1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630 |
- /*
- * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
- *
- * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- * Interactivity improvements by Mike Galbraith
- * (C) 2007 Mike Galbraith <efault@gmx.de>
- *
- * Various enhancements by Dmitry Adamushko.
- * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
- *
- * Group scheduling enhancements by Srivatsa Vaddagiri
- * Copyright IBM Corporation, 2007
- * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
- *
- * Scaled math optimizations by Thomas Gleixner
- * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
- *
- * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- */
- #include <linux/latencytop.h>
- /*
- * Targeted preemption latency for CPU-bound tasks:
- * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length
- * and have no persistent notion like in traditional, time-slice
- * based scheduling concepts.
- *
- * (to see the precise effective timeslice length of your workload,
- * run vmstat and monitor the context-switches (cs) field)
- */
- unsigned int sysctl_sched_latency = 20000000ULL;
- /*
- * Minimal preemption granularity for CPU-bound tasks:
- * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
- */
- unsigned int sysctl_sched_min_granularity = 4000000ULL;
- /*
- * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
- */
- static unsigned int sched_nr_latency = 5;
- /*
- * After fork, child runs first. (default) If set to 0 then
- * parent will (try to) run first.
- */
- const_debug unsigned int sysctl_sched_child_runs_first = 1;
- /*
- * sys_sched_yield() compat mode
- *
- * This option switches the agressive yield implementation of the
- * old scheduler back on.
- */
- unsigned int __read_mostly sysctl_sched_compat_yield;
- /*
- * SCHED_OTHER wake-up granularity.
- * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
- unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
- const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
- /**************************************************************
- * CFS operations on generic schedulable entities:
- */
- static inline struct task_struct *task_of(struct sched_entity *se)
- {
- return container_of(se, struct task_struct, se);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* cpu runqueue to which this cfs_rq is attached */
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->rq;
- }
- /* An entity is a task if it doesn't "own" a runqueue */
- #define entity_is_task(se) (!se->my_q)
- /* Walk up scheduling entities hierarchy */
- #define for_each_sched_entity(se) \
- for (; se; se = se->parent)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return p->se.cfs_rq;
- }
- /* runqueue on which this entity is (to be) queued */
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- return se->cfs_rq;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return grp->my_q;
- }
- /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
- * another cpu ('this_cpu')
- */
- static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
- {
- return cfs_rq->tg->cfs_rq[this_cpu];
- }
- /* Iterate thr' all leaf cfs_rq's on a runqueue */
- #define for_each_leaf_cfs_rq(rq, cfs_rq) \
- list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
- /* Do the two (enqueued) entities belong to the same group ? */
- static inline int
- is_same_group(struct sched_entity *se, struct sched_entity *pse)
- {
- if (se->cfs_rq == pse->cfs_rq)
- return 1;
- return 0;
- }
- static inline struct sched_entity *parent_entity(struct sched_entity *se)
- {
- return se->parent;
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return container_of(cfs_rq, struct rq, cfs);
- }
- #define entity_is_task(se) 1
- #define for_each_sched_entity(se) \
- for (; se; se = NULL)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return &task_rq(p)->cfs;
- }
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- struct task_struct *p = task_of(se);
- struct rq *rq = task_rq(p);
- return &rq->cfs;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return NULL;
- }
- static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
- {
- return &cpu_rq(this_cpu)->cfs;
- }
- #define for_each_leaf_cfs_rq(rq, cfs_rq) \
- for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
- static inline int
- is_same_group(struct sched_entity *se, struct sched_entity *pse)
- {
- return 1;
- }
- static inline struct sched_entity *parent_entity(struct sched_entity *se)
- {
- return NULL;
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- /**************************************************************
- * Scheduling class tree data structure manipulation methods:
- */
- static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
- {
- s64 delta = (s64)(vruntime - min_vruntime);
- if (delta > 0)
- min_vruntime = vruntime;
- return min_vruntime;
- }
- static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
- {
- s64 delta = (s64)(vruntime - min_vruntime);
- if (delta < 0)
- min_vruntime = vruntime;
- return min_vruntime;
- }
- static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- return se->vruntime - cfs_rq->min_vruntime;
- }
- /*
- * Enqueue an entity into the rb-tree:
- */
- static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
- struct rb_node *parent = NULL;
- struct sched_entity *entry;
- s64 key = entity_key(cfs_rq, se);
- int leftmost = 1;
- /*
- * Find the right place in the rbtree:
- */
- while (*link) {
- parent = *link;
- entry = rb_entry(parent, struct sched_entity, run_node);
- /*
- * We dont care about collisions. Nodes with
- * the same key stay together.
