sched.c 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif
  254. #else
  255. #define root_task_group init_task_group
  256. #endif
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif
  267. /*
  268. * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
  269. * (The default weight is 1024 - so there's no practical
  270. * limitation from this.)
  271. */
  272. #define MIN_SHARES 2
  273. #define MAX_SHARES (ULONG_MAX - 1)
  274. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  275. #endif
  276. /* Default task group.
  277. * Every task in system belong to this group at bootup.
  278. */
  279. struct task_group init_task_group;
  280. /* return group to which a task belongs */
  281. static inline struct task_group *task_group(struct task_struct *p)
  282. {
  283. struct task_group *tg;
  284. #ifdef CONFIG_USER_SCHED
  285. tg = p->user->tg;
  286. #elif defined(CONFIG_CGROUP_SCHED)
  287. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  288. struct task_group, css);
  289. #else
  290. tg = &init_task_group;
  291. #endif
  292. return tg;
  293. }
  294. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  295. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  296. {
  297. #ifdef CONFIG_FAIR_GROUP_SCHED
  298. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  299. p->se.parent = task_group(p)->se[cpu];
  300. #endif
  301. #ifdef CONFIG_RT_GROUP_SCHED
  302. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  303. p->rt.parent = task_group(p)->rt_se[cpu];
  304. #endif
  305. }
  306. #else
  307. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  308. #endif /* CONFIG_GROUP_SCHED */
  309. /* CFS-related fields in a runqueue */
  310. struct cfs_rq {
  311. struct load_weight load;
  312. unsigned long nr_running;
  313. u64 exec_clock;
  314. u64 min_vruntime;
  315. struct rb_root tasks_timeline;
  316. struct rb_node *rb_leftmost;
  317. struct list_head tasks;
  318. struct list_head *balance_iterator;
  319. /*
  320. * 'curr' points to currently running entity on this cfs_rq.
  321. * It is set to NULL otherwise (i.e when none are currently running).
  322. */
  323. struct sched_entity *curr, *next;
  324. unsigned long nr_spread_over;
  325. #ifdef CONFIG_FAIR_GROUP_SCHED
  326. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  327. /*
  328. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  329. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  330. * (like users, containers etc.)
  331. *
  332. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  333. * list is used during load balance.
  334. */
  335. struct list_head leaf_cfs_rq_list;
  336. struct task_group *tg; /* group that "owns" this runqueue */
  337. #ifdef CONFIG_SMP
  338. unsigned long task_weight;
  339. unsigned long shares;
  340. /*
  341. * We need space to build a sched_domain wide view of the full task
  342. * group tree, in order to avoid depending on dynamic memory allocation
  343. * during the load balancing we place this in the per cpu task group
  344. * hierarchy. This limits the load balancing to one instance per cpu,
  345. * but more should not be needed anyway.
  346. */
  347. struct aggregate_struct {
  348. /*
  349. * load = weight(cpus) * f(tg)
  350. *
  351. * Where f(tg) is the recursive weight fraction assigned to
  352. * this group.
  353. */
  354. unsigned long load;
  355. /*
  356. * part of the group weight distributed to this span.
  357. */
  358. unsigned long shares;
  359. /*
  360. * The sum of all runqueue weights within this span.
  361. */
  362. unsigned long rq_weight;
  363. /*
  364. * Weight contributed by tasks; this is the part we can
  365. * influence by moving tasks around.
  366. */
  367. unsigned long task_weight;
  368. } aggregate;
  369. #endif
  370. #endif
  371. };
  372. /* Real-Time classes' related field in a runqueue: */
  373. struct rt_rq {
  374. struct rt_prio_array active;
  375. unsigned long rt_nr_running;
  376. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  377. int highest_prio; /* highest queued rt task prio */
  378. #endif
  379. #ifdef CONFIG_SMP
  380. unsigned long rt_nr_migratory;
  381. int overloaded;
  382. #endif
  383. int rt_throttled;
  384. u64 rt_time;
  385. u64 rt_runtime;
  386. /* Nests inside the rq lock: */
  387. spinlock_t rt_runtime_lock;
  388. #ifdef CONFIG_RT_GROUP_SCHED
  389. unsigned long rt_nr_boosted;
  390. struct rq *rq;
  391. struct list_head leaf_rt_rq_list;
  392. struct task_group *tg;
  393. struct sched_rt_entity *rt_se;
  394. #endif
  395. };
  396. #ifdef CONFIG_SMP
  397. /*
  398. * We add the notion of a root-domain which will be used to define per-domain
  399. * variables. Each exclusive cpuset essentially defines an island domain by
  400. * fully partitioning the member cpus from any other cpuset. Whenever a new
  401. * exclusive cpuset is created, we also create and attach a new root-domain
  402. * object.
  403. *
  404. */
  405. struct root_domain {
  406. atomic_t refcount;
  407. cpumask_t span;
  408. cpumask_t online;
  409. /*
  410. * The "RT overload" flag: it gets set if a CPU has more than
  411. * one runnable RT task.
  412. */
  413. cpumask_t rto_mask;
  414. atomic_t rto_count;
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. struct task_struct *migration_thread;
  478. struct list_head migration_queue;
  479. #endif
  480. #ifdef CONFIG_SCHED_HRTICK
  481. unsigned long hrtick_flags;
  482. ktime_t hrtick_expire;
  483. struct hrtimer hrtick_timer;
  484. #endif
  485. #ifdef CONFIG_SCHEDSTATS
  486. /* latency stats */
  487. struct sched_info rq_sched_info;
  488. /* sys_sched_yield() stats */
  489. unsigned int yld_exp_empty;
  490. unsigned int yld_act_empty;
  491. unsigned int yld_both_empty;
  492. unsigned int yld_count;
  493. /* schedule() stats */
  494. unsigned int sched_switch;
  495. unsigned int sched_count;
  496. unsigned int sched_goidle;
  497. /* try_to_wake_up() stats */
  498. unsigned int ttwu_count;
  499. unsigned int ttwu_local;
  500. /* BKL stats */
  501. unsigned int bkl_count;
  502. #endif
  503. struct lock_class_key rq_lock_key;
  504. };
  505. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  506. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  507. {
  508. rq->curr->sched_class->check_preempt_curr(rq, p);
  509. }
  510. static inline int cpu_of(struct rq *rq)
  511. {
  512. #ifdef CONFIG_SMP
  513. return rq->cpu;
  514. #else
  515. return 0;
  516. #endif
  517. }
  518. /*
  519. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  520. * See detach_destroy_domains: synchronize_sched for details.
  521. *
  522. * The domain tree of any CPU may only be accessed from within
  523. * preempt-disabled sections.
  524. */
  525. #define for_each_domain(cpu, __sd) \
  526. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  527. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  528. #define this_rq() (&__get_cpu_var(runqueues))
  529. #define task_rq(p) cpu_rq(task_cpu(p))
  530. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  531. static inline void update_rq_clock(struct rq *rq)
  532. {
  533. rq->clock = sched_clock_cpu(cpu_of(rq));
  534. }
  535. /*
  536. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  537. */
  538. #ifdef CONFIG_SCHED_DEBUG
  539. # define const_debug __read_mostly
  540. #else
  541. # define const_debug static const
  542. #endif
  543. /**
  544. * runqueue_is_locked
  545. *
  546. * Returns true if the current cpu runqueue is locked.
  547. * This interface allows printk to be called with the runqueue lock
  548. * held and know whether or not it is OK to wake up the klogd.
  549. */
  550. int runqueue_is_locked(void)
  551. {
  552. int cpu = get_cpu();
  553. struct rq *rq = cpu_rq(cpu);
  554. int ret;
  555. ret = spin_is_locked(&rq->lock);
  556. put_cpu();
  557. return ret;
  558. }
  559. /*
  560. * Debugging: various feature bits
  561. */
  562. #define SCHED_FEAT(name, enabled) \
  563. __SCHED_FEAT_##name ,
  564. enum {
  565. #include "sched_features.h"
  566. };
  567. #undef SCHED_FEAT
  568. #define SCHED_FEAT(name, enabled) \
  569. (1UL << __SCHED_FEAT_##name) * enabled |
  570. const_debug unsigned int sysctl_sched_features =
  571. #include "sched_features.h"
  572. 0;
  573. #undef SCHED_FEAT
  574. #ifdef CONFIG_SCHED_DEBUG
  575. #define SCHED_FEAT(name, enabled) \
  576. #name ,
  577. static __read_mostly char *sched_feat_names[] = {
  578. #include "sched_features.h"
  579. NULL
  580. };
  581. #undef SCHED_FEAT
  582. static int sched_feat_open(struct inode *inode, struct file *filp)
  583. {
  584. filp->private_data = inode->i_private;
  585. return 0;
  586. }
  587. static ssize_t
  588. sched_feat_read(struct file *filp, char __user *ubuf,
  589. size_t cnt, loff_t *ppos)
  590. {
  591. char *buf;
  592. int r = 0;
  593. int len = 0;
  594. int i;
  595. for (i = 0; sched_feat_names[i]; i++) {
  596. len += strlen(sched_feat_names[i]);
  597. len += 4;
  598. }
  599. buf = kmalloc(len + 2, GFP_KERNEL);
  600. if (!buf)
  601. return -ENOMEM;
  602. for (i = 0; sched_feat_names[i]; i++) {
  603. if (sysctl_sched_features & (1UL << i))
  604. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  605. else
  606. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  607. }
  608. r += sprintf(buf + r, "\n");
  609. WARN_ON(r >= len + 2);
  610. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  611. kfree(buf);
  612. return r;
  613. }
  614. static ssize_t
  615. sched_feat_write(struct file *filp, const char __user *ubuf,
  616. size_t cnt, loff_t *ppos)
  617. {
  618. char buf[64];
  619. char *cmp = buf;
  620. int neg = 0;
  621. int i;
  622. if (cnt > 63)
  623. cnt = 63;
  624. if (copy_from_user(&buf, ubuf, cnt))
  625. return -EFAULT;
  626. buf[cnt] = 0;
  627. if (strncmp(buf, "NO_", 3) == 0) {
  628. neg = 1;
  629. cmp += 3;
  630. }
  631. for (i = 0; sched_feat_names[i]; i++) {
  632. int len = strlen(sched_feat_names[i]);
  633. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  634. if (neg)
  635. sysctl_sched_features &= ~(1UL << i);
  636. else
  637. sysctl_sched_features |= (1UL << i);
  638. break;
  639. }
  640. }
  641. if (!sched_feat_names[i])
  642. return -EINVAL;
  643. filp->f_pos += cnt;
  644. return cnt;
  645. }
  646. static struct file_operations sched_feat_fops = {
  647. .open = sched_feat_open,
  648. .read = sched_feat_read,
  649. .write = sched_feat_write,
  650. };
  651. static __init int sched_init_debug(void)
  652. {
  653. debugfs_create_file("sched_features", 0644, NULL, NULL,
  654. &sched_feat_fops);
  655. return 0;
  656. }
  657. late_initcall(sched_init_debug);
  658. #endif
  659. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  660. /*
  661. * Number of tasks to iterate in a single balance run.
  662. * Limited because this is done with IRQs disabled.
  663. */
  664. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  665. /*
  666. * period over which we measure -rt task cpu usage in us.
  667. * default: 1s
  668. */
  669. unsigned int sysctl_sched_rt_period = 1000000;
  670. static __read_mostly int scheduler_running;
  671. /*
  672. * part of the period that we allow rt tasks to run in us.
  673. * default: 0.95s
  674. */
  675. int sysctl_sched_rt_runtime = 950000;
  676. static inline u64 global_rt_period(void)
  677. {
  678. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  679. }
  680. static inline u64 global_rt_runtime(void)
  681. {
  682. if (sysctl_sched_rt_period < 0)
  683. return RUNTIME_INF;
  684. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  685. }
  686. unsigned long long time_sync_thresh = 100000;
  687. static DEFINE_PER_CPU(unsigned long long, time_offset);
  688. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  689. /*
  690. * Global lock which we take every now and then to synchronize
  691. * the CPUs time. This method is not warp-safe, but it's good
  692. * enough to synchronize slowly diverging time sources and thus
  693. * it's good enough for tracing:
  694. */
  695. static DEFINE_SPINLOCK(time_sync_lock);
  696. static unsigned long long prev_global_time;
  697. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  698. {
  699. /*
  700. * We want this inlined, to not get tracer function calls
  701. * in this critical section:
  702. */
  703. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  704. __raw_spin_lock(&time_sync_lock.raw_lock);
  705. if (time < prev_global_time) {
  706. per_cpu(time_offset, cpu) += prev_global_time - time;
  707. time = prev_global_time;
  708. } else {
  709. prev_global_time = time;
  710. }
  711. __raw_spin_unlock(&time_sync_lock.raw_lock);
  712. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  713. return time;
  714. }
  715. static unsigned long long __cpu_clock(int cpu)
  716. {
  717. unsigned long long now;
  718. /*
  719. * Only call sched_clock() if the scheduler has already been
  720. * initialized (some code might call cpu_clock() very early):
  721. */
  722. if (unlikely(!scheduler_running))
  723. return 0;
  724. now = sched_clock_cpu(cpu);
  725. return now;
  726. }
  727. /*
  728. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  729. * clock constructed from sched_clock():
  730. */
  731. unsigned long long cpu_clock(int cpu)
  732. {
  733. unsigned long long prev_cpu_time, time, delta_time;
  734. unsigned long flags;
  735. local_irq_save(flags);
  736. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  737. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  738. delta_time = time-prev_cpu_time;
  739. if (unlikely(delta_time > time_sync_thresh)) {
  740. time = __sync_cpu_clock(time, cpu);
  741. per_cpu(prev_cpu_time, cpu) = time;
  742. }
  743. local_irq_restore(flags);
  744. return time;
  745. }
  746. EXPORT_SYMBOL_GPL(cpu_clock);
  747. #ifndef prepare_arch_switch
  748. # define prepare_arch_switch(next) do { } while (0)
  749. #endif
  750. #ifndef finish_arch_switch
  751. # define finish_arch_switch(prev) do { } while (0)
  752. #endif
  753. static inline int task_current(struct rq *rq, struct task_struct *p)
  754. {
  755. return rq->curr == p;
  756. }
  757. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  758. static inline int task_running(struct rq *rq, struct task_struct *p)
  759. {
  760. return task_current(rq, p);
  761. }
  762. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  763. {
  764. }
  765. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  766. {
  767. #ifdef CONFIG_DEBUG_SPINLOCK
  768. /* this is a valid case when another task releases the spinlock */
  769. rq->lock.owner = current;
  770. #endif
  771. /*
  772. * If we are tracking spinlock dependencies then we have to
  773. * fix up the runqueue lock - which gets 'carried over' from
  774. * prev into current:
  775. */
  776. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  777. spin_unlock_irq(&rq->lock);
  778. }
  779. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  780. static inline int task_running(struct rq *rq, struct task_struct *p)
  781. {
  782. #ifdef CONFIG_SMP
  783. return p->oncpu;
  784. #else
  785. return task_current(rq, p);
  786. #endif
  787. }
  788. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  789. {
  790. #ifdef CONFIG_SMP
  791. /*
  792. * We can optimise this out completely for !SMP, because the
  793. * SMP rebalancing from interrupt is the only thing that cares
  794. * here.
  795. */
  796. next->oncpu = 1;
  797. #endif
  798. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. spin_unlock_irq(&rq->lock);
  800. #else
  801. spin_unlock(&rq->lock);
  802. #endif
  803. }
  804. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  805. {
  806. #ifdef CONFIG_SMP
  807. /*
  808. * After ->oncpu is cleared, the task can be moved to a different CPU.
  809. * We must ensure this doesn't happen until the switch is completely
  810. * finished.
  811. */
  812. smp_wmb();
  813. prev->oncpu = 0;
  814. #endif
  815. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  816. local_irq_enable();
  817. #endif
  818. }
  819. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  820. /*
  821. * __task_rq_lock - lock the runqueue a given task resides on.
  822. * Must be called interrupts disabled.
  823. */
  824. static inline struct rq *__task_rq_lock(struct task_struct *p)
  825. __acquires(rq->lock)
  826. {
  827. for (;;) {
  828. struct rq *rq = task_rq(p);
  829. spin_lock(&rq->lock);
  830. if (likely(rq == task_rq(p)))
  831. return rq;
  832. spin_unlock(&rq->lock);
  833. }
  834. }
  835. /*
  836. * task_rq_lock - lock the runqueue a given task resides on and disable
  837. * interrupts. Note the ordering: we can safely lookup the task_rq without
  838. * explicitly disabling preemption.
  839. */
  840. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  841. __acquires(rq->lock)
  842. {
  843. struct rq *rq;
  844. for (;;) {
  845. local_irq_save(*flags);
  846. rq = task_rq(p);
  847. spin_lock(&rq->lock);
  848. if (likely(rq == task_rq(p)))
  849. return rq;
  850. spin_unlock_irqrestore(&rq->lock, *flags);
  851. }
  852. }
  853. static void __task_rq_unlock(struct rq *rq)
  854. __releases(rq->lock)
  855. {
  856. spin_unlock(&rq->lock);
  857. }
  858. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  859. __releases(rq->lock)
  860. {
  861. spin_unlock_irqrestore(&rq->lock, *flags);
  862. }
  863. /*
  864. * this_rq_lock - lock this runqueue and disable interrupts.
  865. */
  866. static struct rq *this_rq_lock(void)
  867. __acquires(rq->lock)
  868. {
  869. struct rq *rq;
  870. local_irq_disable();
  871. rq = this_rq();
  872. spin_lock(&rq->lock);
  873. return rq;
  874. }
  875. static void __resched_task(struct task_struct *p, int tif_bit);
  876. static inline void resched_task(struct task_struct *p)
  877. {
  878. __resched_task(p, TIF_NEED_RESCHED);
  879. }
  880. #ifdef CONFIG_SCHED_HRTICK
  881. /*
  882. * Use HR-timers to deliver accurate preemption points.
  883. *
  884. * Its all a bit involved since we cannot program an hrt while holding the
  885. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  886. * reschedule event.
  887. *
  888. * When we get rescheduled we reprogram the hrtick_timer outside of the
  889. * rq->lock.
  890. */
  891. static inline void resched_hrt(struct task_struct *p)
  892. {
  893. __resched_task(p, TIF_HRTICK_RESCHED);
  894. }
  895. static inline void resched_rq(struct rq *rq)
  896. {
  897. unsigned long flags;
  898. spin_lock_irqsave(&rq->lock, flags);
  899. resched_task(rq->curr);
  900. spin_unlock_irqrestore(&rq->lock, flags);
  901. }
  902. enum {
  903. HRTICK_SET, /* re-programm hrtick_timer */
  904. HRTICK_RESET, /* not a new slice */
  905. HRTICK_BLOCK, /* stop hrtick operations */
  906. };
  907. /*
  908. * Use hrtick when:
  909. * - enabled by features
  910. * - hrtimer is actually high res
  911. */
  912. static inline int hrtick_enabled(struct rq *rq)
  913. {
  914. if (!sched_feat(HRTICK))
  915. return 0;
  916. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  917. return 0;
  918. return hrtimer_is_hres_active(&rq->hrtick_timer);
  919. }
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  926. {
  927. assert_spin_locked(&rq->lock);
  928. /*
  929. * preempt at: now + delay
  930. */
  931. rq->hrtick_expire =
  932. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  933. /*
  934. * indicate we need to program the timer
  935. */
  936. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  937. if (reset)
  938. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  939. /*
  940. * New slices are called from the schedule path and don't need a
  941. * forced reschedule.
  942. */
  943. if (reset)
  944. resched_hrt(rq->curr);
  945. }
  946. static void hrtick_clear(struct rq *rq)
  947. {
  948. if (hrtimer_active(&rq->hrtick_timer))
  949. hrtimer_cancel(&rq->hrtick_timer);
  950. }
  951. /*
  952. * Update the timer from the possible pending state.
  953. */
  954. static void hrtick_set(struct rq *rq)
  955. {
  956. ktime_t time;
  957. int set, reset;
  958. unsigned long flags;
  959. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  960. spin_lock_irqsave(&rq->lock, flags);
  961. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  962. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  963. time = rq->hrtick_expire;
  964. clear_thread_flag(TIF_HRTICK_RESCHED);
  965. spin_unlock_irqrestore(&rq->lock, flags);
  966. if (set) {
  967. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  968. if (reset && !hrtimer_active(&rq->hrtick_timer))
  969. resched_rq(rq);
  970. } else
  971. hrtick_clear(rq);
  972. }
  973. /*
  974. * High-resolution timer tick.
  975. * Runs from hardirq context with interrupts disabled.
  976. */
  977. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  978. {
  979. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  980. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  981. spin_lock(&rq->lock);
  982. update_rq_clock(rq);
  983. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  984. spin_unlock(&rq->lock);
  985. return HRTIMER_NORESTART;
  986. }
  987. static void hotplug_hrtick_disable(int cpu)
  988. {
  989. struct rq *rq = cpu_rq(cpu);
  990. unsigned long flags;
  991. spin_lock_irqsave(&rq->lock, flags);
  992. rq->hrtick_flags = 0;
  993. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  994. spin_unlock_irqrestore(&rq->lock, flags);
  995. hrtick_clear(rq);
  996. }
  997. static void hotplug_hrtick_enable(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. unsigned long flags;
  1001. spin_lock_irqsave(&rq->lock, flags);
  1002. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  1003. spin_unlock_irqrestore(&rq->lock, flags);
  1004. }
  1005. static int
  1006. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  1007. {
  1008. int cpu = (int)(long)hcpu;
  1009. switch (action) {
  1010. case CPU_UP_CANCELED:
  1011. case CPU_UP_CANCELED_FROZEN:
  1012. case CPU_DOWN_PREPARE:
  1013. case CPU_DOWN_PREPARE_FROZEN:
  1014. case CPU_DEAD:
  1015. case CPU_DEAD_FROZEN:
  1016. hotplug_hrtick_disable(cpu);
  1017. return NOTIFY_OK;
  1018. case CPU_UP_PREPARE:
  1019. case CPU_UP_PREPARE_FROZEN:
  1020. case CPU_DOWN_FAILED:
  1021. case CPU_DOWN_FAILED_FROZEN:
  1022. case CPU_ONLINE:
  1023. case CPU_ONLINE_FROZEN:
  1024. hotplug_hrtick_enable(cpu);
  1025. return NOTIFY_OK;
  1026. }
  1027. return NOTIFY_DONE;
  1028. }
  1029. static void init_hrtick(void)
  1030. {
  1031. hotcpu_notifier(hotplug_hrtick, 0);
  1032. }
  1033. static void init_rq_hrtick(struct rq *rq)
  1034. {
  1035. rq->hrtick_flags = 0;
  1036. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1037. rq->hrtick_timer.function = hrtick;
  1038. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  1039. }
  1040. void hrtick_resched(void)
  1041. {
  1042. struct rq *rq;
  1043. unsigned long flags;
  1044. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1045. return;
  1046. local_irq_save(flags);
  1047. rq = cpu_rq(smp_processor_id());
  1048. hrtick_set(rq);
  1049. local_irq_restore(flags);
  1050. }
  1051. #else
  1052. static inline void hrtick_clear(struct rq *rq)
  1053. {
  1054. }
  1055. static inline void hrtick_set(struct rq *rq)
  1056. {
  1057. }
  1058. static inline void init_rq_hrtick(struct rq *rq)
  1059. {
  1060. }
  1061. void hrtick_resched(void)
  1062. {
  1063. }
  1064. static inline void init_hrtick(void)
  1065. {
  1066. }
  1067. #endif
  1068. /*
  1069. * resched_task - mark a task 'to be rescheduled now'.
  1070. *
  1071. * On UP this means the setting of the need_resched flag, on SMP it
  1072. * might also involve a cross-CPU call to trigger the scheduler on
  1073. * the target CPU.
  1074. */
  1075. #ifdef CONFIG_SMP
  1076. #ifndef tsk_is_polling
  1077. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1078. #endif
  1079. static void __resched_task(struct task_struct *p, int tif_bit)
  1080. {
  1081. int cpu;
  1082. assert_spin_locked(&task_rq(p)->lock);
  1083. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1084. return;
  1085. set_tsk_thread_flag(p, tif_bit);
  1086. cpu = task_cpu(p);
  1087. if (cpu == smp_processor_id())
  1088. return;
  1089. /* NEED_RESCHED must be visible before we test polling */
  1090. smp_mb();
  1091. if (!tsk_is_polling(p))
  1092. smp_send_reschedule(cpu);
  1093. }
  1094. static void resched_cpu(int cpu)
  1095. {
  1096. struct rq *rq = cpu_rq(cpu);
  1097. unsigned long flags;
  1098. if (!spin_trylock_irqsave(&rq->lock, flags))
  1099. return;
  1100. resched_task(cpu_curr(cpu));
  1101. spin_unlock_irqrestore(&rq->lock, flags);
  1102. }
  1103. #ifdef CONFIG_NO_HZ
  1104. /*
  1105. * When add_timer_on() enqueues a timer into the timer wheel of an
  1106. * idle CPU then this timer might expire before the next timer event
  1107. * which is scheduled to wake up that CPU. In case of a completely
  1108. * idle system the next event might even be infinite time into the
  1109. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1110. * leaves the inner idle loop so the newly added timer is taken into
  1111. * account when the CPU goes back to idle and evaluates the timer
  1112. * wheel for the next timer event.
  1113. */
  1114. void wake_up_idle_cpu(int cpu)
  1115. {
  1116. struct rq *rq = cpu_rq(cpu);
  1117. if (cpu == smp_processor_id())
  1118. return;
  1119. /*
  1120. * This is safe, as this function is called with the timer
  1121. * wheel base lock of (cpu) held. When the CPU is on the way
  1122. * to idle and has not yet set rq->curr to idle then it will
  1123. * be serialized on the timer wheel base lock and take the new
  1124. * timer into account automatically.
