security.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* things that live in dummy.c */
  19. extern struct security_operations dummy_security_ops;
  20. extern void security_fixup_ops(struct security_operations *ops);
  21. struct security_operations *security_ops; /* Initialized to NULL */
  22. unsigned long mmap_min_addr; /* 0 means no protection */
  23. static inline int verify(struct security_operations *ops)
  24. {
  25. /* verify the security_operations structure exists */
  26. if (!ops)
  27. return -EINVAL;
  28. security_fixup_ops(ops);
  29. return 0;
  30. }
  31. static void __init do_security_initcalls(void)
  32. {
  33. initcall_t *call;
  34. call = __security_initcall_start;
  35. while (call < __security_initcall_end) {
  36. (*call) ();
  37. call++;
  38. }
  39. }
  40. /**
  41. * security_init - initializes the security framework
  42. *
  43. * This should be called early in the kernel initialization sequence.
  44. */
  45. int __init security_init(void)
  46. {
  47. printk(KERN_INFO "Security Framework initialized\n");
  48. if (verify(&dummy_security_ops)) {
  49. printk(KERN_ERR "%s could not verify "
  50. "dummy_security_ops structure.\n", __FUNCTION__);
  51. return -EIO;
  52. }
  53. security_ops = &dummy_security_ops;
  54. do_security_initcalls();
  55. return 0;
  56. }
  57. /**
  58. * register_security - registers a security framework with the kernel
  59. * @ops: a pointer to the struct security_options that is to be registered
  60. *
  61. * This function is to allow a security module to register itself with the
  62. * kernel security subsystem. Some rudimentary checking is done on the @ops
  63. * value passed to this function. A call to unregister_security() should be
  64. * done to remove this security_options structure from the kernel.
  65. *
  66. * If there is already a security module registered with the kernel,
  67. * an error will be returned. Otherwise 0 is returned on success.
  68. */
  69. int register_security(struct security_operations *ops)
  70. {
  71. if (verify(ops)) {
  72. printk(KERN_DEBUG "%s could not verify "
  73. "security_operations structure.\n", __FUNCTION__);
  74. return -EINVAL;
  75. }
  76. if (security_ops != &dummy_security_ops)
  77. return -EAGAIN;
  78. security_ops = ops;
  79. return 0;
  80. }
  81. /**
  82. * unregister_security - unregisters a security framework with the kernel
  83. * @ops: a pointer to the struct security_options that is to be registered
  84. *
  85. * This function removes a struct security_operations variable that had
  86. * previously been registered with a successful call to register_security().
  87. *
  88. * If @ops does not match the valued previously passed to register_security()
  89. * an error is returned. Otherwise the default security options is set to the
  90. * the dummy_security_ops structure, and 0 is returned.
  91. */
  92. int unregister_security(struct security_operations *ops)
  93. {
  94. if (ops != security_ops) {
  95. printk(KERN_INFO "%s: trying to unregister "
  96. "a security_opts structure that is not "
  97. "registered, failing.\n", __FUNCTION__);
  98. return -EINVAL;
  99. }
  100. security_ops = &dummy_security_ops;
  101. return 0;
  102. }
  103. /**
  104. * mod_reg_security - allows security modules to be "stacked"
  105. * @name: a pointer to a string with the name of the security_options to be registered
  106. * @ops: a pointer to the struct security_options that is to be registered
  107. *
  108. * This function allows security modules to be stacked if the currently loaded
  109. * security module allows this to happen. It passes the @name and @ops to the
  110. * register_security function of the currently loaded security module.
  111. *
  112. * The return value depends on the currently loaded security module, with 0 as
  113. * success.
  114. */
  115. int mod_reg_security(const char *name, struct security_operations *ops)
  116. {
  117. if (verify(ops)) {
  118. printk(KERN_INFO "%s could not verify "
  119. "security operations.\n", __FUNCTION__);
  120. return -EINVAL;
  121. }
  122. if (ops == security_ops) {
  123. printk(KERN_INFO "%s security operations "
  124. "already registered.\n", __FUNCTION__);
  125. return -EINVAL;
  126. }
  127. return security_ops->register_security(name, ops);
  128. }
  129. /**
  130. * mod_unreg_security - allows a security module registered with mod_reg_security() to be unloaded
  131. * @name: a pointer to a string with the name of the security_options to be removed
  132. * @ops: a pointer to the struct security_options that is to be removed
  133. *
  134. * This function allows security modules that have been successfully registered
  135. * with a call to mod_reg_security() to be unloaded from the system.
