tick-broadcast.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * linux/kernel/time/tick-broadcast.c
  3. *
  4. * This file contains functions which emulate a local clock-event
  5. * device via a broadcast event source.
  6. *
  7. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9. * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10. *
  11. * This code is licenced under the GPL version 2. For details see
  12. * kernel-base/COPYING.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/percpu.h>
  19. #include <linux/profile.h>
  20. #include <linux/sched.h>
  21. #include <linux/tick.h>
  22. #include "tick-internal.h"
  23. /*
  24. * Broadcast support for broken x86 hardware, where the local apic
  25. * timer stops in C3 state.
  26. */
  27. struct tick_device tick_broadcast_device;
  28. static cpumask_t tick_broadcast_mask;
  29. static DEFINE_SPINLOCK(tick_broadcast_lock);
  30. #ifdef CONFIG_TICK_ONESHOT
  31. static void tick_broadcast_clear_oneshot(int cpu);
  32. #else
  33. static inline void tick_broadcast_clear_oneshot(int cpu) { }
  34. #endif
  35. /*
  36. * Debugging: see timer_list.c
  37. */
  38. struct tick_device *tick_get_broadcast_device(void)
  39. {
  40. return &tick_broadcast_device;
  41. }
  42. cpumask_t *tick_get_broadcast_mask(void)
  43. {
  44. return &tick_broadcast_mask;
  45. }
  46. /*
  47. * Start the device in periodic mode
  48. */
  49. static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  50. {
  51. if (bc)
  52. tick_setup_periodic(bc, 1);
  53. }
  54. /*
  55. * Check, if the device can be utilized as broadcast device:
  56. */
  57. int tick_check_broadcast_device(struct clock_event_device *dev)
  58. {
  59. if ((tick_broadcast_device.evtdev &&
  60. tick_broadcast_device.evtdev->rating >= dev->rating) ||
  61. (dev->features & CLOCK_EVT_FEAT_C3STOP))
  62. return 0;
  63. clockevents_exchange_device(NULL, dev);
  64. tick_broadcast_device.evtdev = dev;
  65. if (!cpus_empty(tick_broadcast_mask))
  66. tick_broadcast_start_periodic(dev);
  67. return 1;
  68. }
  69. /*
  70. * Check, if the device is the broadcast device
  71. */
  72. int tick_is_broadcast_device(struct clock_event_device *dev)
  73. {
  74. return (dev && tick_broadcast_device.evtdev == dev);
  75. }
  76. /*
  77. * Check, if the device is disfunctional and a place holder, which
  78. * needs to be handled by the broadcast device.
  79. */
  80. int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
  81. {
  82. unsigned long flags;
  83. int ret = 0;
  84. spin_lock_irqsave(&tick_broadcast_lock, flags);
  85. /*
  86. * Devices might be registered with both periodic and oneshot
  87. * mode disabled. This signals, that the device needs to be
  88. * operated from the broadcast device and is a placeholder for
  89. * the cpu local device.
  90. */
  91. if (!tick_device_is_functional(dev)) {
  92. dev->event_handler = tick_handle_periodic;
  93. cpu_set(cpu, tick_broadcast_mask);
  94. tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
  95. ret = 1;
  96. } else {
  97. /*
  98. * When the new device is not affected by the stop
  99. * feature and the cpu is marked in the broadcast mask
  100. * then clear the broadcast bit.
