(block_group);
  1630. return ret;
  1631. }
  1632. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1633. struct btrfs_free_cluster *cluster,
  1634. struct btrfs_free_space *entry,
  1635. u64 bytes, u64 min_start)
  1636. {
  1637. int err;
  1638. u64 search_start = cluster->window_start;
  1639. u64 search_bytes = bytes;
  1640. u64 ret = 0;
  1641. search_start = min_start;
  1642. search_bytes = bytes;
  1643. err = search_bitmap(block_group, entry, &search_start,
  1644. &search_bytes);
  1645. if (err)
  1646. return 0;
  1647. ret = search_start;
  1648. bitmap_clear_bits(block_group, entry, ret, bytes);
  1649. return ret;
  1650. }
  1651. /*
  1652. * given a cluster, try to allocate 'bytes' from it, returns 0
  1653. * if it couldn't find anything suitably large, or a logical disk offset
  1654. * if things worked out
  1655. */
  1656. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1657. struct btrfs_free_cluster *cluster, u64 bytes,
  1658. u64 min_start)
  1659. {
  1660. struct btrfs_free_space *entry = NULL;
  1661. struct rb_node *node;
  1662. u64 ret = 0;
  1663. spin_lock(&cluster->lock);
  1664. if (bytes > cluster->max_size)
  1665. goto out;
  1666. if (cluster->block_group != block_group)
  1667. goto out;
  1668. node = rb_first(&cluster->root);
  1669. if (!node)
  1670. goto out;
  1671. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1672. while(1) {
  1673. if (entry->bytes < bytes ||
  1674. (!entry->bitmap && entry->offset < min_start)) {
  1675. struct rb_node *node;
  1676. node = rb_next(&entry->offset_index);
  1677. if (!node)
  1678. break;
  1679. entry = rb_entry(node, struct btrfs_free_space,
  1680. offset_index);
  1681. continue;
  1682. }
  1683. if (entry->bitmap) {
  1684. ret = btrfs_alloc_from_bitmap(block_group,
  1685. cluster, entry, bytes,
  1686. min_start);
  1687. if (ret == 0) {
  1688. struct rb_node *node;
  1689. node = rb_next(&entry->offset_index);
  1690. if (!node)
  1691. break;
  1692. entry = rb_entry(node, struct btrfs_free_space,
  1693. offset_index);
  1694. continue;
  1695. }
  1696. } else {
  1697. ret = entry->offset;
  1698. entry->offset += bytes;
  1699. entry->bytes -= bytes;
  1700. }
  1701. if (entry->bytes == 0)
  1702. rb_erase(&entry->offset_index, &cluster->root);
  1703. break;
  1704. }
  1705. out:
  1706. spin_unlock(&cluster->lock);
  1707. if (!ret)
  1708. return 0;
  1709. spin_lock(&block_group->tree_lock);
  1710. block_group->free_space -= bytes;
  1711. if (entry->bytes == 0) {
  1712. block_group->free_extents--;
  1713. if (entry->bitmap) {
  1714. kfree(entry->bitmap);
  1715. block_group->total_bitmaps--;
  1716. recalculate_thresholds(block_group);
  1717. }
  1718. kmem_cache_free(btrfs_free_space_cachep, entry);
  1719. }
  1720. spin_unlock(&block_group->tree_lock);
  1721. return ret;
  1722. }
  1723. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  1724. struct btrfs_free_space *entry,
  1725. struct btrfs_free_cluster *cluster,
  1726. u64 offset, u64 bytes, u64 min_bytes)
  1727. {
  1728. unsigned long next_zero;
  1729. unsigned long i;
  1730. unsigned long search_bits;
  1731. unsigned long total_bits;
  1732. unsigned long found_bits;
  1733. unsigned long start = 0;
  1734. unsigned long total_found = 0;
  1735. int ret;
  1736. bool found = false;
  1737. i = offset_to_bit(entry->offset, block_group->sectorsize,
  1738. max_t(u64, offset, entry->offset));
  1739. search_bits = bytes_to_bits(bytes, block_group->sectorsize);
  1740. total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
  1741. again:
  1742. found_bits = 0;
  1743. for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
  1744. i < BITS_PER_BITMAP;
  1745. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
  1746. next_zero = find_next_zero_bit(entry->bitmap,
  1747. BITS_PER_BITMAP, i);
  1748. if (next_zero - i >= search_bits) {
  1749. found_bits = next_zero - i;
  1750. break;
  1751. }
  1752. i = next_zero;
  1753. }
  1754. if (!found_bits)
  1755. return -ENOSPC;
  1756. if (!found) {
  1757. start = i;
  1758. found = true;
  1759. }
  1760. total_found += found_bits;
  1761. if (cluster->max_size < found_bits * block_group->sectorsize)
  1762. cluster->max_size = found_bits * block_group->sectorsize;
  1763. if (total_found < total_bits) {
  1764. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
  1765. if (i - start > total_bits * 2) {
  1766. total_found = 0;
  1767. cluster->max_size = 0;
  1768. found = false;
  1769. }
  1770. goto again;
  1771. }
  1772. cluster->window_start = start * block_group->sectorsize +
  1773. entry->offset;
  1774. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1775. ret = tree_insert_offset(&cluster->root, entry->offset,
  1776. &entry->offset_index, 1);
  1777. BUG_ON(ret);
  1778. return 0;
  1779. }
  1780. /*
  1781. * This searches the block group for just extents to fill the cluster with.