  136. * This calls the currently loaded security module's unregister_security() call
  137. * with the @name and @ops variables.
  138. *
  139. * The return value depends on the currently loaded security module, with 0 as
  140. * success.
  141. */
  142. int mod_unreg_security(const char *name, struct security_operations *ops)
  143. {
  144. if (ops == security_ops) {
  145. printk(KERN_INFO "%s invalid attempt to unregister "
  146. " primary security ops.\n", __FUNCTION__);
  147. return -EINVAL;
  148. }
  149. return security_ops->unregister_security(name, ops);
  150. }
  151. /* Security operations */
  152. int security_ptrace(struct task_struct *parent, struct task_struct *child)
  153. {
  154. return security_ops->ptrace(parent, child);
  155. }
  156. int security_capget(struct task_struct *target,
  157. kernel_cap_t *effective,
  158. kernel_cap_t *inheritable,
  159. kernel_cap_t *permitted)
  160. {
  161. return security_ops->capget(target, effective, inheritable, permitted);
  162. }
  163. int security_capset_check(struct task_struct *target,
  164. kernel_cap_t *effective,
  165. kernel_cap_t *inheritable,
  166. kernel_cap_t *permitted)
  167. {
  168. return security_ops->capset_check(target, effective, inheritable, permitted);
  169. }
  170. void security_capset_set(struct task_struct *target,
  171. kernel_cap_t *effective,
  172. kernel_cap_t *inheritable,
  173. kernel_cap_t *permitted)
  174. {
  175. security_ops->capset_set(target, effective, inheritable, permitted);
  176. }
  177. int security_capable(struct task_struct *tsk, int cap)
  178. {
  179. return security_ops->capable(tsk, cap);
  180. }
  181. int security_acct(struct file *file)
  182. {
  183. return security_ops->acct(file);
  184. }
  185. int security_sysctl(struct ctl_table *table, int op)
  186. {
  187. return security_ops->sysctl(table, op);
  188. }
  189. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  190. {
  191. return security_ops->quotactl(cmds, type, id, sb);
  192. }
  193. int security_quota_on(struct dentry *dentry)
  194. {
  195. return security_ops->quota_on(dentry);
  196. }
  197. int security_syslog(int type)
  198. {
  199. return security_ops->syslog(type);
  200. }
  201. int security_settime(struct timespec *ts, struct timezone *tz)
  202. {
  203. return security_ops->settime(ts, tz);
  204. }
  205. int security_vm_enough_memory(long pages)
  206. {
  207. return security_ops->vm_enough_memory(current->mm, pages);
  208. }
  209. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  210. {
  211. return security_ops->vm_enough_memory(mm, pages);
  212. }
  213. int security_bprm_alloc(struct linux_binprm *bprm)
  214. {
  215. return security_ops->bprm_alloc_security(bprm);
  216. }
  217. void security_bprm_free(struct linux_binprm *bprm)
  218. {
  219. security_ops->bprm_free_security(bprm);
  220. }
  221. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  222. {
  223. security_ops->bprm_apply_creds(bprm, unsafe);
  224. }
  225. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  226. {
  227. security_ops->bprm_post_apply_creds(bprm);
  228. }
  229. int security_bprm_set(struct linux_binprm *bprm)
  230. {
  231. return security_ops->bprm_set_security(bprm);
  232. }
  233. int security_bprm_check(struct linux_binprm *bprm)
  234. {
  235. return security_ops->bprm_check_security(bprm);
  236. }
  237. int security_bprm_secureexec(struct linux_binprm *bprm)
  238. {
  239. return security_ops->bprm_secureexec(bprm);
  240. }
  241. int security_sb_alloc(struct super_block *sb)
  242. {
  243. return security_ops->sb_alloc_security(sb);
  244. }
  245. void security_sb_free(struct super_block *sb)
  246. {
  247. security_ops->sb_free_security(sb);
  248. }
  249. int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
  250. {
  251. return security_ops->sb_copy_data(type, orig, copy);
  252. }
  253. int security_sb_kern_mount(struct super_block *sb, void *data)
  254. {
  255. return security_ops->sb_kern_mount(sb, data);
  256. }
  257. int security_sb_statfs(struct dentry *dentry)
  258. {
  259. return security_ops->sb_statfs(dentry);
  260. }
  261. int security_sb_mount(char *dev_name, struct nameidata *nd,
  262. char *type, unsigned long flags, void *data)
  263. {
  264. return security_ops->sb_mount(dev_name, nd, type, flags, data);
  265. }
  266. int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
  267. {
  268. return security_ops->sb_check_sb(mnt, nd);
  269. }
  270. int security_sb_umount(struct vfsmount *mnt, int flags)
