intel_display.c 268 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. static void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  821. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  822. /* For ILK+ */
  823. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  824. struct intel_pch_pll *pll,
  825. struct intel_crtc *crtc,
  826. bool state)
  827. {
  828. u32 val;
  829. bool cur_state;
  830. if (HAS_PCH_LPT(dev_priv->dev)) {
  831. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  832. return;
  833. }
  834. if (WARN (!pll,
  835. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  836. return;
  837. val = I915_READ(pll->pll_reg);
  838. cur_state = !!(val & DPLL_VCO_ENABLE);
  839. WARN(cur_state != state,
  840. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  841. pll->pll_reg, state_string(state), state_string(cur_state), val);
  842. /* Make sure the selected PLL is correctly attached to the transcoder */
  843. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  844. u32 pch_dpll;
  845. pch_dpll = I915_READ(PCH_DPLL_SEL);
  846. cur_state = pll->pll_reg == _PCH_DPLL_B;
  847. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  848. "PLL[%d] not attached to this transcoder %c: %08x\n",
  849. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  850. cur_state = !!(val >> (4*crtc->pipe + 3));
  851. WARN(cur_state != state,
  852. "PLL[%d] not %s on this transcoder %c: %08x\n",
  853. pll->pll_reg == _PCH_DPLL_B,
  854. state_string(state),
  855. pipe_name(crtc->pipe),
  856. val);
  857. }
  858. }
  859. }
  860. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  861. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  862. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  863. enum pipe pipe, bool state)
  864. {
  865. int reg;
  866. u32 val;
  867. bool cur_state;
  868. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  869. pipe);
  870. if (HAS_DDI(dev_priv->dev)) {
  871. /* DDI does not have a specific FDI_TX register */
  872. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  873. val = I915_READ(reg);
  874. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  875. } else {
  876. reg = FDI_TX_CTL(pipe);
  877. val = I915_READ(reg);
  878. cur_state = !!(val & FDI_TX_ENABLE);
  879. }
  880. WARN(cur_state != state,
  881. "FDI TX state assertion failure (expected %s, current %s)\n",
  882. state_string(state), state_string(cur_state));
  883. }
  884. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  885. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  886. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  887. enum pipe pipe, bool state)
  888. {
  889. int reg;
  890. u32 val;
  891. bool cur_state;
  892. reg = FDI_RX_CTL(pipe);
  893. val = I915_READ(reg);
  894. cur_state = !!(val & FDI_RX_ENABLE);
  895. WARN(cur_state != state,
  896. "FDI RX state assertion failure (expected %s, current %s)\n",
  897. state_string(state), state_string(cur_state));
  898. }
  899. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  900. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  901. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  902. enum pipe pipe)
  903. {
  904. int reg;
  905. u32 val;
  906. /* ILK FDI PLL is always enabled */
  907. if (dev_priv->info->gen == 5)
  908. return;
  909. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  910. if (HAS_DDI(dev_priv->dev))
  911. return;
  912. reg = FDI_TX_CTL(pipe);
  913. val = I915_READ(reg);
  914. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  915. }
  916. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  917. enum pipe pipe)
  918. {
  919. int reg;
  920. u32 val;
  921. reg = FDI_RX_CTL(pipe);
  922. val = I915_READ(reg);
  923. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  924. }
  925. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  926. enum pipe pipe)
  927. {
  928. int pp_reg, lvds_reg;
  929. u32 val;
  930. enum pipe panel_pipe = PIPE_A;
  931. bool locked = true;
  932. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  933. pp_reg = PCH_PP_CONTROL;
  934. lvds_reg = PCH_LVDS;
  935. } else {
  936. pp_reg = PP_CONTROL;
  937. lvds_reg = LVDS;
  938. }
  939. val = I915_READ(pp_reg);
  940. if (!(val & PANEL_POWER_ON) ||
  941. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  942. locked = false;
  943. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  944. panel_pipe = PIPE_B;
  945. WARN(panel_pipe == pipe && locked,
  946. "panel assertion failure, pipe %c regs locked\n",
  947. pipe_name(pipe));
  948. }
  949. void assert_pipe(struct drm_i915_private *dev_priv,
  950. enum pipe pipe, bool state)
  951. {
  952. int reg;
  953. u32 val;
  954. bool cur_state;
  955. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  956. pipe);
  957. /* if we need the pipe A quirk it must be always on */
  958. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  959. state = true;
  960. if (!intel_display_power_enabled(dev_priv->dev,
  961. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  962. cur_state = false;
  963. } else {
  964. reg = PIPECONF(cpu_transcoder);
  965. val = I915_READ(reg);
  966. cur_state = !!(val & PIPECONF_ENABLE);
  967. }
  968. WARN(cur_state != state,
  969. "pipe %c assertion failure (expected %s, current %s)\n",
  970. pipe_name(pipe), state_string(state), state_string(cur_state));
  971. }
  972. static void assert_plane(struct drm_i915_private *dev_priv,
  973. enum plane plane, bool state)
  974. {
  975. int reg;
  976. u32 val;
  977. bool cur_state;
  978. reg = DSPCNTR(plane);
  979. val = I915_READ(reg);
  980. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  981. WARN(cur_state != state,
  982. "plane %c assertion failure (expected %s, current %s)\n",
  983. plane_name(plane), state_string(state), state_string(cur_state));
  984. }
  985. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  986. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  987. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  988. enum pipe pipe)
  989. {
  990. struct drm_device *dev = dev_priv->dev;
  991. int reg, i;
  992. u32 val;
  993. int cur_pipe;
  994. /* Primary planes are fixed to pipes on gen4+ */
  995. if (INTEL_INFO(dev)->gen >= 4) {
  996. reg = DSPCNTR(pipe);
  997. val = I915_READ(reg);
  998. WARN((val & DISPLAY_PLANE_ENABLE),
  999. "plane %c assertion failure, should be disabled but not\n",
  1000. plane_name(pipe));
  1001. return;
  1002. }
  1003. /* Need to check both planes against the pipe */
  1004. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  1005. reg = DSPCNTR(i);
  1006. val = I915_READ(reg);
  1007. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1008. DISPPLANE_SEL_PIPE_SHIFT;
  1009. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1010. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1011. plane_name(i), pipe_name(pipe));
  1012. }
  1013. }
  1014. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1015. enum pipe pipe)
  1016. {
  1017. struct drm_device *dev = dev_priv->dev;
  1018. int reg, i;
  1019. u32 val;
  1020. if (IS_VALLEYVIEW(dev)) {
  1021. for (i = 0; i < dev_priv->num_plane; i++) {
  1022. reg = SPCNTR(pipe, i);
  1023. val = I915_READ(reg);
  1024. WARN((val & SP_ENABLE),
  1025. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1026. sprite_name(pipe, i), pipe_name(pipe));
  1027. }
  1028. } else if (INTEL_INFO(dev)->gen >= 7) {
  1029. reg = SPRCTL(pipe);
  1030. val = I915_READ(reg);
  1031. WARN((val & SPRITE_ENABLE),
  1032. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1033. plane_name(pipe), pipe_name(pipe));
  1034. } else if (INTEL_INFO(dev)->gen >= 5) {
  1035. reg = DVSCNTR(pipe);
  1036. val = I915_READ(reg);
  1037. WARN((val & DVS_ENABLE),
  1038. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1039. plane_name(pipe), pipe_name(pipe));
  1040. }
  1041. }
  1042. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1043. {
  1044. u32 val;
  1045. bool enabled;
  1046. if (HAS_PCH_LPT(dev_priv->dev)) {
  1047. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1048. return;
  1049. }
  1050. val = I915_READ(PCH_DREF_CONTROL);
  1051. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1052. DREF_SUPERSPREAD_SOURCE_MASK));
  1053. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1054. }
  1055. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1056. enum pipe pipe)
  1057. {
  1058. int reg;
  1059. u32 val;
  1060. bool enabled;
  1061. reg = PCH_TRANSCONF(pipe);
  1062. val = I915_READ(reg);
  1063. enabled = !!(val & TRANS_ENABLE);
  1064. WARN(enabled,
  1065. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1066. pipe_name(pipe));
  1067. }
  1068. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1069. enum pipe pipe, u32 port_sel, u32 val)
  1070. {
  1071. if ((val & DP_PORT_EN) == 0)
  1072. return false;
  1073. if (HAS_PCH_CPT(dev_priv->dev)) {
  1074. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1075. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1076. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1077. return false;
  1078. } else {
  1079. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1080. return false;
  1081. }
  1082. return true;
  1083. }
  1084. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1085. enum pipe pipe, u32 val)
  1086. {
  1087. if ((val & SDVO_ENABLE) == 0)
  1088. return false;
  1089. if (HAS_PCH_CPT(dev_priv->dev)) {
  1090. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1091. return false;
  1092. } else {
  1093. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1094. return false;
  1095. }
  1096. return true;
  1097. }
  1098. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1099. enum pipe pipe, u32 val)
  1100. {
  1101. if ((val & LVDS_PORT_EN) == 0)
  1102. return false;
  1103. if (HAS_PCH_CPT(dev_priv->dev)) {
  1104. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1105. return false;
  1106. } else {
  1107. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1108. return false;
  1109. }
  1110. return true;
  1111. }
  1112. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1113. enum pipe pipe, u32 val)
  1114. {
  1115. if ((val & ADPA_DAC_ENABLE) == 0)
  1116. return false;
  1117. if (HAS_PCH_CPT(dev_priv->dev)) {
  1118. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1119. return false;
  1120. } else {
  1121. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1122. return false;
  1123. }
  1124. return true;
  1125. }
  1126. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1127. enum pipe pipe, int reg, u32 port_sel)
  1128. {
  1129. u32 val = I915_READ(reg);
  1130. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1131. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1132. reg, pipe_name(pipe));
  1133. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1134. && (val & DP_PIPEB_SELECT),
  1135. "IBX PCH dp port still using transcoder B\n");
  1136. }
  1137. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe, int reg)
  1139. {
  1140. u32 val = I915_READ(reg);
  1141. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1142. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1143. reg, pipe_name(pipe));
  1144. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1145. && (val & SDVO_PIPE_B_SELECT),
  1146. "IBX PCH hdmi port still using transcoder B\n");
  1147. }
  1148. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1149. enum pipe pipe)
  1150. {
  1151. int reg;
  1152. u32 val;
  1153. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1154. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1155. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1156. reg = PCH_ADPA;
  1157. val = I915_READ(reg);
  1158. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1159. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1160. pipe_name(pipe));
  1161. reg = PCH_LVDS;
  1162. val = I915_READ(reg);
  1163. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1164. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1165. pipe_name(pipe));
  1166. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1167. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1168. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1169. }
  1170. /**
  1171. * intel_enable_pll - enable a PLL
  1172. * @dev_priv: i915 private structure
  1173. * @pipe: pipe PLL to enable
  1174. *
  1175. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1176. * make sure the PLL reg is writable first though, since the panel write
  1177. * protect mechanism may be enabled.
  1178. *
  1179. * Note! This is for pre-ILK only.
  1180. *
  1181. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1182. */
  1183. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1184. {
  1185. int reg;
  1186. u32 val;
  1187. assert_pipe_disabled(dev_priv, pipe);
  1188. /* No really, not for ILK+ */
  1189. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1190. /* PLL is protected by panel, make sure we can write it */
  1191. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1192. assert_panel_unlocked(dev_priv, pipe);
  1193. reg = DPLL(pipe);
  1194. val = I915_READ(reg);
  1195. val |= DPLL_VCO_ENABLE;
  1196. /* We do this three times for luck */
  1197. I915_WRITE(reg, val);
  1198. POSTING_READ(reg);
  1199. udelay(150); /* wait for warmup */
  1200. I915_WRITE(reg, val);
  1201. POSTING_READ(reg);
  1202. udelay(150); /* wait for warmup */
  1203. I915_WRITE(reg, val);
  1204. POSTING_READ(reg);
  1205. udelay(150); /* wait for warmup */
  1206. }
  1207. /**
  1208. * intel_disable_pll - disable a PLL
  1209. * @dev_priv: i915 private structure
  1210. * @pipe: pipe PLL to disable
  1211. *
  1212. * Disable the PLL for @pipe, making sure the pipe is off first.
  1213. *
  1214. * Note! This is for pre-ILK only.
  1215. */
  1216. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1217. {
  1218. int reg;
  1219. u32 val;
  1220. /* Don't disable pipe A or pipe A PLLs if needed */
  1221. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1222. return;
  1223. /* Make sure the pipe isn't still relying on us */
  1224. assert_pipe_disabled(dev_priv, pipe);
  1225. reg = DPLL(pipe);
  1226. val = I915_READ(reg);
  1227. val &= ~DPLL_VCO_ENABLE;
  1228. I915_WRITE(reg, val);
  1229. POSTING_READ(reg);
  1230. }
  1231. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1232. {
  1233. u32 port_mask;
  1234. if (!port)
  1235. port_mask = DPLL_PORTB_READY_MASK;
  1236. else
  1237. port_mask = DPLL_PORTC_READY_MASK;
  1238. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1239. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1240. 'B' + port, I915_READ(DPLL(0)));
  1241. }
  1242. /**
  1243. * ironlake_enable_pch_pll - enable PCH PLL
  1244. * @dev_priv: i915 private structure
  1245. * @pipe: pipe PLL to enable
  1246. *
  1247. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1248. * drives the transcoder clock.
  1249. */
  1250. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1251. {
  1252. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1253. struct intel_pch_pll *pll;
  1254. int reg;
  1255. u32 val;
  1256. /* PCH PLLs only available on ILK, SNB and IVB */
  1257. BUG_ON(dev_priv->info->gen < 5);
  1258. pll = intel_crtc->pch_pll;
  1259. if (pll == NULL)
  1260. return;
  1261. if (WARN_ON(pll->refcount == 0))
  1262. return;
  1263. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1264. pll->pll_reg, pll->active, pll->on,
  1265. intel_crtc->base.base.id);
  1266. /* PCH refclock must be enabled first */
  1267. assert_pch_refclk_enabled(dev_priv);
  1268. if (pll->active++ && pll->on) {
  1269. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1270. return;
  1271. }
  1272. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1273. reg = pll->pll_reg;
  1274. val = I915_READ(reg);
  1275. val |= DPLL_VCO_ENABLE;
  1276. I915_WRITE(reg, val);
  1277. POSTING_READ(reg);
  1278. udelay(200);
  1279. pll->on = true;
  1280. }
  1281. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1282. {
  1283. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1284. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1285. int reg;
  1286. u32 val;
  1287. /* PCH only available on ILK+ */
  1288. BUG_ON(dev_priv->info->gen < 5);
  1289. if (pll == NULL)
  1290. return;
  1291. if (WARN_ON(pll->refcount == 0))
  1292. return;
  1293. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1294. pll->pll_reg, pll->active, pll->on,
  1295. intel_crtc->base.base.id);
  1296. if (WARN_ON(pll->active == 0)) {
  1297. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1298. return;
  1299. }
  1300. if (--pll->active) {
  1301. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1302. return;
  1303. }
  1304. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1305. /* Make sure transcoder isn't still depending on us */
  1306. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1307. reg = pll->pll_reg;
  1308. val = I915_READ(reg);
  1309. val &= ~DPLL_VCO_ENABLE;
  1310. I915_WRITE(reg, val);
  1311. POSTING_READ(reg);
  1312. udelay(200);
  1313. pll->on = false;
  1314. }
  1315. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1316. enum pipe pipe)
  1317. {
  1318. struct drm_device *dev = dev_priv->dev;
  1319. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1320. uint32_t reg, val, pipeconf_val;
  1321. /* PCH only available on ILK+ */
  1322. BUG_ON(dev_priv->info->gen < 5);
  1323. /* Make sure PCH DPLL is enabled */
  1324. assert_pch_pll_enabled(dev_priv,
  1325. to_intel_crtc(crtc)->pch_pll,
  1326. to_intel_crtc(crtc));
  1327. /* FDI must be feeding us bits for PCH ports */
  1328. assert_fdi_tx_enabled(dev_priv, pipe);
  1329. assert_fdi_rx_enabled(dev_priv, pipe);
  1330. if (HAS_PCH_CPT(dev)) {
  1331. /* Workaround: Set the timing override bit before enabling the
  1332. * pch transcoder. */
  1333. reg = TRANS_CHICKEN2(pipe);
  1334. val = I915_READ(reg);
  1335. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1336. I915_WRITE(reg, val);
  1337. }
  1338. reg = PCH_TRANSCONF(pipe);
  1339. val = I915_READ(reg);
  1340. pipeconf_val = I915_READ(PIPECONF(pipe));
  1341. if (HAS_PCH_IBX(dev_priv->dev)) {
  1342. /*
  1343. * make the BPC in transcoder be consistent with
  1344. * that in pipeconf reg.
  1345. */
  1346. val &= ~PIPECONF_BPC_MASK;
  1347. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1348. }
  1349. val &= ~TRANS_INTERLACE_MASK;
  1350. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1351. if (HAS_PCH_IBX(dev_priv->dev) &&
  1352. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1353. val |= TRANS_LEGACY_INTERLACED_ILK;
  1354. else
  1355. val |= TRANS_INTERLACED;
  1356. else
  1357. val |= TRANS_PROGRESSIVE;
  1358. I915_WRITE(reg, val | TRANS_ENABLE);
  1359. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1360. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1361. }
  1362. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1363. enum transcoder cpu_transcoder)
  1364. {
  1365. u32 val, pipeconf_val;
  1366. /* PCH only available on ILK+ */
  1367. BUG_ON(dev_priv->info->gen < 5);
  1368. /* FDI must be feeding us bits for PCH ports */
  1369. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1370. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1371. /* Workaround: set timing override bit. */
  1372. val = I915_READ(_TRANSA_CHICKEN2);
  1373. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1374. I915_WRITE(_TRANSA_CHICKEN2, val);
  1375. val = TRANS_ENABLE;
  1376. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1377. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1378. PIPECONF_INTERLACED_ILK)
  1379. val |= TRANS_INTERLACED;
  1380. else
  1381. val |= TRANS_PROGRESSIVE;
  1382. I915_WRITE(LPT_TRANSCONF, val);
  1383. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1384. DRM_ERROR("Failed to enable PCH transcoder\n");
  1385. }
  1386. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1387. enum pipe pipe)
  1388. {
  1389. struct drm_device *dev = dev_priv->dev;
  1390. uint32_t reg, val;
  1391. /* FDI relies on the transcoder */
  1392. assert_fdi_tx_disabled(dev_priv, pipe);
  1393. assert_fdi_rx_disabled(dev_priv, pipe);
  1394. /* Ports must be off as well */
  1395. assert_pch_ports_disabled(dev_priv, pipe);
  1396. reg = PCH_TRANSCONF(pipe);
  1397. val = I915_READ(reg);
  1398. val &= ~TRANS_ENABLE;
  1399. I915_WRITE(reg, val);
  1400. /* wait for PCH transcoder off, transcoder state */
  1401. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1402. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1403. if (!HAS_PCH_IBX(dev)) {
  1404. /* Workaround: Clear the timing override chicken bit again. */
  1405. reg = TRANS_CHICKEN2(pipe);
  1406. val = I915_READ(reg);
  1407. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1408. I915_WRITE(reg, val);
  1409. }
  1410. }
  1411. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1412. {
  1413. u32 val;
  1414. val = I915_READ(LPT_TRANSCONF);
  1415. val &= ~TRANS_ENABLE;
  1416. I915_WRITE(LPT_TRANSCONF, val);
  1417. /* wait for PCH transcoder off, transcoder state */
  1418. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1419. DRM_ERROR("Failed to disable PCH transcoder\n");
  1420. /* Workaround: clear timing override bit. */
  1421. val = I915_READ(_TRANSA_CHICKEN2);
  1422. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1423. I915_WRITE(_TRANSA_CHICKEN2, val);
  1424. }
  1425. /**
  1426. * intel_enable_pipe - enable a pipe, asserting requirements
  1427. * @dev_priv: i915 private structure
  1428. * @pipe: pipe to enable
  1429. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1430. *
  1431. * Enable @pipe, making sure that various hardware specific requirements
  1432. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1433. *
  1434. * @pipe should be %PIPE_A or %PIPE_B.
  1435. *
  1436. * Will wait until the pipe is actually running (i.e. first vblank) before
  1437. * returning.
  1438. */
  1439. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1440. bool pch_port)
  1441. {
  1442. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1443. pipe);
  1444. enum pipe pch_transcoder;
  1445. int reg;
  1446. u32 val;
  1447. assert_planes_disabled(dev_priv, pipe);
  1448. assert_sprites_disabled(dev_priv, pipe);
  1449. if (HAS_PCH_LPT(dev_priv->dev))
  1450. pch_transcoder = TRANSCODER_A;
  1451. else
  1452. pch_transcoder = pipe;
  1453. /*
  1454. * A pipe without a PLL won't actually be able to drive bits from
  1455. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1456. * need the check.
  1457. */
  1458. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1459. assert_pll_enabled(dev_priv, pipe);
  1460. else {
  1461. if (pch_port) {
  1462. /* if driving the PCH, we need FDI enabled */
  1463. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1464. assert_fdi_tx_pll_enabled(dev_priv,
  1465. (enum pipe) cpu_transcoder);
  1466. }
  1467. /* FIXME: assert CPU port conditions for SNB+ */
  1468. }
  1469. reg = PIPECONF(cpu_transcoder);
  1470. val = I915_READ(reg);
  1471. if (val & PIPECONF_ENABLE)
  1472. return;
  1473. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1474. intel_wait_for_vblank(dev_priv->dev, pipe);
  1475. }
  1476. /**
  1477. * intel_disable_pipe - disable a pipe, asserting requirements
  1478. * @dev_priv: i915 private structure
  1479. * @pipe: pipe to disable
  1480. *
  1481. * Disable @pipe, making sure that various hardware specific requirements
  1482. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1483. *
  1484. * @pipe should be %PIPE_A or %PIPE_B.
  1485. *
  1486. * Will wait until the pipe has shut down before returning.
  1487. */
  1488. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1489. enum pipe pipe)
  1490. {
  1491. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1492. pipe);
  1493. int reg;
  1494. u32 val;
  1495. /*
  1496. * Make sure planes won't keep trying to pump pixels to us,
  1497. * or we might hang the display.
  1498. */
  1499. assert_planes_disabled(dev_priv, pipe);
  1500. assert_sprites_disabled(dev_priv, pipe);
  1501. /* Don't disable pipe A or pipe A PLLs if needed */
  1502. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1503. return;
  1504. reg = PIPECONF(cpu_transcoder);
  1505. val = I915_READ(reg);
  1506. if ((val & PIPECONF_ENABLE) == 0)
  1507. return;
  1508. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1509. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1510. }
  1511. /*
  1512. * Plane regs are double buffered, going from enabled->disabled needs a
  1513. * trigger in order to latch. The display address reg provides this.
  1514. */
  1515. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1516. enum plane plane)
  1517. {
  1518. if (dev_priv->info->gen >= 4)
  1519. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1520. else
  1521. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1522. }
  1523. /**
  1524. * intel_enable_plane - enable a display plane on a given pipe
  1525. * @dev_priv: i915 private structure
  1526. * @plane: plane to enable
  1527. * @pipe: pipe being fed
  1528. *
  1529. * Enable @plane on @pipe, making sure that @pipe is running first.
  1530. */
  1531. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1532. enum plane plane, enum pipe pipe)
  1533. {
  1534. int reg;
  1535. u32 val;
  1536. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1537. assert_pipe_enabled(dev_priv, pipe);
  1538. reg = DSPCNTR(plane);
  1539. val = I915_READ(reg);
  1540. if (val & DISPLAY_PLANE_ENABLE)
  1541. return;
  1542. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1543. intel_flush_display_plane(dev_priv, plane);
  1544. intel_wait_for_vblank(dev_priv->dev, pipe);
  1545. }
  1546. /**
  1547. * intel_disable_plane - disable a display plane
  1548. * @dev_priv: i915 private structure
  1549. * @plane: plane to disable
  1550. * @pipe: pipe consuming the data
  1551. *
  1552. * Disable @plane; should be an independent operation.
  1553. */
  1554. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1555. enum plane plane, enum pipe pipe)
  1556. {
  1557. int reg;
  1558. u32 val;
  1559. reg = DSPCNTR(plane);
  1560. val = I915_READ(reg);
  1561. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1562. return;
  1563. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1564. intel_flush_display_plane(dev_priv, plane);
  1565. intel_wait_for_vblank(dev_priv->dev, pipe);
  1566. }
  1567. static bool need_vtd_wa(struct drm_device *dev)
  1568. {
  1569. #ifdef CONFIG_INTEL_IOMMU
  1570. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1571. return true;
  1572. #endif
  1573. return false;
  1574. }
  1575. int
  1576. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1577. struct drm_i915_gem_object *obj,
  1578. struct intel_ring_buffer *pipelined)
  1579. {
  1580. struct drm_i915_private *dev_priv = dev->dev_private;
  1581. u32 alignment;
  1582. int ret;
  1583. switch (obj->tiling_mode) {
  1584. case I915_TILING_NONE:
  1585. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1586. alignment = 128 * 1024;
  1587. else if (INTEL_INFO(dev)->gen >= 4)
  1588. alignment = 4 * 1024;
  1589. else
  1590. alignment = 64 * 1024;
  1591. break;
  1592. case I915_TILING_X:
  1593. /* pin() will align the object as required by fence */
  1594. alignment = 0;
  1595. break;
  1596. case I915_TILING_Y:
  1597. /* Despite that we check this in framebuffer_init userspace can
  1598. * screw us over and change the tiling after the fact. Only
  1599. * pinned buffers can't change their tiling. */
  1600. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1601. return -EINVAL;
  1602. default:
  1603. BUG();
  1604. }
  1605. /* Note that the w/a also requires 64 PTE of padding following the
  1606. * bo. We currently fill all unused PTE with the shadow page and so
  1607. * we should always have valid PTE following the scanout preventing
  1608. * the VT-d warning.
  1609. */
  1610. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1611. alignment = 256 * 1024;
  1612. dev_priv->mm.interruptible = false;
  1613. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1614. if (ret)
  1615. goto err_interruptible;
  1616. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1617. * fence, whereas 965+ only requires a fence if using
  1618. * framebuffer compression. For simplicity, we always install
  1619. * a fence as the cost is not that onerous.
  1620. */
  1621. ret = i915_gem_object_get_fence(obj);
  1622. if (ret)
  1623. goto err_unpin;
  1624. i915_gem_object_pin_fence(obj);
  1625. dev_priv->mm.interruptible = true;
  1626. return 0;
  1627. err_unpin:
  1628. i915_gem_object_unpin(obj);
  1629. err_interruptible:
  1630. dev_priv->mm.interruptible = true;
  1631. return ret;
  1632. }
  1633. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1634. {
  1635. i915_gem_object_unpin_fence(obj);
  1636. i915_gem_object_unpin(obj);
  1637. }
  1638. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1639. * is assumed to be a power-of-two. */
  1640. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1641. unsigned int tiling_mode,
  1642. unsigned int cpp,
  1643. unsigned int pitch)
  1644. {
  1645. if (tiling_mode != I915_TILING_NONE) {
  1646. unsigned int tile_rows, tiles;
  1647. tile_rows = *y / 8;
  1648. *y %= 8;
  1649. tiles = *x / (512/cpp);
  1650. *x %= 512/cpp;
  1651. return tile_rows * pitch * 8 + tiles * 4096;
  1652. } else {
  1653. unsigned int offset;
  1654. offset = *y * pitch + *x * cpp;
  1655. *y = 0;
  1656. *x = (offset & 4095) / cpp;
  1657. return offset & -4096;
  1658. }
  1659. }
  1660. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1661. int x, int y)
  1662. {
  1663. struct drm_device *dev = crtc->dev;
  1664. struct drm_i915_private *dev_priv = dev->dev_private;
  1665. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1666. struct intel_framebuffer *intel_fb;
  1667. struct drm_i915_gem_object *obj;
  1668. int plane = intel_crtc->plane;
  1669. unsigned long linear_offset;
  1670. u32 dspcntr;
  1671. u32 reg;
  1672. switch (plane) {
  1673. case 0:
  1674. case 1:
  1675. break;
  1676. default:
  1677. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1678. return -EINVAL;
  1679. }
  1680. intel_fb = to_intel_framebuffer(fb);
  1681. obj = intel_fb->obj;
  1682. reg = DSPCNTR(plane);
  1683. dspcntr = I915_READ(reg);
  1684. /* Mask out pixel format bits in case we change it */
  1685. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1686. switch (fb->pixel_format) {
  1687. case DRM_FORMAT_C8:
  1688. dspcntr |= DISPPLANE_8BPP;
  1689. break;
  1690. case DRM_FORMAT_XRGB1555:
  1691. case DRM_FORMAT_ARGB1555:
  1692. dspcntr |= DISPPLANE_BGRX555;
  1693. break;
  1694. case DRM_FORMAT_RGB565:
  1695. dspcntr |= DISPPLANE_BGRX565;
  1696. break;
  1697. case DRM_FORMAT_XRGB8888:
  1698. case DRM_FORMAT_ARGB8888:
  1699. dspcntr |= DISPPLANE_BGRX888;
  1700. break;
  1701. case DRM_FORMAT_XBGR8888:
  1702. case DRM_FORMAT_ABGR8888:
  1703. dspcntr |= DISPPLANE_RGBX888;
  1704. break;
  1705. case DRM_FORMAT_XRGB2101010:
  1706. case DRM_FORMAT_ARGB2101010:
  1707. dspcntr |= DISPPLANE_BGRX101010;
  1708. break;
  1709. case DRM_FORMAT_XBGR2101010:
  1710. case DRM_FORMAT_ABGR2101010:
  1711. dspcntr |= DISPPLANE_RGBX101010;
  1712. break;
  1713. default:
  1714. BUG();
  1715. }
  1716. if (INTEL_INFO(dev)->gen >= 4) {
  1717. if (obj->tiling_mode != I915_TILING_NONE)
  1718. dspcntr |= DISPPLANE_TILED;
  1719. else
  1720. dspcntr &= ~DISPPLANE_TILED;
  1721. }
  1722. I915_WRITE(reg, dspcntr);
  1723. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1724. if (INTEL_INFO(dev)->gen >= 4) {
  1725. intel_crtc->dspaddr_offset =
  1726. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1727. fb->bits_per_pixel / 8,
  1728. fb->pitches[0]);
  1729. linear_offset -= intel_crtc->dspaddr_offset;
  1730. } else {
  1731. intel_crtc->dspaddr_offset = linear_offset;
  1732. }
  1733. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1734. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1735. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1736. if (INTEL_INFO(dev)->gen >= 4) {
  1737. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1738. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1739. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1740. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1741. } else
  1742. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1743. POSTING_READ(reg);
  1744. return 0;
  1745. }
  1746. static int ironlake_update_plane(struct drm_crtc *crtc,
  1747. struct drm_framebuffer *fb, int x, int y)
  1748. {
  1749. struct drm_device *dev = crtc->dev;
  1750. struct drm_i915_private *dev_priv = dev->dev_private;
  1751. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1752. struct intel_framebuffer *intel_fb;
  1753. struct drm_i915_gem_object *obj;
  1754. int plane = intel_crtc->plane;
  1755. unsigned long linear_offset;
  1756. u32 dspcntr;
  1757. u32 reg;
  1758. switch (plane) {
  1759. case 0:
  1760. case 1:
  1761. case 2:
  1762. break;
  1763. default:
  1764. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1765. return -EINVAL;
  1766. }
  1767. intel_fb = to_intel_framebuffer(fb);
  1768. obj = intel_fb->obj;
  1769. reg = DSPCNTR(plane);
  1770. dspcntr = I915_READ(reg);
  1771. /* Mask out pixel format bits in case we change it */
  1772. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1773. switch (fb->pixel_format) {
  1774. case DRM_FORMAT_C8:
  1775. dspcntr |= DISPPLANE_8BPP;
  1776. break;
  1777. case DRM_FORMAT_RGB565:
  1778. dspcntr |= DISPPLANE_BGRX565;
  1779. break;
  1780. case DRM_FORMAT_XRGB8888:
  1781. case DRM_FORMAT_ARGB8888:
  1782. dspcntr |= DISPPLANE_BGRX888;
  1783. break;
  1784. case DRM_FORMAT_XBGR8888:
  1785. case DRM_FORMAT_ABGR8888:
  1786. dspcntr |= DISPPLANE_RGBX888;
  1787. break;
  1788. case DRM_FORMAT_XRGB2101010:
  1789. case DRM_FORMAT_ARGB2101010:
  1790. dspcntr |= DISPPLANE_BGRX101010;
  1791. break;
  1792. case DRM_FORMAT_XBGR2101010:
  1793. case DRM_FORMAT_ABGR2101010:
  1794. dspcntr |= DISPPLANE_RGBX101010;
  1795. break;
  1796. default:
  1797. BUG();
  1798. }
  1799. if (obj->tiling_mode != I915_TILING_NONE)
  1800. dspcntr |= DISPPLANE_TILED;
  1801. else
  1802. dspcntr &= ~DISPPLANE_TILED;
  1803. /* must disable */
  1804. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1805. I915_WRITE(reg, dspcntr);
  1806. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1807. intel_crtc->dspaddr_offset =
  1808. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1809. fb->bits_per_pixel / 8,
  1810. fb->pitches[0]);
  1811. linear_offset -= intel_crtc->dspaddr_offset;
  1812. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1813. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1814. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1815. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1816. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1817. if (IS_HASWELL(dev)) {
  1818. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1819. } else {
  1820. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1821. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1822. }
  1823. POSTING_READ(reg);
  1824. return 0;
  1825. }
  1826. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1827. static int
  1828. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1829. int x, int y, enum mode_set_atomic state)
  1830. {
  1831. struct drm_device *dev = crtc->dev;
  1832. struct drm_i915_private *dev_priv = dev->dev_private;
  1833. if (dev_priv->display.disable_fbc)
  1834. dev_priv->display.disable_fbc(dev);
  1835. intel_increase_pllclock(crtc);
  1836. return dev_priv->display.update_plane(crtc, fb, x, y);
  1837. }
  1838. void intel_display_handle_reset(struct drm_device *dev)
  1839. {
  1840. struct drm_i915_private *dev_priv = dev->dev_private;
  1841. struct drm_crtc *crtc;
  1842. /*
  1843. * Flips in the rings have been nuked by the reset,
  1844. * so complete all pending flips so that user space
  1845. * will get its events and not get stuck.