- */
- if (key < entity_key(cfs_rq, entry)) {
- link = &parent->rb_left;
- } else {
- link = &parent->rb_right;
- leftmost = 0;
- }
- }
- /*
- * Maintain a cache of leftmost tree entries (it is frequently
- * used):
- */
- if (leftmost) {
- cfs_rq->rb_leftmost = &se->run_node;
- /*
- * maintain cfs_rq->min_vruntime to be a monotonic increasing
- * value tracking the leftmost vruntime in the tree.
- */
- cfs_rq->min_vruntime =
- max_vruntime(cfs_rq->min_vruntime, se->vruntime);
- }
- rb_link_node(&se->run_node, parent, link);
- rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
- }
- static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (cfs_rq->rb_leftmost == &se->run_node) {
- struct rb_node *next_node;
- struct sched_entity *next;
- next_node = rb_next(&se->run_node);
- cfs_rq->rb_leftmost = next_node;
- if (next_node) {
- next = rb_entry(next_node,
- struct sched_entity, run_node);
- cfs_rq->min_vruntime =
- max_vruntime(cfs_rq->min_vruntime,
- next->vruntime);
- }
- }
- if (cfs_rq->next == se)
- cfs_rq->next = NULL;
- rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
- }
- static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->rb_leftmost;
- }
- static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
- {
- return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
- }
- static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
- {
- struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
- if (!last)
- return NULL;
- return rb_entry(last, struct sched_entity, run_node);
- }
- /**************************************************************
- * Scheduling class statistics methods:
- */
- #ifdef CONFIG_SCHED_DEBUG
- int sched_nr_latency_handler(struct ctl_table *table, int write,
- struct file *filp, void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
- if (ret || !write)
- return ret;
- sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
- sysctl_sched_min_granularity);
- return 0;
- }
- #endif
- /*
- * delta *= w / rw
- */
- static inline unsigned long
- calc_delta_weight(unsigned long delta, struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- delta = calc_delta_mine(delta,
- se->load.weight, &cfs_rq_of(se)->load);
- }
- return delta;
- }
- /*
- * delta *= rw / w
- */
- static inline unsigned long
- calc_delta_fair(unsigned long delta, struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- delta = calc_delta_mine(delta,
- cfs_rq_of(se)->load.weight, &se->load);
- }
- return delta;
- }
- /*
- * The idea is to set a period in which each task runs once.
- *
- * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
- * this period because otherwise the slices get too small.
- *
- * p = (nr <= nl) ? l : l*nr/nl
- */
- static u64 __sched_period(unsigned long nr_running)
- {
- u64 period = sysctl_sched_latency;
- unsigned long nr_latency = sched_nr_latency;
- if (unlikely(nr_running > nr_latency)) {
- period = sysctl_sched_min_granularity;
- period *= nr_running;
- }
- return period;
- }
- /*
- * We calculate the wall-time slice from the period by taking a part
- * proportional to the weight.
- *
- * s = p*w/rw
- */
- static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
- }
- /*
- * We calculate the vruntime slice of a to be inserted task
- *
- * vs = s*rw/w = p
- */
- static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- unsigned long nr_running = cfs_rq->nr_running;
- if (!se->on_rq)
- nr_running++;
- return __sched_period(nr_running);
- }
- /*
- * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
- * that it favours >=0 over <0.
- *
- * -20 |
- * |
- * 0 --------+-------
- * .'
- * 19 .'