  1125. */
  1126. if (rq->curr != rq->idle)
  1127. return;
  1128. /*
  1129. * We can set TIF_RESCHED on the idle task of the other CPU
  1130. * lockless. The worst case is that the other CPU runs the
  1131. * idle task through an additional NOOP schedule()
  1132. */
  1133. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1134. /* NEED_RESCHED must be visible before we test polling */
  1135. smp_mb();
  1136. if (!tsk_is_polling(rq->idle))
  1137. smp_send_reschedule(cpu);
  1138. }
  1139. #endif
  1140. #else
  1141. static void __resched_task(struct task_struct *p, int tif_bit)
  1142. {
  1143. assert_spin_locked(&task_rq(p)->lock);
  1144. set_tsk_thread_flag(p, tif_bit);
  1145. }
  1146. #endif
  1147. #if BITS_PER_LONG == 32
  1148. # define WMULT_CONST (~0UL)
  1149. #else
  1150. # define WMULT_CONST (1UL << 32)
  1151. #endif
  1152. #define WMULT_SHIFT 32
  1153. /*
  1154. * Shift right and round:
  1155. */
  1156. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1157. /*
  1158. * delta *= weight / lw
  1159. */
  1160. static unsigned long
  1161. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1162. struct load_weight *lw)
  1163. {
  1164. u64 tmp;
  1165. if (!lw->inv_weight)
  1166. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1167. tmp = (u64)delta_exec * weight;
  1168. /*
  1169. * Check whether we'd overflow the 64-bit multiplication:
  1170. */
  1171. if (unlikely(tmp > WMULT_CONST))
  1172. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1173. WMULT_SHIFT/2);
  1174. else
  1175. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1176. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1177. }
  1178. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1179. {
  1180. lw->weight += inc;
  1181. lw->inv_weight = 0;
  1182. }
  1183. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1184. {
  1185. lw->weight -= dec;
  1186. lw->inv_weight = 0;
  1187. }
  1188. /*
  1189. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1190. * of tasks with abnormal "nice" values across CPUs the contribution that
  1191. * each task makes to its run queue's load is weighted according to its
  1192. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1193. * scaled version of the new time slice allocation that they receive on time
  1194. * slice expiry etc.
  1195. */
  1196. #define WEIGHT_IDLEPRIO 2
  1197. #define WMULT_IDLEPRIO (1 << 31)
  1198. /*
  1199. * Nice levels are multiplicative, with a gentle 10% change for every
  1200. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1201. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1202. * that remained on nice 0.
  1203. *
  1204. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1205. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1206. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1207. * If a task goes up by ~10% and another task goes down by ~10% then
  1208. * the relative distance between them is ~25%.)
  1209. */
  1210. static const int prio_to_weight[40] = {
  1211. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1212. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1213. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1214. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1215. /* 0 */ 1024, 820, 655, 526, 423,
  1216. /* 5 */ 335, 272, 215, 172, 137,
  1217. /* 10 */ 110, 87, 70, 56, 45,
  1218. /* 15 */ 36, 29, 23, 18, 15,
  1219. };
  1220. /*
  1221. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1222. *
  1223. * In cases where the weight does not change often, we can use the
  1224. * precalculated inverse to speed up arithmetics by turning divisions
  1225. * into multiplications:
  1226. */
  1227. static const u32 prio_to_wmult[40] = {
  1228. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1229. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1230. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1231. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1232. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1233. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1234. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1235. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1236. };
  1237. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1238. /*
  1239. * runqueue iterator, to support SMP load-balancing between different
  1240. * scheduling classes, without having to expose their internal data
  1241. * structures to the load-balancing proper:
  1242. */
  1243. struct rq_iterator {
  1244. void *arg;
  1245. struct task_struct *(*start)(void *);
  1246. struct task_struct *(*next)(void *);
  1247. };
  1248. #ifdef CONFIG_SMP
  1249. static unsigned long
  1250. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1251. unsigned long max_load_move, struct sched_domain *sd,
  1252. enum cpu_idle_type idle, int *all_pinned,
  1253. int *this_best_prio, struct rq_iterator *iterator);
  1254. static int
  1255. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1256. struct sched_domain *sd, enum cpu_idle_type idle,
  1257. struct rq_iterator *iterator);
  1258. #endif
  1259. #ifdef CONFIG_CGROUP_CPUACCT
  1260. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1261. #else
  1262. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1263. #endif
  1264. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1265. {
  1266. update_load_add(&rq->load, load);
  1267. }
  1268. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1269. {
  1270. update_load_sub(&rq->load, load);
  1271. }
  1272. #ifdef CONFIG_SMP
  1273. static unsigned long source_load(int cpu, int type);
  1274. static unsigned long target_load(int cpu, int type);
  1275. static unsigned long cpu_avg_load_per_task(int cpu);
  1276. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1277. #ifdef CONFIG_FAIR_GROUP_SCHED
  1278. /*
  1279. * Group load balancing.
  1280. *
  1281. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1282. * Given the pictures below, and assuming each item has equal weight:
  1283. *
  1284. * root 1 - thread
  1285. * / | \ A - group
  1286. * A 1 B
  1287. * /|\ / \
  1288. * C 2 D 3 4
  1289. * | |
  1290. * 5 6
  1291. *
  1292. * load:
  1293. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1294. * which equals 1/9-th of the total load.
  1295. *
  1296. * shares:
  1297. * The weight of this group on the selected cpus.
  1298. *
  1299. * rq_weight:
  1300. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1301. * B would get 2.
  1302. *
  1303. * task_weight:
  1304. * Part of the rq_weight contributed by tasks; all groups except B would
  1305. * get 1, B gets 2.
  1306. */
  1307. static inline struct aggregate_struct *
  1308. aggregate(struct task_group *tg, struct sched_domain *sd)
  1309. {
  1310. return &tg->cfs_rq[sd->first_cpu]->aggregate;
  1311. }
  1312. typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
  1313. /*
  1314. * Iterate the full tree, calling @down when first entering a node and @up when
  1315. * leaving it for the final time.
  1316. */
  1317. static
  1318. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1319. struct sched_domain *sd)
  1320. {
  1321. struct task_group *parent, *child;
  1322. rcu_read_lock();
  1323. parent = &root_task_group;
  1324. down:
  1325. (*down)(parent, sd);
  1326. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1327. parent = child;
  1328. goto down;
  1329. up:
  1330. continue;
  1331. }
  1332. (*up)(parent, sd);
  1333. child = parent;
  1334. parent = parent->parent;
  1335. if (parent)
  1336. goto up;
  1337. rcu_read_unlock();
  1338. }
  1339. /*
  1340. * Calculate the aggregate runqueue weight.
  1341. */
  1342. static
  1343. void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
  1344. {
  1345. unsigned long rq_weight = 0;
  1346. unsigned long task_weight = 0;
  1347. int i;
  1348. for_each_cpu_mask(i, sd->span) {
  1349. rq_weight += tg->cfs_rq[i]->load.weight;
  1350. task_weight += tg->cfs_rq[i]->task_weight;
  1351. }
  1352. aggregate(tg, sd)->rq_weight = rq_weight;
  1353. aggregate(tg, sd)->task_weight = task_weight;
  1354. }
  1355. /*
  1356. * Compute the weight of this group on the given cpus.
  1357. */
  1358. static
  1359. void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
  1360. {
  1361. unsigned long shares = 0;
  1362. int i;
  1363. for_each_cpu_mask(i, sd->span)
  1364. shares += tg->cfs_rq[i]->shares;
  1365. if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
  1366. shares = tg->shares;
  1367. aggregate(tg, sd)->shares = shares;
  1368. }
  1369. /*
  1370. * Compute the load fraction assigned to this group, relies on the aggregate
  1371. * weight and this group's parent's load, i.e. top-down.
  1372. */
  1373. static
  1374. void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
  1375. {
  1376. unsigned long load;
  1377. if (!tg->parent) {
  1378. int i;
  1379. load = 0;
  1380. for_each_cpu_mask(i, sd->span)
  1381. load += cpu_rq(i)->load.weight;
  1382. } else {
  1383. load = aggregate(tg->parent, sd)->load;
  1384. /*
  1385. * shares is our weight in the parent's rq so
  1386. * shares/parent->rq_weight gives our fraction of the load
  1387. */
  1388. load *= aggregate(tg, sd)->shares;
  1389. load /= aggregate(tg->parent, sd)->rq_weight + 1;
  1390. }
  1391. aggregate(tg, sd)->load = load;
  1392. }
  1393. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1394. /*
  1395. * Calculate and set the cpu's group shares.
  1396. */
  1397. static void
  1398. __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
  1399. int tcpu)
  1400. {
  1401. int boost = 0;
  1402. unsigned long shares;
  1403. unsigned long rq_weight;
  1404. if (!tg->se[tcpu])
  1405. return;
  1406. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1407. /*
  1408. * If there are currently no tasks on the cpu pretend there is one of
  1409. * average load so that when a new task gets to run here it will not
  1410. * get delayed by group starvation.
  1411. */
  1412. if (!rq_weight) {
  1413. boost = 1;
  1414. rq_weight = NICE_0_LOAD;
  1415. }
  1416. /*
  1417. * \Sum shares * rq_weight
  1418. * shares = -----------------------
  1419. * \Sum rq_weight
  1420. *
  1421. */
  1422. shares = aggregate(tg, sd)->shares * rq_weight;
  1423. shares /= aggregate(tg, sd)->rq_weight + 1;
  1424. /*
  1425. * record the actual number of shares, not the boosted amount.
  1426. */
  1427. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1428. if (shares < MIN_SHARES)
  1429. shares = MIN_SHARES;
  1430. else if (shares > MAX_SHARES)
  1431. shares = MAX_SHARES;
  1432. __set_se_shares(tg->se[tcpu], shares);
  1433. }
  1434. /*
  1435. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1436. * task went to.
  1437. */
  1438. static void
  1439. __move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1440. int scpu, int dcpu)
  1441. {
  1442. unsigned long shares;
  1443. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1444. __update_group_shares_cpu(tg, sd, scpu);
  1445. __update_group_shares_cpu(tg, sd, dcpu);
  1446. /*
  1447. * ensure we never loose shares due to rounding errors in the
  1448. * above redistribution.
  1449. */
  1450. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1451. if (shares)
  1452. tg->cfs_rq[dcpu]->shares += shares;
  1453. }
  1454. /*
  1455. * Because changing a group's shares changes the weight of the super-group
  1456. * we need to walk up the tree and change all shares until we hit the root.
  1457. */
  1458. static void
  1459. move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1460. int scpu, int dcpu)
  1461. {
  1462. while (tg) {
  1463. __move_group_shares(tg, sd, scpu, dcpu);
  1464. tg = tg->parent;
  1465. }
  1466. }
  1467. static
  1468. void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
  1469. {
  1470. unsigned long shares = aggregate(tg, sd)->shares;
  1471. int i;
  1472. for_each_cpu_mask(i, sd->span) {
  1473. struct rq *rq = cpu_rq(i);
  1474. unsigned long flags;
  1475. spin_lock_irqsave(&rq->lock, flags);
  1476. __update_group_shares_cpu(tg, sd, i);
  1477. spin_unlock_irqrestore(&rq->lock, flags);
  1478. }
  1479. aggregate_group_shares(tg, sd);
  1480. /*
  1481. * ensure we never loose shares due to rounding errors in the
  1482. * above redistribution.
  1483. */
  1484. shares -= aggregate(tg, sd)->shares;
  1485. if (shares) {
  1486. tg->cfs_rq[sd->first_cpu]->shares += shares;
  1487. aggregate(tg, sd)->shares += shares;
  1488. }
  1489. }
  1490. /*
  1491. * Calculate the accumulative weight and recursive load of each task group
  1492. * while walking down the tree.
  1493. */
  1494. static
  1495. void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
  1496. {
  1497. aggregate_group_weight(tg, sd);
  1498. aggregate_group_shares(tg, sd);
  1499. aggregate_group_load(tg, sd);
  1500. }
  1501. /*
  1502. * Rebalance the cpu shares while walking back up the tree.
  1503. */
  1504. static
  1505. void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
  1506. {
  1507. aggregate_group_set_shares(tg, sd);
  1508. }
  1509. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1510. static void __init init_aggregate(void)
  1511. {
  1512. int i;
  1513. for_each_possible_cpu(i)
  1514. spin_lock_init(&per_cpu(aggregate_lock, i));
  1515. }
  1516. static int get_aggregate(struct sched_domain *sd)
  1517. {
  1518. if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
  1519. return 0;
  1520. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
  1521. return 1;
  1522. }
  1523. static void put_aggregate(struct sched_domain *sd)
  1524. {
  1525. spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
  1526. }
  1527. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1528. {
  1529. cfs_rq->shares = shares;
  1530. }
  1531. #else
  1532. static inline void init_aggregate(void)
  1533. {
  1534. }
  1535. static inline int get_aggregate(struct sched_domain *sd)
  1536. {
  1537. return 0;
  1538. }
  1539. static inline void put_aggregate(struct sched_domain *sd)
  1540. {
  1541. }
  1542. #endif
  1543. #else /* CONFIG_SMP */
  1544. #ifdef CONFIG_FAIR_GROUP_SCHED
  1545. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1546. {
  1547. }
  1548. #endif
  1549. #endif /* CONFIG_SMP */
  1550. #include "sched_stats.h"
  1551. #include "sched_idletask.c"
  1552. #include "sched_fair.c"
  1553. #include "sched_rt.c"
  1554. #ifdef CONFIG_SCHED_DEBUG
  1555. # include "sched_debug.c"
  1556. #endif
  1557. #define sched_class_highest (&rt_sched_class)
  1558. static void inc_nr_running(struct rq *rq)
  1559. {
  1560. rq->nr_running++;
  1561. }
  1562. static void dec_nr_running(struct rq *rq)
  1563. {
  1564. rq->nr_running--;
  1565. }
  1566. static void set_load_weight(struct task_struct *p)
  1567. {
  1568. if (task_has_rt_policy(p)) {
  1569. p->se.load.weight = prio_to_weight[0] * 2;
  1570. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1571. return;
  1572. }
  1573. /*
  1574. * SCHED_IDLE tasks get minimal weight:
  1575. */
  1576. if (p->policy == SCHED_IDLE) {
  1577. p->se.load.weight = WEIGHT_IDLEPRIO;
  1578. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1579. return;
  1580. }
  1581. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1582. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1583. }
  1584. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1585. {
  1586. sched_info_queued(p);
  1587. p->sched_class->enqueue_task(rq, p, wakeup);
  1588. p->se.on_rq = 1;
  1589. }
  1590. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1591. {
  1592. p->sched_class->dequeue_task(rq, p, sleep);
  1593. p->se.on_rq = 0;
  1594. }
  1595. /*
  1596. * __normal_prio - return the priority that is based on the static prio
  1597. */
  1598. static inline int __normal_prio(struct task_struct *p)
  1599. {
  1600. return p->static_prio;
  1601. }
  1602. /*
  1603. * Calculate the expected normal priority: i.e. priority
  1604. * without taking RT-inheritance into account. Might be
  1605. * boosted by interactivity modifiers. Changes upon fork,
  1606. * setprio syscalls, and whenever the interactivity
  1607. * estimator recalculates.
  1608. */
  1609. static inline int normal_prio(struct task_struct *p)
  1610. {
  1611. int prio;
  1612. if (task_has_rt_policy(p))
  1613. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1614. else
  1615. prio = __normal_prio(p);
  1616. return prio;
  1617. }
  1618. /*
  1619. * Calculate the current priority, i.e. the priority
  1620. * taken into account by the scheduler. This value might
  1621. * be boosted by RT tasks, or might be boosted by
  1622. * interactivity modifiers. Will be RT if the task got
  1623. * RT-boosted. If not then it returns p->normal_prio.
  1624. */
  1625. static int effective_prio(struct task_struct *p)
  1626. {
  1627. p->normal_prio = normal_prio(p);
  1628. /*
  1629. * If we are RT tasks or we were boosted to RT priority,
  1630. * keep the priority unchanged. Otherwise, update priority
  1631. * to the normal priority:
  1632. */
  1633. if (!rt_prio(p->prio))
  1634. return p->normal_prio;
  1635. return p->prio;
  1636. }
  1637. /*
  1638. * activate_task - move a task to the runqueue.
  1639. */
  1640. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1641. {
  1642. if (task_contributes_to_load(p))
  1643. rq->nr_uninterruptible--;
  1644. enqueue_task(rq, p, wakeup);
  1645. inc_nr_running(rq);
  1646. }
  1647. /*
  1648. * deactivate_task - remove a task from the runqueue.
  1649. */
  1650. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1651. {
  1652. if (task_contributes_to_load(p))
  1653. rq->nr_uninterruptible++;
  1654. dequeue_task(rq, p, sleep);
  1655. dec_nr_running(rq);
  1656. }
  1657. /**
  1658. * task_curr - is this task currently executing on a CPU?
  1659. * @p: the task in question.
  1660. */
  1661. inline int task_curr(const struct task_struct *p)
  1662. {
  1663. return cpu_curr(task_cpu(p)) == p;
  1664. }
  1665. /* Used instead of source_load when we know the type == 0 */
  1666. unsigned long weighted_cpuload(const int cpu)
  1667. {
  1668. return cpu_rq(cpu)->load.weight;
  1669. }
  1670. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1671. {
  1672. set_task_rq(p, cpu);
  1673. #ifdef CONFIG_SMP
  1674. /*
  1675. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1676. * successfuly executed on another CPU. We must ensure that updates of
  1677. * per-task data have been completed by this moment.
  1678. */
  1679. smp_wmb();
  1680. task_thread_info(p)->cpu = cpu;
  1681. #endif
  1682. }
  1683. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1684. const struct sched_class *prev_class,
  1685. int oldprio, int running)
  1686. {
  1687. if (prev_class != p->sched_class) {
  1688. if (prev_class->switched_from)
  1689. prev_class->switched_from(rq, p, running);
  1690. p->sched_class->switched_to(rq, p, running);
  1691. } else
  1692. p->sched_class->prio_changed(rq, p, oldprio, running);
  1693. }
  1694. #ifdef CONFIG_SMP
  1695. /*
  1696. * Is this task likely cache-hot:
  1697. */
  1698. static int
  1699. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1700. {
  1701. s64 delta;
  1702. /*
  1703. * Buddy candidates are cache hot:
  1704. */
  1705. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1706. return 1;
  1707. if (p->sched_class != &fair_sched_class)
  1708. return 0;
  1709. if (sysctl_sched_migration_cost == -1)
  1710. return 1;
  1711. if (sysctl_sched_migration_cost == 0)
  1712. return 0;
  1713. delta = now - p->se.exec_start;
  1714. return delta < (s64)sysctl_sched_migration_cost;
  1715. }
  1716. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1717. {
  1718. int old_cpu = task_cpu(p);
  1719. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1720. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1721. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1722. u64 clock_offset;
  1723. clock_offset = old_rq->clock - new_rq->clock;
  1724. #ifdef CONFIG_SCHEDSTATS
  1725. if (p->se.wait_start)
  1726. p->se.wait_start -= clock_offset;
  1727. if (p->se.sleep_start)
  1728. p->se.sleep_start -= clock_offset;
  1729. if (p->se.block_start)
  1730. p->se.block_start -= clock_offset;
  1731. if (old_cpu != new_cpu) {
  1732. schedstat_inc(p, se.nr_migrations);
  1733. if (task_hot(p, old_rq->clock, NULL))
  1734. schedstat_inc(p, se.nr_forced2_migrations);
  1735. }
  1736. #endif
  1737. p->se.vruntime -= old_cfsrq->min_vruntime -
  1738. new_cfsrq->min_vruntime;
  1739. __set_task_cpu(p, new_cpu);
  1740. }
  1741. struct migration_req {
  1742. struct list_head list;
  1743. struct task_struct *task;
  1744. int dest_cpu;
  1745. struct completion done;
  1746. };
  1747. /*
  1748. * The task's runqueue lock must be held.
  1749. * Returns true if you have to wait for migration thread.
  1750. */
  1751. static int
  1752. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1753. {
  1754. struct rq *rq = task_rq(p);
  1755. /*
  1756. * If the task is not on a runqueue (and not running), then
  1757. * it is sufficient to simply update the task's cpu field.
  1758. */
  1759. if (!p->se.on_rq && !task_running(rq, p)) {
  1760. set_task_cpu(p, dest_cpu);
  1761. return 0;
  1762. }
  1763. init_completion(&req->done);
  1764. req->task = p;
  1765. req->dest_cpu = dest_cpu;
  1766. list_add(&req->list, &rq->migration_queue);
  1767. return 1;
  1768. }
  1769. /*
  1770. * wait_task_inactive - wait for a thread to unschedule.
  1771. *
  1772. * The caller must ensure that the task *will* unschedule sometime soon,
  1773. * else this function might spin for a *long* time. This function can't
  1774. * be called with interrupts off, or it may introduce deadlock with
  1775. * smp_call_function() if an IPI is sent by the same process we are
  1776. * waiting to become inactive.
  1777. */
  1778. void wait_task_inactive(struct task_struct *p)
  1779. {
  1780. unsigned long flags;
  1781. int running, on_rq;
  1782. struct rq *rq;
  1783. for (;;) {
  1784. /*
  1785. * We do the initial early heuristics without holding
  1786. * any task-queue locks at all. We'll only try to get
  1787. * the runqueue lock when things look like they will
  1788. * work out!
  1789. */
  1790. rq = task_rq(p);
  1791. /*
  1792. * If the task is actively running on another CPU
  1793. * still, just relax and busy-wait without holding
  1794. * any locks.
  1795. *
  1796. * NOTE! Since we don't hold any locks, it's not
  1797. * even sure that "rq" stays as the right runqueue!
  1798. * But we don't care, since "task_running()" will
  1799. * return false if the runqueue has changed and p
  1800. * is actually now running somewhere else!
  1801. */
  1802. while (task_running(rq, p))
  1803. cpu_relax();
  1804. /*
  1805. * Ok, time to look more closely! We need the rq
  1806. * lock now, to be *sure*. If we're wrong, we'll
  1807. * just go back and repeat.
  1808. */
  1809. rq = task_rq_lock(p, &flags);
  1810. running = task_running(rq, p);
  1811. on_rq = p->se.on_rq;
  1812. task_rq_unlock(rq, &flags);
  1813. /*
  1814. * Was it really running after all now that we
  1815. * checked with the proper locks actually held?
  1816. *
  1817. * Oops. Go back and try again..
  1818. */
  1819. if (unlikely(running)) {
  1820. cpu_relax();
  1821. continue;
  1822. }
  1823. /*
  1824. * It's not enough that it's not actively running,
  1825. * it must be off the runqueue _entirely_, and not
  1826. * preempted!
  1827. *
  1828. * So if it wa still runnable (but just not actively
  1829. * running right now), it's preempted, and we should
  1830. * yield - it could be a while.
  1831. */
  1832. if (unlikely(on_rq)) {
  1833. schedule_timeout_uninterruptible(1);
  1834. continue;
  1835. }
  1836. /*
  1837. * Ahh, all good. It wasn't running, and it wasn't
  1838. * runnable, which means that it will never become
  1839. * running in the future either. We're all done!
  1840. */
  1841. break;
  1842. }
  1843. }
  1844. /***
  1845. * kick_process - kick a running thread to enter/exit the kernel
  1846. * @p: the to-be-kicked thread
  1847. *
  1848. * Cause a process which is running on another CPU to enter
  1849. * kernel-mode, without any delay. (to get signals handled.)
  1850. *
  1851. * NOTE: this function doesnt have to take the runqueue lock,
  1852. * because all it wants to ensure is that the remote task enters
  1853. * the kernel. If the IPI races and the task has been migrated
  1854. * to another CPU then no harm is done and the purpose has been
  1855. * achieved as well.
  1856. */
  1857. void kick_process(struct task_struct *p)
  1858. {
  1859. int cpu;
  1860. preempt_disable();
  1861. cpu = task_cpu(p);
  1862. if ((cpu != smp_processor_id()) && task_curr(p))
  1863. smp_send_reschedule(cpu);
  1864. preempt_enable();
  1865. }
  1866. /*
  1867. * Return a low guess at the load of a migration-source cpu weighted
  1868. * according to the scheduling class and "nice" value.
  1869. *
  1870. * We want to under-estimate the load of migration sources, to
  1871. * balance conservatively.
  1872. */
  1873. static unsigned long source_load(int cpu, int type)
  1874. {
  1875. struct rq *rq = cpu_rq(cpu);
  1876. unsigned long total = weighted_cpuload(cpu);
  1877. if (type == 0)
  1878. return total;
  1879. return min(rq->cpu_load[type-1], total);
  1880. }
  1881. /*
  1882. * Return a high guess at the load of a migration-target cpu weighted
  1883. * according to the scheduling class and "nice" value.
  1884. */
  1885. static unsigned long target_load(int cpu, int type)
  1886. {
  1887. struct rq *rq = cpu_rq(cpu);
  1888. unsigned long total = weighted_cpuload(cpu);
  1889. if (type == 0)
  1890. return total;
  1891. return max(rq->cpu_load[type-1], total);
  1892. }
  1893. /*
  1894. * Return the average load per task on the cpu's run queue
  1895. */
  1896. static unsigned long cpu_avg_load_per_task(int cpu)
  1897. {
  1898. struct rq *rq = cpu_rq(cpu);
  1899. unsigned long total = weighted_cpuload(cpu);
  1900. unsigned long n = rq->nr_running;
  1901. return n ? total / n : SCHED_LOAD_SCALE;
  1902. }
  1903. /*
  1904. * find_idlest_group finds and returns the least busy CPU group within the
  1905. * domain.
  1906. */
  1907. static struct sched_group *
  1908. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1909. {
  1910. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1911. unsigned long min_load = ULONG_MAX, this_load = 0;
  1912. int load_idx = sd->forkexec_idx;
  1913. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1914. do {
  1915. unsigned long load, avg_load;
  1916. int local_group;
  1917. int i;
  1918. /* Skip over this group if it has no CPUs allowed */
  1919. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1920. continue;
  1921. local_group = cpu_isset(this_cpu, group->cpumask);
  1922. /* Tally up the load of all CPUs in the group */
  1923. avg_load = 0;
  1924. for_each_cpu_mask(i, group->cpumask) {
  1925. /* Bias balancing toward cpus of our domain */
  1926. if (local_group)
  1927. load = source_load(i, load_idx);
  1928. else
  1929. load = target_load(i, load_idx);
  1930. avg_load += load;
  1931. }
  1932. /* Adjust by relative CPU power of the group */
  1933. avg_load = sg_div_cpu_power(group,
  1934. avg_load * SCHED_LOAD_SCALE);
  1935. if (local_group) {
  1936. this_load = avg_load;
  1937. this = group;
  1938. } else if (avg_load < min_load) {
  1939. min_load = avg_load;
  1940. idlest = group;
  1941. }
  1942. } while (group = group->next, group != sd->groups);
  1943. if (!idlest || 100*this_load < imbalance*min_load)
  1944. return NULL;
  1945. return idlest;
  1946. }
  1947. /*
  1948. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1949. */
  1950. static int
  1951. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1952. cpumask_t *tmp)
  1953. {
  1954. unsigned long load, min_load = ULONG_MAX;
  1955. int idlest = -1;
  1956. int i;
  1957. /* Traverse only the allowed CPUs */
  1958. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1959. for_each_cpu_mask(i, *tmp) {
  1960. load = weighted_cpuload(i);
  1961. if (load < min_load || (load == min_load && i == this_cpu)) {
  1962. min_load = load;
  1963. idlest = i;
  1964. }
  1965. }
  1966. return idlest;
  1967. }
  1968. /*
  1969. * sched_balance_self: balance the current task (running on cpu) in domains
  1970. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1971. * SD_BALANCE_EXEC.