  101. */
  102. if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
  103. int cpu = smp_processor_id();
  104. cpu_clear(cpu, tick_broadcast_mask);
  105. tick_broadcast_clear_oneshot(cpu);
  106. }
  107. }
  108. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  109. return ret;
  110. }
  111. /*
  112. * Broadcast the event to the cpus, which are set in the mask
  113. */
  114. static void tick_do_broadcast(cpumask_t mask)
  115. {
  116. int cpu = smp_processor_id();
  117. struct tick_device *td;
  118. /*
  119. * Check, if the current cpu is in the mask
  120. */
  121. if (cpu_isset(cpu, mask)) {
  122. cpu_clear(cpu, mask);
  123. td = &per_cpu(tick_cpu_device, cpu);
  124. td->evtdev->event_handler(td->evtdev);
  125. }
  126. if (!cpus_empty(mask)) {
  127. /*
  128. * It might be necessary to actually check whether the devices
  129. * have different broadcast functions. For now, just use the
  130. * one of the first device. This works as long as we have this
  131. * misfeature only on x86 (lapic)
  132. */
  133. cpu = first_cpu(mask);
  134. td = &per_cpu(tick_cpu_device, cpu);
  135. td->evtdev->broadcast(mask);
  136. }
  137. }
  138. /*
  139. * Periodic broadcast:
  140. * - invoke the broadcast handlers
  141. */
  142. static void tick_do_periodic_broadcast(void)
  143. {
  144. cpumask_t mask;
  145. spin_lock(&tick_broadcast_lock);
  146. cpus_and(mask, cpu_online_map, tick_broadcast_mask);
  147. tick_do_broadcast(mask);
  148. spin_unlock(&tick_broadcast_lock);
  149. }
  150. /*
  151. * Event handler for periodic broadcast ticks
  152. */
  153. static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
  154. {
  155. tick_do_periodic_broadcast();
  156. /*
  157. * The device is in periodic mode. No reprogramming necessary:
  158. */
  159. if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
  160. return;
  161. /*
  162. * Setup the next period for devices, which do not have
  163. * periodic mode:
  164. */
  165. for (;;) {
  166. ktime_t next = ktime_add(dev->next_event, tick_period);
  167. if (!clockevents_program_event(dev, next, ktime_get()))
  168. return;
  169. tick_do_periodic_broadcast();
  170. }
  171. }
  172. /*
  173. * Powerstate information: The system enters/leaves a state, where
  174. * affected devices might stop
  175. */
  176. static void tick_do_broadcast_on_off(void *why)
  177. {
  178. struct clock_event_device *bc, *dev;
  179. struct tick_device *td;
  180. unsigned long flags, *reason = why;
  181. int cpu;
  182. spin_lock_irqsave(&tick_broadcast_lock, flags);
  183. cpu = smp_processor_id();
  184. td = &per_cpu(tick_cpu_device, cpu);
  185. dev = td->evtdev;
  186. bc = tick_broadcast_device.evtdev;
  187. /*
  188. * Is the device not affected by the powerstate ?
  189. */
  190. if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
  191. goto out;
  192. if (!tick_device_is_functional(dev))
  193. goto out;
  194. switch (*reason) {
  195. case CLOCK_EVT_NOTIFY_BROADCAST_ON:
  196. case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
  197. if (!cpu_isset(cpu, tick_broadcast_mask)) {
  198. cpu_set(cpu, tick_broadcast_mask);
  199. if (td->mode == TICKDEV_MODE_PERIODIC)
  200. clockevents_set_mode(dev,
  201. CLOCK_EVT_MODE_SHUTDOWN);
  202. }
  203. if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
  204. dev->features |= CLOCK_EVT_FEAT_DUMMY;
  205. break;
  206. case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
  207. if (cpu_isset(cpu, tick_broadcast_mask)) {
  208. cpu_clear(cpu, tick_broadcast_mask);
  209. if (td->mode == TICKDEV_MODE_PERIODIC)
  210. tick_setup_periodic(dev, 0);
  211. }
  212. break;
  213. }
  214. if (cpus_empty(tick_broadcast_mask))
  215. clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
  216. else {
  217. if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
  218. tick_broadcast_start_periodic(bc);
  219. else
  220. tick_broadcast_setup_oneshot(bc);
  221. }
  222. out:
  223. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  224. }
  225. /*
  226. * Powerstate information: The system enters/leaves a state, where
  227. * affected devices might stop.