  1846. *
  1847. * Also update the base address of all primary
  1848. * planes to the the last fb to make sure we're
  1849. * showing the correct fb after a reset.
  1850. *
  1851. * Need to make two loops over the crtcs so that we
  1852. * don't try to grab a crtc mutex before the
  1853. * pending_flip_queue really got woken up.
  1854. */
  1855. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1856. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1857. enum plane plane = intel_crtc->plane;
  1858. intel_prepare_page_flip(dev, plane);
  1859. intel_finish_page_flip_plane(dev, plane);
  1860. }
  1861. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1862. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1863. mutex_lock(&crtc->mutex);
  1864. if (intel_crtc->active)
  1865. dev_priv->display.update_plane(crtc, crtc->fb,
  1866. crtc->x, crtc->y);
  1867. mutex_unlock(&crtc->mutex);
  1868. }
  1869. }
  1870. static int
  1871. intel_finish_fb(struct drm_framebuffer *old_fb)
  1872. {
  1873. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1874. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1875. bool was_interruptible = dev_priv->mm.interruptible;
  1876. int ret;
  1877. /* Big Hammer, we also need to ensure that any pending
  1878. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1879. * current scanout is retired before unpinning the old
  1880. * framebuffer.
  1881. *
  1882. * This should only fail upon a hung GPU, in which case we
  1883. * can safely continue.
  1884. */
  1885. dev_priv->mm.interruptible = false;
  1886. ret = i915_gem_object_finish_gpu(obj);
  1887. dev_priv->mm.interruptible = was_interruptible;
  1888. return ret;
  1889. }
  1890. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1891. {
  1892. struct drm_device *dev = crtc->dev;
  1893. struct drm_i915_master_private *master_priv;
  1894. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1895. if (!dev->primary->master)
  1896. return;
  1897. master_priv = dev->primary->master->driver_priv;
  1898. if (!master_priv->sarea_priv)
  1899. return;
  1900. switch (intel_crtc->pipe) {
  1901. case 0:
  1902. master_priv->sarea_priv->pipeA_x = x;
  1903. master_priv->sarea_priv->pipeA_y = y;
  1904. break;
  1905. case 1:
  1906. master_priv->sarea_priv->pipeB_x = x;
  1907. master_priv->sarea_priv->pipeB_y = y;
  1908. break;
  1909. default:
  1910. break;
  1911. }
  1912. }
  1913. static int
  1914. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1915. struct drm_framebuffer *fb)
  1916. {
  1917. struct drm_device *dev = crtc->dev;
  1918. struct drm_i915_private *dev_priv = dev->dev_private;
  1919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1920. struct drm_framebuffer *old_fb;
  1921. int ret;
  1922. /* no fb bound */
  1923. if (!fb) {
  1924. DRM_ERROR("No FB bound\n");
  1925. return 0;
  1926. }
  1927. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1928. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1929. plane_name(intel_crtc->plane),
  1930. INTEL_INFO(dev)->num_pipes);
  1931. return -EINVAL;
  1932. }
  1933. mutex_lock(&dev->struct_mutex);
  1934. ret = intel_pin_and_fence_fb_obj(dev,
  1935. to_intel_framebuffer(fb)->obj,
  1936. NULL);
  1937. if (ret != 0) {
  1938. mutex_unlock(&dev->struct_mutex);
  1939. DRM_ERROR("pin & fence failed\n");
  1940. return ret;
  1941. }
  1942. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1943. if (ret) {
  1944. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1945. mutex_unlock(&dev->struct_mutex);
  1946. DRM_ERROR("failed to update base address\n");
  1947. return ret;
  1948. }
  1949. old_fb = crtc->fb;
  1950. crtc->fb = fb;
  1951. crtc->x = x;
  1952. crtc->y = y;
  1953. if (old_fb) {
  1954. if (intel_crtc->active && old_fb != fb)
  1955. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1956. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1957. }
  1958. intel_update_fbc(dev);
  1959. mutex_unlock(&dev->struct_mutex);
  1960. intel_crtc_update_sarea_pos(crtc, x, y);
  1961. return 0;
  1962. }
  1963. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1964. {
  1965. struct drm_device *dev = crtc->dev;
  1966. struct drm_i915_private *dev_priv = dev->dev_private;
  1967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1968. int pipe = intel_crtc->pipe;
  1969. u32 reg, temp;
  1970. /* enable normal train */
  1971. reg = FDI_TX_CTL(pipe);
  1972. temp = I915_READ(reg);
  1973. if (IS_IVYBRIDGE(dev)) {
  1974. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1975. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1976. } else {
  1977. temp &= ~FDI_LINK_TRAIN_NONE;
  1978. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1979. }
  1980. I915_WRITE(reg, temp);
  1981. reg = FDI_RX_CTL(pipe);
  1982. temp = I915_READ(reg);
  1983. if (HAS_PCH_CPT(dev)) {
  1984. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1985. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1986. } else {
  1987. temp &= ~FDI_LINK_TRAIN_NONE;
  1988. temp |= FDI_LINK_TRAIN_NONE;
  1989. }
  1990. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1991. /* wait one idle pattern time */
  1992. POSTING_READ(reg);
  1993. udelay(1000);
  1994. /* IVB wants error correction enabled */
  1995. if (IS_IVYBRIDGE(dev))
  1996. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1997. FDI_FE_ERRC_ENABLE);
  1998. }
  1999. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2000. {
  2001. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2002. }
  2003. static void ivb_modeset_global_resources(struct drm_device *dev)
  2004. {
  2005. struct drm_i915_private *dev_priv = dev->dev_private;
  2006. struct intel_crtc *pipe_B_crtc =
  2007. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2008. struct intel_crtc *pipe_C_crtc =
  2009. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2010. uint32_t temp;
  2011. /*
  2012. * When everything is off disable fdi C so that we could enable fdi B
  2013. * with all lanes. Note that we don't care about enabled pipes without
  2014. * an enabled pch encoder.
  2015. */
  2016. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2017. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2018. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2019. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2020. temp = I915_READ(SOUTH_CHICKEN1);
  2021. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2022. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2023. I915_WRITE(SOUTH_CHICKEN1, temp);
  2024. }
  2025. }
  2026. /* The FDI link training functions for ILK/Ibexpeak. */
  2027. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2028. {
  2029. struct drm_device *dev = crtc->dev;
  2030. struct drm_i915_private *dev_priv = dev->dev_private;
  2031. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2032. int pipe = intel_crtc->pipe;
  2033. int plane = intel_crtc->plane;
  2034. u32 reg, temp, tries;
  2035. /* FDI needs bits from pipe & plane first */
  2036. assert_pipe_enabled(dev_priv, pipe);
  2037. assert_plane_enabled(dev_priv, plane);
  2038. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2039. for train result */
  2040. reg = FDI_RX_IMR(pipe);
  2041. temp = I915_READ(reg);
  2042. temp &= ~FDI_RX_SYMBOL_LOCK;
  2043. temp &= ~FDI_RX_BIT_LOCK;
  2044. I915_WRITE(reg, temp);
  2045. I915_READ(reg);
  2046. udelay(150);
  2047. /* enable CPU FDI TX and PCH FDI RX */
  2048. reg = FDI_TX_CTL(pipe);
  2049. temp = I915_READ(reg);
  2050. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2051. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2052. temp &= ~FDI_LINK_TRAIN_NONE;
  2053. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2054. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2055. reg = FDI_RX_CTL(pipe);
  2056. temp = I915_READ(reg);
  2057. temp &= ~FDI_LINK_TRAIN_NONE;
  2058. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2059. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2060. POSTING_READ(reg);
  2061. udelay(150);
  2062. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2063. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2064. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2065. FDI_RX_PHASE_SYNC_POINTER_EN);
  2066. reg = FDI_RX_IIR(pipe);
  2067. for (tries = 0; tries < 5; tries++) {
  2068. temp = I915_READ(reg);
  2069. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2070. if ((temp & FDI_RX_BIT_LOCK)) {
  2071. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2072. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2073. break;
  2074. }
  2075. }
  2076. if (tries == 5)
  2077. DRM_ERROR("FDI train 1 fail!\n");
  2078. /* Train 2 */
  2079. reg = FDI_TX_CTL(pipe);
  2080. temp = I915_READ(reg);
  2081. temp &= ~FDI_LINK_TRAIN_NONE;
  2082. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2083. I915_WRITE(reg, temp);
  2084. reg = FDI_RX_CTL(pipe);
  2085. temp = I915_READ(reg);
  2086. temp &= ~FDI_LINK_TRAIN_NONE;
  2087. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2088. I915_WRITE(reg, temp);
  2089. POSTING_READ(reg);
  2090. udelay(150);
  2091. reg = FDI_RX_IIR(pipe);
  2092. for (tries = 0; tries < 5; tries++) {
  2093. temp = I915_READ(reg);
  2094. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2095. if (temp & FDI_RX_SYMBOL_LOCK) {
  2096. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2097. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2098. break;
  2099. }
  2100. }
  2101. if (tries == 5)
  2102. DRM_ERROR("FDI train 2 fail!\n");
  2103. DRM_DEBUG_KMS("FDI train done\n");
  2104. }
  2105. static const int snb_b_fdi_train_param[] = {
  2106. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2107. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2108. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2109. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2110. };
  2111. /* The FDI link training functions for SNB/Cougarpoint. */
  2112. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2113. {
  2114. struct drm_device *dev = crtc->dev;
  2115. struct drm_i915_private *dev_priv = dev->dev_private;
  2116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2117. int pipe = intel_crtc->pipe;
  2118. u32 reg, temp, i, retry;
  2119. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2120. for train result */
  2121. reg = FDI_RX_IMR(pipe);
  2122. temp = I915_READ(reg);
  2123. temp &= ~FDI_RX_SYMBOL_LOCK;
  2124. temp &= ~FDI_RX_BIT_LOCK;
  2125. I915_WRITE(reg, temp);
  2126. POSTING_READ(reg);
  2127. udelay(150);
  2128. /* enable CPU FDI TX and PCH FDI RX */
  2129. reg = FDI_TX_CTL(pipe);
  2130. temp = I915_READ(reg);
  2131. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2132. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2133. temp &= ~FDI_LINK_TRAIN_NONE;
  2134. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2135. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2136. /* SNB-B */
  2137. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2138. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2139. I915_WRITE(FDI_RX_MISC(pipe),
  2140. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2141. reg = FDI_RX_CTL(pipe);
  2142. temp = I915_READ(reg);
  2143. if (HAS_PCH_CPT(dev)) {
  2144. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2145. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2146. } else {
  2147. temp &= ~FDI_LINK_TRAIN_NONE;
  2148. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2149. }
  2150. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2151. POSTING_READ(reg);
  2152. udelay(150);
  2153. for (i = 0; i < 4; i++) {
  2154. reg = FDI_TX_CTL(pipe);
  2155. temp = I915_READ(reg);
  2156. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2157. temp |= snb_b_fdi_train_param[i];
  2158. I915_WRITE(reg, temp);
  2159. POSTING_READ(reg);
  2160. udelay(500);
  2161. for (retry = 0; retry < 5; retry++) {
  2162. reg = FDI_RX_IIR(pipe);
  2163. temp = I915_READ(reg);
  2164. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2165. if (temp & FDI_RX_BIT_LOCK) {
  2166. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2167. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2168. break;
  2169. }
  2170. udelay(50);
  2171. }
  2172. if (retry < 5)
  2173. break;
  2174. }
  2175. if (i == 4)
  2176. DRM_ERROR("FDI train 1 fail!\n");
  2177. /* Train 2 */
  2178. reg = FDI_TX_CTL(pipe);
  2179. temp = I915_READ(reg);
  2180. temp &= ~FDI_LINK_TRAIN_NONE;
  2181. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2182. if (IS_GEN6(dev)) {
  2183. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2184. /* SNB-B */
  2185. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2186. }
  2187. I915_WRITE(reg, temp);
  2188. reg = FDI_RX_CTL(pipe);
  2189. temp = I915_READ(reg);
  2190. if (HAS_PCH_CPT(dev)) {
  2191. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2192. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2193. } else {
  2194. temp &= ~FDI_LINK_TRAIN_NONE;
  2195. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2196. }
  2197. I915_WRITE(reg, temp);
  2198. POSTING_READ(reg);
  2199. udelay(150);
  2200. for (i = 0; i < 4; i++) {
  2201. reg = FDI_TX_CTL(pipe);
  2202. temp = I915_READ(reg);
  2203. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2204. temp |= snb_b_fdi_train_param[i];
  2205. I915_WRITE(reg, temp);
  2206. POSTING_READ(reg);
  2207. udelay(500);
  2208. for (retry = 0; retry < 5; retry++) {
  2209. reg = FDI_RX_IIR(pipe);
  2210. temp = I915_READ(reg);
  2211. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2212. if (temp & FDI_RX_SYMBOL_LOCK) {
  2213. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2214. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2215. break;
  2216. }
  2217. udelay(50);
  2218. }
  2219. if (retry < 5)
  2220. break;
  2221. }
  2222. if (i == 4)
  2223. DRM_ERROR("FDI train 2 fail!\n");
  2224. DRM_DEBUG_KMS("FDI train done.\n");
  2225. }
  2226. /* Manual link training for Ivy Bridge A0 parts */
  2227. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2228. {
  2229. struct drm_device *dev = crtc->dev;
  2230. struct drm_i915_private *dev_priv = dev->dev_private;
  2231. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2232. int pipe = intel_crtc->pipe;
  2233. u32 reg, temp, i;
  2234. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2235. for train result */
  2236. reg = FDI_RX_IMR(pipe);
  2237. temp = I915_READ(reg);
  2238. temp &= ~FDI_RX_SYMBOL_LOCK;
  2239. temp &= ~FDI_RX_BIT_LOCK;
  2240. I915_WRITE(reg, temp);
  2241. POSTING_READ(reg);
  2242. udelay(150);
  2243. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2244. I915_READ(FDI_RX_IIR(pipe)));
  2245. /* enable CPU FDI TX and PCH FDI RX */
  2246. reg = FDI_TX_CTL(pipe);
  2247. temp = I915_READ(reg);
  2248. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2249. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2250. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2251. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2252. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2253. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2254. temp |= FDI_COMPOSITE_SYNC;
  2255. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2256. I915_WRITE(FDI_RX_MISC(pipe),
  2257. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2258. reg = FDI_RX_CTL(pipe);
  2259. temp = I915_READ(reg);
  2260. temp &= ~FDI_LINK_TRAIN_AUTO;
  2261. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2262. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2263. temp |= FDI_COMPOSITE_SYNC;
  2264. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2265. POSTING_READ(reg);
  2266. udelay(150);
  2267. for (i = 0; i < 4; i++) {
  2268. reg = FDI_TX_CTL(pipe);
  2269. temp = I915_READ(reg);
  2270. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2271. temp |= snb_b_fdi_train_param[i];
  2272. I915_WRITE(reg, temp);
  2273. POSTING_READ(reg);
  2274. udelay(500);
  2275. reg = FDI_RX_IIR(pipe);
  2276. temp = I915_READ(reg);
  2277. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2278. if (temp & FDI_RX_BIT_LOCK ||
  2279. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2280. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2281. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2282. break;
  2283. }
  2284. }
  2285. if (i == 4)
  2286. DRM_ERROR("FDI train 1 fail!\n");
  2287. /* Train 2 */
  2288. reg = FDI_TX_CTL(pipe);
  2289. temp = I915_READ(reg);
  2290. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2291. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2292. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2293. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2294. I915_WRITE(reg, temp);
  2295. reg = FDI_RX_CTL(pipe);
  2296. temp = I915_READ(reg);
  2297. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2298. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2299. I915_WRITE(reg, temp);
  2300. POSTING_READ(reg);
  2301. udelay(150);
  2302. for (i = 0; i < 4; i++) {
  2303. reg = FDI_TX_CTL(pipe);
  2304. temp = I915_READ(reg);
  2305. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2306. temp |= snb_b_fdi_train_param[i];
  2307. I915_WRITE(reg, temp);
  2308. POSTING_READ(reg);
  2309. udelay(500);
  2310. reg = FDI_RX_IIR(pipe);
  2311. temp = I915_READ(reg);
  2312. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2313. if (temp & FDI_RX_SYMBOL_LOCK) {
  2314. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2315. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2316. break;
  2317. }
  2318. }
  2319. if (i == 4)
  2320. DRM_ERROR("FDI train 2 fail!\n");
  2321. DRM_DEBUG_KMS("FDI train done.\n");
  2322. }
  2323. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2324. {
  2325. struct drm_device *dev = intel_crtc->base.dev;
  2326. struct drm_i915_private *dev_priv = dev->dev_private;
  2327. int pipe = intel_crtc->pipe;
  2328. u32 reg, temp;
  2329. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2330. reg = FDI_RX_CTL(pipe);
  2331. temp = I915_READ(reg);
  2332. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2333. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2334. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2335. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2336. POSTING_READ(reg);
  2337. udelay(200);
  2338. /* Switch from Rawclk to PCDclk */
  2339. temp = I915_READ(reg);
  2340. I915_WRITE(reg, temp | FDI_PCDCLK);
  2341. POSTING_READ(reg);
  2342. udelay(200);
  2343. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2344. reg = FDI_TX_CTL(pipe);
  2345. temp = I915_READ(reg);
  2346. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2347. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2348. POSTING_READ(reg);
  2349. udelay(100);
  2350. }
  2351. }
  2352. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2353. {
  2354. struct drm_device *dev = intel_crtc->base.dev;
  2355. struct drm_i915_private *dev_priv = dev->dev_private;
  2356. int pipe = intel_crtc->pipe;
  2357. u32 reg, temp;
  2358. /* Switch from PCDclk to Rawclk */
  2359. reg = FDI_RX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2362. /* Disable CPU FDI TX PLL */
  2363. reg = FDI_TX_CTL(pipe);
  2364. temp = I915_READ(reg);
  2365. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2366. POSTING_READ(reg);
  2367. udelay(100);
  2368. reg = FDI_RX_CTL(pipe);
  2369. temp = I915_READ(reg);
  2370. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2371. /* Wait for the clocks to turn off. */
  2372. POSTING_READ(reg);
  2373. udelay(100);
  2374. }
  2375. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2376. {
  2377. struct drm_device *dev = crtc->dev;
  2378. struct drm_i915_private *dev_priv = dev->dev_private;
  2379. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2380. int pipe = intel_crtc->pipe;
  2381. u32 reg, temp;
  2382. /* disable CPU FDI tx and PCH FDI rx */
  2383. reg = FDI_TX_CTL(pipe);
  2384. temp = I915_READ(reg);
  2385. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2386. POSTING_READ(reg);
  2387. reg = FDI_RX_CTL(pipe);
  2388. temp = I915_READ(reg);
  2389. temp &= ~(0x7 << 16);
  2390. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2391. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2392. POSTING_READ(reg);
  2393. udelay(100);
  2394. /* Ironlake workaround, disable clock pointer after downing FDI */
  2395. if (HAS_PCH_IBX(dev)) {
  2396. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2397. }
  2398. /* still set train pattern 1 */
  2399. reg = FDI_TX_CTL(pipe);
  2400. temp = I915_READ(reg);
  2401. temp &= ~FDI_LINK_TRAIN_NONE;
  2402. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2403. I915_WRITE(reg, temp);
  2404. reg = FDI_RX_CTL(pipe);
  2405. temp = I915_READ(reg);
  2406. if (HAS_PCH_CPT(dev)) {
  2407. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2408. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2409. } else {
  2410. temp &= ~FDI_LINK_TRAIN_NONE;
  2411. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2412. }
  2413. /* BPC in FDI rx is consistent with that in PIPECONF */
  2414. temp &= ~(0x07 << 16);
  2415. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2416. I915_WRITE(reg, temp);
  2417. POSTING_READ(reg);
  2418. udelay(100);
  2419. }
  2420. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2421. {
  2422. struct drm_device *dev = crtc->dev;
  2423. struct drm_i915_private *dev_priv = dev->dev_private;
  2424. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2425. unsigned long flags;
  2426. bool pending;
  2427. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2428. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2429. return false;
  2430. spin_lock_irqsave(&dev->event_lock, flags);
  2431. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2432. spin_unlock_irqrestore(&dev->event_lock, flags);
  2433. return pending;
  2434. }
  2435. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2436. {
  2437. struct drm_device *dev = crtc->dev;
  2438. struct drm_i915_private *dev_priv = dev->dev_private;
  2439. if (crtc->fb == NULL)
  2440. return;
  2441. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2442. wait_event(dev_priv->pending_flip_queue,
  2443. !intel_crtc_has_pending_flip(crtc));
  2444. mutex_lock(&dev->struct_mutex);
  2445. intel_finish_fb(crtc->fb);
  2446. mutex_unlock(&dev->struct_mutex);
  2447. }
  2448. /* Program iCLKIP clock to the desired frequency */
  2449. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2450. {
  2451. struct drm_device *dev = crtc->dev;
  2452. struct drm_i915_private *dev_priv = dev->dev_private;
  2453. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2454. u32 temp;
  2455. mutex_lock(&dev_priv->dpio_lock);
  2456. /* It is necessary to ungate the pixclk gate prior to programming
  2457. * the divisors, and gate it back when it is done.
  2458. */
  2459. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2460. /* Disable SSCCTL */
  2461. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2462. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2463. SBI_SSCCTL_DISABLE,
  2464. SBI_ICLK);
  2465. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2466. if (crtc->mode.clock == 20000) {
  2467. auxdiv = 1;
  2468. divsel = 0x41;
  2469. phaseinc = 0x20;
  2470. } else {
  2471. /* The iCLK virtual clock root frequency is in MHz,
  2472. * but the crtc->mode.clock in in KHz. To get the divisors,
  2473. * it is necessary to divide one by another, so we
  2474. * convert the virtual clock precision to KHz here for higher
  2475. * precision.
  2476. */
  2477. u32 iclk_virtual_root_freq = 172800 * 1000;
  2478. u32 iclk_pi_range = 64;
  2479. u32 desired_divisor, msb_divisor_value, pi_value;
  2480. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2481. msb_divisor_value = desired_divisor / iclk_pi_range;
  2482. pi_value = desired_divisor % iclk_pi_range;
  2483. auxdiv = 0;
  2484. divsel = msb_divisor_value - 2;
  2485. phaseinc = pi_value;
  2486. }
  2487. /* This should not happen with any sane values */
  2488. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2489. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2490. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2491. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2492. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2493. crtc->mode.clock,
  2494. auxdiv,
  2495. divsel,
  2496. phasedir,
  2497. phaseinc);
  2498. /* Program SSCDIVINTPHASE6 */
  2499. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2500. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2501. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2502. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2503. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2504. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2505. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2506. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2507. /* Program SSCAUXDIV */
  2508. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2509. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2510. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2511. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2512. /* Enable modulator and associated divider */
  2513. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2514. temp &= ~SBI_SSCCTL_DISABLE;
  2515. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2516. /* Wait for initialization time */
  2517. udelay(24);
  2518. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2519. mutex_unlock(&dev_priv->dpio_lock);
  2520. }
  2521. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2522. enum pipe pch_transcoder)
  2523. {
  2524. struct drm_device *dev = crtc->base.dev;
  2525. struct drm_i915_private *dev_priv = dev->dev_private;
  2526. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2527. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2528. I915_READ(HTOTAL(cpu_transcoder)));
  2529. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2530. I915_READ(HBLANK(cpu_transcoder)));
  2531. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2532. I915_READ(HSYNC(cpu_transcoder)));
  2533. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2534. I915_READ(VTOTAL(cpu_transcoder)));
  2535. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2536. I915_READ(VBLANK(cpu_transcoder)));
  2537. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2538. I915_READ(VSYNC(cpu_transcoder)));
  2539. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2540. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2541. }
  2542. /*
  2543. * Enable PCH resources required for PCH ports:
  2544. * - PCH PLLs
  2545. * - FDI training & RX/TX
  2546. * - update transcoder timings
  2547. * - DP transcoding bits
  2548. * - transcoder
  2549. */
  2550. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2551. {
  2552. struct drm_device *dev = crtc->dev;
  2553. struct drm_i915_private *dev_priv = dev->dev_private;
  2554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2555. int pipe = intel_crtc->pipe;
  2556. u32 reg, temp;
  2557. assert_pch_transcoder_disabled(dev_priv, pipe);
  2558. /* Write the TU size bits before fdi link training, so that error
  2559. * detection works. */
  2560. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2561. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2562. /* For PCH output, training FDI link */
  2563. dev_priv->display.fdi_link_train(crtc);
  2564. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2565. * transcoder, and we actually should do this to not upset any PCH
  2566. * transcoder that already use the clock when we share it.
  2567. *
  2568. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2569. * unconditionally resets the pll - we need that to have the right LVDS
  2570. * enable sequence. */
  2571. ironlake_enable_pch_pll(intel_crtc);
  2572. if (HAS_PCH_CPT(dev)) {
  2573. u32 sel;
  2574. temp = I915_READ(PCH_DPLL_SEL);
  2575. switch (pipe) {
  2576. default:
  2577. case 0:
  2578. temp |= TRANSA_DPLL_ENABLE;
  2579. sel = TRANSA_DPLLB_SEL;
  2580. break;
  2581. case 1:
  2582. temp |= TRANSB_DPLL_ENABLE;
  2583. sel = TRANSB_DPLLB_SEL;
  2584. break;
  2585. case 2:
  2586. temp |= TRANSC_DPLL_ENABLE;
  2587. sel = TRANSC_DPLLB_SEL;
  2588. break;
  2589. }
  2590. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2591. temp |= sel;
  2592. else
  2593. temp &= ~sel;
  2594. I915_WRITE(PCH_DPLL_SEL, temp);
  2595. }
  2596. /* set transcoder timing, panel must allow it */
  2597. assert_panel_unlocked(dev_priv, pipe);
  2598. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2599. intel_fdi_normal_train(crtc);
  2600. /* For PCH DP, enable TRANS_DP_CTL */
  2601. if (HAS_PCH_CPT(dev) &&
  2602. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2603. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2604. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2605. reg = TRANS_DP_CTL(pipe);
  2606. temp = I915_READ(reg);
  2607. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2608. TRANS_DP_SYNC_MASK |
  2609. TRANS_DP_BPC_MASK);
  2610. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2611. TRANS_DP_ENH_FRAMING);
  2612. temp |= bpc << 9; /* same format but at 11:9 */
  2613. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2614. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2615. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2616. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2617. switch (intel_trans_dp_port_sel(crtc)) {
  2618. case PCH_DP_B:
  2619. temp |= TRANS_DP_PORT_SEL_B;
  2620. break;
  2621. case PCH_DP_C:
  2622. temp |= TRANS_DP_PORT_SEL_C;
  2623. break;
  2624. case PCH_DP_D:
  2625. temp |= TRANS_DP_PORT_SEL_D;
  2626. break;
  2627. default:
  2628. BUG();
  2629. }
  2630. I915_WRITE(reg, temp);
  2631. }
  2632. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2633. }
  2634. static void lpt_pch_enable(struct drm_crtc *crtc)
  2635. {
  2636. struct drm_device *dev = crtc->dev;
  2637. struct drm_i915_private *dev_priv = dev->dev_private;
  2638. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2639. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2640. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2641. lpt_program_iclkip(crtc);
  2642. /* Set transcoder timing. */
  2643. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2644. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2645. }
  2646. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2647. {
  2648. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2649. if (pll == NULL)
  2650. return;
  2651. if (pll->refcount == 0) {
  2652. WARN(1, "bad PCH PLL refcount\n");
  2653. return;
  2654. }
  2655. --pll->refcount;
  2656. intel_crtc->pch_pll = NULL;
  2657. }
  2658. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2659. {
  2660. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2661. struct intel_pch_pll *pll;
  2662. int i;
  2663. pll = intel_crtc->pch_pll;
  2664. if (pll) {
  2665. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2666. intel_crtc->base.base.id, pll->pll_reg);
  2667. goto prepare;
  2668. }
  2669. if (HAS_PCH_IBX(dev_priv->dev)) {
  2670. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2671. i = intel_crtc->pipe;
  2672. pll = &dev_priv->pch_plls[i];
  2673. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2674. intel_crtc->base.base.id, pll->pll_reg);
  2675. goto found;
  2676. }
  2677. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2678. pll = &dev_priv->pch_plls[i];
  2679. /* Only want to check enabled timings first */
  2680. if (pll->refcount == 0)
  2681. continue;
  2682. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2683. fp == I915_READ(pll->fp0_reg)) {
  2684. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2685. intel_crtc->base.base.id,
  2686. pll->pll_reg, pll->refcount, pll->active);
  2687. goto found;
  2688. }
  2689. }
  2690. /* Ok no matching timings, maybe there's a free one? */
  2691. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2692. pll = &dev_priv->pch_plls[i];
  2693. if (pll->refcount == 0) {
  2694. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2695. intel_crtc->base.base.id, pll->pll_reg);
  2696. goto found;
  2697. }
  2698. }
  2699. return NULL;
  2700. found:
  2701. intel_crtc->pch_pll = pll;
  2702. pll->refcount++;
  2703. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2704. prepare: /* separate function? */
  2705. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2706. /* Wait for the clocks to stabilize before rewriting the regs */
  2707. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2708. POSTING_READ(pll->pll_reg);
  2709. udelay(150);
  2710. I915_WRITE(pll->fp0_reg, fp);
  2711. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2712. pll->on = false;
  2713. return pll;
  2714. }
  2715. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2716. {
  2717. struct drm_i915_private *dev_priv = dev->dev_private;
  2718. int dslreg = PIPEDSL(pipe);
  2719. u32 temp;
  2720. temp = I915_READ(dslreg);
  2721. udelay(500);
  2722. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2723. if (wait_for(I915_READ(dslreg) != temp, 5))
  2724. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2725. }
  2726. }
  2727. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2728. {
  2729. struct drm_device *dev = crtc->base.dev;
  2730. struct drm_i915_private *dev_priv = dev->dev_private;
  2731. int pipe = crtc->pipe;
  2732. if (crtc->config.pch_pfit.size) {
  2733. /* Force use of hard-coded filter coefficients
  2734. * as some pre-programmed values are broken,
  2735. * e.g. x201.
