futex.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/freezer.h>
  65. #include <asm/futex.h>
  66. #include "rtmutex_common.h"
  67. int __read_mostly futex_cmpxchg_enabled;
  68. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  69. /*
  70. * Futex flags used to encode options to functions and preserve them across
  71. * restarts.
  72. */
  73. #define FLAGS_SHARED 0x01
  74. #define FLAGS_CLOCKRT 0x02
  75. #define FLAGS_HAS_TIMEOUT 0x04
  76. /*
  77. * Priority Inheritance state:
  78. */
  79. struct futex_pi_state {
  80. /*
  81. * list of 'owned' pi_state instances - these have to be
  82. * cleaned up in do_exit() if the task exits prematurely:
  83. */
  84. struct list_head list;
  85. /*
  86. * The PI object:
  87. */
  88. struct rt_mutex pi_mutex;
  89. struct task_struct *owner;
  90. atomic_t refcount;
  91. union futex_key key;
  92. };
  93. /**
  94. * struct futex_q - The hashed futex queue entry, one per waiting task
  95. * @list: priority-sorted list of tasks waiting on this futex
  96. * @task: the task waiting on the futex
  97. * @lock_ptr: the hash bucket lock
  98. * @key: the key the futex is hashed on
  99. * @pi_state: optional priority inheritance state
  100. * @rt_waiter: rt_waiter storage for use with requeue_pi
  101. * @requeue_pi_key: the requeue_pi target futex key
  102. * @bitset: bitset for the optional bitmasked wakeup
  103. *
  104. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  105. * we can wake only the relevant ones (hashed queues may be shared).
  106. *
  107. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  108. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  109. * The order of wakeup is always to make the first condition true, then
  110. * the second.
  111. *
  112. * PI futexes are typically woken before they are removed from the hash list via
  113. * the rt_mutex code. See unqueue_me_pi().
  114. */
  115. struct futex_q {
  116. struct plist_node list;
  117. struct task_struct *task;
  118. spinlock_t *lock_ptr;
  119. union futex_key key;
  120. struct futex_pi_state *pi_state;
  121. struct rt_mutex_waiter *rt_waiter;
  122. union futex_key *requeue_pi_key;
  123. u32 bitset;
  124. };
  125. static const struct futex_q futex_q_init = {
  126. /* list gets initialized in queue_me()*/
  127. .key = FUTEX_KEY_INIT,
  128. .bitset = FUTEX_BITSET_MATCH_ANY
  129. };
  130. /*
  131. * Hash buckets are shared by all the futex_keys that hash to the same
  132. * location. Each key may have multiple futex_q structures, one for each task
  133. * waiting on a futex.
  134. */
  135. struct futex_hash_bucket {
  136. spinlock_t lock;
  137. struct plist_head chain;
  138. };
  139. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  140. /*
  141. * We hash on the keys returned from get_futex_key (see below).
  142. */
  143. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  144. {
  145. u32 hash = jhash2((u32*)&key->both.word,
  146. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  147. key->both.offset);
  148. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  149. }
  150. /*
  151. * Return 1 if two futex_keys are equal, 0 otherwise.
  152. */
  153. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  154. {
  155. return (key1 && key2
  156. && key1->both.word == key2->both.word
  157. && key1->both.ptr == key2->both.ptr
  158. && key1->both.offset == key2->both.offset);
  159. }
  160. /*
  161. * Take a reference to the resource addressed by a key.
  162. * Can be called while holding spinlocks.
  163. *
  164. */
  165. static void get_futex_key_refs(union futex_key *key)
  166. {
  167. if (!key->both.ptr)
  168. return;
  169. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  170. case FUT_OFF_INODE:
  171. ihold(key->shared.inode);
  172. break;
  173. case FUT_OFF_MMSHARED:
  174. atomic_inc(&key->private.mm->mm_count);
  175. break;
  176. }
  177. }
  178. /*
  179. * Drop a reference to the resource addressed by a key.
  180. * The hash bucket spinlock must not be held.
  181. */
  182. static void drop_futex_key_refs(union futex_key *key)
  183. {
  184. if (!key->both.ptr) {
  185. /* If we're here then we tried to put a key we failed to get */
  186. WARN_ON_ONCE(1);
  187. return;
  188. }
  189. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  190. case FUT_OFF_INODE:
  191. iput(key->shared.inode);
  192. break;
  193. case FUT_OFF_MMSHARED:
  194. mmdrop(key->private.mm);
  195. break;
  196. }
  197. }
  198. /**
  199. * get_futex_key() - Get parameters which are the keys for a futex
  200. * @uaddr: virtual address of the futex
  201. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  202. * @key: address where result is stored.
  203. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  204. * VERIFY_WRITE)
  205. *
  206. * Return: a negative error code or 0
  207. *
  208. * The key words are stored in *key on success.
  209. *
  210. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  211. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  212. * We can usually work out the index without swapping in the page.
  213. *
  214. * lock_page() might sleep, the caller should not hold a spinlock.
  215. */
  216. static int
  217. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  218. {
  219. unsigned long address = (unsigned long)uaddr;
  220. struct mm_struct *mm = current->mm;
  221. struct page *page, *page_head;
  222. int err, ro = 0;
  223. /*
  224. * The futex address must be "naturally" aligned.
  225. */
  226. key->both.offset = address % PAGE_SIZE;
  227. if (unlikely((address % sizeof(u32)) != 0))
  228. return -EINVAL;
  229. address -= key->both.offset;
  230. /*
  231. * PROCESS_PRIVATE futexes are fast.
  232. * As the mm cannot disappear under us and the 'key' only needs
  233. * virtual address, we dont even have to find the underlying vma.
  234. * Note : We do have to check 'uaddr' is a valid user address,
  235. * but access_ok() should be faster than find_vma()
  236. */
  237. if (!fshared) {
  238. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  239. return -EFAULT;
  240. key->private.mm = mm;
  241. key->private.address = address;
  242. get_futex_key_refs(key);
  243. return 0;
  244. }
  245. again:
  246. err = get_user_pages_fast(address, 1, 1, &page);
  247. /*
  248. * If write access is not required (eg. FUTEX_WAIT), try
  249. * and get read-only access.
  250. */
  251. if (err == -EFAULT && rw == VERIFY_READ) {
  252. err = get_user_pages_fast(address, 1, 0, &page);
  253. ro = 1;
  254. }
  255. if (err < 0)
  256. return err;
  257. else
  258. err = 0;
  259. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  260. page_head = page;
  261. if (unlikely(PageTail(page))) {
  262. put_page(page);
  263. /* serialize against __split_huge_page_splitting() */
  264. local_irq_disable();
  265. if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
  266. page_head = compound_head(page);
  267. /*
  268. * page_head is valid pointer but we must pin
  269. * it before taking the PG_lock and/or
  270. * PG_compound_lock. The moment we re-enable
  271. * irqs __split_huge_page_splitting() can
  272. * return and the head page can be freed from
  273. * under us. We can't take the PG_lock and/or
  274. * PG_compound_lock on a page that could be
  275. * freed from under us.
  276. */
  277. if (page != page_head) {
  278. get_page(page_head);
  279. put_page(page);
  280. }
  281. local_irq_enable();
  282. } else {
  283. local_irq_enable();
  284. goto again;
  285. }
  286. }
  287. #else
  288. page_head = compound_head(page);
  289. if (page != page_head) {
  290. get_page(page_head);
  291. put_page(page);
  292. }
  293. #endif
  294. lock_page(page_head);
  295. /*
  296. * If page_head->mapping is NULL, then it cannot be a PageAnon
  297. * page; but it might be the ZERO_PAGE or in the gate area or
  298. * in a special mapping (all cases which we are happy to fail);
  299. * or it may have been a good file page when get_user_pages_fast
  300. * found it, but truncated or holepunched or subjected to
  301. * invalidate_complete_page2 before we got the page lock (also
  302. * cases which we are happy to fail). And we hold a reference,
  303. * so refcount care in invalidate_complete_page's remove_mapping
  304. * prevents drop_caches from setting mapping to NULL beneath us.
  305. *
  306. * The case we do have to guard against is when memory pressure made
  307. * shmem_writepage move it from filecache to swapcache beneath us:
  308. * an unlikely race, but we do need to retry for page_head->mapping.
  309. */
  310. if (!page_head->mapping) {
  311. int shmem_swizzled = PageSwapCache(page_head);
  312. unlock_page(page_head);
  313. put_page(page_head);
  314. if (shmem_swizzled)
  315. goto again;
  316. return -EFAULT;
  317. }
  318. /*
  319. * Private mappings are handled in a simple way.
  320. *
  321. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  322. * it's a read-only handle, it's expected that futexes attach to
  323. * the object not the particular process.
  324. */
  325. if (PageAnon(page_head)) {
  326. /*
  327. * A RO anonymous page will never change and thus doesn't make
  328. * sense for futex operations.
  329. */
  330. if (ro) {
  331. err = -EFAULT;
  332. goto out;
  333. }
  334. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  335. key->private.mm = mm;
  336. key->private.address = address;
  337. } else {
  338. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  339. key->shared.inode = page_head->mapping->host;
  340. key->shared.pgoff = page_head->index;
  341. }
  342. get_futex_key_refs(key);
  343. out:
  344. unlock_page(page_head);
  345. put_page(page_head);
  346. return err;
  347. }
  348. static inline void put_futex_key(union futex_key *key)
  349. {
  350. drop_futex_key_refs(key);
  351. }
  352. /**
  353. * fault_in_user_writeable() - Fault in user address and verify RW access
  354. * @uaddr: pointer to faulting user space address
  355. *
  356. * Slow path to fixup the fault we just took in the atomic write
  357. * access to @uaddr.
  358. *
  359. * We have no generic implementation of a non-destructive write to the
  360. * user address. We know that we faulted in the atomic pagefault
  361. * disabled section so we can as well avoid the #PF overhead by
  362. * calling get_user_pages() right away.
