sched_fair.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
  340. * that it favours >=0 over <0.
  341. *
  342. * -20 |
  343. * |
  344. * 0 --------+-------
  345. * .'
  346. * 19 .'
  347. *
  348. */
  349. static unsigned long
  350. calc_delta_asym(unsigned long delta, struct sched_entity *se)
  351. {
  352. struct load_weight lw = {
  353. .weight = NICE_0_LOAD,
  354. .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
  355. };
  356. for_each_sched_entity(se) {
  357. struct load_weight *se_lw = &se->load;
  358. if (se->load.weight < NICE_0_LOAD)
  359. se_lw = &lw;
  360. delta = calc_delta_mine(delta,
  361. cfs_rq_of(se)->load.weight, se_lw);
  362. }
  363. return delta;
  364. }
  365. /*
  366. * Update the current task's runtime statistics. Skip current tasks that
  367. * are not in our scheduling class.
  368. */
  369. static inline void
  370. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  371. unsigned long delta_exec)
  372. {
  373. unsigned long delta_exec_weighted;
  374. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  375. curr->sum_exec_runtime += delta_exec;
  376. schedstat_add(cfs_rq, exec_clock, delta_exec);
  377. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  378. curr->vruntime += delta_exec_weighted;
  379. }
  380. static void update_curr(struct cfs_rq *cfs_rq)
  381. {
  382. struct sched_entity *curr = cfs_rq->curr;
  383. u64 now = rq_of(cfs_rq)->clock;
  384. unsigned long delta_exec;
  385. if (unlikely(!curr))
  386. return;
  387. /*
  388. * Get the amount of time the current task was running
  389. * since the last time we changed load (this cannot
  390. * overflow on 32 bits):
  391. */
  392. delta_exec = (unsigned long)(now - curr->exec_start);
  393. __update_curr(cfs_rq, curr, delta_exec);
  394. curr->exec_start = now;
  395. if (entity_is_task(curr)) {
  396. struct task_struct *curtask = task_of(curr);
  397. cpuacct_charge(curtask, delta_exec);
  398. }
  399. }
  400. static inline void
  401. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  404. }
  405. /*
  406. * Task is being enqueued - update stats:
  407. */
  408. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  409. {
  410. /*
  411. * Are we enqueueing a waiting task? (for current tasks
  412. * a dequeue/enqueue event is a NOP)
  413. */
  414. if (se != cfs_rq->curr)
  415. update_stats_wait_start(cfs_rq, se);
  416. }
  417. static void
  418. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. schedstat_set(se->wait_max, max(se->wait_max,
  421. rq_of(cfs_rq)->clock - se->wait_start));
  422. schedstat_set(se->wait_count, se->wait_count + 1);
  423. schedstat_set(se->wait_sum, se->wait_sum +
  424. rq_of(cfs_rq)->clock - se->wait_start);
  425. schedstat_set(se->wait_start, 0);
  426. }
  427. static inline void
  428. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  429. {
  430. /*
  431. * Mark the end of the wait period if dequeueing a
  432. * waiting task:
  433. */
  434. if (se != cfs_rq->curr)
  435. update_stats_wait_end(cfs_rq, se);
  436. }
  437. /*
  438. * We are picking a new current task - update its stats:
  439. */
  440. static inline void
  441. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  442. {
  443. /*
  444. * We are starting a new run period:
  445. */
  446. se->exec_start = rq_of(cfs_rq)->clock;
  447. }
  448. /**************************************************
  449. * Scheduling class queueing methods:
  450. */
  451. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  452. static void
  453. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  454. {
  455. cfs_rq->task_weight += weight;
  456. }
  457. #else
  458. static inline void
  459. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  460. {
  461. }
  462. #endif
  463. static void
  464. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  465. {
  466. update_load_add(&cfs_rq->load, se->load.weight);
  467. if (!parent_entity(se))
  468. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  469. if (entity_is_task(se))
  470. add_cfs_task_weight(cfs_rq, se->load.weight);
  471. cfs_rq->nr_running++;
  472. se->on_rq = 1;