  2736. */
  2737. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2738. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2739. PF_PIPE_SEL_IVB(pipe));
  2740. else
  2741. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2742. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2743. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2744. }
  2745. }
  2746. static void intel_enable_planes(struct drm_crtc *crtc)
  2747. {
  2748. struct drm_device *dev = crtc->dev;
  2749. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2750. struct intel_plane *intel_plane;
  2751. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2752. if (intel_plane->pipe == pipe)
  2753. intel_plane_restore(&intel_plane->base);
  2754. }
  2755. static void intel_disable_planes(struct drm_crtc *crtc)
  2756. {
  2757. struct drm_device *dev = crtc->dev;
  2758. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2759. struct intel_plane *intel_plane;
  2760. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2761. if (intel_plane->pipe == pipe)
  2762. intel_plane_disable(&intel_plane->base);
  2763. }
  2764. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2765. {
  2766. struct drm_device *dev = crtc->dev;
  2767. struct drm_i915_private *dev_priv = dev->dev_private;
  2768. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2769. struct intel_encoder *encoder;
  2770. int pipe = intel_crtc->pipe;
  2771. int plane = intel_crtc->plane;
  2772. u32 temp;
  2773. WARN_ON(!crtc->enabled);
  2774. if (intel_crtc->active)
  2775. return;
  2776. intel_crtc->active = true;
  2777. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2778. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2779. intel_update_watermarks(dev);
  2780. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2781. temp = I915_READ(PCH_LVDS);
  2782. if ((temp & LVDS_PORT_EN) == 0)
  2783. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2784. }
  2785. if (intel_crtc->config.has_pch_encoder) {
  2786. /* Note: FDI PLL enabling _must_ be done before we enable the
  2787. * cpu pipes, hence this is separate from all the other fdi/pch
  2788. * enabling. */
  2789. ironlake_fdi_pll_enable(intel_crtc);
  2790. } else {
  2791. assert_fdi_tx_disabled(dev_priv, pipe);
  2792. assert_fdi_rx_disabled(dev_priv, pipe);
  2793. }
  2794. for_each_encoder_on_crtc(dev, crtc, encoder)
  2795. if (encoder->pre_enable)
  2796. encoder->pre_enable(encoder);
  2797. /* Enable panel fitting for LVDS */
  2798. ironlake_pfit_enable(intel_crtc);
  2799. /*
  2800. * On ILK+ LUT must be loaded before the pipe is running but with
  2801. * clocks enabled
  2802. */
  2803. intel_crtc_load_lut(crtc);
  2804. intel_enable_pipe(dev_priv, pipe,
  2805. intel_crtc->config.has_pch_encoder);
  2806. intel_enable_plane(dev_priv, plane, pipe);
  2807. intel_enable_planes(crtc);
  2808. intel_crtc_update_cursor(crtc, true);
  2809. if (intel_crtc->config.has_pch_encoder)
  2810. ironlake_pch_enable(crtc);
  2811. mutex_lock(&dev->struct_mutex);
  2812. intel_update_fbc(dev);
  2813. mutex_unlock(&dev->struct_mutex);
  2814. for_each_encoder_on_crtc(dev, crtc, encoder)
  2815. encoder->enable(encoder);
  2816. if (HAS_PCH_CPT(dev))
  2817. cpt_verify_modeset(dev, intel_crtc->pipe);
  2818. /*
  2819. * There seems to be a race in PCH platform hw (at least on some
  2820. * outputs) where an enabled pipe still completes any pageflip right
  2821. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2822. * as the first vblank happend, everything works as expected. Hence just
  2823. * wait for one vblank before returning to avoid strange things
  2824. * happening.
  2825. */
  2826. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2827. }
  2828. /* IPS only exists on ULT machines and is tied to pipe A. */
  2829. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2830. {
  2831. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2832. }
  2833. static void hsw_enable_ips(struct intel_crtc *crtc)
  2834. {
  2835. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2836. if (!crtc->config.ips_enabled)
  2837. return;
  2838. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2839. * We guarantee that the plane is enabled by calling intel_enable_ips
  2840. * only after intel_enable_plane. And intel_enable_plane already waits
  2841. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2842. assert_plane_enabled(dev_priv, crtc->plane);
  2843. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2844. }
  2845. static void hsw_disable_ips(struct intel_crtc *crtc)
  2846. {
  2847. struct drm_device *dev = crtc->base.dev;
  2848. struct drm_i915_private *dev_priv = dev->dev_private;
  2849. if (!crtc->config.ips_enabled)
  2850. return;
  2851. assert_plane_enabled(dev_priv, crtc->plane);
  2852. I915_WRITE(IPS_CTL, 0);
  2853. /* We need to wait for a vblank before we can disable the plane. */
  2854. intel_wait_for_vblank(dev, crtc->pipe);
  2855. }
  2856. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2857. {
  2858. struct drm_device *dev = crtc->dev;
  2859. struct drm_i915_private *dev_priv = dev->dev_private;
  2860. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2861. struct intel_encoder *encoder;
  2862. int pipe = intel_crtc->pipe;
  2863. int plane = intel_crtc->plane;
  2864. WARN_ON(!crtc->enabled);
  2865. if (intel_crtc->active)
  2866. return;
  2867. intel_crtc->active = true;
  2868. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2869. if (intel_crtc->config.has_pch_encoder)
  2870. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2871. intel_update_watermarks(dev);
  2872. if (intel_crtc->config.has_pch_encoder)
  2873. dev_priv->display.fdi_link_train(crtc);
  2874. for_each_encoder_on_crtc(dev, crtc, encoder)
  2875. if (encoder->pre_enable)
  2876. encoder->pre_enable(encoder);
  2877. intel_ddi_enable_pipe_clock(intel_crtc);
  2878. /* Enable panel fitting for eDP */
  2879. ironlake_pfit_enable(intel_crtc);
  2880. /*
  2881. * On ILK+ LUT must be loaded before the pipe is running but with
  2882. * clocks enabled
  2883. */
  2884. intel_crtc_load_lut(crtc);
  2885. intel_ddi_set_pipe_settings(crtc);
  2886. intel_ddi_enable_transcoder_func(crtc);
  2887. intel_enable_pipe(dev_priv, pipe,
  2888. intel_crtc->config.has_pch_encoder);
  2889. intel_enable_plane(dev_priv, plane, pipe);
  2890. intel_enable_planes(crtc);
  2891. intel_crtc_update_cursor(crtc, true);
  2892. hsw_enable_ips(intel_crtc);
  2893. if (intel_crtc->config.has_pch_encoder)
  2894. lpt_pch_enable(crtc);
  2895. mutex_lock(&dev->struct_mutex);
  2896. intel_update_fbc(dev);
  2897. mutex_unlock(&dev->struct_mutex);
  2898. for_each_encoder_on_crtc(dev, crtc, encoder)
  2899. encoder->enable(encoder);
  2900. /*
  2901. * There seems to be a race in PCH platform hw (at least on some
  2902. * outputs) where an enabled pipe still completes any pageflip right
  2903. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2904. * as the first vblank happend, everything works as expected. Hence just
  2905. * wait for one vblank before returning to avoid strange things
  2906. * happening.
  2907. */
  2908. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2909. }
  2910. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2911. {
  2912. struct drm_device *dev = crtc->base.dev;
  2913. struct drm_i915_private *dev_priv = dev->dev_private;
  2914. int pipe = crtc->pipe;
  2915. /* To avoid upsetting the power well on haswell only disable the pfit if
  2916. * it's in use. The hw state code will make sure we get this right. */
  2917. if (crtc->config.pch_pfit.size) {
  2918. I915_WRITE(PF_CTL(pipe), 0);
  2919. I915_WRITE(PF_WIN_POS(pipe), 0);
  2920. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2921. }
  2922. }
  2923. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2924. {
  2925. struct drm_device *dev = crtc->dev;
  2926. struct drm_i915_private *dev_priv = dev->dev_private;
  2927. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2928. struct intel_encoder *encoder;
  2929. int pipe = intel_crtc->pipe;
  2930. int plane = intel_crtc->plane;
  2931. u32 reg, temp;
  2932. if (!intel_crtc->active)
  2933. return;
  2934. for_each_encoder_on_crtc(dev, crtc, encoder)
  2935. encoder->disable(encoder);
  2936. intel_crtc_wait_for_pending_flips(crtc);
  2937. drm_vblank_off(dev, pipe);
  2938. if (dev_priv->cfb_plane == plane)
  2939. intel_disable_fbc(dev);
  2940. intel_crtc_update_cursor(crtc, false);
  2941. intel_disable_planes(crtc);
  2942. intel_disable_plane(dev_priv, plane, pipe);
  2943. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2944. intel_disable_pipe(dev_priv, pipe);
  2945. ironlake_pfit_disable(intel_crtc);
  2946. for_each_encoder_on_crtc(dev, crtc, encoder)
  2947. if (encoder->post_disable)
  2948. encoder->post_disable(encoder);
  2949. ironlake_fdi_disable(crtc);
  2950. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2951. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2952. if (HAS_PCH_CPT(dev)) {
  2953. /* disable TRANS_DP_CTL */
  2954. reg = TRANS_DP_CTL(pipe);
  2955. temp = I915_READ(reg);
  2956. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2957. temp |= TRANS_DP_PORT_SEL_NONE;
  2958. I915_WRITE(reg, temp);
  2959. /* disable DPLL_SEL */
  2960. temp = I915_READ(PCH_DPLL_SEL);
  2961. switch (pipe) {
  2962. case 0:
  2963. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2964. break;
  2965. case 1:
  2966. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2967. break;
  2968. case 2:
  2969. /* C shares PLL A or B */
  2970. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2971. break;
  2972. default:
  2973. BUG(); /* wtf */
  2974. }
  2975. I915_WRITE(PCH_DPLL_SEL, temp);
  2976. }
  2977. /* disable PCH DPLL */
  2978. intel_disable_pch_pll(intel_crtc);
  2979. ironlake_fdi_pll_disable(intel_crtc);
  2980. intel_crtc->active = false;
  2981. intel_update_watermarks(dev);
  2982. mutex_lock(&dev->struct_mutex);
  2983. intel_update_fbc(dev);
  2984. mutex_unlock(&dev->struct_mutex);
  2985. }
  2986. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2987. {
  2988. struct drm_device *dev = crtc->dev;
  2989. struct drm_i915_private *dev_priv = dev->dev_private;
  2990. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2991. struct intel_encoder *encoder;
  2992. int pipe = intel_crtc->pipe;
  2993. int plane = intel_crtc->plane;
  2994. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2995. if (!intel_crtc->active)
  2996. return;
  2997. for_each_encoder_on_crtc(dev, crtc, encoder)
  2998. encoder->disable(encoder);
  2999. intel_crtc_wait_for_pending_flips(crtc);
  3000. drm_vblank_off(dev, pipe);
  3001. /* FBC must be disabled before disabling the plane on HSW. */
  3002. if (dev_priv->cfb_plane == plane)
  3003. intel_disable_fbc(dev);
  3004. hsw_disable_ips(intel_crtc);
  3005. intel_crtc_update_cursor(crtc, false);
  3006. intel_disable_planes(crtc);
  3007. intel_disable_plane(dev_priv, plane, pipe);
  3008. if (intel_crtc->config.has_pch_encoder)
  3009. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3010. intel_disable_pipe(dev_priv, pipe);
  3011. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3012. ironlake_pfit_disable(intel_crtc);
  3013. intel_ddi_disable_pipe_clock(intel_crtc);
  3014. for_each_encoder_on_crtc(dev, crtc, encoder)
  3015. if (encoder->post_disable)
  3016. encoder->post_disable(encoder);
  3017. if (intel_crtc->config.has_pch_encoder) {
  3018. lpt_disable_pch_transcoder(dev_priv);
  3019. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3020. intel_ddi_fdi_disable(crtc);
  3021. }
  3022. intel_crtc->active = false;
  3023. intel_update_watermarks(dev);
  3024. mutex_lock(&dev->struct_mutex);
  3025. intel_update_fbc(dev);
  3026. mutex_unlock(&dev->struct_mutex);
  3027. }
  3028. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3029. {
  3030. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3031. intel_put_pch_pll(intel_crtc);
  3032. }
  3033. static void haswell_crtc_off(struct drm_crtc *crtc)
  3034. {
  3035. intel_ddi_put_crtc_pll(crtc);
  3036. }
  3037. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3038. {
  3039. if (!enable && intel_crtc->overlay) {
  3040. struct drm_device *dev = intel_crtc->base.dev;
  3041. struct drm_i915_private *dev_priv = dev->dev_private;
  3042. mutex_lock(&dev->struct_mutex);
  3043. dev_priv->mm.interruptible = false;
  3044. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3045. dev_priv->mm.interruptible = true;
  3046. mutex_unlock(&dev->struct_mutex);
  3047. }
  3048. /* Let userspace switch the overlay on again. In most cases userspace
  3049. * has to recompute where to put it anyway.
  3050. */
  3051. }
  3052. /**
  3053. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3054. * cursor plane briefly if not already running after enabling the display
  3055. * plane.
  3056. * This workaround avoids occasional blank screens when self refresh is
  3057. * enabled.
  3058. */
  3059. static void
  3060. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3061. {
  3062. u32 cntl = I915_READ(CURCNTR(pipe));
  3063. if ((cntl & CURSOR_MODE) == 0) {
  3064. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3065. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3066. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3067. intel_wait_for_vblank(dev_priv->dev, pipe);
  3068. I915_WRITE(CURCNTR(pipe), cntl);
  3069. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3070. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3071. }
  3072. }
  3073. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3074. {
  3075. struct drm_device *dev = crtc->base.dev;
  3076. struct drm_i915_private *dev_priv = dev->dev_private;
  3077. struct intel_crtc_config *pipe_config = &crtc->config;
  3078. if (!crtc->config.gmch_pfit.control)
  3079. return;
  3080. /*
  3081. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3082. * according to register description and PRM.
  3083. */
  3084. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3085. assert_pipe_disabled(dev_priv, crtc->pipe);
  3086. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3087. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3088. /* Border color in case we don't scale up to the full screen. Black by
  3089. * default, change to something else for debugging. */
  3090. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3091. }
  3092. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3093. {
  3094. struct drm_device *dev = crtc->dev;
  3095. struct drm_i915_private *dev_priv = dev->dev_private;
  3096. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3097. struct intel_encoder *encoder;
  3098. int pipe = intel_crtc->pipe;
  3099. int plane = intel_crtc->plane;
  3100. WARN_ON(!crtc->enabled);
  3101. if (intel_crtc->active)
  3102. return;
  3103. intel_crtc->active = true;
  3104. intel_update_watermarks(dev);
  3105. mutex_lock(&dev_priv->dpio_lock);
  3106. for_each_encoder_on_crtc(dev, crtc, encoder)
  3107. if (encoder->pre_pll_enable)
  3108. encoder->pre_pll_enable(encoder);
  3109. intel_enable_pll(dev_priv, pipe);
  3110. for_each_encoder_on_crtc(dev, crtc, encoder)
  3111. if (encoder->pre_enable)
  3112. encoder->pre_enable(encoder);
  3113. /* VLV wants encoder enabling _before_ the pipe is up. */
  3114. for_each_encoder_on_crtc(dev, crtc, encoder)
  3115. encoder->enable(encoder);
  3116. /* Enable panel fitting for eDP */
  3117. i9xx_pfit_enable(intel_crtc);
  3118. intel_crtc_load_lut(crtc);
  3119. intel_enable_pipe(dev_priv, pipe, false);
  3120. intel_enable_plane(dev_priv, plane, pipe);
  3121. intel_enable_planes(crtc);
  3122. intel_crtc_update_cursor(crtc, true);
  3123. intel_update_fbc(dev);
  3124. mutex_unlock(&dev_priv->dpio_lock);
  3125. }
  3126. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3127. {
  3128. struct drm_device *dev = crtc->dev;
  3129. struct drm_i915_private *dev_priv = dev->dev_private;
  3130. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3131. struct intel_encoder *encoder;
  3132. int pipe = intel_crtc->pipe;
  3133. int plane = intel_crtc->plane;
  3134. WARN_ON(!crtc->enabled);
  3135. if (intel_crtc->active)
  3136. return;
  3137. intel_crtc->active = true;
  3138. intel_update_watermarks(dev);
  3139. intel_enable_pll(dev_priv, pipe);
  3140. for_each_encoder_on_crtc(dev, crtc, encoder)
  3141. if (encoder->pre_enable)
  3142. encoder->pre_enable(encoder);
  3143. /* Enable panel fitting for LVDS */
  3144. i9xx_pfit_enable(intel_crtc);
  3145. intel_crtc_load_lut(crtc);
  3146. intel_enable_pipe(dev_priv, pipe, false);
  3147. intel_enable_plane(dev_priv, plane, pipe);
  3148. intel_enable_planes(crtc);
  3149. intel_crtc_update_cursor(crtc, true);
  3150. if (IS_G4X(dev))
  3151. g4x_fixup_plane(dev_priv, pipe);
  3152. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3153. intel_crtc_dpms_overlay(intel_crtc, true);
  3154. intel_update_fbc(dev);
  3155. for_each_encoder_on_crtc(dev, crtc, encoder)
  3156. encoder->enable(encoder);
  3157. }
  3158. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3159. {
  3160. struct drm_device *dev = crtc->base.dev;
  3161. struct drm_i915_private *dev_priv = dev->dev_private;
  3162. if (!crtc->config.gmch_pfit.control)
  3163. return;
  3164. assert_pipe_disabled(dev_priv, crtc->pipe);
  3165. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3166. I915_READ(PFIT_CONTROL));
  3167. I915_WRITE(PFIT_CONTROL, 0);
  3168. }
  3169. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3170. {
  3171. struct drm_device *dev = crtc->dev;
  3172. struct drm_i915_private *dev_priv = dev->dev_private;
  3173. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3174. struct intel_encoder *encoder;
  3175. int pipe = intel_crtc->pipe;
  3176. int plane = intel_crtc->plane;
  3177. if (!intel_crtc->active)
  3178. return;
  3179. for_each_encoder_on_crtc(dev, crtc, encoder)
  3180. encoder->disable(encoder);
  3181. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3182. intel_crtc_wait_for_pending_flips(crtc);
  3183. drm_vblank_off(dev, pipe);
  3184. if (dev_priv->cfb_plane == plane)
  3185. intel_disable_fbc(dev);
  3186. intel_crtc_dpms_overlay(intel_crtc, false);
  3187. intel_crtc_update_cursor(crtc, false);
  3188. intel_disable_planes(crtc);
  3189. intel_disable_plane(dev_priv, plane, pipe);
  3190. intel_disable_pipe(dev_priv, pipe);
  3191. i9xx_pfit_disable(intel_crtc);
  3192. for_each_encoder_on_crtc(dev, crtc, encoder)
  3193. if (encoder->post_disable)
  3194. encoder->post_disable(encoder);
  3195. intel_disable_pll(dev_priv, pipe);
  3196. intel_crtc->active = false;
  3197. intel_update_fbc(dev);
  3198. intel_update_watermarks(dev);
  3199. }
  3200. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3201. {
  3202. }
  3203. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3204. bool enabled)
  3205. {
  3206. struct drm_device *dev = crtc->dev;
  3207. struct drm_i915_master_private *master_priv;
  3208. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3209. int pipe = intel_crtc->pipe;
  3210. if (!dev->primary->master)
  3211. return;
  3212. master_priv = dev->primary->master->driver_priv;
  3213. if (!master_priv->sarea_priv)
  3214. return;
  3215. switch (pipe) {
  3216. case 0:
  3217. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3218. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3219. break;
  3220. case 1:
  3221. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3222. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3223. break;
  3224. default:
  3225. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3226. break;
  3227. }
  3228. }
  3229. /**
  3230. * Sets the power management mode of the pipe and plane.
  3231. */
  3232. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3233. {
  3234. struct drm_device *dev = crtc->dev;
  3235. struct drm_i915_private *dev_priv = dev->dev_private;
  3236. struct intel_encoder *intel_encoder;
  3237. bool enable = false;
  3238. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3239. enable |= intel_encoder->connectors_active;
  3240. if (enable)
  3241. dev_priv->display.crtc_enable(crtc);
  3242. else
  3243. dev_priv->display.crtc_disable(crtc);
  3244. intel_crtc_update_sarea(crtc, enable);
  3245. }
  3246. static void intel_crtc_disable(struct drm_crtc *crtc)
  3247. {
  3248. struct drm_device *dev = crtc->dev;
  3249. struct drm_connector *connector;
  3250. struct drm_i915_private *dev_priv = dev->dev_private;
  3251. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3252. /* crtc should still be enabled when we disable it. */
  3253. WARN_ON(!crtc->enabled);
  3254. dev_priv->display.crtc_disable(crtc);
  3255. intel_crtc->eld_vld = false;
  3256. intel_crtc_update_sarea(crtc, false);
  3257. dev_priv->display.off(crtc);
  3258. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3259. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3260. if (crtc->fb) {
  3261. mutex_lock(&dev->struct_mutex);
  3262. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3263. mutex_unlock(&dev->struct_mutex);
  3264. crtc->fb = NULL;
  3265. }
  3266. /* Update computed state. */
  3267. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3268. if (!connector->encoder || !connector->encoder->crtc)
  3269. continue;
  3270. if (connector->encoder->crtc != crtc)
  3271. continue;
  3272. connector->dpms = DRM_MODE_DPMS_OFF;
  3273. to_intel_encoder(connector->encoder)->connectors_active = false;
  3274. }
  3275. }
  3276. void intel_modeset_disable(struct drm_device *dev)
  3277. {
  3278. struct drm_crtc *crtc;
  3279. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3280. if (crtc->enabled)
  3281. intel_crtc_disable(crtc);
  3282. }
  3283. }
  3284. void intel_encoder_destroy(struct drm_encoder *encoder)
  3285. {
  3286. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3287. drm_encoder_cleanup(encoder);
  3288. kfree(intel_encoder);
  3289. }
  3290. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3291. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3292. * state of the entire output pipe. */
  3293. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3294. {
  3295. if (mode == DRM_MODE_DPMS_ON) {
  3296. encoder->connectors_active = true;
  3297. intel_crtc_update_dpms(encoder->base.crtc);
  3298. } else {
  3299. encoder->connectors_active = false;
  3300. intel_crtc_update_dpms(encoder->base.crtc);
  3301. }
  3302. }
  3303. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3304. * internal consistency). */
  3305. static void intel_connector_check_state(struct intel_connector *connector)
  3306. {
  3307. if (connector->get_hw_state(connector)) {
  3308. struct intel_encoder *encoder = connector->encoder;
  3309. struct drm_crtc *crtc;
  3310. bool encoder_enabled;
  3311. enum pipe pipe;
  3312. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3313. connector->base.base.id,
  3314. drm_get_connector_name(&connector->base));
  3315. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3316. "wrong connector dpms state\n");
  3317. WARN(connector->base.encoder != &encoder->base,
  3318. "active connector not linked to encoder\n");
  3319. WARN(!encoder->connectors_active,
  3320. "encoder->connectors_active not set\n");
  3321. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3322. WARN(!encoder_enabled, "encoder not enabled\n");
  3323. if (WARN_ON(!encoder->base.crtc))
  3324. return;
  3325. crtc = encoder->base.crtc;
  3326. WARN(!crtc->enabled, "crtc not enabled\n");
  3327. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3328. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3329. "encoder active on the wrong pipe\n");
  3330. }
  3331. }
  3332. /* Even simpler default implementation, if there's really no special case to
  3333. * consider. */
  3334. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3335. {
  3336. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3337. /* All the simple cases only support two dpms states. */
  3338. if (mode != DRM_MODE_DPMS_ON)
  3339. mode = DRM_MODE_DPMS_OFF;
  3340. if (mode == connector->dpms)
  3341. return;
  3342. connector->dpms = mode;
  3343. /* Only need to change hw state when actually enabled */
  3344. if (encoder->base.crtc)
  3345. intel_encoder_dpms(encoder, mode);
  3346. else
  3347. WARN_ON(encoder->connectors_active != false);
  3348. intel_modeset_check_state(connector->dev);
  3349. }
  3350. /* Simple connector->get_hw_state implementation for encoders that support only
  3351. * one connector and no cloning and hence the encoder state determines the state
  3352. * of the connector. */
  3353. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3354. {
  3355. enum pipe pipe = 0;
  3356. struct intel_encoder *encoder = connector->encoder;
  3357. return encoder->get_hw_state(encoder, &pipe);
  3358. }
  3359. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3360. struct intel_crtc_config *pipe_config)
  3361. {
  3362. struct drm_i915_private *dev_priv = dev->dev_private;
  3363. struct intel_crtc *pipe_B_crtc =
  3364. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3365. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3366. pipe_name(pipe), pipe_config->fdi_lanes);
  3367. if (pipe_config->fdi_lanes > 4) {
  3368. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3369. pipe_name(pipe), pipe_config->fdi_lanes);
  3370. return false;
  3371. }
  3372. if (IS_HASWELL(dev)) {
  3373. if (pipe_config->fdi_lanes > 2) {
  3374. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3375. pipe_config->fdi_lanes);
  3376. return false;
  3377. } else {
  3378. return true;
  3379. }
  3380. }
  3381. if (INTEL_INFO(dev)->num_pipes == 2)
  3382. return true;
  3383. /* Ivybridge 3 pipe is really complicated */
  3384. switch (pipe) {
  3385. case PIPE_A:
  3386. return true;
  3387. case PIPE_B:
  3388. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3389. pipe_config->fdi_lanes > 2) {
  3390. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3391. pipe_name(pipe), pipe_config->fdi_lanes);
  3392. return false;
  3393. }
  3394. return true;
  3395. case PIPE_C:
  3396. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3397. pipe_B_crtc->config.fdi_lanes <= 2) {
  3398. if (pipe_config->fdi_lanes > 2) {
  3399. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3400. pipe_name(pipe), pipe_config->fdi_lanes);
  3401. return false;
  3402. }
  3403. } else {
  3404. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3405. return false;
  3406. }
  3407. return true;
  3408. default:
  3409. BUG();
  3410. }
  3411. }
  3412. #define RETRY 1
  3413. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3414. struct intel_crtc_config *pipe_config)
  3415. {
  3416. struct drm_device *dev = intel_crtc->base.dev;
  3417. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3418. int lane, link_bw, fdi_dotclock;
  3419. bool setup_ok, needs_recompute = false;
  3420. retry:
  3421. /* FDI is a binary signal running at ~2.7GHz, encoding
  3422. * each output octet as 10 bits. The actual frequency
  3423. * is stored as a divider into a 100MHz clock, and the
  3424. * mode pixel clock is stored in units of 1KHz.
  3425. * Hence the bw of each lane in terms of the mode signal
  3426. * is:
  3427. */
  3428. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3429. fdi_dotclock = adjusted_mode->clock;
  3430. fdi_dotclock /= pipe_config->pixel_multiplier;
  3431. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3432. pipe_config->pipe_bpp);
  3433. pipe_config->fdi_lanes = lane;
  3434. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3435. link_bw, &pipe_config->fdi_m_n);
  3436. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3437. intel_crtc->pipe, pipe_config);
  3438. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3439. pipe_config->pipe_bpp -= 2*3;
  3440. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3441. pipe_config->pipe_bpp);
  3442. needs_recompute = true;
  3443. pipe_config->bw_constrained = true;
  3444. goto retry;
  3445. }
  3446. if (needs_recompute)
  3447. return RETRY;
  3448. return setup_ok ? 0 : -EINVAL;
  3449. }
  3450. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3451. struct intel_crtc_config *pipe_config)
  3452. {
  3453. pipe_config->ips_enabled = i915_enable_ips &&
  3454. hsw_crtc_supports_ips(crtc) &&
  3455. pipe_config->pipe_bpp == 24;
  3456. }
  3457. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3458. struct intel_crtc_config *pipe_config)
  3459. {
  3460. struct drm_device *dev = crtc->dev;
  3461. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3462. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3463. if (HAS_PCH_SPLIT(dev)) {
  3464. /* FDI link clock is fixed at 2.7G */
  3465. if (pipe_config->requested_mode.clock * 3
  3466. > IRONLAKE_FDI_FREQ * 4)
  3467. return -EINVAL;
  3468. }
  3469. /* All interlaced capable intel hw wants timings in frames. Note though
  3470. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3471. * timings, so we need to be careful not to clobber these.*/
  3472. if (!pipe_config->timings_set)
  3473. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3474. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3475. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3476. */
  3477. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3478. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3479. return -EINVAL;
  3480. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3481. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3482. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3483. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3484. * for lvds. */
  3485. pipe_config->pipe_bpp = 8*3;
  3486. }
  3487. if (IS_HASWELL(dev))
  3488. hsw_compute_ips_config(intel_crtc, pipe_config);
  3489. if (pipe_config->has_pch_encoder)
  3490. return ironlake_fdi_compute_config(intel_crtc, pipe_config);
  3491. return 0;
  3492. }
  3493. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3494. {
  3495. return 400000; /* FIXME */
  3496. }
  3497. static int i945_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. return 400000;
  3500. }
  3501. static int i915_get_display_clock_speed(struct drm_device *dev)
  3502. {
  3503. return 333000;
  3504. }
  3505. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3506. {
  3507. return 200000;
  3508. }
  3509. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3510. {
  3511. u16 gcfgc = 0;
  3512. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3513. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3514. return 133000;
  3515. else {
  3516. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3517. case GC_DISPLAY_CLOCK_333_MHZ:
  3518. return 333000;
  3519. default:
  3520. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3521. return 190000;
  3522. }
  3523. }
  3524. }
  3525. static int i865_get_display_clock_speed(struct drm_device *dev)
  3526. {
  3527. return 266000;
  3528. }
  3529. static int i855_get_display_clock_speed(struct drm_device *dev)
  3530. {
  3531. u16 hpllcc = 0;
  3532. /* Assume that the hardware is in the high speed state. This
  3533. * should be the default.