  1972. *
  1973. * Balance, ie. select the least loaded group.
  1974. *
  1975. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1976. *
  1977. * preempt must be disabled.
  1978. */
  1979. static int sched_balance_self(int cpu, int flag)
  1980. {
  1981. struct task_struct *t = current;
  1982. struct sched_domain *tmp, *sd = NULL;
  1983. for_each_domain(cpu, tmp) {
  1984. /*
  1985. * If power savings logic is enabled for a domain, stop there.
  1986. */
  1987. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1988. break;
  1989. if (tmp->flags & flag)
  1990. sd = tmp;
  1991. }
  1992. while (sd) {
  1993. cpumask_t span, tmpmask;
  1994. struct sched_group *group;
  1995. int new_cpu, weight;
  1996. if (!(sd->flags & flag)) {
  1997. sd = sd->child;
  1998. continue;
  1999. }
  2000. span = sd->span;
  2001. group = find_idlest_group(sd, t, cpu);
  2002. if (!group) {
  2003. sd = sd->child;
  2004. continue;
  2005. }
  2006. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  2007. if (new_cpu == -1 || new_cpu == cpu) {
  2008. /* Now try balancing at a lower domain level of cpu */
  2009. sd = sd->child;
  2010. continue;
  2011. }
  2012. /* Now try balancing at a lower domain level of new_cpu */
  2013. cpu = new_cpu;
  2014. sd = NULL;
  2015. weight = cpus_weight(span);
  2016. for_each_domain(cpu, tmp) {
  2017. if (weight <= cpus_weight(tmp->span))
  2018. break;
  2019. if (tmp->flags & flag)
  2020. sd = tmp;
  2021. }
  2022. /* while loop will break here if sd == NULL */
  2023. }
  2024. return cpu;
  2025. }
  2026. #endif /* CONFIG_SMP */
  2027. /***
  2028. * try_to_wake_up - wake up a thread
  2029. * @p: the to-be-woken-up thread
  2030. * @state: the mask of task states that can be woken
  2031. * @sync: do a synchronous wakeup?
  2032. *
  2033. * Put it on the run-queue if it's not already there. The "current"
  2034. * thread is always on the run-queue (except when the actual
  2035. * re-schedule is in progress), and as such you're allowed to do
  2036. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2037. * runnable without the overhead of this.
  2038. *
  2039. * returns failure only if the task is already active.
  2040. */
  2041. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2042. {
  2043. int cpu, orig_cpu, this_cpu, success = 0;
  2044. unsigned long flags;
  2045. long old_state;
  2046. struct rq *rq;
  2047. if (!sched_feat(SYNC_WAKEUPS))
  2048. sync = 0;
  2049. smp_wmb();
  2050. rq = task_rq_lock(p, &flags);
  2051. old_state = p->state;
  2052. if (!(old_state & state))
  2053. goto out;
  2054. if (p->se.on_rq)
  2055. goto out_running;
  2056. cpu = task_cpu(p);
  2057. orig_cpu = cpu;
  2058. this_cpu = smp_processor_id();
  2059. #ifdef CONFIG_SMP
  2060. if (unlikely(task_running(rq, p)))
  2061. goto out_activate;
  2062. cpu = p->sched_class->select_task_rq(p, sync);
  2063. if (cpu != orig_cpu) {
  2064. set_task_cpu(p, cpu);
  2065. task_rq_unlock(rq, &flags);
  2066. /* might preempt at this point */
  2067. rq = task_rq_lock(p, &flags);
  2068. old_state = p->state;
  2069. if (!(old_state & state))
  2070. goto out;
  2071. if (p->se.on_rq)
  2072. goto out_running;
  2073. this_cpu = smp_processor_id();
  2074. cpu = task_cpu(p);
  2075. }
  2076. #ifdef CONFIG_SCHEDSTATS
  2077. schedstat_inc(rq, ttwu_count);
  2078. if (cpu == this_cpu)
  2079. schedstat_inc(rq, ttwu_local);
  2080. else {
  2081. struct sched_domain *sd;
  2082. for_each_domain(this_cpu, sd) {
  2083. if (cpu_isset(cpu, sd->span)) {
  2084. schedstat_inc(sd, ttwu_wake_remote);
  2085. break;
  2086. }
  2087. }
  2088. }
  2089. #endif
  2090. out_activate:
  2091. #endif /* CONFIG_SMP */
  2092. schedstat_inc(p, se.nr_wakeups);
  2093. if (sync)
  2094. schedstat_inc(p, se.nr_wakeups_sync);
  2095. if (orig_cpu != cpu)
  2096. schedstat_inc(p, se.nr_wakeups_migrate);
  2097. if (cpu == this_cpu)
  2098. schedstat_inc(p, se.nr_wakeups_local);
  2099. else
  2100. schedstat_inc(p, se.nr_wakeups_remote);
  2101. update_rq_clock(rq);
  2102. activate_task(rq, p, 1);
  2103. success = 1;
  2104. out_running:
  2105. trace_mark(kernel_sched_wakeup,
  2106. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2107. p->pid, p->state, rq, p, rq->curr);
  2108. check_preempt_curr(rq, p);
  2109. p->state = TASK_RUNNING;
  2110. #ifdef CONFIG_SMP
  2111. if (p->sched_class->task_wake_up)
  2112. p->sched_class->task_wake_up(rq, p);
  2113. #endif
  2114. out:
  2115. task_rq_unlock(rq, &flags);
  2116. return success;
  2117. }
  2118. int wake_up_process(struct task_struct *p)
  2119. {
  2120. return try_to_wake_up(p, TASK_ALL, 0);
  2121. }
  2122. EXPORT_SYMBOL(wake_up_process);
  2123. int wake_up_state(struct task_struct *p, unsigned int state)
  2124. {
  2125. return try_to_wake_up(p, state, 0);
  2126. }
  2127. /*
  2128. * Perform scheduler related setup for a newly forked process p.
  2129. * p is forked by current.
  2130. *
  2131. * __sched_fork() is basic setup used by init_idle() too:
  2132. */
  2133. static void __sched_fork(struct task_struct *p)
  2134. {
  2135. p->se.exec_start = 0;
  2136. p->se.sum_exec_runtime = 0;
  2137. p->se.prev_sum_exec_runtime = 0;
  2138. p->se.last_wakeup = 0;
  2139. p->se.avg_overlap = 0;
  2140. #ifdef CONFIG_SCHEDSTATS
  2141. p->se.wait_start = 0;
  2142. p->se.sum_sleep_runtime = 0;
  2143. p->se.sleep_start = 0;
  2144. p->se.block_start = 0;
  2145. p->se.sleep_max = 0;
  2146. p->se.block_max = 0;
  2147. p->se.exec_max = 0;
  2148. p->se.slice_max = 0;
  2149. p->se.wait_max = 0;
  2150. #endif
  2151. INIT_LIST_HEAD(&p->rt.run_list);
  2152. p->se.on_rq = 0;
  2153. INIT_LIST_HEAD(&p->se.group_node);
  2154. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2155. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2156. #endif
  2157. /*
  2158. * We mark the process as running here, but have not actually
  2159. * inserted it onto the runqueue yet. This guarantees that
  2160. * nobody will actually run it, and a signal or other external
  2161. * event cannot wake it up and insert it on the runqueue either.
  2162. */
  2163. p->state = TASK_RUNNING;
  2164. }
  2165. /*
  2166. * fork()/clone()-time setup:
  2167. */
  2168. void sched_fork(struct task_struct *p, int clone_flags)
  2169. {
  2170. int cpu = get_cpu();
  2171. __sched_fork(p);
  2172. #ifdef CONFIG_SMP
  2173. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2174. #endif
  2175. set_task_cpu(p, cpu);
  2176. /*
  2177. * Make sure we do not leak PI boosting priority to the child:
  2178. */
  2179. p->prio = current->normal_prio;
  2180. if (!rt_prio(p->prio))
  2181. p->sched_class = &fair_sched_class;
  2182. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2183. if (likely(sched_info_on()))
  2184. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2185. #endif
  2186. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2187. p->oncpu = 0;
  2188. #endif
  2189. #ifdef CONFIG_PREEMPT
  2190. /* Want to start with kernel preemption disabled. */
  2191. task_thread_info(p)->preempt_count = 1;
  2192. #endif
  2193. put_cpu();
  2194. }
  2195. /*
  2196. * wake_up_new_task - wake up a newly created task for the first time.
  2197. *
  2198. * This function will do some initial scheduler statistics housekeeping
  2199. * that must be done for every newly created context, then puts the task
  2200. * on the runqueue and wakes it.
  2201. */
  2202. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2203. {
  2204. unsigned long flags;
  2205. struct rq *rq;
  2206. rq = task_rq_lock(p, &flags);
  2207. BUG_ON(p->state != TASK_RUNNING);
  2208. update_rq_clock(rq);
  2209. p->prio = effective_prio(p);
  2210. if (!p->sched_class->task_new || !current->se.on_rq) {
  2211. activate_task(rq, p, 0);
  2212. } else {
  2213. /*
  2214. * Let the scheduling class do new task startup
  2215. * management (if any):
  2216. */
  2217. p->sched_class->task_new(rq, p);
  2218. inc_nr_running(rq);
  2219. }
  2220. trace_mark(kernel_sched_wakeup_new,
  2221. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2222. p->pid, p->state, rq, p, rq->curr);
  2223. check_preempt_curr(rq, p);
  2224. #ifdef CONFIG_SMP
  2225. if (p->sched_class->task_wake_up)
  2226. p->sched_class->task_wake_up(rq, p);
  2227. #endif
  2228. task_rq_unlock(rq, &flags);
  2229. }
  2230. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2231. /**
  2232. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2233. * @notifier: notifier struct to register
  2234. */
  2235. void preempt_notifier_register(struct preempt_notifier *notifier)
  2236. {
  2237. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2238. }
  2239. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2240. /**
  2241. * preempt_notifier_unregister - no longer interested in preemption notifications
  2242. * @notifier: notifier struct to unregister
  2243. *
  2244. * This is safe to call from within a preemption notifier.
  2245. */
  2246. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2247. {
  2248. hlist_del(&notifier->link);
  2249. }
  2250. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2251. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2252. {
  2253. struct preempt_notifier *notifier;
  2254. struct hlist_node *node;
  2255. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2256. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2257. }
  2258. static void
  2259. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2260. struct task_struct *next)
  2261. {
  2262. struct preempt_notifier *notifier;
  2263. struct hlist_node *node;
  2264. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2265. notifier->ops->sched_out(notifier, next);
  2266. }
  2267. #else
  2268. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2269. {
  2270. }
  2271. static void
  2272. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2273. struct task_struct *next)
  2274. {
  2275. }
  2276. #endif
  2277. /**
  2278. * prepare_task_switch - prepare to switch tasks
  2279. * @rq: the runqueue preparing to switch
  2280. * @prev: the current task that is being switched out
  2281. * @next: the task we are going to switch to.
  2282. *
  2283. * This is called with the rq lock held and interrupts off. It must
  2284. * be paired with a subsequent finish_task_switch after the context
  2285. * switch.
  2286. *
  2287. * prepare_task_switch sets up locking and calls architecture specific
  2288. * hooks.
  2289. */
  2290. static inline void
  2291. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2292. struct task_struct *next)
  2293. {
  2294. fire_sched_out_preempt_notifiers(prev, next);
  2295. prepare_lock_switch(rq, next);
  2296. prepare_arch_switch(next);
  2297. }
  2298. /**
  2299. * finish_task_switch - clean up after a task-switch
  2300. * @rq: runqueue associated with task-switch
  2301. * @prev: the thread we just switched away from.
  2302. *
  2303. * finish_task_switch must be called after the context switch, paired
  2304. * with a prepare_task_switch call before the context switch.
  2305. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2306. * and do any other architecture-specific cleanup actions.
  2307. *
  2308. * Note that we may have delayed dropping an mm in context_switch(). If
  2309. * so, we finish that here outside of the runqueue lock. (Doing it
  2310. * with the lock held can cause deadlocks; see schedule() for
  2311. * details.)
  2312. */
  2313. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2314. __releases(rq->lock)
  2315. {
  2316. struct mm_struct *mm = rq->prev_mm;
  2317. long prev_state;
  2318. rq->prev_mm = NULL;
  2319. /*
  2320. * A task struct has one reference for the use as "current".
  2321. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2322. * schedule one last time. The schedule call will never return, and
  2323. * the scheduled task must drop that reference.
  2324. * The test for TASK_DEAD must occur while the runqueue locks are
  2325. * still held, otherwise prev could be scheduled on another cpu, die
  2326. * there before we look at prev->state, and then the reference would
  2327. * be dropped twice.
  2328. * Manfred Spraul <manfred@colorfullife.com>
  2329. */
  2330. prev_state = prev->state;
  2331. finish_arch_switch(prev);
  2332. finish_lock_switch(rq, prev);
  2333. #ifdef CONFIG_SMP
  2334. if (current->sched_class->post_schedule)
  2335. current->sched_class->post_schedule(rq);
  2336. #endif
  2337. fire_sched_in_preempt_notifiers(current);
  2338. if (mm)
  2339. mmdrop(mm);
  2340. if (unlikely(prev_state == TASK_DEAD)) {
  2341. /*
  2342. * Remove function-return probe instances associated with this
  2343. * task and put them back on the free list.
  2344. */
  2345. kprobe_flush_task(prev);
  2346. put_task_struct(prev);
  2347. }
  2348. }
  2349. /**
  2350. * schedule_tail - first thing a freshly forked thread must call.
  2351. * @prev: the thread we just switched away from.
  2352. */
  2353. asmlinkage void schedule_tail(struct task_struct *prev)
  2354. __releases(rq->lock)
  2355. {
  2356. struct rq *rq = this_rq();
  2357. finish_task_switch(rq, prev);
  2358. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2359. /* In this case, finish_task_switch does not reenable preemption */
  2360. preempt_enable();
  2361. #endif
  2362. if (current->set_child_tid)
  2363. put_user(task_pid_vnr(current), current->set_child_tid);
  2364. }
  2365. /*
  2366. * context_switch - switch to the new MM and the new
  2367. * thread's register state.
  2368. */
  2369. static inline void
  2370. context_switch(struct rq *rq, struct task_struct *prev,
  2371. struct task_struct *next)
  2372. {
  2373. struct mm_struct *mm, *oldmm;
  2374. prepare_task_switch(rq, prev, next);
  2375. trace_mark(kernel_sched_schedule,
  2376. "prev_pid %d next_pid %d prev_state %ld "
  2377. "## rq %p prev %p next %p",
  2378. prev->pid, next->pid, prev->state,
  2379. rq, prev, next);
  2380. mm = next->mm;
  2381. oldmm = prev->active_mm;
  2382. /*
  2383. * For paravirt, this is coupled with an exit in switch_to to
  2384. * combine the page table reload and the switch backend into
  2385. * one hypercall.
  2386. */
  2387. arch_enter_lazy_cpu_mode();
  2388. if (unlikely(!mm)) {
  2389. next->active_mm = oldmm;
  2390. atomic_inc(&oldmm->mm_count);
  2391. enter_lazy_tlb(oldmm, next);
  2392. } else
  2393. switch_mm(oldmm, mm, next);
  2394. if (unlikely(!prev->mm)) {
  2395. prev->active_mm = NULL;
  2396. rq->prev_mm = oldmm;
  2397. }
  2398. /*
  2399. * Since the runqueue lock will be released by the next
  2400. * task (which is an invalid locking op but in the case
  2401. * of the scheduler it's an obvious special-case), so we
  2402. * do an early lockdep release here:
  2403. */
  2404. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2405. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2406. #endif
  2407. /* Here we just switch the register state and the stack. */
  2408. switch_to(prev, next, prev);
  2409. barrier();
  2410. /*
  2411. * this_rq must be evaluated again because prev may have moved
  2412. * CPUs since it called schedule(), thus the 'rq' on its stack
  2413. * frame will be invalid.
  2414. */
  2415. finish_task_switch(this_rq(), prev);
  2416. }
  2417. /*
  2418. * nr_running, nr_uninterruptible and nr_context_switches:
  2419. *
  2420. * externally visible scheduler statistics: current number of runnable
  2421. * threads, current number of uninterruptible-sleeping threads, total
  2422. * number of context switches performed since bootup.
  2423. */
  2424. unsigned long nr_running(void)
  2425. {
  2426. unsigned long i, sum = 0;
  2427. for_each_online_cpu(i)
  2428. sum += cpu_rq(i)->nr_running;
  2429. return sum;
  2430. }
  2431. unsigned long nr_uninterruptible(void)
  2432. {
  2433. unsigned long i, sum = 0;
  2434. for_each_possible_cpu(i)
  2435. sum += cpu_rq(i)->nr_uninterruptible;
  2436. /*
  2437. * Since we read the counters lockless, it might be slightly
  2438. * inaccurate. Do not allow it to go below zero though:
  2439. */
  2440. if (unlikely((long)sum < 0))
  2441. sum = 0;
  2442. return sum;
  2443. }
  2444. unsigned long long nr_context_switches(void)
  2445. {
  2446. int i;
  2447. unsigned long long sum = 0;
  2448. for_each_possible_cpu(i)
  2449. sum += cpu_rq(i)->nr_switches;
  2450. return sum;
  2451. }
  2452. unsigned long nr_iowait(void)
  2453. {
  2454. unsigned long i, sum = 0;
  2455. for_each_possible_cpu(i)
  2456. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2457. return sum;
  2458. }
  2459. unsigned long nr_active(void)
  2460. {
  2461. unsigned long i, running = 0, uninterruptible = 0;
  2462. for_each_online_cpu(i) {
  2463. running += cpu_rq(i)->nr_running;
  2464. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2465. }
  2466. if (unlikely((long)uninterruptible < 0))
  2467. uninterruptible = 0;
  2468. return running + uninterruptible;
  2469. }
  2470. /*
  2471. * Update rq->cpu_load[] statistics. This function is usually called every
  2472. * scheduler tick (TICK_NSEC).
  2473. */
  2474. static void update_cpu_load(struct rq *this_rq)
  2475. {
  2476. unsigned long this_load = this_rq->load.weight;
  2477. int i, scale;
  2478. this_rq->nr_load_updates++;
  2479. /* Update our load: */
  2480. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2481. unsigned long old_load, new_load;
  2482. /* scale is effectively 1 << i now, and >> i divides by scale */
  2483. old_load = this_rq->cpu_load[i];
  2484. new_load = this_load;
  2485. /*
  2486. * Round up the averaging division if load is increasing. This
  2487. * prevents us from getting stuck on 9 if the load is 10, for
  2488. * example.
  2489. */
  2490. if (new_load > old_load)
  2491. new_load += scale-1;
  2492. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2493. }
  2494. }
  2495. #ifdef CONFIG_SMP
  2496. /*
  2497. * double_rq_lock - safely lock two runqueues
  2498. *
  2499. * Note this does not disable interrupts like task_rq_lock,
  2500. * you need to do so manually before calling.
  2501. */
  2502. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2503. __acquires(rq1->lock)
  2504. __acquires(rq2->lock)
  2505. {
  2506. BUG_ON(!irqs_disabled());
  2507. if (rq1 == rq2) {
  2508. spin_lock(&rq1->lock);
  2509. __acquire(rq2->lock); /* Fake it out ;) */
  2510. } else {
  2511. if (rq1 < rq2) {
  2512. spin_lock(&rq1->lock);
  2513. spin_lock(&rq2->lock);
  2514. } else {
  2515. spin_lock(&rq2->lock);
  2516. spin_lock(&rq1->lock);
  2517. }
  2518. }
  2519. update_rq_clock(rq1);
  2520. update_rq_clock(rq2);
  2521. }
  2522. /*
  2523. * double_rq_unlock - safely unlock two runqueues
  2524. *
  2525. * Note this does not restore interrupts like task_rq_unlock,
  2526. * you need to do so manually after calling.
  2527. */
  2528. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2529. __releases(rq1->lock)
  2530. __releases(rq2->lock)
  2531. {
  2532. spin_unlock(&rq1->lock);
  2533. if (rq1 != rq2)
  2534. spin_unlock(&rq2->lock);
  2535. else
  2536. __release(rq2->lock);
  2537. }
  2538. /*
  2539. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2540. */
  2541. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2542. __releases(this_rq->lock)
  2543. __acquires(busiest->lock)
  2544. __acquires(this_rq->lock)
  2545. {
  2546. int ret = 0;
  2547. if (unlikely(!irqs_disabled())) {
  2548. /* printk() doesn't work good under rq->lock */
  2549. spin_unlock(&this_rq->lock);
  2550. BUG_ON(1);
  2551. }
  2552. if (unlikely(!spin_trylock(&busiest->lock))) {
  2553. if (busiest < this_rq) {
  2554. spin_unlock(&this_rq->lock);
  2555. spin_lock(&busiest->lock);
  2556. spin_lock(&this_rq->lock);
  2557. ret = 1;
  2558. } else
  2559. spin_lock(&busiest->lock);
  2560. }
  2561. return ret;
  2562. }
  2563. /*
  2564. * If dest_cpu is allowed for this process, migrate the task to it.
  2565. * This is accomplished by forcing the cpu_allowed mask to only
  2566. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2567. * the cpu_allowed mask is restored.
  2568. */
  2569. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2570. {
  2571. struct migration_req req;
  2572. unsigned long flags;
  2573. struct rq *rq;
  2574. rq = task_rq_lock(p, &flags);
  2575. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2576. || unlikely(cpu_is_offline(dest_cpu)))
  2577. goto out;
  2578. /* force the process onto the specified CPU */
  2579. if (migrate_task(p, dest_cpu, &req)) {
  2580. /* Need to wait for migration thread (might exit: take ref). */
  2581. struct task_struct *mt = rq->migration_thread;
  2582. get_task_struct(mt);
  2583. task_rq_unlock(rq, &flags);
  2584. wake_up_process(mt);
  2585. put_task_struct(mt);
  2586. wait_for_completion(&req.done);
  2587. return;
  2588. }
  2589. out:
  2590. task_rq_unlock(rq, &flags);
  2591. }
  2592. /*
  2593. * sched_exec - execve() is a valuable balancing opportunity, because at
  2594. * this point the task has the smallest effective memory and cache footprint.
  2595. */
  2596. void sched_exec(void)
  2597. {
  2598. int new_cpu, this_cpu = get_cpu();
  2599. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2600. put_cpu();
  2601. if (new_cpu != this_cpu)
  2602. sched_migrate_task(current, new_cpu);
  2603. }
  2604. /*
  2605. * pull_task - move a task from a remote runqueue to the local runqueue.
  2606. * Both runqueues must be locked.
  2607. */
  2608. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2609. struct rq *this_rq, int this_cpu)
  2610. {
  2611. deactivate_task(src_rq, p, 0);
  2612. set_task_cpu(p, this_cpu);
  2613. activate_task(this_rq, p, 0);
  2614. /*
  2615. * Note that idle threads have a prio of MAX_PRIO, for this test
  2616. * to be always true for them.
  2617. */
  2618. check_preempt_curr(this_rq, p);
  2619. }
  2620. /*
  2621. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2622. */
  2623. static
  2624. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2625. struct sched_domain *sd, enum cpu_idle_type idle,
  2626. int *all_pinned)
  2627. {
  2628. /*
  2629. * We do not migrate tasks that are:
  2630. * 1) running (obviously), or
  2631. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2632. * 3) are cache-hot on their current CPU.
  2633. */
  2634. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2635. schedstat_inc(p, se.nr_failed_migrations_affine);
  2636. return 0;
  2637. }
  2638. *all_pinned = 0;
  2639. if (task_running(rq, p)) {
  2640. schedstat_inc(p, se.nr_failed_migrations_running);
  2641. return 0;
  2642. }
  2643. /*
  2644. * Aggressive migration if:
  2645. * 1) task is cache cold, or
  2646. * 2) too many balance attempts have failed.
  2647. */
  2648. if (!task_hot(p, rq->clock, sd) ||
  2649. sd->nr_balance_failed > sd->cache_nice_tries) {
  2650. #ifdef CONFIG_SCHEDSTATS
  2651. if (task_hot(p, rq->clock, sd)) {
  2652. schedstat_inc(sd, lb_hot_gained[idle]);
  2653. schedstat_inc(p, se.nr_forced_migrations);
  2654. }
  2655. #endif
  2656. return 1;
  2657. }
  2658. if (task_hot(p, rq->clock, sd)) {
  2659. schedstat_inc(p, se.nr_failed_migrations_hot);
  2660. return 0;
  2661. }
  2662. return 1;
  2663. }
  2664. static unsigned long
  2665. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2666. unsigned long max_load_move, struct sched_domain *sd,
  2667. enum cpu_idle_type idle, int *all_pinned,
  2668. int *this_best_prio, struct rq_iterator *iterator)
  2669. {
  2670. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2671. struct task_struct *p;
  2672. long rem_load_move = max_load_move;
  2673. if (max_load_move == 0)
  2674. goto out;
  2675. pinned = 1;
  2676. /*
  2677. * Start the load-balancing iterator:
  2678. */
  2679. p = iterator->start(iterator->arg);
  2680. next:
  2681. if (!p || loops++ > sysctl_sched_nr_migrate)
  2682. goto out;
  2683. /*
  2684. * To help distribute high priority tasks across CPUs we don't
  2685. * skip a task if it will be the highest priority task (i.e. smallest
  2686. * prio value) on its new queue regardless of its load weight
  2687. */
  2688. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2689. SCHED_LOAD_SCALE_FUZZ;
  2690. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2691. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2692. p = iterator->next(iterator->arg);
  2693. goto next;
  2694. }
  2695. pull_task(busiest, p, this_rq, this_cpu);
  2696. pulled++;
  2697. rem_load_move -= p->se.load.weight;
  2698. /*
  2699. * We only want to steal up to the prescribed amount of weighted load.