- *
- */
- static unsigned long
- calc_delta_asym(unsigned long delta, struct sched_entity *se)
- {
- struct load_weight lw = {
- .weight = NICE_0_LOAD,
- .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
- };
- for_each_sched_entity(se) {
- struct load_weight *se_lw = &se->load;
- if (se->load.weight < NICE_0_LOAD)
- se_lw = &lw;
- delta = calc_delta_mine(delta,
- cfs_rq_of(se)->load.weight, se_lw);
- }
- return delta;
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static inline void
- __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
- unsigned long delta_exec)
- {
- unsigned long delta_exec_weighted;
- schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
- curr->sum_exec_runtime += delta_exec;
- schedstat_add(cfs_rq, exec_clock, delta_exec);
- delta_exec_weighted = calc_delta_fair(delta_exec, curr);
- curr->vruntime += delta_exec_weighted;
- }
- static void update_curr(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *curr = cfs_rq->curr;
- u64 now = rq_of(cfs_rq)->clock;
- unsigned long delta_exec;
- if (unlikely(!curr))
- return;
- /*
- * Get the amount of time the current task was running
- * since the last time we changed load (this cannot
- * overflow on 32 bits):
- */
- delta_exec = (unsigned long)(now - curr->exec_start);
- __update_curr(cfs_rq, curr, delta_exec);
- curr->exec_start = now;
- if (entity_is_task(curr)) {
- struct task_struct *curtask = task_of(curr);
- cpuacct_charge(curtask, delta_exec);
- }
- }
- static inline void
- update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
- }
- /*
- * Task is being enqueued - update stats:
- */
- static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * Are we enqueueing a waiting task? (for current tasks
- * a dequeue/enqueue event is a NOP)
- */
- if (se != cfs_rq->curr)
- update_stats_wait_start(cfs_rq, se);
- }
- static void
- update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- schedstat_set(se->wait_max, max(se->wait_max,
- rq_of(cfs_rq)->clock - se->wait_start));
- schedstat_set(se->wait_count, se->wait_count + 1);
- schedstat_set(se->wait_sum, se->wait_sum +
- rq_of(cfs_rq)->clock - se->wait_start);
- schedstat_set(se->wait_start, 0);
- }
- static inline void
- update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * Mark the end of the wait period if dequeueing a
- * waiting task:
- */
- if (se != cfs_rq->curr)
- update_stats_wait_end(cfs_rq, se);
- }
- /*
- * We are picking a new current task - update its stats:
- */
- static inline void
- update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * We are starting a new run period:
- */
- se->exec_start = rq_of(cfs_rq)->clock;
- }
- /**************************************************
- * Scheduling class queueing methods:
- */
- #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
- static void
- add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
- {
- cfs_rq->task_weight += weight;
- }
- #else
- static inline void
- add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
- {
- }
- #endif
- static void
- account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_load_add(&cfs_rq->load, se->load.weight);
- if (!parent_entity(se))
- inc_cpu_load(rq_of(cfs_rq), se->load.weight);
- if (entity_is_task(se))
- add_cfs_task_weight(cfs_rq, se->load.weight);
- cfs_rq->nr_running++;
- se->on_rq = 1;
- list_add(&se->group_node, &cfs_rq->tasks);
- }
- static void
- account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_load_sub(&cfs_rq->load, se->load.weight);
- if (!parent_entity(se))
- dec_cpu_load(rq_of(cfs_rq), se->load.weight);
- if (entity_is_task(se))
- add_cfs_task_weight(cfs_rq, -se->load.weight);
- cfs_rq->nr_running--;
- se->on_rq = 0;
- list_del_init(&se->group_node);
- }
- static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- #ifdef CONFIG_SCHEDSTATS
- if (se->sleep_start) {
- u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
- struct task_struct *tsk = task_of(se);
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > se->sleep_max))
- se->sleep_max = delta;
- se->sleep_start = 0;
- se->sum_sleep_runtime += delta;
- account_scheduler_latency(tsk, delta >> 10, 1);
- }
- if (se->block_start) {
- u64 delta = rq_of(cfs_rq)->clock - se->block_start;
- struct task_struct *tsk = task_of(se);
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > se->block_max))
- se->block_max = delta;
- se->block_start = 0;
- se->sum_sleep_runtime += delta;
- /*
- * Blocking time is in units of nanosecs, so shift by 20 to
- * get a milliseconds-range estimation of the amount of
- * time that the task spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
- delta >> 20);
- }
- account_scheduler_latency(tsk, delta >> 10, 0);
- }
- #endif
- }
- static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- #ifdef CONFIG_SCHED_DEBUG
- s64 d = se->vruntime - cfs_rq->min_vruntime;
- if (d < 0)
- d = -d;
- if (d > 3*sysctl_sched_latency)
- schedstat_inc(cfs_rq, nr_spread_over);
- #endif
- }
- static void
- place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
- {
- u64 vruntime;
- if (first_fair(cfs_rq)) {
- vruntime = min_vruntime(cfs_rq->min_vruntime,
- __pick_next_entity(cfs_rq)->vruntime);
- } else
- vruntime = cfs_rq->min_vruntime;
- /*
- * The 'current' period is already promised to the current tasks,
- * however the extra weight of the new task will slow them down a
- * little, place the new task so that it fits in the slot that
- * stays open at the end.
