mlme.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "rate.h"
  32. #include "led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define ERP_INFO_USE_PROTECTION BIT(1)
  54. /* mgmt header + 1 byte action code */
  55. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  56. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  57. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  58. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  59. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  60. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  61. /* next values represent the buffer size for A-MPDU frame.
  62. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  63. #define IEEE80211_MIN_AMPDU_BUF 0x8
  64. #define IEEE80211_MAX_AMPDU_BUF 0x40
  65. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  66. u8 *ssid, size_t ssid_len);
  67. static struct ieee80211_sta_bss *
  68. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  69. u8 *ssid, u8 ssid_len);
  70. static void ieee80211_rx_bss_put(struct net_device *dev,
  71. struct ieee80211_sta_bss *bss);
  72. static int ieee80211_sta_find_ibss(struct net_device *dev,
  73. struct ieee80211_if_sta *ifsta);
  74. static int ieee80211_sta_wep_configured(struct net_device *dev);
  75. static int ieee80211_sta_start_scan(struct net_device *dev,
  76. u8 *ssid, size_t ssid_len);
  77. static int ieee80211_sta_config_auth(struct net_device *dev,
  78. struct ieee80211_if_sta *ifsta);
  79. void ieee802_11_parse_elems(u8 *start, size_t len,
  80. struct ieee802_11_elems *elems)
  81. {
  82. size_t left = len;
  83. u8 *pos = start;
  84. memset(elems, 0, sizeof(*elems));
  85. while (left >= 2) {
  86. u8 id, elen;
  87. id = *pos++;
  88. elen = *pos++;
  89. left -= 2;
  90. if (elen > left)
  91. return;
  92. switch (id) {
  93. case WLAN_EID_SSID:
  94. elems->ssid = pos;
  95. elems->ssid_len = elen;
  96. break;
  97. case WLAN_EID_SUPP_RATES:
  98. elems->supp_rates = pos;
  99. elems->supp_rates_len = elen;
  100. break;
  101. case WLAN_EID_FH_PARAMS:
  102. elems->fh_params = pos;
  103. elems->fh_params_len = elen;
  104. break;
  105. case WLAN_EID_DS_PARAMS:
  106. elems->ds_params = pos;
  107. elems->ds_params_len = elen;
  108. break;
  109. case WLAN_EID_CF_PARAMS:
  110. elems->cf_params = pos;
  111. elems->cf_params_len = elen;
  112. break;
  113. case WLAN_EID_TIM:
  114. elems->tim = pos;
  115. elems->tim_len = elen;
  116. break;
  117. case WLAN_EID_IBSS_PARAMS:
  118. elems->ibss_params = pos;
  119. elems->ibss_params_len = elen;
  120. break;
  121. case WLAN_EID_CHALLENGE:
  122. elems->challenge = pos;
  123. elems->challenge_len = elen;
  124. break;
  125. case WLAN_EID_WPA:
  126. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  127. pos[2] == 0xf2) {
  128. /* Microsoft OUI (00:50:F2) */
  129. if (pos[3] == 1) {
  130. /* OUI Type 1 - WPA IE */
  131. elems->wpa = pos;
  132. elems->wpa_len = elen;
  133. } else if (elen >= 5 && pos[3] == 2) {
  134. if (pos[4] == 0) {
  135. elems->wmm_info = pos;
  136. elems->wmm_info_len = elen;
  137. } else if (pos[4] == 1) {
  138. elems->wmm_param = pos;
  139. elems->wmm_param_len = elen;
  140. }
  141. }
  142. }
  143. break;
  144. case WLAN_EID_RSN:
  145. elems->rsn = pos;
  146. elems->rsn_len = elen;
  147. break;
  148. case WLAN_EID_ERP_INFO:
  149. elems->erp_info = pos;
  150. elems->erp_info_len = elen;
  151. break;
  152. case WLAN_EID_EXT_SUPP_RATES:
  153. elems->ext_supp_rates = pos;
  154. elems->ext_supp_rates_len = elen;
  155. break;
  156. case WLAN_EID_HT_CAPABILITY:
  157. elems->ht_cap_elem = pos;
  158. elems->ht_cap_elem_len = elen;
  159. break;
  160. case WLAN_EID_HT_EXTRA_INFO:
  161. elems->ht_info_elem = pos;
  162. elems->ht_info_elem_len = elen;
  163. break;
  164. case WLAN_EID_MESH_ID:
  165. elems->mesh_id = pos;
  166. elems->mesh_id_len = elen;
  167. break;
  168. case WLAN_EID_MESH_CONFIG:
  169. elems->mesh_config = pos;
  170. elems->mesh_config_len = elen;
  171. break;
  172. case WLAN_EID_PEER_LINK:
  173. elems->peer_link = pos;
  174. elems->peer_link_len = elen;
  175. break;
  176. case WLAN_EID_PREQ:
  177. elems->preq = pos;
  178. elems->preq_len = elen;
  179. break;
  180. case WLAN_EID_PREP:
  181. elems->prep = pos;
  182. elems->prep_len = elen;
  183. break;
  184. case WLAN_EID_PERR:
  185. elems->perr = pos;
  186. elems->perr_len = elen;
  187. break;
  188. default:
  189. break;
  190. }
  191. left -= elen;
  192. pos += elen;
  193. }
  194. }
  195. static int ecw2cw(int ecw)
  196. {
  197. return (1 << ecw) - 1;
  198. }
  199. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  200. struct ieee80211_sta_bss *bss,
  201. int ibss)
  202. {
  203. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  204. struct ieee80211_local *local = sdata->local;
  205. int i, have_higher_than_11mbit = 0;
  206. /* cf. IEEE 802.11 9.2.12 */
  207. for (i = 0; i < bss->supp_rates_len; i++)
  208. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  209. have_higher_than_11mbit = 1;
  210. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  211. have_higher_than_11mbit)
  212. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  213. else
  214. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  215. if (local->ops->conf_tx) {
  216. struct ieee80211_tx_queue_params qparam;
  217. memset(&qparam, 0, sizeof(qparam));
  218. qparam.aifs = 2;
  219. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  220. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  221. qparam.cw_min = 31;
  222. else
  223. qparam.cw_min = 15;
  224. qparam.cw_max = 1023;
  225. qparam.txop = 0;
  226. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  227. local->ops->conf_tx(local_to_hw(local),
  228. i + IEEE80211_TX_QUEUE_DATA0,
  229. &qparam);
  230. if (ibss) {
  231. /* IBSS uses different parameters for Beacon sending */
  232. qparam.cw_min++;
  233. qparam.cw_min *= 2;
  234. qparam.cw_min--;
  235. local->ops->conf_tx(local_to_hw(local),
  236. IEEE80211_TX_QUEUE_BEACON, &qparam);
  237. }
  238. }
  239. }
  240. static void ieee80211_sta_wmm_params(struct net_device *dev,
  241. struct ieee80211_if_sta *ifsta,
  242. u8 *wmm_param, size_t wmm_param_len)
  243. {
  244. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  245. struct ieee80211_tx_queue_params params;
  246. size_t left;
  247. int count;
  248. u8 *pos;
  249. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  250. return;
  251. count = wmm_param[6] & 0x0f;
  252. if (count == ifsta->wmm_last_param_set)
  253. return;
  254. ifsta->wmm_last_param_set = count;
  255. pos = wmm_param + 8;
  256. left = wmm_param_len - 8;
  257. memset(&params, 0, sizeof(params));
  258. if (!local->ops->conf_tx)
  259. return;
  260. local->wmm_acm = 0;
  261. for (; left >= 4; left -= 4, pos += 4) {
  262. int aci = (pos[0] >> 5) & 0x03;
  263. int acm = (pos[0] >> 4) & 0x01;
  264. int queue;
  265. switch (aci) {
  266. case 1:
  267. queue = IEEE80211_TX_QUEUE_DATA3;
  268. if (acm) {
  269. local->wmm_acm |= BIT(0) | BIT(3);
  270. }
  271. break;
  272. case 2:
  273. queue = IEEE80211_TX_QUEUE_DATA1;
  274. if (acm) {
  275. local->wmm_acm |= BIT(4) | BIT(5);
  276. }
  277. break;
  278. case 3:
  279. queue = IEEE80211_TX_QUEUE_DATA0;
  280. if (acm) {
  281. local->wmm_acm |= BIT(6) | BIT(7);
  282. }
  283. break;
  284. case 0:
  285. default:
  286. queue = IEEE80211_TX_QUEUE_DATA2;
  287. if (acm) {
  288. local->wmm_acm |= BIT(1) | BIT(2);
  289. }
  290. break;
  291. }
  292. params.aifs = pos[0] & 0x0f;
  293. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  294. params.cw_min = ecw2cw(pos[1] & 0x0f);
  295. params.txop = pos[2] | (pos[3] << 8);
  296. #ifdef CONFIG_MAC80211_DEBUG
  297. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  298. "cWmin=%d cWmax=%d txop=%d\n",
  299. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  300. params.cw_max, params.txop);
  301. #endif
  302. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  303. * AC for now) */
  304. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  305. printk(KERN_DEBUG "%s: failed to set TX queue "
  306. "parameters for queue %d\n", dev->name, queue);
  307. }
  308. }
  309. }
  310. static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
  311. bool use_protection,
  312. bool use_short_preamble)
  313. {
  314. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  315. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  316. DECLARE_MAC_BUF(mac);
  317. u32 changed = 0;
  318. if (use_protection != bss_conf->use_cts_prot) {
  319. if (net_ratelimit()) {
  320. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  321. "%s)\n",
  322. sdata->dev->name,
  323. use_protection ? "enabled" : "disabled",
  324. print_mac(mac, ifsta->bssid));
  325. }
  326. bss_conf->use_cts_prot = use_protection;
  327. changed |= BSS_CHANGED_ERP_CTS_PROT;
  328. }
  329. if (use_short_preamble != bss_conf->use_short_preamble) {
  330. if (net_ratelimit()) {
  331. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  332. " (BSSID=%s)\n",
  333. sdata->dev->name,
  334. use_short_preamble ? "short" : "long",
  335. print_mac(mac, ifsta->bssid));
  336. }
  337. bss_conf->use_short_preamble = use_short_preamble;
  338. changed |= BSS_CHANGED_ERP_PREAMBLE;
  339. }
  340. return changed;
  341. }
  342. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  343. u8 erp_value)
  344. {
  345. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  346. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  347. return ieee80211_handle_protect_preamb(sdata,
  348. use_protection, use_short_preamble);
  349. }
  350. static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
  351. struct ieee80211_sta_bss *bss)
  352. {
  353. u32 changed = 0;
  354. if (bss->has_erp_value)
  355. changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
  356. else {
  357. u16 capab = bss->capability;
  358. changed |= ieee80211_handle_protect_preamb(sdata, false,
  359. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  360. }
  361. return changed;
  362. }
  363. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  364. struct ieee80211_ht_info *ht_info)
  365. {
  366. if (ht_info == NULL)
  367. return -EINVAL;
  368. memset(ht_info, 0, sizeof(*ht_info));
  369. if (ht_cap_ie) {
  370. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  371. ht_info->ht_supported = 1;
  372. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  373. ht_info->ampdu_factor =
  374. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  375. ht_info->ampdu_density =
  376. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  377. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  378. } else
  379. ht_info->ht_supported = 0;
  380. return 0;
  381. }
  382. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  383. struct ieee80211_ht_addt_info *ht_add_info_ie,
  384. struct ieee80211_ht_bss_info *bss_info)
  385. {
  386. if (bss_info == NULL)
  387. return -EINVAL;
  388. memset(bss_info, 0, sizeof(*bss_info));
  389. if (ht_add_info_ie) {
  390. u16 op_mode;
  391. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  392. bss_info->primary_channel = ht_add_info_ie->control_chan;
  393. bss_info->bss_cap = ht_add_info_ie->ht_param;
  394. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  395. }
  396. return 0;
  397. }
  398. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  399. struct ieee80211_if_sta *ifsta)
  400. {
  401. char *buf;
  402. size_t len;
  403. int i;
  404. union iwreq_data wrqu;
  405. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  406. return;
  407. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  408. ifsta->assocresp_ies_len), GFP_KERNEL);
  409. if (!buf)
  410. return;
  411. len = sprintf(buf, "ASSOCINFO(");
  412. if (ifsta->assocreq_ies) {
  413. len += sprintf(buf + len, "ReqIEs=");
  414. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  415. len += sprintf(buf + len, "%02x",
  416. ifsta->assocreq_ies[i]);
  417. }
  418. }
  419. if (ifsta->assocresp_ies) {
  420. if (ifsta->assocreq_ies)
  421. len += sprintf(buf + len, " ");
  422. len += sprintf(buf + len, "RespIEs=");
  423. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  424. len += sprintf(buf + len, "%02x",
  425. ifsta->assocresp_ies[i]);
  426. }
  427. }
  428. len += sprintf(buf + len, ")");
  429. if (len > IW_CUSTOM_MAX) {
  430. len = sprintf(buf, "ASSOCRESPIE=");
  431. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  432. len += sprintf(buf + len, "%02x",
  433. ifsta->assocresp_ies[i]);
  434. }
  435. }
  436. memset(&wrqu, 0, sizeof(wrqu));
  437. wrqu.data.length = len;
  438. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  439. kfree(buf);
  440. }
  441. static void ieee80211_set_associated(struct net_device *dev,
  442. struct ieee80211_if_sta *ifsta,
  443. bool assoc)
  444. {
  445. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  446. struct ieee80211_local *local = sdata->local;
  447. struct ieee80211_conf *conf = &local_to_hw(local)->conf;
  448. union iwreq_data wrqu;
  449. u32 changed = BSS_CHANGED_ASSOC;
  450. if (assoc) {
  451. struct ieee80211_sta_bss *bss;
  452. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  453. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  454. return;
  455. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  456. conf->channel->center_freq,
  457. ifsta->ssid, ifsta->ssid_len);
  458. if (bss) {
  459. /* set timing information */
  460. sdata->bss_conf.beacon_int = bss->beacon_int;
  461. sdata->bss_conf.timestamp = bss->timestamp;
  462. changed |= ieee80211_handle_bss_capability(sdata, bss);
  463. ieee80211_rx_bss_put(dev, bss);
  464. }
  465. if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  466. changed |= BSS_CHANGED_HT;
  467. sdata->bss_conf.assoc_ht = 1;
  468. sdata->bss_conf.ht_conf = &conf->ht_conf;
  469. sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
  470. }
  471. netif_carrier_on(dev);
  472. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  473. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  474. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  475. ieee80211_sta_send_associnfo(dev, ifsta);
  476. } else {
  477. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  478. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  479. netif_carrier_off(dev);
  480. ieee80211_reset_erp_info(dev);
  481. sdata->bss_conf.assoc_ht = 0;
  482. sdata->bss_conf.ht_conf = NULL;
  483. sdata->bss_conf.ht_bss_conf = NULL;
  484. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  485. }
  486. ifsta->last_probe = jiffies;
  487. ieee80211_led_assoc(local, assoc);
  488. sdata->bss_conf.assoc = assoc;
  489. ieee80211_bss_info_change_notify(sdata, changed);
  490. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  491. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  492. }
  493. static void ieee80211_set_disassoc(struct net_device *dev,
  494. struct ieee80211_if_sta *ifsta, int deauth)
  495. {
  496. if (deauth)
  497. ifsta->auth_tries = 0;
  498. ifsta->assoc_tries = 0;
  499. ieee80211_set_associated(dev, ifsta, 0);
  500. }
  501. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  502. int encrypt)
  503. {
  504. struct ieee80211_sub_if_data *sdata;
  505. struct ieee80211_tx_packet_data *pkt_data;
  506. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  507. skb->dev = sdata->local->mdev;
  508. skb_set_mac_header(skb, 0);
  509. skb_set_network_header(skb, 0);
  510. skb_set_transport_header(skb, 0);
  511. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  512. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  513. pkt_data->ifindex = sdata->dev->ifindex;
  514. if (!encrypt)
  515. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  516. dev_queue_xmit(skb);
  517. }
  518. static void ieee80211_send_auth(struct net_device *dev,
  519. struct ieee80211_if_sta *ifsta,
  520. int transaction, u8 *extra, size_t extra_len,
  521. int encrypt)
  522. {
  523. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  524. struct sk_buff *skb;
  525. struct ieee80211_mgmt *mgmt;
  526. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  527. sizeof(*mgmt) + 6 + extra_len);
  528. if (!skb) {
  529. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  530. "frame\n", dev->name);
  531. return;
  532. }
  533. skb_reserve(skb, local->hw.extra_tx_headroom);
  534. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  535. memset(mgmt, 0, 24 + 6);
  536. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  537. IEEE80211_STYPE_AUTH);
  538. if (encrypt)
  539. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  540. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  541. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  542. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  543. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  544. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  545. ifsta->auth_transaction = transaction + 1;
  546. mgmt->u.auth.status_code = cpu_to_le16(0);
  547. if (extra)
  548. memcpy(skb_put(skb, extra_len), extra, extra_len);
  549. ieee80211_sta_tx(dev, skb, encrypt);
  550. }
  551. static void ieee80211_authenticate(struct net_device *dev,
  552. struct ieee80211_if_sta *ifsta)
  553. {
  554. DECLARE_MAC_BUF(mac);
  555. ifsta->auth_tries++;
  556. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  557. printk(KERN_DEBUG "%s: authentication with AP %s"
  558. " timed out\n",
  559. dev->name, print_mac(mac, ifsta->bssid));
  560. ifsta->state = IEEE80211_DISABLED;
  561. return;
  562. }
  563. ifsta->state = IEEE80211_AUTHENTICATE;
  564. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  565. dev->name, print_mac(mac, ifsta->bssid));
  566. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  567. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  568. }
  569. static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
  570. struct ieee80211_supported_band *sband,
  571. u64 *rates)
  572. {