  2700. */
  2701. if (rem_load_move > 0) {
  2702. if (p->prio < *this_best_prio)
  2703. *this_best_prio = p->prio;
  2704. p = iterator->next(iterator->arg);
  2705. goto next;
  2706. }
  2707. out:
  2708. /*
  2709. * Right now, this is one of only two places pull_task() is called,
  2710. * so we can safely collect pull_task() stats here rather than
  2711. * inside pull_task().
  2712. */
  2713. schedstat_add(sd, lb_gained[idle], pulled);
  2714. if (all_pinned)
  2715. *all_pinned = pinned;
  2716. return max_load_move - rem_load_move;
  2717. }
  2718. /*
  2719. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2720. * this_rq, as part of a balancing operation within domain "sd".
  2721. * Returns 1 if successful and 0 otherwise.
  2722. *
  2723. * Called with both runqueues locked.
  2724. */
  2725. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2726. unsigned long max_load_move,
  2727. struct sched_domain *sd, enum cpu_idle_type idle,
  2728. int *all_pinned)
  2729. {
  2730. const struct sched_class *class = sched_class_highest;
  2731. unsigned long total_load_moved = 0;
  2732. int this_best_prio = this_rq->curr->prio;
  2733. do {
  2734. total_load_moved +=
  2735. class->load_balance(this_rq, this_cpu, busiest,
  2736. max_load_move - total_load_moved,
  2737. sd, idle, all_pinned, &this_best_prio);
  2738. class = class->next;
  2739. } while (class && max_load_move > total_load_moved);
  2740. return total_load_moved > 0;
  2741. }
  2742. static int
  2743. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2744. struct sched_domain *sd, enum cpu_idle_type idle,
  2745. struct rq_iterator *iterator)
  2746. {
  2747. struct task_struct *p = iterator->start(iterator->arg);
  2748. int pinned = 0;
  2749. while (p) {
  2750. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2751. pull_task(busiest, p, this_rq, this_cpu);
  2752. /*
  2753. * Right now, this is only the second place pull_task()
  2754. * is called, so we can safely collect pull_task()
  2755. * stats here rather than inside pull_task().
  2756. */
  2757. schedstat_inc(sd, lb_gained[idle]);
  2758. return 1;
  2759. }
  2760. p = iterator->next(iterator->arg);
  2761. }
  2762. return 0;
  2763. }
  2764. /*
  2765. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2766. * part of active balancing operations within "domain".
  2767. * Returns 1 if successful and 0 otherwise.
  2768. *
  2769. * Called with both runqueues locked.
  2770. */
  2771. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2772. struct sched_domain *sd, enum cpu_idle_type idle)
  2773. {
  2774. const struct sched_class *class;
  2775. for (class = sched_class_highest; class; class = class->next)
  2776. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2777. return 1;
  2778. return 0;
  2779. }
  2780. /*
  2781. * find_busiest_group finds and returns the busiest CPU group within the
  2782. * domain. It calculates and returns the amount of weighted load which
  2783. * should be moved to restore balance via the imbalance parameter.
  2784. */
  2785. static struct sched_group *
  2786. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2787. unsigned long *imbalance, enum cpu_idle_type idle,
  2788. int *sd_idle, const cpumask_t *cpus, int *balance)
  2789. {
  2790. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2791. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2792. unsigned long max_pull;
  2793. unsigned long busiest_load_per_task, busiest_nr_running;
  2794. unsigned long this_load_per_task, this_nr_running;
  2795. int load_idx, group_imb = 0;
  2796. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2797. int power_savings_balance = 1;
  2798. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2799. unsigned long min_nr_running = ULONG_MAX;
  2800. struct sched_group *group_min = NULL, *group_leader = NULL;
  2801. #endif
  2802. max_load = this_load = total_load = total_pwr = 0;
  2803. busiest_load_per_task = busiest_nr_running = 0;
  2804. this_load_per_task = this_nr_running = 0;
  2805. if (idle == CPU_NOT_IDLE)
  2806. load_idx = sd->busy_idx;
  2807. else if (idle == CPU_NEWLY_IDLE)
  2808. load_idx = sd->newidle_idx;
  2809. else
  2810. load_idx = sd->idle_idx;
  2811. do {
  2812. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2813. int local_group;
  2814. int i;
  2815. int __group_imb = 0;
  2816. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2817. unsigned long sum_nr_running, sum_weighted_load;
  2818. local_group = cpu_isset(this_cpu, group->cpumask);
  2819. if (local_group)
  2820. balance_cpu = first_cpu(group->cpumask);
  2821. /* Tally up the load of all CPUs in the group */
  2822. sum_weighted_load = sum_nr_running = avg_load = 0;
  2823. max_cpu_load = 0;
  2824. min_cpu_load = ~0UL;
  2825. for_each_cpu_mask(i, group->cpumask) {
  2826. struct rq *rq;
  2827. if (!cpu_isset(i, *cpus))
  2828. continue;
  2829. rq = cpu_rq(i);
  2830. if (*sd_idle && rq->nr_running)
  2831. *sd_idle = 0;
  2832. /* Bias balancing toward cpus of our domain */
  2833. if (local_group) {
  2834. if (idle_cpu(i) && !first_idle_cpu) {
  2835. first_idle_cpu = 1;
  2836. balance_cpu = i;
  2837. }
  2838. load = target_load(i, load_idx);
  2839. } else {
  2840. load = source_load(i, load_idx);
  2841. if (load > max_cpu_load)
  2842. max_cpu_load = load;
  2843. if (min_cpu_load > load)
  2844. min_cpu_load = load;
  2845. }
  2846. avg_load += load;
  2847. sum_nr_running += rq->nr_running;
  2848. sum_weighted_load += weighted_cpuload(i);
  2849. }
  2850. /*
  2851. * First idle cpu or the first cpu(busiest) in this sched group
  2852. * is eligible for doing load balancing at this and above
  2853. * domains. In the newly idle case, we will allow all the cpu's
  2854. * to do the newly idle load balance.
  2855. */
  2856. if (idle != CPU_NEWLY_IDLE && local_group &&
  2857. balance_cpu != this_cpu && balance) {
  2858. *balance = 0;
  2859. goto ret;
  2860. }
  2861. total_load += avg_load;
  2862. total_pwr += group->__cpu_power;
  2863. /* Adjust by relative CPU power of the group */
  2864. avg_load = sg_div_cpu_power(group,
  2865. avg_load * SCHED_LOAD_SCALE);
  2866. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2867. __group_imb = 1;
  2868. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2869. if (local_group) {
  2870. this_load = avg_load;
  2871. this = group;
  2872. this_nr_running = sum_nr_running;
  2873. this_load_per_task = sum_weighted_load;
  2874. } else if (avg_load > max_load &&
  2875. (sum_nr_running > group_capacity || __group_imb)) {
  2876. max_load = avg_load;
  2877. busiest = group;
  2878. busiest_nr_running = sum_nr_running;
  2879. busiest_load_per_task = sum_weighted_load;
  2880. group_imb = __group_imb;
  2881. }
  2882. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2883. /*
  2884. * Busy processors will not participate in power savings
  2885. * balance.
  2886. */
  2887. if (idle == CPU_NOT_IDLE ||
  2888. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2889. goto group_next;
  2890. /*
  2891. * If the local group is idle or completely loaded
  2892. * no need to do power savings balance at this domain
  2893. */
  2894. if (local_group && (this_nr_running >= group_capacity ||
  2895. !this_nr_running))
  2896. power_savings_balance = 0;
  2897. /*
  2898. * If a group is already running at full capacity or idle,
  2899. * don't include that group in power savings calculations
  2900. */
  2901. if (!power_savings_balance || sum_nr_running >= group_capacity
  2902. || !sum_nr_running)
  2903. goto group_next;
  2904. /*
  2905. * Calculate the group which has the least non-idle load.
  2906. * This is the group from where we need to pick up the load
  2907. * for saving power
  2908. */
  2909. if ((sum_nr_running < min_nr_running) ||
  2910. (sum_nr_running == min_nr_running &&
  2911. first_cpu(group->cpumask) <
  2912. first_cpu(group_min->cpumask))) {
  2913. group_min = group;
  2914. min_nr_running = sum_nr_running;
  2915. min_load_per_task = sum_weighted_load /
  2916. sum_nr_running;
  2917. }
  2918. /*
  2919. * Calculate the group which is almost near its
  2920. * capacity but still has some space to pick up some load
  2921. * from other group and save more power
  2922. */
  2923. if (sum_nr_running <= group_capacity - 1) {
  2924. if (sum_nr_running > leader_nr_running ||
  2925. (sum_nr_running == leader_nr_running &&
  2926. first_cpu(group->cpumask) >
  2927. first_cpu(group_leader->cpumask))) {
  2928. group_leader = group;
  2929. leader_nr_running = sum_nr_running;
  2930. }
  2931. }
  2932. group_next:
  2933. #endif
  2934. group = group->next;
  2935. } while (group != sd->groups);
  2936. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2937. goto out_balanced;
  2938. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2939. if (this_load >= avg_load ||
  2940. 100*max_load <= sd->imbalance_pct*this_load)
  2941. goto out_balanced;
  2942. busiest_load_per_task /= busiest_nr_running;
  2943. if (group_imb)
  2944. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2945. /*
  2946. * We're trying to get all the cpus to the average_load, so we don't
  2947. * want to push ourselves above the average load, nor do we wish to
  2948. * reduce the max loaded cpu below the average load, as either of these
  2949. * actions would just result in more rebalancing later, and ping-pong
  2950. * tasks around. Thus we look for the minimum possible imbalance.
  2951. * Negative imbalances (*we* are more loaded than anyone else) will
  2952. * be counted as no imbalance for these purposes -- we can't fix that
  2953. * by pulling tasks to us. Be careful of negative numbers as they'll
  2954. * appear as very large values with unsigned longs.
  2955. */
  2956. if (max_load <= busiest_load_per_task)
  2957. goto out_balanced;
  2958. /*
  2959. * In the presence of smp nice balancing, certain scenarios can have
  2960. * max load less than avg load(as we skip the groups at or below
  2961. * its cpu_power, while calculating max_load..)
  2962. */
  2963. if (max_load < avg_load) {
  2964. *imbalance = 0;
  2965. goto small_imbalance;
  2966. }
  2967. /* Don't want to pull so many tasks that a group would go idle */
  2968. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2969. /* How much load to actually move to equalise the imbalance */
  2970. *imbalance = min(max_pull * busiest->__cpu_power,
  2971. (avg_load - this_load) * this->__cpu_power)
  2972. / SCHED_LOAD_SCALE;
  2973. /*
  2974. * if *imbalance is less than the average load per runnable task
  2975. * there is no gaurantee that any tasks will be moved so we'll have
  2976. * a think about bumping its value to force at least one task to be
  2977. * moved
  2978. */
  2979. if (*imbalance < busiest_load_per_task) {
  2980. unsigned long tmp, pwr_now, pwr_move;
  2981. unsigned int imbn;
  2982. small_imbalance:
  2983. pwr_move = pwr_now = 0;
  2984. imbn = 2;
  2985. if (this_nr_running) {
  2986. this_load_per_task /= this_nr_running;
  2987. if (busiest_load_per_task > this_load_per_task)
  2988. imbn = 1;
  2989. } else
  2990. this_load_per_task = SCHED_LOAD_SCALE;
  2991. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2992. busiest_load_per_task * imbn) {
  2993. *imbalance = busiest_load_per_task;
  2994. return busiest;
  2995. }
  2996. /*
  2997. * OK, we don't have enough imbalance to justify moving tasks,
  2998. * however we may be able to increase total CPU power used by
  2999. * moving them.
  3000. */
  3001. pwr_now += busiest->__cpu_power *
  3002. min(busiest_load_per_task, max_load);
  3003. pwr_now += this->__cpu_power *
  3004. min(this_load_per_task, this_load);
  3005. pwr_now /= SCHED_LOAD_SCALE;
  3006. /* Amount of load we'd subtract */
  3007. tmp = sg_div_cpu_power(busiest,
  3008. busiest_load_per_task * SCHED_LOAD_SCALE);
  3009. if (max_load > tmp)
  3010. pwr_move += busiest->__cpu_power *
  3011. min(busiest_load_per_task, max_load - tmp);
  3012. /* Amount of load we'd add */
  3013. if (max_load * busiest->__cpu_power <
  3014. busiest_load_per_task * SCHED_LOAD_SCALE)
  3015. tmp = sg_div_cpu_power(this,
  3016. max_load * busiest->__cpu_power);
  3017. else
  3018. tmp = sg_div_cpu_power(this,
  3019. busiest_load_per_task * SCHED_LOAD_SCALE);
  3020. pwr_move += this->__cpu_power *
  3021. min(this_load_per_task, this_load + tmp);
  3022. pwr_move /= SCHED_LOAD_SCALE;
  3023. /* Move if we gain throughput */
  3024. if (pwr_move > pwr_now)
  3025. *imbalance = busiest_load_per_task;
  3026. }
  3027. return busiest;
  3028. out_balanced:
  3029. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3030. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3031. goto ret;
  3032. if (this == group_leader && group_leader != group_min) {
  3033. *imbalance = min_load_per_task;
  3034. return group_min;
  3035. }
  3036. #endif
  3037. ret:
  3038. *imbalance = 0;
  3039. return NULL;
  3040. }
  3041. /*
  3042. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3043. */
  3044. static struct rq *
  3045. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3046. unsigned long imbalance, const cpumask_t *cpus)
  3047. {
  3048. struct rq *busiest = NULL, *rq;
  3049. unsigned long max_load = 0;
  3050. int i;
  3051. for_each_cpu_mask(i, group->cpumask) {
  3052. unsigned long wl;
  3053. if (!cpu_isset(i, *cpus))
  3054. continue;
  3055. rq = cpu_rq(i);
  3056. wl = weighted_cpuload(i);
  3057. if (rq->nr_running == 1 && wl > imbalance)
  3058. continue;
  3059. if (wl > max_load) {
  3060. max_load = wl;
  3061. busiest = rq;
  3062. }
  3063. }
  3064. return busiest;
  3065. }
  3066. /*
  3067. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3068. * so long as it is large enough.
  3069. */
  3070. #define MAX_PINNED_INTERVAL 512
  3071. /*
  3072. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3073. * tasks if there is an imbalance.
  3074. */
  3075. static int load_balance(int this_cpu, struct rq *this_rq,
  3076. struct sched_domain *sd, enum cpu_idle_type idle,
  3077. int *balance, cpumask_t *cpus)
  3078. {
  3079. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3080. struct sched_group *group;
  3081. unsigned long imbalance;
  3082. struct rq *busiest;
  3083. unsigned long flags;
  3084. int unlock_aggregate;
  3085. cpus_setall(*cpus);
  3086. unlock_aggregate = get_aggregate(sd);
  3087. /*
  3088. * When power savings policy is enabled for the parent domain, idle
  3089. * sibling can pick up load irrespective of busy siblings. In this case,
  3090. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3091. * portraying it as CPU_NOT_IDLE.
  3092. */
  3093. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3094. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3095. sd_idle = 1;
  3096. schedstat_inc(sd, lb_count[idle]);
  3097. redo:
  3098. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3099. cpus, balance);
  3100. if (*balance == 0)
  3101. goto out_balanced;
  3102. if (!group) {
  3103. schedstat_inc(sd, lb_nobusyg[idle]);
  3104. goto out_balanced;
  3105. }
  3106. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3107. if (!busiest) {
  3108. schedstat_inc(sd, lb_nobusyq[idle]);
  3109. goto out_balanced;
  3110. }
  3111. BUG_ON(busiest == this_rq);
  3112. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3113. ld_moved = 0;
  3114. if (busiest->nr_running > 1) {
  3115. /*
  3116. * Attempt to move tasks. If find_busiest_group has found
  3117. * an imbalance but busiest->nr_running <= 1, the group is
  3118. * still unbalanced. ld_moved simply stays zero, so it is
  3119. * correctly treated as an imbalance.
  3120. */
  3121. local_irq_save(flags);
  3122. double_rq_lock(this_rq, busiest);
  3123. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3124. imbalance, sd, idle, &all_pinned);
  3125. double_rq_unlock(this_rq, busiest);
  3126. local_irq_restore(flags);
  3127. /*
  3128. * some other cpu did the load balance for us.
  3129. */
  3130. if (ld_moved && this_cpu != smp_processor_id())
  3131. resched_cpu(this_cpu);
  3132. /* All tasks on this runqueue were pinned by CPU affinity */
  3133. if (unlikely(all_pinned)) {
  3134. cpu_clear(cpu_of(busiest), *cpus);
  3135. if (!cpus_empty(*cpus))
  3136. goto redo;
  3137. goto out_balanced;
  3138. }
  3139. }
  3140. if (!ld_moved) {
  3141. schedstat_inc(sd, lb_failed[idle]);
  3142. sd->nr_balance_failed++;
  3143. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3144. spin_lock_irqsave(&busiest->lock, flags);
  3145. /* don't kick the migration_thread, if the curr
  3146. * task on busiest cpu can't be moved to this_cpu
  3147. */
  3148. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3149. spin_unlock_irqrestore(&busiest->lock, flags);
  3150. all_pinned = 1;
  3151. goto out_one_pinned;
  3152. }
  3153. if (!busiest->active_balance) {
  3154. busiest->active_balance = 1;
  3155. busiest->push_cpu = this_cpu;
  3156. active_balance = 1;
  3157. }
  3158. spin_unlock_irqrestore(&busiest->lock, flags);
  3159. if (active_balance)
  3160. wake_up_process(busiest->migration_thread);
  3161. /*
  3162. * We've kicked active balancing, reset the failure
  3163. * counter.
  3164. */
  3165. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3166. }
  3167. } else
  3168. sd->nr_balance_failed = 0;
  3169. if (likely(!active_balance)) {
  3170. /* We were unbalanced, so reset the balancing interval */
  3171. sd->balance_interval = sd->min_interval;
  3172. } else {
  3173. /*
  3174. * If we've begun active balancing, start to back off. This
  3175. * case may not be covered by the all_pinned logic if there
  3176. * is only 1 task on the busy runqueue (because we don't call
  3177. * move_tasks).
  3178. */
  3179. if (sd->balance_interval < sd->max_interval)
  3180. sd->balance_interval *= 2;
  3181. }
  3182. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3183. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3184. ld_moved = -1;
  3185. goto out;
  3186. out_balanced:
  3187. schedstat_inc(sd, lb_balanced[idle]);
  3188. sd->nr_balance_failed = 0;
  3189. out_one_pinned:
  3190. /* tune up the balancing interval */
  3191. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3192. (sd->balance_interval < sd->max_interval))
  3193. sd->balance_interval *= 2;
  3194. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3195. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3196. ld_moved = -1;
  3197. else
  3198. ld_moved = 0;
  3199. out:
  3200. if (unlock_aggregate)
  3201. put_aggregate(sd);
  3202. return ld_moved;
  3203. }
  3204. /*
  3205. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3206. * tasks if there is an imbalance.
  3207. *
  3208. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3209. * this_rq is locked.
  3210. */
  3211. static int
  3212. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3213. cpumask_t *cpus)
  3214. {
  3215. struct sched_group *group;
  3216. struct rq *busiest = NULL;
  3217. unsigned long imbalance;
  3218. int ld_moved = 0;
  3219. int sd_idle = 0;
  3220. int all_pinned = 0;
  3221. cpus_setall(*cpus);
  3222. /*
  3223. * When power savings policy is enabled for the parent domain, idle
  3224. * sibling can pick up load irrespective of busy siblings. In this case,
  3225. * let the state of idle sibling percolate up as IDLE, instead of
  3226. * portraying it as CPU_NOT_IDLE.
  3227. */
  3228. if (sd->flags & SD_SHARE_CPUPOWER &&
  3229. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3230. sd_idle = 1;
  3231. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3232. redo:
  3233. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3234. &sd_idle, cpus, NULL);
  3235. if (!group) {
  3236. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3237. goto out_balanced;
  3238. }
  3239. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3240. if (!busiest) {
  3241. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3242. goto out_balanced;
  3243. }
  3244. BUG_ON(busiest == this_rq);
  3245. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3246. ld_moved = 0;
  3247. if (busiest->nr_running > 1) {
  3248. /* Attempt to move tasks */
  3249. double_lock_balance(this_rq, busiest);
  3250. /* this_rq->clock is already updated */
  3251. update_rq_clock(busiest);
  3252. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3253. imbalance, sd, CPU_NEWLY_IDLE,
  3254. &all_pinned);
  3255. spin_unlock(&busiest->lock);
  3256. if (unlikely(all_pinned)) {
  3257. cpu_clear(cpu_of(busiest), *cpus);
  3258. if (!cpus_empty(*cpus))
  3259. goto redo;
  3260. }
  3261. }
  3262. if (!ld_moved) {
  3263. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3264. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3265. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3266. return -1;
  3267. } else
  3268. sd->nr_balance_failed = 0;
  3269. return ld_moved;
  3270. out_balanced:
  3271. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3272. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3273. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3274. return -1;
  3275. sd->nr_balance_failed = 0;
  3276. return 0;
  3277. }
  3278. /*
  3279. * idle_balance is called by schedule() if this_cpu is about to become
  3280. * idle. Attempts to pull tasks from other CPUs.
  3281. */
  3282. static void idle_balance(int this_cpu, struct rq *this_rq)
  3283. {
  3284. struct sched_domain *sd;
  3285. int pulled_task = -1;
  3286. unsigned long next_balance = jiffies + HZ;
  3287. cpumask_t tmpmask;
  3288. for_each_domain(this_cpu, sd) {
  3289. unsigned long interval;
  3290. if (!(sd->flags & SD_LOAD_BALANCE))
  3291. continue;
  3292. if (sd->flags & SD_BALANCE_NEWIDLE)
  3293. /* If we've pulled tasks over stop searching: */
  3294. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3295. sd, &tmpmask);
  3296. interval = msecs_to_jiffies(sd->balance_interval);
  3297. if (time_after(next_balance, sd->last_balance + interval))
  3298. next_balance = sd->last_balance + interval;
  3299. if (pulled_task)
  3300. break;
  3301. }
  3302. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3303. /*
  3304. * We are going idle. next_balance may be set based on
  3305. * a busy processor. So reset next_balance.
  3306. */
  3307. this_rq->next_balance = next_balance;
  3308. }
  3309. }
  3310. /*
  3311. * active_load_balance is run by migration threads. It pushes running tasks
  3312. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3313. * running on each physical CPU where possible, and avoids physical /
  3314. * logical imbalances.
  3315. *
  3316. * Called with busiest_rq locked.
  3317. */
  3318. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3319. {
  3320. int target_cpu = busiest_rq->push_cpu;
  3321. struct sched_domain *sd;
  3322. struct rq *target_rq;
  3323. /* Is there any task to move? */
  3324. if (busiest_rq->nr_running <= 1)
  3325. return;
  3326. target_rq = cpu_rq(target_cpu);
  3327. /*
  3328. * This condition is "impossible", if it occurs
  3329. * we need to fix it. Originally reported by
  3330. * Bjorn Helgaas on a 128-cpu setup.
  3331. */
  3332. BUG_ON(busiest_rq == target_rq);
  3333. /* move a task from busiest_rq to target_rq */
  3334. double_lock_balance(busiest_rq, target_rq);
  3335. update_rq_clock(busiest_rq);
  3336. update_rq_clock(target_rq);
  3337. /* Search for an sd spanning us and the target CPU. */
  3338. for_each_domain(target_cpu, sd) {
  3339. if ((sd->flags & SD_LOAD_BALANCE) &&
  3340. cpu_isset(busiest_cpu, sd->span))
  3341. break;
  3342. }
  3343. if (likely(sd)) {
  3344. schedstat_inc(sd, alb_count);
  3345. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3346. sd, CPU_IDLE))
  3347. schedstat_inc(sd, alb_pushed);
  3348. else
  3349. schedstat_inc(sd, alb_failed);
  3350. }
  3351. spin_unlock(&target_rq->lock);
  3352. }
  3353. #ifdef CONFIG_NO_HZ
  3354. static struct {
  3355. atomic_t load_balancer;
  3356. cpumask_t cpu_mask;
  3357. } nohz ____cacheline_aligned = {
  3358. .load_balancer = ATOMIC_INIT(-1),
  3359. .cpu_mask = CPU_MASK_NONE,
  3360. };
  3361. /*
  3362. * This routine will try to nominate the ilb (idle load balancing)
  3363. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3364. * load balancing on behalf of all those cpus. If all the cpus in the system
  3365. * go into this tickless mode, then there will be no ilb owner (as there is
  3366. * no need for one) and all the cpus will sleep till the next wakeup event
  3367. * arrives...
  3368. *
  3369. * For the ilb owner, tick is not stopped. And this tick will be used
  3370. * for idle load balancing. ilb owner will still be part of
  3371. * nohz.cpu_mask..
  3372. *
  3373. * While stopping the tick, this cpu will become the ilb owner if there
  3374. * is no other owner. And will be the owner till that cpu becomes busy
  3375. * or if all cpus in the system stop their ticks at which point
  3376. * there is no need for ilb owner.
  3377. *
  3378. * When the ilb owner becomes busy, it nominates another owner, during the
  3379. * next busy scheduler_tick()
  3380. */
  3381. int select_nohz_load_balancer(int stop_tick)
  3382. {
  3383. int cpu = smp_processor_id();
  3384. if (stop_tick) {
  3385. cpu_set(cpu, nohz.cpu_mask);
  3386. cpu_rq(cpu)->in_nohz_recently = 1;
  3387. /*
  3388. * If we are going offline and still the leader, give up!