- */
- if (initial && sched_feat(START_DEBIT))
- vruntime += sched_vslice_add(cfs_rq, se);
- if (!initial) {
- /* sleeps upto a single latency don't count. */
- if (sched_feat(NEW_FAIR_SLEEPERS)) {
- unsigned long thresh = sysctl_sched_latency;
- /*
- * convert the sleeper threshold into virtual time
- */
- if (sched_feat(NORMALIZED_SLEEPER))
- thresh = calc_delta_fair(thresh, se);
- vruntime -= thresh;
- }
- /* ensure we never gain time by being placed backwards. */
- vruntime = max_vruntime(se->vruntime, vruntime);
- }
- se->vruntime = vruntime;
- }
- static void
- enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- account_entity_enqueue(cfs_rq, se);
- if (wakeup) {
- place_entity(cfs_rq, se, 0);
- enqueue_sleeper(cfs_rq, se);
- }
- update_stats_enqueue(cfs_rq, se);
- check_spread(cfs_rq, se);
- if (se != cfs_rq->curr)
- __enqueue_entity(cfs_rq, se);
- }
- static void update_avg(u64 *avg, u64 sample)
- {
- s64 diff = sample - *avg;
- *avg += diff >> 3;
- }
- static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (!se->last_wakeup)
- return;
- update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
- se->last_wakeup = 0;
- }
- static void
- dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- update_stats_dequeue(cfs_rq, se);
- if (sleep) {
- update_avg_stats(cfs_rq, se);
- #ifdef CONFIG_SCHEDSTATS
- if (entity_is_task(se)) {
- struct task_struct *tsk = task_of(se);
- if (tsk->state & TASK_INTERRUPTIBLE)
- se->sleep_start = rq_of(cfs_rq)->clock;
- if (tsk->state & TASK_UNINTERRUPTIBLE)
- se->block_start = rq_of(cfs_rq)->clock;
- }
- #endif
- }
- if (se != cfs_rq->curr)
- __dequeue_entity(cfs_rq, se);
- account_entity_dequeue(cfs_rq, se);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void
- check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- unsigned long ideal_runtime, delta_exec;
- ideal_runtime = sched_slice(cfs_rq, curr);
- delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
- if (delta_exec > ideal_runtime)
- resched_task(rq_of(cfs_rq)->curr);
- }
- static void
- set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /* 'current' is not kept within the tree. */
- if (se->on_rq) {
- /*
- * Any task has to be enqueued before it get to execute on
- * a CPU. So account for the time it spent waiting on the
- * runqueue.
- */
- update_stats_wait_end(cfs_rq, se);
- __dequeue_entity(cfs_rq, se);
- }
- update_stats_curr_start(cfs_rq, se);
- cfs_rq->curr = se;
- #ifdef CONFIG_SCHEDSTATS
- /*
- * Track our maximum slice length, if the CPU's load is at
- * least twice that of our own weight (i.e. dont track it
- * when there are only lesser-weight tasks around):
- */
- if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
- se->slice_max = max(se->slice_max,
- se->sum_exec_runtime - se->prev_sum_exec_runtime);
- }
- #endif
- se->prev_sum_exec_runtime = se->sum_exec_runtime;
- }
- static int
- wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
- static struct sched_entity *
- pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (!cfs_rq->next)
- return se;
- if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
- return se;
- return cfs_rq->next;
- }
- static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *se = NULL;
- if (first_fair(cfs_rq)) {
- se = __pick_next_entity(cfs_rq);
- se = pick_next(cfs_rq, se);
- set_next_entity(cfs_rq, se);
- }
- return se;
- }
- static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
- {
- /*
- * If still on the runqueue then deactivate_task()
- * was not called and update_curr() has to be done:
- */
- if (prev->on_rq)
- update_curr(cfs_rq);
- check_spread(cfs_rq, prev);
- if (prev->on_rq) {
- update_stats_wait_start(cfs_rq, prev);
- /* Put 'current' back into the tree. */
- __enqueue_entity(cfs_rq, prev);
- }
- cfs_rq->curr = NULL;
- }
- static void
- entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * queued ticks are scheduled to match the slice, so don't bother
- * validating it and just reschedule.