  3534. */
  3535. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3536. case GC_CLOCK_133_200:
  3537. case GC_CLOCK_100_200:
  3538. return 200000;
  3539. case GC_CLOCK_166_250:
  3540. return 250000;
  3541. case GC_CLOCK_100_133:
  3542. return 133000;
  3543. }
  3544. /* Shouldn't happen */
  3545. return 0;
  3546. }
  3547. static int i830_get_display_clock_speed(struct drm_device *dev)
  3548. {
  3549. return 133000;
  3550. }
  3551. static void
  3552. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3553. {
  3554. while (*num > DATA_LINK_M_N_MASK ||
  3555. *den > DATA_LINK_M_N_MASK) {
  3556. *num >>= 1;
  3557. *den >>= 1;
  3558. }
  3559. }
  3560. static void compute_m_n(unsigned int m, unsigned int n,
  3561. uint32_t *ret_m, uint32_t *ret_n)
  3562. {
  3563. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3564. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3565. intel_reduce_m_n_ratio(ret_m, ret_n);
  3566. }
  3567. void
  3568. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3569. int pixel_clock, int link_clock,
  3570. struct intel_link_m_n *m_n)
  3571. {
  3572. m_n->tu = 64;
  3573. compute_m_n(bits_per_pixel * pixel_clock,
  3574. link_clock * nlanes * 8,
  3575. &m_n->gmch_m, &m_n->gmch_n);
  3576. compute_m_n(pixel_clock, link_clock,
  3577. &m_n->link_m, &m_n->link_n);
  3578. }
  3579. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3580. {
  3581. if (i915_panel_use_ssc >= 0)
  3582. return i915_panel_use_ssc != 0;
  3583. return dev_priv->vbt.lvds_use_ssc
  3584. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3585. }
  3586. static int vlv_get_refclk(struct drm_crtc *crtc)
  3587. {
  3588. struct drm_device *dev = crtc->dev;
  3589. struct drm_i915_private *dev_priv = dev->dev_private;
  3590. int refclk = 27000; /* for DP & HDMI */
  3591. return 100000; /* only one validated so far */
  3592. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3593. refclk = 96000;
  3594. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3595. if (intel_panel_use_ssc(dev_priv))
  3596. refclk = 100000;
  3597. else
  3598. refclk = 96000;
  3599. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3600. refclk = 100000;
  3601. }
  3602. return refclk;
  3603. }
  3604. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3605. {
  3606. struct drm_device *dev = crtc->dev;
  3607. struct drm_i915_private *dev_priv = dev->dev_private;
  3608. int refclk;
  3609. if (IS_VALLEYVIEW(dev)) {
  3610. refclk = vlv_get_refclk(crtc);
  3611. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3612. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3613. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3614. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3615. refclk / 1000);
  3616. } else if (!IS_GEN2(dev)) {
  3617. refclk = 96000;
  3618. } else {
  3619. refclk = 48000;
  3620. }
  3621. return refclk;
  3622. }
  3623. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3624. {
  3625. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3626. }
  3627. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3628. {
  3629. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3630. }
  3631. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3632. intel_clock_t *reduced_clock)
  3633. {
  3634. struct drm_device *dev = crtc->base.dev;
  3635. struct drm_i915_private *dev_priv = dev->dev_private;
  3636. int pipe = crtc->pipe;
  3637. u32 fp, fp2 = 0;
  3638. if (IS_PINEVIEW(dev)) {
  3639. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3640. if (reduced_clock)
  3641. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3642. } else {
  3643. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3644. if (reduced_clock)
  3645. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3646. }
  3647. I915_WRITE(FP0(pipe), fp);
  3648. crtc->lowfreq_avail = false;
  3649. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3650. reduced_clock && i915_powersave) {
  3651. I915_WRITE(FP1(pipe), fp2);
  3652. crtc->lowfreq_avail = true;
  3653. } else {
  3654. I915_WRITE(FP1(pipe), fp);
  3655. }
  3656. }
  3657. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3658. {
  3659. u32 reg_val;
  3660. /*
  3661. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3662. * and set it to a reasonable value instead.
  3663. */
  3664. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3665. reg_val &= 0xffffff00;
  3666. reg_val |= 0x00000030;
  3667. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3668. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3669. reg_val &= 0x8cffffff;
  3670. reg_val = 0x8c000000;
  3671. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3672. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3673. reg_val &= 0xffffff00;
  3674. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3675. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3676. reg_val &= 0x00ffffff;
  3677. reg_val |= 0xb0000000;
  3678. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3679. }
  3680. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3681. struct intel_link_m_n *m_n)
  3682. {
  3683. struct drm_device *dev = crtc->base.dev;
  3684. struct drm_i915_private *dev_priv = dev->dev_private;
  3685. int pipe = crtc->pipe;
  3686. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3687. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3688. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3689. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3690. }
  3691. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3692. struct intel_link_m_n *m_n)
  3693. {
  3694. struct drm_device *dev = crtc->base.dev;
  3695. struct drm_i915_private *dev_priv = dev->dev_private;
  3696. int pipe = crtc->pipe;
  3697. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3698. if (INTEL_INFO(dev)->gen >= 5) {
  3699. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3700. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3701. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3702. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3703. } else {
  3704. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3705. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3706. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3707. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3708. }
  3709. }
  3710. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3711. {
  3712. if (crtc->config.has_pch_encoder)
  3713. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3714. else
  3715. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3716. }
  3717. static void vlv_update_pll(struct intel_crtc *crtc)
  3718. {
  3719. struct drm_device *dev = crtc->base.dev;
  3720. struct drm_i915_private *dev_priv = dev->dev_private;
  3721. struct intel_encoder *encoder;
  3722. int pipe = crtc->pipe;
  3723. u32 dpll, mdiv;
  3724. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3725. bool is_hdmi;
  3726. u32 coreclk, reg_val, dpll_md;
  3727. mutex_lock(&dev_priv->dpio_lock);
  3728. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3729. bestn = crtc->config.dpll.n;
  3730. bestm1 = crtc->config.dpll.m1;
  3731. bestm2 = crtc->config.dpll.m2;
  3732. bestp1 = crtc->config.dpll.p1;
  3733. bestp2 = crtc->config.dpll.p2;
  3734. /* See eDP HDMI DPIO driver vbios notes doc */
  3735. /* PLL B needs special handling */
  3736. if (pipe)
  3737. vlv_pllb_recal_opamp(dev_priv);
  3738. /* Set up Tx target for periodic Rcomp update */
  3739. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3740. /* Disable target IRef on PLL */
  3741. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3742. reg_val &= 0x00ffffff;
  3743. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3744. /* Disable fast lock */
  3745. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3746. /* Set idtafcrecal before PLL is enabled */
  3747. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3748. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3749. mdiv |= ((bestn << DPIO_N_SHIFT));
  3750. mdiv |= (1 << DPIO_K_SHIFT);
  3751. /*
  3752. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3753. * but we don't support that).
  3754. * Note: don't use the DAC post divider as it seems unstable.
  3755. */
  3756. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3757. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3758. mdiv |= DPIO_ENABLE_CALIBRATION;
  3759. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3760. /* Set HBR and RBR LPF coefficients */
  3761. if (crtc->config.port_clock == 162000 ||
  3762. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3763. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3764. 0x005f0021);
  3765. else
  3766. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3767. 0x00d0000f);
  3768. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3769. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3770. /* Use SSC source */
  3771. if (!pipe)
  3772. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3773. 0x0df40000);
  3774. else
  3775. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3776. 0x0df70000);
  3777. } else { /* HDMI or VGA */
  3778. /* Use bend source */
  3779. if (!pipe)
  3780. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3781. 0x0df70000);
  3782. else
  3783. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3784. 0x0df40000);
  3785. }
  3786. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3787. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3788. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3789. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3790. coreclk |= 0x01000000;
  3791. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3792. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3793. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3794. if (encoder->pre_pll_enable)
  3795. encoder->pre_pll_enable(encoder);
  3796. /* Enable DPIO clock input */
  3797. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3798. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3799. if (pipe)
  3800. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3801. dpll |= DPLL_VCO_ENABLE;
  3802. I915_WRITE(DPLL(pipe), dpll);
  3803. POSTING_READ(DPLL(pipe));
  3804. udelay(150);
  3805. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3806. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3807. dpll_md = (crtc->config.pixel_multiplier - 1)
  3808. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3809. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3810. POSTING_READ(DPLL_MD(pipe));
  3811. if (crtc->config.has_dp_encoder)
  3812. intel_dp_set_m_n(crtc);
  3813. mutex_unlock(&dev_priv->dpio_lock);
  3814. }
  3815. static void i9xx_update_pll(struct intel_crtc *crtc,
  3816. intel_clock_t *reduced_clock,
  3817. int num_connectors)
  3818. {
  3819. struct drm_device *dev = crtc->base.dev;
  3820. struct drm_i915_private *dev_priv = dev->dev_private;
  3821. struct intel_encoder *encoder;
  3822. int pipe = crtc->pipe;
  3823. u32 dpll;
  3824. bool is_sdvo;
  3825. struct dpll *clock = &crtc->config.dpll;
  3826. i9xx_update_pll_dividers(crtc, reduced_clock);
  3827. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3828. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3829. dpll = DPLL_VGA_MODE_DIS;
  3830. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3831. dpll |= DPLLB_MODE_LVDS;
  3832. else
  3833. dpll |= DPLLB_MODE_DAC_SERIAL;
  3834. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3835. dpll |= (crtc->config.pixel_multiplier - 1)
  3836. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3837. }
  3838. if (is_sdvo)
  3839. dpll |= DPLL_DVO_HIGH_SPEED;
  3840. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3841. dpll |= DPLL_DVO_HIGH_SPEED;
  3842. /* compute bitmask from p1 value */
  3843. if (IS_PINEVIEW(dev))
  3844. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3845. else {
  3846. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3847. if (IS_G4X(dev) && reduced_clock)
  3848. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3849. }
  3850. switch (clock->p2) {
  3851. case 5:
  3852. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3853. break;
  3854. case 7:
  3855. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3856. break;
  3857. case 10:
  3858. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3859. break;
  3860. case 14:
  3861. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3862. break;
  3863. }
  3864. if (INTEL_INFO(dev)->gen >= 4)
  3865. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3866. if (crtc->config.sdvo_tv_clock)
  3867. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3868. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3869. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3870. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3871. else
  3872. dpll |= PLL_REF_INPUT_DREFCLK;
  3873. dpll |= DPLL_VCO_ENABLE;
  3874. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3875. POSTING_READ(DPLL(pipe));
  3876. udelay(150);
  3877. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3878. if (encoder->pre_pll_enable)
  3879. encoder->pre_pll_enable(encoder);
  3880. if (crtc->config.has_dp_encoder)
  3881. intel_dp_set_m_n(crtc);
  3882. I915_WRITE(DPLL(pipe), dpll);
  3883. /* Wait for the clocks to stabilize. */
  3884. POSTING_READ(DPLL(pipe));
  3885. udelay(150);
  3886. if (INTEL_INFO(dev)->gen >= 4) {
  3887. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3888. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3889. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3890. } else {
  3891. /* The pixel multiplier can only be updated once the
  3892. * DPLL is enabled and the clocks are stable.
  3893. *
  3894. * So write it again.
  3895. */
  3896. I915_WRITE(DPLL(pipe), dpll);
  3897. }
  3898. }
  3899. static void i8xx_update_pll(struct intel_crtc *crtc,
  3900. intel_clock_t *reduced_clock,
  3901. int num_connectors)
  3902. {
  3903. struct drm_device *dev = crtc->base.dev;
  3904. struct drm_i915_private *dev_priv = dev->dev_private;
  3905. struct intel_encoder *encoder;
  3906. int pipe = crtc->pipe;
  3907. u32 dpll;
  3908. struct dpll *clock = &crtc->config.dpll;
  3909. i9xx_update_pll_dividers(crtc, reduced_clock);
  3910. dpll = DPLL_VGA_MODE_DIS;
  3911. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3912. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3913. } else {
  3914. if (clock->p1 == 2)
  3915. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3916. else
  3917. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3918. if (clock->p2 == 4)
  3919. dpll |= PLL_P2_DIVIDE_BY_4;
  3920. }
  3921. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3922. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3923. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3924. else
  3925. dpll |= PLL_REF_INPUT_DREFCLK;
  3926. dpll |= DPLL_VCO_ENABLE;
  3927. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3928. POSTING_READ(DPLL(pipe));
  3929. udelay(150);
  3930. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3931. if (encoder->pre_pll_enable)
  3932. encoder->pre_pll_enable(encoder);
  3933. I915_WRITE(DPLL(pipe), dpll);
  3934. /* Wait for the clocks to stabilize. */
  3935. POSTING_READ(DPLL(pipe));
  3936. udelay(150);
  3937. /* The pixel multiplier can only be updated once the
  3938. * DPLL is enabled and the clocks are stable.
  3939. *
  3940. * So write it again.
  3941. */
  3942. I915_WRITE(DPLL(pipe), dpll);
  3943. }
  3944. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3945. {
  3946. struct drm_device *dev = intel_crtc->base.dev;
  3947. struct drm_i915_private *dev_priv = dev->dev_private;
  3948. enum pipe pipe = intel_crtc->pipe;
  3949. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3950. struct drm_display_mode *adjusted_mode =
  3951. &intel_crtc->config.adjusted_mode;
  3952. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3953. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3954. /* We need to be careful not to changed the adjusted mode, for otherwise
  3955. * the hw state checker will get angry at the mismatch. */
  3956. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3957. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3958. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3959. /* the chip adds 2 halflines automatically */
  3960. crtc_vtotal -= 1;
  3961. crtc_vblank_end -= 1;
  3962. vsyncshift = adjusted_mode->crtc_hsync_start
  3963. - adjusted_mode->crtc_htotal / 2;
  3964. } else {
  3965. vsyncshift = 0;
  3966. }
  3967. if (INTEL_INFO(dev)->gen > 3)
  3968. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3969. I915_WRITE(HTOTAL(cpu_transcoder),
  3970. (adjusted_mode->crtc_hdisplay - 1) |
  3971. ((adjusted_mode->crtc_htotal - 1) << 16));
  3972. I915_WRITE(HBLANK(cpu_transcoder),
  3973. (adjusted_mode->crtc_hblank_start - 1) |
  3974. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3975. I915_WRITE(HSYNC(cpu_transcoder),
  3976. (adjusted_mode->crtc_hsync_start - 1) |
  3977. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3978. I915_WRITE(VTOTAL(cpu_transcoder),
  3979. (adjusted_mode->crtc_vdisplay - 1) |
  3980. ((crtc_vtotal - 1) << 16));
  3981. I915_WRITE(VBLANK(cpu_transcoder),
  3982. (adjusted_mode->crtc_vblank_start - 1) |
  3983. ((crtc_vblank_end - 1) << 16));
  3984. I915_WRITE(VSYNC(cpu_transcoder),
  3985. (adjusted_mode->crtc_vsync_start - 1) |
  3986. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3987. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3988. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3989. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3990. * bits. */
  3991. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3992. (pipe == PIPE_B || pipe == PIPE_C))
  3993. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3994. /* pipesrc controls the size that is scaled from, which should
  3995. * always be the user's requested size.
  3996. */
  3997. I915_WRITE(PIPESRC(pipe),
  3998. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3999. }
  4000. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4001. struct intel_crtc_config *pipe_config)
  4002. {
  4003. struct drm_device *dev = crtc->base.dev;
  4004. struct drm_i915_private *dev_priv = dev->dev_private;
  4005. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4006. uint32_t tmp;
  4007. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4008. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4009. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4010. tmp = I915_READ(HBLANK(cpu_transcoder));
  4011. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4012. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4013. tmp = I915_READ(HSYNC(cpu_transcoder));
  4014. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4015. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4016. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4017. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4018. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4019. tmp = I915_READ(VBLANK(cpu_transcoder));
  4020. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4021. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4022. tmp = I915_READ(VSYNC(cpu_transcoder));
  4023. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4024. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4025. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4026. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4027. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4028. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4029. }
  4030. tmp = I915_READ(PIPESRC(crtc->pipe));
  4031. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4032. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4033. }
  4034. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4035. {
  4036. struct drm_device *dev = intel_crtc->base.dev;
  4037. struct drm_i915_private *dev_priv = dev->dev_private;
  4038. uint32_t pipeconf;
  4039. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4040. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4041. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4042. * core speed.
  4043. *
  4044. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4045. * pipe == 0 check?
  4046. */
  4047. if (intel_crtc->config.requested_mode.clock >
  4048. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4049. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4050. else
  4051. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4052. }
  4053. /* only g4x and later have fancy bpc/dither controls */
  4054. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4055. pipeconf &= ~(PIPECONF_BPC_MASK |
  4056. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4057. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4058. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4059. pipeconf |= PIPECONF_DITHER_EN |
  4060. PIPECONF_DITHER_TYPE_SP;
  4061. switch (intel_crtc->config.pipe_bpp) {
  4062. case 18:
  4063. pipeconf |= PIPECONF_6BPC;
  4064. break;
  4065. case 24:
  4066. pipeconf |= PIPECONF_8BPC;
  4067. break;
  4068. case 30:
  4069. pipeconf |= PIPECONF_10BPC;
  4070. break;
  4071. default:
  4072. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4073. BUG();
  4074. }
  4075. }
  4076. if (HAS_PIPE_CXSR(dev)) {
  4077. if (intel_crtc->lowfreq_avail) {
  4078. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4079. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4080. } else {
  4081. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4082. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4083. }
  4084. }
  4085. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4086. if (!IS_GEN2(dev) &&
  4087. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4088. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4089. else
  4090. pipeconf |= PIPECONF_PROGRESSIVE;
  4091. if (IS_VALLEYVIEW(dev)) {
  4092. if (intel_crtc->config.limited_color_range)
  4093. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4094. else
  4095. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4096. }
  4097. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4098. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4099. }
  4100. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4101. int x, int y,
  4102. struct drm_framebuffer *fb)
  4103. {
  4104. struct drm_device *dev = crtc->dev;
  4105. struct drm_i915_private *dev_priv = dev->dev_private;
  4106. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4107. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4108. int pipe = intel_crtc->pipe;
  4109. int plane = intel_crtc->plane;
  4110. int refclk, num_connectors = 0;
  4111. intel_clock_t clock, reduced_clock;
  4112. u32 dspcntr;
  4113. bool ok, has_reduced_clock = false;
  4114. bool is_lvds = false;
  4115. struct intel_encoder *encoder;
  4116. const intel_limit_t *limit;
  4117. int ret;
  4118. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4119. switch (encoder->type) {
  4120. case INTEL_OUTPUT_LVDS:
  4121. is_lvds = true;
  4122. break;
  4123. }
  4124. num_connectors++;
  4125. }
  4126. refclk = i9xx_get_refclk(crtc, num_connectors);
  4127. /*
  4128. * Returns a set of divisors for the desired target clock with the given
  4129. * refclk, or FALSE. The returned values represent the clock equation:
  4130. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4131. */
  4132. limit = intel_limit(crtc, refclk);
  4133. ok = dev_priv->display.find_dpll(limit, crtc,
  4134. intel_crtc->config.port_clock,
  4135. refclk, NULL, &clock);
  4136. if (!ok && !intel_crtc->config.clock_set) {
  4137. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4138. return -EINVAL;
  4139. }
  4140. /* Ensure that the cursor is valid for the new mode before changing... */
  4141. intel_crtc_update_cursor(crtc, true);
  4142. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4143. /*
  4144. * Ensure we match the reduced clock's P to the target clock.
  4145. * If the clocks don't match, we can't switch the display clock
  4146. * by using the FP0/FP1. In such case we will disable the LVDS
  4147. * downclock feature.
  4148. */
  4149. has_reduced_clock =
  4150. dev_priv->display.find_dpll(limit, crtc,
  4151. dev_priv->lvds_downclock,
  4152. refclk, &clock,
  4153. &reduced_clock);
  4154. }
  4155. /* Compat-code for transition, will disappear. */
  4156. if (!intel_crtc->config.clock_set) {
  4157. intel_crtc->config.dpll.n = clock.n;
  4158. intel_crtc->config.dpll.m1 = clock.m1;
  4159. intel_crtc->config.dpll.m2 = clock.m2;
  4160. intel_crtc->config.dpll.p1 = clock.p1;
  4161. intel_crtc->config.dpll.p2 = clock.p2;
  4162. }
  4163. if (IS_GEN2(dev))
  4164. i8xx_update_pll(intel_crtc,
  4165. has_reduced_clock ? &reduced_clock : NULL,
  4166. num_connectors);
  4167. else if (IS_VALLEYVIEW(dev))
  4168. vlv_update_pll(intel_crtc);
  4169. else
  4170. i9xx_update_pll(intel_crtc,
  4171. has_reduced_clock ? &reduced_clock : NULL,
  4172. num_connectors);
  4173. /* Set up the display plane register */
  4174. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4175. if (!IS_VALLEYVIEW(dev)) {
  4176. if (pipe == 0)
  4177. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4178. else
  4179. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4180. }
  4181. intel_set_pipe_timings(intel_crtc);
  4182. /* pipesrc and dspsize control the size that is scaled from,
  4183. * which should always be the user's requested size.
  4184. */
  4185. I915_WRITE(DSPSIZE(plane),
  4186. ((mode->vdisplay - 1) << 16) |
  4187. (mode->hdisplay - 1));
  4188. I915_WRITE(DSPPOS(plane), 0);
  4189. i9xx_set_pipeconf(intel_crtc);
  4190. I915_WRITE(DSPCNTR(plane), dspcntr);
  4191. POSTING_READ(DSPCNTR(plane));
  4192. ret = intel_pipe_set_base(crtc, x, y, fb);
  4193. intel_update_watermarks(dev);
  4194. return ret;
  4195. }
  4196. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4197. struct intel_crtc_config *pipe_config)
  4198. {
  4199. struct drm_device *dev = crtc->base.dev;
  4200. struct drm_i915_private *dev_priv = dev->dev_private;
  4201. uint32_t tmp;
  4202. tmp = I915_READ(PFIT_CONTROL);
  4203. if (INTEL_INFO(dev)->gen < 4) {
  4204. if (crtc->pipe != PIPE_B)
  4205. return;
  4206. /* gen2/3 store dither state in pfit control, needs to match */
  4207. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4208. } else {
  4209. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4210. return;
  4211. }
  4212. if (!(tmp & PFIT_ENABLE))
  4213. return;
  4214. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4215. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4216. if (INTEL_INFO(dev)->gen < 5)
  4217. pipe_config->gmch_pfit.lvds_border_bits =
  4218. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4219. }
  4220. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4221. struct intel_crtc_config *pipe_config)
  4222. {
  4223. struct drm_device *dev = crtc->base.dev;
  4224. struct drm_i915_private *dev_priv = dev->dev_private;
  4225. uint32_t tmp;
  4226. pipe_config->cpu_transcoder = crtc->pipe;
  4227. tmp = I915_READ(PIPECONF(crtc->pipe));
  4228. if (!(tmp & PIPECONF_ENABLE))
  4229. return false;
  4230. intel_get_pipe_timings(crtc, pipe_config);
  4231. i9xx_get_pfit_config(crtc, pipe_config);
  4232. return true;
  4233. }
  4234. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4235. {
  4236. struct drm_i915_private *dev_priv = dev->dev_private;
  4237. struct drm_mode_config *mode_config = &dev->mode_config;
  4238. struct intel_encoder *encoder;
  4239. u32 val, final;
  4240. bool has_lvds = false;
  4241. bool has_cpu_edp = false;
  4242. bool has_panel = false;
  4243. bool has_ck505 = false;
  4244. bool can_ssc = false;
  4245. /* We need to take the global config into account */
  4246. list_for_each_entry(encoder, &mode_config->encoder_list,
  4247. base.head) {
  4248. switch (encoder->type) {
  4249. case INTEL_OUTPUT_LVDS:
  4250. has_panel = true;
  4251. has_lvds = true;
  4252. break;
  4253. case INTEL_OUTPUT_EDP:
  4254. has_panel = true;
  4255. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4256. has_cpu_edp = true;
  4257. break;
  4258. }
  4259. }
  4260. if (HAS_PCH_IBX(dev)) {
  4261. has_ck505 = dev_priv->vbt.display_clock_mode;
  4262. can_ssc = has_ck505;
  4263. } else {
  4264. has_ck505 = false;
  4265. can_ssc = true;
  4266. }
  4267. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4268. has_panel, has_lvds, has_ck505);
  4269. /* Ironlake: try to setup display ref clock before DPLL
  4270. * enabling. This is only under driver's control after
  4271. * PCH B stepping, previous chipset stepping should be
  4272. * ignoring this setting.
  4273. */
  4274. val = I915_READ(PCH_DREF_CONTROL);
  4275. /* As we must carefully and slowly disable/enable each source in turn,
  4276. * compute the final state we want first and check if we need to
  4277. * make any changes at all.
  4278. */
  4279. final = val;
  4280. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4281. if (has_ck505)
  4282. final |= DREF_NONSPREAD_CK505_ENABLE;
  4283. else
  4284. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4285. final &= ~DREF_SSC_SOURCE_MASK;
  4286. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4287. final &= ~DREF_SSC1_ENABLE;
  4288. if (has_panel) {
  4289. final |= DREF_SSC_SOURCE_ENABLE;
  4290. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4291. final |= DREF_SSC1_ENABLE;
  4292. if (has_cpu_edp) {
  4293. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4294. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4295. else
  4296. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4297. } else
  4298. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4299. } else {
  4300. final |= DREF_SSC_SOURCE_DISABLE;
  4301. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4302. }
  4303. if (final == val)
  4304. return;
  4305. /* Always enable nonspread source */
  4306. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4307. if (has_ck505)
  4308. val |= DREF_NONSPREAD_CK505_ENABLE;
  4309. else
  4310. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4311. if (has_panel) {
  4312. val &= ~DREF_SSC_SOURCE_MASK;
  4313. val |= DREF_SSC_SOURCE_ENABLE;
  4314. /* SSC must be turned on before enabling the CPU output */
  4315. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4316. DRM_DEBUG_KMS("Using SSC on panel\n");
  4317. val |= DREF_SSC1_ENABLE;
  4318. } else
  4319. val &= ~DREF_SSC1_ENABLE;
  4320. /* Get SSC going before enabling the outputs */
  4321. I915_WRITE(PCH_DREF_CONTROL, val);
  4322. POSTING_READ(PCH_DREF_CONTROL);
  4323. udelay(200);
  4324. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4325. /* Enable CPU source on CPU attached eDP */
  4326. if (has_cpu_edp) {
  4327. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4328. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4329. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4330. }
  4331. else
  4332. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4333. } else
  4334. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4335. I915_WRITE(PCH_DREF_CONTROL, val);
  4336. POSTING_READ(PCH_DREF_CONTROL);
  4337. udelay(200);
  4338. } else {
  4339. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4340. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4341. /* Turn off CPU output */
  4342. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4343. I915_WRITE(PCH_DREF_CONTROL, val);
  4344. POSTING_READ(PCH_DREF_CONTROL);
  4345. udelay(200);
  4346. /* Turn off the SSC source */
  4347. val &= ~DREF_SSC_SOURCE_MASK;
  4348. val |= DREF_SSC_SOURCE_DISABLE;
  4349. /* Turn off SSC1 */
  4350. val &= ~DREF_SSC1_ENABLE;
  4351. I915_WRITE(PCH_DREF_CONTROL, val);
  4352. POSTING_READ(PCH_DREF_CONTROL);
  4353. udelay(200);
  4354. }
  4355. BUG_ON(val != final);
  4356. }
  4357. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4358. static void lpt_init_pch_refclk(struct drm_device *dev)
  4359. {
  4360. struct drm_i915_private *dev_priv = dev->dev_private;
  4361. struct drm_mode_config *mode_config = &dev->mode_config;
  4362. struct intel_encoder *encoder;
  4363. bool has_vga = false;
  4364. bool is_sdv = false;
  4365. u32 tmp;
  4366. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4367. switch (encoder->type) {
  4368. case INTEL_OUTPUT_ANALOG:
  4369. has_vga = true;
  4370. break;
  4371. }
  4372. }
  4373. if (!has_vga)
  4374. return;
  4375. mutex_lock(&dev_priv->dpio_lock);
  4376. /* XXX: Rip out SDV support once Haswell ships for real. */
  4377. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4378. is_sdv = true;
  4379. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4380. tmp &= ~SBI_SSCCTL_DISABLE;
  4381. tmp |= SBI_SSCCTL_PATHALT;
  4382. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4383. udelay(24);
  4384. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4385. tmp &= ~SBI_SSCCTL_PATHALT;
  4386. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4387. if (!is_sdv) {
  4388. tmp = I915_READ(SOUTH_CHICKEN2);
  4389. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4390. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4391. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4392. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4393. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4394. tmp = I915_READ(SOUTH_CHICKEN2);
  4395. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4396. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4397. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4398. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4399. 100))
  4400. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4401. }
  4402. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4403. tmp &= ~(0xFF << 24);
  4404. tmp |= (0x12 << 24);
  4405. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4406. if (is_sdv) {
  4407. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4408. tmp |= 0x7FFF;
  4409. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4410. }
  4411. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4412. tmp |= (1 << 11);
  4413. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4414. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4415. tmp |= (1 << 11);
  4416. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4417. if (is_sdv) {
  4418. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4419. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4420. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4422. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4423. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4424. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4425. tmp |= (0x3F << 8);
  4426. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4427. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4428. tmp |= (0x3F << 8);
  4429. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4430. }
  4431. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4432. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4433. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4434. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4435. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4436. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4437. if (!is_sdv) {
  4438. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4439. tmp &= ~(7 << 13);
  4440. tmp |= (5 << 13);
  4441. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4443. tmp &= ~(7 << 13);
  4444. tmp |= (5 << 13);
  4445. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4446. }
  4447. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4448. tmp &= ~0xFF;
  4449. tmp |= 0x1C;
  4450. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4451. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4452. tmp &= ~0xFF;
  4453. tmp |= 0x1C;
  4454. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4455. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4456. tmp &= ~(0xFF << 16);
  4457. tmp |= (0x1C << 16);
  4458. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4459. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4460. tmp &= ~(0xFF << 16);
  4461. tmp |= (0x1C << 16);
  4462. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4463. if (!is_sdv) {
  4464. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4465. tmp |= (1 << 27);
  4466. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4467. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4468. tmp |= (1 << 27);
  4469. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4470. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4471. tmp &= ~(0xF << 28);
  4472. tmp |= (4 << 28);
  4473. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4474. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4475. tmp &= ~(0xF << 28);
  4476. tmp |= (4 << 28);
  4477. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4478. }
  4479. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4480. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4481. tmp |= SBI_DBUFF0_ENABLE;
  4482. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4483. mutex_unlock(&dev_priv->dpio_lock);
  4484. }
  4485. /*
  4486. * Initialize reference clocks when the driver loads
  4487. */
  4488. void intel_init_pch_refclk(struct drm_device *dev)
  4489. {
  4490. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4491. ironlake_init_pch_refclk(dev);
  4492. else if (HAS_PCH_LPT(dev))
  4493. lpt_init_pch_refclk(dev);
  4494. }
  4495. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4496. {
  4497. struct drm_device *dev = crtc->dev;
  4498. struct drm_i915_private *dev_priv = dev->dev_private;
  4499. struct intel_encoder *encoder;
  4500. int num_connectors = 0;
  4501. bool is_lvds = false;
  4502. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4503. switch (encoder->type) {
  4504. case INTEL_OUTPUT_LVDS:
  4505. is_lvds = true;
  4506. break;
  4507. }
  4508. num_connectors++;
  4509. }
  4510. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4511. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4512. dev_priv->vbt.lvds_ssc_freq);
  4513. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4514. }
  4515. return 120000;
  4516. }
  4517. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4518. {
  4519. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4520. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4521. int pipe = intel_crtc->pipe;
  4522. uint32_t val;
  4523. val = I915_READ(PIPECONF(pipe));
  4524. val &= ~PIPECONF_BPC_MASK;
  4525. switch (intel_crtc->config.pipe_bpp) {
  4526. case 18:
  4527. val |= PIPECONF_6BPC;
  4528. break;
  4529. case 24:
  4530. val |= PIPECONF_8BPC;
  4531. break;
  4532. case 30:
  4533. val |= PIPECONF_10BPC;
  4534. break;
  4535. case 36:
  4536. val |= PIPECONF_12BPC;
  4537. break;
  4538. default:
  4539. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4540. BUG();
  4541. }
  4542. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4543. if (intel_crtc->config.dither)
  4544. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4545. val &= ~PIPECONF_INTERLACE_MASK;
  4546. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4547. val |= PIPECONF_INTERLACED_ILK;
  4548. else
  4549. val |= PIPECONF_PROGRESSIVE;
  4550. if (intel_crtc->config.limited_color_range)
  4551. val |= PIPECONF_COLOR_RANGE_SELECT;
  4552. else
  4553. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4554. I915_WRITE(PIPECONF(pipe), val);
  4555. POSTING_READ(PIPECONF(pipe));
  4556. }
  4557. /*
  4558. * Set up the pipe CSC unit.
  4559. *
  4560. * Currently only full range RGB to limited range RGB conversion
  4561. * is supported, but eventually this should handle various
  4562. * RGB<->YCbCr scenarios as well.