  363. */
  364. static int fault_in_user_writeable(u32 __user *uaddr)
  365. {
  366. struct mm_struct *mm = current->mm;
  367. int ret;
  368. down_read(&mm->mmap_sem);
  369. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  370. FAULT_FLAG_WRITE);
  371. up_read(&mm->mmap_sem);
  372. return ret < 0 ? ret : 0;
  373. }
  374. /**
  375. * futex_top_waiter() - Return the highest priority waiter on a futex
  376. * @hb: the hash bucket the futex_q's reside in
  377. * @key: the futex key (to distinguish it from other futex futex_q's)
  378. *
  379. * Must be called with the hb lock held.
  380. */
  381. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  382. union futex_key *key)
  383. {
  384. struct futex_q *this;
  385. plist_for_each_entry(this, &hb->chain, list) {
  386. if (match_futex(&this->key, key))
  387. return this;
  388. }
  389. return NULL;
  390. }
  391. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  392. u32 uval, u32 newval)
  393. {
  394. int ret;
  395. pagefault_disable();
  396. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  397. pagefault_enable();
  398. return ret;
  399. }
  400. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  401. {
  402. int ret;
  403. pagefault_disable();
  404. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  405. pagefault_enable();
  406. return ret ? -EFAULT : 0;
  407. }
  408. /*
  409. * PI code:
  410. */
  411. static int refill_pi_state_cache(void)
  412. {
  413. struct futex_pi_state *pi_state;
  414. if (likely(current->pi_state_cache))
  415. return 0;
  416. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  417. if (!pi_state)
  418. return -ENOMEM;
  419. INIT_LIST_HEAD(&pi_state->list);
  420. /* pi_mutex gets initialized later */
  421. pi_state->owner = NULL;
  422. atomic_set(&pi_state->refcount, 1);
  423. pi_state->key = FUTEX_KEY_INIT;
  424. current->pi_state_cache = pi_state;
  425. return 0;
  426. }
  427. static struct futex_pi_state * alloc_pi_state(void)
  428. {
  429. struct futex_pi_state *pi_state = current->pi_state_cache;
  430. WARN_ON(!pi_state);
  431. current->pi_state_cache = NULL;
  432. return pi_state;
  433. }
  434. static void free_pi_state(struct futex_pi_state *pi_state)
  435. {
  436. if (!atomic_dec_and_test(&pi_state->refcount))
  437. return;
  438. /*
  439. * If pi_state->owner is NULL, the owner is most probably dying
  440. * and has cleaned up the pi_state already
  441. */
  442. if (pi_state->owner) {
  443. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  444. list_del_init(&pi_state->list);
  445. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  446. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  447. }
  448. if (current->pi_state_cache)
  449. kfree(pi_state);
  450. else {
  451. /*
  452. * pi_state->list is already empty.
  453. * clear pi_state->owner.
  454. * refcount is at 0 - put it back to 1.
  455. */
  456. pi_state->owner = NULL;
  457. atomic_set(&pi_state->refcount, 1);
  458. current->pi_state_cache = pi_state;
  459. }
  460. }
  461. /*
  462. * Look up the task based on what TID userspace gave us.
  463. * We dont trust it.
  464. */
  465. static struct task_struct * futex_find_get_task(pid_t pid)
  466. {
  467. struct task_struct *p;
  468. rcu_read_lock();
  469. p = find_task_by_vpid(pid);
  470. if (p)
  471. get_task_struct(p);
  472. rcu_read_unlock();
  473. return p;
  474. }
  475. /*
  476. * This task is holding PI mutexes at exit time => bad.
  477. * Kernel cleans up PI-state, but userspace is likely hosed.
  478. * (Robust-futex cleanup is separate and might save the day for userspace.)
  479. */
  480. void exit_pi_state_list(struct task_struct *curr)
  481. {
  482. struct list_head *next, *head = &curr->pi_state_list;
  483. struct futex_pi_state *pi_state;
  484. struct futex_hash_bucket *hb;
  485. union futex_key key = FUTEX_KEY_INIT;
  486. if (!futex_cmpxchg_enabled)
  487. return;
  488. /*
  489. * We are a ZOMBIE and nobody can enqueue itself on
  490. * pi_state_list anymore, but we have to be careful
  491. * versus waiters unqueueing themselves:
  492. */
  493. raw_spin_lock_irq(&curr->pi_lock);
  494. while (!list_empty(head)) {
  495. next = head->next;
  496. pi_state = list_entry(next, struct futex_pi_state, list);
  497. key = pi_state->key;
  498. hb = hash_futex(&key);
  499. raw_spin_unlock_irq(&curr->pi_lock);
  500. spin_lock(&hb->lock);
  501. raw_spin_lock_irq(&curr->pi_lock);
  502. /*
  503. * We dropped the pi-lock, so re-check whether this
  504. * task still owns the PI-state:
  505. */
  506. if (head->next != next) {
  507. spin_unlock(&hb->lock);
  508. continue;
  509. }
  510. WARN_ON(pi_state->owner != curr);
  511. WARN_ON(list_empty(&pi_state->list));
  512. list_del_init(&pi_state->list);
  513. pi_state->owner = NULL;
  514. raw_spin_unlock_irq(&curr->pi_lock);
  515. rt_mutex_unlock(&pi_state->pi_mutex);
  516. spin_unlock(&hb->lock);
  517. raw_spin_lock_irq(&curr->pi_lock);
  518. }
  519. raw_spin_unlock_irq(&curr->pi_lock);
  520. }
  521. static int
  522. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  523. union futex_key *key, struct futex_pi_state **ps)
  524. {
  525. struct futex_pi_state *pi_state = NULL;
  526. struct futex_q *this, *next;
  527. struct plist_head *head;
  528. struct task_struct *p;
  529. pid_t pid = uval & FUTEX_TID_MASK;
  530. head = &hb->chain;
  531. plist_for_each_entry_safe(this, next, head, list) {
  532. if (match_futex(&this->key, key)) {
  533. /*
  534. * Another waiter already exists - bump up
  535. * the refcount and return its pi_state:
  536. */
  537. pi_state = this->pi_state;
  538. /*
  539. * Userspace might have messed up non-PI and PI futexes
  540. */
  541. if (unlikely(!pi_state))
  542. return -EINVAL;
  543. WARN_ON(!atomic_read(&pi_state->refcount));
  544. /*
  545. * When pi_state->owner is NULL then the owner died
  546. * and another waiter is on the fly. pi_state->owner
  547. * is fixed up by the task which acquires
  548. * pi_state->rt_mutex.
  549. *
  550. * We do not check for pid == 0 which can happen when
  551. * the owner died and robust_list_exit() cleared the
  552. * TID.
  553. */
  554. if (pid && pi_state->owner) {
  555. /*
  556. * Bail out if user space manipulated the
  557. * futex value.
  558. */
  559. if (pid != task_pid_vnr(pi_state->owner))
  560. return -EINVAL;
  561. }
  562. atomic_inc(&pi_state->refcount);
  563. *ps = pi_state;
  564. return 0;
  565. }
  566. }
  567. /*
  568. * We are the first waiter - try to look up the real owner and attach
  569. * the new pi_state to it, but bail out when TID = 0
  570. */
  571. if (!pid)
  572. return -ESRCH;
  573. p = futex_find_get_task(pid);
  574. if (!p)
  575. return -ESRCH;
  576. /*
  577. * We need to look at the task state flags to figure out,
  578. * whether the task is exiting. To protect against the do_exit
  579. * change of the task flags, we do this protected by
  580. * p->pi_lock:
  581. */
  582. raw_spin_lock_irq(&p->pi_lock);
  583. if (unlikely(p->flags & PF_EXITING)) {
  584. /*
  585. * The task is on the way out. When PF_EXITPIDONE is
  586. * set, we know that the task has finished the
  587. * cleanup:
  588. */
  589. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  590. raw_spin_unlock_irq(&p->pi_lock);
  591. put_task_struct(p);
  592. return ret;
  593. }
  594. pi_state = alloc_pi_state();
  595. /*
  596. * Initialize the pi_mutex in locked state and make 'p'
  597. * the owner of it:
  598. */
  599. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  600. /* Store the key for possible exit cleanups: */
  601. pi_state->key = *key;
  602. WARN_ON(!list_empty(&pi_state->list));
  603. list_add(&pi_state->list, &p->pi_state_list);
  604. pi_state->owner = p;
  605. raw_spin_unlock_irq(&p->pi_lock);
  606. put_task_struct(p);
  607. *ps = pi_state;
  608. return 0;
  609. }
  610. /**
  611. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  612. * @uaddr: the pi futex user address
  613. * @hb: the pi futex hash bucket
  614. * @key: the futex key associated with uaddr and hb
  615. * @ps: the pi_state pointer where we store the result of the
  616. * lookup
  617. * @task: the task to perform the atomic lock work for. This will
  618. * be "current" except in the case of requeue pi.
  619. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  620. *
  621. * Return:
  622. * 0 - ready to wait;
  623. * 1 - acquired the lock;
  624. * <0 - error
  625. *
  626. * The hb->lock and futex_key refs shall be held by the caller.
  627. */
  628. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  629. union futex_key *key,
  630. struct futex_pi_state **ps,
  631. struct task_struct *task, int set_waiters)
  632. {
  633. int lock_taken, ret, force_take = 0;
  634. u32 uval, newval, curval, vpid = task_pid_vnr(task);
  635. retry:
  636. ret = lock_taken = 0;
  637. /*
  638. * To avoid races, we attempt to take the lock here again
  639. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  640. * the locks. It will most likely not succeed.
  641. */
  642. newval = vpid;
  643. if (set_waiters)
  644. newval |= FUTEX_WAITERS;
  645. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
  646. return -EFAULT;
  647. /*
  648. * Detect deadlocks.
  649. */
  650. if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
  651. return -EDEADLK;
  652. /*
  653. * Surprise - we got the lock. Just return to userspace:
  654. */
  655. if (unlikely(!curval))
  656. return 1;
  657. uval = curval;
  658. /*
  659. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  660. * to wake at the next unlock.
  661. */
  662. newval = curval | FUTEX_WAITERS;
  663. /*
  664. * Should we force take the futex? See below.