  1782. */
  1783. static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  1784. struct btrfs_free_cluster *cluster,
  1785. u64 offset, u64 bytes, u64 min_bytes)
  1786. {
  1787. struct btrfs_free_space *first = NULL;
  1788. struct btrfs_free_space *entry = NULL;
  1789. struct btrfs_free_space *prev = NULL;
  1790. struct btrfs_free_space *last;
  1791. struct rb_node *node;
  1792. u64 window_start;
  1793. u64 window_free;
  1794. u64 max_extent;
  1795. u64 max_gap = 128 * 1024;
  1796. entry = tree_search_offset(block_group, offset, 0, 1);
  1797. if (!entry)
  1798. return -ENOSPC;
  1799. /*
  1800. * We don't want bitmaps, so just move along until we find a normal
  1801. * extent entry.
  1802. */
  1803. while (entry->bitmap) {
  1804. node = rb_next(&entry->offset_index);
  1805. if (!node)
  1806. return -ENOSPC;
  1807. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1808. }
  1809. window_start = entry->offset;
  1810. window_free = entry->bytes;
  1811. max_extent = entry->bytes;
  1812. first = entry;
  1813. last = entry;
  1814. prev = entry;
  1815. while (window_free <= min_bytes) {
  1816. node = rb_next(&entry->offset_index);
  1817. if (!node)
  1818. return -ENOSPC;
  1819. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1820. if (entry->bitmap)
  1821. continue;
  1822. /*
  1823. * we haven't filled the empty size and the window is
  1824. * very large. reset and try again
  1825. */
  1826. if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
  1827. entry->offset - window_start > (min_bytes * 2)) {
  1828. first = entry;
  1829. window_start = entry->offset;
  1830. window_free = entry->bytes;
  1831. last = entry;
  1832. max_extent = entry->bytes;
  1833. } else {
  1834. last = entry;
  1835. window_free += entry->bytes;
  1836. if (entry->bytes > max_extent)
  1837. max_extent = entry->bytes;
  1838. }
  1839. prev = entry;
  1840. }
  1841. cluster->window_start = first->offset;
  1842. node = &first->offset_index;
  1843. /*
  1844. * now we've found our entries, pull them out of the free space
  1845. * cache and put them into the cluster rbtree
  1846. */
  1847. do {
  1848. int ret;
  1849. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1850. node = rb_next(&entry->offset_index);
  1851. if (entry->bitmap)
  1852. continue;
  1853. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1854. ret = tree_insert_offset(&cluster->root, entry->offset,
  1855. &entry->offset_index, 0);
  1856. BUG_ON(ret);
  1857. } while (node && entry != last);
  1858. cluster->max_size = max_extent;
  1859. return 0;
  1860. }
  1861. /*
  1862. * This specifically looks for bitmaps that may work in the cluster, we assume
  1863. * that we have already failed to find extents that will work.
  1864. */
  1865. static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  1866. struct btrfs_free_cluster *cluster,
  1867. u64 offset, u64 bytes, u64 min_bytes)
  1868. {
  1869. struct btrfs_free_space *entry;
  1870. struct rb_node *node;
  1871. int ret = -ENOSPC;
  1872. if (block_group->total_bitmaps == 0)
  1873. return -ENOSPC;
  1874. entry = tree_search_offset(block_group,
  1875. offset_to_bitmap(block_group, offset),
  1876. 0, 1);
  1877. if (!entry)
  1878. return -ENOSPC;
  1879. node = &entry->offset_index;
  1880. do {
  1881. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1882. node = rb_next(&entry->offset_index);
  1883. if (!entry->bitmap)
  1884. continue;
  1885. if (entry->bytes < min_bytes)
  1886. continue;
  1887. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  1888. bytes, min_bytes);
  1889. } while (ret && node);
  1890. return ret;
  1891. }
  1892. /*
  1893. * here we try to find a cluster of blocks in a block group. The goal
  1894. * is to find at least bytes free and up to empty_size + bytes free.
  1895. * We might not find them all in one contiguous area.
  1896. *
  1897. * returns zero and sets up cluster if things worked out, otherwise
  1898. * it returns -enospc
  1899. */
  1900. int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
  1901. struct btrfs_root *root,
  1902. struct btrfs_block_group_cache *block_group,
  1903. struct btrfs_free_cluster *cluster,
  1904. u64 offset, u64 bytes, u64 empty_size)
  1905. {
  1906. u64 min_bytes;
  1907. int ret;
  1908. /* for metadata, allow allocates with more holes */
  1909. if (btrfs_test_opt(root, SSD_SPREAD)) {
  1910. min_bytes = bytes + empty_size;
  1911. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  1912. /*
  1913. * we want to do larger allocations when we are
  1914. * flushing out the delayed refs, it helps prevent
  1915. * making more work as we go along.