  473. list_add(&se->group_node, &cfs_rq->tasks);
  474. }
  475. static void
  476. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  477. {
  478. update_load_sub(&cfs_rq->load, se->load.weight);
  479. if (!parent_entity(se))
  480. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  481. if (entity_is_task(se))
  482. add_cfs_task_weight(cfs_rq, -se->load.weight);
  483. cfs_rq->nr_running--;
  484. se->on_rq = 0;
  485. list_del_init(&se->group_node);
  486. }
  487. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  488. {
  489. #ifdef CONFIG_SCHEDSTATS
  490. if (se->sleep_start) {
  491. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  492. struct task_struct *tsk = task_of(se);
  493. if ((s64)delta < 0)
  494. delta = 0;
  495. if (unlikely(delta > se->sleep_max))
  496. se->sleep_max = delta;
  497. se->sleep_start = 0;
  498. se->sum_sleep_runtime += delta;
  499. account_scheduler_latency(tsk, delta >> 10, 1);
  500. }
  501. if (se->block_start) {
  502. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  503. struct task_struct *tsk = task_of(se);
  504. if ((s64)delta < 0)
  505. delta = 0;
  506. if (unlikely(delta > se->block_max))
  507. se->block_max = delta;
  508. se->block_start = 0;
  509. se->sum_sleep_runtime += delta;
  510. /*
  511. * Blocking time is in units of nanosecs, so shift by 20 to
  512. * get a milliseconds-range estimation of the amount of
  513. * time that the task spent sleeping:
  514. */
  515. if (unlikely(prof_on == SLEEP_PROFILING)) {
  516. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  517. delta >> 20);
  518. }
  519. account_scheduler_latency(tsk, delta >> 10, 0);
  520. }
  521. #endif
  522. }
  523. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  524. {
  525. #ifdef CONFIG_SCHED_DEBUG
  526. s64 d = se->vruntime - cfs_rq->min_vruntime;
  527. if (d < 0)
  528. d = -d;
  529. if (d > 3*sysctl_sched_latency)
  530. schedstat_inc(cfs_rq, nr_spread_over);
  531. #endif
  532. }
  533. static void
  534. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  535. {
  536. u64 vruntime;
  537. if (first_fair(cfs_rq)) {
  538. vruntime = min_vruntime(cfs_rq->min_vruntime,
  539. __pick_next_entity(cfs_rq)->vruntime);
  540. } else
  541. vruntime = cfs_rq->min_vruntime;
  542. /*
  543. * The 'current' period is already promised to the current tasks,
  544. * however the extra weight of the new task will slow them down a
  545. * little, place the new task so that it fits in the slot that
  546. * stays open at the end.
  547. */
  548. if (initial && sched_feat(START_DEBIT))
  549. vruntime += sched_vslice_add(cfs_rq, se);
  550. if (!initial) {
  551. /* sleeps upto a single latency don't count. */
  552. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  553. unsigned long thresh = sysctl_sched_latency;
  554. /*
  555. * convert the sleeper threshold into virtual time
  556. */
  557. if (sched_feat(NORMALIZED_SLEEPER))
  558. thresh = calc_delta_fair(thresh, se);
  559. vruntime -= thresh;
  560. }
  561. /* ensure we never gain time by being placed backwards. */
  562. vruntime = max_vruntime(se->vruntime, vruntime);
  563. }
  564. se->vruntime = vruntime;
  565. }
  566. static void
  567. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  568. {
  569. /*
  570. * Update run-time statistics of the 'current'.
  571. */
  572. update_curr(cfs_rq);
  573. account_entity_enqueue(cfs_rq, se);
  574. if (wakeup) {
  575. place_entity(cfs_rq, se, 0);
  576. enqueue_sleeper(cfs_rq, se);
  577. }
  578. update_stats_enqueue(cfs_rq, se);
  579. check_spread(cfs_rq, se);
  580. if (se != cfs_rq->curr)
  581. __enqueue_entity(cfs_rq, se);
  582. }
  583. static void update_avg(u64 *avg, u64 sample)
  584. {
  585. s64 diff = sample - *avg;
  586. *avg += diff >> 3;
  587. }
  588. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. if (!se->last_wakeup)
  591. return;
  592. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  593. se->last_wakeup = 0;
  594. }
  595. static void
  596. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  597. {
  598. /*
  599. * Update run-time statistics of the 'current'.