- */
- if (queued) {
- resched_task(rq_of(cfs_rq)->curr);
- return;
- }
- /*
- * don't let the period tick interfere with the hrtick preemption
- */
- if (!sched_feat(DOUBLE_TICK) &&
- hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
- return;
- #endif
- if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
- check_preempt_tick(cfs_rq, curr);
- }
- /**************************************************
- * CFS operations on tasks:
- */
- #ifdef CONFIG_SCHED_HRTICK
- static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
- {
- int requeue = rq->curr == p;
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- WARN_ON(task_rq(p) != rq);
- if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
- u64 slice = sched_slice(cfs_rq, se);
- u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
- s64 delta = slice - ran;
- if (delta < 0) {
- if (rq->curr == p)
- resched_task(p);
- return;
- }
- /*
- * Don't schedule slices shorter than 10000ns, that just
- * doesn't make sense. Rely on vruntime for fairness.
- */
- if (!requeue)
- delta = max(10000LL, delta);
- hrtick_start(rq, delta, requeue);
- }
- }
- #else
- static inline void
- hrtick_start_fair(struct rq *rq, struct task_struct *p)
- {
- }
- #endif
- /*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
- static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- for_each_sched_entity(se) {
- if (se->on_rq)
- break;
- cfs_rq = cfs_rq_of(se);
- enqueue_entity(cfs_rq, se, wakeup);
- wakeup = 1;
- }
- hrtick_start_fair(rq, rq->curr);
- }
- /*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
- */
- static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- dequeue_entity(cfs_rq, se, sleep);
- /* Don't dequeue parent if it has other entities besides us */
- if (cfs_rq->load.weight)
- break;
- sleep = 1;
- }
- hrtick_start_fair(rq, rq->curr);
- }
- /*
- * sched_yield() support is very simple - we dequeue and enqueue.
- *
- * If compat_yield is turned on then we requeue to the end of the tree.
- */
- static void yield_task_fair(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- struct sched_entity *rightmost, *se = &curr->se;
- /*
- * Are we the only task in the tree?
- */
- if (unlikely(cfs_rq->nr_running == 1))
- return;
- if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
- update_rq_clock(rq);
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- return;
- }
- /*
- * Find the rightmost entry in the rbtree:
- */
- rightmost = __pick_last_entity(cfs_rq);
- /*
- * Already in the rightmost position?
- */
- if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
- return;
- /*
- * Minimally necessary key value to be last in the tree:
- * Upon rescheduling, sched_class::put_prev_task() will place
- * 'current' within the tree based on its new key value.
- */
- se->vruntime = rightmost->vruntime + 1;
- }
- /*
- * wake_idle() will wake a task on an idle cpu if task->cpu is
- * not idle and an idle cpu is available. The span of cpus to
- * search starts with cpus closest then further out as needed,
- * so we always favor a closer, idle cpu.
- *
- * Returns the CPU we should wake onto.
- */
- #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
- static int wake_idle(int cpu, struct task_struct *p)
- {
- cpumask_t tmp;
- struct sched_domain *sd;
- int i;
- /*
- * If it is idle, then it is the best cpu to run this task.
- *
- * This cpu is also the best, if it has more than one task already.
- * Siblings must be also busy(in most cases) as they didn't already
- * pickup the extra load from this cpu and hence we need not check
- * sibling runqueue info. This will avoid the checks and cache miss
- * penalities associated with that.
- */
- if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
- return cpu;
- for_each_domain(cpu, sd) {
- if ((sd->flags & SD_WAKE_IDLE)
- || ((sd->flags & SD_WAKE_IDLE_FAR)
- && !task_hot(p, task_rq(p)->clock, sd))) {
- cpus_and(tmp, sd->span, p->cpus_allowed);
- for_each_cpu_mask(i, tmp) {
- if (idle_cpu(i)) {
- if (i != task_cpu(p)) {
- schedstat_inc(p,
- se.nr_wakeups_idle);
- }
- return i;
- }
- }
- } else {
- break;
- }
- }
- return cpu;
- }
- #else
- static inline int wake_idle(int cpu, struct task_struct *p)
- {
- return cpu;
- }
- #endif
- #ifdef CONFIG_SMP
- static const struct sched_class fair_sched_class;
- static int
- wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
- struct task_struct *p, int prev_cpu, int this_cpu, int sync,
- int idx, unsigned long load, unsigned long this_load,
- unsigned int imbalance)
- {
- struct task_struct *curr = this_rq->curr;
- unsigned long tl = this_load;
- unsigned long tl_per_task;
- if (!(this_sd->flags & SD_WAKE_AFFINE))
- return 0;
- /*
- * If the currently running task will sleep within
- * a reasonable amount of time then attract this newly
- * woken task:
- */
- if (sync && curr->sched_class == &fair_sched_class) {
- if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
- p->se.avg_overlap < sysctl_sched_migration_cost)
- return 1;
- }
- schedstat_inc(p, se.nr_wakeups_affine_attempts);
- tl_per_task = cpu_avg_load_per_task(this_cpu);
- /*
- * If sync wakeup then subtract the (maximum possible)
- * effect of the currently running task from the load
- * of the current CPU:
- */
- if (sync)
- tl -= current->se.load.weight;
- if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
- 100*(tl + p->se.load.weight) <= imbalance*load) {
- /*
- * This domain has SD_WAKE_AFFINE and
- * p is cache cold in this domain, and
- * there is no bad imbalance.