  573. int i, j, count;
  574. *rates = 0;
  575. count = 0;
  576. for (i = 0; i < bss->supp_rates_len; i++) {
  577. int rate = (bss->supp_rates[i] & 0x7F) * 5;
  578. for (j = 0; j < sband->n_bitrates; j++)
  579. if (sband->bitrates[j].bitrate == rate) {
  580. *rates |= BIT(j);
  581. count++;
  582. break;
  583. }
  584. }
  585. return count;
  586. }
  587. static void ieee80211_send_assoc(struct net_device *dev,
  588. struct ieee80211_if_sta *ifsta)
  589. {
  590. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  591. struct sk_buff *skb;
  592. struct ieee80211_mgmt *mgmt;
  593. u8 *pos, *ies;
  594. int i, len, count, rates_len, supp_rates_len;
  595. u16 capab;
  596. struct ieee80211_sta_bss *bss;
  597. int wmm = 0;
  598. struct ieee80211_supported_band *sband;
  599. u64 rates = 0;
  600. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  601. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  602. ifsta->ssid_len);
  603. if (!skb) {
  604. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  605. "frame\n", dev->name);
  606. return;
  607. }
  608. skb_reserve(skb, local->hw.extra_tx_headroom);
  609. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  610. capab = ifsta->capab;
  611. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  612. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  613. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  614. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  615. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  616. }
  617. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  618. local->hw.conf.channel->center_freq,
  619. ifsta->ssid, ifsta->ssid_len);
  620. if (bss) {
  621. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  622. capab |= WLAN_CAPABILITY_PRIVACY;
  623. if (bss->wmm_ie) {
  624. wmm = 1;
  625. }
  626. /* get all rates supported by the device and the AP as
  627. * some APs don't like getting a superset of their rates
  628. * in the association request (e.g. D-Link DAP 1353 in
  629. * b-only mode) */
  630. rates_len = ieee80211_compatible_rates(bss, sband, &rates);
  631. ieee80211_rx_bss_put(dev, bss);
  632. } else {
  633. rates = ~0;
  634. rates_len = sband->n_bitrates;
  635. }
  636. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  637. memset(mgmt, 0, 24);
  638. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  639. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  640. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  641. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  642. skb_put(skb, 10);
  643. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  644. IEEE80211_STYPE_REASSOC_REQ);
  645. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  646. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  647. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  648. ETH_ALEN);
  649. } else {
  650. skb_put(skb, 4);
  651. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  652. IEEE80211_STYPE_ASSOC_REQ);
  653. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  654. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  655. }
  656. /* SSID */
  657. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  658. *pos++ = WLAN_EID_SSID;
  659. *pos++ = ifsta->ssid_len;
  660. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  661. /* add all rates which were marked to be used above */
  662. supp_rates_len = rates_len;
  663. if (supp_rates_len > 8)
  664. supp_rates_len = 8;
  665. len = sband->n_bitrates;
  666. pos = skb_put(skb, supp_rates_len + 2);
  667. *pos++ = WLAN_EID_SUPP_RATES;
  668. *pos++ = supp_rates_len;
  669. count = 0;
  670. for (i = 0; i < sband->n_bitrates; i++) {
  671. if (BIT(i) & rates) {
  672. int rate = sband->bitrates[i].bitrate;
  673. *pos++ = (u8) (rate / 5);
  674. if (++count == 8)
  675. break;
  676. }
  677. }
  678. if (count == 8) {
  679. pos = skb_put(skb, rates_len - count + 2);
  680. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  681. *pos++ = rates_len - count;
  682. for (i++; i < sband->n_bitrates; i++) {
  683. if (BIT(i) & rates) {
  684. int rate = sband->bitrates[i].bitrate;
  685. *pos++ = (u8) (rate / 5);
  686. }
  687. }
  688. }
  689. if (ifsta->extra_ie) {
  690. pos = skb_put(skb, ifsta->extra_ie_len);
  691. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  692. }
  693. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  694. pos = skb_put(skb, 9);
  695. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  696. *pos++ = 7; /* len */
  697. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  698. *pos++ = 0x50;
  699. *pos++ = 0xf2;
  700. *pos++ = 2; /* WME */
  701. *pos++ = 0; /* WME info */
  702. *pos++ = 1; /* WME ver */
  703. *pos++ = 0;
  704. }
  705. /* wmm support is a must to HT */
  706. if (wmm && sband->ht_info.ht_supported) {
  707. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  708. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  709. *pos++ = WLAN_EID_HT_CAPABILITY;
  710. *pos++ = sizeof(struct ieee80211_ht_cap);
  711. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  712. memcpy(pos, &tmp, sizeof(u16));
  713. pos += sizeof(u16);
  714. /* TODO: needs a define here for << 2 */
  715. *pos++ = sband->ht_info.ampdu_factor |
  716. (sband->ht_info.ampdu_density << 2);
  717. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  718. }
  719. kfree(ifsta->assocreq_ies);
  720. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  721. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  722. if (ifsta->assocreq_ies)
  723. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  724. ieee80211_sta_tx(dev, skb, 0);
  725. }
  726. static void ieee80211_send_deauth(struct net_device *dev,
  727. struct ieee80211_if_sta *ifsta, u16 reason)
  728. {
  729. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  730. struct sk_buff *skb;
  731. struct ieee80211_mgmt *mgmt;
  732. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  733. if (!skb) {
  734. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  735. "frame\n", dev->name);
  736. return;
  737. }
  738. skb_reserve(skb, local->hw.extra_tx_headroom);
  739. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  740. memset(mgmt, 0, 24);
  741. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  742. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  743. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  744. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  745. IEEE80211_STYPE_DEAUTH);
  746. skb_put(skb, 2);
  747. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  748. ieee80211_sta_tx(dev, skb, 0);
  749. }
  750. static void ieee80211_send_disassoc(struct net_device *dev,
  751. struct ieee80211_if_sta *ifsta, u16 reason)
  752. {
  753. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  754. struct sk_buff *skb;
  755. struct ieee80211_mgmt *mgmt;
  756. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  757. if (!skb) {
  758. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  759. "frame\n", dev->name);
  760. return;
  761. }
  762. skb_reserve(skb, local->hw.extra_tx_headroom);
  763. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  764. memset(mgmt, 0, 24);
  765. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  766. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  767. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  768. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  769. IEEE80211_STYPE_DISASSOC);
  770. skb_put(skb, 2);
  771. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  772. ieee80211_sta_tx(dev, skb, 0);
  773. }
  774. static int ieee80211_privacy_mismatch(struct net_device *dev,
  775. struct ieee80211_if_sta *ifsta)
  776. {
  777. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  778. struct ieee80211_sta_bss *bss;
  779. int bss_privacy;
  780. int wep_privacy;
  781. int privacy_invoked;
  782. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  783. return 0;
  784. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  785. local->hw.conf.channel->center_freq,
  786. ifsta->ssid, ifsta->ssid_len);
  787. if (!bss)
  788. return 0;
  789. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  790. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  791. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  792. ieee80211_rx_bss_put(dev, bss);
  793. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  794. return 0;
  795. return 1;
  796. }
  797. static void ieee80211_associate(struct net_device *dev,
  798. struct ieee80211_if_sta *ifsta)
  799. {
  800. DECLARE_MAC_BUF(mac);
  801. ifsta->assoc_tries++;
  802. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  803. printk(KERN_DEBUG "%s: association with AP %s"
  804. " timed out\n",
  805. dev->name, print_mac(mac, ifsta->bssid));
  806. ifsta->state = IEEE80211_DISABLED;
  807. return;
  808. }
  809. ifsta->state = IEEE80211_ASSOCIATE;
  810. printk(KERN_DEBUG "%s: associate with AP %s\n",
  811. dev->name, print_mac(mac, ifsta->bssid));
  812. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  813. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  814. "mixed-cell disabled - abort association\n", dev->name);
  815. ifsta->state = IEEE80211_DISABLED;
  816. return;
  817. }
  818. ieee80211_send_assoc(dev, ifsta);
  819. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  820. }
  821. static void ieee80211_associated(struct net_device *dev,
  822. struct ieee80211_if_sta *ifsta)
  823. {
  824. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  825. struct sta_info *sta;
  826. int disassoc;
  827. DECLARE_MAC_BUF(mac);
  828. /* TODO: start monitoring current AP signal quality and number of
  829. * missed beacons. Scan other channels every now and then and search
  830. * for better APs. */
  831. /* TODO: remove expired BSSes */
  832. ifsta->state = IEEE80211_ASSOCIATED;
  833. rcu_read_lock();
  834. sta = sta_info_get(local, ifsta->bssid);
  835. if (!sta) {
  836. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  837. dev->name, print_mac(mac, ifsta->bssid));
  838. disassoc = 1;
  839. } else {
  840. disassoc = 0;
  841. if (time_after(jiffies,
  842. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  843. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  844. printk(KERN_DEBUG "%s: No ProbeResp from "
  845. "current AP %s - assume out of "
  846. "range\n",
  847. dev->name, print_mac(mac, ifsta->bssid));
  848. disassoc = 1;
  849. sta_info_unlink(&sta);
  850. } else
  851. ieee80211_send_probe_req(dev, ifsta->bssid,
  852. local->scan_ssid,
  853. local->scan_ssid_len);
  854. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  855. } else {
  856. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  857. if (time_after(jiffies, ifsta->last_probe +
  858. IEEE80211_PROBE_INTERVAL)) {
  859. ifsta->last_probe = jiffies;
  860. ieee80211_send_probe_req(dev, ifsta->bssid,
  861. ifsta->ssid,
  862. ifsta->ssid_len);
  863. }
  864. }
  865. }
  866. rcu_read_unlock();
  867. if (disassoc && sta)
  868. sta_info_destroy(sta);
  869. if (disassoc) {
  870. ifsta->state = IEEE80211_DISABLED;
  871. ieee80211_set_associated(dev, ifsta, 0);
  872. } else {
  873. mod_timer(&ifsta->timer, jiffies +
  874. IEEE80211_MONITORING_INTERVAL);
  875. }
  876. }
  877. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  878. u8 *ssid, size_t ssid_len)
  879. {
  880. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  881. struct ieee80211_supported_band *sband;
  882. struct sk_buff *skb;
  883. struct ieee80211_mgmt *mgmt;
  884. u8 *pos, *supp_rates, *esupp_rates = NULL;
  885. int i;
  886. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  887. if (!skb) {
  888. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  889. "request\n", dev->name);
  890. return;
  891. }
  892. skb_reserve(skb, local->hw.extra_tx_headroom);
  893. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  894. memset(mgmt, 0, 24);
  895. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  896. IEEE80211_STYPE_PROBE_REQ);
  897. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  898. if (dst) {
  899. memcpy(mgmt->da, dst, ETH_ALEN);
  900. memcpy(mgmt->bssid, dst, ETH_ALEN);
  901. } else {
  902. memset(mgmt->da, 0xff, ETH_ALEN);
  903. memset(mgmt->bssid, 0xff, ETH_ALEN);
  904. }
  905. pos = skb_put(skb, 2 + ssid_len);
  906. *pos++ = WLAN_EID_SSID;
  907. *pos++ = ssid_len;
  908. memcpy(pos, ssid, ssid_len);
  909. supp_rates = skb_put(skb, 2);
  910. supp_rates[0] = WLAN_EID_SUPP_RATES;
  911. supp_rates[1] = 0;
  912. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  913. for (i = 0; i < sband->n_bitrates; i++) {
  914. struct ieee80211_rate *rate = &sband->bitrates[i];
  915. if (esupp_rates) {
  916. pos = skb_put(skb, 1);
  917. esupp_rates[1]++;
  918. } else if (supp_rates[1] == 8) {
  919. esupp_rates = skb_put(skb, 3);
  920. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  921. esupp_rates[1] = 1;
  922. pos = &esupp_rates[2];
  923. } else {
  924. pos = skb_put(skb, 1);
  925. supp_rates[1]++;
  926. }
  927. *pos = rate->bitrate / 5;
  928. }
  929. ieee80211_sta_tx(dev, skb, 0);
  930. }
  931. static int ieee80211_sta_wep_configured(struct net_device *dev)
  932. {
  933. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  934. if (!sdata || !sdata->default_key ||
  935. sdata->default_key->conf.alg != ALG_WEP)
  936. return 0;
  937. return 1;
  938. }
  939. static void ieee80211_auth_completed(struct net_device *dev,
  940. struct ieee80211_if_sta *ifsta)
  941. {
  942. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  943. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  944. ieee80211_associate(dev, ifsta);
  945. }
  946. static void ieee80211_auth_challenge(struct net_device *dev,
  947. struct ieee80211_if_sta *ifsta,
  948. struct ieee80211_mgmt *mgmt,
  949. size_t len)
  950. {
  951. u8 *pos;
  952. struct ieee802_11_elems elems;
  953. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  954. pos = mgmt->u.auth.variable;
  955. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  956. if (!elems.challenge) {
  957. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  958. "frame\n", dev->name);
  959. return;
  960. }
  961. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  962. elems.challenge_len + 2, 1);
  963. }
  964. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  965. u8 dialog_token, u16 status, u16 policy,
  966. u16 buf_size, u16 timeout)
  967. {
  968. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  969. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  970. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  971. struct sk_buff *skb;
  972. struct ieee80211_mgmt *mgmt;
  973. u16 capab;
  974. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  975. sizeof(mgmt->u.action.u.addba_resp));
  976. if (!skb) {
  977. printk(KERN_DEBUG "%s: failed to allocate buffer "
  978. "for addba resp frame\n", dev->name);
  979. return;
  980. }
  981. skb_reserve(skb, local->hw.extra_tx_headroom);
  982. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  983. memset(mgmt, 0, 24);
  984. memcpy(mgmt->da, da, ETH_ALEN);
  985. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  986. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  987. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  988. else
  989. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  990. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  991. IEEE80211_STYPE_ACTION);
  992. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  993. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  994. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  995. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  996. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  997. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  998. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  999. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  1000. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  1001. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  1002. ieee80211_sta_tx(dev, skb, 0);
  1003. return;
  1004. }
  1005. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  1006. u16 tid, u8 dialog_token, u16 start_seq_num,
  1007. u16 agg_size, u16 timeout)
  1008. {
  1009. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1010. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1011. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1012. struct sk_buff *skb;
  1013. struct ieee80211_mgmt *mgmt;
  1014. u16 capab;
  1015. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1016. sizeof(mgmt->u.action.u.addba_req));
  1017. if (!skb) {
  1018. printk(KERN_ERR "%s: failed to allocate buffer "
  1019. "for addba request frame\n", dev->name);
  1020. return;
  1021. }
  1022. skb_reserve(skb, local->hw.extra_tx_headroom);
  1023. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1024. memset(mgmt, 0, 24);
  1025. memcpy(mgmt->da, da, ETH_ALEN);
  1026. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1027. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1028. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1029. else
  1030. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1031. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1032. IEEE80211_STYPE_ACTION);
  1033. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  1034. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1035. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  1036. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  1037. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  1038. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  1039. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  1040. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  1041. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  1042. mgmt->u.action.u.addba_req.start_seq_num =
  1043. cpu_to_le16(start_seq_num << 4);
  1044. ieee80211_sta_tx(dev, skb, 0);
  1045. }
  1046. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  1047. struct ieee80211_mgmt *mgmt,