  3389. */
  3390. if (cpu_is_offline(cpu) &&
  3391. atomic_read(&nohz.load_balancer) == cpu) {
  3392. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3393. BUG();
  3394. return 0;
  3395. }
  3396. /* time for ilb owner also to sleep */
  3397. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3398. if (atomic_read(&nohz.load_balancer) == cpu)
  3399. atomic_set(&nohz.load_balancer, -1);
  3400. return 0;
  3401. }
  3402. if (atomic_read(&nohz.load_balancer) == -1) {
  3403. /* make me the ilb owner */
  3404. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3405. return 1;
  3406. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3407. return 1;
  3408. } else {
  3409. if (!cpu_isset(cpu, nohz.cpu_mask))
  3410. return 0;
  3411. cpu_clear(cpu, nohz.cpu_mask);
  3412. if (atomic_read(&nohz.load_balancer) == cpu)
  3413. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3414. BUG();
  3415. }
  3416. return 0;
  3417. }
  3418. #endif
  3419. static DEFINE_SPINLOCK(balancing);
  3420. /*
  3421. * It checks each scheduling domain to see if it is due to be balanced,
  3422. * and initiates a balancing operation if so.
  3423. *
  3424. * Balancing parameters are set up in arch_init_sched_domains.
  3425. */
  3426. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3427. {
  3428. int balance = 1;
  3429. struct rq *rq = cpu_rq(cpu);
  3430. unsigned long interval;
  3431. struct sched_domain *sd;
  3432. /* Earliest time when we have to do rebalance again */
  3433. unsigned long next_balance = jiffies + 60*HZ;
  3434. int update_next_balance = 0;
  3435. cpumask_t tmp;
  3436. for_each_domain(cpu, sd) {
  3437. if (!(sd->flags & SD_LOAD_BALANCE))
  3438. continue;
  3439. interval = sd->balance_interval;
  3440. if (idle != CPU_IDLE)
  3441. interval *= sd->busy_factor;
  3442. /* scale ms to jiffies */
  3443. interval = msecs_to_jiffies(interval);
  3444. if (unlikely(!interval))
  3445. interval = 1;
  3446. if (interval > HZ*NR_CPUS/10)
  3447. interval = HZ*NR_CPUS/10;
  3448. if (sd->flags & SD_SERIALIZE) {
  3449. if (!spin_trylock(&balancing))
  3450. goto out;
  3451. }
  3452. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3453. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3454. /*
  3455. * We've pulled tasks over so either we're no
  3456. * longer idle, or one of our SMT siblings is
  3457. * not idle.
  3458. */
  3459. idle = CPU_NOT_IDLE;
  3460. }
  3461. sd->last_balance = jiffies;
  3462. }
  3463. if (sd->flags & SD_SERIALIZE)
  3464. spin_unlock(&balancing);
  3465. out:
  3466. if (time_after(next_balance, sd->last_balance + interval)) {
  3467. next_balance = sd->last_balance + interval;
  3468. update_next_balance = 1;
  3469. }
  3470. /*
  3471. * Stop the load balance at this level. There is another
  3472. * CPU in our sched group which is doing load balancing more
  3473. * actively.
  3474. */
  3475. if (!balance)
  3476. break;
  3477. }
  3478. /*
  3479. * next_balance will be updated only when there is a need.
  3480. * When the cpu is attached to null domain for ex, it will not be
  3481. * updated.
  3482. */
  3483. if (likely(update_next_balance))
  3484. rq->next_balance = next_balance;
  3485. }
  3486. /*
  3487. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3488. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3489. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3490. */
  3491. static void run_rebalance_domains(struct softirq_action *h)
  3492. {
  3493. int this_cpu = smp_processor_id();
  3494. struct rq *this_rq = cpu_rq(this_cpu);
  3495. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3496. CPU_IDLE : CPU_NOT_IDLE;
  3497. rebalance_domains(this_cpu, idle);
  3498. #ifdef CONFIG_NO_HZ
  3499. /*
  3500. * If this cpu is the owner for idle load balancing, then do the
  3501. * balancing on behalf of the other idle cpus whose ticks are
  3502. * stopped.
  3503. */
  3504. if (this_rq->idle_at_tick &&
  3505. atomic_read(&nohz.load_balancer) == this_cpu) {
  3506. cpumask_t cpus = nohz.cpu_mask;
  3507. struct rq *rq;
  3508. int balance_cpu;
  3509. cpu_clear(this_cpu, cpus);
  3510. for_each_cpu_mask(balance_cpu, cpus) {
  3511. /*
  3512. * If this cpu gets work to do, stop the load balancing
  3513. * work being done for other cpus. Next load
  3514. * balancing owner will pick it up.
  3515. */
  3516. if (need_resched())
  3517. break;
  3518. rebalance_domains(balance_cpu, CPU_IDLE);
  3519. rq = cpu_rq(balance_cpu);
  3520. if (time_after(this_rq->next_balance, rq->next_balance))
  3521. this_rq->next_balance = rq->next_balance;
  3522. }
  3523. }
  3524. #endif
  3525. }
  3526. /*
  3527. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3528. *
  3529. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3530. * idle load balancing owner or decide to stop the periodic load balancing,
  3531. * if the whole system is idle.
  3532. */
  3533. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3534. {
  3535. #ifdef CONFIG_NO_HZ
  3536. /*
  3537. * If we were in the nohz mode recently and busy at the current
  3538. * scheduler tick, then check if we need to nominate new idle
  3539. * load balancer.
  3540. */
  3541. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3542. rq->in_nohz_recently = 0;
  3543. if (atomic_read(&nohz.load_balancer) == cpu) {
  3544. cpu_clear(cpu, nohz.cpu_mask);
  3545. atomic_set(&nohz.load_balancer, -1);
  3546. }
  3547. if (atomic_read(&nohz.load_balancer) == -1) {
  3548. /*
  3549. * simple selection for now: Nominate the
  3550. * first cpu in the nohz list to be the next
  3551. * ilb owner.
  3552. *
  3553. * TBD: Traverse the sched domains and nominate
  3554. * the nearest cpu in the nohz.cpu_mask.
  3555. */
  3556. int ilb = first_cpu(nohz.cpu_mask);
  3557. if (ilb < nr_cpu_ids)
  3558. resched_cpu(ilb);
  3559. }
  3560. }
  3561. /*
  3562. * If this cpu is idle and doing idle load balancing for all the
  3563. * cpus with ticks stopped, is it time for that to stop?
  3564. */
  3565. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3566. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3567. resched_cpu(cpu);
  3568. return;
  3569. }
  3570. /*
  3571. * If this cpu is idle and the idle load balancing is done by
  3572. * someone else, then no need raise the SCHED_SOFTIRQ
  3573. */
  3574. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3575. cpu_isset(cpu, nohz.cpu_mask))
  3576. return;
  3577. #endif
  3578. if (time_after_eq(jiffies, rq->next_balance))
  3579. raise_softirq(SCHED_SOFTIRQ);
  3580. }
  3581. #else /* CONFIG_SMP */
  3582. /*
  3583. * on UP we do not need to balance between CPUs:
  3584. */
  3585. static inline void idle_balance(int cpu, struct rq *rq)
  3586. {
  3587. }
  3588. #endif
  3589. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3590. EXPORT_PER_CPU_SYMBOL(kstat);
  3591. /*
  3592. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3593. * that have not yet been banked in case the task is currently running.
  3594. */
  3595. unsigned long long task_sched_runtime(struct task_struct *p)
  3596. {
  3597. unsigned long flags;
  3598. u64 ns, delta_exec;
  3599. struct rq *rq;
  3600. rq = task_rq_lock(p, &flags);
  3601. ns = p->se.sum_exec_runtime;
  3602. if (task_current(rq, p)) {
  3603. update_rq_clock(rq);
  3604. delta_exec = rq->clock - p->se.exec_start;
  3605. if ((s64)delta_exec > 0)
  3606. ns += delta_exec;
  3607. }
  3608. task_rq_unlock(rq, &flags);
  3609. return ns;
  3610. }
  3611. /*
  3612. * Account user cpu time to a process.
  3613. * @p: the process that the cpu time gets accounted to
  3614. * @cputime: the cpu time spent in user space since the last update
  3615. */
  3616. void account_user_time(struct task_struct *p, cputime_t cputime)
  3617. {
  3618. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3619. cputime64_t tmp;
  3620. p->utime = cputime_add(p->utime, cputime);
  3621. /* Add user time to cpustat. */
  3622. tmp = cputime_to_cputime64(cputime);
  3623. if (TASK_NICE(p) > 0)
  3624. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3625. else
  3626. cpustat->user = cputime64_add(cpustat->user, tmp);
  3627. }
  3628. /*
  3629. * Account guest cpu time to a process.
  3630. * @p: the process that the cpu time gets accounted to
  3631. * @cputime: the cpu time spent in virtual machine since the last update
  3632. */
  3633. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3634. {
  3635. cputime64_t tmp;
  3636. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3637. tmp = cputime_to_cputime64(cputime);
  3638. p->utime = cputime_add(p->utime, cputime);
  3639. p->gtime = cputime_add(p->gtime, cputime);
  3640. cpustat->user = cputime64_add(cpustat->user, tmp);
  3641. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3642. }
  3643. /*
  3644. * Account scaled user cpu time to a process.
  3645. * @p: the process that the cpu time gets accounted to
  3646. * @cputime: the cpu time spent in user space since the last update
  3647. */
  3648. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3649. {
  3650. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3651. }
  3652. /*
  3653. * Account system cpu time to a process.
  3654. * @p: the process that the cpu time gets accounted to
  3655. * @hardirq_offset: the offset to subtract from hardirq_count()
  3656. * @cputime: the cpu time spent in kernel space since the last update
  3657. */
  3658. void account_system_time(struct task_struct *p, int hardirq_offset,
  3659. cputime_t cputime)
  3660. {
  3661. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3662. struct rq *rq = this_rq();
  3663. cputime64_t tmp;
  3664. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3665. account_guest_time(p, cputime);
  3666. return;
  3667. }
  3668. p->stime = cputime_add(p->stime, cputime);
  3669. /* Add system time to cpustat. */
  3670. tmp = cputime_to_cputime64(cputime);
  3671. if (hardirq_count() - hardirq_offset)
  3672. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3673. else if (softirq_count())
  3674. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3675. else if (p != rq->idle)
  3676. cpustat->system = cputime64_add(cpustat->system, tmp);
  3677. else if (atomic_read(&rq->nr_iowait) > 0)
  3678. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3679. else
  3680. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3681. /* Account for system time used */
  3682. acct_update_integrals(p);
  3683. }
  3684. /*
  3685. * Account scaled system cpu time to a process.
  3686. * @p: the process that the cpu time gets accounted to
  3687. * @hardirq_offset: the offset to subtract from hardirq_count()
  3688. * @cputime: the cpu time spent in kernel space since the last update
  3689. */
  3690. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3691. {
  3692. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3693. }
  3694. /*
  3695. * Account for involuntary wait time.
  3696. * @p: the process from which the cpu time has been stolen
  3697. * @steal: the cpu time spent in involuntary wait
  3698. */
  3699. void account_steal_time(struct task_struct *p, cputime_t steal)
  3700. {
  3701. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3702. cputime64_t tmp = cputime_to_cputime64(steal);
  3703. struct rq *rq = this_rq();
  3704. if (p == rq->idle) {
  3705. p->stime = cputime_add(p->stime, steal);
  3706. if (atomic_read(&rq->nr_iowait) > 0)
  3707. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3708. else
  3709. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3710. } else
  3711. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3712. }
  3713. /*
  3714. * This function gets called by the timer code, with HZ frequency.
  3715. * We call it with interrupts disabled.
  3716. *
  3717. * It also gets called by the fork code, when changing the parent's
  3718. * timeslices.
  3719. */
  3720. void scheduler_tick(void)
  3721. {
  3722. int cpu = smp_processor_id();
  3723. struct rq *rq = cpu_rq(cpu);
  3724. struct task_struct *curr = rq->curr;
  3725. sched_clock_tick();
  3726. spin_lock(&rq->lock);
  3727. update_rq_clock(rq);
  3728. update_cpu_load(rq);
  3729. curr->sched_class->task_tick(rq, curr, 0);
  3730. spin_unlock(&rq->lock);
  3731. #ifdef CONFIG_SMP
  3732. rq->idle_at_tick = idle_cpu(cpu);
  3733. trigger_load_balance(rq, cpu);
  3734. #endif
  3735. }
  3736. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3737. defined(CONFIG_PREEMPT_TRACER))
  3738. static inline unsigned long get_parent_ip(unsigned long addr)
  3739. {
  3740. if (in_lock_functions(addr)) {
  3741. addr = CALLER_ADDR2;
  3742. if (in_lock_functions(addr))
  3743. addr = CALLER_ADDR3;
  3744. }
  3745. return addr;
  3746. }
  3747. void __kprobes add_preempt_count(int val)
  3748. {
  3749. #ifdef CONFIG_DEBUG_PREEMPT
  3750. /*
  3751. * Underflow?
  3752. */
  3753. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3754. return;
  3755. #endif
  3756. preempt_count() += val;
  3757. #ifdef CONFIG_DEBUG_PREEMPT
  3758. /*
  3759. * Spinlock count overflowing soon?
  3760. */
  3761. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3762. PREEMPT_MASK - 10);
  3763. #endif
  3764. if (preempt_count() == val)
  3765. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3766. }
  3767. EXPORT_SYMBOL(add_preempt_count);
  3768. void __kprobes sub_preempt_count(int val)
  3769. {
  3770. #ifdef CONFIG_DEBUG_PREEMPT
  3771. /*
  3772. * Underflow?
  3773. */
  3774. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3775. return;
  3776. /*
  3777. * Is the spinlock portion underflowing?
  3778. */
  3779. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3780. !(preempt_count() & PREEMPT_MASK)))
  3781. return;
  3782. #endif
  3783. if (preempt_count() == val)
  3784. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3785. preempt_count() -= val;
  3786. }
  3787. EXPORT_SYMBOL(sub_preempt_count);
  3788. #endif
  3789. /*
  3790. * Print scheduling while atomic bug:
  3791. */
  3792. static noinline void __schedule_bug(struct task_struct *prev)
  3793. {
  3794. struct pt_regs *regs = get_irq_regs();
  3795. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3796. prev->comm, prev->pid, preempt_count());
  3797. debug_show_held_locks(prev);
  3798. if (irqs_disabled())
  3799. print_irqtrace_events(prev);
  3800. if (regs)
  3801. show_regs(regs);
  3802. else
  3803. dump_stack();
  3804. }
  3805. /*
  3806. * Various schedule()-time debugging checks and statistics:
  3807. */
  3808. static inline void schedule_debug(struct task_struct *prev)
  3809. {
  3810. /*
  3811. * Test if we are atomic. Since do_exit() needs to call into
  3812. * schedule() atomically, we ignore that path for now.
  3813. * Otherwise, whine if we are scheduling when we should not be.
  3814. */
  3815. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3816. __schedule_bug(prev);
  3817. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3818. schedstat_inc(this_rq(), sched_count);
  3819. #ifdef CONFIG_SCHEDSTATS
  3820. if (unlikely(prev->lock_depth >= 0)) {
  3821. schedstat_inc(this_rq(), bkl_count);
  3822. schedstat_inc(prev, sched_info.bkl_count);
  3823. }
  3824. #endif
  3825. }
  3826. /*
  3827. * Pick up the highest-prio task:
  3828. */
  3829. static inline struct task_struct *
  3830. pick_next_task(struct rq *rq, struct task_struct *prev)
  3831. {
  3832. const struct sched_class *class;
  3833. struct task_struct *p;
  3834. /*
  3835. * Optimization: we know that if all tasks are in
  3836. * the fair class we can call that function directly:
  3837. */
  3838. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3839. p = fair_sched_class.pick_next_task(rq);
  3840. if (likely(p))
  3841. return p;
  3842. }
  3843. class = sched_class_highest;
  3844. for ( ; ; ) {
  3845. p = class->pick_next_task(rq);
  3846. if (p)
  3847. return p;
  3848. /*
  3849. * Will never be NULL as the idle class always
  3850. * returns a non-NULL p:
  3851. */
  3852. class = class->next;
  3853. }
  3854. }
  3855. /*
  3856. * schedule() is the main scheduler function.
  3857. */
  3858. asmlinkage void __sched schedule(void)
  3859. {
  3860. struct task_struct *prev, *next;
  3861. unsigned long *switch_count;
  3862. struct rq *rq;
  3863. int cpu;
  3864. need_resched:
  3865. preempt_disable();
  3866. cpu = smp_processor_id();
  3867. rq = cpu_rq(cpu);
  3868. rcu_qsctr_inc(cpu);
  3869. prev = rq->curr;
  3870. switch_count = &prev->nivcsw;
  3871. release_kernel_lock(prev);
  3872. need_resched_nonpreemptible:
  3873. schedule_debug(prev);
  3874. hrtick_clear(rq);
  3875. /*
  3876. * Do the rq-clock update outside the rq lock:
  3877. */
  3878. local_irq_disable();
  3879. update_rq_clock(rq);
  3880. spin_lock(&rq->lock);
  3881. clear_tsk_need_resched(prev);
  3882. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3883. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3884. signal_pending(prev))) {
  3885. prev->state = TASK_RUNNING;
  3886. } else {
  3887. deactivate_task(rq, prev, 1);
  3888. }
  3889. switch_count = &prev->nvcsw;
  3890. }
  3891. #ifdef CONFIG_SMP
  3892. if (prev->sched_class->pre_schedule)
  3893. prev->sched_class->pre_schedule(rq, prev);
  3894. #endif
  3895. if (unlikely(!rq->nr_running))
  3896. idle_balance(cpu, rq);
  3897. prev->sched_class->put_prev_task(rq, prev);
  3898. next = pick_next_task(rq, prev);
  3899. if (likely(prev != next)) {
  3900. sched_info_switch(prev, next);
  3901. rq->nr_switches++;
  3902. rq->curr = next;
  3903. ++*switch_count;
  3904. context_switch(rq, prev, next); /* unlocks the rq */
  3905. /*
  3906. * the context switch might have flipped the stack from under
  3907. * us, hence refresh the local variables.
  3908. */
  3909. cpu = smp_processor_id();
  3910. rq = cpu_rq(cpu);
  3911. } else
  3912. spin_unlock_irq(&rq->lock);
  3913. hrtick_set(rq);
  3914. if (unlikely(reacquire_kernel_lock(current) < 0))
  3915. goto need_resched_nonpreemptible;
  3916. preempt_enable_no_resched();
  3917. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3918. goto need_resched;
  3919. }
  3920. EXPORT_SYMBOL(schedule);
  3921. #ifdef CONFIG_PREEMPT
  3922. /*
  3923. * this is the entry point to schedule() from in-kernel preemption
  3924. * off of preempt_enable. Kernel preemptions off return from interrupt
  3925. * occur there and call schedule directly.
  3926. */
  3927. asmlinkage void __sched preempt_schedule(void)
  3928. {
  3929. struct thread_info *ti = current_thread_info();
  3930. /*
  3931. * If there is a non-zero preempt_count or interrupts are disabled,
  3932. * we do not want to preempt the current task. Just return..
  3933. */
  3934. if (likely(ti->preempt_count || irqs_disabled()))
  3935. return;
  3936. do {
  3937. add_preempt_count(PREEMPT_ACTIVE);
  3938. schedule();
  3939. sub_preempt_count(PREEMPT_ACTIVE);
  3940. /*
  3941. * Check again in case we missed a preemption opportunity
  3942. * between schedule and now.
  3943. */
  3944. barrier();
  3945. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3946. }
  3947. EXPORT_SYMBOL(preempt_schedule);
  3948. /*
  3949. * this is the entry point to schedule() from kernel preemption
  3950. * off of irq context.
  3951. * Note, that this is called and return with irqs disabled. This will
  3952. * protect us against recursive calling from irq.
  3953. */
  3954. asmlinkage void __sched preempt_schedule_irq(void)
  3955. {
  3956. struct thread_info *ti = current_thread_info();
  3957. /* Catch callers which need to be fixed */
  3958. BUG_ON(ti->preempt_count || !irqs_disabled());
  3959. do {
  3960. add_preempt_count(PREEMPT_ACTIVE);
  3961. local_irq_enable();
  3962. schedule();
  3963. local_irq_disable();
  3964. sub_preempt_count(PREEMPT_ACTIVE);
  3965. /*
  3966. * Check again in case we missed a preemption opportunity
  3967. * between schedule and now.
  3968. */
  3969. barrier();
  3970. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3971. }
  3972. #endif /* CONFIG_PREEMPT */
  3973. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3974. void *key)
  3975. {
  3976. return try_to_wake_up(curr->private, mode, sync);
  3977. }
  3978. EXPORT_SYMBOL(default_wake_function);
  3979. /*
  3980. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3981. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3982. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3983. *
  3984. * There are circumstances in which we can try to wake a task which has already
  3985. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3986. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3987. */
  3988. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3989. int nr_exclusive, int sync, void *key)
  3990. {
  3991. wait_queue_t *curr, *next;
  3992. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3993. unsigned flags = curr->flags;
  3994. if (curr->func(curr, mode, sync, key) &&
  3995. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3996. break;
  3997. }
  3998. }
  3999. /**
  4000. * __wake_up - wake up threads blocked on a waitqueue.
  4001. * @q: the waitqueue
  4002. * @mode: which threads
  4003. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4004. * @key: is directly passed to the wakeup function
  4005. */
  4006. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4007. int nr_exclusive, void *key)
  4008. {
  4009. unsigned long flags;
  4010. spin_lock_irqsave(&q->lock, flags);
  4011. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4012. spin_unlock_irqrestore(&q->lock, flags);
  4013. }
  4014. EXPORT_SYMBOL(__wake_up);
  4015. /*
  4016. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4017. */
  4018. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4019. {
  4020. __wake_up_common(q, mode, 1, 0, NULL);
  4021. }
  4022. /**
  4023. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4024. * @q: the waitqueue
  4025. * @mode: which threads
  4026. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4027. *
  4028. * The sync wakeup differs that the waker knows that it will schedule
  4029. * away soon, so while the target thread will be woken up, it will not
  4030. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4031. * with each other. This can prevent needless bouncing between CPUs.
  4032. *
  4033. * On UP it can prevent extra preemption.
  4034. */
  4035. void
  4036. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4037. {
  4038. unsigned long flags;
  4039. int sync = 1;
  4040. if (unlikely(!q))
  4041. return;
  4042. if (unlikely(!nr_exclusive))
  4043. sync = 0;
  4044. spin_lock_irqsave(&q->lock, flags);
  4045. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4046. spin_unlock_irqrestore(&q->lock, flags);
  4047. }
  4048. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4049. void complete(struct completion *x)
  4050. {
  4051. unsigned long flags;
  4052. spin_lock_irqsave(&x->wait.lock, flags);
  4053. x->done++;
  4054. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4055. spin_unlock_irqrestore(&x->wait.lock, flags);
  4056. }
  4057. EXPORT_SYMBOL(complete);
  4058. void complete_all(struct completion *x)
  4059. {
  4060. unsigned long flags;
  4061. spin_lock_irqsave(&x->wait.lock, flags);
  4062. x->done += UINT_MAX/2;
  4063. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4064. spin_unlock_irqrestore(&x->wait.lock, flags);
  4065. }
  4066. EXPORT_SYMBOL(complete_all);
  4067. static inline long __sched
  4068. do_wait_for_common(struct completion *x, long timeout, int state)
  4069. {
  4070. if (!x->done) {
  4071. DECLARE_WAITQUEUE(wait, current);
  4072. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4073. __add_wait_queue_tail(&x->wait, &wait);
  4074. do {
  4075. if ((state == TASK_INTERRUPTIBLE &&
  4076. signal_pending(current)) ||
  4077. (state == TASK_KILLABLE &&
  4078. fatal_signal_pending(current))) {
  4079. __remove_wait_queue(&x->wait, &wait);
  4080. return -ERESTARTSYS;
  4081. }
  4082. __set_current_state(state);
  4083. spin_unlock_irq(&x->wait.lock);
  4084. timeout = schedule_timeout(timeout);
  4085. spin_lock_irq(&x->wait.lock);
  4086. if (!timeout) {
  4087. __remove_wait_queue(&x->wait, &wait);
  4088. return timeout;
  4089. }
  4090. } while (!x->done);
  4091. __remove_wait_queue(&x->wait, &wait);
  4092. }
  4093. x->done--;
  4094. return timeout;
  4095. }
  4096. static long __sched
  4097. wait_for_common(struct completion *x, long timeout, int state)
  4098. {
  4099. might_sleep();
  4100. spin_lock_irq(&x->wait.lock);
  4101. timeout = do_wait_for_common(x, timeout, state);
  4102. spin_unlock_irq(&x->wait.lock);
  4103. return timeout;
  4104. }
  4105. void __sched wait_for_completion(struct completion *x)
  4106. {
  4107. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4108. }
  4109. EXPORT_SYMBOL(wait_for_completion);
  4110. unsigned long __sched
  4111. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4112. {
  4113. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4114. }
  4115. EXPORT_SYMBOL(wait_for_completion_timeout);
  4116. int __sched wait_for_completion_interruptible(struct completion *x)
  4117. {
  4118. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4119. if (t == -ERESTARTSYS)
  4120. return t;
  4121. return 0;
  4122. }
  4123. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4124. unsigned long __sched
  4125. wait_for_completion_interruptible_timeout(struct completion *x,
  4126. unsigned long timeout)
  4127. {
  4128. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4129. }
  4130. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4131. int __sched wait_for_completion_killable(struct completion *x)
  4132. {
  4133. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4134. if (t == -ERESTARTSYS)
  4135. return t;
  4136. return 0;
  4137. }
  4138. EXPORT_SYMBOL(wait_for_completion_killable);
  4139. static long __sched
  4140. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4141. {
  4142. unsigned long flags;
  4143. wait_queue_t wait;
  4144. init_waitqueue_entry(&wait, current);
  4145. __set_current_state(state);
  4146. spin_lock_irqsave(&q->lock, flags);
  4147. __add_wait_queue(q, &wait);
  4148. spin_unlock(&q->lock);
  4149. timeout = schedule_timeout(timeout);
  4150. spin_lock_irq(&q->lock);
  4151. __remove_wait_queue(q, &wait);
  4152. spin_unlock_irqrestore(&q->lock, flags);
  4153. return timeout;
  4154. }
  4155. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4156. {
  4157. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4158. }
  4159. EXPORT_SYMBOL(interruptible_sleep_on);
  4160. long __sched
  4161. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4162. {
  4163. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4164. }
  4165. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4166. void __sched sleep_on(wait_queue_head_t *q)
  4167. {
  4168. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4169. }
  4170. EXPORT_SYMBOL(sleep_on);
  4171. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4172. {
  4173. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4174. }
  4175. EXPORT_SYMBOL(sleep_on_timeout);
  4176. #ifdef CONFIG_RT_MUTEXES
  4177. /*
  4178. * rt_mutex_setprio - set the current priority of a task
  4179. * @p: task
  4180. * @prio: prio value (kernel-internal form)
  4181. *
  4182. * This function changes the 'effective' priority of a task. It does
  4183. * not touch ->normal_prio like __setscheduler().