  600. */
  601. update_curr(cfs_rq);
  602. update_stats_dequeue(cfs_rq, se);
  603. if (sleep) {
  604. update_avg_stats(cfs_rq, se);
  605. #ifdef CONFIG_SCHEDSTATS
  606. if (entity_is_task(se)) {
  607. struct task_struct *tsk = task_of(se);
  608. if (tsk->state & TASK_INTERRUPTIBLE)
  609. se->sleep_start = rq_of(cfs_rq)->clock;
  610. if (tsk->state & TASK_UNINTERRUPTIBLE)
  611. se->block_start = rq_of(cfs_rq)->clock;
  612. }
  613. #endif
  614. }
  615. if (se != cfs_rq->curr)
  616. __dequeue_entity(cfs_rq, se);
  617. account_entity_dequeue(cfs_rq, se);
  618. }
  619. /*
  620. * Preempt the current task with a newly woken task if needed:
  621. */
  622. static void
  623. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  624. {
  625. unsigned long ideal_runtime, delta_exec;
  626. ideal_runtime = sched_slice(cfs_rq, curr);
  627. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  628. if (delta_exec > ideal_runtime)
  629. resched_task(rq_of(cfs_rq)->curr);
  630. }
  631. static void
  632. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  633. {
  634. /* 'current' is not kept within the tree. */
  635. if (se->on_rq) {
  636. /*
  637. * Any task has to be enqueued before it get to execute on
  638. * a CPU. So account for the time it spent waiting on the
  639. * runqueue.
  640. */
  641. update_stats_wait_end(cfs_rq, se);
  642. __dequeue_entity(cfs_rq, se);
  643. }
  644. update_stats_curr_start(cfs_rq, se);
  645. cfs_rq->curr = se;
  646. #ifdef CONFIG_SCHEDSTATS
  647. /*
  648. * Track our maximum slice length, if the CPU's load is at
  649. * least twice that of our own weight (i.e. dont track it
  650. * when there are only lesser-weight tasks around):
  651. */
  652. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  653. se->slice_max = max(se->slice_max,
  654. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  655. }
  656. #endif
  657. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  658. }
  659. static int
  660. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  661. static struct sched_entity *
  662. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  663. {
  664. if (!cfs_rq->next)
  665. return se;
  666. if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
  667. return se;
  668. return cfs_rq->next;
  669. }
  670. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  671. {
  672. struct sched_entity *se = NULL;
  673. if (first_fair(cfs_rq)) {
  674. se = __pick_next_entity(cfs_rq);
  675. se = pick_next(cfs_rq, se);
  676. set_next_entity(cfs_rq, se);
  677. }
  678. return se;
  679. }
  680. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  681. {
  682. /*
  683. * If still on the runqueue then deactivate_task()
  684. * was not called and update_curr() has to be done:
  685. */
  686. if (prev->on_rq)
  687. update_curr(cfs_rq);
  688. check_spread(cfs_rq, prev);
  689. if (prev->on_rq) {
  690. update_stats_wait_start(cfs_rq, prev);
  691. /* Put 'current' back into the tree. */
  692. __enqueue_entity(cfs_rq, prev);
  693. }
  694. cfs_rq->curr = NULL;
  695. }
  696. static void
  697. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  698. {
  699. /*
  700. * Update run-time statistics of the 'current'.
  701. */
  702. update_curr(cfs_rq);
  703. #ifdef CONFIG_SCHED_HRTICK
  704. /*
  705. * queued ticks are scheduled to match the slice, so don't bother
  706. * validating it and just reschedule.
  707. */
  708. if (queued) {
  709. resched_task(rq_of(cfs_rq)->curr);
  710. return;
  711. }
  712. /*
  713. * don't let the period tick interfere with the hrtick preemption
  714. */
  715. if (!sched_feat(DOUBLE_TICK) &&
  716. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  717. return;
  718. #endif
  719. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  720. check_preempt_tick(cfs_rq, curr);
  721. }
  722. /**************************************************
  723. * CFS operations on tasks:
  724. */
  725. #ifdef CONFIG_SCHED_HRTICK
  726. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  727. {
  728. int requeue = rq->curr == p;
  729. struct sched_entity *se = &p->se;
  730. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  731. WARN_ON(task_rq(p) != rq);
  732. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  733. u64 slice = sched_slice(cfs_rq, se);
  734. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  735. s64 delta = slice - ran;
  736. if (delta < 0) {
  737. if (rq->curr == p)
  738. resched_task(p);
  739. return;
  740. }
  741. /*
  742. * Don't schedule slices shorter than 10000ns, that just
  743. * doesn't make sense. Rely on vruntime for fairness.