  4563. */
  4564. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4565. {
  4566. struct drm_device *dev = crtc->dev;
  4567. struct drm_i915_private *dev_priv = dev->dev_private;
  4568. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4569. int pipe = intel_crtc->pipe;
  4570. uint16_t coeff = 0x7800; /* 1.0 */
  4571. /*
  4572. * TODO: Check what kind of values actually come out of the pipe
  4573. * with these coeff/postoff values and adjust to get the best
  4574. * accuracy. Perhaps we even need to take the bpc value into
  4575. * consideration.
  4576. */
  4577. if (intel_crtc->config.limited_color_range)
  4578. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4579. /*
  4580. * GY/GU and RY/RU should be the other way around according
  4581. * to BSpec, but reality doesn't agree. Just set them up in
  4582. * a way that results in the correct picture.
  4583. */
  4584. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4585. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4586. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4587. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4588. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4589. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4590. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4591. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4592. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4593. if (INTEL_INFO(dev)->gen > 6) {
  4594. uint16_t postoff = 0;
  4595. if (intel_crtc->config.limited_color_range)
  4596. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4597. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4598. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4599. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4600. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4601. } else {
  4602. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4603. if (intel_crtc->config.limited_color_range)
  4604. mode |= CSC_BLACK_SCREEN_OFFSET;
  4605. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4606. }
  4607. }
  4608. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4609. {
  4610. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4611. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4612. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4613. uint32_t val;
  4614. val = I915_READ(PIPECONF(cpu_transcoder));
  4615. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4616. if (intel_crtc->config.dither)
  4617. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4618. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4619. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4620. val |= PIPECONF_INTERLACED_ILK;
  4621. else
  4622. val |= PIPECONF_PROGRESSIVE;
  4623. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4624. POSTING_READ(PIPECONF(cpu_transcoder));
  4625. }
  4626. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4627. intel_clock_t *clock,
  4628. bool *has_reduced_clock,
  4629. intel_clock_t *reduced_clock)
  4630. {
  4631. struct drm_device *dev = crtc->dev;
  4632. struct drm_i915_private *dev_priv = dev->dev_private;
  4633. struct intel_encoder *intel_encoder;
  4634. int refclk;
  4635. const intel_limit_t *limit;
  4636. bool ret, is_lvds = false;
  4637. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4638. switch (intel_encoder->type) {
  4639. case INTEL_OUTPUT_LVDS:
  4640. is_lvds = true;
  4641. break;
  4642. }
  4643. }
  4644. refclk = ironlake_get_refclk(crtc);
  4645. /*
  4646. * Returns a set of divisors for the desired target clock with the given
  4647. * refclk, or FALSE. The returned values represent the clock equation:
  4648. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4649. */
  4650. limit = intel_limit(crtc, refclk);
  4651. ret = dev_priv->display.find_dpll(limit, crtc,
  4652. to_intel_crtc(crtc)->config.port_clock,
  4653. refclk, NULL, clock);
  4654. if (!ret)
  4655. return false;
  4656. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4657. /*
  4658. * Ensure we match the reduced clock's P to the target clock.
  4659. * If the clocks don't match, we can't switch the display clock
  4660. * by using the FP0/FP1. In such case we will disable the LVDS
  4661. * downclock feature.
  4662. */
  4663. *has_reduced_clock =
  4664. dev_priv->display.find_dpll(limit, crtc,
  4665. dev_priv->lvds_downclock,
  4666. refclk, clock,
  4667. reduced_clock);
  4668. }
  4669. return true;
  4670. }
  4671. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4672. {
  4673. struct drm_i915_private *dev_priv = dev->dev_private;
  4674. uint32_t temp;
  4675. temp = I915_READ(SOUTH_CHICKEN1);
  4676. if (temp & FDI_BC_BIFURCATION_SELECT)
  4677. return;
  4678. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4679. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4680. temp |= FDI_BC_BIFURCATION_SELECT;
  4681. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4682. I915_WRITE(SOUTH_CHICKEN1, temp);
  4683. POSTING_READ(SOUTH_CHICKEN1);
  4684. }
  4685. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4686. {
  4687. struct drm_device *dev = intel_crtc->base.dev;
  4688. struct drm_i915_private *dev_priv = dev->dev_private;
  4689. switch (intel_crtc->pipe) {
  4690. case PIPE_A:
  4691. break;
  4692. case PIPE_B:
  4693. if (intel_crtc->config.fdi_lanes > 2)
  4694. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4695. else
  4696. cpt_enable_fdi_bc_bifurcation(dev);
  4697. break;
  4698. case PIPE_C:
  4699. cpt_enable_fdi_bc_bifurcation(dev);
  4700. break;
  4701. default:
  4702. BUG();
  4703. }
  4704. }
  4705. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4706. {
  4707. /*
  4708. * Account for spread spectrum to avoid
  4709. * oversubscribing the link. Max center spread
  4710. * is 2.5%; use 5% for safety's sake.
  4711. */
  4712. u32 bps = target_clock * bpp * 21 / 20;
  4713. return bps / (link_bw * 8) + 1;
  4714. }
  4715. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4716. {
  4717. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4718. }
  4719. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4720. u32 *fp,
  4721. intel_clock_t *reduced_clock, u32 *fp2)
  4722. {
  4723. struct drm_crtc *crtc = &intel_crtc->base;
  4724. struct drm_device *dev = crtc->dev;
  4725. struct drm_i915_private *dev_priv = dev->dev_private;
  4726. struct intel_encoder *intel_encoder;
  4727. uint32_t dpll;
  4728. int factor, num_connectors = 0;
  4729. bool is_lvds = false, is_sdvo = false;
  4730. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4731. switch (intel_encoder->type) {
  4732. case INTEL_OUTPUT_LVDS:
  4733. is_lvds = true;
  4734. break;
  4735. case INTEL_OUTPUT_SDVO:
  4736. case INTEL_OUTPUT_HDMI:
  4737. is_sdvo = true;
  4738. break;
  4739. }
  4740. num_connectors++;
  4741. }
  4742. /* Enable autotuning of the PLL clock (if permissible) */
  4743. factor = 21;
  4744. if (is_lvds) {
  4745. if ((intel_panel_use_ssc(dev_priv) &&
  4746. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4747. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4748. factor = 25;
  4749. } else if (intel_crtc->config.sdvo_tv_clock)
  4750. factor = 20;
  4751. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4752. *fp |= FP_CB_TUNE;
  4753. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4754. *fp2 |= FP_CB_TUNE;
  4755. dpll = 0;
  4756. if (is_lvds)
  4757. dpll |= DPLLB_MODE_LVDS;
  4758. else
  4759. dpll |= DPLLB_MODE_DAC_SERIAL;
  4760. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4761. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4762. if (is_sdvo)
  4763. dpll |= DPLL_DVO_HIGH_SPEED;
  4764. if (intel_crtc->config.has_dp_encoder)
  4765. dpll |= DPLL_DVO_HIGH_SPEED;
  4766. /* compute bitmask from p1 value */
  4767. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4768. /* also FPA1 */
  4769. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4770. switch (intel_crtc->config.dpll.p2) {
  4771. case 5:
  4772. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4773. break;
  4774. case 7:
  4775. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4776. break;
  4777. case 10:
  4778. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4779. break;
  4780. case 14:
  4781. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4782. break;
  4783. }
  4784. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4785. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4786. else
  4787. dpll |= PLL_REF_INPUT_DREFCLK;
  4788. return dpll;
  4789. }
  4790. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4791. int x, int y,
  4792. struct drm_framebuffer *fb)
  4793. {
  4794. struct drm_device *dev = crtc->dev;
  4795. struct drm_i915_private *dev_priv = dev->dev_private;
  4796. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4797. int pipe = intel_crtc->pipe;
  4798. int plane = intel_crtc->plane;
  4799. int num_connectors = 0;
  4800. intel_clock_t clock, reduced_clock;
  4801. u32 dpll = 0, fp = 0, fp2 = 0;
  4802. bool ok, has_reduced_clock = false;
  4803. bool is_lvds = false;
  4804. struct intel_encoder *encoder;
  4805. int ret;
  4806. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4807. switch (encoder->type) {
  4808. case INTEL_OUTPUT_LVDS:
  4809. is_lvds = true;
  4810. break;
  4811. }
  4812. num_connectors++;
  4813. }
  4814. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4815. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4816. ok = ironlake_compute_clocks(crtc, &clock,
  4817. &has_reduced_clock, &reduced_clock);
  4818. if (!ok && !intel_crtc->config.clock_set) {
  4819. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4820. return -EINVAL;
  4821. }
  4822. /* Compat-code for transition, will disappear. */
  4823. if (!intel_crtc->config.clock_set) {
  4824. intel_crtc->config.dpll.n = clock.n;
  4825. intel_crtc->config.dpll.m1 = clock.m1;
  4826. intel_crtc->config.dpll.m2 = clock.m2;
  4827. intel_crtc->config.dpll.p1 = clock.p1;
  4828. intel_crtc->config.dpll.p2 = clock.p2;
  4829. }
  4830. /* Ensure that the cursor is valid for the new mode before changing... */
  4831. intel_crtc_update_cursor(crtc, true);
  4832. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4833. if (intel_crtc->config.has_pch_encoder) {
  4834. struct intel_pch_pll *pll;
  4835. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4836. if (has_reduced_clock)
  4837. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4838. dpll = ironlake_compute_dpll(intel_crtc,
  4839. &fp, &reduced_clock,
  4840. has_reduced_clock ? &fp2 : NULL);
  4841. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4842. if (pll == NULL) {
  4843. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4844. pipe_name(pipe));
  4845. return -EINVAL;
  4846. }
  4847. } else
  4848. intel_put_pch_pll(intel_crtc);
  4849. if (intel_crtc->config.has_dp_encoder)
  4850. intel_dp_set_m_n(intel_crtc);
  4851. for_each_encoder_on_crtc(dev, crtc, encoder)
  4852. if (encoder->pre_pll_enable)
  4853. encoder->pre_pll_enable(encoder);
  4854. if (intel_crtc->pch_pll) {
  4855. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4856. /* Wait for the clocks to stabilize. */
  4857. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4858. udelay(150);
  4859. /* The pixel multiplier can only be updated once the
  4860. * DPLL is enabled and the clocks are stable.
  4861. *
  4862. * So write it again.
  4863. */
  4864. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4865. }
  4866. intel_crtc->lowfreq_avail = false;
  4867. if (intel_crtc->pch_pll) {
  4868. if (is_lvds && has_reduced_clock && i915_powersave) {
  4869. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4870. intel_crtc->lowfreq_avail = true;
  4871. } else {
  4872. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4873. }
  4874. }
  4875. intel_set_pipe_timings(intel_crtc);
  4876. if (intel_crtc->config.has_pch_encoder) {
  4877. intel_cpu_transcoder_set_m_n(intel_crtc,
  4878. &intel_crtc->config.fdi_m_n);
  4879. }
  4880. if (IS_IVYBRIDGE(dev))
  4881. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4882. ironlake_set_pipeconf(crtc);
  4883. /* Set up the display plane register */
  4884. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4885. POSTING_READ(DSPCNTR(plane));
  4886. ret = intel_pipe_set_base(crtc, x, y, fb);
  4887. intel_update_watermarks(dev);
  4888. return ret;
  4889. }
  4890. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4891. struct intel_crtc_config *pipe_config)
  4892. {
  4893. struct drm_device *dev = crtc->base.dev;
  4894. struct drm_i915_private *dev_priv = dev->dev_private;
  4895. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4896. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4897. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4898. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4899. & ~TU_SIZE_MASK;
  4900. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4901. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4902. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4903. }
  4904. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4905. struct intel_crtc_config *pipe_config)
  4906. {
  4907. struct drm_device *dev = crtc->base.dev;
  4908. struct drm_i915_private *dev_priv = dev->dev_private;
  4909. uint32_t tmp;
  4910. tmp = I915_READ(PF_CTL(crtc->pipe));
  4911. if (tmp & PF_ENABLE) {
  4912. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4913. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4914. /* We currently do not free assignements of panel fitters on
  4915. * ivb/hsw (since we don't use the higher upscaling modes which
  4916. * differentiates them) so just WARN about this case for now. */
  4917. if (IS_GEN7(dev)) {
  4918. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4919. PF_PIPE_SEL_IVB(crtc->pipe));
  4920. }
  4921. }
  4922. }
  4923. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4924. struct intel_crtc_config *pipe_config)
  4925. {
  4926. struct drm_device *dev = crtc->base.dev;
  4927. struct drm_i915_private *dev_priv = dev->dev_private;
  4928. uint32_t tmp;
  4929. pipe_config->cpu_transcoder = crtc->pipe;
  4930. tmp = I915_READ(PIPECONF(crtc->pipe));
  4931. if (!(tmp & PIPECONF_ENABLE))
  4932. return false;
  4933. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4934. pipe_config->has_pch_encoder = true;
  4935. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4936. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4937. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4938. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4939. }
  4940. intel_get_pipe_timings(crtc, pipe_config);
  4941. ironlake_get_pfit_config(crtc, pipe_config);
  4942. return true;
  4943. }
  4944. static void haswell_modeset_global_resources(struct drm_device *dev)
  4945. {
  4946. bool enable = false;
  4947. struct intel_crtc *crtc;
  4948. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4949. if (!crtc->base.enabled)
  4950. continue;
  4951. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4952. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4953. enable = true;
  4954. }
  4955. intel_set_power_well(dev, enable);
  4956. }
  4957. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4958. int x, int y,
  4959. struct drm_framebuffer *fb)
  4960. {
  4961. struct drm_device *dev = crtc->dev;
  4962. struct drm_i915_private *dev_priv = dev->dev_private;
  4963. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4964. int plane = intel_crtc->plane;
  4965. int ret;
  4966. if (!intel_ddi_pll_mode_set(crtc))
  4967. return -EINVAL;
  4968. /* Ensure that the cursor is valid for the new mode before changing... */
  4969. intel_crtc_update_cursor(crtc, true);
  4970. if (intel_crtc->config.has_dp_encoder)
  4971. intel_dp_set_m_n(intel_crtc);
  4972. intel_crtc->lowfreq_avail = false;
  4973. intel_set_pipe_timings(intel_crtc);
  4974. if (intel_crtc->config.has_pch_encoder) {
  4975. intel_cpu_transcoder_set_m_n(intel_crtc,
  4976. &intel_crtc->config.fdi_m_n);
  4977. }
  4978. haswell_set_pipeconf(crtc);
  4979. intel_set_pipe_csc(crtc);
  4980. /* Set up the display plane register */
  4981. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4982. POSTING_READ(DSPCNTR(plane));
  4983. ret = intel_pipe_set_base(crtc, x, y, fb);
  4984. intel_update_watermarks(dev);
  4985. return ret;
  4986. }
  4987. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4988. struct intel_crtc_config *pipe_config)
  4989. {
  4990. struct drm_device *dev = crtc->base.dev;
  4991. struct drm_i915_private *dev_priv = dev->dev_private;
  4992. enum intel_display_power_domain pfit_domain;
  4993. uint32_t tmp;
  4994. pipe_config->cpu_transcoder = crtc->pipe;
  4995. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4996. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4997. enum pipe trans_edp_pipe;
  4998. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4999. default:
  5000. WARN(1, "unknown pipe linked to edp transcoder\n");
  5001. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5002. case TRANS_DDI_EDP_INPUT_A_ON:
  5003. trans_edp_pipe = PIPE_A;
  5004. break;
  5005. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5006. trans_edp_pipe = PIPE_B;
  5007. break;
  5008. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5009. trans_edp_pipe = PIPE_C;
  5010. break;
  5011. }
  5012. if (trans_edp_pipe == crtc->pipe)
  5013. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5014. }
  5015. if (!intel_display_power_enabled(dev,
  5016. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5017. return false;
  5018. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5019. if (!(tmp & PIPECONF_ENABLE))
  5020. return false;
  5021. /*
  5022. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5023. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5024. * the PCH transcoder is on.
  5025. */
  5026. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5027. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5028. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5029. pipe_config->has_pch_encoder = true;
  5030. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5031. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5032. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5033. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5034. }
  5035. intel_get_pipe_timings(crtc, pipe_config);
  5036. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5037. if (intel_display_power_enabled(dev, pfit_domain))
  5038. ironlake_get_pfit_config(crtc, pipe_config);
  5039. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5040. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5041. return true;
  5042. }
  5043. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5044. int x, int y,
  5045. struct drm_framebuffer *fb)
  5046. {
  5047. struct drm_device *dev = crtc->dev;
  5048. struct drm_i915_private *dev_priv = dev->dev_private;
  5049. struct drm_encoder_helper_funcs *encoder_funcs;
  5050. struct intel_encoder *encoder;
  5051. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5052. struct drm_display_mode *adjusted_mode =
  5053. &intel_crtc->config.adjusted_mode;
  5054. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5055. int pipe = intel_crtc->pipe;
  5056. int ret;
  5057. drm_vblank_pre_modeset(dev, pipe);
  5058. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5059. drm_vblank_post_modeset(dev, pipe);
  5060. if (ret != 0)
  5061. return ret;
  5062. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5063. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5064. encoder->base.base.id,
  5065. drm_get_encoder_name(&encoder->base),
  5066. mode->base.id, mode->name);
  5067. if (encoder->mode_set) {
  5068. encoder->mode_set(encoder);
  5069. } else {
  5070. encoder_funcs = encoder->base.helper_private;
  5071. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5072. }
  5073. }
  5074. return 0;
  5075. }
  5076. static bool intel_eld_uptodate(struct drm_connector *connector,
  5077. int reg_eldv, uint32_t bits_eldv,
  5078. int reg_elda, uint32_t bits_elda,
  5079. int reg_edid)
  5080. {
  5081. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5082. uint8_t *eld = connector->eld;
  5083. uint32_t i;
  5084. i = I915_READ(reg_eldv);
  5085. i &= bits_eldv;
  5086. if (!eld[0])
  5087. return !i;
  5088. if (!i)
  5089. return false;
  5090. i = I915_READ(reg_elda);
  5091. i &= ~bits_elda;
  5092. I915_WRITE(reg_elda, i);
  5093. for (i = 0; i < eld[2]; i++)
  5094. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5095. return false;
  5096. return true;
  5097. }
  5098. static void g4x_write_eld(struct drm_connector *connector,
  5099. struct drm_crtc *crtc)
  5100. {
  5101. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5102. uint8_t *eld = connector->eld;
  5103. uint32_t eldv;
  5104. uint32_t len;
  5105. uint32_t i;
  5106. i = I915_READ(G4X_AUD_VID_DID);
  5107. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5108. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5109. else
  5110. eldv = G4X_ELDV_DEVCTG;
  5111. if (intel_eld_uptodate(connector,
  5112. G4X_AUD_CNTL_ST, eldv,
  5113. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5114. G4X_HDMIW_HDMIEDID))
  5115. return;
  5116. i = I915_READ(G4X_AUD_CNTL_ST);
  5117. i &= ~(eldv | G4X_ELD_ADDR);
  5118. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5119. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5120. if (!eld[0])
  5121. return;
  5122. len = min_t(uint8_t, eld[2], len);
  5123. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5124. for (i = 0; i < len; i++)
  5125. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5126. i = I915_READ(G4X_AUD_CNTL_ST);
  5127. i |= eldv;
  5128. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5129. }
  5130. static void haswell_write_eld(struct drm_connector *connector,
  5131. struct drm_crtc *crtc)
  5132. {
  5133. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5134. uint8_t *eld = connector->eld;
  5135. struct drm_device *dev = crtc->dev;
  5136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5137. uint32_t eldv;
  5138. uint32_t i;
  5139. int len;
  5140. int pipe = to_intel_crtc(crtc)->pipe;
  5141. int tmp;
  5142. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5143. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5144. int aud_config = HSW_AUD_CFG(pipe);
  5145. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5146. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5147. /* Audio output enable */
  5148. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5149. tmp = I915_READ(aud_cntrl_st2);
  5150. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5151. I915_WRITE(aud_cntrl_st2, tmp);
  5152. /* Wait for 1 vertical blank */
  5153. intel_wait_for_vblank(dev, pipe);
  5154. /* Set ELD valid state */
  5155. tmp = I915_READ(aud_cntrl_st2);
  5156. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5157. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5158. I915_WRITE(aud_cntrl_st2, tmp);
  5159. tmp = I915_READ(aud_cntrl_st2);
  5160. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5161. /* Enable HDMI mode */
  5162. tmp = I915_READ(aud_config);
  5163. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5164. /* clear N_programing_enable and N_value_index */
  5165. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5166. I915_WRITE(aud_config, tmp);
  5167. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5168. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5169. intel_crtc->eld_vld = true;
  5170. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5171. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5172. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5173. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5174. } else
  5175. I915_WRITE(aud_config, 0);
  5176. if (intel_eld_uptodate(connector,
  5177. aud_cntrl_st2, eldv,
  5178. aud_cntl_st, IBX_ELD_ADDRESS,
  5179. hdmiw_hdmiedid))
  5180. return;
  5181. i = I915_READ(aud_cntrl_st2);
  5182. i &= ~eldv;
  5183. I915_WRITE(aud_cntrl_st2, i);
  5184. if (!eld[0])
  5185. return;
  5186. i = I915_READ(aud_cntl_st);
  5187. i &= ~IBX_ELD_ADDRESS;
  5188. I915_WRITE(aud_cntl_st, i);
  5189. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5190. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5191. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5192. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5193. for (i = 0; i < len; i++)
  5194. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5195. i = I915_READ(aud_cntrl_st2);
  5196. i |= eldv;
  5197. I915_WRITE(aud_cntrl_st2, i);
  5198. }
  5199. static void ironlake_write_eld(struct drm_connector *connector,
  5200. struct drm_crtc *crtc)
  5201. {
  5202. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5203. uint8_t *eld = connector->eld;
  5204. uint32_t eldv;
  5205. uint32_t i;
  5206. int len;
  5207. int hdmiw_hdmiedid;
  5208. int aud_config;
  5209. int aud_cntl_st;
  5210. int aud_cntrl_st2;
  5211. int pipe = to_intel_crtc(crtc)->pipe;
  5212. if (HAS_PCH_IBX(connector->dev)) {
  5213. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5214. aud_config = IBX_AUD_CFG(pipe);
  5215. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5216. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5217. } else {
  5218. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5219. aud_config = CPT_AUD_CFG(pipe);
  5220. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5221. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5222. }
  5223. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5224. i = I915_READ(aud_cntl_st);
  5225. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5226. if (!i) {
  5227. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5228. /* operate blindly on all ports */
  5229. eldv = IBX_ELD_VALIDB;
  5230. eldv |= IBX_ELD_VALIDB << 4;
  5231. eldv |= IBX_ELD_VALIDB << 8;
  5232. } else {
  5233. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5234. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5235. }
  5236. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5237. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5238. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5239. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5240. } else
  5241. I915_WRITE(aud_config, 0);
  5242. if (intel_eld_uptodate(connector,
  5243. aud_cntrl_st2, eldv,
  5244. aud_cntl_st, IBX_ELD_ADDRESS,
  5245. hdmiw_hdmiedid))
  5246. return;
  5247. i = I915_READ(aud_cntrl_st2);
  5248. i &= ~eldv;
  5249. I915_WRITE(aud_cntrl_st2, i);
  5250. if (!eld[0])
  5251. return;
  5252. i = I915_READ(aud_cntl_st);
  5253. i &= ~IBX_ELD_ADDRESS;
  5254. I915_WRITE(aud_cntl_st, i);
  5255. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5256. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5257. for (i = 0; i < len; i++)
  5258. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5259. i = I915_READ(aud_cntrl_st2);
  5260. i |= eldv;
  5261. I915_WRITE(aud_cntrl_st2, i);
  5262. }
  5263. void intel_write_eld(struct drm_encoder *encoder,
  5264. struct drm_display_mode *mode)
  5265. {
  5266. struct drm_crtc *crtc = encoder->crtc;
  5267. struct drm_connector *connector;
  5268. struct drm_device *dev = encoder->dev;
  5269. struct drm_i915_private *dev_priv = dev->dev_private;
  5270. connector = drm_select_eld(encoder, mode);
  5271. if (!connector)
  5272. return;
  5273. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5274. connector->base.id,
  5275. drm_get_connector_name(connector),
  5276. connector->encoder->base.id,
  5277. drm_get_encoder_name(connector->encoder));
  5278. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5279. if (dev_priv->display.write_eld)
  5280. dev_priv->display.write_eld(connector, crtc);
  5281. }
  5282. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5283. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5284. {
  5285. struct drm_device *dev = crtc->dev;
  5286. struct drm_i915_private *dev_priv = dev->dev_private;
  5287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5288. enum pipe pipe = intel_crtc->pipe;
  5289. int palreg = PALETTE(pipe);
  5290. int i;
  5291. bool reenable_ips = false;
  5292. /* The clocks have to be on to load the palette. */
  5293. if (!crtc->enabled || !intel_crtc->active)
  5294. return;
  5295. /* use legacy palette for Ironlake */
  5296. if (HAS_PCH_SPLIT(dev))
  5297. palreg = LGC_PALETTE(pipe);
  5298. /* Workaround : Do not read or write the pipe palette/gamma data while
  5299. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5300. */
  5301. if (intel_crtc->config.ips_enabled &&
  5302. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5303. GAMMA_MODE_MODE_SPLIT)) {
  5304. hsw_disable_ips(intel_crtc);
  5305. reenable_ips = true;
  5306. }
  5307. for (i = 0; i < 256; i++) {
  5308. I915_WRITE(palreg + 4 * i,
  5309. (intel_crtc->lut_r[i] << 16) |
  5310. (intel_crtc->lut_g[i] << 8) |
  5311. intel_crtc->lut_b[i]);
  5312. }
  5313. if (reenable_ips)
  5314. hsw_enable_ips(intel_crtc);
  5315. }
  5316. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5317. {
  5318. struct drm_device *dev = crtc->dev;
  5319. struct drm_i915_private *dev_priv = dev->dev_private;
  5320. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5321. bool visible = base != 0;
  5322. u32 cntl;
  5323. if (intel_crtc->cursor_visible == visible)
  5324. return;
  5325. cntl = I915_READ(_CURACNTR);
  5326. if (visible) {
  5327. /* On these chipsets we can only modify the base whilst
  5328. * the cursor is disabled.
  5329. */
  5330. I915_WRITE(_CURABASE, base);
  5331. cntl &= ~(CURSOR_FORMAT_MASK);
  5332. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5333. cntl |= CURSOR_ENABLE |
  5334. CURSOR_GAMMA_ENABLE |
  5335. CURSOR_FORMAT_ARGB;
  5336. } else
  5337. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5338. I915_WRITE(_CURACNTR, cntl);
  5339. intel_crtc->cursor_visible = visible;
  5340. }
  5341. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5342. {
  5343. struct drm_device *dev = crtc->dev;
  5344. struct drm_i915_private *dev_priv = dev->dev_private;
  5345. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5346. int pipe = intel_crtc->pipe;
  5347. bool visible = base != 0;
  5348. if (intel_crtc->cursor_visible != visible) {
  5349. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5350. if (base) {
  5351. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5352. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5353. cntl |= pipe << 28; /* Connect to correct pipe */
  5354. } else {
  5355. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5356. cntl |= CURSOR_MODE_DISABLE;
  5357. }
  5358. I915_WRITE(CURCNTR(pipe), cntl);
  5359. intel_crtc->cursor_visible = visible;
  5360. }
  5361. /* and commit changes on next vblank */
  5362. I915_WRITE(CURBASE(pipe), base);
  5363. }
  5364. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5365. {
  5366. struct drm_device *dev = crtc->dev;
  5367. struct drm_i915_private *dev_priv = dev->dev_private;
  5368. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5369. int pipe = intel_crtc->pipe;
  5370. bool visible = base != 0;
  5371. if (intel_crtc->cursor_visible != visible) {
  5372. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5373. if (base) {
  5374. cntl &= ~CURSOR_MODE;
  5375. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5376. } else {
  5377. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5378. cntl |= CURSOR_MODE_DISABLE;
  5379. }
  5380. if (IS_HASWELL(dev))
  5381. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5382. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5383. intel_crtc->cursor_visible = visible;
  5384. }
  5385. /* and commit changes on next vblank */
  5386. I915_WRITE(CURBASE_IVB(pipe), base);
  5387. }
  5388. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5389. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5390. bool on)
  5391. {
  5392. struct drm_device *dev = crtc->dev;
  5393. struct drm_i915_private *dev_priv = dev->dev_private;
  5394. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5395. int pipe = intel_crtc->pipe;
  5396. int x = intel_crtc->cursor_x;
  5397. int y = intel_crtc->cursor_y;
  5398. u32 base, pos;
  5399. bool visible;
  5400. pos = 0;
  5401. if (on && crtc->enabled && crtc->fb) {
  5402. base = intel_crtc->cursor_addr;
  5403. if (x > (int) crtc->fb->width)
  5404. base = 0;
  5405. if (y > (int) crtc->fb->height)
  5406. base = 0;
  5407. } else
  5408. base = 0;
  5409. if (x < 0) {
  5410. if (x + intel_crtc->cursor_width < 0)
  5411. base = 0;
  5412. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5413. x = -x;
  5414. }
  5415. pos |= x << CURSOR_X_SHIFT;
  5416. if (y < 0) {
  5417. if (y + intel_crtc->cursor_height < 0)
  5418. base = 0;
  5419. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5420. y = -y;
  5421. }
  5422. pos |= y << CURSOR_Y_SHIFT;
  5423. visible = base != 0;
  5424. if (!visible && !intel_crtc->cursor_visible)
  5425. return;
  5426. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5427. I915_WRITE(CURPOS_IVB(pipe), pos);
  5428. ivb_update_cursor(crtc, base);
  5429. } else {
  5430. I915_WRITE(CURPOS(pipe), pos);
  5431. if (IS_845G(dev) || IS_I865G(dev))
  5432. i845_update_cursor(crtc, base);
  5433. else
  5434. i9xx_update_cursor(crtc, base);
  5435. }
  5436. }
  5437. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5438. struct drm_file *file,
  5439. uint32_t handle,
  5440. uint32_t width, uint32_t height)
  5441. {
  5442. struct drm_device *dev = crtc->dev;
  5443. struct drm_i915_private *dev_priv = dev->dev_private;
  5444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5445. struct drm_i915_gem_object *obj;
  5446. uint32_t addr;
  5447. int ret;
  5448. /* if we want to turn off the cursor ignore width and height */
  5449. if (!handle) {
  5450. DRM_DEBUG_KMS("cursor off\n");
  5451. addr = 0;
  5452. obj = NULL;
  5453. mutex_lock(&dev->struct_mutex);
  5454. goto finish;
  5455. }
  5456. /* Currently we only support 64x64 cursors */
  5457. if (width != 64 || height != 64) {
  5458. DRM_ERROR("we currently only support 64x64 cursors\n");
  5459. return -EINVAL;
  5460. }
  5461. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5462. if (&obj->base == NULL)
  5463. return -ENOENT;
  5464. if (obj->base.size < width * height * 4) {
  5465. DRM_ERROR("buffer is to small\n");
  5466. ret = -ENOMEM;
  5467. goto fail;
  5468. }
  5469. /* we only need to pin inside GTT if cursor is non-phy */
  5470. mutex_lock(&dev->struct_mutex);
  5471. if (!dev_priv->info->cursor_needs_physical) {
  5472. unsigned alignment;
  5473. if (obj->tiling_mode) {
  5474. DRM_ERROR("cursor cannot be tiled\n");
  5475. ret = -EINVAL;
  5476. goto fail_locked;
  5477. }
  5478. /* Note that the w/a also requires 2 PTE of padding following
  5479. * the bo. We currently fill all unused PTE with the shadow
  5480. * page and so we should always have valid PTE following the
  5481. * cursor preventing the VT-d warning.