  4184. *
  4185. * Used by the rt_mutex code to implement priority inheritance logic.
  4186. */
  4187. void rt_mutex_setprio(struct task_struct *p, int prio)
  4188. {
  4189. unsigned long flags;
  4190. int oldprio, on_rq, running;
  4191. struct rq *rq;
  4192. const struct sched_class *prev_class = p->sched_class;
  4193. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4194. rq = task_rq_lock(p, &flags);
  4195. update_rq_clock(rq);
  4196. oldprio = p->prio;
  4197. on_rq = p->se.on_rq;
  4198. running = task_current(rq, p);
  4199. if (on_rq)
  4200. dequeue_task(rq, p, 0);
  4201. if (running)
  4202. p->sched_class->put_prev_task(rq, p);
  4203. if (rt_prio(prio))
  4204. p->sched_class = &rt_sched_class;
  4205. else
  4206. p->sched_class = &fair_sched_class;
  4207. p->prio = prio;
  4208. if (running)
  4209. p->sched_class->set_curr_task(rq);
  4210. if (on_rq) {
  4211. enqueue_task(rq, p, 0);
  4212. check_class_changed(rq, p, prev_class, oldprio, running);
  4213. }
  4214. task_rq_unlock(rq, &flags);
  4215. }
  4216. #endif
  4217. void set_user_nice(struct task_struct *p, long nice)
  4218. {
  4219. int old_prio, delta, on_rq;
  4220. unsigned long flags;
  4221. struct rq *rq;
  4222. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4223. return;
  4224. /*
  4225. * We have to be careful, if called from sys_setpriority(),
  4226. * the task might be in the middle of scheduling on another CPU.
  4227. */
  4228. rq = task_rq_lock(p, &flags);
  4229. update_rq_clock(rq);
  4230. /*
  4231. * The RT priorities are set via sched_setscheduler(), but we still
  4232. * allow the 'normal' nice value to be set - but as expected
  4233. * it wont have any effect on scheduling until the task is
  4234. * SCHED_FIFO/SCHED_RR:
  4235. */
  4236. if (task_has_rt_policy(p)) {
  4237. p->static_prio = NICE_TO_PRIO(nice);
  4238. goto out_unlock;
  4239. }
  4240. on_rq = p->se.on_rq;
  4241. if (on_rq)
  4242. dequeue_task(rq, p, 0);
  4243. p->static_prio = NICE_TO_PRIO(nice);
  4244. set_load_weight(p);
  4245. old_prio = p->prio;
  4246. p->prio = effective_prio(p);
  4247. delta = p->prio - old_prio;
  4248. if (on_rq) {
  4249. enqueue_task(rq, p, 0);
  4250. /*
  4251. * If the task increased its priority or is running and
  4252. * lowered its priority, then reschedule its CPU:
  4253. */
  4254. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4255. resched_task(rq->curr);
  4256. }
  4257. out_unlock:
  4258. task_rq_unlock(rq, &flags);
  4259. }
  4260. EXPORT_SYMBOL(set_user_nice);
  4261. /*
  4262. * can_nice - check if a task can reduce its nice value
  4263. * @p: task
  4264. * @nice: nice value
  4265. */
  4266. int can_nice(const struct task_struct *p, const int nice)
  4267. {
  4268. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4269. int nice_rlim = 20 - nice;
  4270. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4271. capable(CAP_SYS_NICE));
  4272. }
  4273. #ifdef __ARCH_WANT_SYS_NICE
  4274. /*
  4275. * sys_nice - change the priority of the current process.
  4276. * @increment: priority increment
  4277. *
  4278. * sys_setpriority is a more generic, but much slower function that
  4279. * does similar things.
  4280. */
  4281. asmlinkage long sys_nice(int increment)
  4282. {
  4283. long nice, retval;
  4284. /*
  4285. * Setpriority might change our priority at the same moment.
  4286. * We don't have to worry. Conceptually one call occurs first
  4287. * and we have a single winner.
  4288. */
  4289. if (increment < -40)
  4290. increment = -40;
  4291. if (increment > 40)
  4292. increment = 40;
  4293. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4294. if (nice < -20)
  4295. nice = -20;
  4296. if (nice > 19)
  4297. nice = 19;
  4298. if (increment < 0 && !can_nice(current, nice))
  4299. return -EPERM;
  4300. retval = security_task_setnice(current, nice);
  4301. if (retval)
  4302. return retval;
  4303. set_user_nice(current, nice);
  4304. return 0;
  4305. }
  4306. #endif
  4307. /**
  4308. * task_prio - return the priority value of a given task.
  4309. * @p: the task in question.
  4310. *
  4311. * This is the priority value as seen by users in /proc.
  4312. * RT tasks are offset by -200. Normal tasks are centered
  4313. * around 0, value goes from -16 to +15.
  4314. */
  4315. int task_prio(const struct task_struct *p)
  4316. {
  4317. return p->prio - MAX_RT_PRIO;
  4318. }
  4319. /**
  4320. * task_nice - return the nice value of a given task.
  4321. * @p: the task in question.
  4322. */
  4323. int task_nice(const struct task_struct *p)
  4324. {
  4325. return TASK_NICE(p);
  4326. }
  4327. EXPORT_SYMBOL(task_nice);
  4328. /**
  4329. * idle_cpu - is a given cpu idle currently?
  4330. * @cpu: the processor in question.
  4331. */
  4332. int idle_cpu(int cpu)
  4333. {
  4334. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4335. }
  4336. /**
  4337. * idle_task - return the idle task for a given cpu.
  4338. * @cpu: the processor in question.
  4339. */
  4340. struct task_struct *idle_task(int cpu)
  4341. {
  4342. return cpu_rq(cpu)->idle;
  4343. }
  4344. /**
  4345. * find_process_by_pid - find a process with a matching PID value.
  4346. * @pid: the pid in question.
  4347. */
  4348. static struct task_struct *find_process_by_pid(pid_t pid)
  4349. {
  4350. return pid ? find_task_by_vpid(pid) : current;
  4351. }
  4352. /* Actually do priority change: must hold rq lock. */
  4353. static void
  4354. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4355. {
  4356. BUG_ON(p->se.on_rq);
  4357. p->policy = policy;
  4358. switch (p->policy) {
  4359. case SCHED_NORMAL:
  4360. case SCHED_BATCH:
  4361. case SCHED_IDLE:
  4362. p->sched_class = &fair_sched_class;
  4363. break;
  4364. case SCHED_FIFO:
  4365. case SCHED_RR:
  4366. p->sched_class = &rt_sched_class;
  4367. break;
  4368. }
  4369. p->rt_priority = prio;
  4370. p->normal_prio = normal_prio(p);
  4371. /* we are holding p->pi_lock already */
  4372. p->prio = rt_mutex_getprio(p);
  4373. set_load_weight(p);
  4374. }
  4375. /**
  4376. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4377. * @p: the task in question.
  4378. * @policy: new policy.
  4379. * @param: structure containing the new RT priority.
  4380. *
  4381. * NOTE that the task may be already dead.
  4382. */
  4383. int sched_setscheduler(struct task_struct *p, int policy,
  4384. struct sched_param *param)
  4385. {
  4386. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4387. unsigned long flags;
  4388. const struct sched_class *prev_class = p->sched_class;
  4389. struct rq *rq;
  4390. /* may grab non-irq protected spin_locks */
  4391. BUG_ON(in_interrupt());
  4392. recheck:
  4393. /* double check policy once rq lock held */
  4394. if (policy < 0)
  4395. policy = oldpolicy = p->policy;
  4396. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4397. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4398. policy != SCHED_IDLE)
  4399. return -EINVAL;
  4400. /*
  4401. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4402. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4403. * SCHED_BATCH and SCHED_IDLE is 0.
  4404. */
  4405. if (param->sched_priority < 0 ||
  4406. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4407. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4408. return -EINVAL;
  4409. if (rt_policy(policy) != (param->sched_priority != 0))
  4410. return -EINVAL;
  4411. /*
  4412. * Allow unprivileged RT tasks to decrease priority:
  4413. */
  4414. if (!capable(CAP_SYS_NICE)) {
  4415. if (rt_policy(policy)) {
  4416. unsigned long rlim_rtprio;
  4417. if (!lock_task_sighand(p, &flags))
  4418. return -ESRCH;
  4419. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4420. unlock_task_sighand(p, &flags);
  4421. /* can't set/change the rt policy */
  4422. if (policy != p->policy && !rlim_rtprio)
  4423. return -EPERM;
  4424. /* can't increase priority */
  4425. if (param->sched_priority > p->rt_priority &&
  4426. param->sched_priority > rlim_rtprio)
  4427. return -EPERM;
  4428. }
  4429. /*
  4430. * Like positive nice levels, dont allow tasks to
  4431. * move out of SCHED_IDLE either:
  4432. */
  4433. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4434. return -EPERM;
  4435. /* can't change other user's priorities */
  4436. if ((current->euid != p->euid) &&
  4437. (current->euid != p->uid))
  4438. return -EPERM;
  4439. }
  4440. #ifdef CONFIG_RT_GROUP_SCHED
  4441. /*
  4442. * Do not allow realtime tasks into groups that have no runtime
  4443. * assigned.
  4444. */
  4445. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4446. return -EPERM;
  4447. #endif
  4448. retval = security_task_setscheduler(p, policy, param);
  4449. if (retval)
  4450. return retval;
  4451. /*
  4452. * make sure no PI-waiters arrive (or leave) while we are
  4453. * changing the priority of the task:
  4454. */
  4455. spin_lock_irqsave(&p->pi_lock, flags);
  4456. /*
  4457. * To be able to change p->policy safely, the apropriate
  4458. * runqueue lock must be held.
  4459. */
  4460. rq = __task_rq_lock(p);
  4461. /* recheck policy now with rq lock held */
  4462. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4463. policy = oldpolicy = -1;
  4464. __task_rq_unlock(rq);
  4465. spin_unlock_irqrestore(&p->pi_lock, flags);
  4466. goto recheck;
  4467. }
  4468. update_rq_clock(rq);
  4469. on_rq = p->se.on_rq;
  4470. running = task_current(rq, p);
  4471. if (on_rq)
  4472. deactivate_task(rq, p, 0);
  4473. if (running)
  4474. p->sched_class->put_prev_task(rq, p);
  4475. oldprio = p->prio;
  4476. __setscheduler(rq, p, policy, param->sched_priority);
  4477. if (running)
  4478. p->sched_class->set_curr_task(rq);
  4479. if (on_rq) {
  4480. activate_task(rq, p, 0);
  4481. check_class_changed(rq, p, prev_class, oldprio, running);
  4482. }
  4483. __task_rq_unlock(rq);
  4484. spin_unlock_irqrestore(&p->pi_lock, flags);
  4485. rt_mutex_adjust_pi(p);
  4486. return 0;
  4487. }
  4488. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4489. static int
  4490. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4491. {
  4492. struct sched_param lparam;
  4493. struct task_struct *p;
  4494. int retval;
  4495. if (!param || pid < 0)
  4496. return -EINVAL;
  4497. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4498. return -EFAULT;
  4499. rcu_read_lock();
  4500. retval = -ESRCH;
  4501. p = find_process_by_pid(pid);
  4502. if (p != NULL)
  4503. retval = sched_setscheduler(p, policy, &lparam);
  4504. rcu_read_unlock();
  4505. return retval;
  4506. }
  4507. /**
  4508. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4509. * @pid: the pid in question.
  4510. * @policy: new policy.
  4511. * @param: structure containing the new RT priority.
  4512. */
  4513. asmlinkage long
  4514. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4515. {
  4516. /* negative values for policy are not valid */
  4517. if (policy < 0)
  4518. return -EINVAL;
  4519. return do_sched_setscheduler(pid, policy, param);
  4520. }
  4521. /**
  4522. * sys_sched_setparam - set/change the RT priority of a thread
  4523. * @pid: the pid in question.
  4524. * @param: structure containing the new RT priority.
  4525. */
  4526. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4527. {
  4528. return do_sched_setscheduler(pid, -1, param);
  4529. }
  4530. /**
  4531. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4532. * @pid: the pid in question.
  4533. */
  4534. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4535. {
  4536. struct task_struct *p;
  4537. int retval;
  4538. if (pid < 0)
  4539. return -EINVAL;
  4540. retval = -ESRCH;
  4541. read_lock(&tasklist_lock);
  4542. p = find_process_by_pid(pid);
  4543. if (p) {
  4544. retval = security_task_getscheduler(p);
  4545. if (!retval)
  4546. retval = p->policy;
  4547. }
  4548. read_unlock(&tasklist_lock);
  4549. return retval;
  4550. }
  4551. /**
  4552. * sys_sched_getscheduler - get the RT priority of a thread
  4553. * @pid: the pid in question.
  4554. * @param: structure containing the RT priority.
  4555. */
  4556. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4557. {
  4558. struct sched_param lp;
  4559. struct task_struct *p;
  4560. int retval;
  4561. if (!param || pid < 0)
  4562. return -EINVAL;
  4563. read_lock(&tasklist_lock);
  4564. p = find_process_by_pid(pid);
  4565. retval = -ESRCH;
  4566. if (!p)
  4567. goto out_unlock;
  4568. retval = security_task_getscheduler(p);
  4569. if (retval)
  4570. goto out_unlock;
  4571. lp.sched_priority = p->rt_priority;
  4572. read_unlock(&tasklist_lock);
  4573. /*
  4574. * This one might sleep, we cannot do it with a spinlock held ...
  4575. */
  4576. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4577. return retval;
  4578. out_unlock:
  4579. read_unlock(&tasklist_lock);
  4580. return retval;
  4581. }
  4582. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4583. {
  4584. cpumask_t cpus_allowed;
  4585. cpumask_t new_mask = *in_mask;
  4586. struct task_struct *p;
  4587. int retval;
  4588. get_online_cpus();
  4589. read_lock(&tasklist_lock);
  4590. p = find_process_by_pid(pid);
  4591. if (!p) {
  4592. read_unlock(&tasklist_lock);
  4593. put_online_cpus();
  4594. return -ESRCH;
  4595. }
  4596. /*
  4597. * It is not safe to call set_cpus_allowed with the
  4598. * tasklist_lock held. We will bump the task_struct's
  4599. * usage count and then drop tasklist_lock.
  4600. */
  4601. get_task_struct(p);
  4602. read_unlock(&tasklist_lock);
  4603. retval = -EPERM;
  4604. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4605. !capable(CAP_SYS_NICE))
  4606. goto out_unlock;
  4607. retval = security_task_setscheduler(p, 0, NULL);
  4608. if (retval)
  4609. goto out_unlock;
  4610. cpuset_cpus_allowed(p, &cpus_allowed);
  4611. cpus_and(new_mask, new_mask, cpus_allowed);
  4612. again:
  4613. retval = set_cpus_allowed_ptr(p, &new_mask);
  4614. if (!retval) {
  4615. cpuset_cpus_allowed(p, &cpus_allowed);
  4616. if (!cpus_subset(new_mask, cpus_allowed)) {
  4617. /*
  4618. * We must have raced with a concurrent cpuset
  4619. * update. Just reset the cpus_allowed to the
  4620. * cpuset's cpus_allowed
  4621. */
  4622. new_mask = cpus_allowed;
  4623. goto again;
  4624. }
  4625. }
  4626. out_unlock:
  4627. put_task_struct(p);
  4628. put_online_cpus();
  4629. return retval;
  4630. }
  4631. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4632. cpumask_t *new_mask)
  4633. {
  4634. if (len < sizeof(cpumask_t)) {
  4635. memset(new_mask, 0, sizeof(cpumask_t));
  4636. } else if (len > sizeof(cpumask_t)) {
  4637. len = sizeof(cpumask_t);
  4638. }
  4639. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4640. }
  4641. /**
  4642. * sys_sched_setaffinity - set the cpu affinity of a process
  4643. * @pid: pid of the process
  4644. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4645. * @user_mask_ptr: user-space pointer to the new cpu mask
  4646. */
  4647. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4648. unsigned long __user *user_mask_ptr)
  4649. {
  4650. cpumask_t new_mask;
  4651. int retval;
  4652. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4653. if (retval)
  4654. return retval;
  4655. return sched_setaffinity(pid, &new_mask);
  4656. }
  4657. /*
  4658. * Represents all cpu's present in the system
  4659. * In systems capable of hotplug, this map could dynamically grow
  4660. * as new cpu's are detected in the system via any platform specific
  4661. * method, such as ACPI for e.g.
  4662. */
  4663. cpumask_t cpu_present_map __read_mostly;
  4664. EXPORT_SYMBOL(cpu_present_map);
  4665. #ifndef CONFIG_SMP
  4666. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4667. EXPORT_SYMBOL(cpu_online_map);
  4668. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4669. EXPORT_SYMBOL(cpu_possible_map);
  4670. #endif
  4671. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4672. {
  4673. struct task_struct *p;
  4674. int retval;
  4675. get_online_cpus();
  4676. read_lock(&tasklist_lock);
  4677. retval = -ESRCH;
  4678. p = find_process_by_pid(pid);
  4679. if (!p)
  4680. goto out_unlock;
  4681. retval = security_task_getscheduler(p);
  4682. if (retval)
  4683. goto out_unlock;
  4684. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4685. out_unlock:
  4686. read_unlock(&tasklist_lock);
  4687. put_online_cpus();
  4688. return retval;
  4689. }
  4690. /**
  4691. * sys_sched_getaffinity - get the cpu affinity of a process
  4692. * @pid: pid of the process
  4693. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4694. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4695. */
  4696. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4697. unsigned long __user *user_mask_ptr)
  4698. {
  4699. int ret;
  4700. cpumask_t mask;
  4701. if (len < sizeof(cpumask_t))
  4702. return -EINVAL;
  4703. ret = sched_getaffinity(pid, &mask);
  4704. if (ret < 0)
  4705. return ret;
  4706. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4707. return -EFAULT;
  4708. return sizeof(cpumask_t);
  4709. }
  4710. /**
  4711. * sys_sched_yield - yield the current processor to other threads.
  4712. *
  4713. * This function yields the current CPU to other tasks. If there are no
  4714. * other threads running on this CPU then this function will return.
  4715. */
  4716. asmlinkage long sys_sched_yield(void)
  4717. {
  4718. struct rq *rq = this_rq_lock();
  4719. schedstat_inc(rq, yld_count);
  4720. current->sched_class->yield_task(rq);
  4721. /*
  4722. * Since we are going to call schedule() anyway, there's
  4723. * no need to preempt or enable interrupts:
  4724. */
  4725. __release(rq->lock);
  4726. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4727. _raw_spin_unlock(&rq->lock);
  4728. preempt_enable_no_resched();
  4729. schedule();
  4730. return 0;
  4731. }
  4732. static void __cond_resched(void)
  4733. {
  4734. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4735. __might_sleep(__FILE__, __LINE__);
  4736. #endif
  4737. /*
  4738. * The BKS might be reacquired before we have dropped
  4739. * PREEMPT_ACTIVE, which could trigger a second
  4740. * cond_resched() call.
  4741. */
  4742. do {
  4743. add_preempt_count(PREEMPT_ACTIVE);
  4744. schedule();
  4745. sub_preempt_count(PREEMPT_ACTIVE);
  4746. } while (need_resched());
  4747. }
  4748. int __sched _cond_resched(void)
  4749. {
  4750. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4751. system_state == SYSTEM_RUNNING) {
  4752. __cond_resched();
  4753. return 1;
  4754. }
  4755. return 0;
  4756. }
  4757. EXPORT_SYMBOL(_cond_resched);
  4758. /*
  4759. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4760. * call schedule, and on return reacquire the lock.
  4761. *
  4762. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4763. * operations here to prevent schedule() from being called twice (once via
  4764. * spin_unlock(), once by hand).
  4765. */
  4766. int cond_resched_lock(spinlock_t *lock)
  4767. {
  4768. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4769. int ret = 0;
  4770. if (spin_needbreak(lock) || resched) {
  4771. spin_unlock(lock);
  4772. if (resched && need_resched())
  4773. __cond_resched();
  4774. else
  4775. cpu_relax();
  4776. ret = 1;
  4777. spin_lock(lock);
  4778. }
  4779. return ret;
  4780. }
  4781. EXPORT_SYMBOL(cond_resched_lock);
  4782. int __sched cond_resched_softirq(void)
  4783. {
  4784. BUG_ON(!in_softirq());
  4785. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4786. local_bh_enable();
  4787. __cond_resched();
  4788. local_bh_disable();
  4789. return 1;
  4790. }
  4791. return 0;
  4792. }
  4793. EXPORT_SYMBOL(cond_resched_softirq);
  4794. /**
  4795. * yield - yield the current processor to other threads.
  4796. *
  4797. * This is a shortcut for kernel-space yielding - it marks the
  4798. * thread runnable and calls sys_sched_yield().
  4799. */
  4800. void __sched yield(void)
  4801. {
  4802. set_current_state(TASK_RUNNING);
  4803. sys_sched_yield();
  4804. }
  4805. EXPORT_SYMBOL(yield);
  4806. /*
  4807. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4808. * that process accounting knows that this is a task in IO wait state.
  4809. *
  4810. * But don't do that if it is a deliberate, throttling IO wait (this task
  4811. * has set its backing_dev_info: the queue against which it should throttle)
  4812. */
  4813. void __sched io_schedule(void)
  4814. {
  4815. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4816. delayacct_blkio_start();
  4817. atomic_inc(&rq->nr_iowait);
  4818. schedule();
  4819. atomic_dec(&rq->nr_iowait);
  4820. delayacct_blkio_end();
  4821. }
  4822. EXPORT_SYMBOL(io_schedule);
  4823. long __sched io_schedule_timeout(long timeout)
  4824. {
  4825. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4826. long ret;
  4827. delayacct_blkio_start();
  4828. atomic_inc(&rq->nr_iowait);
  4829. ret = schedule_timeout(timeout);
  4830. atomic_dec(&rq->nr_iowait);
  4831. delayacct_blkio_end();
  4832. return ret;
  4833. }
  4834. /**
  4835. * sys_sched_get_priority_max - return maximum RT priority.
  4836. * @policy: scheduling class.
  4837. *
  4838. * this syscall returns the maximum rt_priority that can be used
  4839. * by a given scheduling class.
  4840. */
  4841. asmlinkage long sys_sched_get_priority_max(int policy)
  4842. {
  4843. int ret = -EINVAL;
  4844. switch (policy) {
  4845. case SCHED_FIFO:
  4846. case SCHED_RR:
  4847. ret = MAX_USER_RT_PRIO-1;
  4848. break;
  4849. case SCHED_NORMAL:
  4850. case SCHED_BATCH:
  4851. case SCHED_IDLE:
  4852. ret = 0;
  4853. break;
  4854. }
  4855. return ret;
  4856. }
  4857. /**
  4858. * sys_sched_get_priority_min - return minimum RT priority.
  4859. * @policy: scheduling class.
  4860. *
  4861. * this syscall returns the minimum rt_priority that can be used
  4862. * by a given scheduling class.
  4863. */
  4864. asmlinkage long sys_sched_get_priority_min(int policy)
  4865. {
  4866. int ret = -EINVAL;
  4867. switch (policy) {
  4868. case SCHED_FIFO:
  4869. case SCHED_RR:
  4870. ret = 1;
  4871. break;
  4872. case SCHED_NORMAL:
  4873. case SCHED_BATCH:
  4874. case SCHED_IDLE:
  4875. ret = 0;
  4876. }
  4877. return ret;
  4878. }
  4879. /**
  4880. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4881. * @pid: pid of the process.
  4882. * @interval: userspace pointer to the timeslice value.
  4883. *
  4884. * this syscall writes the default timeslice value of a given process
  4885. * into the user-space timespec buffer. A value of '0' means infinity.
  4886. */
  4887. asmlinkage
  4888. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4889. {
  4890. struct task_struct *p;
  4891. unsigned int time_slice;
  4892. int retval;
  4893. struct timespec t;
  4894. if (pid < 0)
  4895. return -EINVAL;
  4896. retval = -ESRCH;
  4897. read_lock(&tasklist_lock);
  4898. p = find_process_by_pid(pid);
  4899. if (!p)
  4900. goto out_unlock;
  4901. retval = security_task_getscheduler(p);
  4902. if (retval)
  4903. goto out_unlock;
  4904. /*
  4905. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4906. * tasks that are on an otherwise idle runqueue:
  4907. */
  4908. time_slice = 0;
  4909. if (p->policy == SCHED_RR) {
  4910. time_slice = DEF_TIMESLICE;
  4911. } else if (p->policy != SCHED_FIFO) {
  4912. struct sched_entity *se = &p->se;
  4913. unsigned long flags;
  4914. struct rq *rq;
  4915. rq = task_rq_lock(p, &flags);
  4916. if (rq->cfs.load.weight)
  4917. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4918. task_rq_unlock(rq, &flags);
  4919. }
  4920. read_unlock(&tasklist_lock);
  4921. jiffies_to_timespec(time_slice, &t);
  4922. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4923. return retval;
  4924. out_unlock:
  4925. read_unlock(&tasklist_lock);
  4926. return retval;
  4927. }
  4928. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4929. void sched_show_task(struct task_struct *p)
  4930. {
  4931. unsigned long free = 0;
  4932. unsigned state;
  4933. state = p->state ? __ffs(p->state) + 1 : 0;
  4934. printk(KERN_INFO "%-13.13s %c", p->comm,
  4935. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4936. #if BITS_PER_LONG == 32
  4937. if (state == TASK_RUNNING)
  4938. printk(KERN_CONT " running ");
  4939. else
  4940. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4941. #else
  4942. if (state == TASK_RUNNING)
  4943. printk(KERN_CONT " running task ");
  4944. else
  4945. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4946. #endif
  4947. #ifdef CONFIG_DEBUG_STACK_USAGE
  4948. {
  4949. unsigned long *n = end_of_stack(p);
  4950. while (!*n)
  4951. n++;
  4952. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4953. }
  4954. #endif
  4955. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4956. task_pid_nr(p), task_pid_nr(p->real_parent));
  4957. show_stack(p, NULL);
  4958. }
  4959. void show_state_filter(unsigned long state_filter)
  4960. {
  4961. struct task_struct *g, *p;
  4962. #if BITS_PER_LONG == 32
  4963. printk(KERN_INFO
  4964. " task PC stack pid father\n");
  4965. #else
  4966. printk(KERN_INFO
  4967. " task PC stack pid father\n");
  4968. #endif
  4969. read_lock(&tasklist_lock);
  4970. do_each_thread(g, p) {
  4971. /*
  4972. * reset the NMI-timeout, listing all files on a slow
  4973. * console might take alot of time:
  4974. */
  4975. touch_nmi_watchdog();
  4976. if (!state_filter || (p->state & state_filter))
  4977. sched_show_task(p);
  4978. } while_each_thread(g, p);
  4979. touch_all_softlockup_watchdogs();
  4980. #ifdef CONFIG_SCHED_DEBUG
  4981. sysrq_sched_debug_show();
  4982. #endif
  4983. read_unlock(&tasklist_lock);
  4984. /*
  4985. * Only show locks if all tasks are dumped:
  4986. */
  4987. if (state_filter == -1)
  4988. debug_show_all_locks();
  4989. }
  4990. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4991. {
  4992. idle->sched_class = &idle_sched_class;
  4993. }
  4994. /**
  4995. * init_idle - set up an idle thread for a given CPU
  4996. * @idle: task in question
  4997. * @cpu: cpu the idle task belongs to
  4998. *
  4999. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5000. * flag, to make booting more robust.