  271. {
  272. return security_ops->sb_umount(mnt, flags);
  273. }
  274. void security_sb_umount_close(struct vfsmount *mnt)
  275. {
  276. security_ops->sb_umount_close(mnt);
  277. }
  278. void security_sb_umount_busy(struct vfsmount *mnt)
  279. {
  280. security_ops->sb_umount_busy(mnt);
  281. }
  282. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  283. {
  284. security_ops->sb_post_remount(mnt, flags, data);
  285. }
  286. void security_sb_post_mountroot(void)
  287. {
  288. security_ops->sb_post_mountroot();
  289. }
  290. void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
  291. {
  292. security_ops->sb_post_addmount(mnt, mountpoint_nd);
  293. }
  294. int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  295. {
  296. return security_ops->sb_pivotroot(old_nd, new_nd);
  297. }
  298. void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  299. {
  300. security_ops->sb_post_pivotroot(old_nd, new_nd);
  301. }
  302. int security_inode_alloc(struct inode *inode)
  303. {
  304. inode->i_security = NULL;
  305. return security_ops->inode_alloc_security(inode);
  306. }
  307. void security_inode_free(struct inode *inode)
  308. {
  309. security_ops->inode_free_security(inode);
  310. }
  311. int security_inode_init_security(struct inode *inode, struct inode *dir,
  312. char **name, void **value, size_t *len)
  313. {
  314. if (unlikely(IS_PRIVATE(inode)))
  315. return -EOPNOTSUPP;
  316. return security_ops->inode_init_security(inode, dir, name, value, len);
  317. }
  318. EXPORT_SYMBOL(security_inode_init_security);
  319. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  320. {
  321. if (unlikely(IS_PRIVATE(dir)))
  322. return 0;
  323. return security_ops->inode_create(dir, dentry, mode);
  324. }
  325. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  326. struct dentry *new_dentry)
  327. {
  328. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  329. return 0;
  330. return security_ops->inode_link(old_dentry, dir, new_dentry);
  331. }
  332. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  333. {
  334. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  335. return 0;
  336. return security_ops->inode_unlink(dir, dentry);
  337. }
  338. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  339. const char *old_name)
  340. {
  341. if (unlikely(IS_PRIVATE(dir)))
  342. return 0;
  343. return security_ops->inode_symlink(dir, dentry, old_name);
  344. }
  345. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  346. {
  347. if (unlikely(IS_PRIVATE(dir)))
  348. return 0;
  349. return security_ops->inode_mkdir(dir, dentry, mode);
  350. }
  351. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  352. {
  353. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  354. return 0;
  355. return security_ops->inode_rmdir(dir, dentry);
  356. }
  357. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  358. {
  359. if (unlikely(IS_PRIVATE(dir)))
  360. return 0;
  361. return security_ops->inode_mknod(dir, dentry, mode, dev);
  362. }
  363. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  364. struct inode *new_dir, struct dentry *new_dentry)
  365. {
  366. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  367. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  368. return 0;
  369. return security_ops->inode_rename(old_dir, old_dentry,
  370. new_dir, new_dentry);
  371. }
  372. int security_inode_readlink(struct dentry *dentry)
  373. {
  374. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  375. return 0;
  376. return security_ops->inode_readlink(dentry);
  377. }
  378. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  379. {
  380. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  381. return 0;
  382. return security_ops->inode_follow_link(dentry, nd);
  383. }
  384. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  385. {
  386. if (unlikely(IS_PRIVATE(inode)))
  387. return 0;
  388. return security_ops->inode_permission(inode, mask, nd);
  389. }
  390. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  391. {
  392. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  393. return 0;
  394. return security_ops->inode_setattr(dentry, attr);
  395. }
  396. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  397. {
  398. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  399. return 0;
  400. return security_ops->inode_getattr(mnt, dentry);
  401. }
  402. void security_inode_delete(struct inode *inode)
  403. {
  404. if (unlikely(IS_PRIVATE(inode)))