  5482. */
  5483. alignment = 0;
  5484. if (need_vtd_wa(dev))
  5485. alignment = 64*1024;
  5486. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5487. if (ret) {
  5488. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5489. goto fail_locked;
  5490. }
  5491. ret = i915_gem_object_put_fence(obj);
  5492. if (ret) {
  5493. DRM_ERROR("failed to release fence for cursor");
  5494. goto fail_unpin;
  5495. }
  5496. addr = obj->gtt_offset;
  5497. } else {
  5498. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5499. ret = i915_gem_attach_phys_object(dev, obj,
  5500. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5501. align);
  5502. if (ret) {
  5503. DRM_ERROR("failed to attach phys object\n");
  5504. goto fail_locked;
  5505. }
  5506. addr = obj->phys_obj->handle->busaddr;
  5507. }
  5508. if (IS_GEN2(dev))
  5509. I915_WRITE(CURSIZE, (height << 12) | width);
  5510. finish:
  5511. if (intel_crtc->cursor_bo) {
  5512. if (dev_priv->info->cursor_needs_physical) {
  5513. if (intel_crtc->cursor_bo != obj)
  5514. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5515. } else
  5516. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5517. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5518. }
  5519. mutex_unlock(&dev->struct_mutex);
  5520. intel_crtc->cursor_addr = addr;
  5521. intel_crtc->cursor_bo = obj;
  5522. intel_crtc->cursor_width = width;
  5523. intel_crtc->cursor_height = height;
  5524. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5525. return 0;
  5526. fail_unpin:
  5527. i915_gem_object_unpin(obj);
  5528. fail_locked:
  5529. mutex_unlock(&dev->struct_mutex);
  5530. fail:
  5531. drm_gem_object_unreference_unlocked(&obj->base);
  5532. return ret;
  5533. }
  5534. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5535. {
  5536. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5537. intel_crtc->cursor_x = x;
  5538. intel_crtc->cursor_y = y;
  5539. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5540. return 0;
  5541. }
  5542. /** Sets the color ramps on behalf of RandR */
  5543. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5544. u16 blue, int regno)
  5545. {
  5546. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5547. intel_crtc->lut_r[regno] = red >> 8;
  5548. intel_crtc->lut_g[regno] = green >> 8;
  5549. intel_crtc->lut_b[regno] = blue >> 8;
  5550. }
  5551. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5552. u16 *blue, int regno)
  5553. {
  5554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5555. *red = intel_crtc->lut_r[regno] << 8;
  5556. *green = intel_crtc->lut_g[regno] << 8;
  5557. *blue = intel_crtc->lut_b[regno] << 8;
  5558. }
  5559. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5560. u16 *blue, uint32_t start, uint32_t size)
  5561. {
  5562. int end = (start + size > 256) ? 256 : start + size, i;
  5563. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5564. for (i = start; i < end; i++) {
  5565. intel_crtc->lut_r[i] = red[i] >> 8;
  5566. intel_crtc->lut_g[i] = green[i] >> 8;
  5567. intel_crtc->lut_b[i] = blue[i] >> 8;
  5568. }
  5569. intel_crtc_load_lut(crtc);
  5570. }
  5571. /* VESA 640x480x72Hz mode to set on the pipe */
  5572. static struct drm_display_mode load_detect_mode = {
  5573. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5574. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5575. };
  5576. static struct drm_framebuffer *
  5577. intel_framebuffer_create(struct drm_device *dev,
  5578. struct drm_mode_fb_cmd2 *mode_cmd,
  5579. struct drm_i915_gem_object *obj)
  5580. {
  5581. struct intel_framebuffer *intel_fb;
  5582. int ret;
  5583. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5584. if (!intel_fb) {
  5585. drm_gem_object_unreference_unlocked(&obj->base);
  5586. return ERR_PTR(-ENOMEM);
  5587. }
  5588. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5589. if (ret) {
  5590. drm_gem_object_unreference_unlocked(&obj->base);
  5591. kfree(intel_fb);
  5592. return ERR_PTR(ret);
  5593. }
  5594. return &intel_fb->base;
  5595. }
  5596. static u32
  5597. intel_framebuffer_pitch_for_width(int width, int bpp)
  5598. {
  5599. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5600. return ALIGN(pitch, 64);
  5601. }
  5602. static u32
  5603. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5604. {
  5605. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5606. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5607. }
  5608. static struct drm_framebuffer *
  5609. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5610. struct drm_display_mode *mode,
  5611. int depth, int bpp)
  5612. {
  5613. struct drm_i915_gem_object *obj;
  5614. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5615. obj = i915_gem_alloc_object(dev,
  5616. intel_framebuffer_size_for_mode(mode, bpp));
  5617. if (obj == NULL)
  5618. return ERR_PTR(-ENOMEM);
  5619. mode_cmd.width = mode->hdisplay;
  5620. mode_cmd.height = mode->vdisplay;
  5621. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5622. bpp);
  5623. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5624. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5625. }
  5626. static struct drm_framebuffer *
  5627. mode_fits_in_fbdev(struct drm_device *dev,
  5628. struct drm_display_mode *mode)
  5629. {
  5630. struct drm_i915_private *dev_priv = dev->dev_private;
  5631. struct drm_i915_gem_object *obj;
  5632. struct drm_framebuffer *fb;
  5633. if (dev_priv->fbdev == NULL)
  5634. return NULL;
  5635. obj = dev_priv->fbdev->ifb.obj;
  5636. if (obj == NULL)
  5637. return NULL;
  5638. fb = &dev_priv->fbdev->ifb.base;
  5639. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5640. fb->bits_per_pixel))
  5641. return NULL;
  5642. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5643. return NULL;
  5644. return fb;
  5645. }
  5646. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5647. struct drm_display_mode *mode,
  5648. struct intel_load_detect_pipe *old)
  5649. {
  5650. struct intel_crtc *intel_crtc;
  5651. struct intel_encoder *intel_encoder =
  5652. intel_attached_encoder(connector);
  5653. struct drm_crtc *possible_crtc;
  5654. struct drm_encoder *encoder = &intel_encoder->base;
  5655. struct drm_crtc *crtc = NULL;
  5656. struct drm_device *dev = encoder->dev;
  5657. struct drm_framebuffer *fb;
  5658. int i = -1;
  5659. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5660. connector->base.id, drm_get_connector_name(connector),
  5661. encoder->base.id, drm_get_encoder_name(encoder));
  5662. /*
  5663. * Algorithm gets a little messy:
  5664. *
  5665. * - if the connector already has an assigned crtc, use it (but make
  5666. * sure it's on first)
  5667. *
  5668. * - try to find the first unused crtc that can drive this connector,
  5669. * and use that if we find one
  5670. */
  5671. /* See if we already have a CRTC for this connector */
  5672. if (encoder->crtc) {
  5673. crtc = encoder->crtc;
  5674. mutex_lock(&crtc->mutex);
  5675. old->dpms_mode = connector->dpms;
  5676. old->load_detect_temp = false;
  5677. /* Make sure the crtc and connector are running */
  5678. if (connector->dpms != DRM_MODE_DPMS_ON)
  5679. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5680. return true;
  5681. }
  5682. /* Find an unused one (if possible) */
  5683. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5684. i++;
  5685. if (!(encoder->possible_crtcs & (1 << i)))
  5686. continue;
  5687. if (!possible_crtc->enabled) {
  5688. crtc = possible_crtc;
  5689. break;
  5690. }
  5691. }
  5692. /*
  5693. * If we didn't find an unused CRTC, don't use any.
  5694. */
  5695. if (!crtc) {
  5696. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5697. return false;
  5698. }
  5699. mutex_lock(&crtc->mutex);
  5700. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5701. to_intel_connector(connector)->new_encoder = intel_encoder;
  5702. intel_crtc = to_intel_crtc(crtc);
  5703. old->dpms_mode = connector->dpms;
  5704. old->load_detect_temp = true;
  5705. old->release_fb = NULL;
  5706. if (!mode)
  5707. mode = &load_detect_mode;
  5708. /* We need a framebuffer large enough to accommodate all accesses
  5709. * that the plane may generate whilst we perform load detection.
  5710. * We can not rely on the fbcon either being present (we get called
  5711. * during its initialisation to detect all boot displays, or it may
  5712. * not even exist) or that it is large enough to satisfy the
  5713. * requested mode.
  5714. */
  5715. fb = mode_fits_in_fbdev(dev, mode);
  5716. if (fb == NULL) {
  5717. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5718. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5719. old->release_fb = fb;
  5720. } else
  5721. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5722. if (IS_ERR(fb)) {
  5723. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5724. mutex_unlock(&crtc->mutex);
  5725. return false;
  5726. }
  5727. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5728. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5729. if (old->release_fb)
  5730. old->release_fb->funcs->destroy(old->release_fb);
  5731. mutex_unlock(&crtc->mutex);
  5732. return false;
  5733. }
  5734. /* let the connector get through one full cycle before testing */
  5735. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5736. return true;
  5737. }
  5738. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5739. struct intel_load_detect_pipe *old)
  5740. {
  5741. struct intel_encoder *intel_encoder =
  5742. intel_attached_encoder(connector);
  5743. struct drm_encoder *encoder = &intel_encoder->base;
  5744. struct drm_crtc *crtc = encoder->crtc;
  5745. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5746. connector->base.id, drm_get_connector_name(connector),
  5747. encoder->base.id, drm_get_encoder_name(encoder));
  5748. if (old->load_detect_temp) {
  5749. to_intel_connector(connector)->new_encoder = NULL;
  5750. intel_encoder->new_crtc = NULL;
  5751. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5752. if (old->release_fb) {
  5753. drm_framebuffer_unregister_private(old->release_fb);
  5754. drm_framebuffer_unreference(old->release_fb);
  5755. }
  5756. mutex_unlock(&crtc->mutex);
  5757. return;
  5758. }
  5759. /* Switch crtc and encoder back off if necessary */
  5760. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5761. connector->funcs->dpms(connector, old->dpms_mode);
  5762. mutex_unlock(&crtc->mutex);
  5763. }
  5764. /* Returns the clock of the currently programmed mode of the given pipe. */
  5765. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5766. {
  5767. struct drm_i915_private *dev_priv = dev->dev_private;
  5768. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5769. int pipe = intel_crtc->pipe;
  5770. u32 dpll = I915_READ(DPLL(pipe));
  5771. u32 fp;
  5772. intel_clock_t clock;
  5773. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5774. fp = I915_READ(FP0(pipe));
  5775. else
  5776. fp = I915_READ(FP1(pipe));
  5777. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5778. if (IS_PINEVIEW(dev)) {
  5779. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5780. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5781. } else {
  5782. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5783. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5784. }
  5785. if (!IS_GEN2(dev)) {
  5786. if (IS_PINEVIEW(dev))
  5787. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5788. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5789. else
  5790. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5791. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5792. switch (dpll & DPLL_MODE_MASK) {
  5793. case DPLLB_MODE_DAC_SERIAL:
  5794. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5795. 5 : 10;
  5796. break;
  5797. case DPLLB_MODE_LVDS:
  5798. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5799. 7 : 14;
  5800. break;
  5801. default:
  5802. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5803. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5804. return 0;
  5805. }
  5806. if (IS_PINEVIEW(dev))
  5807. pineview_clock(96000, &clock);
  5808. else
  5809. i9xx_clock(96000, &clock);
  5810. } else {
  5811. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5812. if (is_lvds) {
  5813. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5814. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5815. clock.p2 = 14;
  5816. if ((dpll & PLL_REF_INPUT_MASK) ==
  5817. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5818. /* XXX: might not be 66MHz */
  5819. i9xx_clock(66000, &clock);
  5820. } else
  5821. i9xx_clock(48000, &clock);
  5822. } else {
  5823. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5824. clock.p1 = 2;
  5825. else {
  5826. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5827. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5828. }
  5829. if (dpll & PLL_P2_DIVIDE_BY_4)
  5830. clock.p2 = 4;
  5831. else
  5832. clock.p2 = 2;
  5833. i9xx_clock(48000, &clock);
  5834. }
  5835. }
  5836. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5837. * i830PllIsValid() because it relies on the xf86_config connector
  5838. * configuration being accurate, which it isn't necessarily.
  5839. */
  5840. return clock.dot;
  5841. }
  5842. /** Returns the currently programmed mode of the given pipe. */
  5843. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5844. struct drm_crtc *crtc)
  5845. {
  5846. struct drm_i915_private *dev_priv = dev->dev_private;
  5847. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5848. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5849. struct drm_display_mode *mode;
  5850. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5851. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5852. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5853. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5854. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5855. if (!mode)
  5856. return NULL;
  5857. mode->clock = intel_crtc_clock_get(dev, crtc);
  5858. mode->hdisplay = (htot & 0xffff) + 1;
  5859. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5860. mode->hsync_start = (hsync & 0xffff) + 1;
  5861. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5862. mode->vdisplay = (vtot & 0xffff) + 1;
  5863. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5864. mode->vsync_start = (vsync & 0xffff) + 1;
  5865. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5866. drm_mode_set_name(mode);
  5867. return mode;
  5868. }
  5869. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5870. {
  5871. struct drm_device *dev = crtc->dev;
  5872. drm_i915_private_t *dev_priv = dev->dev_private;
  5873. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5874. int pipe = intel_crtc->pipe;
  5875. int dpll_reg = DPLL(pipe);
  5876. int dpll;
  5877. if (HAS_PCH_SPLIT(dev))
  5878. return;
  5879. if (!dev_priv->lvds_downclock_avail)
  5880. return;
  5881. dpll = I915_READ(dpll_reg);
  5882. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5883. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5884. assert_panel_unlocked(dev_priv, pipe);
  5885. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5886. I915_WRITE(dpll_reg, dpll);
  5887. intel_wait_for_vblank(dev, pipe);
  5888. dpll = I915_READ(dpll_reg);
  5889. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5890. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5891. }
  5892. }
  5893. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5894. {
  5895. struct drm_device *dev = crtc->dev;
  5896. drm_i915_private_t *dev_priv = dev->dev_private;
  5897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5898. if (HAS_PCH_SPLIT(dev))
  5899. return;
  5900. if (!dev_priv->lvds_downclock_avail)
  5901. return;
  5902. /*
  5903. * Since this is called by a timer, we should never get here in
  5904. * the manual case.
  5905. */
  5906. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5907. int pipe = intel_crtc->pipe;
  5908. int dpll_reg = DPLL(pipe);
  5909. int dpll;
  5910. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5911. assert_panel_unlocked(dev_priv, pipe);
  5912. dpll = I915_READ(dpll_reg);
  5913. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5914. I915_WRITE(dpll_reg, dpll);
  5915. intel_wait_for_vblank(dev, pipe);
  5916. dpll = I915_READ(dpll_reg);
  5917. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5918. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5919. }
  5920. }
  5921. void intel_mark_busy(struct drm_device *dev)
  5922. {
  5923. i915_update_gfx_val(dev->dev_private);
  5924. }
  5925. void intel_mark_idle(struct drm_device *dev)
  5926. {
  5927. struct drm_crtc *crtc;
  5928. if (!i915_powersave)
  5929. return;
  5930. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5931. if (!crtc->fb)
  5932. continue;
  5933. intel_decrease_pllclock(crtc);
  5934. }
  5935. }
  5936. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5937. {
  5938. struct drm_device *dev = obj->base.dev;
  5939. struct drm_crtc *crtc;
  5940. if (!i915_powersave)
  5941. return;
  5942. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5943. if (!crtc->fb)
  5944. continue;
  5945. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5946. intel_increase_pllclock(crtc);
  5947. }
  5948. }
  5949. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5950. {
  5951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5952. struct drm_device *dev = crtc->dev;
  5953. struct intel_unpin_work *work;
  5954. unsigned long flags;
  5955. spin_lock_irqsave(&dev->event_lock, flags);
  5956. work = intel_crtc->unpin_work;
  5957. intel_crtc->unpin_work = NULL;
  5958. spin_unlock_irqrestore(&dev->event_lock, flags);
  5959. if (work) {
  5960. cancel_work_sync(&work->work);
  5961. kfree(work);
  5962. }
  5963. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5964. drm_crtc_cleanup(crtc);
  5965. kfree(intel_crtc);
  5966. }
  5967. static void intel_unpin_work_fn(struct work_struct *__work)
  5968. {
  5969. struct intel_unpin_work *work =
  5970. container_of(__work, struct intel_unpin_work, work);
  5971. struct drm_device *dev = work->crtc->dev;
  5972. mutex_lock(&dev->struct_mutex);
  5973. intel_unpin_fb_obj(work->old_fb_obj);
  5974. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5975. drm_gem_object_unreference(&work->old_fb_obj->base);
  5976. intel_update_fbc(dev);
  5977. mutex_unlock(&dev->struct_mutex);
  5978. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5979. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5980. kfree(work);
  5981. }
  5982. static void do_intel_finish_page_flip(struct drm_device *dev,
  5983. struct drm_crtc *crtc)
  5984. {
  5985. drm_i915_private_t *dev_priv = dev->dev_private;
  5986. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5987. struct intel_unpin_work *work;
  5988. unsigned long flags;
  5989. /* Ignore early vblank irqs */
  5990. if (intel_crtc == NULL)
  5991. return;
  5992. spin_lock_irqsave(&dev->event_lock, flags);
  5993. work = intel_crtc->unpin_work;
  5994. /* Ensure we don't miss a work->pending update ... */
  5995. smp_rmb();
  5996. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5997. spin_unlock_irqrestore(&dev->event_lock, flags);
  5998. return;
  5999. }
  6000. /* and that the unpin work is consistent wrt ->pending. */
  6001. smp_rmb();
  6002. intel_crtc->unpin_work = NULL;
  6003. if (work->event)
  6004. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6005. drm_vblank_put(dev, intel_crtc->pipe);
  6006. spin_unlock_irqrestore(&dev->event_lock, flags);
  6007. wake_up_all(&dev_priv->pending_flip_queue);
  6008. queue_work(dev_priv->wq, &work->work);
  6009. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6010. }
  6011. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6012. {
  6013. drm_i915_private_t *dev_priv = dev->dev_private;
  6014. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6015. do_intel_finish_page_flip(dev, crtc);
  6016. }
  6017. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6018. {
  6019. drm_i915_private_t *dev_priv = dev->dev_private;
  6020. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6021. do_intel_finish_page_flip(dev, crtc);
  6022. }
  6023. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6024. {
  6025. drm_i915_private_t *dev_priv = dev->dev_private;
  6026. struct intel_crtc *intel_crtc =
  6027. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6028. unsigned long flags;
  6029. /* NB: An MMIO update of the plane base pointer will also
  6030. * generate a page-flip completion irq, i.e. every modeset
  6031. * is also accompanied by a spurious intel_prepare_page_flip().
  6032. */
  6033. spin_lock_irqsave(&dev->event_lock, flags);
  6034. if (intel_crtc->unpin_work)
  6035. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6036. spin_unlock_irqrestore(&dev->event_lock, flags);
  6037. }
  6038. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6039. {
  6040. /* Ensure that the work item is consistent when activating it ... */
  6041. smp_wmb();
  6042. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6043. /* and that it is marked active as soon as the irq could fire. */
  6044. smp_wmb();
  6045. }
  6046. static int intel_gen2_queue_flip(struct drm_device *dev,
  6047. struct drm_crtc *crtc,
  6048. struct drm_framebuffer *fb,
  6049. struct drm_i915_gem_object *obj)
  6050. {
  6051. struct drm_i915_private *dev_priv = dev->dev_private;
  6052. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6053. u32 flip_mask;
  6054. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6055. int ret;
  6056. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6057. if (ret)
  6058. goto err;
  6059. ret = intel_ring_begin(ring, 6);
  6060. if (ret)
  6061. goto err_unpin;
  6062. /* Can't queue multiple flips, so wait for the previous
  6063. * one to finish before executing the next.
  6064. */
  6065. if (intel_crtc->plane)
  6066. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6067. else
  6068. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6069. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6070. intel_ring_emit(ring, MI_NOOP);
  6071. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6072. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6073. intel_ring_emit(ring, fb->pitches[0]);
  6074. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6075. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6076. intel_mark_page_flip_active(intel_crtc);
  6077. intel_ring_advance(ring);
  6078. return 0;
  6079. err_unpin:
  6080. intel_unpin_fb_obj(obj);
  6081. err:
  6082. return ret;
  6083. }
  6084. static int intel_gen3_queue_flip(struct drm_device *dev,
  6085. struct drm_crtc *crtc,
  6086. struct drm_framebuffer *fb,
  6087. struct drm_i915_gem_object *obj)
  6088. {
  6089. struct drm_i915_private *dev_priv = dev->dev_private;
  6090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6091. u32 flip_mask;
  6092. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6093. int ret;
  6094. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6095. if (ret)
  6096. goto err;
  6097. ret = intel_ring_begin(ring, 6);
  6098. if (ret)
  6099. goto err_unpin;
  6100. if (intel_crtc->plane)
  6101. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6102. else
  6103. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6104. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6105. intel_ring_emit(ring, MI_NOOP);
  6106. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6107. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6108. intel_ring_emit(ring, fb->pitches[0]);
  6109. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6110. intel_ring_emit(ring, MI_NOOP);
  6111. intel_mark_page_flip_active(intel_crtc);
  6112. intel_ring_advance(ring);
  6113. return 0;
  6114. err_unpin:
  6115. intel_unpin_fb_obj(obj);
  6116. err:
  6117. return ret;
  6118. }
  6119. static int intel_gen4_queue_flip(struct drm_device *dev,
  6120. struct drm_crtc *crtc,
  6121. struct drm_framebuffer *fb,
  6122. struct drm_i915_gem_object *obj)
  6123. {
  6124. struct drm_i915_private *dev_priv = dev->dev_private;
  6125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6126. uint32_t pf, pipesrc;
  6127. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6128. int ret;
  6129. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6130. if (ret)
  6131. goto err;
  6132. ret = intel_ring_begin(ring, 4);
  6133. if (ret)
  6134. goto err_unpin;
  6135. /* i965+ uses the linear or tiled offsets from the
  6136. * Display Registers (which do not change across a page-flip)
  6137. * so we need only reprogram the base address.
  6138. */
  6139. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6140. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6141. intel_ring_emit(ring, fb->pitches[0]);
  6142. intel_ring_emit(ring,
  6143. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6144. obj->tiling_mode);
  6145. /* XXX Enabling the panel-fitter across page-flip is so far
  6146. * untested on non-native modes, so ignore it for now.
  6147. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6148. */
  6149. pf = 0;
  6150. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6151. intel_ring_emit(ring, pf | pipesrc);
  6152. intel_mark_page_flip_active(intel_crtc);
  6153. intel_ring_advance(ring);
  6154. return 0;
  6155. err_unpin:
  6156. intel_unpin_fb_obj(obj);
  6157. err:
  6158. return ret;
  6159. }
  6160. static int intel_gen6_queue_flip(struct drm_device *dev,
  6161. struct drm_crtc *crtc,
  6162. struct drm_framebuffer *fb,
  6163. struct drm_i915_gem_object *obj)
  6164. {
  6165. struct drm_i915_private *dev_priv = dev->dev_private;
  6166. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6167. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6168. uint32_t pf, pipesrc;
  6169. int ret;
  6170. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6171. if (ret)
  6172. goto err;
  6173. ret = intel_ring_begin(ring, 4);
  6174. if (ret)
  6175. goto err_unpin;
  6176. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6177. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6178. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6179. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6180. /* Contrary to the suggestions in the documentation,
  6181. * "Enable Panel Fitter" does not seem to be required when page
  6182. * flipping with a non-native mode, and worse causes a normal
  6183. * modeset to fail.
  6184. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6185. */
  6186. pf = 0;
  6187. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6188. intel_ring_emit(ring, pf | pipesrc);
  6189. intel_mark_page_flip_active(intel_crtc);
  6190. intel_ring_advance(ring);
  6191. return 0;
  6192. err_unpin:
  6193. intel_unpin_fb_obj(obj);
  6194. err:
  6195. return ret;
  6196. }
  6197. /*
  6198. * On gen7 we currently use the blit ring because (in early silicon at least)
  6199. * the render ring doesn't give us interrpts for page flip completion, which
  6200. * means clients will hang after the first flip is queued. Fortunately the
  6201. * blit ring generates interrupts properly, so use it instead.
  6202. */
  6203. static int intel_gen7_queue_flip(struct drm_device *dev,
  6204. struct drm_crtc *crtc,
  6205. struct drm_framebuffer *fb,
  6206. struct drm_i915_gem_object *obj)
  6207. {
  6208. struct drm_i915_private *dev_priv = dev->dev_private;
  6209. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6210. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6211. uint32_t plane_bit = 0;
  6212. int ret;
  6213. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6214. if (ret)
  6215. goto err;
  6216. switch(intel_crtc->plane) {
  6217. case PLANE_A:
  6218. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6219. break;
  6220. case PLANE_B:
  6221. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6222. break;
  6223. case PLANE_C:
  6224. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6225. break;
  6226. default:
  6227. WARN_ONCE(1, "unknown plane in flip command\n");
  6228. ret = -ENODEV;
  6229. goto err_unpin;
  6230. }
  6231. ret = intel_ring_begin(ring, 4);
  6232. if (ret)
  6233. goto err_unpin;
  6234. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6235. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6236. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6237. intel_ring_emit(ring, (MI_NOOP));
  6238. intel_mark_page_flip_active(intel_crtc);
  6239. intel_ring_advance(ring);
  6240. return 0;
  6241. err_unpin:
  6242. intel_unpin_fb_obj(obj);
  6243. err:
  6244. return ret;
  6245. }
  6246. static int intel_default_queue_flip(struct drm_device *dev,
  6247. struct drm_crtc *crtc,
  6248. struct drm_framebuffer *fb,
  6249. struct drm_i915_gem_object *obj)
  6250. {
  6251. return -ENODEV;
  6252. }
  6253. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6254. struct drm_framebuffer *fb,
  6255. struct drm_pending_vblank_event *event)
  6256. {
  6257. struct drm_device *dev = crtc->dev;
  6258. struct drm_i915_private *dev_priv = dev->dev_private;
  6259. struct drm_framebuffer *old_fb = crtc->fb;
  6260. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6262. struct intel_unpin_work *work;
  6263. unsigned long flags;
  6264. int ret;
  6265. /* Can't change pixel format via MI display flips. */
  6266. if (fb->pixel_format != crtc->fb->pixel_format)
  6267. return -EINVAL;
  6268. /*
  6269. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6270. * Note that pitch changes could also affect these register.
  6271. */
  6272. if (INTEL_INFO(dev)->gen > 3 &&
  6273. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6274. fb->pitches[0] != crtc->fb->pitches[0]))
  6275. return -EINVAL;
  6276. work = kzalloc(sizeof *work, GFP_KERNEL);
  6277. if (work == NULL)
  6278. return -ENOMEM;
  6279. work->event = event;
  6280. work->crtc = crtc;
  6281. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6282. INIT_WORK(&work->work, intel_unpin_work_fn);
  6283. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6284. if (ret)
  6285. goto free_work;
  6286. /* We borrow the event spin lock for protecting unpin_work */
  6287. spin_lock_irqsave(&dev->event_lock, flags);
  6288. if (intel_crtc->unpin_work) {
  6289. spin_unlock_irqrestore(&dev->event_lock, flags);
  6290. kfree(work);
  6291. drm_vblank_put(dev, intel_crtc->pipe);
  6292. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6293. return -EBUSY;
  6294. }
  6295. intel_crtc->unpin_work = work;
  6296. spin_unlock_irqrestore(&dev->event_lock, flags);
  6297. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6298. flush_workqueue(dev_priv->wq);
  6299. ret = i915_mutex_lock_interruptible(dev);
  6300. if (ret)
  6301. goto cleanup;
  6302. /* Reference the objects for the scheduled work. */
  6303. drm_gem_object_reference(&work->old_fb_obj->base);
  6304. drm_gem_object_reference(&obj->base);
  6305. crtc->fb = fb;
  6306. work->pending_flip_obj = obj;
  6307. work->enable_stall_check = true;
  6308. atomic_inc(&intel_crtc->unpin_work_count);
  6309. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6310. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6311. if (ret)
  6312. goto cleanup_pending;
  6313. intel_disable_fbc(dev);
  6314. intel_mark_fb_busy(obj);
  6315. mutex_unlock(&dev->struct_mutex);
  6316. trace_i915_flip_request(intel_crtc->plane, obj);
  6317. return 0;
  6318. cleanup_pending:
  6319. atomic_dec(&intel_crtc->unpin_work_count);
  6320. crtc->fb = old_fb;
  6321. drm_gem_object_unreference(&work->old_fb_obj->base);
  6322. drm_gem_object_unreference(&obj->base);
  6323. mutex_unlock(&dev->struct_mutex);
  6324. cleanup:
  6325. spin_lock_irqsave(&dev->event_lock, flags);
  6326. intel_crtc->unpin_work = NULL;
  6327. spin_unlock_irqrestore(&dev->event_lock, flags);
  6328. drm_vblank_put(dev, intel_crtc->pipe);
  6329. free_work:
  6330. kfree(work);
  6331. return ret;
  6332. }
  6333. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6334. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6335. .load_lut = intel_crtc_load_lut,
  6336. };
  6337. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6338. struct drm_crtc *crtc)
  6339. {
  6340. struct drm_device *dev;
  6341. struct drm_crtc *tmp;
  6342. int crtc_mask = 1;
  6343. WARN(!crtc, "checking null crtc?\n");
  6344. dev = crtc->dev;
  6345. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6346. if (tmp == crtc)
  6347. break;
  6348. crtc_mask <<= 1;
  6349. }
  6350. if (encoder->possible_crtcs & crtc_mask)
  6351. return true;
  6352. return false;
  6353. }
  6354. /**
  6355. * intel_modeset_update_staged_output_state
  6356. *
  6357. * Updates the staged output configuration state, e.g. after we've read out the
  6358. * current hw state.
  6359. */
  6360. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6361. {
  6362. struct intel_encoder *encoder;
  6363. struct intel_connector *connector;
  6364. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6365. base.head) {
  6366. connector->new_encoder =
  6367. to_intel_encoder(connector->base.encoder);
  6368. }
  6369. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6370. base.head) {
  6371. encoder->new_crtc =
  6372. to_intel_crtc(encoder->base.crtc);
  6373. }
  6374. }
  6375. /**
  6376. * intel_modeset_commit_output_state
  6377. *
  6378. * This function copies the stage display pipe configuration to the real one.