- */
- schedstat_inc(this_sd, ttwu_move_affine);
- schedstat_inc(p, se.nr_wakeups_affine);
- return 1;
- }
- return 0;
- }
- static int select_task_rq_fair(struct task_struct *p, int sync)
- {
- struct sched_domain *sd, *this_sd = NULL;
- int prev_cpu, this_cpu, new_cpu;
- unsigned long load, this_load;
- struct rq *rq, *this_rq;
- unsigned int imbalance;
- int idx;
- prev_cpu = task_cpu(p);
- rq = task_rq(p);
- this_cpu = smp_processor_id();
- this_rq = cpu_rq(this_cpu);
- new_cpu = prev_cpu;
- /*
- * 'this_sd' is the first domain that both
- * this_cpu and prev_cpu are present in:
- */
- for_each_domain(this_cpu, sd) {
- if (cpu_isset(prev_cpu, sd->span)) {
- this_sd = sd;
- break;
- }
- }
- if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
- goto out;
- /*
- * Check for affine wakeup and passive balancing possibilities.
- */
- if (!this_sd)
- goto out;
- idx = this_sd->wake_idx;
- imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
- load = source_load(prev_cpu, idx);
- this_load = target_load(this_cpu, idx);
- if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
- load, this_load, imbalance))
- return this_cpu;
- if (prev_cpu == this_cpu)
- goto out;
- /*
- * Start passive balancing when half the imbalance_pct
- * limit is reached.
- */
- if (this_sd->flags & SD_WAKE_BALANCE) {
- if (imbalance*this_load <= 100*load) {
- schedstat_inc(this_sd, ttwu_move_balance);
- schedstat_inc(p, se.nr_wakeups_passive);
- return this_cpu;
- }
- }
- out:
- return wake_idle(new_cpu, p);
- }
- #endif /* CONFIG_SMP */
- static unsigned long wakeup_gran(struct sched_entity *se)
- {
- unsigned long gran = sysctl_sched_wakeup_granularity;
- /*
- * More easily preempt - nice tasks, while not making it harder for
- * + nice tasks.
- */
- gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
- return gran;
- }
- /*
- * Should 'se' preempt 'curr'.
- *
- * |s1
- * |s2
- * |s3
- * g
- * |<--->|c
- *
- * w(c, s1) = -1
- * w(c, s2) = 0
- * w(c, s3) = 1
- *
- */
- static int
- wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
- {
- s64 gran, vdiff = curr->vruntime - se->vruntime;
- if (vdiff < 0)
- return -1;
- gran = wakeup_gran(curr);
- if (vdiff > gran)
- return 1;
- return 0;
- }
- /* return depth at which a sched entity is present in the hierarchy */
- static inline int depth_se(struct sched_entity *se)
- {
- int depth = 0;
- for_each_sched_entity(se)
- depth++;
- return depth;
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
- {
- struct task_struct *curr = rq->curr;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- struct sched_entity *se = &curr->se, *pse = &p->se;
- int se_depth, pse_depth;
- if (unlikely(rt_prio(p->prio))) {
- update_rq_clock(rq);
- update_curr(cfs_rq);
- resched_task(curr);
- return;
- }
- se->last_wakeup = se->sum_exec_runtime;
- if (unlikely(se == pse))
- return;
- cfs_rq_of(pse)->next = pse;
- /*
- * Batch tasks do not preempt (their preemption is driven by
- * the tick):
- */
- if (unlikely(p->policy == SCHED_BATCH))
- return;
- if (!sched_feat(WAKEUP_PREEMPT))
- return;
- /*
- * preemption test can be made between sibling entities who are in the
- * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
- * both tasks until we find their ancestors who are siblings of common
- * parent.