  744. */
  745. if (!requeue)
  746. delta = max(10000LL, delta);
  747. hrtick_start(rq, delta, requeue);
  748. }
  749. }
  750. #else
  751. static inline void
  752. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  753. {
  754. }
  755. #endif
  756. /*
  757. * The enqueue_task method is called before nr_running is
  758. * increased. Here we update the fair scheduling stats and
  759. * then put the task into the rbtree:
  760. */
  761. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  762. {
  763. struct cfs_rq *cfs_rq;
  764. struct sched_entity *se = &p->se;
  765. for_each_sched_entity(se) {
  766. if (se->on_rq)
  767. break;
  768. cfs_rq = cfs_rq_of(se);
  769. enqueue_entity(cfs_rq, se, wakeup);
  770. wakeup = 1;
  771. }
  772. hrtick_start_fair(rq, rq->curr);
  773. }
  774. /*
  775. * The dequeue_task method is called before nr_running is
  776. * decreased. We remove the task from the rbtree and
  777. * update the fair scheduling stats:
  778. */
  779. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  780. {
  781. struct cfs_rq *cfs_rq;
  782. struct sched_entity *se = &p->se;
  783. for_each_sched_entity(se) {
  784. cfs_rq = cfs_rq_of(se);
  785. dequeue_entity(cfs_rq, se, sleep);
  786. /* Don't dequeue parent if it has other entities besides us */
  787. if (cfs_rq->load.weight)
  788. break;
  789. sleep = 1;
  790. }
  791. hrtick_start_fair(rq, rq->curr);
  792. }
  793. /*
  794. * sched_yield() support is very simple - we dequeue and enqueue.
  795. *
  796. * If compat_yield is turned on then we requeue to the end of the tree.
  797. */
  798. static void yield_task_fair(struct rq *rq)
  799. {
  800. struct task_struct *curr = rq->curr;
  801. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  802. struct sched_entity *rightmost, *se = &curr->se;
  803. /*
  804. * Are we the only task in the tree?
  805. */
  806. if (unlikely(cfs_rq->nr_running == 1))
  807. return;
  808. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  809. update_rq_clock(rq);
  810. /*
  811. * Update run-time statistics of the 'current'.
  812. */
  813. update_curr(cfs_rq);
  814. return;
  815. }
  816. /*
  817. * Find the rightmost entry in the rbtree:
  818. */
  819. rightmost = __pick_last_entity(cfs_rq);
  820. /*
  821. * Already in the rightmost position?
  822. */
  823. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  824. return;
  825. /*
  826. * Minimally necessary key value to be last in the tree:
  827. * Upon rescheduling, sched_class::put_prev_task() will place
  828. * 'current' within the tree based on its new key value.
  829. */
  830. se->vruntime = rightmost->vruntime + 1;
  831. }
  832. /*
  833. * wake_idle() will wake a task on an idle cpu if task->cpu is
  834. * not idle and an idle cpu is available. The span of cpus to
  835. * search starts with cpus closest then further out as needed,
  836. * so we always favor a closer, idle cpu.
  837. *
  838. * Returns the CPU we should wake onto.
  839. */
  840. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  841. static int wake_idle(int cpu, struct task_struct *p)
  842. {
  843. cpumask_t tmp;
  844. struct sched_domain *sd;
  845. int i;
  846. /*
  847. * If it is idle, then it is the best cpu to run this task.
  848. *
  849. * This cpu is also the best, if it has more than one task already.
  850. * Siblings must be also busy(in most cases) as they didn't already
  851. * pickup the extra load from this cpu and hence we need not check
  852. * sibling runqueue info. This will avoid the checks and cache miss
  853. * penalities associated with that.