  665. */
  666. if (unlikely(force_take)) {
  667. /*
  668. * Keep the OWNER_DIED and the WAITERS bit and set the
  669. * new TID value.
  670. */
  671. newval = (curval & ~FUTEX_TID_MASK) | vpid;
  672. force_take = 0;
  673. lock_taken = 1;
  674. }
  675. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  676. return -EFAULT;
  677. if (unlikely(curval != uval))
  678. goto retry;
  679. /*
  680. * We took the lock due to forced take over.
  681. */
  682. if (unlikely(lock_taken))
  683. return 1;
  684. /*
  685. * We dont have the lock. Look up the PI state (or create it if
  686. * we are the first waiter):
  687. */
  688. ret = lookup_pi_state(uval, hb, key, ps);
  689. if (unlikely(ret)) {
  690. switch (ret) {
  691. case -ESRCH:
  692. /*
  693. * We failed to find an owner for this
  694. * futex. So we have no pi_state to block
  695. * on. This can happen in two cases:
  696. *
  697. * 1) The owner died
  698. * 2) A stale FUTEX_WAITERS bit
  699. *
  700. * Re-read the futex value.
  701. */
  702. if (get_futex_value_locked(&curval, uaddr))
  703. return -EFAULT;
  704. /*
  705. * If the owner died or we have a stale
  706. * WAITERS bit the owner TID in the user space
  707. * futex is 0.
  708. */
  709. if (!(curval & FUTEX_TID_MASK)) {
  710. force_take = 1;
  711. goto retry;
  712. }
  713. default:
  714. break;
  715. }
  716. }
  717. return ret;
  718. }
  719. /**
  720. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  721. * @q: The futex_q to unqueue
  722. *
  723. * The q->lock_ptr must not be NULL and must be held by the caller.
  724. */
  725. static void __unqueue_futex(struct futex_q *q)
  726. {
  727. struct futex_hash_bucket *hb;
  728. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  729. || WARN_ON(plist_node_empty(&q->list)))
  730. return;
  731. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  732. plist_del(&q->list, &hb->chain);
  733. }
  734. /*
  735. * The hash bucket lock must be held when this is called.
  736. * Afterwards, the futex_q must not be accessed.
  737. */
  738. static void wake_futex(struct futex_q *q)
  739. {
  740. struct task_struct *p = q->task;
  741. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  742. return;
  743. /*
  744. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  745. * a non-futex wake up happens on another CPU then the task
  746. * might exit and p would dereference a non-existing task
  747. * struct. Prevent this by holding a reference on p across the
  748. * wake up.
  749. */
  750. get_task_struct(p);
  751. __unqueue_futex(q);
  752. /*
  753. * The waiting task can free the futex_q as soon as
  754. * q->lock_ptr = NULL is written, without taking any locks. A
  755. * memory barrier is required here to prevent the following
  756. * store to lock_ptr from getting ahead of the plist_del.
  757. */
  758. smp_wmb();
  759. q->lock_ptr = NULL;
  760. wake_up_state(p, TASK_NORMAL);
  761. put_task_struct(p);
  762. }
  763. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  764. {
  765. struct task_struct *new_owner;
  766. struct futex_pi_state *pi_state = this->pi_state;
  767. u32 uninitialized_var(curval), newval;
  768. if (!pi_state)
  769. return -EINVAL;
  770. /*
  771. * If current does not own the pi_state then the futex is
  772. * inconsistent and user space fiddled with the futex value.
  773. */
  774. if (pi_state->owner != current)
  775. return -EINVAL;
  776. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  777. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  778. /*
  779. * It is possible that the next waiter (the one that brought
  780. * this owner to the kernel) timed out and is no longer
  781. * waiting on the lock.
  782. */
  783. if (!new_owner)
  784. new_owner = this->task;
  785. /*
  786. * We pass it to the next owner. (The WAITERS bit is always
  787. * kept enabled while there is PI state around. We must also
  788. * preserve the owner died bit.)
  789. */
  790. if (!(uval & FUTEX_OWNER_DIED)) {
  791. int ret = 0;
  792. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  793. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  794. ret = -EFAULT;
  795. else if (curval != uval)
  796. ret = -EINVAL;
  797. if (ret) {
  798. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  799. return ret;
  800. }
  801. }
  802. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  803. WARN_ON(list_empty(&pi_state->list));
  804. list_del_init(&pi_state->list);
  805. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  806. raw_spin_lock_irq(&new_owner->pi_lock);
  807. WARN_ON(!list_empty(&pi_state->list));
  808. list_add(&pi_state->list, &new_owner->pi_state_list);
  809. pi_state->owner = new_owner;
  810. raw_spin_unlock_irq(&new_owner->pi_lock);
  811. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  812. rt_mutex_unlock(&pi_state->pi_mutex);
  813. return 0;
  814. }
  815. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  816. {
  817. u32 uninitialized_var(oldval);
  818. /*
  819. * There is no waiter, so we unlock the futex. The owner died
  820. * bit has not to be preserved here. We are the owner:
  821. */
  822. if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
  823. return -EFAULT;
  824. if (oldval != uval)
  825. return -EAGAIN;
  826. return 0;
  827. }
  828. /*
  829. * Express the locking dependencies for lockdep:
  830. */
  831. static inline void
  832. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  833. {
  834. if (hb1 <= hb2) {
  835. spin_lock(&hb1->lock);
  836. if (hb1 < hb2)
  837. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  838. } else { /* hb1 > hb2 */
  839. spin_lock(&hb2->lock);
  840. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  841. }
  842. }
  843. static inline void
  844. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  845. {
  846. spin_unlock(&hb1->lock);
  847. if (hb1 != hb2)
  848. spin_unlock(&hb2->lock);
  849. }
  850. /*
  851. * Wake up waiters matching bitset queued on this futex (uaddr).
  852. */
  853. static int
  854. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  855. {
  856. struct futex_hash_bucket *hb;
  857. struct futex_q *this, *next;
  858. struct plist_head *head;
  859. union futex_key key = FUTEX_KEY_INIT;
  860. int ret;
  861. if (!bitset)
  862. return -EINVAL;
  863. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  864. if (unlikely(ret != 0))
  865. goto out;
  866. hb = hash_futex(&key);
  867. spin_lock(&hb->lock);
  868. head = &hb->chain;
  869. plist_for_each_entry_safe(this, next, head, list) {
  870. if (match_futex (&this->key, &key)) {
  871. if (this->pi_state || this->rt_waiter) {
  872. ret = -EINVAL;
  873. break;
  874. }
  875. /* Check if one of the bits is set in both bitsets */
  876. if (!(this->bitset & bitset))
  877. continue;
  878. wake_futex(this);
  879. if (++ret >= nr_wake)
  880. break;
  881. }
  882. }
  883. spin_unlock(&hb->lock);
  884. put_futex_key(&key);
  885. out:
  886. return ret;
  887. }
  888. /*
  889. * Wake up all waiters hashed on the physical page that is mapped
  890. * to this virtual address:
  891. */
  892. static int
  893. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  894. int nr_wake, int nr_wake2, int op)
  895. {
  896. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  897. struct futex_hash_bucket *hb1, *hb2;
  898. struct plist_head *head;
  899. struct futex_q *this, *next;
  900. int ret, op_ret;
  901. retry:
  902. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  903. if (unlikely(ret != 0))
  904. goto out;
  905. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  906. if (unlikely(ret != 0))
  907. goto out_put_key1;
  908. hb1 = hash_futex(&key1);
  909. hb2 = hash_futex(&key2);
  910. retry_private:
  911. double_lock_hb(hb1, hb2);
  912. op_ret = futex_atomic_op_inuser(op, uaddr2);
  913. if (unlikely(op_ret < 0)) {
  914. double_unlock_hb(hb1, hb2);
  915. #ifndef CONFIG_MMU
  916. /*
  917. * we don't get EFAULT from MMU faults if we don't have an MMU,
  918. * but we might get them from range checking
  919. */
  920. ret = op_ret;
  921. goto out_put_keys;
  922. #endif
  923. if (unlikely(op_ret != -EFAULT)) {
  924. ret = op_ret;
  925. goto out_put_keys;
  926. }
  927. ret = fault_in_user_writeable(uaddr2);
  928. if (ret)
  929. goto out_put_keys;
  930. if (!(flags & FLAGS_SHARED))
  931. goto retry_private;
  932. put_futex_key(&key2);
  933. put_futex_key(&key1);
  934. goto retry;
  935. }
  936. head = &hb1->chain;
  937. plist_for_each_entry_safe(this, next, head, list) {
  938. if (match_futex (&this->key, &key1)) {
  939. if (this->pi_state || this->rt_waiter) {
  940. ret = -EINVAL;
  941. goto out_unlock;
  942. }
  943. wake_futex(this);
  944. if (++ret >= nr_wake)
  945. break;
  946. }
  947. }
  948. if (op_ret > 0) {
  949. head = &hb2->chain;
  950. op_ret = 0;
  951. plist_for_each_entry_safe(this, next, head, list) {
  952. if (match_futex (&this->key, &key2)) {
  953. if (this->pi_state || this->rt_waiter) {
  954. ret = -EINVAL;
  955. goto out_unlock;
  956. }
  957. wake_futex(this);
  958. if (++op_ret >= nr_wake2)
  959. break;
  960. }
  961. }
  962. ret += op_ret;
  963. }
  964. out_unlock:
  965. double_unlock_hb(hb1, hb2);
  966. out_put_keys:
  967. put_futex_key(&key2);
  968. out_put_key1:
  969. put_futex_key(&key1);
  970. out:
  971. return ret;
  972. }
  973. /**
  974. * requeue_futex() - Requeue a futex_q from one hb to another
  975. * @q: the futex_q to requeue
  976. * @hb1: the source hash_bucket
  977. * @hb2: the target hash_bucket
  978. * @key2: the new key for the requeued futex_q
  979. */
  980. static inline
  981. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  982. struct futex_hash_bucket *hb2, union futex_key *key2)
  983. {
  984. /*
  985. * If key1 and key2 hash to the same bucket, no need to
  986. * requeue.