  1048. size_t len)
  1049. {
  1050. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1051. struct ieee80211_hw *hw = &local->hw;
  1052. struct ieee80211_conf *conf = &hw->conf;
  1053. struct sta_info *sta;
  1054. struct tid_ampdu_rx *tid_agg_rx;
  1055. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  1056. u8 dialog_token;
  1057. int ret = -EOPNOTSUPP;
  1058. DECLARE_MAC_BUF(mac);
  1059. rcu_read_lock();
  1060. sta = sta_info_get(local, mgmt->sa);
  1061. if (!sta) {
  1062. rcu_read_unlock();
  1063. return;
  1064. }
  1065. /* extract session parameters from addba request frame */
  1066. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1067. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1068. start_seq_num =
  1069. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1070. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1071. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1072. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1073. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1074. status = WLAN_STATUS_REQUEST_DECLINED;
  1075. /* sanity check for incoming parameters:
  1076. * check if configuration can support the BA policy
  1077. * and if buffer size does not exceeds max value */
  1078. if (((ba_policy != 1)
  1079. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1080. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1081. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1082. #ifdef CONFIG_MAC80211_HT_DEBUG
  1083. if (net_ratelimit())
  1084. printk(KERN_DEBUG "AddBA Req with bad params from "
  1085. "%s on tid %u. policy %d, buffer size %d\n",
  1086. print_mac(mac, mgmt->sa), tid, ba_policy,
  1087. buf_size);
  1088. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1089. goto end_no_lock;
  1090. }
  1091. /* determine default buffer size */
  1092. if (buf_size == 0) {
  1093. struct ieee80211_supported_band *sband;
  1094. sband = local->hw.wiphy->bands[conf->channel->band];
  1095. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1096. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1097. }
  1098. /* examine state machine */
  1099. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1100. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1101. #ifdef CONFIG_MAC80211_HT_DEBUG
  1102. if (net_ratelimit())
  1103. printk(KERN_DEBUG "unexpected AddBA Req from "
  1104. "%s on tid %u\n",
  1105. print_mac(mac, mgmt->sa), tid);
  1106. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1107. goto end;
  1108. }
  1109. /* prepare A-MPDU MLME for Rx aggregation */
  1110. sta->ampdu_mlme.tid_rx[tid] =
  1111. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1112. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1113. if (net_ratelimit())
  1114. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1115. tid);
  1116. goto end;
  1117. }
  1118. /* rx timer */
  1119. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1120. sta_rx_agg_session_timer_expired;
  1121. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1122. (unsigned long)&sta->timer_to_tid[tid];
  1123. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1124. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1125. /* prepare reordering buffer */
  1126. tid_agg_rx->reorder_buf =
  1127. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1128. if (!tid_agg_rx->reorder_buf) {
  1129. if (net_ratelimit())
  1130. printk(KERN_ERR "can not allocate reordering buffer "
  1131. "to tid %d\n", tid);
  1132. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1133. goto end;
  1134. }
  1135. memset(tid_agg_rx->reorder_buf, 0,
  1136. buf_size * sizeof(struct sk_buf *));
  1137. if (local->ops->ampdu_action)
  1138. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1139. sta->addr, tid, &start_seq_num);
  1140. #ifdef CONFIG_MAC80211_HT_DEBUG
  1141. printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
  1142. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1143. if (ret) {
  1144. kfree(tid_agg_rx->reorder_buf);
  1145. kfree(tid_agg_rx);
  1146. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1147. goto end;
  1148. }
  1149. /* change state and send addba resp */
  1150. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1151. tid_agg_rx->dialog_token = dialog_token;
  1152. tid_agg_rx->ssn = start_seq_num;
  1153. tid_agg_rx->head_seq_num = start_seq_num;
  1154. tid_agg_rx->buf_size = buf_size;
  1155. tid_agg_rx->timeout = timeout;
  1156. tid_agg_rx->stored_mpdu_num = 0;
  1157. status = WLAN_STATUS_SUCCESS;
  1158. end:
  1159. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1160. end_no_lock:
  1161. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1162. dialog_token, status, 1, buf_size, timeout);
  1163. rcu_read_unlock();
  1164. }
  1165. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1166. struct ieee80211_mgmt *mgmt,
  1167. size_t len)
  1168. {
  1169. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1170. struct ieee80211_hw *hw = &local->hw;
  1171. struct sta_info *sta;
  1172. u16 capab;
  1173. u16 tid;
  1174. u8 *state;
  1175. rcu_read_lock();
  1176. sta = sta_info_get(local, mgmt->sa);
  1177. if (!sta) {
  1178. rcu_read_unlock();
  1179. return;
  1180. }
  1181. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1182. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1183. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1184. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1185. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1186. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1187. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1188. "%d\n", *state);
  1189. goto addba_resp_exit;
  1190. }
  1191. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1192. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1193. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1194. #ifdef CONFIG_MAC80211_HT_DEBUG
  1195. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1196. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1197. goto addba_resp_exit;
  1198. }
  1199. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1200. #ifdef CONFIG_MAC80211_HT_DEBUG
  1201. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1202. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1203. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1204. == WLAN_STATUS_SUCCESS) {
  1205. if (*state & HT_ADDBA_RECEIVED_MSK)
  1206. printk(KERN_DEBUG "double addBA response\n");
  1207. *state |= HT_ADDBA_RECEIVED_MSK;
  1208. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1209. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1210. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1211. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1212. }
  1213. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1214. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1215. } else {
  1216. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1217. sta->ampdu_mlme.addba_req_num[tid]++;
  1218. /* this will allow the state check in stop_BA_session */
  1219. *state = HT_AGG_STATE_OPERATIONAL;
  1220. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1221. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1222. WLAN_BACK_INITIATOR);
  1223. }
  1224. addba_resp_exit:
  1225. rcu_read_unlock();
  1226. }
  1227. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1228. u16 initiator, u16 reason_code)
  1229. {
  1230. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1231. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1232. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1233. struct sk_buff *skb;
  1234. struct ieee80211_mgmt *mgmt;
  1235. u16 params;
  1236. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1237. sizeof(mgmt->u.action.u.delba));
  1238. if (!skb) {
  1239. printk(KERN_ERR "%s: failed to allocate buffer "
  1240. "for delba frame\n", dev->name);
  1241. return;
  1242. }
  1243. skb_reserve(skb, local->hw.extra_tx_headroom);
  1244. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1245. memset(mgmt, 0, 24);
  1246. memcpy(mgmt->da, da, ETH_ALEN);
  1247. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1248. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1249. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1250. else
  1251. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1252. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1253. IEEE80211_STYPE_ACTION);
  1254. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1255. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1256. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1257. params = (u16)(initiator << 11); /* bit 11 initiator */
  1258. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1259. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1260. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1261. ieee80211_sta_tx(dev, skb, 0);
  1262. }
  1263. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1264. u16 initiator, u16 reason)
  1265. {
  1266. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1267. struct ieee80211_hw *hw = &local->hw;
  1268. struct sta_info *sta;
  1269. int ret, i;
  1270. DECLARE_MAC_BUF(mac);
  1271. rcu_read_lock();
  1272. sta = sta_info_get(local, ra);
  1273. if (!sta) {
  1274. rcu_read_unlock();
  1275. return;
  1276. }
  1277. /* check if TID is in operational state */
  1278. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1279. if (sta->ampdu_mlme.tid_state_rx[tid]
  1280. != HT_AGG_STATE_OPERATIONAL) {
  1281. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1282. rcu_read_unlock();
  1283. return;
  1284. }
  1285. sta->ampdu_mlme.tid_state_rx[tid] =
  1286. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1287. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1288. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1289. /* stop HW Rx aggregation. ampdu_action existence
  1290. * already verified in session init so we add the BUG_ON */
  1291. BUG_ON(!local->ops->ampdu_action);
  1292. #ifdef CONFIG_MAC80211_HT_DEBUG
  1293. printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n",
  1294. print_mac(mac, ra), tid);
  1295. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1296. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1297. ra, tid, NULL);
  1298. if (ret)
  1299. printk(KERN_DEBUG "HW problem - can not stop rx "
  1300. "aggergation for tid %d\n", tid);
  1301. /* shutdown timer has not expired */
  1302. if (initiator != WLAN_BACK_TIMER)
  1303. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1304. /* check if this is a self generated aggregation halt */
  1305. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1306. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1307. /* free the reordering buffer */
  1308. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1309. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1310. /* release the reordered frames */
  1311. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1312. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1313. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1314. }
  1315. }
  1316. /* free resources */
  1317. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1318. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1319. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1320. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1321. rcu_read_unlock();
  1322. }
  1323. static void ieee80211_sta_process_delba(struct net_device *dev,
  1324. struct ieee80211_mgmt *mgmt, size_t len)
  1325. {
  1326. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1327. struct sta_info *sta;
  1328. u16 tid, params;
  1329. u16 initiator;
  1330. DECLARE_MAC_BUF(mac);
  1331. rcu_read_lock();
  1332. sta = sta_info_get(local, mgmt->sa);
  1333. if (!sta) {
  1334. rcu_read_unlock();
  1335. return;
  1336. }
  1337. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1338. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1339. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1340. #ifdef CONFIG_MAC80211_HT_DEBUG
  1341. if (net_ratelimit())
  1342. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1343. print_mac(mac, mgmt->sa),
  1344. initiator ? "initiator" : "recipient", tid,
  1345. mgmt->u.action.u.delba.reason_code);
  1346. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1347. if (initiator == WLAN_BACK_INITIATOR)
  1348. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1349. WLAN_BACK_INITIATOR, 0);
  1350. else { /* WLAN_BACK_RECIPIENT */
  1351. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1352. sta->ampdu_mlme.tid_state_tx[tid] =
  1353. HT_AGG_STATE_OPERATIONAL;
  1354. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1355. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1356. WLAN_BACK_RECIPIENT);
  1357. }
  1358. rcu_read_unlock();
  1359. }
  1360. /*
  1361. * After sending add Block Ack request we activated a timer until
  1362. * add Block Ack response will arrive from the recipient.
  1363. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1364. */
  1365. void sta_addba_resp_timer_expired(unsigned long data)
  1366. {
  1367. /* not an elegant detour, but there is no choice as the timer passes
  1368. * only one argument, and both sta_info and TID are needed, so init
  1369. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1370. * array gives the sta through container_of */
  1371. u16 tid = *(int *)data;
  1372. struct sta_info *temp_sta = container_of((void *)data,
  1373. struct sta_info, timer_to_tid[tid]);
  1374. struct ieee80211_local *local = temp_sta->local;
  1375. struct ieee80211_hw *hw = &local->hw;
  1376. struct sta_info *sta;
  1377. u8 *state;
  1378. rcu_read_lock();
  1379. sta = sta_info_get(local, temp_sta->addr);
  1380. if (!sta) {
  1381. rcu_read_unlock();
  1382. return;
  1383. }
  1384. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1385. /* check if the TID waits for addBA response */
  1386. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1387. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1388. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1389. *state = HT_AGG_STATE_IDLE;
  1390. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1391. "expecting addBA response there", tid);
  1392. goto timer_expired_exit;
  1393. }
  1394. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1395. /* go through the state check in stop_BA_session */
  1396. *state = HT_AGG_STATE_OPERATIONAL;
  1397. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1398. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1399. WLAN_BACK_INITIATOR);
  1400. timer_expired_exit:
  1401. rcu_read_unlock();
  1402. }
  1403. /*
  1404. * After accepting the AddBA Request we activated a timer,
  1405. * resetting it after each frame that arrives from the originator.
  1406. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1407. */
  1408. void sta_rx_agg_session_timer_expired(unsigned long data)
  1409. {
  1410. /* not an elegant detour, but there is no choice as the timer passes
  1411. * only one argument, and verious sta_info are needed here, so init
  1412. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1413. * array gives the sta through container_of */
  1414. u8 *ptid = (u8 *)data;
  1415. u8 *timer_to_id = ptid - *ptid;
  1416. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1417. timer_to_tid[0]);
  1418. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1419. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1420. (u16)*ptid, WLAN_BACK_TIMER,
  1421. WLAN_REASON_QSTA_TIMEOUT);
  1422. }
  1423. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1424. {
  1425. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1426. int i;
  1427. for (i = 0; i < STA_TID_NUM; i++) {
  1428. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1429. WLAN_BACK_INITIATOR);
  1430. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1431. WLAN_BACK_RECIPIENT,
  1432. WLAN_REASON_QSTA_LEAVE_QBSS);
  1433. }
  1434. }
  1435. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1436. struct ieee80211_if_sta *ifsta,
  1437. struct ieee80211_mgmt *mgmt,
  1438. size_t len)
  1439. {
  1440. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1441. u16 auth_alg, auth_transaction, status_code;
  1442. DECLARE_MAC_BUF(mac);
  1443. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1444. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1445. printk(KERN_DEBUG "%s: authentication frame received from "
  1446. "%s, but not in authenticate state - ignored\n",
  1447. dev->name, print_mac(mac, mgmt->sa));
  1448. return;
  1449. }
  1450. if (len < 24 + 6) {
  1451. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1452. "received from %s - ignored\n",
  1453. dev->name, len, print_mac(mac, mgmt->sa));
  1454. return;
  1455. }
  1456. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1457. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1458. printk(KERN_DEBUG "%s: authentication frame received from "
  1459. "unknown AP (SA=%s BSSID=%s) - "
  1460. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1461. print_mac(mac, mgmt->bssid));
  1462. return;
  1463. }
  1464. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1465. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1466. printk(KERN_DEBUG "%s: authentication frame received from "
  1467. "unknown BSSID (SA=%s BSSID=%s) - "
  1468. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1469. print_mac(mac, mgmt->bssid));
  1470. return;
  1471. }
  1472. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1473. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1474. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1475. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1476. "transaction=%d status=%d)\n",
  1477. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1478. auth_transaction, status_code);
  1479. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1480. /* IEEE 802.11 standard does not require authentication in IBSS
  1481. * networks and most implementations do not seem to use it.