  854. */
  855. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  856. return cpu;
  857. for_each_domain(cpu, sd) {
  858. if ((sd->flags & SD_WAKE_IDLE)
  859. || ((sd->flags & SD_WAKE_IDLE_FAR)
  860. && !task_hot(p, task_rq(p)->clock, sd))) {
  861. cpus_and(tmp, sd->span, p->cpus_allowed);
  862. for_each_cpu_mask(i, tmp) {
  863. if (idle_cpu(i)) {
  864. if (i != task_cpu(p)) {
  865. schedstat_inc(p,
  866. se.nr_wakeups_idle);
  867. }
  868. return i;
  869. }
  870. }
  871. } else {
  872. break;
  873. }
  874. }
  875. return cpu;
  876. }
  877. #else
  878. static inline int wake_idle(int cpu, struct task_struct *p)
  879. {
  880. return cpu;
  881. }
  882. #endif
  883. #ifdef CONFIG_SMP
  884. static const struct sched_class fair_sched_class;
  885. static int
  886. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  887. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  888. int idx, unsigned long load, unsigned long this_load,
  889. unsigned int imbalance)
  890. {
  891. struct task_struct *curr = this_rq->curr;
  892. unsigned long tl = this_load;
  893. unsigned long tl_per_task;
  894. if (!(this_sd->flags & SD_WAKE_AFFINE))
  895. return 0;
  896. /*
  897. * If the currently running task will sleep within
  898. * a reasonable amount of time then attract this newly
  899. * woken task:
  900. */
  901. if (sync && curr->sched_class == &fair_sched_class) {
  902. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  903. p->se.avg_overlap < sysctl_sched_migration_cost)
  904. return 1;
  905. }
  906. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  907. tl_per_task = cpu_avg_load_per_task(this_cpu);
  908. /*
  909. * If sync wakeup then subtract the (maximum possible)
  910. * effect of the currently running task from the load
  911. * of the current CPU:
  912. */
  913. if (sync)
  914. tl -= current->se.load.weight;
  915. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  916. 100*(tl + p->se.load.weight) <= imbalance*load) {
  917. /*
  918. * This domain has SD_WAKE_AFFINE and
  919. * p is cache cold in this domain, and
  920. * there is no bad imbalance.
  921. */
  922. schedstat_inc(this_sd, ttwu_move_affine);
  923. schedstat_inc(p, se.nr_wakeups_affine);
  924. return 1;
  925. }
  926. return 0;
  927. }
  928. static int select_task_rq_fair(struct task_struct *p, int sync)
  929. {
  930. struct sched_domain *sd, *this_sd = NULL;
  931. int prev_cpu, this_cpu, new_cpu;
  932. unsigned long load, this_load;
  933. struct rq *rq, *this_rq;
  934. unsigned int imbalance;
  935. int idx;
  936. prev_cpu = task_cpu(p);
  937. rq = task_rq(p);
  938. this_cpu = smp_processor_id();
  939. this_rq = cpu_rq(this_cpu);
  940. new_cpu = prev_cpu;
  941. /*
  942. * 'this_sd' is the first domain that both
  943. * this_cpu and prev_cpu are present in:
  944. */
  945. for_each_domain(this_cpu, sd) {
  946. if (cpu_isset(prev_cpu, sd->span)) {
  947. this_sd = sd;
  948. break;
  949. }
  950. }
  951. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  952. goto out;
  953. /*
  954. * Check for affine wakeup and passive balancing possibilities.
  955. */
  956. if (!this_sd)
  957. goto out;
  958. idx = this_sd->wake_idx;
  959. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  960. load = source_load(prev_cpu, idx);
  961. this_load = target_load(this_cpu, idx);
  962. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  963. load, this_load, imbalance))
  964. return this_cpu;
  965. if (prev_cpu == this_cpu)
  966. goto out;
  967. /*
  968. * Start passive balancing when half the imbalance_pct
  969. * limit is reached.
  970. */
  971. if (this_sd->flags & SD_WAKE_BALANCE) {
  972. if (imbalance*this_load <= 100*load) {
  973. schedstat_inc(this_sd, ttwu_move_balance);
  974. schedstat_inc(p, se.nr_wakeups_passive);
  975. return this_cpu;
  976. }
  977. }
  978. out:
  979. return wake_idle(new_cpu, p);
  980. }
  981. #endif /* CONFIG_SMP */
  982. static unsigned long wakeup_gran(struct sched_entity *se)
  983. {
  984. unsigned long gran = sysctl_sched_wakeup_granularity;
  985. /*
  986. * More easily preempt - nice tasks, while not making it harder for
  987. * + nice tasks.
  988. */
  989. gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
  990. return gran;
  991. }
  992. /*
  993. * Should 'se' preempt 'curr'.