  987. */
  988. if (likely(&hb1->chain != &hb2->chain)) {
  989. plist_del(&q->list, &hb1->chain);
  990. plist_add(&q->list, &hb2->chain);
  991. q->lock_ptr = &hb2->lock;
  992. }
  993. get_futex_key_refs(key2);
  994. q->key = *key2;
  995. }
  996. /**
  997. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  998. * @q: the futex_q
  999. * @key: the key of the requeue target futex
  1000. * @hb: the hash_bucket of the requeue target futex
  1001. *
  1002. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1003. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1004. * to the requeue target futex so the waiter can detect the wakeup on the right
  1005. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1006. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1007. * to protect access to the pi_state to fixup the owner later. Must be called
  1008. * with both q->lock_ptr and hb->lock held.
  1009. */
  1010. static inline
  1011. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1012. struct futex_hash_bucket *hb)
  1013. {
  1014. get_futex_key_refs(key);
  1015. q->key = *key;
  1016. __unqueue_futex(q);
  1017. WARN_ON(!q->rt_waiter);
  1018. q->rt_waiter = NULL;
  1019. q->lock_ptr = &hb->lock;
  1020. wake_up_state(q->task, TASK_NORMAL);
  1021. }
  1022. /**
  1023. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1024. * @pifutex: the user address of the to futex
  1025. * @hb1: the from futex hash bucket, must be locked by the caller
  1026. * @hb2: the to futex hash bucket, must be locked by the caller
  1027. * @key1: the from futex key
  1028. * @key2: the to futex key
  1029. * @ps: address to store the pi_state pointer
  1030. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1031. *
  1032. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1033. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1034. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1035. * hb1 and hb2 must be held by the caller.
  1036. *
  1037. * Return:
  1038. * 0 - failed to acquire the lock atomically;
  1039. * 1 - acquired the lock;
  1040. * <0 - error
  1041. */
  1042. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1043. struct futex_hash_bucket *hb1,
  1044. struct futex_hash_bucket *hb2,
  1045. union futex_key *key1, union futex_key *key2,
  1046. struct futex_pi_state **ps, int set_waiters)
  1047. {
  1048. struct futex_q *top_waiter = NULL;
  1049. u32 curval;
  1050. int ret;
  1051. if (get_futex_value_locked(&curval, pifutex))
  1052. return -EFAULT;
  1053. /*
  1054. * Find the top_waiter and determine if there are additional waiters.
  1055. * If the caller intends to requeue more than 1 waiter to pifutex,
  1056. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1057. * as we have means to handle the possible fault. If not, don't set
  1058. * the bit unecessarily as it will force the subsequent unlock to enter
  1059. * the kernel.
  1060. */
  1061. top_waiter = futex_top_waiter(hb1, key1);
  1062. /* There are no waiters, nothing for us to do. */
  1063. if (!top_waiter)
  1064. return 0;
  1065. /* Ensure we requeue to the expected futex. */
  1066. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1067. return -EINVAL;
  1068. /*
  1069. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1070. * the contended case or if set_waiters is 1. The pi_state is returned
  1071. * in ps in contended cases.
  1072. */
  1073. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1074. set_waiters);
  1075. if (ret == 1)
  1076. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1077. return ret;
  1078. }
  1079. /**
  1080. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1081. * @uaddr1: source futex user address
  1082. * @flags: futex flags (FLAGS_SHARED, etc.)
  1083. * @uaddr2: target futex user address
  1084. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1085. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1086. * @cmpval: @uaddr1 expected value (or %NULL)
  1087. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1088. * pi futex (pi to pi requeue is not supported)
  1089. *
  1090. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1091. * uaddr2 atomically on behalf of the top waiter.
  1092. *
  1093. * Return:
  1094. * >=0 - on success, the number of tasks requeued or woken;
  1095. * <0 - on error
  1096. */
  1097. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1098. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1099. u32 *cmpval, int requeue_pi)
  1100. {
  1101. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1102. int drop_count = 0, task_count = 0, ret;
  1103. struct futex_pi_state *pi_state = NULL;
  1104. struct futex_hash_bucket *hb1, *hb2;
  1105. struct plist_head *head1;
  1106. struct futex_q *this, *next;
  1107. u32 curval2;
  1108. if (requeue_pi) {
  1109. /*
  1110. * requeue_pi requires a pi_state, try to allocate it now
  1111. * without any locks in case it fails.
  1112. */
  1113. if (refill_pi_state_cache())
  1114. return -ENOMEM;
  1115. /*
  1116. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1117. * + nr_requeue, since it acquires the rt_mutex prior to
  1118. * returning to userspace, so as to not leave the rt_mutex with
  1119. * waiters and no owner. However, second and third wake-ups
  1120. * cannot be predicted as they involve race conditions with the
  1121. * first wake and a fault while looking up the pi_state. Both
  1122. * pthread_cond_signal() and pthread_cond_broadcast() should
  1123. * use nr_wake=1.
  1124. */
  1125. if (nr_wake != 1)
  1126. return -EINVAL;
  1127. }
  1128. retry:
  1129. if (pi_state != NULL) {
  1130. /*
  1131. * We will have to lookup the pi_state again, so free this one
  1132. * to keep the accounting correct.
  1133. */
  1134. free_pi_state(pi_state);
  1135. pi_state = NULL;
  1136. }
  1137. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1138. if (unlikely(ret != 0))
  1139. goto out;
  1140. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1141. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1142. if (unlikely(ret != 0))
  1143. goto out_put_key1;
  1144. hb1 = hash_futex(&key1);
  1145. hb2 = hash_futex(&key2);
  1146. retry_private:
  1147. double_lock_hb(hb1, hb2);
  1148. if (likely(cmpval != NULL)) {
  1149. u32 curval;
  1150. ret = get_futex_value_locked(&curval, uaddr1);
  1151. if (unlikely(ret)) {
  1152. double_unlock_hb(hb1, hb2);
  1153. ret = get_user(curval, uaddr1);
  1154. if (ret)
  1155. goto out_put_keys;
  1156. if (!(flags & FLAGS_SHARED))
  1157. goto retry_private;
  1158. put_futex_key(&key2);
  1159. put_futex_key(&key1);
  1160. goto retry;
  1161. }
  1162. if (curval != *cmpval) {
  1163. ret = -EAGAIN;
  1164. goto out_unlock;
  1165. }
  1166. }
  1167. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1168. /*
  1169. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1170. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1171. * bit. We force this here where we are able to easily handle
  1172. * faults rather in the requeue loop below.
  1173. */
  1174. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1175. &key2, &pi_state, nr_requeue);
  1176. /*
  1177. * At this point the top_waiter has either taken uaddr2 or is
  1178. * waiting on it. If the former, then the pi_state will not
  1179. * exist yet, look it up one more time to ensure we have a
  1180. * reference to it.
  1181. */
  1182. if (ret == 1) {
  1183. WARN_ON(pi_state);
  1184. drop_count++;
  1185. task_count++;
  1186. ret = get_futex_value_locked(&curval2, uaddr2);
  1187. if (!ret)
  1188. ret = lookup_pi_state(curval2, hb2, &key2,
  1189. &pi_state);
  1190. }
  1191. switch (ret) {
  1192. case 0:
  1193. break;
  1194. case -EFAULT:
  1195. double_unlock_hb(hb1, hb2);
  1196. put_futex_key(&key2);
  1197. put_futex_key(&key1);
  1198. ret = fault_in_user_writeable(uaddr2);
  1199. if (!ret)
  1200. goto retry;
  1201. goto out;
  1202. case -EAGAIN:
  1203. /* The owner was exiting, try again. */
  1204. double_unlock_hb(hb1, hb2);
  1205. put_futex_key(&key2);
  1206. put_futex_key(&key1);
  1207. cond_resched();
  1208. goto retry;
  1209. default:
  1210. goto out_unlock;
  1211. }
  1212. }
  1213. head1 = &hb1->chain;
  1214. plist_for_each_entry_safe(this, next, head1, list) {
  1215. if (task_count - nr_wake >= nr_requeue)
  1216. break;
  1217. if (!match_futex(&this->key, &key1))
  1218. continue;
  1219. /*
  1220. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1221. * be paired with each other and no other futex ops.
  1222. *
  1223. * We should never be requeueing a futex_q with a pi_state,
  1224. * which is awaiting a futex_unlock_pi().
  1225. */
  1226. if ((requeue_pi && !this->rt_waiter) ||
  1227. (!requeue_pi && this->rt_waiter) ||
  1228. this->pi_state) {
  1229. ret = -EINVAL;
  1230. break;
  1231. }
  1232. /*
  1233. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1234. * lock, we already woke the top_waiter. If not, it will be
  1235. * woken by futex_unlock_pi().
  1236. */
  1237. if (++task_count <= nr_wake && !requeue_pi) {
  1238. wake_futex(this);
  1239. continue;
  1240. }
  1241. /* Ensure we requeue to the expected futex for requeue_pi. */
  1242. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1243. ret = -EINVAL;
  1244. break;
  1245. }
  1246. /*
  1247. * Requeue nr_requeue waiters and possibly one more in the case
  1248. * of requeue_pi if we couldn't acquire the lock atomically.
  1249. */
  1250. if (requeue_pi) {
  1251. /* Prepare the waiter to take the rt_mutex. */
  1252. atomic_inc(&pi_state->refcount);
  1253. this->pi_state = pi_state;
  1254. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1255. this->rt_waiter,
  1256. this->task, 1);
  1257. if (ret == 1) {
  1258. /* We got the lock. */
  1259. requeue_pi_wake_futex(this, &key2, hb2);
  1260. drop_count++;
  1261. continue;
  1262. } else if (ret) {
  1263. /* -EDEADLK */
  1264. this->pi_state = NULL;
  1265. free_pi_state(pi_state);
  1266. goto out_unlock;
  1267. }
  1268. }
  1269. requeue_futex(this, hb1, hb2, &key2);
  1270. drop_count++;
  1271. }
  1272. out_unlock:
  1273. double_unlock_hb(hb1, hb2);
  1274. /*
  1275. * drop_futex_key_refs() must be called outside the spinlocks. During
  1276. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1277. * one at key2 and updated their key pointer. We no longer need to
  1278. * hold the references to key1.