  5001. */
  5002. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5003. {
  5004. struct rq *rq = cpu_rq(cpu);
  5005. unsigned long flags;
  5006. __sched_fork(idle);
  5007. idle->se.exec_start = sched_clock();
  5008. idle->prio = idle->normal_prio = MAX_PRIO;
  5009. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5010. __set_task_cpu(idle, cpu);
  5011. spin_lock_irqsave(&rq->lock, flags);
  5012. rq->curr = rq->idle = idle;
  5013. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5014. idle->oncpu = 1;
  5015. #endif
  5016. spin_unlock_irqrestore(&rq->lock, flags);
  5017. /* Set the preempt count _outside_ the spinlocks! */
  5018. #if defined(CONFIG_PREEMPT)
  5019. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5020. #else
  5021. task_thread_info(idle)->preempt_count = 0;
  5022. #endif
  5023. /*
  5024. * The idle tasks have their own, simple scheduling class:
  5025. */
  5026. idle->sched_class = &idle_sched_class;
  5027. }
  5028. /*
  5029. * In a system that switches off the HZ timer nohz_cpu_mask
  5030. * indicates which cpus entered this state. This is used
  5031. * in the rcu update to wait only for active cpus. For system
  5032. * which do not switch off the HZ timer nohz_cpu_mask should
  5033. * always be CPU_MASK_NONE.
  5034. */
  5035. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5036. /*
  5037. * Increase the granularity value when there are more CPUs,
  5038. * because with more CPUs the 'effective latency' as visible
  5039. * to users decreases. But the relationship is not linear,
  5040. * so pick a second-best guess by going with the log2 of the
  5041. * number of CPUs.
  5042. *
  5043. * This idea comes from the SD scheduler of Con Kolivas:
  5044. */
  5045. static inline void sched_init_granularity(void)
  5046. {
  5047. unsigned int factor = 1 + ilog2(num_online_cpus());
  5048. const unsigned long limit = 200000000;
  5049. sysctl_sched_min_granularity *= factor;
  5050. if (sysctl_sched_min_granularity > limit)
  5051. sysctl_sched_min_granularity = limit;
  5052. sysctl_sched_latency *= factor;
  5053. if (sysctl_sched_latency > limit)
  5054. sysctl_sched_latency = limit;
  5055. sysctl_sched_wakeup_granularity *= factor;
  5056. }
  5057. #ifdef CONFIG_SMP
  5058. /*
  5059. * This is how migration works:
  5060. *
  5061. * 1) we queue a struct migration_req structure in the source CPU's
  5062. * runqueue and wake up that CPU's migration thread.
  5063. * 2) we down() the locked semaphore => thread blocks.
  5064. * 3) migration thread wakes up (implicitly it forces the migrated
  5065. * thread off the CPU)
  5066. * 4) it gets the migration request and checks whether the migrated
  5067. * task is still in the wrong runqueue.
  5068. * 5) if it's in the wrong runqueue then the migration thread removes
  5069. * it and puts it into the right queue.
  5070. * 6) migration thread up()s the semaphore.
  5071. * 7) we wake up and the migration is done.
  5072. */
  5073. /*
  5074. * Change a given task's CPU affinity. Migrate the thread to a
  5075. * proper CPU and schedule it away if the CPU it's executing on
  5076. * is removed from the allowed bitmask.
  5077. *
  5078. * NOTE: the caller must have a valid reference to the task, the
  5079. * task must not exit() & deallocate itself prematurely. The
  5080. * call is not atomic; no spinlocks may be held.
  5081. */
  5082. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5083. {
  5084. struct migration_req req;
  5085. unsigned long flags;
  5086. struct rq *rq;
  5087. int ret = 0;
  5088. rq = task_rq_lock(p, &flags);
  5089. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5090. ret = -EINVAL;
  5091. goto out;
  5092. }
  5093. if (p->sched_class->set_cpus_allowed)
  5094. p->sched_class->set_cpus_allowed(p, new_mask);
  5095. else {
  5096. p->cpus_allowed = *new_mask;
  5097. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5098. }
  5099. /* Can the task run on the task's current CPU? If so, we're done */
  5100. if (cpu_isset(task_cpu(p), *new_mask))
  5101. goto out;
  5102. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5103. /* Need help from migration thread: drop lock and wait. */
  5104. task_rq_unlock(rq, &flags);
  5105. wake_up_process(rq->migration_thread);
  5106. wait_for_completion(&req.done);
  5107. tlb_migrate_finish(p->mm);
  5108. return 0;
  5109. }
  5110. out:
  5111. task_rq_unlock(rq, &flags);
  5112. return ret;
  5113. }
  5114. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5115. /*
  5116. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5117. * this because either it can't run here any more (set_cpus_allowed()
  5118. * away from this CPU, or CPU going down), or because we're
  5119. * attempting to rebalance this task on exec (sched_exec).
  5120. *
  5121. * So we race with normal scheduler movements, but that's OK, as long
  5122. * as the task is no longer on this CPU.
  5123. *
  5124. * Returns non-zero if task was successfully migrated.
  5125. */
  5126. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5127. {
  5128. struct rq *rq_dest, *rq_src;
  5129. int ret = 0, on_rq;
  5130. if (unlikely(cpu_is_offline(dest_cpu)))
  5131. return ret;
  5132. rq_src = cpu_rq(src_cpu);
  5133. rq_dest = cpu_rq(dest_cpu);
  5134. double_rq_lock(rq_src, rq_dest);
  5135. /* Already moved. */
  5136. if (task_cpu(p) != src_cpu)
  5137. goto out;
  5138. /* Affinity changed (again). */
  5139. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5140. goto out;
  5141. on_rq = p->se.on_rq;
  5142. if (on_rq)
  5143. deactivate_task(rq_src, p, 0);
  5144. set_task_cpu(p, dest_cpu);
  5145. if (on_rq) {
  5146. activate_task(rq_dest, p, 0);
  5147. check_preempt_curr(rq_dest, p);
  5148. }
  5149. ret = 1;
  5150. out:
  5151. double_rq_unlock(rq_src, rq_dest);
  5152. return ret;
  5153. }
  5154. /*
  5155. * migration_thread - this is a highprio system thread that performs
  5156. * thread migration by bumping thread off CPU then 'pushing' onto
  5157. * another runqueue.
  5158. */
  5159. static int migration_thread(void *data)
  5160. {
  5161. int cpu = (long)data;
  5162. struct rq *rq;
  5163. rq = cpu_rq(cpu);
  5164. BUG_ON(rq->migration_thread != current);
  5165. set_current_state(TASK_INTERRUPTIBLE);
  5166. while (!kthread_should_stop()) {
  5167. struct migration_req *req;
  5168. struct list_head *head;
  5169. spin_lock_irq(&rq->lock);
  5170. if (cpu_is_offline(cpu)) {
  5171. spin_unlock_irq(&rq->lock);
  5172. goto wait_to_die;
  5173. }
  5174. if (rq->active_balance) {
  5175. active_load_balance(rq, cpu);
  5176. rq->active_balance = 0;
  5177. }
  5178. head = &rq->migration_queue;
  5179. if (list_empty(head)) {
  5180. spin_unlock_irq(&rq->lock);
  5181. schedule();
  5182. set_current_state(TASK_INTERRUPTIBLE);
  5183. continue;
  5184. }
  5185. req = list_entry(head->next, struct migration_req, list);
  5186. list_del_init(head->next);
  5187. spin_unlock(&rq->lock);
  5188. __migrate_task(req->task, cpu, req->dest_cpu);
  5189. local_irq_enable();
  5190. complete(&req->done);
  5191. }
  5192. __set_current_state(TASK_RUNNING);
  5193. return 0;
  5194. wait_to_die:
  5195. /* Wait for kthread_stop */
  5196. set_current_state(TASK_INTERRUPTIBLE);
  5197. while (!kthread_should_stop()) {
  5198. schedule();
  5199. set_current_state(TASK_INTERRUPTIBLE);
  5200. }
  5201. __set_current_state(TASK_RUNNING);
  5202. return 0;
  5203. }
  5204. #ifdef CONFIG_HOTPLUG_CPU
  5205. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5206. {
  5207. int ret;
  5208. local_irq_disable();
  5209. ret = __migrate_task(p, src_cpu, dest_cpu);
  5210. local_irq_enable();
  5211. return ret;
  5212. }
  5213. /*
  5214. * Figure out where task on dead CPU should go, use force if necessary.
  5215. * NOTE: interrupts should be disabled by the caller
  5216. */
  5217. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5218. {
  5219. unsigned long flags;
  5220. cpumask_t mask;
  5221. struct rq *rq;
  5222. int dest_cpu;
  5223. do {
  5224. /* On same node? */
  5225. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5226. cpus_and(mask, mask, p->cpus_allowed);
  5227. dest_cpu = any_online_cpu(mask);
  5228. /* On any allowed CPU? */
  5229. if (dest_cpu >= nr_cpu_ids)
  5230. dest_cpu = any_online_cpu(p->cpus_allowed);
  5231. /* No more Mr. Nice Guy. */
  5232. if (dest_cpu >= nr_cpu_ids) {
  5233. cpumask_t cpus_allowed;
  5234. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5235. /*
  5236. * Try to stay on the same cpuset, where the
  5237. * current cpuset may be a subset of all cpus.
  5238. * The cpuset_cpus_allowed_locked() variant of
  5239. * cpuset_cpus_allowed() will not block. It must be
  5240. * called within calls to cpuset_lock/cpuset_unlock.
  5241. */
  5242. rq = task_rq_lock(p, &flags);
  5243. p->cpus_allowed = cpus_allowed;
  5244. dest_cpu = any_online_cpu(p->cpus_allowed);
  5245. task_rq_unlock(rq, &flags);
  5246. /*
  5247. * Don't tell them about moving exiting tasks or
  5248. * kernel threads (both mm NULL), since they never
  5249. * leave kernel.
  5250. */
  5251. if (p->mm && printk_ratelimit()) {
  5252. printk(KERN_INFO "process %d (%s) no "
  5253. "longer affine to cpu%d\n",
  5254. task_pid_nr(p), p->comm, dead_cpu);
  5255. }
  5256. }
  5257. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5258. }
  5259. /*
  5260. * While a dead CPU has no uninterruptible tasks queued at this point,
  5261. * it might still have a nonzero ->nr_uninterruptible counter, because
  5262. * for performance reasons the counter is not stricly tracking tasks to
  5263. * their home CPUs. So we just add the counter to another CPU's counter,
  5264. * to keep the global sum constant after CPU-down:
  5265. */
  5266. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5267. {
  5268. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5269. unsigned long flags;
  5270. local_irq_save(flags);
  5271. double_rq_lock(rq_src, rq_dest);
  5272. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5273. rq_src->nr_uninterruptible = 0;
  5274. double_rq_unlock(rq_src, rq_dest);
  5275. local_irq_restore(flags);
  5276. }
  5277. /* Run through task list and migrate tasks from the dead cpu. */
  5278. static void migrate_live_tasks(int src_cpu)
  5279. {
  5280. struct task_struct *p, *t;
  5281. read_lock(&tasklist_lock);
  5282. do_each_thread(t, p) {
  5283. if (p == current)
  5284. continue;
  5285. if (task_cpu(p) == src_cpu)
  5286. move_task_off_dead_cpu(src_cpu, p);
  5287. } while_each_thread(t, p);
  5288. read_unlock(&tasklist_lock);
  5289. }
  5290. /*
  5291. * Schedules idle task to be the next runnable task on current CPU.
  5292. * It does so by boosting its priority to highest possible.
  5293. * Used by CPU offline code.
  5294. */
  5295. void sched_idle_next(void)
  5296. {
  5297. int this_cpu = smp_processor_id();
  5298. struct rq *rq = cpu_rq(this_cpu);
  5299. struct task_struct *p = rq->idle;
  5300. unsigned long flags;
  5301. /* cpu has to be offline */
  5302. BUG_ON(cpu_online(this_cpu));
  5303. /*
  5304. * Strictly not necessary since rest of the CPUs are stopped by now
  5305. * and interrupts disabled on the current cpu.
  5306. */
  5307. spin_lock_irqsave(&rq->lock, flags);
  5308. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5309. update_rq_clock(rq);
  5310. activate_task(rq, p, 0);
  5311. spin_unlock_irqrestore(&rq->lock, flags);
  5312. }
  5313. /*
  5314. * Ensures that the idle task is using init_mm right before its cpu goes
  5315. * offline.
  5316. */
  5317. void idle_task_exit(void)
  5318. {
  5319. struct mm_struct *mm = current->active_mm;
  5320. BUG_ON(cpu_online(smp_processor_id()));
  5321. if (mm != &init_mm)
  5322. switch_mm(mm, &init_mm, current);
  5323. mmdrop(mm);
  5324. }
  5325. /* called under rq->lock with disabled interrupts */
  5326. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5327. {
  5328. struct rq *rq = cpu_rq(dead_cpu);
  5329. /* Must be exiting, otherwise would be on tasklist. */
  5330. BUG_ON(!p->exit_state);
  5331. /* Cannot have done final schedule yet: would have vanished. */
  5332. BUG_ON(p->state == TASK_DEAD);
  5333. get_task_struct(p);
  5334. /*
  5335. * Drop lock around migration; if someone else moves it,
  5336. * that's OK. No task can be added to this CPU, so iteration is
  5337. * fine.
  5338. */
  5339. spin_unlock_irq(&rq->lock);
  5340. move_task_off_dead_cpu(dead_cpu, p);
  5341. spin_lock_irq(&rq->lock);
  5342. put_task_struct(p);
  5343. }
  5344. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5345. static void migrate_dead_tasks(unsigned int dead_cpu)
  5346. {
  5347. struct rq *rq = cpu_rq(dead_cpu);
  5348. struct task_struct *next;
  5349. for ( ; ; ) {
  5350. if (!rq->nr_running)
  5351. break;
  5352. update_rq_clock(rq);
  5353. next = pick_next_task(rq, rq->curr);
  5354. if (!next)
  5355. break;
  5356. migrate_dead(dead_cpu, next);
  5357. }
  5358. }
  5359. #endif /* CONFIG_HOTPLUG_CPU */
  5360. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5361. static struct ctl_table sd_ctl_dir[] = {
  5362. {
  5363. .procname = "sched_domain",
  5364. .mode = 0555,
  5365. },
  5366. {0, },
  5367. };
  5368. static struct ctl_table sd_ctl_root[] = {
  5369. {
  5370. .ctl_name = CTL_KERN,
  5371. .procname = "kernel",
  5372. .mode = 0555,
  5373. .child = sd_ctl_dir,
  5374. },
  5375. {0, },
  5376. };
  5377. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5378. {
  5379. struct ctl_table *entry =
  5380. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5381. return entry;
  5382. }
  5383. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5384. {
  5385. struct ctl_table *entry;
  5386. /*
  5387. * In the intermediate directories, both the child directory and
  5388. * procname are dynamically allocated and could fail but the mode
  5389. * will always be set. In the lowest directory the names are
  5390. * static strings and all have proc handlers.
  5391. */
  5392. for (entry = *tablep; entry->mode; entry++) {
  5393. if (entry->child)
  5394. sd_free_ctl_entry(&entry->child);
  5395. if (entry->proc_handler == NULL)
  5396. kfree(entry->procname);
  5397. }
  5398. kfree(*tablep);
  5399. *tablep = NULL;
  5400. }
  5401. static void
  5402. set_table_entry(struct ctl_table *entry,
  5403. const char *procname, void *data, int maxlen,
  5404. mode_t mode, proc_handler *proc_handler)
  5405. {
  5406. entry->procname = procname;
  5407. entry->data = data;
  5408. entry->maxlen = maxlen;
  5409. entry->mode = mode;
  5410. entry->proc_handler = proc_handler;
  5411. }
  5412. static struct ctl_table *
  5413. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5414. {
  5415. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5416. if (table == NULL)
  5417. return NULL;
  5418. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5419. sizeof(long), 0644, proc_doulongvec_minmax);
  5420. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5421. sizeof(long), 0644, proc_doulongvec_minmax);
  5422. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5423. sizeof(int), 0644, proc_dointvec_minmax);
  5424. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5425. sizeof(int), 0644, proc_dointvec_minmax);
  5426. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5427. sizeof(int), 0644, proc_dointvec_minmax);
  5428. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5429. sizeof(int), 0644, proc_dointvec_minmax);
  5430. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5431. sizeof(int), 0644, proc_dointvec_minmax);
  5432. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[9], "cache_nice_tries",
  5437. &sd->cache_nice_tries,
  5438. sizeof(int), 0644, proc_dointvec_minmax);
  5439. set_table_entry(&table[10], "flags", &sd->flags,
  5440. sizeof(int), 0644, proc_dointvec_minmax);
  5441. /* &table[11] is terminator */
  5442. return table;
  5443. }
  5444. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5445. {
  5446. struct ctl_table *entry, *table;
  5447. struct sched_domain *sd;
  5448. int domain_num = 0, i;
  5449. char buf[32];
  5450. for_each_domain(cpu, sd)
  5451. domain_num++;
  5452. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5453. if (table == NULL)
  5454. return NULL;
  5455. i = 0;
  5456. for_each_domain(cpu, sd) {
  5457. snprintf(buf, 32, "domain%d", i);
  5458. entry->procname = kstrdup(buf, GFP_KERNEL);
  5459. entry->mode = 0555;
  5460. entry->child = sd_alloc_ctl_domain_table(sd);
  5461. entry++;
  5462. i++;
  5463. }
  5464. return table;
  5465. }
  5466. static struct ctl_table_header *sd_sysctl_header;
  5467. static void register_sched_domain_sysctl(void)
  5468. {
  5469. int i, cpu_num = num_online_cpus();
  5470. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5471. char buf[32];
  5472. WARN_ON(sd_ctl_dir[0].child);
  5473. sd_ctl_dir[0].child = entry;
  5474. if (entry == NULL)
  5475. return;
  5476. for_each_online_cpu(i) {
  5477. snprintf(buf, 32, "cpu%d", i);
  5478. entry->procname = kstrdup(buf, GFP_KERNEL);
  5479. entry->mode = 0555;
  5480. entry->child = sd_alloc_ctl_cpu_table(i);
  5481. entry++;
  5482. }
  5483. WARN_ON(sd_sysctl_header);
  5484. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5485. }
  5486. /* may be called multiple times per register */
  5487. static void unregister_sched_domain_sysctl(void)
  5488. {
  5489. if (sd_sysctl_header)
  5490. unregister_sysctl_table(sd_sysctl_header);
  5491. sd_sysctl_header = NULL;
  5492. if (sd_ctl_dir[0].child)
  5493. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5494. }
  5495. #else
  5496. static void register_sched_domain_sysctl(void)
  5497. {
  5498. }
  5499. static void unregister_sched_domain_sysctl(void)
  5500. {
  5501. }
  5502. #endif
  5503. /*
  5504. * migration_call - callback that gets triggered when a CPU is added.
  5505. * Here we can start up the necessary migration thread for the new CPU.
  5506. */
  5507. static int __cpuinit
  5508. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5509. {
  5510. struct task_struct *p;
  5511. int cpu = (long)hcpu;
  5512. unsigned long flags;
  5513. struct rq *rq;
  5514. switch (action) {
  5515. case CPU_UP_PREPARE:
  5516. case CPU_UP_PREPARE_FROZEN:
  5517. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5518. if (IS_ERR(p))
  5519. return NOTIFY_BAD;
  5520. kthread_bind(p, cpu);
  5521. /* Must be high prio: stop_machine expects to yield to it. */
  5522. rq = task_rq_lock(p, &flags);
  5523. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5524. task_rq_unlock(rq, &flags);
  5525. cpu_rq(cpu)->migration_thread = p;
  5526. break;
  5527. case CPU_ONLINE:
  5528. case CPU_ONLINE_FROZEN:
  5529. /* Strictly unnecessary, as first user will wake it. */
  5530. wake_up_process(cpu_rq(cpu)->migration_thread);
  5531. /* Update our root-domain */
  5532. rq = cpu_rq(cpu);
  5533. spin_lock_irqsave(&rq->lock, flags);
  5534. if (rq->rd) {
  5535. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5536. cpu_set(cpu, rq->rd->online);
  5537. }
  5538. spin_unlock_irqrestore(&rq->lock, flags);
  5539. break;
  5540. #ifdef CONFIG_HOTPLUG_CPU
  5541. case CPU_UP_CANCELED:
  5542. case CPU_UP_CANCELED_FROZEN:
  5543. if (!cpu_rq(cpu)->migration_thread)
  5544. break;
  5545. /* Unbind it from offline cpu so it can run. Fall thru. */
  5546. kthread_bind(cpu_rq(cpu)->migration_thread,
  5547. any_online_cpu(cpu_online_map));
  5548. kthread_stop(cpu_rq(cpu)->migration_thread);
  5549. cpu_rq(cpu)->migration_thread = NULL;
  5550. break;
  5551. case CPU_DEAD:
  5552. case CPU_DEAD_FROZEN:
  5553. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5554. migrate_live_tasks(cpu);
  5555. rq = cpu_rq(cpu);
  5556. kthread_stop(rq->migration_thread);
  5557. rq->migration_thread = NULL;
  5558. /* Idle task back to normal (off runqueue, low prio) */
  5559. spin_lock_irq(&rq->lock);
  5560. update_rq_clock(rq);
  5561. deactivate_task(rq, rq->idle, 0);
  5562. rq->idle->static_prio = MAX_PRIO;
  5563. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5564. rq->idle->sched_class = &idle_sched_class;
  5565. migrate_dead_tasks(cpu);
  5566. spin_unlock_irq(&rq->lock);
  5567. cpuset_unlock();
  5568. migrate_nr_uninterruptible(rq);
  5569. BUG_ON(rq->nr_running != 0);
  5570. /*
  5571. * No need to migrate the tasks: it was best-effort if
  5572. * they didn't take sched_hotcpu_mutex. Just wake up
  5573. * the requestors.
  5574. */
  5575. spin_lock_irq(&rq->lock);
  5576. while (!list_empty(&rq->migration_queue)) {
  5577. struct migration_req *req;
  5578. req = list_entry(rq->migration_queue.next,
  5579. struct migration_req, list);
  5580. list_del_init(&req->list);
  5581. complete(&req->done);
  5582. }
  5583. spin_unlock_irq(&rq->lock);
  5584. break;
  5585. case CPU_DYING:
  5586. case CPU_DYING_FROZEN:
  5587. /* Update our root-domain */
  5588. rq = cpu_rq(cpu);
  5589. spin_lock_irqsave(&rq->lock, flags);
  5590. if (rq->rd) {
  5591. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5592. cpu_clear(cpu, rq->rd->online);
  5593. }
  5594. spin_unlock_irqrestore(&rq->lock, flags);
  5595. break;
  5596. #endif
  5597. }
  5598. return NOTIFY_OK;
  5599. }
  5600. /* Register at highest priority so that task migration (migrate_all_tasks)
  5601. * happens before everything else.