- */
- /* First walk up until both entities are at same depth */
- se_depth = depth_se(se);
- pse_depth = depth_se(pse);
- while (se_depth > pse_depth) {
- se_depth--;
- se = parent_entity(se);
- }
- while (pse_depth > se_depth) {
- pse_depth--;
- pse = parent_entity(pse);
- }
- while (!is_same_group(se, pse)) {
- se = parent_entity(se);
- pse = parent_entity(pse);
- }
- if (wakeup_preempt_entity(se, pse) == 1)
- resched_task(curr);
- }
- static struct task_struct *pick_next_task_fair(struct rq *rq)
- {
- struct task_struct *p;
- struct cfs_rq *cfs_rq = &rq->cfs;
- struct sched_entity *se;
- if (unlikely(!cfs_rq->nr_running))
- return NULL;
- do {
- se = pick_next_entity(cfs_rq);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
- p = task_of(se);
- hrtick_start_fair(rq, p);
- return p;
- }
- /*
- * Account for a descheduled task:
- */
- static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
- {
- struct sched_entity *se = &prev->se;
- struct cfs_rq *cfs_rq;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- put_prev_entity(cfs_rq, se);
- }
- }
- #ifdef CONFIG_SMP
- /**************************************************
- * Fair scheduling class load-balancing methods:
- */
- /*
- * Load-balancing iterator. Note: while the runqueue stays locked
- * during the whole iteration, the current task might be
- * dequeued so the iterator has to be dequeue-safe. Here we
- * achieve that by always pre-iterating before returning
- * the current task:
- */
- static struct task_struct *
- __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
- {
- struct task_struct *p = NULL;
- struct sched_entity *se;
- if (next == &cfs_rq->tasks)
- return NULL;
- /* Skip over entities that are not tasks */
- do {
- se = list_entry(next, struct sched_entity, group_node);
- next = next->next;
- } while (next != &cfs_rq->tasks && !entity_is_task(se));
- if (next == &cfs_rq->tasks)
- return NULL;
- cfs_rq->balance_iterator = next;
- if (entity_is_task(se))
- p = task_of(se);
- return p;
- }
- static struct task_struct *load_balance_start_fair(void *arg)
- {
- struct cfs_rq *cfs_rq = arg;
- return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
- }
- static struct task_struct *load_balance_next_fair(void *arg)
- {
- struct cfs_rq *cfs_rq = arg;
- return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
- }
- static unsigned long
- __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move, struct sched_domain *sd,
- enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
- struct cfs_rq *cfs_rq)
- {
- struct rq_iterator cfs_rq_iterator;
- cfs_rq_iterator.start = load_balance_start_fair;
- cfs_rq_iterator.next = load_balance_next_fair;
- cfs_rq_iterator.arg = cfs_rq;
- return balance_tasks(this_rq, this_cpu, busiest,
- max_load_move, sd, idle, all_pinned,
- this_best_prio, &cfs_rq_iterator);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static unsigned long
- load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- long rem_load_move = max_load_move;
- int busiest_cpu = cpu_of(busiest);
- struct task_group *tg;
- rcu_read_lock();
- list_for_each_entry(tg, &task_groups, list) {
- long imbalance;
- unsigned long this_weight, busiest_weight;
- long rem_load, max_load, moved_load;
- /*
- * empty group
- */
- if (!aggregate(tg, sd)->task_weight)
- continue;
- rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
- rem_load /= aggregate(tg, sd)->load + 1;
- this_weight = tg->cfs_rq[this_cpu]->task_weight;
- busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
- imbalance = (busiest_weight - this_weight) / 2;
- if (imbalance < 0)
- imbalance = busiest_weight;
- max_load = max(rem_load, imbalance);
- moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
- max_load, sd, idle, all_pinned, this_best_prio,
- tg->cfs_rq[busiest_cpu]);
- if (!moved_load)
- continue;
- move_group_shares(tg, sd, busiest_cpu, this_cpu);
- moved_load *= aggregate(tg, sd)->load;
- moved_load /= aggregate(tg, sd)->rq_weight + 1;
- rem_load_move -= moved_load;
- if (rem_load_move < 0)
- break;
- }
- rcu_read_unlock();
- return max_load_move - rem_load_move;
- }
- #else
- static unsigned long
- load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- return __load_balance_fair(this_rq, this_cpu, busiest,
- max_load_move, sd, idle, all_pinned,
- this_best_prio, &busiest->cfs);
- }
- #endif
- static int
- move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- struct cfs_rq *busy_cfs_rq;
- struct rq_iterator cfs_rq_iterator;
- cfs_rq_iterator.start = load_balance_start_fair;
- cfs_rq_iterator.next = load_balance_next_fair;
- for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
- /*
- * pass busy_cfs_rq argument into
- * load_balance_[start|next]_fair iterators
- */
- cfs_rq_iterator.arg = busy_cfs_rq;
- if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
- &cfs_rq_iterator))
- return 1;
- }
- return 0;
- }
- #endif
- /*
- * scheduler tick hitting a task of our scheduling class:
- */
- static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &curr->se;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- entity_tick(cfs_rq, se, queued);
- }
- }
- #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
- /*
- * Share the fairness runtime between parent and child, thus the
- * total amount of pressure for CPU stays equal - new tasks
- * get a chance to run but frequent forkers are not allowed to
- * monopolize the CPU. Note: the parent runqueue is locked,
- * the child is not running yet.