  1279. */
  1280. while (--drop_count >= 0)
  1281. drop_futex_key_refs(&key1);
  1282. out_put_keys:
  1283. put_futex_key(&key2);
  1284. out_put_key1:
  1285. put_futex_key(&key1);
  1286. out:
  1287. if (pi_state != NULL)
  1288. free_pi_state(pi_state);
  1289. return ret ? ret : task_count;
  1290. }
  1291. /* The key must be already stored in q->key. */
  1292. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1293. __acquires(&hb->lock)
  1294. {
  1295. struct futex_hash_bucket *hb;
  1296. hb = hash_futex(&q->key);
  1297. q->lock_ptr = &hb->lock;
  1298. spin_lock(&hb->lock);
  1299. return hb;
  1300. }
  1301. static inline void
  1302. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1303. __releases(&hb->lock)
  1304. {
  1305. spin_unlock(&hb->lock);
  1306. }
  1307. /**
  1308. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1309. * @q: The futex_q to enqueue
  1310. * @hb: The destination hash bucket
  1311. *
  1312. * The hb->lock must be held by the caller, and is released here. A call to
  1313. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1314. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1315. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1316. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1317. * an example).
  1318. */
  1319. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1320. __releases(&hb->lock)
  1321. {
  1322. int prio;
  1323. /*
  1324. * The priority used to register this element is
  1325. * - either the real thread-priority for the real-time threads
  1326. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1327. * - or MAX_RT_PRIO for non-RT threads.
  1328. * Thus, all RT-threads are woken first in priority order, and
  1329. * the others are woken last, in FIFO order.
  1330. */
  1331. prio = min(current->normal_prio, MAX_RT_PRIO);
  1332. plist_node_init(&q->list, prio);
  1333. plist_add(&q->list, &hb->chain);
  1334. q->task = current;
  1335. spin_unlock(&hb->lock);
  1336. }
  1337. /**
  1338. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1339. * @q: The futex_q to unqueue
  1340. *
  1341. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1342. * be paired with exactly one earlier call to queue_me().
  1343. *
  1344. * Return:
  1345. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1346. * 0 - if the futex_q was already removed by the waking thread
  1347. */
  1348. static int unqueue_me(struct futex_q *q)
  1349. {
  1350. spinlock_t *lock_ptr;
  1351. int ret = 0;
  1352. /* In the common case we don't take the spinlock, which is nice. */
  1353. retry:
  1354. lock_ptr = q->lock_ptr;
  1355. barrier();
  1356. if (lock_ptr != NULL) {
  1357. spin_lock(lock_ptr);
  1358. /*
  1359. * q->lock_ptr can change between reading it and
  1360. * spin_lock(), causing us to take the wrong lock. This
  1361. * corrects the race condition.
  1362. *
  1363. * Reasoning goes like this: if we have the wrong lock,
  1364. * q->lock_ptr must have changed (maybe several times)
  1365. * between reading it and the spin_lock(). It can
  1366. * change again after the spin_lock() but only if it was
  1367. * already changed before the spin_lock(). It cannot,
  1368. * however, change back to the original value. Therefore
  1369. * we can detect whether we acquired the correct lock.
  1370. */
  1371. if (unlikely(lock_ptr != q->lock_ptr)) {
  1372. spin_unlock(lock_ptr);
  1373. goto retry;
  1374. }
  1375. __unqueue_futex(q);
  1376. BUG_ON(q->pi_state);
  1377. spin_unlock(lock_ptr);
  1378. ret = 1;
  1379. }
  1380. drop_futex_key_refs(&q->key);
  1381. return ret;
  1382. }
  1383. /*
  1384. * PI futexes can not be requeued and must remove themself from the
  1385. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1386. * and dropped here.
  1387. */
  1388. static void unqueue_me_pi(struct futex_q *q)
  1389. __releases(q->lock_ptr)
  1390. {
  1391. __unqueue_futex(q);
  1392. BUG_ON(!q->pi_state);
  1393. free_pi_state(q->pi_state);
  1394. q->pi_state = NULL;
  1395. spin_unlock(q->lock_ptr);
  1396. }
  1397. /*
  1398. * Fixup the pi_state owner with the new owner.
  1399. *
  1400. * Must be called with hash bucket lock held and mm->sem held for non
  1401. * private futexes.
  1402. */
  1403. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1404. struct task_struct *newowner)
  1405. {
  1406. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1407. struct futex_pi_state *pi_state = q->pi_state;
  1408. struct task_struct *oldowner = pi_state->owner;
  1409. u32 uval, uninitialized_var(curval), newval;
  1410. int ret;
  1411. /* Owner died? */
  1412. if (!pi_state->owner)
  1413. newtid |= FUTEX_OWNER_DIED;
  1414. /*
  1415. * We are here either because we stole the rtmutex from the
  1416. * previous highest priority waiter or we are the highest priority
  1417. * waiter but failed to get the rtmutex the first time.
  1418. * We have to replace the newowner TID in the user space variable.
  1419. * This must be atomic as we have to preserve the owner died bit here.
  1420. *
  1421. * Note: We write the user space value _before_ changing the pi_state
  1422. * because we can fault here. Imagine swapped out pages or a fork
  1423. * that marked all the anonymous memory readonly for cow.
  1424. *
  1425. * Modifying pi_state _before_ the user space value would
  1426. * leave the pi_state in an inconsistent state when we fault
  1427. * here, because we need to drop the hash bucket lock to
  1428. * handle the fault. This might be observed in the PID check
  1429. * in lookup_pi_state.
  1430. */
  1431. retry:
  1432. if (get_futex_value_locked(&uval, uaddr))
  1433. goto handle_fault;
  1434. while (1) {
  1435. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1436. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1437. goto handle_fault;
  1438. if (curval == uval)
  1439. break;
  1440. uval = curval;
  1441. }
  1442. /*
  1443. * We fixed up user space. Now we need to fix the pi_state
  1444. * itself.
  1445. */
  1446. if (pi_state->owner != NULL) {
  1447. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1448. WARN_ON(list_empty(&pi_state->list));
  1449. list_del_init(&pi_state->list);
  1450. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1451. }
  1452. pi_state->owner = newowner;
  1453. raw_spin_lock_irq(&newowner->pi_lock);
  1454. WARN_ON(!list_empty(&pi_state->list));
  1455. list_add(&pi_state->list, &newowner->pi_state_list);
  1456. raw_spin_unlock_irq(&newowner->pi_lock);
  1457. return 0;
  1458. /*
  1459. * To handle the page fault we need to drop the hash bucket
  1460. * lock here. That gives the other task (either the highest priority
  1461. * waiter itself or the task which stole the rtmutex) the
  1462. * chance to try the fixup of the pi_state. So once we are
  1463. * back from handling the fault we need to check the pi_state
  1464. * after reacquiring the hash bucket lock and before trying to
  1465. * do another fixup. When the fixup has been done already we
  1466. * simply return.
  1467. */
  1468. handle_fault:
  1469. spin_unlock(q->lock_ptr);
  1470. ret = fault_in_user_writeable(uaddr);
  1471. spin_lock(q->lock_ptr);
  1472. /*
  1473. * Check if someone else fixed it for us:
  1474. */
  1475. if (pi_state->owner != oldowner)
  1476. return 0;
  1477. if (ret)
  1478. return ret;
  1479. goto retry;
  1480. }
  1481. static long futex_wait_restart(struct restart_block *restart);
  1482. /**
  1483. * fixup_owner() - Post lock pi_state and corner case management
  1484. * @uaddr: user address of the futex
  1485. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1486. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1487. *
  1488. * After attempting to lock an rt_mutex, this function is called to cleanup
  1489. * the pi_state owner as well as handle race conditions that may allow us to
  1490. * acquire the lock. Must be called with the hb lock held.
  1491. *
  1492. * Return:
  1493. * 1 - success, lock taken;
  1494. * 0 - success, lock not taken;
  1495. * <0 - on error (-EFAULT)
  1496. */
  1497. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1498. {
  1499. struct task_struct *owner;
  1500. int ret = 0;
  1501. if (locked) {
  1502. /*
  1503. * Got the lock. We might not be the anticipated owner if we
  1504. * did a lock-steal - fix up the PI-state in that case:
  1505. */
  1506. if (q->pi_state->owner != current)
  1507. ret = fixup_pi_state_owner(uaddr, q, current);
  1508. goto out;
  1509. }
  1510. /*
  1511. * Catch the rare case, where the lock was released when we were on the
  1512. * way back before we locked the hash bucket.
  1513. */
  1514. if (q->pi_state->owner == current) {
  1515. /*
  1516. * Try to get the rt_mutex now. This might fail as some other
  1517. * task acquired the rt_mutex after we removed ourself from the
  1518. * rt_mutex waiters list.
  1519. */
  1520. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1521. locked = 1;
  1522. goto out;
  1523. }
  1524. /*
  1525. * pi_state is incorrect, some other task did a lock steal and
  1526. * we returned due to timeout or signal without taking the
  1527. * rt_mutex. Too late.
  1528. */
  1529. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1530. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1531. if (!owner)
  1532. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1533. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1534. ret = fixup_pi_state_owner(uaddr, q, owner);
  1535. goto out;
  1536. }
  1537. /*
  1538. * Paranoia check. If we did not take the lock, then we should not be
  1539. * the owner of the rt_mutex.
  1540. */
  1541. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1542. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1543. "pi-state %p\n", ret,
  1544. q->pi_state->pi_mutex.owner,
  1545. q->pi_state->owner);
  1546. out:
  1547. return ret ? ret : locked;
  1548. }
  1549. /**
  1550. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1551. * @hb: the futex hash bucket, must be locked by the caller
  1552. * @q: the futex_q to queue up on
  1553. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1554. */
  1555. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1556. struct hrtimer_sleeper *timeout)
  1557. {
  1558. /*
  1559. * The task state is guaranteed to be set before another task can
  1560. * wake it. set_current_state() is implemented using set_mb() and
  1561. * queue_me() calls spin_unlock() upon completion, both serializing
  1562. * access to the hash list and forcing another memory barrier.