  405. return;
  406. security_ops->inode_delete(inode);
  407. }
  408. int security_inode_setxattr(struct dentry *dentry, char *name,
  409. void *value, size_t size, int flags)
  410. {
  411. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  412. return 0;
  413. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  414. }
  415. void security_inode_post_setxattr(struct dentry *dentry, char *name,
  416. void *value, size_t size, int flags)
  417. {
  418. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  419. return;
  420. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  421. }
  422. int security_inode_getxattr(struct dentry *dentry, char *name)
  423. {
  424. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  425. return 0;
  426. return security_ops->inode_getxattr(dentry, name);
  427. }
  428. int security_inode_listxattr(struct dentry *dentry)
  429. {
  430. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  431. return 0;
  432. return security_ops->inode_listxattr(dentry);
  433. }
  434. int security_inode_removexattr(struct dentry *dentry, char *name)
  435. {
  436. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  437. return 0;
  438. return security_ops->inode_removexattr(dentry, name);
  439. }
  440. const char *security_inode_xattr_getsuffix(void)
  441. {
  442. return security_ops->inode_xattr_getsuffix();
  443. }
  444. int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
  445. {
  446. if (unlikely(IS_PRIVATE(inode)))
  447. return 0;
  448. return security_ops->inode_getsecurity(inode, name, buffer, size, err);
  449. }
  450. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  451. {
  452. if (unlikely(IS_PRIVATE(inode)))
  453. return 0;
  454. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  455. }
  456. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  457. {
  458. if (unlikely(IS_PRIVATE(inode)))
  459. return 0;
  460. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  461. }
  462. int security_file_permission(struct file *file, int mask)
  463. {
  464. return security_ops->file_permission(file, mask);
  465. }
  466. int security_file_alloc(struct file *file)
  467. {
  468. return security_ops->file_alloc_security(file);
  469. }
  470. void security_file_free(struct file *file)
  471. {
  472. security_ops->file_free_security(file);
  473. }
  474. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  475. {
  476. return security_ops->file_ioctl(file, cmd, arg);
  477. }
  478. int security_file_mmap(struct file *file, unsigned long reqprot,
  479. unsigned long prot, unsigned long flags,
  480. unsigned long addr, unsigned long addr_only)
  481. {
  482. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  483. }
  484. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  485. unsigned long prot)
  486. {
  487. return security_ops->file_mprotect(vma, reqprot, prot);
  488. }
  489. int security_file_lock(struct file *file, unsigned int cmd)
  490. {
  491. return security_ops->file_lock(file, cmd);
  492. }
  493. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  494. {
  495. return security_ops->file_fcntl(file, cmd, arg);
  496. }
  497. int security_file_set_fowner(struct file *file)
  498. {
  499. return security_ops->file_set_fowner(file);
  500. }
  501. int security_file_send_sigiotask(struct task_struct *tsk,
  502. struct fown_struct *fown, int sig)
  503. {
  504. return security_ops->file_send_sigiotask(tsk, fown, sig);
  505. }
  506. int security_file_receive(struct file *file)
  507. {
  508. return security_ops->file_receive(file);
  509. }
  510. int security_dentry_open(struct file *file)
  511. {
  512. return security_ops->dentry_open(file);
  513. }
  514. int security_task_create(unsigned long clone_flags)
  515. {
  516. return security_ops->task_create(clone_flags);
  517. }
  518. int security_task_alloc(struct task_struct *p)
  519. {
  520. return security_ops->task_alloc_security(p);
  521. }
  522. void security_task_free(struct task_struct *p)
  523. {
  524. security_ops->task_free_security(p);
  525. }
  526. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  527. {
  528. return security_ops->task_setuid(id0, id1, id2, flags);
  529. }
  530. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  531. uid_t old_suid, int flags)
  532. {
  533. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  534. }
  535. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  536. {
  537. return security_ops->task_setgid(id0, id1, id2, flags);
  538. }