  994. *
  995. * |s1
  996. * |s2
  997. * |s3
  998. * g
  999. * |<--->|c
  1000. *
  1001. * w(c, s1) = -1
  1002. * w(c, s2) = 0
  1003. * w(c, s3) = 1
  1004. *
  1005. */
  1006. static int
  1007. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1008. {
  1009. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1010. if (vdiff < 0)
  1011. return -1;
  1012. gran = wakeup_gran(curr);
  1013. if (vdiff > gran)
  1014. return 1;
  1015. return 0;
  1016. }
  1017. /* return depth at which a sched entity is present in the hierarchy */
  1018. static inline int depth_se(struct sched_entity *se)
  1019. {
  1020. int depth = 0;
  1021. for_each_sched_entity(se)
  1022. depth++;
  1023. return depth;
  1024. }
  1025. /*
  1026. * Preempt the current task with a newly woken task if needed:
  1027. */
  1028. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  1029. {
  1030. struct task_struct *curr = rq->curr;
  1031. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1032. struct sched_entity *se = &curr->se, *pse = &p->se;
  1033. int se_depth, pse_depth;
  1034. if (unlikely(rt_prio(p->prio))) {
  1035. update_rq_clock(rq);
  1036. update_curr(cfs_rq);
  1037. resched_task(curr);
  1038. return;
  1039. }
  1040. se->last_wakeup = se->sum_exec_runtime;
  1041. if (unlikely(se == pse))
  1042. return;
  1043. cfs_rq_of(pse)->next = pse;
  1044. /*
  1045. * Batch tasks do not preempt (their preemption is driven by
  1046. * the tick):
  1047. */
  1048. if (unlikely(p->policy == SCHED_BATCH))
  1049. return;
  1050. if (!sched_feat(WAKEUP_PREEMPT))
  1051. return;
  1052. /*
  1053. * preemption test can be made between sibling entities who are in the
  1054. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  1055. * both tasks until we find their ancestors who are siblings of common
  1056. * parent.
  1057. */
  1058. /* First walk up until both entities are at same depth */
  1059. se_depth = depth_se(se);
  1060. pse_depth = depth_se(pse);
  1061. while (se_depth > pse_depth) {
  1062. se_depth--;
  1063. se = parent_entity(se);
  1064. }
  1065. while (pse_depth > se_depth) {
  1066. pse_depth--;
  1067. pse = parent_entity(pse);
  1068. }
  1069. while (!is_same_group(se, pse)) {
  1070. se = parent_entity(se);
  1071. pse = parent_entity(pse);
  1072. }
  1073. if (wakeup_preempt_entity(se, pse) == 1)
  1074. resched_task(curr);
  1075. }
  1076. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1077. {
  1078. struct task_struct *p;
  1079. struct cfs_rq *cfs_rq = &rq->cfs;
  1080. struct sched_entity *se;
  1081. if (unlikely(!cfs_rq->nr_running))
  1082. return NULL;
  1083. do {
  1084. se = pick_next_entity(cfs_rq);
  1085. cfs_rq = group_cfs_rq(se);
  1086. } while (cfs_rq);
  1087. p = task_of(se);
  1088. hrtick_start_fair(rq, p);
  1089. return p;
  1090. }
  1091. /*
  1092. * Account for a descheduled task:
  1093. */
  1094. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1095. {
  1096. struct sched_entity *se = &prev->se;
  1097. struct cfs_rq *cfs_rq;
  1098. for_each_sched_entity(se) {
  1099. cfs_rq = cfs_rq_of(se);
  1100. put_prev_entity(cfs_rq, se);
  1101. }
  1102. }
  1103. #ifdef CONFIG_SMP
  1104. /**************************************************
  1105. * Fair scheduling class load-balancing methods:
  1106. */
  1107. /*
  1108. * Load-balancing iterator. Note: while the runqueue stays locked
  1109. * during the whole iteration, the current task might be
  1110. * dequeued so the iterator has to be dequeue-safe. Here we
  1111. * achieve that by always pre-iterating before returning
  1112. * the current task:
  1113. */
  1114. static struct task_struct *
  1115. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1116. {
  1117. struct task_struct *p = NULL;
  1118. struct sched_entity *se;
  1119. if (next == &cfs_rq->tasks)
  1120. return NULL;
  1121. /* Skip over entities that are not tasks */
  1122. do {
  1123. se = list_entry(next, struct sched_entity, group_node);
  1124. next = next->next;
  1125. } while (next != &cfs_rq->tasks && !entity_is_task(se));
  1126. if (next == &cfs_rq->tasks)
  1127. return NULL;
  1128. cfs_rq->balance_iterator = next;
  1129. if (entity_is_task(se))
  1130. p = task_of(se);
  1131. return p;
  1132. }
  1133. static struct task_struct *load_balance_start_fair(void *arg)
  1134. {