  1916. */
  1917. if (trans->transaction->delayed_refs.flushing)
  1918. min_bytes = max(bytes, (bytes + empty_size) >> 1);
  1919. else
  1920. min_bytes = max(bytes, (bytes + empty_size) >> 4);
  1921. } else
  1922. min_bytes = max(bytes, (bytes + empty_size) >> 2);
  1923. spin_lock(&block_group->tree_lock);
  1924. /*
  1925. * If we know we don't have enough space to make a cluster don't even
  1926. * bother doing all the work to try and find one.
  1927. */
  1928. if (block_group->free_space < min_bytes) {
  1929. spin_unlock(&block_group->tree_lock);
  1930. return -ENOSPC;
  1931. }
  1932. spin_lock(&cluster->lock);
  1933. /* someone already found a cluster, hooray */
  1934. if (cluster->block_group) {
  1935. ret = 0;
  1936. goto out;
  1937. }
  1938. ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
  1939. min_bytes);
  1940. if (ret)
  1941. ret = setup_cluster_bitmap(block_group, cluster, offset,
  1942. bytes, min_bytes);
  1943. if (!ret) {
  1944. atomic_inc(&block_group->count);
  1945. list_add_tail(&cluster->block_group_list,
  1946. &block_group->cluster_list);
  1947. cluster->block_group = block_group;
  1948. }
  1949. out:
  1950. spin_unlock(&cluster->lock);
  1951. spin_unlock(&block_group->tree_lock);
  1952. return ret;
  1953. }
  1954. /*
  1955. * simple code to zero out a cluster
  1956. */
  1957. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  1958. {
  1959. spin_lock_init(&cluster->lock);
  1960. spin_lock_init(&cluster->refill_lock);
  1961. cluster->root = RB_ROOT;
  1962. cluster->max_size = 0;
  1963. INIT_LIST_HEAD(&cluster->block_group_list);
  1964. cluster->block_group = NULL;
  1965. }
  1966. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  1967. u64 *trimmed, u64 start, u64 end, u64 minlen)
  1968. {
  1969. struct btrfs_free_space *entry = NULL;
  1970. struct btrfs_fs_info *fs_info = block_group->fs_info;
  1971. u64 bytes = 0;
  1972. u64 actually_trimmed;
  1973. int ret = 0;
  1974. *trimmed = 0;
  1975. while (start < end) {
  1976. spin_lock(&block_group->tree_lock);
  1977. if (block_group->free_space < minlen) {
  1978. spin_unlock(&block_group->tree_lock);
  1979. break;
  1980. }
  1981. entry = tree_search_offset(block_group, start, 0, 1);
  1982. if (!entry)
  1983. entry = tree_search_offset(block_group,
  1984. offset_to_bitmap(block_group,
  1985. start),
  1986. 1, 1);
  1987. if (!entry || entry->offset >= end) {
  1988. spin_unlock(&block_group->tree_lock);
  1989. break;
  1990. }
  1991. if (entry->bitmap) {
  1992. ret = search_bitmap(block_group, entry, &start, &bytes);
  1993. if (!ret) {
  1994. if (start >= end) {
  1995. spin_unlock(&block_group->tree_lock);
  1996. break;
  1997. }
  1998. bytes = min(bytes, end - start);
  1999. bitmap_clear_bits(block_group, entry,
  2000. start, bytes);
  2001. if (entry->bytes == 0)
  2002. free_bitmap(block_group, entry);
  2003. } else {
  2004. start = entry->offset + BITS_PER_BITMAP *
  2005. block_group->sectorsize;
  2006. spin_unlock(&block_group->tree_lock);
  2007. ret = 0;
  2008. continue;
  2009. }
  2010. } else {
  2011. start = entry->offset;
  2012. bytes = min(entry->bytes, end - start);
  2013. unlink_free_space(block_group, entry);
  2014. kmem_cache_free(btrfs_free_space_cachep, entry);
  2015. }
  2016. spin_unlock(&block_group->tree_lock);
  2017. if (bytes >= minlen) {
  2018. int update_ret;
  2019. update_ret = btrfs_update_reserved_bytes(block_group,
  2020. bytes, 1, 1);
  2021. ret = btrfs_error_discard_extent(fs_info->extent_root,
  2022. start,
  2023. bytes,
  2024. &actually_trimmed);
  2025. btrfs_add_free_space(block_group,
  2026. start, bytes);
  2027. if (!update_ret)
  2028. btrfs_update_reserved_bytes(block_group,
  2029. bytes, 0, 1);
  2030. if (ret)
  2031. break;
  2032. *trimmed += actually_trimmed;
  2033. }
  2034. start += bytes;
  2035. bytes = 0;
  2036. if (fatal_signal_pending(current)) {
  2037. ret = -ERESTARTSYS;
  2038. break;
  2039. }
  2040. cond_resched();
  2041. }
  2042. return ret;
  2043. }