  539. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  540. {
  541. return security_ops->task_setpgid(p, pgid);
  542. }
  543. int security_task_getpgid(struct task_struct *p)
  544. {
  545. return security_ops->task_getpgid(p);
  546. }
  547. int security_task_getsid(struct task_struct *p)
  548. {
  549. return security_ops->task_getsid(p);
  550. }
  551. void security_task_getsecid(struct task_struct *p, u32 *secid)
  552. {
  553. security_ops->task_getsecid(p, secid);
  554. }
  555. EXPORT_SYMBOL(security_task_getsecid);
  556. int security_task_setgroups(struct group_info *group_info)
  557. {
  558. return security_ops->task_setgroups(group_info);
  559. }
  560. int security_task_setnice(struct task_struct *p, int nice)
  561. {
  562. return security_ops->task_setnice(p, nice);
  563. }
  564. int security_task_setioprio(struct task_struct *p, int ioprio)
  565. {
  566. return security_ops->task_setioprio(p, ioprio);
  567. }
  568. int security_task_getioprio(struct task_struct *p)
  569. {
  570. return security_ops->task_getioprio(p);
  571. }
  572. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  573. {
  574. return security_ops->task_setrlimit(resource, new_rlim);
  575. }
  576. int security_task_setscheduler(struct task_struct *p,
  577. int policy, struct sched_param *lp)
  578. {
  579. return security_ops->task_setscheduler(p, policy, lp);
  580. }
  581. int security_task_getscheduler(struct task_struct *p)
  582. {
  583. return security_ops->task_getscheduler(p);
  584. }
  585. int security_task_movememory(struct task_struct *p)
  586. {
  587. return security_ops->task_movememory(p);
  588. }
  589. int security_task_kill(struct task_struct *p, struct siginfo *info,
  590. int sig, u32 secid)
  591. {
  592. return security_ops->task_kill(p, info, sig, secid);
  593. }
  594. int security_task_wait(struct task_struct *p)
  595. {
  596. return security_ops->task_wait(p);
  597. }
  598. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  599. unsigned long arg4, unsigned long arg5)
  600. {
  601. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  602. }
  603. void security_task_reparent_to_init(struct task_struct *p)
  604. {
  605. security_ops->task_reparent_to_init(p);
  606. }
  607. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  608. {
  609. security_ops->task_to_inode(p, inode);
  610. }
  611. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  612. {
  613. return security_ops->ipc_permission(ipcp, flag);
  614. }
  615. int security_msg_msg_alloc(struct msg_msg *msg)
  616. {
  617. return security_ops->msg_msg_alloc_security(msg);
  618. }
  619. void security_msg_msg_free(struct msg_msg *msg)
  620. {
  621. security_ops->msg_msg_free_security(msg);
  622. }
  623. int security_msg_queue_alloc(struct msg_queue *msq)
  624. {
  625. return security_ops->msg_queue_alloc_security(msq);
  626. }
  627. void security_msg_queue_free(struct msg_queue *msq)
  628. {
  629. security_ops->msg_queue_free_security(msq);
  630. }
  631. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  632. {
  633. return security_ops->msg_queue_associate(msq, msqflg);
  634. }
  635. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  636. {
  637. return security_ops->msg_queue_msgctl(msq, cmd);
  638. }
  639. int security_msg_queue_msgsnd(struct msg_queue *msq,
  640. struct msg_msg *msg, int msqflg)
  641. {
  642. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  643. }
  644. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  645. struct task_struct *target, long type, int mode)
  646. {
  647. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  648. }
  649. int security_shm_alloc(struct shmid_kernel *shp)
  650. {
  651. return security_ops->shm_alloc_security(shp);
  652. }
  653. void security_shm_free(struct shmid_kernel *shp)
  654. {
  655. security_ops->shm_free_security(shp);
  656. }
  657. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  658. {
  659. return security_ops->shm_associate(shp, shmflg);
  660. }
  661. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  662. {
  663. return security_ops->shm_shmctl(shp, cmd);
  664. }
  665. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  666. {
  667. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  668. }
  669. int security_sem_alloc(struct sem_array *sma)
  670. {
  671. return security_ops->sem_alloc_security(sma);
  672. }
  673. void security_sem_free(struct sem_array *sma)
  674. {
  675. security_ops->sem_free_security(sma);
  676. }