  1135. struct cfs_rq *cfs_rq = arg;
  1136. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1137. }
  1138. static struct task_struct *load_balance_next_fair(void *arg)
  1139. {
  1140. struct cfs_rq *cfs_rq = arg;
  1141. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1142. }
  1143. static unsigned long
  1144. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1145. unsigned long max_load_move, struct sched_domain *sd,
  1146. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1147. struct cfs_rq *cfs_rq)
  1148. {
  1149. struct rq_iterator cfs_rq_iterator;
  1150. cfs_rq_iterator.start = load_balance_start_fair;
  1151. cfs_rq_iterator.next = load_balance_next_fair;
  1152. cfs_rq_iterator.arg = cfs_rq;
  1153. return balance_tasks(this_rq, this_cpu, busiest,
  1154. max_load_move, sd, idle, all_pinned,
  1155. this_best_prio, &cfs_rq_iterator);
  1156. }
  1157. #ifdef CONFIG_FAIR_GROUP_SCHED
  1158. static unsigned long
  1159. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. unsigned long max_load_move,
  1161. struct sched_domain *sd, enum cpu_idle_type idle,
  1162. int *all_pinned, int *this_best_prio)
  1163. {
  1164. long rem_load_move = max_load_move;
  1165. int busiest_cpu = cpu_of(busiest);
  1166. struct task_group *tg;
  1167. rcu_read_lock();
  1168. list_for_each_entry(tg, &task_groups, list) {
  1169. long imbalance;
  1170. unsigned long this_weight, busiest_weight;
  1171. long rem_load, max_load, moved_load;
  1172. /*
  1173. * empty group
  1174. */
  1175. if (!aggregate(tg, sd)->task_weight)
  1176. continue;
  1177. rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
  1178. rem_load /= aggregate(tg, sd)->load + 1;
  1179. this_weight = tg->cfs_rq[this_cpu]->task_weight;
  1180. busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
  1181. imbalance = (busiest_weight - this_weight) / 2;
  1182. if (imbalance < 0)
  1183. imbalance = busiest_weight;
  1184. max_load = max(rem_load, imbalance);
  1185. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1186. max_load, sd, idle, all_pinned, this_best_prio,
  1187. tg->cfs_rq[busiest_cpu]);
  1188. if (!moved_load)
  1189. continue;
  1190. move_group_shares(tg, sd, busiest_cpu, this_cpu);
  1191. moved_load *= aggregate(tg, sd)->load;
  1192. moved_load /= aggregate(tg, sd)->rq_weight + 1;
  1193. rem_load_move -= moved_load;
  1194. if (rem_load_move < 0)
  1195. break;
  1196. }
  1197. rcu_read_unlock();
  1198. return max_load_move - rem_load_move;
  1199. }
  1200. #else
  1201. static unsigned long
  1202. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1203. unsigned long max_load_move,
  1204. struct sched_domain *sd, enum cpu_idle_type idle,
  1205. int *all_pinned, int *this_best_prio)
  1206. {
  1207. return __load_balance_fair(this_rq, this_cpu, busiest,
  1208. max_load_move, sd, idle, all_pinned,
  1209. this_best_prio, &busiest->cfs);
  1210. }
  1211. #endif
  1212. static int
  1213. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1214. struct sched_domain *sd, enum cpu_idle_type idle)
  1215. {
  1216. struct cfs_rq *busy_cfs_rq;
  1217. struct rq_iterator cfs_rq_iterator;
  1218. cfs_rq_iterator.start = load_balance_start_fair;
  1219. cfs_rq_iterator.next = load_balance_next_fair;
  1220. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1221. /*
  1222. * pass busy_cfs_rq argument into
  1223. * load_balance_[start|next]_fair iterators
  1224. */
  1225. cfs_rq_iterator.arg = busy_cfs_rq;
  1226. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1227. &cfs_rq_iterator))
  1228. return 1;
  1229. }
  1230. return 0;
  1231. }
  1232. #endif
  1233. /*
  1234. * scheduler tick hitting a task of our scheduling class:
  1235. */
  1236. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1237. {
  1238. struct cfs_rq *cfs_rq;
  1239. struct sched_entity *se = &curr->se;
  1240. for_each_sched_entity(se) {
  1241. cfs_rq = cfs_rq_of(se);
  1242. entity_tick(cfs_rq, se, queued);
  1243. }
  1244. }
  1245. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1246. /*
  1247. * Share the fairness runtime between parent and child, thus the
  1248. * total amount of pressure for CPU stays equal - new tasks
  1249. * get a chance to run but frequent forkers are not allowed to
  1250. * monopolize the CPU. Note: the parent runqueue is locked,
  1251. * the child is not running yet.