  1482. * However, try to reply to authentication attempts if someone
  1483. * has actually implemented this.
  1484. * TODO: Could implement shared key authentication. */
  1485. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1486. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1487. "frame (alg=%d transaction=%d)\n",
  1488. dev->name, auth_alg, auth_transaction);
  1489. return;
  1490. }
  1491. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1492. }
  1493. if (auth_alg != ifsta->auth_alg ||
  1494. auth_transaction != ifsta->auth_transaction) {
  1495. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1496. "(alg=%d transaction=%d)\n",
  1497. dev->name, auth_alg, auth_transaction);
  1498. return;
  1499. }
  1500. if (status_code != WLAN_STATUS_SUCCESS) {
  1501. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1502. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1503. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1504. u8 algs[3];
  1505. const int num_algs = ARRAY_SIZE(algs);
  1506. int i, pos;
  1507. algs[0] = algs[1] = algs[2] = 0xff;
  1508. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1509. algs[0] = WLAN_AUTH_OPEN;
  1510. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1511. algs[1] = WLAN_AUTH_SHARED_KEY;
  1512. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1513. algs[2] = WLAN_AUTH_LEAP;
  1514. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1515. pos = 0;
  1516. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1517. pos = 1;
  1518. else
  1519. pos = 2;
  1520. for (i = 0; i < num_algs; i++) {
  1521. pos++;
  1522. if (pos >= num_algs)
  1523. pos = 0;
  1524. if (algs[pos] == ifsta->auth_alg ||
  1525. algs[pos] == 0xff)
  1526. continue;
  1527. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1528. !ieee80211_sta_wep_configured(dev))
  1529. continue;
  1530. ifsta->auth_alg = algs[pos];
  1531. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1532. "next try\n",
  1533. dev->name, ifsta->auth_alg);
  1534. break;
  1535. }
  1536. }
  1537. return;
  1538. }
  1539. switch (ifsta->auth_alg) {
  1540. case WLAN_AUTH_OPEN:
  1541. case WLAN_AUTH_LEAP:
  1542. ieee80211_auth_completed(dev, ifsta);
  1543. break;
  1544. case WLAN_AUTH_SHARED_KEY:
  1545. if (ifsta->auth_transaction == 4)
  1546. ieee80211_auth_completed(dev, ifsta);
  1547. else
  1548. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1549. break;
  1550. }
  1551. }
  1552. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1553. struct ieee80211_if_sta *ifsta,
  1554. struct ieee80211_mgmt *mgmt,
  1555. size_t len)
  1556. {
  1557. u16 reason_code;
  1558. DECLARE_MAC_BUF(mac);
  1559. if (len < 24 + 2) {
  1560. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1561. "received from %s - ignored\n",
  1562. dev->name, len, print_mac(mac, mgmt->sa));
  1563. return;
  1564. }
  1565. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1566. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1567. "unknown AP (SA=%s BSSID=%s) - "
  1568. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1569. print_mac(mac, mgmt->bssid));
  1570. return;
  1571. }
  1572. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1573. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1574. " (reason=%d)\n",
  1575. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1576. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1577. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1578. }
  1579. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1580. ifsta->state == IEEE80211_ASSOCIATE ||
  1581. ifsta->state == IEEE80211_ASSOCIATED) {
  1582. ifsta->state = IEEE80211_AUTHENTICATE;
  1583. mod_timer(&ifsta->timer, jiffies +
  1584. IEEE80211_RETRY_AUTH_INTERVAL);
  1585. }
  1586. ieee80211_set_disassoc(dev, ifsta, 1);
  1587. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1588. }
  1589. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1590. struct ieee80211_if_sta *ifsta,
  1591. struct ieee80211_mgmt *mgmt,
  1592. size_t len)
  1593. {
  1594. u16 reason_code;
  1595. DECLARE_MAC_BUF(mac);
  1596. if (len < 24 + 2) {
  1597. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1598. "received from %s - ignored\n",
  1599. dev->name, len, print_mac(mac, mgmt->sa));
  1600. return;
  1601. }
  1602. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1603. printk(KERN_DEBUG "%s: disassociation frame received from "
  1604. "unknown AP (SA=%s BSSID=%s) - "
  1605. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1606. print_mac(mac, mgmt->bssid));
  1607. return;
  1608. }
  1609. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1610. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1611. " (reason=%d)\n",
  1612. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1613. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1614. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1615. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1616. ifsta->state = IEEE80211_ASSOCIATE;
  1617. mod_timer(&ifsta->timer, jiffies +
  1618. IEEE80211_RETRY_AUTH_INTERVAL);
  1619. }
  1620. ieee80211_set_disassoc(dev, ifsta, 0);
  1621. }
  1622. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1623. struct ieee80211_if_sta *ifsta,
  1624. struct ieee80211_mgmt *mgmt,
  1625. size_t len,
  1626. int reassoc)
  1627. {
  1628. struct ieee80211_local *local = sdata->local;
  1629. struct net_device *dev = sdata->dev;
  1630. struct ieee80211_supported_band *sband;
  1631. struct sta_info *sta;
  1632. u64 rates, basic_rates;
  1633. u16 capab_info, status_code, aid;
  1634. struct ieee802_11_elems elems;
  1635. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1636. u8 *pos;
  1637. int i, j;
  1638. DECLARE_MAC_BUF(mac);
  1639. bool have_higher_than_11mbit = false;
  1640. /* AssocResp and ReassocResp have identical structure, so process both
  1641. * of them in this function. */
  1642. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1643. printk(KERN_DEBUG "%s: association frame received from "
  1644. "%s, but not in associate state - ignored\n",
  1645. dev->name, print_mac(mac, mgmt->sa));
  1646. return;
  1647. }
  1648. if (len < 24 + 6) {
  1649. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1650. "received from %s - ignored\n",
  1651. dev->name, len, print_mac(mac, mgmt->sa));
  1652. return;
  1653. }
  1654. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1655. printk(KERN_DEBUG "%s: association frame received from "
  1656. "unknown AP (SA=%s BSSID=%s) - "
  1657. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1658. print_mac(mac, mgmt->bssid));
  1659. return;
  1660. }
  1661. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1662. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1663. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1664. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1665. "status=%d aid=%d)\n",
  1666. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1667. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1668. if (status_code != WLAN_STATUS_SUCCESS) {
  1669. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1670. dev->name, status_code);
  1671. /* if this was a reassociation, ensure we try a "full"
  1672. * association next time. This works around some broken APs
  1673. * which do not correctly reject reassociation requests. */
  1674. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1675. return;
  1676. }
  1677. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1678. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1679. "set\n", dev->name, aid);
  1680. aid &= ~(BIT(15) | BIT(14));
  1681. pos = mgmt->u.assoc_resp.variable;
  1682. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1683. if (!elems.supp_rates) {
  1684. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1685. dev->name);
  1686. return;
  1687. }
  1688. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1689. ifsta->aid = aid;
  1690. ifsta->ap_capab = capab_info;
  1691. kfree(ifsta->assocresp_ies);
  1692. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1693. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1694. if (ifsta->assocresp_ies)
  1695. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1696. rcu_read_lock();
  1697. /* Add STA entry for the AP */
  1698. sta = sta_info_get(local, ifsta->bssid);
  1699. if (!sta) {
  1700. struct ieee80211_sta_bss *bss;
  1701. int err;
  1702. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1703. if (!sta) {
  1704. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1705. " the AP\n", dev->name);
  1706. rcu_read_unlock();
  1707. return;
  1708. }
  1709. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1710. local->hw.conf.channel->center_freq,
  1711. ifsta->ssid, ifsta->ssid_len);
  1712. if (bss) {
  1713. sta->last_rssi = bss->rssi;
  1714. sta->last_signal = bss->signal;
  1715. sta->last_noise = bss->noise;
  1716. ieee80211_rx_bss_put(dev, bss);
  1717. }
  1718. err = sta_info_insert(sta);
  1719. if (err) {
  1720. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1721. " the AP (error %d)\n", dev->name, err);
  1722. rcu_read_unlock();
  1723. return;
  1724. }
  1725. }
  1726. /*
  1727. * FIXME: Do we really need to update the sta_info's information here?
  1728. * We already know about the AP (we found it in our list) so it
  1729. * should already be filled with the right info, no?
  1730. * As is stands, all this is racy because typically we assume
  1731. * the information that is filled in here (except flags) doesn't
  1732. * change while a STA structure is alive. As such, it should move
  1733. * to between the sta_info_alloc() and sta_info_insert() above.
  1734. */
  1735. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1736. WLAN_STA_AUTHORIZED;
  1737. rates = 0;
  1738. basic_rates = 0;
  1739. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1740. for (i = 0; i < elems.supp_rates_len; i++) {
  1741. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1742. if (rate > 110)
  1743. have_higher_than_11mbit = true;
  1744. for (j = 0; j < sband->n_bitrates; j++) {
  1745. if (sband->bitrates[j].bitrate == rate)
  1746. rates |= BIT(j);
  1747. if (elems.supp_rates[i] & 0x80)
  1748. basic_rates |= BIT(j);
  1749. }
  1750. }
  1751. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1752. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1753. if (rate > 110)
  1754. have_higher_than_11mbit = true;
  1755. for (j = 0; j < sband->n_bitrates; j++) {
  1756. if (sband->bitrates[j].bitrate == rate)
  1757. rates |= BIT(j);
  1758. if (elems.ext_supp_rates[i] & 0x80)
  1759. basic_rates |= BIT(j);
  1760. }
  1761. }
  1762. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1763. sdata->basic_rates = basic_rates;
  1764. /* cf. IEEE 802.11 9.2.12 */
  1765. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1766. have_higher_than_11mbit)
  1767. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1768. else
  1769. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1770. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param) {
  1771. struct ieee80211_ht_bss_info bss_info;
  1772. ieee80211_ht_cap_ie_to_ht_info(
  1773. (struct ieee80211_ht_cap *)
  1774. elems.ht_cap_elem, &sta->ht_info);
  1775. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1776. (struct ieee80211_ht_addt_info *)
  1777. elems.ht_info_elem, &bss_info);
  1778. ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
  1779. }
  1780. rate_control_rate_init(sta, local);
  1781. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1782. sta->flags |= WLAN_STA_WME;
  1783. rcu_read_unlock();
  1784. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1785. elems.wmm_param_len);
  1786. } else
  1787. rcu_read_unlock();
  1788. /* set AID and assoc capability,
  1789. * ieee80211_set_associated() will tell the driver */
  1790. bss_conf->aid = aid;
  1791. bss_conf->assoc_capability = capab_info;
  1792. ieee80211_set_associated(dev, ifsta, 1);
  1793. ieee80211_associated(dev, ifsta);
  1794. }
  1795. /* Caller must hold local->sta_bss_lock */
  1796. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1797. struct ieee80211_sta_bss *bss)
  1798. {
  1799. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1800. u8 hash_idx;
  1801. if (bss_mesh_cfg(bss))
  1802. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1803. bss_mesh_id_len(bss));
  1804. else
  1805. hash_idx = STA_HASH(bss->bssid);
  1806. bss->hnext = local->sta_bss_hash[hash_idx];
  1807. local->sta_bss_hash[hash_idx] = bss;
  1808. }
  1809. /* Caller must hold local->sta_bss_lock */
  1810. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1811. struct ieee80211_sta_bss *bss)
  1812. {
  1813. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1814. struct ieee80211_sta_bss *b, *prev = NULL;
  1815. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1816. while (b) {
  1817. if (b == bss) {
  1818. if (!prev)
  1819. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1820. bss->hnext;
  1821. else
  1822. prev->hnext = bss->hnext;
  1823. break;
  1824. }
  1825. prev = b;
  1826. b = b->hnext;
  1827. }
  1828. }
  1829. static struct ieee80211_sta_bss *
  1830. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1831. u8 *ssid, u8 ssid_len)
  1832. {
  1833. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1834. struct ieee80211_sta_bss *bss;
  1835. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1836. if (!bss)
  1837. return NULL;
  1838. atomic_inc(&bss->users);
  1839. atomic_inc(&bss->users);
  1840. memcpy(bss->bssid, bssid, ETH_ALEN);
  1841. bss->freq = freq;
  1842. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1843. memcpy(bss->ssid, ssid, ssid_len);
  1844. bss->ssid_len = ssid_len;
  1845. }
  1846. spin_lock_bh(&local->sta_bss_lock);
  1847. /* TODO: order by RSSI? */
  1848. list_add_tail(&bss->list, &local->sta_bss_list);
  1849. __ieee80211_rx_bss_hash_add(dev, bss);
  1850. spin_unlock_bh(&local->sta_bss_lock);
  1851. return bss;
  1852. }
  1853. static struct ieee80211_sta_bss *
  1854. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1855. u8 *ssid, u8 ssid_len)
  1856. {
  1857. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1858. struct ieee80211_sta_bss *bss;
  1859. spin_lock_bh(&local->sta_bss_lock);
  1860. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1861. while (bss) {
  1862. if (!bss_mesh_cfg(bss) &&
  1863. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1864. bss->freq == freq &&
  1865. bss->ssid_len == ssid_len &&
  1866. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1867. atomic_inc(&bss->users);
  1868. break;
  1869. }
  1870. bss = bss->hnext;
  1871. }
  1872. spin_unlock_bh(&local->sta_bss_lock);
  1873. return bss;
  1874. }
  1875. #ifdef CONFIG_MAC80211_MESH
  1876. static struct ieee80211_sta_bss *
  1877. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1878. u8 *mesh_cfg, int freq)
  1879. {
  1880. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1881. struct ieee80211_sta_bss *bss;
  1882. spin_lock_bh(&local->sta_bss_lock);
  1883. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1884. while (bss) {
  1885. if (bss_mesh_cfg(bss) &&
  1886. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1887. bss->freq == freq &&
  1888. mesh_id_len == bss->mesh_id_len &&
  1889. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1890. mesh_id_len))) {
  1891. atomic_inc(&bss->users);
  1892. break;
  1893. }
  1894. bss = bss->hnext;
  1895. }
  1896. spin_unlock_bh(&local->sta_bss_lock);
  1897. return bss;
  1898. }
  1899. static struct ieee80211_sta_bss *
  1900. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1901. u8 *mesh_cfg, int mesh_config_len, int freq)
  1902. {
  1903. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1904. struct ieee80211_sta_bss *bss;
  1905. if (mesh_config_len != MESH_CFG_LEN)
  1906. return NULL;
  1907. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1908. if (!bss)
  1909. return NULL;
  1910. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1911. if (!bss->mesh_cfg) {
  1912. kfree(bss);
  1913. return NULL;
  1914. }
  1915. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1916. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1917. if (!bss->mesh_id) {
  1918. kfree(bss->mesh_cfg);
  1919. kfree(bss);
  1920. return NULL;
  1921. }
  1922. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1923. }
  1924. atomic_inc(&bss->users);
  1925. atomic_inc(&bss->users);