- */
- static void task_new_fair(struct rq *rq, struct task_struct *p)
- {
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
- struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
- int this_cpu = smp_processor_id();
- sched_info_queued(p);
- update_curr(cfs_rq);
- place_entity(cfs_rq, se, 1);
- /* 'curr' will be NULL if the child belongs to a different group */
- if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
- curr && curr->vruntime < se->vruntime) {
- /*
- * Upon rescheduling, sched_class::put_prev_task() will place
- * 'current' within the tree based on its new key value.
- */
- swap(curr->vruntime, se->vruntime);
- }
- enqueue_task_fair(rq, p, 0);
- resched_task(rq->curr);
- }
- /*
- * Priority of the task has changed. Check to see if we preempt
- * the current task.
- */
- static void prio_changed_fair(struct rq *rq, struct task_struct *p,
- int oldprio, int running)
- {
- /*
- * Reschedule if we are currently running on this runqueue and
- * our priority decreased, or if we are not currently running on
- * this runqueue and our priority is higher than the current's
- */
- if (running) {
- if (p->prio > oldprio)
- resched_task(rq->curr);
- } else
- check_preempt_curr(rq, p);
- }
- /*
- * We switched to the sched_fair class.
- */
- static void switched_to_fair(struct rq *rq, struct task_struct *p,
- int running)
- {
- /*
- * We were most likely switched from sched_rt, so
- * kick off the schedule if running, otherwise just see
- * if we can still preempt the current task.
- */
- if (running)
- resched_task(rq->curr);
- else
- check_preempt_curr(rq, p);
- }
- /* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
- static void set_curr_task_fair(struct rq *rq)
- {
- struct sched_entity *se = &rq->curr->se;
- for_each_sched_entity(se)
- set_next_entity(cfs_rq_of(se), se);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void moved_group_fair(struct task_struct *p)
- {
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
- update_curr(cfs_rq);
- place_entity(cfs_rq, &p->se, 1);
- }
- #endif
- /*
- * All the scheduling class methods:
- */
- static const struct sched_class fair_sched_class = {
- .next = &idle_sched_class,
- .enqueue_task = enqueue_task_fair,
- .dequeue_task = dequeue_task_fair,
- .yield_task = yield_task_fair,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_fair,
- #endif /* CONFIG_SMP */
- .check_preempt_curr = check_preempt_wakeup,
- .pick_next_task = pick_next_task_fair,
- .put_prev_task = put_prev_task_fair,
- #ifdef CONFIG_SMP
- .load_balance = load_balance_fair,
- .move_one_task = move_one_task_fair,
- #endif
- .set_curr_task = set_curr_task_fair,
- .task_tick = task_tick_fair,
- .task_new = task_new_fair,
- .prio_changed = prio_changed_fair,
- .switched_to = switched_to_fair,
- #ifdef CONFIG_FAIR_GROUP_SCHED
- .moved_group = moved_group_fair,
- #endif
- };
- #ifdef CONFIG_SCHED_DEBUG
- static void print_cfs_stats(struct seq_file *m, int cpu)
- {
- struct cfs_rq *cfs_rq;
- rcu_read_lock();
- for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
- print_cfs_rq(m, cpu, cfs_rq);
- rcu_read_unlock();
- }
- #endif
|