  677. int security_sem_associate(struct sem_array *sma, int semflg)
  678. {
  679. return security_ops->sem_associate(sma, semflg);
  680. }
  681. int security_sem_semctl(struct sem_array *sma, int cmd)
  682. {
  683. return security_ops->sem_semctl(sma, cmd);
  684. }
  685. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  686. unsigned nsops, int alter)
  687. {
  688. return security_ops->sem_semop(sma, sops, nsops, alter);
  689. }
  690. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  691. {
  692. if (unlikely(inode && IS_PRIVATE(inode)))
  693. return;
  694. security_ops->d_instantiate(dentry, inode);
  695. }
  696. EXPORT_SYMBOL(security_d_instantiate);
  697. int security_getprocattr(struct task_struct *p, char *name, char **value)
  698. {
  699. return security_ops->getprocattr(p, name, value);
  700. }
  701. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  702. {
  703. return security_ops->setprocattr(p, name, value, size);
  704. }
  705. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  706. {
  707. return security_ops->netlink_send(sk, skb);
  708. }
  709. EXPORT_SYMBOL(security_netlink_send);
  710. int security_netlink_recv(struct sk_buff *skb, int cap)
  711. {
  712. return security_ops->netlink_recv(skb, cap);
  713. }
  714. EXPORT_SYMBOL(security_netlink_recv);
  715. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  716. {
  717. return security_ops->secid_to_secctx(secid, secdata, seclen);
  718. }
  719. EXPORT_SYMBOL(security_secid_to_secctx);
  720. void security_release_secctx(char *secdata, u32 seclen)
  721. {
  722. return security_ops->release_secctx(secdata, seclen);
  723. }
  724. EXPORT_SYMBOL(security_release_secctx);
  725. #ifdef CONFIG_SECURITY_NETWORK
  726. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  727. struct sock *newsk)
  728. {
  729. return security_ops->unix_stream_connect(sock, other, newsk);
  730. }
  731. EXPORT_SYMBOL(security_unix_stream_connect);
  732. int security_unix_may_send(struct socket *sock, struct socket *other)
  733. {
  734. return security_ops->unix_may_send(sock, other);
  735. }
  736. EXPORT_SYMBOL(security_unix_may_send);
  737. int security_socket_create(int family, int type, int protocol, int kern)
  738. {
  739. return security_ops->socket_create(family, type, protocol, kern);
  740. }
  741. int security_socket_post_create(struct socket *sock, int family,
  742. int type, int protocol, int kern)
  743. {
  744. return security_ops->socket_post_create(sock, family, type,
  745. protocol, kern);
  746. }
  747. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  748. {
  749. return security_ops->socket_bind(sock, address, addrlen);
  750. }
  751. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  752. {
  753. return security_ops->socket_connect(sock, address, addrlen);
  754. }
  755. int security_socket_listen(struct socket *sock, int backlog)
  756. {
  757. return security_ops->socket_listen(sock, backlog);
  758. }
  759. int security_socket_accept(struct socket *sock, struct socket *newsock)
  760. {
  761. return security_ops->socket_accept(sock, newsock);
  762. }
  763. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  764. {
  765. security_ops->socket_post_accept(sock, newsock);
  766. }
  767. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  768. {
  769. return security_ops->socket_sendmsg(sock, msg, size);
  770. }
  771. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  772. int size, int flags)
  773. {
  774. return security_ops->socket_recvmsg(sock, msg, size, flags);
  775. }
  776. int security_socket_getsockname(struct socket *sock)
  777. {
  778. return security_ops->socket_getsockname(sock);
  779. }
  780. int security_socket_getpeername(struct socket *sock)
  781. {
  782. return security_ops->socket_getpeername(sock);
  783. }
  784. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  785. {
  786. return security_ops->socket_getsockopt(sock, level, optname);
  787. }
  788. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  789. {
  790. return security_ops->socket_setsockopt(sock, level, optname);
  791. }
  792. int security_socket_shutdown(struct socket *sock, int how)
  793. {
  794. return security_ops->socket_shutdown(sock, how);
  795. }
  796. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  797. {
  798. return security_ops->socket_sock_rcv_skb(sk, skb);
  799. }
  800. EXPORT_SYMBOL(security_sock_rcv_skb);
  801. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  802. int __user *optlen, unsigned len)
  803. {