  1926. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1927. bss->mesh_id_len = mesh_id_len;
  1928. bss->freq = freq;
  1929. spin_lock_bh(&local->sta_bss_lock);
  1930. /* TODO: order by RSSI? */
  1931. list_add_tail(&bss->list, &local->sta_bss_list);
  1932. __ieee80211_rx_bss_hash_add(dev, bss);
  1933. spin_unlock_bh(&local->sta_bss_lock);
  1934. return bss;
  1935. }
  1936. #endif
  1937. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1938. {
  1939. kfree(bss->wpa_ie);
  1940. kfree(bss->rsn_ie);
  1941. kfree(bss->wmm_ie);
  1942. kfree(bss->ht_ie);
  1943. kfree(bss_mesh_id(bss));
  1944. kfree(bss_mesh_cfg(bss));
  1945. kfree(bss);
  1946. }
  1947. static void ieee80211_rx_bss_put(struct net_device *dev,
  1948. struct ieee80211_sta_bss *bss)
  1949. {
  1950. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1951. local_bh_disable();
  1952. if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) {
  1953. local_bh_enable();
  1954. return;
  1955. }
  1956. __ieee80211_rx_bss_hash_del(dev, bss);
  1957. list_del(&bss->list);
  1958. spin_unlock_bh(&local->sta_bss_lock);
  1959. ieee80211_rx_bss_free(bss);
  1960. }
  1961. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1962. {
  1963. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1964. spin_lock_init(&local->sta_bss_lock);
  1965. INIT_LIST_HEAD(&local->sta_bss_list);
  1966. }
  1967. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1968. {
  1969. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1970. struct ieee80211_sta_bss *bss, *tmp;
  1971. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1972. ieee80211_rx_bss_put(dev, bss);
  1973. }
  1974. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1975. struct ieee80211_if_sta *ifsta,
  1976. struct ieee80211_sta_bss *bss)
  1977. {
  1978. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1979. int res, rates, i, j;
  1980. struct sk_buff *skb;
  1981. struct ieee80211_mgmt *mgmt;
  1982. struct ieee80211_tx_control control;
  1983. struct rate_selection ratesel;
  1984. u8 *pos;
  1985. struct ieee80211_sub_if_data *sdata;
  1986. struct ieee80211_supported_band *sband;
  1987. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1988. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1989. /* Remove possible STA entries from other IBSS networks. */
  1990. sta_info_flush_delayed(sdata);
  1991. if (local->ops->reset_tsf) {
  1992. /* Reset own TSF to allow time synchronization work. */
  1993. local->ops->reset_tsf(local_to_hw(local));
  1994. }
  1995. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1996. res = ieee80211_if_config(dev);
  1997. if (res)
  1998. return res;
  1999. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2000. sdata->drop_unencrypted = bss->capability &
  2001. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2002. res = ieee80211_set_freq(local, bss->freq);
  2003. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  2004. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  2005. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  2006. return -1;
  2007. }
  2008. /* Set beacon template */
  2009. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2010. do {
  2011. if (!skb)
  2012. break;
  2013. skb_reserve(skb, local->hw.extra_tx_headroom);
  2014. mgmt = (struct ieee80211_mgmt *)
  2015. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2016. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2017. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2018. IEEE80211_STYPE_BEACON);
  2019. memset(mgmt->da, 0xff, ETH_ALEN);
  2020. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2021. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2022. mgmt->u.beacon.beacon_int =
  2023. cpu_to_le16(local->hw.conf.beacon_int);
  2024. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2025. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2026. *pos++ = WLAN_EID_SSID;
  2027. *pos++ = ifsta->ssid_len;
  2028. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2029. rates = bss->supp_rates_len;
  2030. if (rates > 8)
  2031. rates = 8;
  2032. pos = skb_put(skb, 2 + rates);
  2033. *pos++ = WLAN_EID_SUPP_RATES;
  2034. *pos++ = rates;
  2035. memcpy(pos, bss->supp_rates, rates);
  2036. if (bss->band == IEEE80211_BAND_2GHZ) {
  2037. pos = skb_put(skb, 2 + 1);
  2038. *pos++ = WLAN_EID_DS_PARAMS;
  2039. *pos++ = 1;
  2040. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  2041. }
  2042. pos = skb_put(skb, 2 + 2);
  2043. *pos++ = WLAN_EID_IBSS_PARAMS;
  2044. *pos++ = 2;
  2045. /* FIX: set ATIM window based on scan results */
  2046. *pos++ = 0;
  2047. *pos++ = 0;
  2048. if (bss->supp_rates_len > 8) {
  2049. rates = bss->supp_rates_len - 8;
  2050. pos = skb_put(skb, 2 + rates);
  2051. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2052. *pos++ = rates;
  2053. memcpy(pos, &bss->supp_rates[8], rates);
  2054. }
  2055. memset(&control, 0, sizeof(control));
  2056. rate_control_get_rate(dev, sband, skb, &ratesel);
  2057. if (!ratesel.rate) {
  2058. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2059. "for IBSS beacon\n", dev->name);
  2060. break;
  2061. }
  2062. control.vif = &sdata->vif;
  2063. control.tx_rate = ratesel.rate;
  2064. if (sdata->bss_conf.use_short_preamble &&
  2065. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  2066. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  2067. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2068. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2069. control.retry_limit = 1;
  2070. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2071. if (ifsta->probe_resp) {
  2072. mgmt = (struct ieee80211_mgmt *)
  2073. ifsta->probe_resp->data;
  2074. mgmt->frame_control =
  2075. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2076. IEEE80211_STYPE_PROBE_RESP);
  2077. } else {
  2078. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2079. "template for IBSS\n", dev->name);
  2080. }
  2081. if (local->ops->beacon_update &&
  2082. local->ops->beacon_update(local_to_hw(local),
  2083. skb, &control) == 0) {
  2084. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2085. "template\n", dev->name);
  2086. skb = NULL;
  2087. }
  2088. rates = 0;
  2089. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2090. for (i = 0; i < bss->supp_rates_len; i++) {
  2091. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2092. for (j = 0; j < sband->n_bitrates; j++)
  2093. if (sband->bitrates[j].bitrate == bitrate)
  2094. rates |= BIT(j);
  2095. }
  2096. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2097. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2098. } while (0);
  2099. if (skb) {
  2100. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2101. "template\n", dev->name);
  2102. dev_kfree_skb(skb);
  2103. }
  2104. ifsta->state = IEEE80211_IBSS_JOINED;
  2105. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2106. ieee80211_rx_bss_put(dev, bss);
  2107. return res;
  2108. }
  2109. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2110. struct ieee802_11_elems *elems,
  2111. enum ieee80211_band band)
  2112. {
  2113. struct ieee80211_supported_band *sband;
  2114. struct ieee80211_rate *bitrates;
  2115. size_t num_rates;
  2116. u64 supp_rates;
  2117. int i, j;
  2118. sband = local->hw.wiphy->bands[band];
  2119. if (!sband) {
  2120. WARN_ON(1);
  2121. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2122. }
  2123. bitrates = sband->bitrates;
  2124. num_rates = sband->n_bitrates;
  2125. supp_rates = 0;
  2126. for (i = 0; i < elems->supp_rates_len +
  2127. elems->ext_supp_rates_len; i++) {
  2128. u8 rate = 0;
  2129. int own_rate;
  2130. if (i < elems->supp_rates_len)
  2131. rate = elems->supp_rates[i];
  2132. else if (elems->ext_supp_rates)
  2133. rate = elems->ext_supp_rates
  2134. [i - elems->supp_rates_len];
  2135. own_rate = 5 * (rate & 0x7f);
  2136. for (j = 0; j < num_rates; j++)
  2137. if (bitrates[j].bitrate == own_rate)
  2138. supp_rates |= BIT(j);
  2139. }
  2140. return supp_rates;
  2141. }
  2142. static void ieee80211_rx_bss_info(struct net_device *dev,
  2143. struct ieee80211_mgmt *mgmt,
  2144. size_t len,
  2145. struct ieee80211_rx_status *rx_status,
  2146. int beacon)
  2147. {
  2148. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2149. struct ieee802_11_elems elems;
  2150. size_t baselen;
  2151. int freq, clen;
  2152. struct ieee80211_sta_bss *bss;
  2153. struct sta_info *sta;
  2154. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2155. u64 beacon_timestamp, rx_timestamp;
  2156. struct ieee80211_channel *channel;
  2157. DECLARE_MAC_BUF(mac);
  2158. DECLARE_MAC_BUF(mac2);
  2159. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2160. return; /* ignore ProbeResp to foreign address */
  2161. #if 0
  2162. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2163. dev->name, beacon ? "Beacon" : "Probe Response",
  2164. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2165. #endif
  2166. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2167. if (baselen > len)
  2168. return;
  2169. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2170. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2171. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2172. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2173. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2174. rx_status->band);
  2175. mesh_neighbour_update(mgmt->sa, rates, dev,
  2176. mesh_peer_accepts_plinks(&elems, dev));
  2177. }
  2178. rcu_read_lock();
  2179. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2180. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2181. (sta = sta_info_get(local, mgmt->sa))) {
  2182. u64 prev_rates;
  2183. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2184. rx_status->band);
  2185. prev_rates = sta->supp_rates[rx_status->band];
  2186. sta->supp_rates[rx_status->band] &= supp_rates;
  2187. if (sta->supp_rates[rx_status->band] == 0) {
  2188. /* No matching rates - this should not really happen.
  2189. * Make sure that at least one rate is marked
  2190. * supported to avoid issues with TX rate ctrl. */
  2191. sta->supp_rates[rx_status->band] =
  2192. sdata->u.sta.supp_rates_bits[rx_status->band];
  2193. }
  2194. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2195. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2196. "%s based on beacon info (0x%llx & 0x%llx -> "
  2197. "0x%llx)\n",
  2198. dev->name, print_mac(mac, sta->addr),
  2199. (unsigned long long) prev_rates,
  2200. (unsigned long long) supp_rates,
  2201. (unsigned long long) sta->supp_rates[rx_status->band]);
  2202. }
  2203. }
  2204. rcu_read_unlock();
  2205. if (elems.ds_params && elems.ds_params_len == 1)
  2206. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2207. else
  2208. freq = rx_status->freq;
  2209. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2210. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2211. return;
  2212. #ifdef CONFIG_MAC80211_MESH
  2213. if (elems.mesh_config)
  2214. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2215. elems.mesh_id_len, elems.mesh_config, freq);
  2216. else
  2217. #endif
  2218. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2219. elems.ssid, elems.ssid_len);
  2220. if (!bss) {
  2221. #ifdef CONFIG_MAC80211_MESH
  2222. if (elems.mesh_config)
  2223. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2224. elems.mesh_id_len, elems.mesh_config,
  2225. elems.mesh_config_len, freq);
  2226. else
  2227. #endif
  2228. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2229. elems.ssid, elems.ssid_len);
  2230. if (!bss)
  2231. return;
  2232. } else {
  2233. #if 0
  2234. /* TODO: order by RSSI? */
  2235. spin_lock_bh(&local->sta_bss_lock);
  2236. list_move_tail(&bss->list, &local->sta_bss_list);
  2237. spin_unlock_bh(&local->sta_bss_lock);
  2238. #endif
  2239. }
  2240. /* save the ERP value so that it is available at association time */
  2241. if (elems.erp_info && elems.erp_info_len >= 1) {
  2242. bss->erp_value = elems.erp_info[0];
  2243. bss->has_erp_value = 1;
  2244. }
  2245. if (elems.ht_cap_elem &&
  2246. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2247. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2248. kfree(bss->ht_ie);
  2249. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2250. if (bss->ht_ie) {
  2251. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2252. elems.ht_cap_elem_len + 2);
  2253. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2254. } else
  2255. bss->ht_ie_len = 0;
  2256. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2257. kfree(bss->ht_ie);
  2258. bss->ht_ie = NULL;
  2259. bss->ht_ie_len = 0;
  2260. }
  2261. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2262. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2263. bss->supp_rates_len = 0;
  2264. if (elems.supp_rates) {
  2265. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2266. if (clen > elems.supp_rates_len)
  2267. clen = elems.supp_rates_len;
  2268. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2269. clen);
  2270. bss->supp_rates_len += clen;
  2271. }
  2272. if (elems.ext_supp_rates) {
  2273. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2274. if (clen > elems.ext_supp_rates_len)
  2275. clen = elems.ext_supp_rates_len;
  2276. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2277. elems.ext_supp_rates, clen);
  2278. bss->supp_rates_len += clen;
  2279. }
  2280. bss->band = rx_status->band;
  2281. bss->timestamp = beacon_timestamp;
  2282. bss->last_update = jiffies;
  2283. bss->rssi = rx_status->ssi;
  2284. bss->signal = rx_status->signal;
  2285. bss->noise = rx_status->noise;
  2286. if (!beacon && !bss->probe_resp)
  2287. bss->probe_resp = true;
  2288. /*
  2289. * In STA mode, the remaining parameters should not be overridden
  2290. * by beacons because they're not necessarily accurate there.
  2291. */
  2292. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2293. bss->probe_resp && beacon) {
  2294. ieee80211_rx_bss_put(dev, bss);
  2295. return;
  2296. }
  2297. if (elems.wpa &&
  2298. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2299. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2300. kfree(bss->wpa_ie);
  2301. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2302. if (bss->wpa_ie) {
  2303. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2304. bss->wpa_ie_len = elems.wpa_len + 2;
  2305. } else
  2306. bss->wpa_ie_len = 0;
  2307. } else if (!elems.wpa && bss->wpa_ie) {
  2308. kfree(bss->wpa_ie);
  2309. bss->wpa_ie = NULL;
  2310. bss->wpa_ie_len = 0;
  2311. }
  2312. if (elems.rsn &&
  2313. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2314. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2315. kfree(bss->rsn_ie);
  2316. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2317. if (bss->rsn_ie) {
  2318. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2319. bss->rsn_ie_len = elems.rsn_len + 2;
  2320. } else
  2321. bss->rsn_ie_len = 0;
  2322. } else if (!elems.rsn && bss->rsn_ie) {
  2323. kfree(bss->rsn_ie);
  2324. bss->rsn_ie = NULL;
  2325. bss->rsn_ie_len = 0;
  2326. }
  2327. /*
  2328. * Cf.
  2329. * http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC
  2330. *
  2331. * quoting:
  2332. *
  2333. * In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia
  2334. * Applications with Quality of Service in Wi-Fi Networks," Wi- Fi
  2335. * Alliance (September 1, 2004) is incorporated by reference herein.
  2336. * The inclusion of the WMM Parameters in probe responses and
  2337. * association responses is mandatory for WMM enabled networks. The
  2338. * inclusion of the WMM Parameters in beacons, however, is optional.
  2339. */
  2340. if (elems.wmm_param &&
  2341. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2342. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2343. kfree(bss->wmm_ie);
  2344. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2345. if (bss->wmm_ie) {
  2346. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2347. elems.wmm_param_len + 2);
  2348. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2349. } else
  2350. bss->wmm_ie_len = 0;
  2351. } else if (elems.wmm_info &&
  2352. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_info_len ||
  2353. memcmp(bss->wmm_ie, elems.wmm_info, elems.wmm_info_len))) {
  2354. /* As for certain AP's Fifth bit is not set in WMM IE in
  2355. * beacon frames.So while parsing the beacon frame the
  2356. * wmm_info structure is used instead of wmm_param.