  1563. */
  1564. set_current_state(TASK_INTERRUPTIBLE);
  1565. queue_me(q, hb);
  1566. /* Arm the timer */
  1567. if (timeout) {
  1568. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1569. if (!hrtimer_active(&timeout->timer))
  1570. timeout->task = NULL;
  1571. }
  1572. /*
  1573. * If we have been removed from the hash list, then another task
  1574. * has tried to wake us, and we can skip the call to schedule().
  1575. */
  1576. if (likely(!plist_node_empty(&q->list))) {
  1577. /*
  1578. * If the timer has already expired, current will already be
  1579. * flagged for rescheduling. Only call schedule if there
  1580. * is no timeout, or if it has yet to expire.
  1581. */
  1582. if (!timeout || timeout->task)
  1583. freezable_schedule();
  1584. }
  1585. __set_current_state(TASK_RUNNING);
  1586. }
  1587. /**
  1588. * futex_wait_setup() - Prepare to wait on a futex
  1589. * @uaddr: the futex userspace address
  1590. * @val: the expected value
  1591. * @flags: futex flags (FLAGS_SHARED, etc.)
  1592. * @q: the associated futex_q
  1593. * @hb: storage for hash_bucket pointer to be returned to caller
  1594. *
  1595. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1596. * compare it with the expected value. Handle atomic faults internally.
  1597. * Return with the hb lock held and a q.key reference on success, and unlocked
  1598. * with no q.key reference on failure.
  1599. *
  1600. * Return:
  1601. * 0 - uaddr contains val and hb has been locked;
  1602. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  1603. */
  1604. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1605. struct futex_q *q, struct futex_hash_bucket **hb)
  1606. {
  1607. u32 uval;
  1608. int ret;
  1609. /*
  1610. * Access the page AFTER the hash-bucket is locked.
  1611. * Order is important:
  1612. *
  1613. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1614. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1615. *
  1616. * The basic logical guarantee of a futex is that it blocks ONLY
  1617. * if cond(var) is known to be true at the time of blocking, for
  1618. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1619. * would open a race condition where we could block indefinitely with
  1620. * cond(var) false, which would violate the guarantee.
  1621. *
  1622. * On the other hand, we insert q and release the hash-bucket only
  1623. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1624. * absorb a wakeup if *uaddr does not match the desired values
  1625. * while the syscall executes.
  1626. */
  1627. retry:
  1628. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  1629. if (unlikely(ret != 0))
  1630. return ret;
  1631. retry_private:
  1632. *hb = queue_lock(q);
  1633. ret = get_futex_value_locked(&uval, uaddr);
  1634. if (ret) {
  1635. queue_unlock(q, *hb);
  1636. ret = get_user(uval, uaddr);
  1637. if (ret)
  1638. goto out;
  1639. if (!(flags & FLAGS_SHARED))
  1640. goto retry_private;
  1641. put_futex_key(&q->key);
  1642. goto retry;
  1643. }
  1644. if (uval != val) {
  1645. queue_unlock(q, *hb);
  1646. ret = -EWOULDBLOCK;
  1647. }
  1648. out:
  1649. if (ret)
  1650. put_futex_key(&q->key);
  1651. return ret;
  1652. }
  1653. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1654. ktime_t *abs_time, u32 bitset)
  1655. {
  1656. struct hrtimer_sleeper timeout, *to = NULL;
  1657. struct restart_block *restart;
  1658. struct futex_hash_bucket *hb;
  1659. struct futex_q q = futex_q_init;
  1660. int ret;
  1661. if (!bitset)
  1662. return -EINVAL;
  1663. q.bitset = bitset;
  1664. if (abs_time) {
  1665. to = &timeout;
  1666. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1667. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1668. HRTIMER_MODE_ABS);
  1669. hrtimer_init_sleeper(to, current);
  1670. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1671. current->timer_slack_ns);
  1672. }
  1673. retry:
  1674. /*
  1675. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1676. * q.key refs.
  1677. */
  1678. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1679. if (ret)
  1680. goto out;
  1681. /* queue_me and wait for wakeup, timeout, or a signal. */
  1682. futex_wait_queue_me(hb, &q, to);
  1683. /* If we were woken (and unqueued), we succeeded, whatever. */
  1684. ret = 0;
  1685. /* unqueue_me() drops q.key ref */
  1686. if (!unqueue_me(&q))
  1687. goto out;
  1688. ret = -ETIMEDOUT;
  1689. if (to && !to->task)
  1690. goto out;
  1691. /*
  1692. * We expect signal_pending(current), but we might be the
  1693. * victim of a spurious wakeup as well.
  1694. */
  1695. if (!signal_pending(current))
  1696. goto retry;
  1697. ret = -ERESTARTSYS;
  1698. if (!abs_time)
  1699. goto out;
  1700. restart = &current_thread_info()->restart_block;
  1701. restart->fn = futex_wait_restart;
  1702. restart->futex.uaddr = uaddr;
  1703. restart->futex.val = val;
  1704. restart->futex.time = abs_time->tv64;
  1705. restart->futex.bitset = bitset;
  1706. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  1707. ret = -ERESTART_RESTARTBLOCK;
  1708. out:
  1709. if (to) {
  1710. hrtimer_cancel(&to->timer);
  1711. destroy_hrtimer_on_stack(&to->timer);
  1712. }
  1713. return ret;
  1714. }
  1715. static long futex_wait_restart(struct restart_block *restart)
  1716. {
  1717. u32 __user *uaddr = restart->futex.uaddr;
  1718. ktime_t t, *tp = NULL;
  1719. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1720. t.tv64 = restart->futex.time;
  1721. tp = &t;
  1722. }
  1723. restart->fn = do_no_restart_syscall;
  1724. return (long)futex_wait(uaddr, restart->futex.flags,
  1725. restart->futex.val, tp, restart->futex.bitset);
  1726. }
  1727. /*
  1728. * Userspace tried a 0 -> TID atomic transition of the futex value
  1729. * and failed. The kernel side here does the whole locking operation:
  1730. * if there are waiters then it will block, it does PI, etc. (Due to
  1731. * races the kernel might see a 0 value of the futex too.)
  1732. */
  1733. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1734. ktime_t *time, int trylock)
  1735. {
  1736. struct hrtimer_sleeper timeout, *to = NULL;
  1737. struct futex_hash_bucket *hb;
  1738. struct futex_q q = futex_q_init;
  1739. int res, ret;
  1740. if (refill_pi_state_cache())
  1741. return -ENOMEM;
  1742. if (time) {
  1743. to = &timeout;
  1744. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1745. HRTIMER_MODE_ABS);
  1746. hrtimer_init_sleeper(to, current);
  1747. hrtimer_set_expires(&to->timer, *time);
  1748. }
  1749. retry:
  1750. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  1751. if (unlikely(ret != 0))
  1752. goto out;
  1753. retry_private:
  1754. hb = queue_lock(&q);
  1755. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1756. if (unlikely(ret)) {
  1757. switch (ret) {
  1758. case 1:
  1759. /* We got the lock. */
  1760. ret = 0;
  1761. goto out_unlock_put_key;
  1762. case -EFAULT:
  1763. goto uaddr_faulted;
  1764. case -EAGAIN:
  1765. /*
  1766. * Task is exiting and we just wait for the
  1767. * exit to complete.
  1768. */
  1769. queue_unlock(&q, hb);
  1770. put_futex_key(&q.key);
  1771. cond_resched();
  1772. goto retry;
  1773. default:
  1774. goto out_unlock_put_key;
  1775. }
  1776. }
  1777. /*
  1778. * Only actually queue now that the atomic ops are done:
  1779. */
  1780. queue_me(&q, hb);
  1781. WARN_ON(!q.pi_state);
  1782. /*
  1783. * Block on the PI mutex:
  1784. */
  1785. if (!trylock)
  1786. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1787. else {
  1788. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1789. /* Fixup the trylock return value: */
  1790. ret = ret ? 0 : -EWOULDBLOCK;
  1791. }
  1792. spin_lock(q.lock_ptr);
  1793. /*
  1794. * Fixup the pi_state owner and possibly acquire the lock if we
  1795. * haven't already.
  1796. */
  1797. res = fixup_owner(uaddr, &q, !ret);
  1798. /*
  1799. * If fixup_owner() returned an error, proprogate that. If it acquired
  1800. * the lock, clear our -ETIMEDOUT or -EINTR.
  1801. */
  1802. if (res)
  1803. ret = (res < 0) ? res : 0;
  1804. /*
  1805. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1806. * it and return the fault to userspace.
  1807. */
  1808. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1809. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1810. /* Unqueue and drop the lock */
  1811. unqueue_me_pi(&q);
  1812. goto out_put_key;
  1813. out_unlock_put_key:
  1814. queue_unlock(&q, hb);
  1815. out_put_key:
  1816. put_futex_key(&q.key);
  1817. out:
  1818. if (to)
  1819. destroy_hrtimer_on_stack(&to->timer);
  1820. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1821. uaddr_faulted:
  1822. queue_unlock(&q, hb);
  1823. ret = fault_in_user_writeable(uaddr);
  1824. if (ret)
  1825. goto out_put_key;
  1826. if (!(flags & FLAGS_SHARED))
  1827. goto retry_private;
  1828. put_futex_key(&q.key);
  1829. goto retry;
  1830. }
  1831. /*
  1832. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1833. * This is the in-kernel slowpath: we look up the PI state (if any),
  1834. * and do the rt-mutex unlock.