  1252. */
  1253. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1254. {
  1255. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1256. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1257. int this_cpu = smp_processor_id();
  1258. sched_info_queued(p);
  1259. update_curr(cfs_rq);
  1260. place_entity(cfs_rq, se, 1);
  1261. /* 'curr' will be NULL if the child belongs to a different group */
  1262. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1263. curr && curr->vruntime < se->vruntime) {
  1264. /*
  1265. * Upon rescheduling, sched_class::put_prev_task() will place
  1266. * 'current' within the tree based on its new key value.
  1267. */
  1268. swap(curr->vruntime, se->vruntime);
  1269. }
  1270. enqueue_task_fair(rq, p, 0);
  1271. resched_task(rq->curr);
  1272. }
  1273. /*
  1274. * Priority of the task has changed. Check to see if we preempt
  1275. * the current task.
  1276. */
  1277. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1278. int oldprio, int running)
  1279. {
  1280. /*
  1281. * Reschedule if we are currently running on this runqueue and
  1282. * our priority decreased, or if we are not currently running on
  1283. * this runqueue and our priority is higher than the current's
  1284. */
  1285. if (running) {
  1286. if (p->prio > oldprio)
  1287. resched_task(rq->curr);
  1288. } else
  1289. check_preempt_curr(rq, p);
  1290. }
  1291. /*
  1292. * We switched to the sched_fair class.
  1293. */
  1294. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1295. int running)
  1296. {
  1297. /*
  1298. * We were most likely switched from sched_rt, so
  1299. * kick off the schedule if running, otherwise just see
  1300. * if we can still preempt the current task.
  1301. */
  1302. if (running)
  1303. resched_task(rq->curr);
  1304. else
  1305. check_preempt_curr(rq, p);
  1306. }
  1307. /* Account for a task changing its policy or group.
  1308. *
  1309. * This routine is mostly called to set cfs_rq->curr field when a task
  1310. * migrates between groups/classes.
  1311. */
  1312. static void set_curr_task_fair(struct rq *rq)
  1313. {
  1314. struct sched_entity *se = &rq->curr->se;
  1315. for_each_sched_entity(se)
  1316. set_next_entity(cfs_rq_of(se), se);
  1317. }
  1318. #ifdef CONFIG_FAIR_GROUP_SCHED
  1319. static void moved_group_fair(struct task_struct *p)
  1320. {
  1321. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1322. update_curr(cfs_rq);
  1323. place_entity(cfs_rq, &p->se, 1);
  1324. }
  1325. #endif
  1326. /*
  1327. * All the scheduling class methods:
  1328. */
  1329. static const struct sched_class fair_sched_class = {
  1330. .next = &idle_sched_class,
  1331. .enqueue_task = enqueue_task_fair,
  1332. .dequeue_task = dequeue_task_fair,
  1333. .yield_task = yield_task_fair,
  1334. #ifdef CONFIG_SMP
  1335. .select_task_rq = select_task_rq_fair,
  1336. #endif /* CONFIG_SMP */
  1337. .check_preempt_curr = check_preempt_wakeup,
  1338. .pick_next_task = pick_next_task_fair,
  1339. .put_prev_task = put_prev_task_fair,
  1340. #ifdef CONFIG_SMP
  1341. .load_balance = load_balance_fair,
  1342. .move_one_task = move_one_task_fair,
  1343. #endif
  1344. .set_curr_task = set_curr_task_fair,
  1345. .task_tick = task_tick_fair,
  1346. .task_new = task_new_fair,
  1347. .prio_changed = prio_changed_fair,
  1348. .switched_to = switched_to_fair,
  1349. #ifdef CONFIG_FAIR_GROUP_SCHED
  1350. .moved_group = moved_group_fair,
  1351. #endif
  1352. };
  1353. #ifdef CONFIG_SCHED_DEBUG
  1354. static void print_cfs_stats(struct seq_file *m, int cpu)
  1355. {
  1356. struct cfs_rq *cfs_rq;
  1357. rcu_read_lock();
  1358. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1359. print_cfs_rq(m, cpu, cfs_rq);
  1360. rcu_read_unlock();
  1361. }
  1362. #endif