  2357. * wmm_info structure was never used to set bss->wmm_ie.
  2358. * This code fixes this problem by copying the WME
  2359. * information from wmm_info to bss->wmm_ie and enabling
  2360. * n-band association.
  2361. */
  2362. kfree(bss->wmm_ie);
  2363. bss->wmm_ie = kmalloc(elems.wmm_info_len + 2, GFP_ATOMIC);
  2364. if (bss->wmm_ie) {
  2365. memcpy(bss->wmm_ie, elems.wmm_info - 2,
  2366. elems.wmm_info_len + 2);
  2367. bss->wmm_ie_len = elems.wmm_info_len + 2;
  2368. } else
  2369. bss->wmm_ie_len = 0;
  2370. } else if (!elems.wmm_param && !elems.wmm_info && bss->wmm_ie) {
  2371. kfree(bss->wmm_ie);
  2372. bss->wmm_ie = NULL;
  2373. bss->wmm_ie_len = 0;
  2374. }
  2375. /* check if we need to merge IBSS */
  2376. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2377. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2378. bss->capability & WLAN_CAPABILITY_IBSS &&
  2379. bss->freq == local->oper_channel->center_freq &&
  2380. elems.ssid_len == sdata->u.sta.ssid_len &&
  2381. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2382. if (rx_status->flag & RX_FLAG_TSFT) {
  2383. /* in order for correct IBSS merging we need mactime
  2384. *
  2385. * since mactime is defined as the time the first data
  2386. * symbol of the frame hits the PHY, and the timestamp
  2387. * of the beacon is defined as "the time that the data
  2388. * symbol containing the first bit of the timestamp is
  2389. * transmitted to the PHY plus the transmitting STA’s
  2390. * delays through its local PHY from the MAC-PHY
  2391. * interface to its interface with the WM"
  2392. * (802.11 11.1.2) - equals the time this bit arrives at
  2393. * the receiver - we have to take into account the
  2394. * offset between the two.
  2395. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2396. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2397. */
  2398. int rate = local->hw.wiphy->bands[rx_status->band]->
  2399. bitrates[rx_status->rate_idx].bitrate;
  2400. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2401. } else if (local && local->ops && local->ops->get_tsf)
  2402. /* second best option: get current TSF */
  2403. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2404. else
  2405. /* can't merge without knowing the TSF */
  2406. rx_timestamp = -1LLU;
  2407. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2408. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2409. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2410. print_mac(mac, mgmt->sa),
  2411. print_mac(mac2, mgmt->bssid),
  2412. (unsigned long long)rx_timestamp,
  2413. (unsigned long long)beacon_timestamp,
  2414. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2415. jiffies);
  2416. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2417. if (beacon_timestamp > rx_timestamp) {
  2418. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2419. if (net_ratelimit())
  2420. #endif
  2421. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2422. "local TSF - IBSS merge with BSSID %s\n",
  2423. dev->name, print_mac(mac, mgmt->bssid));
  2424. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2425. ieee80211_ibss_add_sta(dev, NULL,
  2426. mgmt->bssid, mgmt->sa);
  2427. }
  2428. }
  2429. ieee80211_rx_bss_put(dev, bss);
  2430. }
  2431. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2432. struct ieee80211_mgmt *mgmt,
  2433. size_t len,
  2434. struct ieee80211_rx_status *rx_status)
  2435. {
  2436. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2437. }
  2438. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2439. struct ieee80211_mgmt *mgmt,
  2440. size_t len,
  2441. struct ieee80211_rx_status *rx_status)
  2442. {
  2443. struct ieee80211_sub_if_data *sdata;
  2444. struct ieee80211_if_sta *ifsta;
  2445. size_t baselen;
  2446. struct ieee802_11_elems elems;
  2447. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2448. struct ieee80211_conf *conf = &local->hw.conf;
  2449. u32 changed = 0;
  2450. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2451. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2452. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2453. return;
  2454. ifsta = &sdata->u.sta;
  2455. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2456. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2457. return;
  2458. /* Process beacon from the current BSS */
  2459. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2460. if (baselen > len)
  2461. return;
  2462. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2463. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2464. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2465. elems.wmm_param_len);
  2466. }
  2467. /* Do not send changes to driver if we are scanning. This removes
  2468. * requirement that driver's bss_info_changed function needs to be
  2469. * atomic. */
  2470. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2471. return;
  2472. if (elems.erp_info && elems.erp_info_len >= 1)
  2473. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2474. else {
  2475. u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
  2476. changed |= ieee80211_handle_protect_preamb(sdata, false,
  2477. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  2478. }
  2479. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2480. elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2481. struct ieee80211_ht_bss_info bss_info;
  2482. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2483. (struct ieee80211_ht_addt_info *)
  2484. elems.ht_info_elem, &bss_info);
  2485. changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
  2486. &bss_info);
  2487. }
  2488. ieee80211_bss_info_change_notify(sdata, changed);
  2489. }
  2490. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2491. struct ieee80211_if_sta *ifsta,
  2492. struct ieee80211_mgmt *mgmt,
  2493. size_t len,
  2494. struct ieee80211_rx_status *rx_status)
  2495. {
  2496. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2497. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2498. int tx_last_beacon;
  2499. struct sk_buff *skb;
  2500. struct ieee80211_mgmt *resp;
  2501. u8 *pos, *end;
  2502. DECLARE_MAC_BUF(mac);
  2503. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2504. DECLARE_MAC_BUF(mac2);
  2505. DECLARE_MAC_BUF(mac3);
  2506. #endif
  2507. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2508. ifsta->state != IEEE80211_IBSS_JOINED ||
  2509. len < 24 + 2 || !ifsta->probe_resp)
  2510. return;
  2511. if (local->ops->tx_last_beacon)
  2512. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2513. else
  2514. tx_last_beacon = 1;
  2515. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2516. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2517. "%s (tx_last_beacon=%d)\n",
  2518. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2519. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2520. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2521. if (!tx_last_beacon)
  2522. return;
  2523. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2524. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2525. return;
  2526. end = ((u8 *) mgmt) + len;
  2527. pos = mgmt->u.probe_req.variable;
  2528. if (pos[0] != WLAN_EID_SSID ||
  2529. pos + 2 + pos[1] > end) {
  2530. if (net_ratelimit()) {
  2531. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2532. "from %s\n",
  2533. dev->name, print_mac(mac, mgmt->sa));
  2534. }
  2535. return;
  2536. }
  2537. if (pos[1] != 0 &&
  2538. (pos[1] != ifsta->ssid_len ||
  2539. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2540. /* Ignore ProbeReq for foreign SSID */
  2541. return;
  2542. }
  2543. /* Reply with ProbeResp */
  2544. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2545. if (!skb)
  2546. return;
  2547. resp = (struct ieee80211_mgmt *) skb->data;
  2548. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2549. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2550. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2551. dev->name, print_mac(mac, resp->da));
  2552. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2553. ieee80211_sta_tx(dev, skb, 0);
  2554. }
  2555. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2556. struct ieee80211_if_sta *ifsta,
  2557. struct ieee80211_mgmt *mgmt,
  2558. size_t len,
  2559. struct ieee80211_rx_status *rx_status)
  2560. {
  2561. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2562. if (len < IEEE80211_MIN_ACTION_SIZE)
  2563. return;
  2564. switch (mgmt->u.action.category) {
  2565. case WLAN_CATEGORY_BACK:
  2566. switch (mgmt->u.action.u.addba_req.action_code) {
  2567. case WLAN_ACTION_ADDBA_REQ:
  2568. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2569. sizeof(mgmt->u.action.u.addba_req)))
  2570. break;
  2571. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2572. break;
  2573. case WLAN_ACTION_ADDBA_RESP:
  2574. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2575. sizeof(mgmt->u.action.u.addba_resp)))
  2576. break;
  2577. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2578. break;
  2579. case WLAN_ACTION_DELBA:
  2580. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2581. sizeof(mgmt->u.action.u.delba)))
  2582. break;
  2583. ieee80211_sta_process_delba(dev, mgmt, len);
  2584. break;
  2585. default:
  2586. if (net_ratelimit())
  2587. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2588. dev->name);
  2589. break;
  2590. }
  2591. break;
  2592. case PLINK_CATEGORY:
  2593. if (ieee80211_vif_is_mesh(&sdata->vif))
  2594. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2595. break;
  2596. case MESH_PATH_SEL_CATEGORY:
  2597. if (ieee80211_vif_is_mesh(&sdata->vif))
  2598. mesh_rx_path_sel_frame(dev, mgmt, len);
  2599. break;
  2600. default:
  2601. if (net_ratelimit())
  2602. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2603. "category=%d\n", dev->name, mgmt->u.action.category);
  2604. break;
  2605. }
  2606. }
  2607. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2608. struct ieee80211_rx_status *rx_status)
  2609. {
  2610. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2611. struct ieee80211_sub_if_data *sdata;
  2612. struct ieee80211_if_sta *ifsta;
  2613. struct ieee80211_mgmt *mgmt;
  2614. u16 fc;
  2615. if (skb->len < 24)
  2616. goto fail;
  2617. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2618. ifsta = &sdata->u.sta;
  2619. mgmt = (struct ieee80211_mgmt *) skb->data;
  2620. fc = le16_to_cpu(mgmt->frame_control);
  2621. switch (fc & IEEE80211_FCTL_STYPE) {
  2622. case IEEE80211_STYPE_PROBE_REQ:
  2623. case IEEE80211_STYPE_PROBE_RESP:
  2624. case IEEE80211_STYPE_BEACON:
  2625. case IEEE80211_STYPE_ACTION:
  2626. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2627. case IEEE80211_STYPE_AUTH:
  2628. case IEEE80211_STYPE_ASSOC_RESP:
  2629. case IEEE80211_STYPE_REASSOC_RESP:
  2630. case IEEE80211_STYPE_DEAUTH:
  2631. case IEEE80211_STYPE_DISASSOC:
  2632. skb_queue_tail(&ifsta->skb_queue, skb);
  2633. queue_work(local->hw.workqueue, &ifsta->work);
  2634. return;
  2635. default:
  2636. printk(KERN_DEBUG "%s: received unknown management frame - "
  2637. "stype=%d\n", dev->name,
  2638. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2639. break;
  2640. }
  2641. fail:
  2642. kfree_skb(skb);
  2643. }
  2644. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2645. struct sk_buff *skb)
  2646. {
  2647. struct ieee80211_rx_status *rx_status;
  2648. struct ieee80211_sub_if_data *sdata;
  2649. struct ieee80211_if_sta *ifsta;
  2650. struct ieee80211_mgmt *mgmt;
  2651. u16 fc;
  2652. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2653. ifsta = &sdata->u.sta;
  2654. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2655. mgmt = (struct ieee80211_mgmt *) skb->data;
  2656. fc = le16_to_cpu(mgmt->frame_control);
  2657. switch (fc & IEEE80211_FCTL_STYPE) {
  2658. case IEEE80211_STYPE_PROBE_REQ:
  2659. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2660. rx_status);
  2661. break;
  2662. case IEEE80211_STYPE_PROBE_RESP:
  2663. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2664. break;
  2665. case IEEE80211_STYPE_BEACON:
  2666. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2667. break;
  2668. case IEEE80211_STYPE_AUTH:
  2669. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2670. break;
  2671. case IEEE80211_STYPE_ASSOC_RESP:
  2672. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2673. break;
  2674. case IEEE80211_STYPE_REASSOC_RESP:
  2675. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2676. break;
  2677. case IEEE80211_STYPE_DEAUTH:
  2678. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2679. break;
  2680. case IEEE80211_STYPE_DISASSOC:
  2681. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2682. break;
  2683. case IEEE80211_STYPE_ACTION:
  2684. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2685. break;
  2686. }
  2687. kfree_skb(skb);
  2688. }
  2689. ieee80211_rx_result
  2690. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2691. struct ieee80211_rx_status *rx_status)
  2692. {
  2693. struct ieee80211_mgmt *mgmt;
  2694. u16 fc;
  2695. if (skb->len < 2)
  2696. return RX_DROP_UNUSABLE;
  2697. mgmt = (struct ieee80211_mgmt *) skb->data;
  2698. fc = le16_to_cpu(mgmt->frame_control);
  2699. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2700. return RX_CONTINUE;
  2701. if (skb->len < 24)
  2702. return RX_DROP_MONITOR;
  2703. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2704. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2705. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2706. skb->len, rx_status);
  2707. dev_kfree_skb(skb);
  2708. return RX_QUEUED;
  2709. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2710. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2711. rx_status);
  2712. dev_kfree_skb(skb);
  2713. return RX_QUEUED;
  2714. }
  2715. }
  2716. return RX_CONTINUE;
  2717. }
  2718. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2719. {
  2720. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2721. int active = 0;
  2722. struct sta_info *sta;
  2723. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2724. rcu_read_lock();
  2725. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2726. if (sta->sdata == sdata &&
  2727. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2728. jiffies)) {
  2729. active++;
  2730. break;
  2731. }
  2732. }
  2733. rcu_read_unlock();
  2734. return active;
  2735. }
  2736. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2737. {
  2738. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2739. struct sta_info *sta, *tmp;
  2740. LIST_HEAD(tmp_list);
  2741. DECLARE_MAC_BUF(mac);
  2742. unsigned long flags;
  2743. spin_lock_irqsave(&local->sta_lock, flags);
  2744. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2745. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2746. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2747. dev->name, print_mac(mac, sta->addr));
  2748. __sta_info_unlink(&sta);
  2749. if (sta)
  2750. list_add(&sta->list, &tmp_list);
  2751. }
  2752. spin_unlock_irqrestore(&local->sta_lock, flags);
  2753. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2754. sta_info_destroy(sta);
  2755. }
  2756. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2757. struct ieee80211_if_sta *ifsta)
  2758. {
  2759. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2760. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2761. if (ieee80211_sta_active_ibss(dev))
  2762. return;
  2763. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2764. "IBSS networks with same SSID (merge)\n", dev->name);
  2765. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2766. }
  2767. #ifdef CONFIG_MAC80211_MESH
  2768. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2769. struct ieee80211_if_sta *ifsta)
  2770. {
  2771. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2772. bool free_plinks;
  2773. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2774. mesh_path_expire(dev);
  2775. free_plinks = mesh_plink_availables(sdata);
  2776. if (free_plinks != sdata->u.sta.accepting_plinks)
  2777. ieee80211_if_config_beacon(dev);
  2778. mod_timer(&ifsta->timer, jiffies +
  2779. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2780. }
  2781. void ieee80211_start_mesh(struct net_device *dev)
  2782. {
  2783. struct ieee80211_if_sta *ifsta;
  2784. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2785. ifsta = &sdata->u.sta;
  2786. ifsta->state = IEEE80211_MESH_UP;
  2787. ieee80211_sta_timer((unsigned long)sdata);
  2788. }
  2789. #endif
  2790. void ieee80211_sta_timer(unsigned long data)
  2791. {
  2792. struct ieee80211_sub_if_data *sdata =
  2793. (struct ieee80211_sub_if_data *) data;
  2794. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2795. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2796. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2797. queue_work(local->hw.workqueue, &ifsta->work);
  2798. }
  2799. void ieee80211_sta_work(struct work_struct *work)
  2800. {
  2801. struct ieee80211_sub_if_data *sdata =
  2802. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2803. struct net_device *dev = sdata->dev;
  2804. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2805. struct ieee80211_if_sta *ifsta;
  2806. struct sk_buff *skb;
  2807. if (!netif_running(dev))
  2808. return;
  2809. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2810. return;
  2811. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2812. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2813. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2814. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2815. "(type=%d)\n", dev->name, sdata->vif.type);
  2816. return;
  2817. }
  2818. ifsta = &sdata->u.sta;
  2819. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2820. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2821. #ifdef CONFIG_MAC80211_MESH
  2822. if (ifsta->preq_queue_len &&
  2823. time_after(jiffies,
  2824. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2825. mesh_path_start_discovery(dev);
  2826. #endif
  2827. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2828. ifsta->state != IEEE80211_ASSOCIATE &&
  2829. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2830. if (ifsta->scan_ssid_len)