  228. */
  229. void tick_broadcast_on_off(unsigned long reason, int *oncpu)
  230. {
  231. if (!cpu_isset(*oncpu, cpu_online_map))
  232. printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
  233. "offline CPU #%d\n", *oncpu);
  234. else
  235. smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
  236. &reason, 1, 1);
  237. }
  238. /*
  239. * Set the periodic handler depending on broadcast on/off
  240. */
  241. void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
  242. {
  243. if (!broadcast)
  244. dev->event_handler = tick_handle_periodic;
  245. else
  246. dev->event_handler = tick_handle_periodic_broadcast;
  247. }
  248. /*
  249. * Remove a CPU from broadcasting
  250. */
  251. void tick_shutdown_broadcast(unsigned int *cpup)
  252. {
  253. struct clock_event_device *bc;
  254. unsigned long flags;
  255. unsigned int cpu = *cpup;
  256. spin_lock_irqsave(&tick_broadcast_lock, flags);
  257. bc = tick_broadcast_device.evtdev;
  258. cpu_clear(cpu, tick_broadcast_mask);
  259. if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
  260. if (bc && cpus_empty(tick_broadcast_mask))
  261. clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
  262. }
  263. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  264. }
  265. void tick_suspend_broadcast(void)
  266. {
  267. struct clock_event_device *bc;
  268. unsigned long flags;
  269. spin_lock_irqsave(&tick_broadcast_lock, flags);
  270. bc = tick_broadcast_device.evtdev;
  271. if (bc)
  272. clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
  273. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  274. }
  275. int tick_resume_broadcast(void)
  276. {
  277. struct clock_event_device *bc;
  278. unsigned long flags;
  279. int broadcast = 0;
  280. spin_lock_irqsave(&tick_broadcast_lock, flags);
  281. bc = tick_broadcast_device.evtdev;
  282. if (bc) {
  283. clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
  284. switch (tick_broadcast_device.mode) {
  285. case TICKDEV_MODE_PERIODIC:
  286. if(!cpus_empty(tick_broadcast_mask))
  287. tick_broadcast_start_periodic(bc);
  288. broadcast = cpu_isset(smp_processor_id(),
  289. tick_broadcast_mask);
  290. break;
  291. case TICKDEV_MODE_ONESHOT:
  292. broadcast = tick_resume_broadcast_oneshot(bc);
  293. break;
  294. }
  295. }
  296. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  297. return broadcast;
  298. }
  299. #ifdef CONFIG_TICK_ONESHOT
  300. static cpumask_t tick_broadcast_oneshot_mask;
  301. /*
  302. * Debugging: see timer_list.c
  303. */
  304. cpumask_t *tick_get_broadcast_oneshot_mask(void)
  305. {
  306. return &tick_broadcast_oneshot_mask;
  307. }
  308. static int tick_broadcast_set_event(ktime_t expires, int force)
  309. {
  310. struct clock_event_device *bc = tick_broadcast_device.evtdev;
  311. ktime_t now = ktime_get();
  312. int res;
  313. for(;;) {
  314. res = clockevents_program_event(bc, expires, now);
  315. if (!res || !force)
  316. return res;
  317. now = ktime_get();
  318. expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
  319. }
  320. }
  321. int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
  322. {
  323. clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
  324. return 0;
  325. }
  326. /*
  327. * Handle oneshot mode broadcasting
  328. */
  329. static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
  330. {
  331. struct tick_device *td;
  332. cpumask_t mask;
  333. ktime_t now, next_event;
  334. int cpu;
  335. spin_lock(&tick_broadcast_lock);
  336. again:
  337. dev->next_event.tv64 = KTIME_MAX;
  338. next_event.tv64 = KTIME_MAX;
  339. mask = CPU_MASK_NONE;
  340. now = ktime_get();
  341. /* Find all expired events */
  342. for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
  343. cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
  344. td = &per_cpu(tick_cpu_device, cpu);
  345. if (td->evtdev->next_event.tv64 <= now.tv64)
  346. cpu_set(cpu, mask);
  347. else if (td->evtdev->next_event.tv64 < next_event.tv64)
  348. next_event.tv64 = td->evtdev->next_event.tv64;
  349. }
  350. /*
  351. * Wakeup the cpus which have an expired event.