  804. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  805. }
  806. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  807. {
  808. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  809. }
  810. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  811. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  812. {
  813. return security_ops->sk_alloc_security(sk, family, priority);
  814. }
  815. void security_sk_free(struct sock *sk)
  816. {
  817. return security_ops->sk_free_security(sk);
  818. }
  819. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  820. {
  821. return security_ops->sk_clone_security(sk, newsk);
  822. }
  823. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  824. {
  825. security_ops->sk_getsecid(sk, &fl->secid);
  826. }
  827. EXPORT_SYMBOL(security_sk_classify_flow);
  828. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  829. {
  830. security_ops->req_classify_flow(req, fl);
  831. }
  832. EXPORT_SYMBOL(security_req_classify_flow);
  833. void security_sock_graft(struct sock *sk, struct socket *parent)
  834. {
  835. security_ops->sock_graft(sk, parent);
  836. }
  837. EXPORT_SYMBOL(security_sock_graft);
  838. int security_inet_conn_request(struct sock *sk,
  839. struct sk_buff *skb, struct request_sock *req)
  840. {
  841. return security_ops->inet_conn_request(sk, skb, req);
  842. }
  843. EXPORT_SYMBOL(security_inet_conn_request);
  844. void security_inet_csk_clone(struct sock *newsk,
  845. const struct request_sock *req)
  846. {
  847. security_ops->inet_csk_clone(newsk, req);
  848. }
  849. void security_inet_conn_established(struct sock *sk,
  850. struct sk_buff *skb)
  851. {
  852. security_ops->inet_conn_established(sk, skb);
  853. }
  854. #endif /* CONFIG_SECURITY_NETWORK */
  855. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  856. int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
  857. {
  858. return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
  859. }
  860. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  861. int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
  862. {
  863. return security_ops->xfrm_policy_clone_security(old, new);
  864. }
  865. void security_xfrm_policy_free(struct xfrm_policy *xp)
  866. {
  867. security_ops->xfrm_policy_free_security(xp);
  868. }
  869. EXPORT_SYMBOL(security_xfrm_policy_free);
  870. int security_xfrm_policy_delete(struct xfrm_policy *xp)
  871. {
  872. return security_ops->xfrm_policy_delete_security(xp);
  873. }
  874. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  875. {
  876. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  877. }
  878. EXPORT_SYMBOL(security_xfrm_state_alloc);
  879. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  880. struct xfrm_sec_ctx *polsec, u32 secid)
  881. {
  882. if (!polsec)
  883. return 0;
  884. /*
  885. * We want the context to be taken from secid which is usually
  886. * from the sock.
  887. */
  888. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  889. }
  890. int security_xfrm_state_delete(struct xfrm_state *x)
  891. {
  892. return security_ops->xfrm_state_delete_security(x);
  893. }
  894. EXPORT_SYMBOL(security_xfrm_state_delete);
  895. void security_xfrm_state_free(struct xfrm_state *x)
  896. {
  897. security_ops->xfrm_state_free_security(x);
  898. }
  899. int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
  900. {
  901. return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
  902. }
  903. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  904. struct xfrm_policy *xp, struct flowi *fl)
  905. {
  906. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  907. }
  908. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  909. {
  910. return security_ops->xfrm_decode_session(skb, secid, 1);
  911. }
  912. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  913. {
  914. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  915. BUG_ON(rc);
  916. }
  917. EXPORT_SYMBOL(security_skb_classify_flow);
  918. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  919. #ifdef CONFIG_KEYS
  920. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  921. {
  922. return security_ops->key_alloc(key, tsk, flags);
  923. }
  924. void security_key_free(struct key *key)
  925. {
  926. security_ops->key_free(key);
  927. }
  928. int security_key_permission(key_ref_t key_ref,
  929. struct task_struct *context, key_perm_t perm)
  930. {
  931. return security_ops->key_permission(key_ref, context, perm);
  932. }
  933. #endif /* CONFIG_KEYS */