  2831. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2832. else
  2833. ieee80211_sta_start_scan(dev, NULL, 0);
  2834. return;
  2835. }
  2836. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2837. if (ieee80211_sta_config_auth(dev, ifsta))
  2838. return;
  2839. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2840. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2841. return;
  2842. switch (ifsta->state) {
  2843. case IEEE80211_DISABLED:
  2844. break;
  2845. case IEEE80211_AUTHENTICATE:
  2846. ieee80211_authenticate(dev, ifsta);
  2847. break;
  2848. case IEEE80211_ASSOCIATE:
  2849. ieee80211_associate(dev, ifsta);
  2850. break;
  2851. case IEEE80211_ASSOCIATED:
  2852. ieee80211_associated(dev, ifsta);
  2853. break;
  2854. case IEEE80211_IBSS_SEARCH:
  2855. ieee80211_sta_find_ibss(dev, ifsta);
  2856. break;
  2857. case IEEE80211_IBSS_JOINED:
  2858. ieee80211_sta_merge_ibss(dev, ifsta);
  2859. break;
  2860. #ifdef CONFIG_MAC80211_MESH
  2861. case IEEE80211_MESH_UP:
  2862. ieee80211_mesh_housekeeping(dev, ifsta);
  2863. break;
  2864. #endif
  2865. default:
  2866. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2867. ifsta->state);
  2868. break;
  2869. }
  2870. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2871. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2872. "mixed-cell disabled - disassociate\n", dev->name);
  2873. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2874. ieee80211_set_disassoc(dev, ifsta, 0);
  2875. }
  2876. }
  2877. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2878. struct ieee80211_if_sta *ifsta)
  2879. {
  2880. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2881. if (local->ops->reset_tsf) {
  2882. /* Reset own TSF to allow time synchronization work. */
  2883. local->ops->reset_tsf(local_to_hw(local));
  2884. }
  2885. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2886. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2887. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2888. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2889. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2890. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2891. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2892. else
  2893. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2894. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2895. ifsta->auth_alg);
  2896. ifsta->auth_transaction = -1;
  2897. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2898. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2899. netif_carrier_off(dev);
  2900. }
  2901. void ieee80211_sta_req_auth(struct net_device *dev,
  2902. struct ieee80211_if_sta *ifsta)
  2903. {
  2904. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2905. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2906. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2907. return;
  2908. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2909. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2910. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2911. IEEE80211_STA_AUTO_SSID_SEL))) {
  2912. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2913. queue_work(local->hw.workqueue, &ifsta->work);
  2914. }
  2915. }
  2916. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2917. const char *ssid, int ssid_len)
  2918. {
  2919. int tmp, hidden_ssid;
  2920. if (ssid_len == ifsta->ssid_len &&
  2921. !memcmp(ifsta->ssid, ssid, ssid_len))
  2922. return 1;
  2923. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2924. return 0;
  2925. hidden_ssid = 1;
  2926. tmp = ssid_len;
  2927. while (tmp--) {
  2928. if (ssid[tmp] != '\0') {
  2929. hidden_ssid = 0;
  2930. break;
  2931. }
  2932. }
  2933. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2934. return 1;
  2935. if (ssid_len == 1 && ssid[0] == ' ')
  2936. return 1;
  2937. return 0;
  2938. }
  2939. static int ieee80211_sta_config_auth(struct net_device *dev,
  2940. struct ieee80211_if_sta *ifsta)
  2941. {
  2942. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2943. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2944. struct ieee80211_sta_bss *bss, *selected = NULL;
  2945. int top_rssi = 0, freq;
  2946. spin_lock_bh(&local->sta_bss_lock);
  2947. freq = local->oper_channel->center_freq;
  2948. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2949. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2950. continue;
  2951. if ((ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2952. IEEE80211_STA_AUTO_BSSID_SEL |
  2953. IEEE80211_STA_AUTO_CHANNEL_SEL)) &&
  2954. (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2955. !!sdata->default_key))
  2956. continue;
  2957. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2958. bss->freq != freq)
  2959. continue;
  2960. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2961. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2962. continue;
  2963. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2964. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2965. continue;
  2966. if (!selected || top_rssi < bss->rssi) {
  2967. selected = bss;
  2968. top_rssi = bss->rssi;
  2969. }
  2970. }
  2971. if (selected)
  2972. atomic_inc(&selected->users);
  2973. spin_unlock_bh(&local->sta_bss_lock);
  2974. if (selected) {
  2975. ieee80211_set_freq(local, selected->freq);
  2976. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2977. ieee80211_sta_set_ssid(dev, selected->ssid,
  2978. selected->ssid_len);
  2979. ieee80211_sta_set_bssid(dev, selected->bssid);
  2980. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2981. ieee80211_rx_bss_put(dev, selected);
  2982. ifsta->state = IEEE80211_AUTHENTICATE;
  2983. ieee80211_sta_reset_auth(dev, ifsta);
  2984. return 0;
  2985. } else {
  2986. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2987. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2988. ieee80211_sta_start_scan(dev, NULL, 0);
  2989. else
  2990. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2991. ifsta->ssid_len);
  2992. ifsta->state = IEEE80211_AUTHENTICATE;
  2993. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2994. } else
  2995. ifsta->state = IEEE80211_DISABLED;
  2996. }
  2997. return -1;
  2998. }
  2999. static int ieee80211_sta_create_ibss(struct net_device *dev,
  3000. struct ieee80211_if_sta *ifsta)
  3001. {
  3002. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3003. struct ieee80211_sta_bss *bss;
  3004. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3005. struct ieee80211_supported_band *sband;
  3006. u8 bssid[ETH_ALEN], *pos;
  3007. int i;
  3008. DECLARE_MAC_BUF(mac);
  3009. #if 0
  3010. /* Easier testing, use fixed BSSID. */
  3011. memset(bssid, 0xfe, ETH_ALEN);
  3012. #else
  3013. /* Generate random, not broadcast, locally administered BSSID. Mix in
  3014. * own MAC address to make sure that devices that do not have proper
  3015. * random number generator get different BSSID. */
  3016. get_random_bytes(bssid, ETH_ALEN);
  3017. for (i = 0; i < ETH_ALEN; i++)
  3018. bssid[i] ^= dev->dev_addr[i];
  3019. bssid[0] &= ~0x01;
  3020. bssid[0] |= 0x02;
  3021. #endif
  3022. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  3023. dev->name, print_mac(mac, bssid));
  3024. bss = ieee80211_rx_bss_add(dev, bssid,
  3025. local->hw.conf.channel->center_freq,
  3026. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  3027. if (!bss)
  3028. return -ENOMEM;
  3029. bss->band = local->hw.conf.channel->band;
  3030. sband = local->hw.wiphy->bands[bss->band];
  3031. if (local->hw.conf.beacon_int == 0)
  3032. local->hw.conf.beacon_int = 10000;
  3033. bss->beacon_int = local->hw.conf.beacon_int;
  3034. bss->last_update = jiffies;
  3035. bss->capability = WLAN_CAPABILITY_IBSS;
  3036. if (sdata->default_key) {
  3037. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  3038. } else
  3039. sdata->drop_unencrypted = 0;
  3040. bss->supp_rates_len = sband->n_bitrates;
  3041. pos = bss->supp_rates;
  3042. for (i = 0; i < sband->n_bitrates; i++) {
  3043. int rate = sband->bitrates[i].bitrate;
  3044. *pos++ = (u8) (rate / 5);
  3045. }
  3046. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  3047. }
  3048. static int ieee80211_sta_find_ibss(struct net_device *dev,
  3049. struct ieee80211_if_sta *ifsta)
  3050. {
  3051. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3052. struct ieee80211_sta_bss *bss;
  3053. int found = 0;
  3054. u8 bssid[ETH_ALEN];
  3055. int active_ibss;
  3056. DECLARE_MAC_BUF(mac);
  3057. DECLARE_MAC_BUF(mac2);
  3058. if (ifsta->ssid_len == 0)
  3059. return -EINVAL;
  3060. active_ibss = ieee80211_sta_active_ibss(dev);
  3061. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3062. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  3063. dev->name, active_ibss);
  3064. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3065. spin_lock_bh(&local->sta_bss_lock);
  3066. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3067. if (ifsta->ssid_len != bss->ssid_len ||
  3068. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  3069. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  3070. continue;
  3071. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3072. printk(KERN_DEBUG " bssid=%s found\n",
  3073. print_mac(mac, bss->bssid));
  3074. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3075. memcpy(bssid, bss->bssid, ETH_ALEN);
  3076. found = 1;
  3077. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  3078. break;
  3079. }
  3080. spin_unlock_bh(&local->sta_bss_lock);
  3081. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3082. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  3083. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  3084. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3085. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  3086. (bss = ieee80211_rx_bss_get(dev, bssid,
  3087. local->hw.conf.channel->center_freq,
  3088. ifsta->ssid, ifsta->ssid_len))) {
  3089. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  3090. " based on configured SSID\n",
  3091. dev->name, print_mac(mac, bssid));
  3092. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  3093. }
  3094. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3095. printk(KERN_DEBUG " did not try to join ibss\n");
  3096. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3097. /* Selected IBSS not found in current scan results - try to scan */
  3098. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  3099. !ieee80211_sta_active_ibss(dev)) {
  3100. mod_timer(&ifsta->timer, jiffies +
  3101. IEEE80211_IBSS_MERGE_INTERVAL);
  3102. } else if (time_after(jiffies, local->last_scan_completed +
  3103. IEEE80211_SCAN_INTERVAL)) {
  3104. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3105. "join\n", dev->name);
  3106. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3107. ifsta->ssid_len);
  3108. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3109. int interval = IEEE80211_SCAN_INTERVAL;
  3110. if (time_after(jiffies, ifsta->ibss_join_req +
  3111. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3112. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3113. (!(local->oper_channel->flags &
  3114. IEEE80211_CHAN_NO_IBSS)))
  3115. return ieee80211_sta_create_ibss(dev, ifsta);
  3116. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3117. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3118. " %d MHz\n", dev->name,
  3119. local->hw.conf.channel->center_freq);
  3120. }
  3121. /* No IBSS found - decrease scan interval and continue
  3122. * scanning. */
  3123. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3124. }
  3125. ifsta->state = IEEE80211_IBSS_SEARCH;
  3126. mod_timer(&ifsta->timer, jiffies + interval);
  3127. return 0;
  3128. }
  3129. return 0;
  3130. }
  3131. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3132. {
  3133. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3134. struct ieee80211_if_sta *ifsta;
  3135. if (len > IEEE80211_MAX_SSID_LEN)
  3136. return -EINVAL;
  3137. ifsta = &sdata->u.sta;
  3138. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3139. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3140. memcpy(ifsta->ssid, ssid, len);
  3141. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3142. ifsta->ssid_len = len;
  3143. if (len)
  3144. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3145. else
  3146. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3147. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3148. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3149. ifsta->ibss_join_req = jiffies;
  3150. ifsta->state = IEEE80211_IBSS_SEARCH;
  3151. return ieee80211_sta_find_ibss(dev, ifsta);
  3152. }
  3153. return 0;
  3154. }
  3155. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3156. {
  3157. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3158. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3159. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3160. *len = ifsta->ssid_len;
  3161. return 0;
  3162. }
  3163. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3164. {
  3165. struct ieee80211_sub_if_data *sdata;
  3166. struct ieee80211_if_sta *ifsta;
  3167. int res;
  3168. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3169. ifsta = &sdata->u.sta;
  3170. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3171. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3172. res = ieee80211_if_config(dev);
  3173. if (res) {
  3174. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3175. "the low-level driver\n", dev->name);
  3176. return res;
  3177. }
  3178. }
  3179. if (is_valid_ether_addr(bssid))
  3180. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3181. else
  3182. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3183. return 0;
  3184. }
  3185. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3186. struct ieee80211_sub_if_data *sdata,
  3187. int powersave)
  3188. {
  3189. struct sk_buff *skb;
  3190. struct ieee80211_hdr *nullfunc;
  3191. u16 fc;
  3192. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3193. if (!skb) {
  3194. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3195. "frame\n", sdata->dev->name);
  3196. return;
  3197. }
  3198. skb_reserve(skb, local->hw.extra_tx_headroom);
  3199. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3200. memset(nullfunc, 0, 24);
  3201. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3202. IEEE80211_FCTL_TODS;
  3203. if (powersave)
  3204. fc |= IEEE80211_FCTL_PM;
  3205. nullfunc->frame_control = cpu_to_le16(fc);
  3206. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3207. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3208. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3209. ieee80211_sta_tx(sdata->dev, skb, 0);
  3210. }
  3211. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3212. {
  3213. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3214. ieee80211_vif_is_mesh(&sdata->vif))
  3215. ieee80211_sta_timer((unsigned long)sdata);
  3216. }
  3217. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3218. {
  3219. struct ieee80211_local *local = hw_to_local(hw);
  3220. struct net_device *dev = local->scan_dev;
  3221. struct ieee80211_sub_if_data *sdata;
  3222. union iwreq_data wrqu;
  3223. local->last_scan_completed = jiffies;
  3224. memset(&wrqu, 0, sizeof(wrqu));
  3225. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3226. if (local->sta_hw_scanning) {
  3227. local->sta_hw_scanning = 0;
  3228. if (ieee80211_hw_config(local))
  3229. printk(KERN_DEBUG "%s: failed to restore operational "
  3230. "channel after scan\n", dev->name);
  3231. /* Restart STA timer for HW scan case */
  3232. rcu_read_lock();
  3233. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3234. ieee80211_restart_sta_timer(sdata);
  3235. rcu_read_unlock();
  3236. goto done;
  3237. }
  3238. local->sta_sw_scanning = 0;
  3239. if (ieee80211_hw_config(local))
  3240. printk(KERN_DEBUG "%s: failed to restore operational "
  3241. "channel after scan\n", dev->name);
  3242. netif_tx_lock_bh(local->mdev);
  3243. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3244. local->ops->configure_filter(local_to_hw(local),
  3245. FIF_BCN_PRBRESP_PROMISC,
  3246. &local->filter_flags,
  3247. local->mdev->mc_count,
  3248. local->mdev->mc_list);
  3249. netif_tx_unlock_bh(local->mdev);
  3250. rcu_read_lock();
  3251. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3252. /* No need to wake the master device. */
  3253. if (sdata->dev == local->mdev)
  3254. continue;
  3255. /* Tell AP we're back */
  3256. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3257. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3258. ieee80211_send_nullfunc(local, sdata, 0);
  3259. ieee80211_restart_sta_timer(sdata);
  3260. netif_wake_queue(sdata->dev);
  3261. }
  3262. rcu_read_unlock();
  3263. done:
  3264. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3265. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3266. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3267. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3268. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3269. !ieee80211_sta_active_ibss(dev)))
  3270. ieee80211_sta_find_ibss(dev, ifsta);
  3271. }
  3272. }
  3273. EXPORT_SYMBOL(ieee80211_scan_completed);
  3274. void ieee80211_sta_scan_work(struct work_struct *work)
  3275. {
  3276. struct ieee80211_local *local =
  3277. container_of(work, struct ieee80211_local, scan_work.work);
  3278. struct net_device *dev = local->scan_dev;
  3279. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3280. struct ieee80211_supported_band *sband;
  3281. struct ieee80211_channel *chan;
  3282. int skip;
  3283. unsigned long next_delay = 0;
  3284. if (!local->sta_sw_scanning)
  3285. return;
  3286. switch (local->scan_state) {
  3287. case SCAN_SET_CHANNEL:
  3288. /*
  3289. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3290. * after we successfully scanned the last channel of the last
  3291. * band (and the last band is supported by the hw)
  3292. */
  3293. if (local->scan_band < IEEE80211_NUM_BANDS)
  3294. sband = local->hw.wiphy->bands[local->scan_band];
  3295. else
  3296. sband = NULL;
  3297. /*
  3298. * If we are at an unsupported band and have more bands
  3299. * left to scan, advance to the next supported one.