  6379. */
  6380. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6381. {
  6382. struct intel_encoder *encoder;
  6383. struct intel_connector *connector;
  6384. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6385. base.head) {
  6386. connector->base.encoder = &connector->new_encoder->base;
  6387. }
  6388. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6389. base.head) {
  6390. encoder->base.crtc = &encoder->new_crtc->base;
  6391. }
  6392. }
  6393. static void
  6394. connected_sink_compute_bpp(struct intel_connector * connector,
  6395. struct intel_crtc_config *pipe_config)
  6396. {
  6397. int bpp = pipe_config->pipe_bpp;
  6398. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6399. connector->base.base.id,
  6400. drm_get_connector_name(&connector->base));
  6401. /* Don't use an invalid EDID bpc value */
  6402. if (connector->base.display_info.bpc &&
  6403. connector->base.display_info.bpc * 3 < bpp) {
  6404. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6405. bpp, connector->base.display_info.bpc*3);
  6406. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6407. }
  6408. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6409. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6410. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6411. bpp);
  6412. pipe_config->pipe_bpp = 24;
  6413. }
  6414. }
  6415. static int
  6416. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6417. struct drm_framebuffer *fb,
  6418. struct intel_crtc_config *pipe_config)
  6419. {
  6420. struct drm_device *dev = crtc->base.dev;
  6421. struct intel_connector *connector;
  6422. int bpp;
  6423. switch (fb->pixel_format) {
  6424. case DRM_FORMAT_C8:
  6425. bpp = 8*3; /* since we go through a colormap */
  6426. break;
  6427. case DRM_FORMAT_XRGB1555:
  6428. case DRM_FORMAT_ARGB1555:
  6429. /* checked in intel_framebuffer_init already */
  6430. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6431. return -EINVAL;
  6432. case DRM_FORMAT_RGB565:
  6433. bpp = 6*3; /* min is 18bpp */
  6434. break;
  6435. case DRM_FORMAT_XBGR8888:
  6436. case DRM_FORMAT_ABGR8888:
  6437. /* checked in intel_framebuffer_init already */
  6438. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6439. return -EINVAL;
  6440. case DRM_FORMAT_XRGB8888:
  6441. case DRM_FORMAT_ARGB8888:
  6442. bpp = 8*3;
  6443. break;
  6444. case DRM_FORMAT_XRGB2101010:
  6445. case DRM_FORMAT_ARGB2101010:
  6446. case DRM_FORMAT_XBGR2101010:
  6447. case DRM_FORMAT_ABGR2101010:
  6448. /* checked in intel_framebuffer_init already */
  6449. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6450. return -EINVAL;
  6451. bpp = 10*3;
  6452. break;
  6453. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6454. default:
  6455. DRM_DEBUG_KMS("unsupported depth\n");
  6456. return -EINVAL;
  6457. }
  6458. pipe_config->pipe_bpp = bpp;
  6459. /* Clamp display bpp to EDID value */
  6460. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6461. base.head) {
  6462. if (!connector->new_encoder ||
  6463. connector->new_encoder->new_crtc != crtc)
  6464. continue;
  6465. connected_sink_compute_bpp(connector, pipe_config);
  6466. }
  6467. return bpp;
  6468. }
  6469. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6470. struct intel_crtc_config *pipe_config,
  6471. const char *context)
  6472. {
  6473. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6474. context, pipe_name(crtc->pipe));
  6475. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6476. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6477. pipe_config->pipe_bpp, pipe_config->dither);
  6478. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6479. pipe_config->has_pch_encoder,
  6480. pipe_config->fdi_lanes,
  6481. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6482. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6483. pipe_config->fdi_m_n.tu);
  6484. DRM_DEBUG_KMS("requested mode:\n");
  6485. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6486. DRM_DEBUG_KMS("adjusted mode:\n");
  6487. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6488. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6489. pipe_config->gmch_pfit.control,
  6490. pipe_config->gmch_pfit.pgm_ratios,
  6491. pipe_config->gmch_pfit.lvds_border_bits);
  6492. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6493. pipe_config->pch_pfit.pos,
  6494. pipe_config->pch_pfit.size);
  6495. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6496. }
  6497. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6498. {
  6499. int num_encoders = 0;
  6500. bool uncloneable_encoders = false;
  6501. struct intel_encoder *encoder;
  6502. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6503. base.head) {
  6504. if (&encoder->new_crtc->base != crtc)
  6505. continue;
  6506. num_encoders++;
  6507. if (!encoder->cloneable)
  6508. uncloneable_encoders = true;
  6509. }
  6510. return !(num_encoders > 1 && uncloneable_encoders);
  6511. }
  6512. static struct intel_crtc_config *
  6513. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6514. struct drm_framebuffer *fb,
  6515. struct drm_display_mode *mode)
  6516. {
  6517. struct drm_device *dev = crtc->dev;
  6518. struct drm_encoder_helper_funcs *encoder_funcs;
  6519. struct intel_encoder *encoder;
  6520. struct intel_crtc_config *pipe_config;
  6521. int plane_bpp, ret = -EINVAL;
  6522. bool retry = true;
  6523. if (!check_encoder_cloning(crtc)) {
  6524. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6525. return ERR_PTR(-EINVAL);
  6526. }
  6527. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6528. if (!pipe_config)
  6529. return ERR_PTR(-ENOMEM);
  6530. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6531. drm_mode_copy(&pipe_config->requested_mode, mode);
  6532. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6533. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6534. * plane pixel format and any sink constraints into account. Returns the
  6535. * source plane bpp so that dithering can be selected on mismatches
  6536. * after encoders and crtc also have had their say. */
  6537. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6538. fb, pipe_config);
  6539. if (plane_bpp < 0)
  6540. goto fail;
  6541. encoder_retry:
  6542. /* Ensure the port clock defaults are reset when retrying. */
  6543. pipe_config->port_clock = 0;
  6544. pipe_config->pixel_multiplier = 1;
  6545. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6546. * adjust it according to limitations or connector properties, and also
  6547. * a chance to reject the mode entirely.
  6548. */
  6549. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6550. base.head) {
  6551. if (&encoder->new_crtc->base != crtc)
  6552. continue;
  6553. if (encoder->compute_config) {
  6554. if (!(encoder->compute_config(encoder, pipe_config))) {
  6555. DRM_DEBUG_KMS("Encoder config failure\n");
  6556. goto fail;
  6557. }
  6558. continue;
  6559. }
  6560. encoder_funcs = encoder->base.helper_private;
  6561. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6562. &pipe_config->requested_mode,
  6563. &pipe_config->adjusted_mode))) {
  6564. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6565. goto fail;
  6566. }
  6567. }
  6568. /* Set default port clock if not overwritten by the encoder. Needs to be
  6569. * done afterwards in case the encoder adjusts the mode. */
  6570. if (!pipe_config->port_clock)
  6571. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6572. ret = intel_crtc_compute_config(crtc, pipe_config);
  6573. if (ret < 0) {
  6574. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6575. goto fail;
  6576. }
  6577. if (ret == RETRY) {
  6578. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6579. ret = -EINVAL;
  6580. goto fail;
  6581. }
  6582. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6583. retry = false;
  6584. goto encoder_retry;
  6585. }
  6586. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6587. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6588. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6589. return pipe_config;
  6590. fail:
  6591. kfree(pipe_config);
  6592. return ERR_PTR(ret);
  6593. }
  6594. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6595. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6596. static void
  6597. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6598. unsigned *prepare_pipes, unsigned *disable_pipes)
  6599. {
  6600. struct intel_crtc *intel_crtc;
  6601. struct drm_device *dev = crtc->dev;
  6602. struct intel_encoder *encoder;
  6603. struct intel_connector *connector;
  6604. struct drm_crtc *tmp_crtc;
  6605. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6606. /* Check which crtcs have changed outputs connected to them, these need
  6607. * to be part of the prepare_pipes mask. We don't (yet) support global
  6608. * modeset across multiple crtcs, so modeset_pipes will only have one
  6609. * bit set at most. */
  6610. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6611. base.head) {
  6612. if (connector->base.encoder == &connector->new_encoder->base)
  6613. continue;
  6614. if (connector->base.encoder) {
  6615. tmp_crtc = connector->base.encoder->crtc;
  6616. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6617. }
  6618. if (connector->new_encoder)
  6619. *prepare_pipes |=
  6620. 1 << connector->new_encoder->new_crtc->pipe;
  6621. }
  6622. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6623. base.head) {
  6624. if (encoder->base.crtc == &encoder->new_crtc->base)
  6625. continue;
  6626. if (encoder->base.crtc) {
  6627. tmp_crtc = encoder->base.crtc;
  6628. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6629. }
  6630. if (encoder->new_crtc)
  6631. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6632. }
  6633. /* Check for any pipes that will be fully disabled ... */
  6634. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6635. base.head) {
  6636. bool used = false;
  6637. /* Don't try to disable disabled crtcs. */
  6638. if (!intel_crtc->base.enabled)
  6639. continue;
  6640. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6641. base.head) {
  6642. if (encoder->new_crtc == intel_crtc)
  6643. used = true;
  6644. }
  6645. if (!used)
  6646. *disable_pipes |= 1 << intel_crtc->pipe;
  6647. }
  6648. /* set_mode is also used to update properties on life display pipes. */
  6649. intel_crtc = to_intel_crtc(crtc);
  6650. if (crtc->enabled)
  6651. *prepare_pipes |= 1 << intel_crtc->pipe;
  6652. /*
  6653. * For simplicity do a full modeset on any pipe where the output routing
  6654. * changed. We could be more clever, but that would require us to be
  6655. * more careful with calling the relevant encoder->mode_set functions.
  6656. */
  6657. if (*prepare_pipes)
  6658. *modeset_pipes = *prepare_pipes;
  6659. /* ... and mask these out. */
  6660. *modeset_pipes &= ~(*disable_pipes);
  6661. *prepare_pipes &= ~(*disable_pipes);
  6662. /*
  6663. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6664. * obies this rule, but the modeset restore mode of
  6665. * intel_modeset_setup_hw_state does not.
  6666. */
  6667. *modeset_pipes &= 1 << intel_crtc->pipe;
  6668. *prepare_pipes &= 1 << intel_crtc->pipe;
  6669. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6670. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6671. }
  6672. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6673. {
  6674. struct drm_encoder *encoder;
  6675. struct drm_device *dev = crtc->dev;
  6676. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6677. if (encoder->crtc == crtc)
  6678. return true;
  6679. return false;
  6680. }
  6681. static void
  6682. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6683. {
  6684. struct intel_encoder *intel_encoder;
  6685. struct intel_crtc *intel_crtc;
  6686. struct drm_connector *connector;
  6687. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6688. base.head) {
  6689. if (!intel_encoder->base.crtc)
  6690. continue;
  6691. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6692. if (prepare_pipes & (1 << intel_crtc->pipe))
  6693. intel_encoder->connectors_active = false;
  6694. }
  6695. intel_modeset_commit_output_state(dev);
  6696. /* Update computed state. */
  6697. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6698. base.head) {
  6699. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6700. }
  6701. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6702. if (!connector->encoder || !connector->encoder->crtc)
  6703. continue;
  6704. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6705. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6706. struct drm_property *dpms_property =
  6707. dev->mode_config.dpms_property;
  6708. connector->dpms = DRM_MODE_DPMS_ON;
  6709. drm_object_property_set_value(&connector->base,
  6710. dpms_property,
  6711. DRM_MODE_DPMS_ON);
  6712. intel_encoder = to_intel_encoder(connector->encoder);
  6713. intel_encoder->connectors_active = true;
  6714. }
  6715. }
  6716. }
  6717. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6718. list_for_each_entry((intel_crtc), \
  6719. &(dev)->mode_config.crtc_list, \
  6720. base.head) \
  6721. if (mask & (1 <<(intel_crtc)->pipe))
  6722. static bool
  6723. intel_pipe_config_compare(struct drm_device *dev,
  6724. struct intel_crtc_config *current_config,
  6725. struct intel_crtc_config *pipe_config)
  6726. {
  6727. #define PIPE_CONF_CHECK_I(name) \
  6728. if (current_config->name != pipe_config->name) { \
  6729. DRM_ERROR("mismatch in " #name " " \
  6730. "(expected %i, found %i)\n", \
  6731. current_config->name, \
  6732. pipe_config->name); \
  6733. return false; \
  6734. }
  6735. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6736. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6737. DRM_ERROR("mismatch in " #name " " \
  6738. "(expected %i, found %i)\n", \
  6739. current_config->name & (mask), \
  6740. pipe_config->name & (mask)); \
  6741. return false; \
  6742. }
  6743. PIPE_CONF_CHECK_I(cpu_transcoder);
  6744. PIPE_CONF_CHECK_I(has_pch_encoder);
  6745. PIPE_CONF_CHECK_I(fdi_lanes);
  6746. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6747. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6748. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6749. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6750. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6751. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6752. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6753. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6754. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6755. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6756. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6757. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6758. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6759. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6760. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6761. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6762. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6763. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6764. DRM_MODE_FLAG_INTERLACE);
  6765. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6766. DRM_MODE_FLAG_PHSYNC);
  6767. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6768. DRM_MODE_FLAG_NHSYNC);
  6769. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6770. DRM_MODE_FLAG_PVSYNC);
  6771. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6772. DRM_MODE_FLAG_NVSYNC);
  6773. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6774. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6775. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6776. /* pfit ratios are autocomputed by the hw on gen4+ */
  6777. if (INTEL_INFO(dev)->gen < 4)
  6778. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6779. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6780. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6781. PIPE_CONF_CHECK_I(pch_pfit.size);
  6782. PIPE_CONF_CHECK_I(ips_enabled);
  6783. #undef PIPE_CONF_CHECK_I
  6784. #undef PIPE_CONF_CHECK_FLAGS
  6785. return true;
  6786. }
  6787. void
  6788. intel_modeset_check_state(struct drm_device *dev)
  6789. {
  6790. drm_i915_private_t *dev_priv = dev->dev_private;
  6791. struct intel_crtc *crtc;
  6792. struct intel_encoder *encoder;
  6793. struct intel_connector *connector;
  6794. struct intel_crtc_config pipe_config;
  6795. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6796. base.head) {
  6797. /* This also checks the encoder/connector hw state with the
  6798. * ->get_hw_state callbacks. */
  6799. intel_connector_check_state(connector);
  6800. WARN(&connector->new_encoder->base != connector->base.encoder,
  6801. "connector's staged encoder doesn't match current encoder\n");
  6802. }
  6803. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6804. base.head) {
  6805. bool enabled = false;
  6806. bool active = false;
  6807. enum pipe pipe, tracked_pipe;
  6808. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6809. encoder->base.base.id,
  6810. drm_get_encoder_name(&encoder->base));
  6811. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6812. "encoder's stage crtc doesn't match current crtc\n");
  6813. WARN(encoder->connectors_active && !encoder->base.crtc,
  6814. "encoder's active_connectors set, but no crtc\n");
  6815. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6816. base.head) {
  6817. if (connector->base.encoder != &encoder->base)
  6818. continue;
  6819. enabled = true;
  6820. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6821. active = true;
  6822. }
  6823. WARN(!!encoder->base.crtc != enabled,
  6824. "encoder's enabled state mismatch "
  6825. "(expected %i, found %i)\n",
  6826. !!encoder->base.crtc, enabled);
  6827. WARN(active && !encoder->base.crtc,
  6828. "active encoder with no crtc\n");
  6829. WARN(encoder->connectors_active != active,
  6830. "encoder's computed active state doesn't match tracked active state "
  6831. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6832. active = encoder->get_hw_state(encoder, &pipe);
  6833. WARN(active != encoder->connectors_active,
  6834. "encoder's hw state doesn't match sw tracking "
  6835. "(expected %i, found %i)\n",
  6836. encoder->connectors_active, active);
  6837. if (!encoder->base.crtc)
  6838. continue;
  6839. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6840. WARN(active && pipe != tracked_pipe,
  6841. "active encoder's pipe doesn't match"
  6842. "(expected %i, found %i)\n",
  6843. tracked_pipe, pipe);
  6844. }
  6845. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6846. base.head) {
  6847. bool enabled = false;
  6848. bool active = false;
  6849. memset(&pipe_config, 0, sizeof(pipe_config));
  6850. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6851. crtc->base.base.id);
  6852. WARN(crtc->active && !crtc->base.enabled,
  6853. "active crtc, but not enabled in sw tracking\n");
  6854. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6855. base.head) {
  6856. if (encoder->base.crtc != &crtc->base)
  6857. continue;
  6858. enabled = true;
  6859. if (encoder->connectors_active)
  6860. active = true;
  6861. if (encoder->get_config)
  6862. encoder->get_config(encoder, &pipe_config);
  6863. }
  6864. WARN(active != crtc->active,
  6865. "crtc's computed active state doesn't match tracked active state "
  6866. "(expected %i, found %i)\n", active, crtc->active);
  6867. WARN(enabled != crtc->base.enabled,
  6868. "crtc's computed enabled state doesn't match tracked enabled state "
  6869. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6870. active = dev_priv->display.get_pipe_config(crtc,
  6871. &pipe_config);
  6872. WARN(crtc->active != active,
  6873. "crtc active state doesn't match with hw state "
  6874. "(expected %i, found %i)\n", crtc->active, active);
  6875. if (active &&
  6876. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6877. WARN(1, "pipe state doesn't match!\n");
  6878. intel_dump_pipe_config(crtc, &pipe_config,
  6879. "[hw state]");
  6880. intel_dump_pipe_config(crtc, &crtc->config,
  6881. "[sw state]");
  6882. }
  6883. }
  6884. }
  6885. static int __intel_set_mode(struct drm_crtc *crtc,
  6886. struct drm_display_mode *mode,
  6887. int x, int y, struct drm_framebuffer *fb)
  6888. {
  6889. struct drm_device *dev = crtc->dev;
  6890. drm_i915_private_t *dev_priv = dev->dev_private;
  6891. struct drm_display_mode *saved_mode, *saved_hwmode;
  6892. struct intel_crtc_config *pipe_config = NULL;
  6893. struct intel_crtc *intel_crtc;
  6894. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6895. int ret = 0;
  6896. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6897. if (!saved_mode)
  6898. return -ENOMEM;
  6899. saved_hwmode = saved_mode + 1;
  6900. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6901. &prepare_pipes, &disable_pipes);
  6902. *saved_hwmode = crtc->hwmode;
  6903. *saved_mode = crtc->mode;
  6904. /* Hack: Because we don't (yet) support global modeset on multiple
  6905. * crtcs, we don't keep track of the new mode for more than one crtc.
  6906. * Hence simply check whether any bit is set in modeset_pipes in all the
  6907. * pieces of code that are not yet converted to deal with mutliple crtcs
  6908. * changing their mode at the same time. */
  6909. if (modeset_pipes) {
  6910. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6911. if (IS_ERR(pipe_config)) {
  6912. ret = PTR_ERR(pipe_config);
  6913. pipe_config = NULL;
  6914. goto out;
  6915. }
  6916. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6917. "[modeset]");
  6918. }
  6919. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6920. intel_crtc_disable(&intel_crtc->base);
  6921. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6922. if (intel_crtc->base.enabled)
  6923. dev_priv->display.crtc_disable(&intel_crtc->base);
  6924. }
  6925. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6926. * to set it here already despite that we pass it down the callchain.
  6927. */
  6928. if (modeset_pipes) {
  6929. crtc->mode = *mode;
  6930. /* mode_set/enable/disable functions rely on a correct pipe
  6931. * config. */
  6932. to_intel_crtc(crtc)->config = *pipe_config;
  6933. }
  6934. /* Only after disabling all output pipelines that will be changed can we
  6935. * update the the output configuration. */
  6936. intel_modeset_update_state(dev, prepare_pipes);
  6937. if (dev_priv->display.modeset_global_resources)
  6938. dev_priv->display.modeset_global_resources(dev);
  6939. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6940. * on the DPLL.
  6941. */
  6942. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6943. ret = intel_crtc_mode_set(&intel_crtc->base,
  6944. x, y, fb);
  6945. if (ret)
  6946. goto done;
  6947. }
  6948. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6949. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6950. dev_priv->display.crtc_enable(&intel_crtc->base);
  6951. if (modeset_pipes) {
  6952. /* Store real post-adjustment hardware mode. */
  6953. crtc->hwmode = pipe_config->adjusted_mode;
  6954. /* Calculate and store various constants which
  6955. * are later needed by vblank and swap-completion
  6956. * timestamping. They are derived from true hwmode.
  6957. */
  6958. drm_calc_timestamping_constants(crtc);
  6959. }
  6960. /* FIXME: add subpixel order */
  6961. done:
  6962. if (ret && crtc->enabled) {
  6963. crtc->hwmode = *saved_hwmode;
  6964. crtc->mode = *saved_mode;
  6965. }
  6966. out:
  6967. kfree(pipe_config);
  6968. kfree(saved_mode);
  6969. return ret;
  6970. }
  6971. int intel_set_mode(struct drm_crtc *crtc,
  6972. struct drm_display_mode *mode,
  6973. int x, int y, struct drm_framebuffer *fb)
  6974. {
  6975. int ret;
  6976. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6977. if (ret == 0)
  6978. intel_modeset_check_state(crtc->dev);
  6979. return ret;
  6980. }
  6981. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6982. {
  6983. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6984. }
  6985. #undef for_each_intel_crtc_masked
  6986. static void intel_set_config_free(struct intel_set_config *config)
  6987. {
  6988. if (!config)
  6989. return;
  6990. kfree(config->save_connector_encoders);
  6991. kfree(config->save_encoder_crtcs);
  6992. kfree(config);
  6993. }
  6994. static int intel_set_config_save_state(struct drm_device *dev,
  6995. struct intel_set_config *config)
  6996. {
  6997. struct drm_encoder *encoder;
  6998. struct drm_connector *connector;
  6999. int count;
  7000. config->save_encoder_crtcs =
  7001. kcalloc(dev->mode_config.num_encoder,
  7002. sizeof(struct drm_crtc *), GFP_KERNEL);
  7003. if (!config->save_encoder_crtcs)
  7004. return -ENOMEM;
  7005. config->save_connector_encoders =
  7006. kcalloc(dev->mode_config.num_connector,
  7007. sizeof(struct drm_encoder *), GFP_KERNEL);
  7008. if (!config->save_connector_encoders)
  7009. return -ENOMEM;
  7010. /* Copy data. Note that driver private data is not affected.
  7011. * Should anything bad happen only the expected state is
  7012. * restored, not the drivers personal bookkeeping.
  7013. */
  7014. count = 0;
  7015. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7016. config->save_encoder_crtcs[count++] = encoder->crtc;
  7017. }
  7018. count = 0;
  7019. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7020. config->save_connector_encoders[count++] = connector->encoder;
  7021. }
  7022. return 0;
  7023. }
  7024. static void intel_set_config_restore_state(struct drm_device *dev,
  7025. struct intel_set_config *config)
  7026. {
  7027. struct intel_encoder *encoder;
  7028. struct intel_connector *connector;
  7029. int count;
  7030. count = 0;
  7031. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7032. encoder->new_crtc =
  7033. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7034. }
  7035. count = 0;
  7036. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7037. connector->new_encoder =
  7038. to_intel_encoder(config->save_connector_encoders[count++]);
  7039. }
  7040. }
  7041. static void
  7042. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7043. struct intel_set_config *config)
  7044. {
  7045. /* We should be able to check here if the fb has the same properties
  7046. * and then just flip_or_move it */
  7047. if (set->crtc->fb != set->fb) {
  7048. /* If we have no fb then treat it as a full mode set */
  7049. if (set->crtc->fb == NULL) {
  7050. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7051. config->mode_changed = true;
  7052. } else if (set->fb == NULL) {
  7053. config->mode_changed = true;
  7054. } else if (set->fb->pixel_format !=
  7055. set->crtc->fb->pixel_format) {
  7056. config->mode_changed = true;
  7057. } else
  7058. config->fb_changed = true;
  7059. }
  7060. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7061. config->fb_changed = true;
  7062. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7063. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7064. drm_mode_debug_printmodeline(&set->crtc->mode);
  7065. drm_mode_debug_printmodeline(set->mode);
  7066. config->mode_changed = true;
  7067. }
  7068. }
  7069. static int
  7070. intel_modeset_stage_output_state(struct drm_device *dev,
  7071. struct drm_mode_set *set,
  7072. struct intel_set_config *config)
  7073. {
  7074. struct drm_crtc *new_crtc;
  7075. struct intel_connector *connector;
  7076. struct intel_encoder *encoder;
  7077. int count, ro;
  7078. /* The upper layers ensure that we either disable a crtc or have a list
  7079. * of connectors. For paranoia, double-check this. */
  7080. WARN_ON(!set->fb && (set->num_connectors != 0));
  7081. WARN_ON(set->fb && (set->num_connectors == 0));
  7082. count = 0;
  7083. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7084. base.head) {
  7085. /* Otherwise traverse passed in connector list and get encoders
  7086. * for them. */
  7087. for (ro = 0; ro < set->num_connectors; ro++) {
  7088. if (set->connectors[ro] == &connector->base) {
  7089. connector->new_encoder = connector->encoder;
  7090. break;
  7091. }
  7092. }
  7093. /* If we disable the crtc, disable all its connectors. Also, if
  7094. * the connector is on the changing crtc but not on the new
  7095. * connector list, disable it. */
  7096. if ((!set->fb || ro == set->num_connectors) &&
  7097. connector->base.encoder &&
  7098. connector->base.encoder->crtc == set->crtc) {
  7099. connector->new_encoder = NULL;
  7100. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7101. connector->base.base.id,
  7102. drm_get_connector_name(&connector->base));
  7103. }
  7104. if (&connector->new_encoder->base != connector->base.encoder) {
  7105. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7106. config->mode_changed = true;
  7107. }
  7108. }
  7109. /* connector->new_encoder is now updated for all connectors. */
  7110. /* Update crtc of enabled connectors. */
  7111. count = 0;
  7112. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7113. base.head) {
  7114. if (!connector->new_encoder)
  7115. continue;
  7116. new_crtc = connector->new_encoder->base.crtc;
  7117. for (ro = 0; ro < set->num_connectors; ro++) {
  7118. if (set->connectors[ro] == &connector->base)
  7119. new_crtc = set->crtc;
  7120. }
  7121. /* Make sure the new CRTC will work with the encoder */
  7122. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7123. new_crtc)) {
  7124. return -EINVAL;
  7125. }
  7126. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7127. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7128. connector->base.base.id,
  7129. drm_get_connector_name(&connector->base),
  7130. new_crtc->base.id);
  7131. }
  7132. /* Check for any encoders that needs to be disabled. */
  7133. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7134. base.head) {
  7135. list_for_each_entry(connector,
  7136. &dev->mode_config.connector_list,
  7137. base.head) {
  7138. if (connector->new_encoder == encoder) {
  7139. WARN_ON(!connector->new_encoder->new_crtc);
  7140. goto next_encoder;
  7141. }
  7142. }
  7143. encoder->new_crtc = NULL;
  7144. next_encoder:
  7145. /* Only now check for crtc changes so we don't miss encoders
  7146. * that will be disabled. */
  7147. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7148. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7149. config->mode_changed = true;
  7150. }
  7151. }
  7152. /* Now we've also updated encoder->new_crtc for all encoders. */
  7153. return 0;
  7154. }
  7155. static int intel_crtc_set_config(struct drm_mode_set *set)
  7156. {
  7157. struct drm_device *dev;
  7158. struct drm_mode_set save_set;
  7159. struct intel_set_config *config;
  7160. int ret;
  7161. BUG_ON(!set);
  7162. BUG_ON(!set->crtc);
  7163. BUG_ON(!set->crtc->helper_private);
  7164. /* Enforce sane interface api - has been abused by the fb helper. */
  7165. BUG_ON(!set->mode && set->fb);
  7166. BUG_ON(set->fb && set->num_connectors == 0);
  7167. if (set->fb) {
  7168. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7169. set->crtc->base.id, set->fb->base.id,
  7170. (int)set->num_connectors, set->x, set->y);
  7171. } else {
  7172. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7173. }
  7174. dev = set->crtc->dev;
  7175. ret = -ENOMEM;
  7176. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7177. if (!config)
  7178. goto out_config;
  7179. ret = intel_set_config_save_state(dev, config);
  7180. if (ret)
  7181. goto out_config;
  7182. save_set.crtc = set->crtc;
  7183. save_set.mode = &set->crtc->mode;
  7184. save_set.x = set->crtc->x;
  7185. save_set.y = set->crtc->y;
  7186. save_set.fb = set->crtc->fb;
  7187. /* Compute whether we need a full modeset, only an fb base update or no
  7188. * change at all. In the future we might also check whether only the
  7189. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7190. * such cases. */
  7191. intel_set_config_compute_mode_changes(set, config);
  7192. ret = intel_modeset_stage_output_state(dev, set, config);
  7193. if (ret)
  7194. goto fail;
  7195. if (config->mode_changed) {
  7196. ret = intel_set_mode(set->crtc, set->mode,
  7197. set->x, set->y, set->fb);
  7198. if (ret) {
  7199. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7200. set->crtc->base.id, ret);
  7201. goto fail;
  7202. }
  7203. } else if (config->fb_changed) {
  7204. intel_crtc_wait_for_pending_flips(set->crtc);
  7205. ret = intel_pipe_set_base(set->crtc,
  7206. set->x, set->y, set->fb);
  7207. }
  7208. intel_set_config_free(config);
  7209. return 0;
  7210. fail:
  7211. intel_set_config_restore_state(dev, config);
  7212. /* Try to restore the config */
  7213. if (config->mode_changed &&
  7214. intel_set_mode(save_set.crtc, save_set.mode,
  7215. save_set.x, save_set.y, save_set.fb))
  7216. DRM_ERROR("failed to restore config after modeset failure\n");
  7217. out_config:
  7218. intel_set_config_free(config);
  7219. return ret;
  7220. }
  7221. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7222. .cursor_set = intel_crtc_cursor_set,
  7223. .cursor_move = intel_crtc_cursor_move,
  7224. .gamma_set = intel_crtc_gamma_set,
  7225. .set_config = intel_crtc_set_config,
  7226. .destroy = intel_crtc_destroy,
  7227. .page_flip = intel_crtc_page_flip,
  7228. };
  7229. static void intel_cpu_pll_init(struct drm_device *dev)
  7230. {
  7231. if (HAS_DDI(dev))
  7232. intel_ddi_pll_init(dev);
  7233. }
  7234. static void intel_pch_pll_init(struct drm_device *dev)
  7235. {
  7236. drm_i915_private_t *dev_priv = dev->dev_private;
  7237. int i;
  7238. if (dev_priv->num_pch_pll == 0) {
  7239. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7240. return;
  7241. }
  7242. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7243. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7244. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7245. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7246. }
  7247. }
  7248. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7249. {
  7250. drm_i915_private_t *dev_priv = dev->dev_private;
  7251. struct intel_crtc *intel_crtc;
  7252. int i;
  7253. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7254. if (intel_crtc == NULL)
  7255. return;
  7256. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7257. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7258. for (i = 0; i < 256; i++) {
  7259. intel_crtc->lut_r[i] = i;
  7260. intel_crtc->lut_g[i] = i;
  7261. intel_crtc->lut_b[i] = i;
  7262. }
  7263. /* Swap pipes & planes for FBC on pre-965 */
  7264. intel_crtc->pipe = pipe;
  7265. intel_crtc->plane = pipe;
  7266. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7267. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7268. intel_crtc->plane = !pipe;
  7269. }
  7270. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7271. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7272. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7273. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7274. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7275. }
  7276. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7277. struct drm_file *file)
  7278. {
  7279. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7280. struct drm_mode_object *drmmode_obj;
  7281. struct intel_crtc *crtc;
  7282. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7283. return -ENODEV;
  7284. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7285. DRM_MODE_OBJECT_CRTC);
  7286. if (!drmmode_obj) {
  7287. DRM_ERROR("no such CRTC id\n");
  7288. return -EINVAL;
  7289. }
  7290. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7291. pipe_from_crtc_id->pipe = crtc->pipe;
  7292. return 0;
  7293. }
  7294. static int intel_encoder_clones(struct intel_encoder *encoder)
  7295. {
  7296. struct drm_device *dev = encoder->base.dev;
  7297. struct intel_encoder *source_encoder;
  7298. int index_mask = 0;
  7299. int entry = 0;
  7300. list_for_each_entry(source_encoder,
  7301. &dev->mode_config.encoder_list, base.head) {
  7302. if (encoder == source_encoder)
  7303. index_mask |= (1 << entry);
  7304. /* Intel hw has only one MUX where enocoders could be cloned. */
  7305. if (encoder->cloneable && source_encoder->cloneable)
  7306. index_mask |= (1 << entry);
  7307. entry++;
  7308. }
  7309. return index_mask;
  7310. }
  7311. static bool has_edp_a(struct drm_device *dev)
  7312. {
  7313. struct drm_i915_private *dev_priv = dev->dev_private;
  7314. if (!IS_MOBILE(dev))
  7315. return false;
  7316. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7317. return false;
  7318. if (IS_GEN5(dev) &&
  7319. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7320. return false;
  7321. return true;
  7322. }
  7323. static void intel_setup_outputs(struct drm_device *dev)
  7324. {
  7325. struct drm_i915_private *dev_priv = dev->dev_private;
  7326. struct intel_encoder *encoder;
  7327. bool dpd_is_edp = false;