  1835. */
  1836. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  1837. {
  1838. struct futex_hash_bucket *hb;
  1839. struct futex_q *this, *next;
  1840. struct plist_head *head;
  1841. union futex_key key = FUTEX_KEY_INIT;
  1842. u32 uval, vpid = task_pid_vnr(current);
  1843. int ret;
  1844. retry:
  1845. if (get_user(uval, uaddr))
  1846. return -EFAULT;
  1847. /*
  1848. * We release only a lock we actually own:
  1849. */
  1850. if ((uval & FUTEX_TID_MASK) != vpid)
  1851. return -EPERM;
  1852. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  1853. if (unlikely(ret != 0))
  1854. goto out;
  1855. hb = hash_futex(&key);
  1856. spin_lock(&hb->lock);
  1857. /*
  1858. * To avoid races, try to do the TID -> 0 atomic transition
  1859. * again. If it succeeds then we can return without waking
  1860. * anyone else up:
  1861. */
  1862. if (!(uval & FUTEX_OWNER_DIED) &&
  1863. cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
  1864. goto pi_faulted;
  1865. /*
  1866. * Rare case: we managed to release the lock atomically,
  1867. * no need to wake anyone else up:
  1868. */
  1869. if (unlikely(uval == vpid))
  1870. goto out_unlock;
  1871. /*
  1872. * Ok, other tasks may need to be woken up - check waiters
  1873. * and do the wakeup if necessary:
  1874. */
  1875. head = &hb->chain;
  1876. plist_for_each_entry_safe(this, next, head, list) {
  1877. if (!match_futex (&this->key, &key))
  1878. continue;
  1879. ret = wake_futex_pi(uaddr, uval, this);
  1880. /*
  1881. * The atomic access to the futex value
  1882. * generated a pagefault, so retry the
  1883. * user-access and the wakeup:
  1884. */
  1885. if (ret == -EFAULT)
  1886. goto pi_faulted;
  1887. goto out_unlock;
  1888. }
  1889. /*
  1890. * No waiters - kernel unlocks the futex:
  1891. */
  1892. if (!(uval & FUTEX_OWNER_DIED)) {
  1893. ret = unlock_futex_pi(uaddr, uval);
  1894. if (ret == -EFAULT)
  1895. goto pi_faulted;
  1896. }
  1897. out_unlock:
  1898. spin_unlock(&hb->lock);
  1899. put_futex_key(&key);
  1900. out:
  1901. return ret;
  1902. pi_faulted:
  1903. spin_unlock(&hb->lock);
  1904. put_futex_key(&key);
  1905. ret = fault_in_user_writeable(uaddr);
  1906. if (!ret)
  1907. goto retry;
  1908. return ret;
  1909. }
  1910. /**
  1911. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1912. * @hb: the hash_bucket futex_q was original enqueued on
  1913. * @q: the futex_q woken while waiting to be requeued
  1914. * @key2: the futex_key of the requeue target futex
  1915. * @timeout: the timeout associated with the wait (NULL if none)
  1916. *
  1917. * Detect if the task was woken on the initial futex as opposed to the requeue
  1918. * target futex. If so, determine if it was a timeout or a signal that caused
  1919. * the wakeup and return the appropriate error code to the caller. Must be
  1920. * called with the hb lock held.
  1921. *
  1922. * Return:
  1923. * 0 = no early wakeup detected;
  1924. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  1925. */
  1926. static inline
  1927. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1928. struct futex_q *q, union futex_key *key2,
  1929. struct hrtimer_sleeper *timeout)
  1930. {
  1931. int ret = 0;
  1932. /*
  1933. * With the hb lock held, we avoid races while we process the wakeup.
  1934. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1935. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1936. * It can't be requeued from uaddr2 to something else since we don't
  1937. * support a PI aware source futex for requeue.
  1938. */
  1939. if (!match_futex(&q->key, key2)) {
  1940. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1941. /*
  1942. * We were woken prior to requeue by a timeout or a signal.
  1943. * Unqueue the futex_q and determine which it was.
  1944. */
  1945. plist_del(&q->list, &hb->chain);
  1946. /* Handle spurious wakeups gracefully */
  1947. ret = -EWOULDBLOCK;
  1948. if (timeout && !timeout->task)
  1949. ret = -ETIMEDOUT;
  1950. else if (signal_pending(current))
  1951. ret = -ERESTARTNOINTR;
  1952. }
  1953. return ret;
  1954. }
  1955. /**
  1956. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1957. * @uaddr: the futex we initially wait on (non-pi)
  1958. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  1959. * the same type, no requeueing from private to shared, etc.
  1960. * @val: the expected value of uaddr
  1961. * @abs_time: absolute timeout
  1962. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  1963. * @uaddr2: the pi futex we will take prior to returning to user-space
  1964. *
  1965. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1966. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  1967. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  1968. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  1969. * without one, the pi logic would not know which task to boost/deboost, if
  1970. * there was a need to.
  1971. *
  1972. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1973. * via the following--
  1974. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1975. * 2) wakeup on uaddr2 after a requeue
  1976. * 3) signal
  1977. * 4) timeout
  1978. *
  1979. * If 3, cleanup and return -ERESTARTNOINTR.
  1980. *
  1981. * If 2, we may then block on trying to take the rt_mutex and return via:
  1982. * 5) successful lock
  1983. * 6) signal
  1984. * 7) timeout
  1985. * 8) other lock acquisition failure
  1986. *
  1987. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1988. *
  1989. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1990. *
  1991. * Return:
  1992. * 0 - On success;
  1993. * <0 - On error
  1994. */
  1995. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  1996. u32 val, ktime_t *abs_time, u32 bitset,
  1997. u32 __user *uaddr2)
  1998. {
  1999. struct hrtimer_sleeper timeout, *to = NULL;
  2000. struct rt_mutex_waiter rt_waiter;
  2001. struct rt_mutex *pi_mutex = NULL;
  2002. struct futex_hash_bucket *hb;
  2003. union futex_key key2 = FUTEX_KEY_INIT;
  2004. struct futex_q q = futex_q_init;
  2005. int res, ret;
  2006. if (uaddr == uaddr2)
  2007. return -EINVAL;
  2008. if (!bitset)
  2009. return -EINVAL;
  2010. if (abs_time) {
  2011. to = &timeout;
  2012. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2013. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2014. HRTIMER_MODE_ABS);
  2015. hrtimer_init_sleeper(to, current);
  2016. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2017. current->timer_slack_ns);
  2018. }
  2019. /*
  2020. * The waiter is allocated on our stack, manipulated by the requeue
  2021. * code while we sleep on uaddr.
  2022. */
  2023. debug_rt_mutex_init_waiter(&rt_waiter);
  2024. rt_waiter.task = NULL;
  2025. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2026. if (unlikely(ret != 0))
  2027. goto out;
  2028. q.bitset = bitset;
  2029. q.rt_waiter = &rt_waiter;
  2030. q.requeue_pi_key = &key2;
  2031. /*
  2032. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2033. * count.
  2034. */
  2035. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2036. if (ret)
  2037. goto out_key2;
  2038. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2039. futex_wait_queue_me(hb, &q, to);
  2040. spin_lock(&hb->lock);
  2041. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2042. spin_unlock(&hb->lock);
  2043. if (ret)
  2044. goto out_put_keys;
  2045. /*
  2046. * In order for us to be here, we know our q.key == key2, and since
  2047. * we took the hb->lock above, we also know that futex_requeue() has
  2048. * completed and we no longer have to concern ourselves with a wakeup
  2049. * race with the atomic proxy lock acquisition by the requeue code. The
  2050. * futex_requeue dropped our key1 reference and incremented our key2
  2051. * reference count.
  2052. */
  2053. /* Check if the requeue code acquired the second futex for us. */
  2054. if (!q.rt_waiter) {
  2055. /*
  2056. * Got the lock. We might not be the anticipated owner if we
  2057. * did a lock-steal - fix up the PI-state in that case.
  2058. */
  2059. if (q.pi_state && (q.pi_state->owner != current)) {
  2060. spin_lock(q.lock_ptr);
  2061. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2062. spin_unlock(q.lock_ptr);
  2063. }
  2064. } else {
  2065. /*
  2066. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2067. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2068. * the pi_state.
  2069. */
  2070. WARN_ON(!q.pi_state);
  2071. pi_mutex = &q.pi_state->pi_mutex;
  2072. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  2073. debug_rt_mutex_free_waiter(&rt_waiter);
  2074. spin_lock(q.lock_ptr);
  2075. /*
  2076. * Fixup the pi_state owner and possibly acquire the lock if we
  2077. * haven't already.
  2078. */
  2079. res = fixup_owner(uaddr2, &q, !ret);
  2080. /*
  2081. * If fixup_owner() returned an error, proprogate that. If it
  2082. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2083. */
  2084. if (res)
  2085. ret = (res < 0) ? res : 0;
  2086. /* Unqueue and drop the lock. */
  2087. unqueue_me_pi(&q);
  2088. }
  2089. /*
  2090. * If fixup_pi_state_owner() faulted and was unable to handle the
  2091. * fault, unlock the rt_mutex and return the fault to userspace.
  2092. */
  2093. if (ret == -EFAULT) {
  2094. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2095. rt_mutex_unlock(pi_mutex);
  2096. } else if (ret == -EINTR) {
  2097. /*
  2098. * We've already been requeued, but cannot restart by calling
  2099. * futex_lock_pi() directly. We could restart this syscall, but
  2100. * it would detect that the user space "val" changed and return
  2101. * -EWOULDBLOCK. Save the overhead of the restart and return
  2102. * -EWOULDBLOCK directly.
  2103. */
  2104. ret = -EWOULDBLOCK;
  2105. }
  2106. out_put_keys:
  2107. put_futex_key(&q.key);
  2108. out_key2:
  2109. put_futex_key(&key2);
  2110. out:
  2111. if (to) {
  2112. hrtimer_cancel(&to->timer);
  2113. destroy_hrtimer_on_stack(&to->timer);
  2114. }
  2115. return ret;
  2116. }
  2117. /*
  2118. * Support for robust futexes: the kernel cleans up held futexes at
  2119. * thread exit time.