  3300. */
  3301. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3302. local->scan_band++;
  3303. sband = local->hw.wiphy->bands[local->scan_band];
  3304. local->scan_channel_idx = 0;
  3305. }
  3306. /* if no more bands/channels left, complete scan */
  3307. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3308. ieee80211_scan_completed(local_to_hw(local));
  3309. return;
  3310. }
  3311. skip = 0;
  3312. chan = &sband->channels[local->scan_channel_idx];
  3313. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3314. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3315. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3316. skip = 1;
  3317. if (!skip) {
  3318. local->scan_channel = chan;
  3319. if (ieee80211_hw_config(local)) {
  3320. printk(KERN_DEBUG "%s: failed to set freq to "
  3321. "%d MHz for scan\n", dev->name,
  3322. chan->center_freq);
  3323. skip = 1;
  3324. }
  3325. }
  3326. /* advance state machine to next channel/band */
  3327. local->scan_channel_idx++;
  3328. if (local->scan_channel_idx >= sband->n_channels) {
  3329. /*
  3330. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3331. * we'll catch that case above and complete the scan
  3332. * if that is the case.
  3333. */
  3334. local->scan_band++;
  3335. local->scan_channel_idx = 0;
  3336. }
  3337. if (skip)
  3338. break;
  3339. next_delay = IEEE80211_PROBE_DELAY +
  3340. usecs_to_jiffies(local->hw.channel_change_time);
  3341. local->scan_state = SCAN_SEND_PROBE;
  3342. break;
  3343. case SCAN_SEND_PROBE:
  3344. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3345. local->scan_state = SCAN_SET_CHANNEL;
  3346. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3347. break;
  3348. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3349. local->scan_ssid_len);
  3350. next_delay = IEEE80211_CHANNEL_TIME;
  3351. break;
  3352. }
  3353. if (local->sta_sw_scanning)
  3354. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3355. next_delay);
  3356. }
  3357. static int ieee80211_sta_start_scan(struct net_device *dev,
  3358. u8 *ssid, size_t ssid_len)
  3359. {
  3360. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3361. struct ieee80211_sub_if_data *sdata;
  3362. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3363. return -EINVAL;
  3364. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3365. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3366. * BSSID: MACAddress
  3367. * SSID
  3368. * ScanType: ACTIVE, PASSIVE
  3369. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3370. * a Probe frame during active scanning
  3371. * ChannelList
  3372. * MinChannelTime (>= ProbeDelay), in TU
  3373. * MaxChannelTime: (>= MinChannelTime), in TU
  3374. */
  3375. /* MLME-SCAN.confirm
  3376. * BSSDescriptionSet
  3377. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3378. */
  3379. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3380. if (local->scan_dev == dev)
  3381. return 0;
  3382. return -EBUSY;
  3383. }
  3384. if (local->ops->hw_scan) {
  3385. int rc = local->ops->hw_scan(local_to_hw(local),
  3386. ssid, ssid_len);
  3387. if (!rc) {
  3388. local->sta_hw_scanning = 1;
  3389. local->scan_dev = dev;
  3390. }
  3391. return rc;
  3392. }
  3393. local->sta_sw_scanning = 1;
  3394. rcu_read_lock();
  3395. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3396. /* Don't stop the master interface, otherwise we can't transmit
  3397. * probes! */
  3398. if (sdata->dev == local->mdev)
  3399. continue;
  3400. netif_stop_queue(sdata->dev);
  3401. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3402. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3403. ieee80211_send_nullfunc(local, sdata, 1);
  3404. }
  3405. rcu_read_unlock();
  3406. if (ssid) {
  3407. local->scan_ssid_len = ssid_len;
  3408. memcpy(local->scan_ssid, ssid, ssid_len);
  3409. } else
  3410. local->scan_ssid_len = 0;
  3411. local->scan_state = SCAN_SET_CHANNEL;
  3412. local->scan_channel_idx = 0;
  3413. local->scan_band = IEEE80211_BAND_2GHZ;
  3414. local->scan_dev = dev;
  3415. netif_tx_lock_bh(local->mdev);
  3416. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3417. local->ops->configure_filter(local_to_hw(local),
  3418. FIF_BCN_PRBRESP_PROMISC,
  3419. &local->filter_flags,
  3420. local->mdev->mc_count,
  3421. local->mdev->mc_list);
  3422. netif_tx_unlock_bh(local->mdev);
  3423. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3424. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3425. IEEE80211_CHANNEL_TIME);
  3426. return 0;
  3427. }
  3428. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3429. {
  3430. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3431. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3432. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3433. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3434. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3435. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3436. if (local->scan_dev == dev)
  3437. return 0;
  3438. return -EBUSY;
  3439. }
  3440. ifsta->scan_ssid_len = ssid_len;
  3441. if (ssid_len)
  3442. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3443. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3444. queue_work(local->hw.workqueue, &ifsta->work);
  3445. return 0;
  3446. }
  3447. static char *
  3448. ieee80211_sta_scan_result(struct net_device *dev,
  3449. struct ieee80211_sta_bss *bss,
  3450. char *current_ev, char *end_buf)
  3451. {
  3452. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3453. struct iw_event iwe;
  3454. if (time_after(jiffies,
  3455. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3456. return current_ev;
  3457. memset(&iwe, 0, sizeof(iwe));
  3458. iwe.cmd = SIOCGIWAP;
  3459. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3460. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3461. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3462. IW_EV_ADDR_LEN);
  3463. memset(&iwe, 0, sizeof(iwe));
  3464. iwe.cmd = SIOCGIWESSID;
  3465. if (bss_mesh_cfg(bss)) {
  3466. iwe.u.data.length = bss_mesh_id_len(bss);
  3467. iwe.u.data.flags = 1;
  3468. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3469. bss_mesh_id(bss));
  3470. } else {
  3471. iwe.u.data.length = bss->ssid_len;
  3472. iwe.u.data.flags = 1;
  3473. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3474. bss->ssid);
  3475. }
  3476. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3477. || bss_mesh_cfg(bss)) {
  3478. memset(&iwe, 0, sizeof(iwe));
  3479. iwe.cmd = SIOCGIWMODE;
  3480. if (bss_mesh_cfg(bss))
  3481. iwe.u.mode = IW_MODE_MESH;
  3482. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3483. iwe.u.mode = IW_MODE_MASTER;
  3484. else
  3485. iwe.u.mode = IW_MODE_ADHOC;
  3486. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3487. IW_EV_UINT_LEN);
  3488. }
  3489. memset(&iwe, 0, sizeof(iwe));
  3490. iwe.cmd = SIOCGIWFREQ;
  3491. iwe.u.freq.m = bss->freq;
  3492. iwe.u.freq.e = 6;
  3493. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3494. IW_EV_FREQ_LEN);
  3495. memset(&iwe, 0, sizeof(iwe));
  3496. iwe.cmd = SIOCGIWFREQ;
  3497. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3498. iwe.u.freq.e = 0;
  3499. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3500. IW_EV_FREQ_LEN);
  3501. memset(&iwe, 0, sizeof(iwe));
  3502. iwe.cmd = IWEVQUAL;
  3503. iwe.u.qual.qual = bss->signal;
  3504. iwe.u.qual.level = bss->rssi;
  3505. iwe.u.qual.noise = bss->noise;
  3506. iwe.u.qual.updated = local->wstats_flags;
  3507. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3508. IW_EV_QUAL_LEN);
  3509. memset(&iwe, 0, sizeof(iwe));
  3510. iwe.cmd = SIOCGIWENCODE;
  3511. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3512. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3513. else
  3514. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3515. iwe.u.data.length = 0;
  3516. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3517. if (bss && bss->wpa_ie) {
  3518. memset(&iwe, 0, sizeof(iwe));
  3519. iwe.cmd = IWEVGENIE;
  3520. iwe.u.data.length = bss->wpa_ie_len;
  3521. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3522. bss->wpa_ie);
  3523. }
  3524. if (bss && bss->rsn_ie) {
  3525. memset(&iwe, 0, sizeof(iwe));
  3526. iwe.cmd = IWEVGENIE;
  3527. iwe.u.data.length = bss->rsn_ie_len;
  3528. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3529. bss->rsn_ie);
  3530. }
  3531. if (bss && bss->supp_rates_len > 0) {
  3532. /* display all supported rates in readable format */
  3533. char *p = current_ev + IW_EV_LCP_LEN;
  3534. int i;
  3535. memset(&iwe, 0, sizeof(iwe));
  3536. iwe.cmd = SIOCGIWRATE;
  3537. /* Those two flags are ignored... */
  3538. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3539. for (i = 0; i < bss->supp_rates_len; i++) {
  3540. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3541. 0x7f) * 500000);
  3542. p = iwe_stream_add_value(current_ev, p,
  3543. end_buf, &iwe, IW_EV_PARAM_LEN);
  3544. }
  3545. current_ev = p;
  3546. }
  3547. if (bss) {
  3548. char *buf;
  3549. buf = kmalloc(30, GFP_ATOMIC);
  3550. if (buf) {
  3551. memset(&iwe, 0, sizeof(iwe));
  3552. iwe.cmd = IWEVCUSTOM;
  3553. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3554. iwe.u.data.length = strlen(buf);
  3555. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3556. &iwe, buf);
  3557. kfree(buf);
  3558. }
  3559. }
  3560. if (bss_mesh_cfg(bss)) {
  3561. char *buf;
  3562. u8 *cfg = bss_mesh_cfg(bss);
  3563. buf = kmalloc(50, GFP_ATOMIC);
  3564. if (buf) {
  3565. memset(&iwe, 0, sizeof(iwe));
  3566. iwe.cmd = IWEVCUSTOM;
  3567. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3568. iwe.u.data.length = strlen(buf);
  3569. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3570. &iwe, buf);
  3571. sprintf(buf, "Path Selection Protocol ID: "
  3572. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3573. cfg[4]);
  3574. iwe.u.data.length = strlen(buf);
  3575. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3576. &iwe, buf);
  3577. sprintf(buf, "Path Selection Metric ID: "
  3578. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3579. cfg[8]);
  3580. iwe.u.data.length = strlen(buf);
  3581. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3582. &iwe, buf);
  3583. sprintf(buf, "Congestion Control Mode ID: "
  3584. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3585. cfg[11], cfg[12]);
  3586. iwe.u.data.length = strlen(buf);
  3587. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3588. &iwe, buf);
  3589. sprintf(buf, "Channel Precedence: "
  3590. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3591. cfg[15], cfg[16]);
  3592. iwe.u.data.length = strlen(buf);
  3593. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3594. &iwe, buf);
  3595. kfree(buf);
  3596. }
  3597. }
  3598. return current_ev;
  3599. }
  3600. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3601. {
  3602. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3603. char *current_ev = buf;
  3604. char *end_buf = buf + len;
  3605. struct ieee80211_sta_bss *bss;
  3606. spin_lock_bh(&local->sta_bss_lock);
  3607. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3608. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3609. spin_unlock_bh(&local->sta_bss_lock);
  3610. return -E2BIG;
  3611. }
  3612. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3613. end_buf);
  3614. }
  3615. spin_unlock_bh(&local->sta_bss_lock);
  3616. return current_ev - buf;
  3617. }
  3618. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3619. {
  3620. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3621. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3622. kfree(ifsta->extra_ie);
  3623. if (len == 0) {
  3624. ifsta->extra_ie = NULL;
  3625. ifsta->extra_ie_len = 0;
  3626. return 0;
  3627. }
  3628. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3629. if (!ifsta->extra_ie) {
  3630. ifsta->extra_ie_len = 0;
  3631. return -ENOMEM;
  3632. }
  3633. memcpy(ifsta->extra_ie, ie, len);
  3634. ifsta->extra_ie_len = len;
  3635. return 0;
  3636. }
  3637. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3638. struct sk_buff *skb, u8 *bssid,
  3639. u8 *addr)
  3640. {
  3641. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3642. struct sta_info *sta;
  3643. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3644. DECLARE_MAC_BUF(mac);
  3645. /* TODO: Could consider removing the least recently used entry and
  3646. * allow new one to be added. */
  3647. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3648. if (net_ratelimit()) {
  3649. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3650. "entry %s\n", dev->name, print_mac(mac, addr));
  3651. }
  3652. return NULL;
  3653. }
  3654. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3655. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3656. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3657. if (!sta)
  3658. return NULL;
  3659. sta->flags |= WLAN_STA_AUTHORIZED;
  3660. sta->supp_rates[local->hw.conf.channel->band] =
  3661. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3662. rate_control_rate_init(sta, local);
  3663. if (sta_info_insert(sta))
  3664. return NULL;
  3665. return sta;
  3666. }
  3667. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3668. {
  3669. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3670. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3671. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3672. dev->name, reason);
  3673. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3674. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3675. return -EINVAL;
  3676. ieee80211_send_deauth(dev, ifsta, reason);
  3677. ieee80211_set_disassoc(dev, ifsta, 1);
  3678. return 0;
  3679. }
  3680. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3681. {
  3682. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3683. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3684. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3685. dev->name, reason);
  3686. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3687. return -EINVAL;
  3688. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3689. return -1;
  3690. ieee80211_send_disassoc(dev, ifsta, reason);
  3691. ieee80211_set_disassoc(dev, ifsta, 0);
  3692. return 0;
  3693. }
  3694. void ieee80211_notify_mac(struct ieee80211_hw *hw,
  3695. enum ieee80211_notification_types notif_type)
  3696. {
  3697. struct ieee80211_local *local = hw_to_local(hw);
  3698. struct ieee80211_sub_if_data *sdata;
  3699. switch (notif_type) {
  3700. case IEEE80211_NOTIFY_RE_ASSOC:
  3701. rcu_read_lock();
  3702. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3703. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  3704. ieee80211_sta_req_auth(sdata->dev,
  3705. &sdata->u.sta);
  3706. }
  3707. }
  3708. rcu_read_unlock();
  3709. break;
  3710. }
  3711. }
  3712. EXPORT_SYMBOL(ieee80211_notify_mac);