  7328. bool has_lvds;
  7329. has_lvds = intel_lvds_init(dev);
  7330. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7331. /* disable the panel fitter on everything but LVDS */
  7332. I915_WRITE(PFIT_CONTROL, 0);
  7333. }
  7334. if (!IS_ULT(dev))
  7335. intel_crt_init(dev);
  7336. if (HAS_DDI(dev)) {
  7337. int found;
  7338. /* Haswell uses DDI functions to detect digital outputs */
  7339. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7340. /* DDI A only supports eDP */
  7341. if (found)
  7342. intel_ddi_init(dev, PORT_A);
  7343. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7344. * register */
  7345. found = I915_READ(SFUSE_STRAP);
  7346. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7347. intel_ddi_init(dev, PORT_B);
  7348. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7349. intel_ddi_init(dev, PORT_C);
  7350. if (found & SFUSE_STRAP_DDID_DETECTED)
  7351. intel_ddi_init(dev, PORT_D);
  7352. } else if (HAS_PCH_SPLIT(dev)) {
  7353. int found;
  7354. dpd_is_edp = intel_dpd_is_edp(dev);
  7355. if (has_edp_a(dev))
  7356. intel_dp_init(dev, DP_A, PORT_A);
  7357. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7358. /* PCH SDVOB multiplex with HDMIB */
  7359. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7360. if (!found)
  7361. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7362. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7363. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7364. }
  7365. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7366. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7367. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7368. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7369. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7370. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7371. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7372. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7373. } else if (IS_VALLEYVIEW(dev)) {
  7374. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7375. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7376. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7377. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7378. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7379. PORT_B);
  7380. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7381. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7382. }
  7383. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7384. bool found = false;
  7385. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7386. DRM_DEBUG_KMS("probing SDVOB\n");
  7387. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7388. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7389. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7390. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7391. }
  7392. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7393. intel_dp_init(dev, DP_B, PORT_B);
  7394. }
  7395. /* Before G4X SDVOC doesn't have its own detect register */
  7396. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7397. DRM_DEBUG_KMS("probing SDVOC\n");
  7398. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7399. }
  7400. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7401. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7402. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7403. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7404. }
  7405. if (SUPPORTS_INTEGRATED_DP(dev))
  7406. intel_dp_init(dev, DP_C, PORT_C);
  7407. }
  7408. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7409. (I915_READ(DP_D) & DP_DETECTED))
  7410. intel_dp_init(dev, DP_D, PORT_D);
  7411. } else if (IS_GEN2(dev))
  7412. intel_dvo_init(dev);
  7413. if (SUPPORTS_TV(dev))
  7414. intel_tv_init(dev);
  7415. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7416. encoder->base.possible_crtcs = encoder->crtc_mask;
  7417. encoder->base.possible_clones =
  7418. intel_encoder_clones(encoder);
  7419. }
  7420. intel_init_pch_refclk(dev);
  7421. drm_helper_move_panel_connectors_to_head(dev);
  7422. }
  7423. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7424. {
  7425. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7426. drm_framebuffer_cleanup(fb);
  7427. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7428. kfree(intel_fb);
  7429. }
  7430. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7431. struct drm_file *file,
  7432. unsigned int *handle)
  7433. {
  7434. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7435. struct drm_i915_gem_object *obj = intel_fb->obj;
  7436. return drm_gem_handle_create(file, &obj->base, handle);
  7437. }
  7438. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7439. .destroy = intel_user_framebuffer_destroy,
  7440. .create_handle = intel_user_framebuffer_create_handle,
  7441. };
  7442. int intel_framebuffer_init(struct drm_device *dev,
  7443. struct intel_framebuffer *intel_fb,
  7444. struct drm_mode_fb_cmd2 *mode_cmd,
  7445. struct drm_i915_gem_object *obj)
  7446. {
  7447. int ret;
  7448. if (obj->tiling_mode == I915_TILING_Y) {
  7449. DRM_DEBUG("hardware does not support tiling Y\n");
  7450. return -EINVAL;
  7451. }
  7452. if (mode_cmd->pitches[0] & 63) {
  7453. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7454. mode_cmd->pitches[0]);
  7455. return -EINVAL;
  7456. }
  7457. /* FIXME <= Gen4 stride limits are bit unclear */
  7458. if (mode_cmd->pitches[0] > 32768) {
  7459. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7460. mode_cmd->pitches[0]);
  7461. return -EINVAL;
  7462. }
  7463. if (obj->tiling_mode != I915_TILING_NONE &&
  7464. mode_cmd->pitches[0] != obj->stride) {
  7465. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7466. mode_cmd->pitches[0], obj->stride);
  7467. return -EINVAL;
  7468. }
  7469. /* Reject formats not supported by any plane early. */
  7470. switch (mode_cmd->pixel_format) {
  7471. case DRM_FORMAT_C8:
  7472. case DRM_FORMAT_RGB565:
  7473. case DRM_FORMAT_XRGB8888:
  7474. case DRM_FORMAT_ARGB8888:
  7475. break;
  7476. case DRM_FORMAT_XRGB1555:
  7477. case DRM_FORMAT_ARGB1555:
  7478. if (INTEL_INFO(dev)->gen > 3) {
  7479. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7480. return -EINVAL;
  7481. }
  7482. break;
  7483. case DRM_FORMAT_XBGR8888:
  7484. case DRM_FORMAT_ABGR8888:
  7485. case DRM_FORMAT_XRGB2101010:
  7486. case DRM_FORMAT_ARGB2101010:
  7487. case DRM_FORMAT_XBGR2101010:
  7488. case DRM_FORMAT_ABGR2101010:
  7489. if (INTEL_INFO(dev)->gen < 4) {
  7490. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7491. return -EINVAL;
  7492. }
  7493. break;
  7494. case DRM_FORMAT_YUYV:
  7495. case DRM_FORMAT_UYVY:
  7496. case DRM_FORMAT_YVYU:
  7497. case DRM_FORMAT_VYUY:
  7498. if (INTEL_INFO(dev)->gen < 5) {
  7499. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7500. return -EINVAL;
  7501. }
  7502. break;
  7503. default:
  7504. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7505. return -EINVAL;
  7506. }
  7507. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7508. if (mode_cmd->offsets[0] != 0)
  7509. return -EINVAL;
  7510. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7511. intel_fb->obj = obj;
  7512. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7513. if (ret) {
  7514. DRM_ERROR("framebuffer init failed %d\n", ret);
  7515. return ret;
  7516. }
  7517. return 0;
  7518. }
  7519. static struct drm_framebuffer *
  7520. intel_user_framebuffer_create(struct drm_device *dev,
  7521. struct drm_file *filp,
  7522. struct drm_mode_fb_cmd2 *mode_cmd)
  7523. {
  7524. struct drm_i915_gem_object *obj;
  7525. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7526. mode_cmd->handles[0]));
  7527. if (&obj->base == NULL)
  7528. return ERR_PTR(-ENOENT);
  7529. return intel_framebuffer_create(dev, mode_cmd, obj);
  7530. }
  7531. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7532. .fb_create = intel_user_framebuffer_create,
  7533. .output_poll_changed = intel_fb_output_poll_changed,
  7534. };
  7535. /* Set up chip specific display functions */
  7536. static void intel_init_display(struct drm_device *dev)
  7537. {
  7538. struct drm_i915_private *dev_priv = dev->dev_private;
  7539. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7540. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7541. else if (IS_VALLEYVIEW(dev))
  7542. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7543. else if (IS_PINEVIEW(dev))
  7544. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7545. else
  7546. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7547. if (HAS_DDI(dev)) {
  7548. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7549. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7550. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7551. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7552. dev_priv->display.off = haswell_crtc_off;
  7553. dev_priv->display.update_plane = ironlake_update_plane;
  7554. } else if (HAS_PCH_SPLIT(dev)) {
  7555. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7556. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7557. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7558. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7559. dev_priv->display.off = ironlake_crtc_off;
  7560. dev_priv->display.update_plane = ironlake_update_plane;
  7561. } else if (IS_VALLEYVIEW(dev)) {
  7562. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7563. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7564. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7565. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7566. dev_priv->display.off = i9xx_crtc_off;
  7567. dev_priv->display.update_plane = i9xx_update_plane;
  7568. } else {
  7569. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7570. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7571. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7572. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7573. dev_priv->display.off = i9xx_crtc_off;
  7574. dev_priv->display.update_plane = i9xx_update_plane;
  7575. }
  7576. /* Returns the core display clock speed */
  7577. if (IS_VALLEYVIEW(dev))
  7578. dev_priv->display.get_display_clock_speed =
  7579. valleyview_get_display_clock_speed;
  7580. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7581. dev_priv->display.get_display_clock_speed =
  7582. i945_get_display_clock_speed;
  7583. else if (IS_I915G(dev))
  7584. dev_priv->display.get_display_clock_speed =
  7585. i915_get_display_clock_speed;
  7586. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7587. dev_priv->display.get_display_clock_speed =
  7588. i9xx_misc_get_display_clock_speed;
  7589. else if (IS_I915GM(dev))
  7590. dev_priv->display.get_display_clock_speed =
  7591. i915gm_get_display_clock_speed;
  7592. else if (IS_I865G(dev))
  7593. dev_priv->display.get_display_clock_speed =
  7594. i865_get_display_clock_speed;
  7595. else if (IS_I85X(dev))
  7596. dev_priv->display.get_display_clock_speed =
  7597. i855_get_display_clock_speed;
  7598. else /* 852, 830 */
  7599. dev_priv->display.get_display_clock_speed =
  7600. i830_get_display_clock_speed;
  7601. if (HAS_PCH_SPLIT(dev)) {
  7602. if (IS_GEN5(dev)) {
  7603. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7604. dev_priv->display.write_eld = ironlake_write_eld;
  7605. } else if (IS_GEN6(dev)) {
  7606. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7607. dev_priv->display.write_eld = ironlake_write_eld;
  7608. } else if (IS_IVYBRIDGE(dev)) {
  7609. /* FIXME: detect B0+ stepping and use auto training */
  7610. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7611. dev_priv->display.write_eld = ironlake_write_eld;
  7612. dev_priv->display.modeset_global_resources =
  7613. ivb_modeset_global_resources;
  7614. } else if (IS_HASWELL(dev)) {
  7615. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7616. dev_priv->display.write_eld = haswell_write_eld;
  7617. dev_priv->display.modeset_global_resources =
  7618. haswell_modeset_global_resources;
  7619. }
  7620. } else if (IS_G4X(dev)) {
  7621. dev_priv->display.write_eld = g4x_write_eld;
  7622. }
  7623. /* Default just returns -ENODEV to indicate unsupported */
  7624. dev_priv->display.queue_flip = intel_default_queue_flip;
  7625. switch (INTEL_INFO(dev)->gen) {
  7626. case 2:
  7627. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7628. break;
  7629. case 3:
  7630. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7631. break;
  7632. case 4:
  7633. case 5:
  7634. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7635. break;
  7636. case 6:
  7637. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7638. break;
  7639. case 7:
  7640. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7641. break;
  7642. }
  7643. }
  7644. /*
  7645. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7646. * resume, or other times. This quirk makes sure that's the case for
  7647. * affected systems.
  7648. */
  7649. static void quirk_pipea_force(struct drm_device *dev)
  7650. {
  7651. struct drm_i915_private *dev_priv = dev->dev_private;
  7652. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7653. DRM_INFO("applying pipe a force quirk\n");
  7654. }
  7655. /*
  7656. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7657. */
  7658. static void quirk_ssc_force_disable(struct drm_device *dev)
  7659. {
  7660. struct drm_i915_private *dev_priv = dev->dev_private;
  7661. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7662. DRM_INFO("applying lvds SSC disable quirk\n");
  7663. }
  7664. /*
  7665. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7666. * brightness value
  7667. */
  7668. static void quirk_invert_brightness(struct drm_device *dev)
  7669. {
  7670. struct drm_i915_private *dev_priv = dev->dev_private;
  7671. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7672. DRM_INFO("applying inverted panel brightness quirk\n");
  7673. }
  7674. struct intel_quirk {
  7675. int device;
  7676. int subsystem_vendor;
  7677. int subsystem_device;
  7678. void (*hook)(struct drm_device *dev);
  7679. };
  7680. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7681. struct intel_dmi_quirk {
  7682. void (*hook)(struct drm_device *dev);
  7683. const struct dmi_system_id (*dmi_id_list)[];
  7684. };
  7685. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7686. {
  7687. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7688. return 1;
  7689. }
  7690. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7691. {
  7692. .dmi_id_list = &(const struct dmi_system_id[]) {
  7693. {
  7694. .callback = intel_dmi_reverse_brightness,
  7695. .ident = "NCR Corporation",
  7696. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7697. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7698. },
  7699. },
  7700. { } /* terminating entry */
  7701. },
  7702. .hook = quirk_invert_brightness,
  7703. },
  7704. };
  7705. static struct intel_quirk intel_quirks[] = {
  7706. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7707. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7708. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7709. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7710. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7711. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7712. /* 830/845 need to leave pipe A & dpll A up */
  7713. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7714. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7715. /* Lenovo U160 cannot use SSC on LVDS */
  7716. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7717. /* Sony Vaio Y cannot use SSC on LVDS */
  7718. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7719. /* Acer Aspire 5734Z must invert backlight brightness */
  7720. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7721. /* Acer/eMachines G725 */
  7722. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7723. /* Acer/eMachines e725 */
  7724. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7725. /* Acer/Packard Bell NCL20 */
  7726. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7727. /* Acer Aspire 4736Z */
  7728. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7729. };
  7730. static void intel_init_quirks(struct drm_device *dev)
  7731. {
  7732. struct pci_dev *d = dev->pdev;
  7733. int i;
  7734. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7735. struct intel_quirk *q = &intel_quirks[i];
  7736. if (d->device == q->device &&
  7737. (d->subsystem_vendor == q->subsystem_vendor ||
  7738. q->subsystem_vendor == PCI_ANY_ID) &&
  7739. (d->subsystem_device == q->subsystem_device ||
  7740. q->subsystem_device == PCI_ANY_ID))
  7741. q->hook(dev);
  7742. }
  7743. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7744. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7745. intel_dmi_quirks[i].hook(dev);
  7746. }
  7747. }
  7748. /* Disable the VGA plane that we never use */
  7749. static void i915_disable_vga(struct drm_device *dev)
  7750. {
  7751. struct drm_i915_private *dev_priv = dev->dev_private;
  7752. u8 sr1;
  7753. u32 vga_reg = i915_vgacntrl_reg(dev);
  7754. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7755. outb(SR01, VGA_SR_INDEX);
  7756. sr1 = inb(VGA_SR_DATA);
  7757. outb(sr1 | 1<<5, VGA_SR_DATA);
  7758. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7759. udelay(300);
  7760. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7761. POSTING_READ(vga_reg);
  7762. }
  7763. void intel_modeset_init_hw(struct drm_device *dev)
  7764. {
  7765. intel_init_power_well(dev);
  7766. intel_prepare_ddi(dev);
  7767. intel_init_clock_gating(dev);
  7768. mutex_lock(&dev->struct_mutex);
  7769. intel_enable_gt_powersave(dev);
  7770. mutex_unlock(&dev->struct_mutex);
  7771. }
  7772. void intel_modeset_suspend_hw(struct drm_device *dev)
  7773. {
  7774. intel_suspend_hw(dev);
  7775. }
  7776. void intel_modeset_init(struct drm_device *dev)
  7777. {
  7778. struct drm_i915_private *dev_priv = dev->dev_private;
  7779. int i, j, ret;
  7780. drm_mode_config_init(dev);
  7781. dev->mode_config.min_width = 0;
  7782. dev->mode_config.min_height = 0;
  7783. dev->mode_config.preferred_depth = 24;
  7784. dev->mode_config.prefer_shadow = 1;
  7785. dev->mode_config.funcs = &intel_mode_funcs;
  7786. intel_init_quirks(dev);
  7787. intel_init_pm(dev);
  7788. if (INTEL_INFO(dev)->num_pipes == 0)
  7789. return;
  7790. intel_init_display(dev);
  7791. if (IS_GEN2(dev)) {
  7792. dev->mode_config.max_width = 2048;
  7793. dev->mode_config.max_height = 2048;
  7794. } else if (IS_GEN3(dev)) {
  7795. dev->mode_config.max_width = 4096;
  7796. dev->mode_config.max_height = 4096;
  7797. } else {
  7798. dev->mode_config.max_width = 8192;
  7799. dev->mode_config.max_height = 8192;
  7800. }
  7801. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7802. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7803. INTEL_INFO(dev)->num_pipes,
  7804. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7805. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7806. intel_crtc_init(dev, i);
  7807. for (j = 0; j < dev_priv->num_plane; j++) {
  7808. ret = intel_plane_init(dev, i, j);
  7809. if (ret)
  7810. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7811. pipe_name(i), sprite_name(i, j), ret);
  7812. }
  7813. }
  7814. intel_cpu_pll_init(dev);
  7815. intel_pch_pll_init(dev);
  7816. /* Just disable it once at startup */
  7817. i915_disable_vga(dev);
  7818. intel_setup_outputs(dev);
  7819. /* Just in case the BIOS is doing something questionable. */
  7820. intel_disable_fbc(dev);
  7821. }
  7822. static void
  7823. intel_connector_break_all_links(struct intel_connector *connector)
  7824. {
  7825. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7826. connector->base.encoder = NULL;
  7827. connector->encoder->connectors_active = false;
  7828. connector->encoder->base.crtc = NULL;
  7829. }
  7830. static void intel_enable_pipe_a(struct drm_device *dev)
  7831. {
  7832. struct intel_connector *connector;
  7833. struct drm_connector *crt = NULL;
  7834. struct intel_load_detect_pipe load_detect_temp;
  7835. /* We can't just switch on the pipe A, we need to set things up with a
  7836. * proper mode and output configuration. As a gross hack, enable pipe A
  7837. * by enabling the load detect pipe once. */
  7838. list_for_each_entry(connector,
  7839. &dev->mode_config.connector_list,
  7840. base.head) {
  7841. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7842. crt = &connector->base;
  7843. break;
  7844. }
  7845. }
  7846. if (!crt)
  7847. return;
  7848. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7849. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7850. }
  7851. static bool
  7852. intel_check_plane_mapping(struct intel_crtc *crtc)
  7853. {
  7854. struct drm_device *dev = crtc->base.dev;
  7855. struct drm_i915_private *dev_priv = dev->dev_private;
  7856. u32 reg, val;
  7857. if (INTEL_INFO(dev)->num_pipes == 1)
  7858. return true;
  7859. reg = DSPCNTR(!crtc->plane);
  7860. val = I915_READ(reg);
  7861. if ((val & DISPLAY_PLANE_ENABLE) &&
  7862. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7863. return false;
  7864. return true;
  7865. }
  7866. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7867. {
  7868. struct drm_device *dev = crtc->base.dev;
  7869. struct drm_i915_private *dev_priv = dev->dev_private;
  7870. u32 reg;
  7871. /* Clear any frame start delays used for debugging left by the BIOS */
  7872. reg = PIPECONF(crtc->config.cpu_transcoder);
  7873. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7874. /* We need to sanitize the plane -> pipe mapping first because this will
  7875. * disable the crtc (and hence change the state) if it is wrong. Note
  7876. * that gen4+ has a fixed plane -> pipe mapping. */
  7877. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7878. struct intel_connector *connector;
  7879. bool plane;
  7880. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7881. crtc->base.base.id);
  7882. /* Pipe has the wrong plane attached and the plane is active.
  7883. * Temporarily change the plane mapping and disable everything
  7884. * ... */
  7885. plane = crtc->plane;
  7886. crtc->plane = !plane;
  7887. dev_priv->display.crtc_disable(&crtc->base);
  7888. crtc->plane = plane;
  7889. /* ... and break all links. */
  7890. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7891. base.head) {
  7892. if (connector->encoder->base.crtc != &crtc->base)
  7893. continue;
  7894. intel_connector_break_all_links(connector);
  7895. }
  7896. WARN_ON(crtc->active);
  7897. crtc->base.enabled = false;
  7898. }
  7899. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7900. crtc->pipe == PIPE_A && !crtc->active) {
  7901. /* BIOS forgot to enable pipe A, this mostly happens after
  7902. * resume. Force-enable the pipe to fix this, the update_dpms
  7903. * call below we restore the pipe to the right state, but leave
  7904. * the required bits on. */
  7905. intel_enable_pipe_a(dev);
  7906. }
  7907. /* Adjust the state of the output pipe according to whether we
  7908. * have active connectors/encoders. */
  7909. intel_crtc_update_dpms(&crtc->base);
  7910. if (crtc->active != crtc->base.enabled) {
  7911. struct intel_encoder *encoder;
  7912. /* This can happen either due to bugs in the get_hw_state
  7913. * functions or because the pipe is force-enabled due to the
  7914. * pipe A quirk. */
  7915. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7916. crtc->base.base.id,
  7917. crtc->base.enabled ? "enabled" : "disabled",
  7918. crtc->active ? "enabled" : "disabled");
  7919. crtc->base.enabled = crtc->active;
  7920. /* Because we only establish the connector -> encoder ->
  7921. * crtc links if something is active, this means the
  7922. * crtc is now deactivated. Break the links. connector
  7923. * -> encoder links are only establish when things are
  7924. * actually up, hence no need to break them. */
  7925. WARN_ON(crtc->active);
  7926. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7927. WARN_ON(encoder->connectors_active);
  7928. encoder->base.crtc = NULL;
  7929. }
  7930. }
  7931. }
  7932. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7933. {
  7934. struct intel_connector *connector;
  7935. struct drm_device *dev = encoder->base.dev;
  7936. /* We need to check both for a crtc link (meaning that the
  7937. * encoder is active and trying to read from a pipe) and the
  7938. * pipe itself being active. */
  7939. bool has_active_crtc = encoder->base.crtc &&
  7940. to_intel_crtc(encoder->base.crtc)->active;
  7941. if (encoder->connectors_active && !has_active_crtc) {
  7942. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7943. encoder->base.base.id,
  7944. drm_get_encoder_name(&encoder->base));
  7945. /* Connector is active, but has no active pipe. This is
  7946. * fallout from our resume register restoring. Disable
  7947. * the encoder manually again. */
  7948. if (encoder->base.crtc) {
  7949. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7950. encoder->base.base.id,
  7951. drm_get_encoder_name(&encoder->base));
  7952. encoder->disable(encoder);
  7953. }
  7954. /* Inconsistent output/port/pipe state happens presumably due to
  7955. * a bug in one of the get_hw_state functions. Or someplace else
  7956. * in our code, like the register restore mess on resume. Clamp
  7957. * things to off as a safer default. */
  7958. list_for_each_entry(connector,
  7959. &dev->mode_config.connector_list,
  7960. base.head) {
  7961. if (connector->encoder != encoder)
  7962. continue;
  7963. intel_connector_break_all_links(connector);
  7964. }
  7965. }
  7966. /* Enabled encoders without active connectors will be fixed in
  7967. * the crtc fixup. */
  7968. }
  7969. void i915_redisable_vga(struct drm_device *dev)
  7970. {
  7971. struct drm_i915_private *dev_priv = dev->dev_private;
  7972. u32 vga_reg = i915_vgacntrl_reg(dev);
  7973. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7974. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7975. i915_disable_vga(dev);
  7976. }
  7977. }
  7978. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7979. * and i915 state tracking structures. */
  7980. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7981. bool force_restore)
  7982. {
  7983. struct drm_i915_private *dev_priv = dev->dev_private;
  7984. enum pipe pipe;
  7985. struct drm_plane *plane;
  7986. struct intel_crtc *crtc;
  7987. struct intel_encoder *encoder;
  7988. struct intel_connector *connector;
  7989. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7990. base.head) {
  7991. memset(&crtc->config, 0, sizeof(crtc->config));
  7992. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7993. &crtc->config);
  7994. crtc->base.enabled = crtc->active;
  7995. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7996. crtc->base.base.id,
  7997. crtc->active ? "enabled" : "disabled");
  7998. }
  7999. if (HAS_DDI(dev))
  8000. intel_ddi_setup_hw_pll_state(dev);
  8001. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8002. base.head) {
  8003. pipe = 0;
  8004. if (encoder->get_hw_state(encoder, &pipe)) {
  8005. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8006. encoder->base.crtc = &crtc->base;
  8007. if (encoder->get_config)
  8008. encoder->get_config(encoder, &crtc->config);
  8009. } else {
  8010. encoder->base.crtc = NULL;
  8011. }
  8012. encoder->connectors_active = false;
  8013. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8014. encoder->base.base.id,
  8015. drm_get_encoder_name(&encoder->base),
  8016. encoder->base.crtc ? "enabled" : "disabled",
  8017. pipe);
  8018. }
  8019. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8020. base.head) {
  8021. if (connector->get_hw_state(connector)) {
  8022. connector->base.dpms = DRM_MODE_DPMS_ON;
  8023. connector->encoder->connectors_active = true;
  8024. connector->base.encoder = &connector->encoder->base;
  8025. } else {
  8026. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8027. connector->base.encoder = NULL;
  8028. }
  8029. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8030. connector->base.base.id,
  8031. drm_get_connector_name(&connector->base),
  8032. connector->base.encoder ? "enabled" : "disabled");
  8033. }
  8034. /* HW state is read out, now we need to sanitize this mess. */
  8035. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8036. base.head) {
  8037. intel_sanitize_encoder(encoder);
  8038. }
  8039. for_each_pipe(pipe) {
  8040. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8041. intel_sanitize_crtc(crtc);
  8042. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8043. }
  8044. if (force_restore) {
  8045. /*
  8046. * We need to use raw interfaces for restoring state to avoid
  8047. * checking (bogus) intermediate states.
  8048. */
  8049. for_each_pipe(pipe) {
  8050. struct drm_crtc *crtc =
  8051. dev_priv->pipe_to_crtc_mapping[pipe];
  8052. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8053. crtc->fb);
  8054. }
  8055. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8056. intel_plane_restore(plane);
  8057. i915_redisable_vga(dev);
  8058. } else {
  8059. intel_modeset_update_staged_output_state(dev);
  8060. }
  8061. intel_modeset_check_state(dev);
  8062. drm_mode_config_reset(dev);
  8063. }
  8064. void intel_modeset_gem_init(struct drm_device *dev)
  8065. {
  8066. intel_modeset_init_hw(dev);
  8067. intel_setup_overlay(dev);
  8068. intel_modeset_setup_hw_state(dev, false);
  8069. }
  8070. void intel_modeset_cleanup(struct drm_device *dev)
  8071. {
  8072. struct drm_i915_private *dev_priv = dev->dev_private;
  8073. struct drm_crtc *crtc;
  8074. struct intel_crtc *intel_crtc;
  8075. /*
  8076. * Interrupts and polling as the first thing to avoid creating havoc.
  8077. * Too much stuff here (turning of rps, connectors, ...) would
  8078. * experience fancy races otherwise.
  8079. */
  8080. drm_irq_uninstall(dev);
  8081. cancel_work_sync(&dev_priv->hotplug_work);
  8082. /*
  8083. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8084. * poll handlers. Hence disable polling after hpd handling is shut down.
  8085. */
  8086. drm_kms_helper_poll_fini(dev);
  8087. mutex_lock(&dev->struct_mutex);
  8088. intel_unregister_dsm_handler();
  8089. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8090. /* Skip inactive CRTCs */
  8091. if (!crtc->fb)
  8092. continue;
  8093. intel_crtc = to_intel_crtc(crtc);
  8094. intel_increase_pllclock(crtc);
  8095. }
  8096. intel_disable_fbc(dev);
  8097. intel_disable_gt_powersave(dev);
  8098. ironlake_teardown_rc6(dev);
  8099. mutex_unlock(&dev->struct_mutex);
  8100. /* flush any delayed tasks or pending work */
  8101. flush_scheduled_work();
  8102. /* destroy backlight, if any, before the connectors */
  8103. intel_panel_destroy_backlight(dev);
  8104. drm_mode_config_cleanup(dev);
  8105. intel_cleanup_overlay(dev);
  8106. }
  8107. /*
  8108. * Return which encoder is currently attached for connector.
  8109. */
  8110. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8111. {
  8112. return &intel_attached_encoder(connector)->base;
  8113. }
  8114. void intel_connector_attach_encoder(struct intel_connector *connector,
  8115. struct intel_encoder *encoder)
  8116. {
  8117. connector->encoder = encoder;
  8118. drm_mode_connector_attach_encoder(&connector->base,
  8119. &encoder->base);
  8120. }
  8121. /*
  8122. * set vga decode state - true == enable VGA decode
  8123. */
  8124. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8125. {
  8126. struct drm_i915_private *dev_priv = dev->dev_private;
  8127. u16 gmch_ctrl;
  8128. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8129. if (state)
  8130. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8131. else
  8132. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8133. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8134. return 0;
  8135. }
  8136. #ifdef CONFIG_DEBUG_FS
  8137. #include <linux/seq_file.h>
  8138. struct intel_display_error_state {
  8139. u32 power_well_driver;
  8140. struct intel_cursor_error_state {
  8141. u32 control;
  8142. u32 position;
  8143. u32 base;
  8144. u32 size;
  8145. } cursor[I915_MAX_PIPES];
  8146. struct intel_pipe_error_state {
  8147. enum transcoder cpu_transcoder;
  8148. u32 conf;
  8149. u32 source;
  8150. u32 htotal;
  8151. u32 hblank;
  8152. u32 hsync;
  8153. u32 vtotal;
  8154. u32 vblank;
  8155. u32 vsync;
  8156. } pipe[I915_MAX_PIPES];
  8157. struct intel_plane_error_state {
  8158. u32 control;
  8159. u32 stride;
  8160. u32 size;
  8161. u32 pos;
  8162. u32 addr;
  8163. u32 surface;
  8164. u32 tile_offset;
  8165. } plane[I915_MAX_PIPES];
  8166. };
  8167. struct intel_display_error_state *
  8168. intel_display_capture_error_state(struct drm_device *dev)
  8169. {
  8170. drm_i915_private_t *dev_priv = dev->dev_private;
  8171. struct intel_display_error_state *error;
  8172. enum transcoder cpu_transcoder;
  8173. int i;
  8174. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8175. if (error == NULL)
  8176. return NULL;
  8177. if (HAS_POWER_WELL(dev))
  8178. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8179. for_each_pipe(i) {
  8180. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8181. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8182. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8183. error->cursor[i].control = I915_READ(CURCNTR(i));
  8184. error->cursor[i].position = I915_READ(CURPOS(i));
  8185. error->cursor[i].base = I915_READ(CURBASE(i));
  8186. } else {
  8187. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8188. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8189. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8190. }
  8191. error->plane[i].control = I915_READ(DSPCNTR(i));
  8192. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8193. if (INTEL_INFO(dev)->gen <= 3) {
  8194. error->plane[i].size = I915_READ(DSPSIZE(i));
  8195. error->plane[i].pos = I915_READ(DSPPOS(i));
  8196. }
  8197. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8198. error->plane[i].addr = I915_READ(DSPADDR(i));
  8199. if (INTEL_INFO(dev)->gen >= 4) {
  8200. error->plane[i].surface = I915_READ(DSPSURF(i));
  8201. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8202. }
  8203. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8204. error->pipe[i].source = I915_READ(PIPESRC(i));
  8205. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8206. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8207. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8208. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8209. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8210. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8211. }
  8212. /* In the code above we read the registers without checking if the power
  8213. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8214. * prevent the next I915_WRITE from detecting it and printing an error
  8215. * message. */
  8216. if (HAS_POWER_WELL(dev))
  8217. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8218. return error;
  8219. }
  8220. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8221. void
  8222. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8223. struct drm_device *dev,
  8224. struct intel_display_error_state *error)
  8225. {
  8226. int i;
  8227. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8228. if (HAS_POWER_WELL(dev))
  8229. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8230. error->power_well_driver);
  8231. for_each_pipe(i) {
  8232. err_printf(m, "Pipe [%d]:\n", i);
  8233. err_printf(m, " CPU transcoder: %c\n",
  8234. transcoder_name(error->pipe[i].cpu_transcoder));
  8235. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8236. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8237. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8238. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8239. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8240. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8241. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8242. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8243. err_printf(m, "Plane [%d]:\n", i);
  8244. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8245. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8246. if (INTEL_INFO(dev)->gen <= 3) {
  8247. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8248. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8249. }
  8250. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8251. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8252. if (INTEL_INFO(dev)->gen >= 4) {
  8253. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8254. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8255. }
  8256. err_printf(m, "Cursor [%d]:\n", i);
  8257. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8258. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8259. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8260. }
  8261. }
  8262. #endif