  2120. *
  2121. * Implementation: user-space maintains a per-thread list of locks it
  2122. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2123. * and marks all locks that are owned by this thread with the
  2124. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2125. * always manipulated with the lock held, so the list is private and
  2126. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2127. * field, to allow the kernel to clean up if the thread dies after
  2128. * acquiring the lock, but just before it could have added itself to
  2129. * the list. There can only be one such pending lock.
  2130. */
  2131. /**
  2132. * sys_set_robust_list() - Set the robust-futex list head of a task
  2133. * @head: pointer to the list-head
  2134. * @len: length of the list-head, as userspace expects
  2135. */
  2136. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2137. size_t, len)
  2138. {
  2139. if (!futex_cmpxchg_enabled)
  2140. return -ENOSYS;
  2141. /*
  2142. * The kernel knows only one size for now:
  2143. */
  2144. if (unlikely(len != sizeof(*head)))
  2145. return -EINVAL;
  2146. current->robust_list = head;
  2147. return 0;
  2148. }
  2149. /**
  2150. * sys_get_robust_list() - Get the robust-futex list head of a task
  2151. * @pid: pid of the process [zero for current task]
  2152. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2153. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2154. */
  2155. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2156. struct robust_list_head __user * __user *, head_ptr,
  2157. size_t __user *, len_ptr)
  2158. {
  2159. struct robust_list_head __user *head;
  2160. unsigned long ret;
  2161. struct task_struct *p;
  2162. if (!futex_cmpxchg_enabled)
  2163. return -ENOSYS;
  2164. rcu_read_lock();
  2165. ret = -ESRCH;
  2166. if (!pid)
  2167. p = current;
  2168. else {
  2169. p = find_task_by_vpid(pid);
  2170. if (!p)
  2171. goto err_unlock;
  2172. }
  2173. ret = -EPERM;
  2174. if (!ptrace_may_access(p, PTRACE_MODE_READ))
  2175. goto err_unlock;
  2176. head = p->robust_list;
  2177. rcu_read_unlock();
  2178. if (put_user(sizeof(*head), len_ptr))
  2179. return -EFAULT;
  2180. return put_user(head, head_ptr);
  2181. err_unlock:
  2182. rcu_read_unlock();
  2183. return ret;
  2184. }
  2185. /*
  2186. * Process a futex-list entry, check whether it's owned by the
  2187. * dying task, and do notification if so:
  2188. */
  2189. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2190. {
  2191. u32 uval, uninitialized_var(nval), mval;
  2192. retry:
  2193. if (get_user(uval, uaddr))
  2194. return -1;
  2195. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2196. /*
  2197. * Ok, this dying thread is truly holding a futex
  2198. * of interest. Set the OWNER_DIED bit atomically
  2199. * via cmpxchg, and if the value had FUTEX_WAITERS
  2200. * set, wake up a waiter (if any). (We have to do a
  2201. * futex_wake() even if OWNER_DIED is already set -
  2202. * to handle the rare but possible case of recursive
  2203. * thread-death.) The rest of the cleanup is done in
  2204. * userspace.
  2205. */
  2206. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2207. /*
  2208. * We are not holding a lock here, but we want to have
  2209. * the pagefault_disable/enable() protection because
  2210. * we want to handle the fault gracefully. If the
  2211. * access fails we try to fault in the futex with R/W
  2212. * verification via get_user_pages. get_user() above
  2213. * does not guarantee R/W access. If that fails we
  2214. * give up and leave the futex locked.
  2215. */
  2216. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2217. if (fault_in_user_writeable(uaddr))
  2218. return -1;
  2219. goto retry;
  2220. }
  2221. if (nval != uval)
  2222. goto retry;
  2223. /*
  2224. * Wake robust non-PI futexes here. The wakeup of
  2225. * PI futexes happens in exit_pi_state():
  2226. */
  2227. if (!pi && (uval & FUTEX_WAITERS))
  2228. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2229. }
  2230. return 0;
  2231. }
  2232. /*
  2233. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2234. */
  2235. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2236. struct robust_list __user * __user *head,
  2237. unsigned int *pi)
  2238. {
  2239. unsigned long uentry;
  2240. if (get_user(uentry, (unsigned long __user *)head))
  2241. return -EFAULT;
  2242. *entry = (void __user *)(uentry & ~1UL);
  2243. *pi = uentry & 1;
  2244. return 0;
  2245. }
  2246. /*
  2247. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2248. * and mark any locks found there dead, and notify any waiters.
  2249. *
  2250. * We silently return on any sign of list-walking problem.
  2251. */
  2252. void exit_robust_list(struct task_struct *curr)
  2253. {
  2254. struct robust_list_head __user *head = curr->robust_list;
  2255. struct robust_list __user *entry, *next_entry, *pending;
  2256. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2257. unsigned int uninitialized_var(next_pi);
  2258. unsigned long futex_offset;
  2259. int rc;
  2260. if (!futex_cmpxchg_enabled)
  2261. return;
  2262. /*
  2263. * Fetch the list head (which was registered earlier, via
  2264. * sys_set_robust_list()):
  2265. */
  2266. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2267. return;
  2268. /*
  2269. * Fetch the relative futex offset:
  2270. */
  2271. if (get_user(futex_offset, &head->futex_offset))
  2272. return;
  2273. /*
  2274. * Fetch any possibly pending lock-add first, and handle it
  2275. * if it exists:
  2276. */
  2277. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2278. return;
  2279. next_entry = NULL; /* avoid warning with gcc */
  2280. while (entry != &head->list) {
  2281. /*
  2282. * Fetch the next entry in the list before calling
  2283. * handle_futex_death:
  2284. */
  2285. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2286. /*
  2287. * A pending lock might already be on the list, so
  2288. * don't process it twice:
  2289. */
  2290. if (entry != pending)
  2291. if (handle_futex_death((void __user *)entry + futex_offset,
  2292. curr, pi))
  2293. return;
  2294. if (rc)
  2295. return;
  2296. entry = next_entry;
  2297. pi = next_pi;
  2298. /*
  2299. * Avoid excessively long or circular lists:
  2300. */
  2301. if (!--limit)
  2302. break;
  2303. cond_resched();
  2304. }
  2305. if (pending)
  2306. handle_futex_death((void __user *)pending + futex_offset,
  2307. curr, pip);
  2308. }
  2309. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2310. u32 __user *uaddr2, u32 val2, u32 val3)
  2311. {
  2312. int cmd = op & FUTEX_CMD_MASK;
  2313. unsigned int flags = 0;
  2314. if (!(op & FUTEX_PRIVATE_FLAG))
  2315. flags |= FLAGS_SHARED;
  2316. if (op & FUTEX_CLOCK_REALTIME) {
  2317. flags |= FLAGS_CLOCKRT;
  2318. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2319. return -ENOSYS;
  2320. }
  2321. switch (cmd) {
  2322. case FUTEX_LOCK_PI:
  2323. case FUTEX_UNLOCK_PI:
  2324. case FUTEX_TRYLOCK_PI:
  2325. case FUTEX_WAIT_REQUEUE_PI:
  2326. case FUTEX_CMP_REQUEUE_PI:
  2327. if (!futex_cmpxchg_enabled)
  2328. return -ENOSYS;
  2329. }
  2330. switch (cmd) {
  2331. case FUTEX_WAIT:
  2332. val3 = FUTEX_BITSET_MATCH_ANY;
  2333. case FUTEX_WAIT_BITSET:
  2334. return futex_wait(uaddr, flags, val, timeout, val3);
  2335. case FUTEX_WAKE:
  2336. val3 = FUTEX_BITSET_MATCH_ANY;
  2337. case FUTEX_WAKE_BITSET:
  2338. return futex_wake(uaddr, flags, val, val3);
  2339. case FUTEX_REQUEUE:
  2340. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2341. case FUTEX_CMP_REQUEUE:
  2342. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2343. case FUTEX_WAKE_OP:
  2344. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2345. case FUTEX_LOCK_PI:
  2346. return futex_lock_pi(uaddr, flags, val, timeout, 0);
  2347. case FUTEX_UNLOCK_PI:
  2348. return futex_unlock_pi(uaddr, flags);
  2349. case FUTEX_TRYLOCK_PI:
  2350. return futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2351. case FUTEX_WAIT_REQUEUE_PI:
  2352. val3 = FUTEX_BITSET_MATCH_ANY;
  2353. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2354. uaddr2);
  2355. case FUTEX_CMP_REQUEUE_PI:
  2356. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2357. }
  2358. return -ENOSYS;
  2359. }
  2360. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2361. struct timespec __user *, utime, u32 __user *, uaddr2,
  2362. u32, val3)
  2363. {
  2364. struct timespec ts;
  2365. ktime_t t, *tp = NULL;
  2366. u32 val2 = 0;
  2367. int cmd = op & FUTEX_CMD_MASK;
  2368. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2369. cmd == FUTEX_WAIT_BITSET ||
  2370. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2371. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2372. return -EFAULT;
  2373. if (!timespec_valid(&ts))
  2374. return -EINVAL;
  2375. t = timespec_to_ktime(ts);
  2376. if (cmd == FUTEX_WAIT)
  2377. t = ktime_add_safe(ktime_get(), t);
  2378. tp = &t;
  2379. }
  2380. /*
  2381. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2382. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2383. */
  2384. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2385. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2386. val2 = (u32) (unsigned long) utime;
  2387. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2388. }
  2389. static int __init futex_init(void)
  2390. {
  2391. u32 curval;
  2392. int i;
  2393. /*
  2394. * This will fail and we want it. Some arch implementations do
  2395. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2396. * functionality. We want to know that before we call in any
  2397. * of the complex code paths. Also we want to prevent
  2398. * registration of robust lists in that case. NULL is
  2399. * guaranteed to fault and we get -EFAULT on functional
  2400. * implementation, the non-functional ones will return
  2401. * -ENOSYS.
  2402. */
  2403. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2404. futex_cmpxchg_enabled = 1;
  2405. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2406. plist_head_init(&futex_queues[i].chain);
  2407. spin_lock_init(&futex_queues[i].lock);
  2408. }
  2409. return 0;
  2410. }
  2411. __initcall(futex_init);