  352. */
  353. tick_do_broadcast(mask);
  354. /*
  355. * Two reasons for reprogram:
  356. *
  357. * - The global event did not expire any CPU local
  358. * events. This happens in dyntick mode, as the maximum PIT
  359. * delta is quite small.
  360. *
  361. * - There are pending events on sleeping CPUs which were not
  362. * in the event mask
  363. */
  364. if (next_event.tv64 != KTIME_MAX) {
  365. /*
  366. * Rearm the broadcast device. If event expired,
  367. * repeat the above
  368. */
  369. if (tick_broadcast_set_event(next_event, 0))
  370. goto again;
  371. }
  372. spin_unlock(&tick_broadcast_lock);
  373. }
  374. /*
  375. * Powerstate information: The system enters/leaves a state, where
  376. * affected devices might stop
  377. */
  378. void tick_broadcast_oneshot_control(unsigned long reason)
  379. {
  380. struct clock_event_device *bc, *dev;
  381. struct tick_device *td;
  382. unsigned long flags;
  383. int cpu;
  384. spin_lock_irqsave(&tick_broadcast_lock, flags);
  385. /*
  386. * Periodic mode does not care about the enter/exit of power
  387. * states
  388. */
  389. if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
  390. goto out;
  391. bc = tick_broadcast_device.evtdev;
  392. cpu = smp_processor_id();
  393. td = &per_cpu(tick_cpu_device, cpu);
  394. dev = td->evtdev;
  395. if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  396. goto out;
  397. if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
  398. if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
  399. cpu_set(cpu, tick_broadcast_oneshot_mask);
  400. clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
  401. if (dev->next_event.tv64 < bc->next_event.tv64)
  402. tick_broadcast_set_event(dev->next_event, 1);
  403. }
  404. } else {
  405. if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
  406. cpu_clear(cpu, tick_broadcast_oneshot_mask);
  407. clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
  408. if (dev->next_event.tv64 != KTIME_MAX)
  409. tick_program_event(dev->next_event, 1);
  410. }
  411. }
  412. out:
  413. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  414. }
  415. /*
  416. * Reset the one shot broadcast for a cpu
  417. *
  418. * Called with tick_broadcast_lock held
  419. */
  420. static void tick_broadcast_clear_oneshot(int cpu)
  421. {
  422. cpu_clear(cpu, tick_broadcast_oneshot_mask);
  423. }
  424. /**
  425. * tick_broadcast_setup_oneshot - setup the broadcast device
  426. */
  427. void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
  428. {
  429. bc->event_handler = tick_handle_oneshot_broadcast;
  430. clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
  431. bc->next_event.tv64 = KTIME_MAX;
  432. }
  433. /*
  434. * Select oneshot operating mode for the broadcast device
  435. */
  436. void tick_broadcast_switch_to_oneshot(void)
  437. {
  438. struct clock_event_device *bc;
  439. unsigned long flags;
  440. spin_lock_irqsave(&tick_broadcast_lock, flags);
  441. tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
  442. bc = tick_broadcast_device.evtdev;
  443. if (bc)
  444. tick_broadcast_setup_oneshot(bc);
  445. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  446. }
  447. /*
  448. * Remove a dead CPU from broadcasting
  449. */
  450. void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
  451. {
  452. unsigned long flags;
  453. unsigned int cpu = *cpup;
  454. spin_lock_irqsave(&tick_broadcast_lock, flags);
  455. /*
  456. * Clear the broadcast mask flag for the dead cpu, but do not
  457. * stop the broadcast device!
  458. */
  459. cpu_clear(cpu, tick_broadcast_oneshot_mask);
  460. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  461. }
  462. #endif