  5602. */
  5603. static struct notifier_block __cpuinitdata migration_notifier = {
  5604. .notifier_call = migration_call,
  5605. .priority = 10
  5606. };
  5607. void __init migration_init(void)
  5608. {
  5609. void *cpu = (void *)(long)smp_processor_id();
  5610. int err;
  5611. /* Start one for the boot CPU: */
  5612. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5613. BUG_ON(err == NOTIFY_BAD);
  5614. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5615. register_cpu_notifier(&migration_notifier);
  5616. }
  5617. #endif
  5618. #ifdef CONFIG_SMP
  5619. #ifdef CONFIG_SCHED_DEBUG
  5620. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5621. cpumask_t *groupmask)
  5622. {
  5623. struct sched_group *group = sd->groups;
  5624. char str[256];
  5625. cpulist_scnprintf(str, sizeof(str), sd->span);
  5626. cpus_clear(*groupmask);
  5627. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5628. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5629. printk("does not load-balance\n");
  5630. if (sd->parent)
  5631. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5632. " has parent");
  5633. return -1;
  5634. }
  5635. printk(KERN_CONT "span %s\n", str);
  5636. if (!cpu_isset(cpu, sd->span)) {
  5637. printk(KERN_ERR "ERROR: domain->span does not contain "
  5638. "CPU%d\n", cpu);
  5639. }
  5640. if (!cpu_isset(cpu, group->cpumask)) {
  5641. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5642. " CPU%d\n", cpu);
  5643. }
  5644. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5645. do {
  5646. if (!group) {
  5647. printk("\n");
  5648. printk(KERN_ERR "ERROR: group is NULL\n");
  5649. break;
  5650. }
  5651. if (!group->__cpu_power) {
  5652. printk(KERN_CONT "\n");
  5653. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5654. "set\n");
  5655. break;
  5656. }
  5657. if (!cpus_weight(group->cpumask)) {
  5658. printk(KERN_CONT "\n");
  5659. printk(KERN_ERR "ERROR: empty group\n");
  5660. break;
  5661. }
  5662. if (cpus_intersects(*groupmask, group->cpumask)) {
  5663. printk(KERN_CONT "\n");
  5664. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5665. break;
  5666. }
  5667. cpus_or(*groupmask, *groupmask, group->cpumask);
  5668. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5669. printk(KERN_CONT " %s", str);
  5670. group = group->next;
  5671. } while (group != sd->groups);
  5672. printk(KERN_CONT "\n");
  5673. if (!cpus_equal(sd->span, *groupmask))
  5674. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5675. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5676. printk(KERN_ERR "ERROR: parent span is not a superset "
  5677. "of domain->span\n");
  5678. return 0;
  5679. }
  5680. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5681. {
  5682. cpumask_t *groupmask;
  5683. int level = 0;
  5684. if (!sd) {
  5685. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5686. return;
  5687. }
  5688. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5689. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5690. if (!groupmask) {
  5691. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5692. return;
  5693. }
  5694. for (;;) {
  5695. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5696. break;
  5697. level++;
  5698. sd = sd->parent;
  5699. if (!sd)
  5700. break;
  5701. }
  5702. kfree(groupmask);
  5703. }
  5704. #else
  5705. # define sched_domain_debug(sd, cpu) do { } while (0)
  5706. #endif
  5707. static int sd_degenerate(struct sched_domain *sd)
  5708. {
  5709. if (cpus_weight(sd->span) == 1)
  5710. return 1;
  5711. /* Following flags need at least 2 groups */
  5712. if (sd->flags & (SD_LOAD_BALANCE |
  5713. SD_BALANCE_NEWIDLE |
  5714. SD_BALANCE_FORK |
  5715. SD_BALANCE_EXEC |
  5716. SD_SHARE_CPUPOWER |
  5717. SD_SHARE_PKG_RESOURCES)) {
  5718. if (sd->groups != sd->groups->next)
  5719. return 0;
  5720. }
  5721. /* Following flags don't use groups */
  5722. if (sd->flags & (SD_WAKE_IDLE |
  5723. SD_WAKE_AFFINE |
  5724. SD_WAKE_BALANCE))
  5725. return 0;
  5726. return 1;
  5727. }
  5728. static int
  5729. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5730. {
  5731. unsigned long cflags = sd->flags, pflags = parent->flags;
  5732. if (sd_degenerate(parent))
  5733. return 1;
  5734. if (!cpus_equal(sd->span, parent->span))
  5735. return 0;
  5736. /* Does parent contain flags not in child? */
  5737. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5738. if (cflags & SD_WAKE_AFFINE)
  5739. pflags &= ~SD_WAKE_BALANCE;
  5740. /* Flags needing groups don't count if only 1 group in parent */
  5741. if (parent->groups == parent->groups->next) {
  5742. pflags &= ~(SD_LOAD_BALANCE |
  5743. SD_BALANCE_NEWIDLE |
  5744. SD_BALANCE_FORK |
  5745. SD_BALANCE_EXEC |
  5746. SD_SHARE_CPUPOWER |
  5747. SD_SHARE_PKG_RESOURCES);
  5748. }
  5749. if (~cflags & pflags)
  5750. return 0;
  5751. return 1;
  5752. }
  5753. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5754. {
  5755. unsigned long flags;
  5756. const struct sched_class *class;
  5757. spin_lock_irqsave(&rq->lock, flags);
  5758. if (rq->rd) {
  5759. struct root_domain *old_rd = rq->rd;
  5760. for (class = sched_class_highest; class; class = class->next) {
  5761. if (class->leave_domain)
  5762. class->leave_domain(rq);
  5763. }
  5764. cpu_clear(rq->cpu, old_rd->span);
  5765. cpu_clear(rq->cpu, old_rd->online);
  5766. if (atomic_dec_and_test(&old_rd->refcount))
  5767. kfree(old_rd);
  5768. }
  5769. atomic_inc(&rd->refcount);
  5770. rq->rd = rd;
  5771. cpu_set(rq->cpu, rd->span);
  5772. if (cpu_isset(rq->cpu, cpu_online_map))
  5773. cpu_set(rq->cpu, rd->online);
  5774. for (class = sched_class_highest; class; class = class->next) {
  5775. if (class->join_domain)
  5776. class->join_domain(rq);
  5777. }
  5778. spin_unlock_irqrestore(&rq->lock, flags);
  5779. }
  5780. static void init_rootdomain(struct root_domain *rd)
  5781. {
  5782. memset(rd, 0, sizeof(*rd));
  5783. cpus_clear(rd->span);
  5784. cpus_clear(rd->online);
  5785. }
  5786. static void init_defrootdomain(void)
  5787. {
  5788. init_rootdomain(&def_root_domain);
  5789. atomic_set(&def_root_domain.refcount, 1);
  5790. }
  5791. static struct root_domain *alloc_rootdomain(void)
  5792. {
  5793. struct root_domain *rd;
  5794. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5795. if (!rd)
  5796. return NULL;
  5797. init_rootdomain(rd);
  5798. return rd;
  5799. }
  5800. /*
  5801. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5802. * hold the hotplug lock.
  5803. */
  5804. static void
  5805. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5806. {
  5807. struct rq *rq = cpu_rq(cpu);
  5808. struct sched_domain *tmp;
  5809. /* Remove the sched domains which do not contribute to scheduling. */
  5810. for (tmp = sd; tmp; tmp = tmp->parent) {
  5811. struct sched_domain *parent = tmp->parent;
  5812. if (!parent)
  5813. break;
  5814. if (sd_parent_degenerate(tmp, parent)) {
  5815. tmp->parent = parent->parent;
  5816. if (parent->parent)
  5817. parent->parent->child = tmp;
  5818. }
  5819. }
  5820. if (sd && sd_degenerate(sd)) {
  5821. sd = sd->parent;
  5822. if (sd)
  5823. sd->child = NULL;
  5824. }
  5825. sched_domain_debug(sd, cpu);
  5826. rq_attach_root(rq, rd);
  5827. rcu_assign_pointer(rq->sd, sd);
  5828. }
  5829. /* cpus with isolated domains */
  5830. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5831. /* Setup the mask of cpus configured for isolated domains */
  5832. static int __init isolated_cpu_setup(char *str)
  5833. {
  5834. int ints[NR_CPUS], i;
  5835. str = get_options(str, ARRAY_SIZE(ints), ints);
  5836. cpus_clear(cpu_isolated_map);
  5837. for (i = 1; i <= ints[0]; i++)
  5838. if (ints[i] < NR_CPUS)
  5839. cpu_set(ints[i], cpu_isolated_map);
  5840. return 1;
  5841. }
  5842. __setup("isolcpus=", isolated_cpu_setup);
  5843. /*
  5844. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5845. * to a function which identifies what group(along with sched group) a CPU
  5846. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5847. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5848. *
  5849. * init_sched_build_groups will build a circular linked list of the groups
  5850. * covered by the given span, and will set each group's ->cpumask correctly,
  5851. * and ->cpu_power to 0.
  5852. */
  5853. static void
  5854. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5855. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5856. struct sched_group **sg,
  5857. cpumask_t *tmpmask),
  5858. cpumask_t *covered, cpumask_t *tmpmask)
  5859. {
  5860. struct sched_group *first = NULL, *last = NULL;
  5861. int i;
  5862. cpus_clear(*covered);
  5863. for_each_cpu_mask(i, *span) {
  5864. struct sched_group *sg;
  5865. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5866. int j;
  5867. if (cpu_isset(i, *covered))
  5868. continue;
  5869. cpus_clear(sg->cpumask);
  5870. sg->__cpu_power = 0;
  5871. for_each_cpu_mask(j, *span) {
  5872. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5873. continue;
  5874. cpu_set(j, *covered);
  5875. cpu_set(j, sg->cpumask);
  5876. }
  5877. if (!first)
  5878. first = sg;
  5879. if (last)
  5880. last->next = sg;
  5881. last = sg;
  5882. }
  5883. last->next = first;
  5884. }
  5885. #define SD_NODES_PER_DOMAIN 16
  5886. #ifdef CONFIG_NUMA
  5887. /**
  5888. * find_next_best_node - find the next node to include in a sched_domain
  5889. * @node: node whose sched_domain we're building
  5890. * @used_nodes: nodes already in the sched_domain
  5891. *
  5892. * Find the next node to include in a given scheduling domain. Simply
  5893. * finds the closest node not already in the @used_nodes map.
  5894. *
  5895. * Should use nodemask_t.
  5896. */
  5897. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5898. {
  5899. int i, n, val, min_val, best_node = 0;
  5900. min_val = INT_MAX;
  5901. for (i = 0; i < MAX_NUMNODES; i++) {
  5902. /* Start at @node */
  5903. n = (node + i) % MAX_NUMNODES;
  5904. if (!nr_cpus_node(n))
  5905. continue;
  5906. /* Skip already used nodes */
  5907. if (node_isset(n, *used_nodes))
  5908. continue;
  5909. /* Simple min distance search */
  5910. val = node_distance(node, n);
  5911. if (val < min_val) {
  5912. min_val = val;
  5913. best_node = n;
  5914. }
  5915. }
  5916. node_set(best_node, *used_nodes);
  5917. return best_node;
  5918. }
  5919. /**
  5920. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5921. * @node: node whose cpumask we're constructing
  5922. * @span: resulting cpumask
  5923. *
  5924. * Given a node, construct a good cpumask for its sched_domain to span. It
  5925. * should be one that prevents unnecessary balancing, but also spreads tasks
  5926. * out optimally.
  5927. */
  5928. static void sched_domain_node_span(int node, cpumask_t *span)
  5929. {
  5930. nodemask_t used_nodes;
  5931. node_to_cpumask_ptr(nodemask, node);
  5932. int i;
  5933. cpus_clear(*span);
  5934. nodes_clear(used_nodes);
  5935. cpus_or(*span, *span, *nodemask);
  5936. node_set(node, used_nodes);
  5937. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5938. int next_node = find_next_best_node(node, &used_nodes);
  5939. node_to_cpumask_ptr_next(nodemask, next_node);
  5940. cpus_or(*span, *span, *nodemask);
  5941. }
  5942. }
  5943. #endif
  5944. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5945. /*
  5946. * SMT sched-domains:
  5947. */
  5948. #ifdef CONFIG_SCHED_SMT
  5949. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5950. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5951. static int
  5952. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5953. cpumask_t *unused)
  5954. {
  5955. if (sg)
  5956. *sg = &per_cpu(sched_group_cpus, cpu);
  5957. return cpu;
  5958. }
  5959. #endif
  5960. /*
  5961. * multi-core sched-domains:
  5962. */
  5963. #ifdef CONFIG_SCHED_MC
  5964. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5965. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5966. #endif
  5967. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5968. static int
  5969. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5970. cpumask_t *mask)
  5971. {
  5972. int group;
  5973. *mask = per_cpu(cpu_sibling_map, cpu);
  5974. cpus_and(*mask, *mask, *cpu_map);
  5975. group = first_cpu(*mask);
  5976. if (sg)
  5977. *sg = &per_cpu(sched_group_core, group);
  5978. return group;
  5979. }
  5980. #elif defined(CONFIG_SCHED_MC)
  5981. static int
  5982. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5983. cpumask_t *unused)
  5984. {
  5985. if (sg)
  5986. *sg = &per_cpu(sched_group_core, cpu);
  5987. return cpu;
  5988. }
  5989. #endif
  5990. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5991. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5992. static int
  5993. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5994. cpumask_t *mask)
  5995. {
  5996. int group;
  5997. #ifdef CONFIG_SCHED_MC
  5998. *mask = cpu_coregroup_map(cpu);
  5999. cpus_and(*mask, *mask, *cpu_map);
  6000. group = first_cpu(*mask);
  6001. #elif defined(CONFIG_SCHED_SMT)
  6002. *mask = per_cpu(cpu_sibling_map, cpu);
  6003. cpus_and(*mask, *mask, *cpu_map);
  6004. group = first_cpu(*mask);
  6005. #else
  6006. group = cpu;
  6007. #endif
  6008. if (sg)
  6009. *sg = &per_cpu(sched_group_phys, group);
  6010. return group;
  6011. }
  6012. #ifdef CONFIG_NUMA
  6013. /*
  6014. * The init_sched_build_groups can't handle what we want to do with node
  6015. * groups, so roll our own. Now each node has its own list of groups which
  6016. * gets dynamically allocated.
  6017. */
  6018. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6019. static struct sched_group ***sched_group_nodes_bycpu;
  6020. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6021. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6022. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6023. struct sched_group **sg, cpumask_t *nodemask)
  6024. {
  6025. int group;
  6026. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6027. cpus_and(*nodemask, *nodemask, *cpu_map);
  6028. group = first_cpu(*nodemask);
  6029. if (sg)
  6030. *sg = &per_cpu(sched_group_allnodes, group);
  6031. return group;
  6032. }
  6033. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6034. {
  6035. struct sched_group *sg = group_head;
  6036. int j;
  6037. if (!sg)
  6038. return;
  6039. do {
  6040. for_each_cpu_mask(j, sg->cpumask) {
  6041. struct sched_domain *sd;
  6042. sd = &per_cpu(phys_domains, j);
  6043. if (j != first_cpu(sd->groups->cpumask)) {
  6044. /*
  6045. * Only add "power" once for each
  6046. * physical package.
  6047. */
  6048. continue;
  6049. }
  6050. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6051. }
  6052. sg = sg->next;
  6053. } while (sg != group_head);
  6054. }
  6055. #endif
  6056. #ifdef CONFIG_NUMA
  6057. /* Free memory allocated for various sched_group structures */
  6058. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6059. {
  6060. int cpu, i;
  6061. for_each_cpu_mask(cpu, *cpu_map) {
  6062. struct sched_group **sched_group_nodes
  6063. = sched_group_nodes_bycpu[cpu];
  6064. if (!sched_group_nodes)
  6065. continue;
  6066. for (i = 0; i < MAX_NUMNODES; i++) {
  6067. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6068. *nodemask = node_to_cpumask(i);
  6069. cpus_and(*nodemask, *nodemask, *cpu_map);
  6070. if (cpus_empty(*nodemask))
  6071. continue;
  6072. if (sg == NULL)
  6073. continue;
  6074. sg = sg->next;
  6075. next_sg:
  6076. oldsg = sg;
  6077. sg = sg->next;
  6078. kfree(oldsg);
  6079. if (oldsg != sched_group_nodes[i])
  6080. goto next_sg;
  6081. }
  6082. kfree(sched_group_nodes);
  6083. sched_group_nodes_bycpu[cpu] = NULL;
  6084. }
  6085. }
  6086. #else
  6087. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6088. {
  6089. }
  6090. #endif
  6091. /*
  6092. * Initialize sched groups cpu_power.
  6093. *
  6094. * cpu_power indicates the capacity of sched group, which is used while
  6095. * distributing the load between different sched groups in a sched domain.
  6096. * Typically cpu_power for all the groups in a sched domain will be same unless
  6097. * there are asymmetries in the topology. If there are asymmetries, group
  6098. * having more cpu_power will pickup more load compared to the group having
  6099. * less cpu_power.
  6100. *
  6101. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6102. * the maximum number of tasks a group can handle in the presence of other idle
  6103. * or lightly loaded groups in the same sched domain.
  6104. */
  6105. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6106. {
  6107. struct sched_domain *child;
  6108. struct sched_group *group;
  6109. WARN_ON(!sd || !sd->groups);
  6110. if (cpu != first_cpu(sd->groups->cpumask))
  6111. return;
  6112. child = sd->child;
  6113. sd->groups->__cpu_power = 0;
  6114. /*
  6115. * For perf policy, if the groups in child domain share resources
  6116. * (for example cores sharing some portions of the cache hierarchy
  6117. * or SMT), then set this domain groups cpu_power such that each group
  6118. * can handle only one task, when there are other idle groups in the
  6119. * same sched domain.
  6120. */
  6121. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6122. (child->flags &
  6123. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6124. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6125. return;
  6126. }
  6127. /*
  6128. * add cpu_power of each child group to this groups cpu_power
  6129. */
  6130. group = child->groups;
  6131. do {
  6132. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6133. group = group->next;
  6134. } while (group != child->groups);
  6135. }
  6136. /*
  6137. * Initializers for schedule domains
  6138. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6139. */
  6140. #define SD_INIT(sd, type) sd_init_##type(sd)
  6141. #define SD_INIT_FUNC(type) \
  6142. static noinline void sd_init_##type(struct sched_domain *sd) \
  6143. { \
  6144. memset(sd, 0, sizeof(*sd)); \
  6145. *sd = SD_##type##_INIT; \
  6146. sd->level = SD_LV_##type; \
  6147. }
  6148. SD_INIT_FUNC(CPU)
  6149. #ifdef CONFIG_NUMA
  6150. SD_INIT_FUNC(ALLNODES)
  6151. SD_INIT_FUNC(NODE)
  6152. #endif
  6153. #ifdef CONFIG_SCHED_SMT
  6154. SD_INIT_FUNC(SIBLING)
  6155. #endif
  6156. #ifdef CONFIG_SCHED_MC
  6157. SD_INIT_FUNC(MC)
  6158. #endif
  6159. /*
  6160. * To minimize stack usage kmalloc room for cpumasks and share the
  6161. * space as the usage in build_sched_domains() dictates. Used only
  6162. * if the amount of space is significant.
  6163. */
  6164. struct allmasks {
  6165. cpumask_t tmpmask; /* make this one first */
  6166. union {
  6167. cpumask_t nodemask;
  6168. cpumask_t this_sibling_map;
  6169. cpumask_t this_core_map;
  6170. };
  6171. cpumask_t send_covered;
  6172. #ifdef CONFIG_NUMA
  6173. cpumask_t domainspan;
  6174. cpumask_t covered;
  6175. cpumask_t notcovered;
  6176. #endif
  6177. };
  6178. #if NR_CPUS > 128
  6179. #define SCHED_CPUMASK_ALLOC 1
  6180. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6181. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6182. #else
  6183. #define SCHED_CPUMASK_ALLOC 0
  6184. #define SCHED_CPUMASK_FREE(v)
  6185. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6186. #endif
  6187. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6188. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6189. static int default_relax_domain_level = -1;
  6190. static int __init setup_relax_domain_level(char *str)
  6191. {
  6192. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  6193. return 1;
  6194. }
  6195. __setup("relax_domain_level=", setup_relax_domain_level);
  6196. static void set_domain_attribute(struct sched_domain *sd,
  6197. struct sched_domain_attr *attr)
  6198. {
  6199. int request;
  6200. if (!attr || attr->relax_domain_level < 0) {
  6201. if (default_relax_domain_level < 0)
  6202. return;
  6203. else
  6204. request = default_relax_domain_level;
  6205. } else
  6206. request = attr->relax_domain_level;
  6207. if (request < sd->level) {
  6208. /* turn off idle balance on this domain */
  6209. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6210. } else {
  6211. /* turn on idle balance on this domain */
  6212. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6213. }
  6214. }
  6215. /*
  6216. * Build sched domains for a given set of cpus and attach the sched domains
  6217. * to the individual cpus
  6218. */
  6219. static int __build_sched_domains(const cpumask_t *cpu_map,
  6220. struct sched_domain_attr *attr)
  6221. {
  6222. int i;
  6223. struct root_domain *rd;
  6224. SCHED_CPUMASK_DECLARE(allmasks);
  6225. cpumask_t *tmpmask;
  6226. #ifdef CONFIG_NUMA
  6227. struct sched_group **sched_group_nodes = NULL;
  6228. int sd_allnodes = 0;
  6229. /*
  6230. * Allocate the per-node list of sched groups
  6231. */
  6232. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6233. GFP_KERNEL);
  6234. if (!sched_group_nodes) {
  6235. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6236. return -ENOMEM;
  6237. }
  6238. #endif
  6239. rd = alloc_rootdomain();
  6240. if (!rd) {
  6241. printk(KERN_WARNING "Cannot alloc root domain\n");
  6242. #ifdef CONFIG_NUMA
  6243. kfree(sched_group_nodes);
  6244. #endif
  6245. return -ENOMEM;
  6246. }
  6247. #if SCHED_CPUMASK_ALLOC
  6248. /* get space for all scratch cpumask variables */
  6249. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6250. if (!allmasks) {
  6251. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6252. kfree(rd);
  6253. #ifdef CONFIG_NUMA
  6254. kfree(sched_group_nodes);
  6255. #endif
  6256. return -ENOMEM;
  6257. }
  6258. #endif
  6259. tmpmask = (cpumask_t *)allmasks;
  6260. #ifdef CONFIG_NUMA
  6261. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6262. #endif
  6263. /*
  6264. * Set up domains for cpus specified by the cpu_map.
  6265. */
  6266. for_each_cpu_mask(i, *cpu_map) {
  6267. struct sched_domain *sd = NULL, *p;
  6268. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6269. *nodemask = node_to_cpumask(cpu_to_node(i));
  6270. cpus_and(*nodemask, *nodemask, *cpu_map);
  6271. #ifdef CONFIG_NUMA
  6272. if (cpus_weight(*cpu_map) >
  6273. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6274. sd = &per_cpu(allnodes_domains, i);
  6275. SD_INIT(sd, ALLNODES);
  6276. set_domain_attribute(sd, attr);
  6277. sd->span = *cpu_map;
  6278. sd->first_cpu = first_cpu(sd->span);
  6279. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6280. p = sd;
  6281. sd_allnodes = 1;
  6282. } else
  6283. p = NULL;
  6284. sd = &per_cpu(node_domains, i);
  6285. SD_INIT(sd, NODE);
  6286. set_domain_attribute(sd, attr);
  6287. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6288. sd->first_cpu = first_cpu(sd->span);
  6289. sd->parent = p;
  6290. if (p)
  6291. p->child = sd;
  6292. cpus_and(sd->span, sd->span, *cpu_map);
  6293. #endif
  6294. p = sd;
  6295. sd = &per_cpu(phys_domains, i);
  6296. SD_INIT(sd, CPU);
  6297. set_domain_attribute(sd, attr);
  6298. sd->span = *nodemask;
  6299. sd->first_cpu = first_cpu(sd->span);
  6300. sd->parent = p;
  6301. if (p)
  6302. p->child = sd;
  6303. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6304. #ifdef CONFIG_SCHED_MC
  6305. p = sd;
  6306. sd = &per_cpu(core_domains, i);
  6307. SD_INIT(sd, MC);
  6308. set_domain_attribute(sd, attr);
  6309. sd->span = cpu_coregroup_map(i);
  6310. sd->first_cpu = first_cpu(sd->span);
  6311. cpus_and(sd->span, sd->span, *cpu_map);
  6312. sd->parent = p;
  6313. p->child = sd;
  6314. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6315. #endif
  6316. #ifdef CONFIG_SCHED_SMT
  6317. p = sd;
  6318. sd = &per_cpu(cpu_domains, i);
  6319. SD_INIT(sd, SIBLING);
  6320. set_domain_attribute(sd, attr);
  6321. sd->span = per_cpu(cpu_sibling_map, i);
  6322. sd->first_cpu = first_cpu(sd->span);
  6323. cpus_and(sd->span, sd->span, *cpu_map);
  6324. sd->parent = p;
  6325. p->child = sd;
  6326. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6327. #endif
  6328. }
  6329. #ifdef CONFIG_SCHED_SMT
  6330. /* Set up CPU (sibling) groups */
  6331. for_each_cpu_mask(i, *cpu_map) {
  6332. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6333. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6334. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6335. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6336. if (i != first_cpu(*this_sibling_map))
  6337. continue;
  6338. init_sched_build_groups(this_sibling_map, cpu_map,
  6339. &cpu_to_cpu_group,
  6340. send_covered, tmpmask);
  6341. }
  6342. #endif
  6343. #ifdef CONFIG_SCHED_MC
  6344. /* Set up multi-core groups */
  6345. for_each_cpu_mask(i, *cpu_map) {
  6346. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6347. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6348. *this_core_map = cpu_coregroup_map(i);
  6349. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6350. if (i != first_cpu(*this_core_map))
  6351. continue;
  6352. init_sched_build_groups(this_core_map, cpu_map,
  6353. &cpu_to_core_group,
  6354. send_covered, tmpmask);
  6355. }
  6356. #endif
  6357. /* Set up physical groups */
  6358. for (i = 0; i < MAX_NUMNODES; i++) {
  6359. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6360. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6361. *nodemask = node_to_cpumask(i);
  6362. cpus_and(*nodemask, *nodemask, *cpu_map);
  6363. if (cpus_empty(*nodemask))
  6364. continue;
  6365. init_sched_build_groups(nodemask, cpu_map,
  6366. &cpu_to_phys_group,
  6367. send_covered, tmpmask);
  6368. }
  6369. #ifdef CONFIG_NUMA
  6370. /* Set up node groups */
  6371. if (sd_allnodes) {
  6372. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6373. init_sched_build_groups(cpu_map, cpu_map,
  6374. &cpu_to_allnodes_group,
  6375. send_covered, tmpmask);
  6376. }
  6377. for (i = 0; i < MAX_NUMNODES; i++) {
  6378. /* Set up node groups */
  6379. struct sched_group *sg, *prev;
  6380. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6381. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6382. SCHED_CPUMASK_VAR(covered, allmasks);
  6383. int j;
  6384. *nodemask = node_to_cpumask(i);
  6385. cpus_clear(*covered);
  6386. cpus_and(*nodemask, *nodemask, *cpu_map);
  6387. if (cpus_empty(*nodemask)) {
  6388. sched_group_nodes[i] = NULL;
  6389. continue;
  6390. }
  6391. sched_domain_node_span(i, domainspan);
  6392. cpus_and(*domainspan, *domainspan, *cpu_map);
  6393. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6394. if (!sg) {
  6395. printk(KERN_WARNING "Can not alloc domain group for "
  6396. "node %d\n", i);
  6397. goto error;
  6398. }
  6399. sched_group_nodes[i] = sg;
  6400. for_each_cpu_mask(j, *nodemask) {
  6401. struct sched_domain *sd;
  6402. sd = &per_cpu(node_domains, j);
  6403. sd->groups = sg;
  6404. }
  6405. sg->__cpu_power = 0;
  6406. sg->cpumask = *nodemask;
  6407. sg->next = sg;
  6408. cpus_or(*covered, *covered, *nodemask);
  6409. prev = sg;
  6410. for (j = 0; j < MAX_NUMNODES; j++) {
  6411. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6412. int n = (i + j) % MAX_NUMNODES;
  6413. node_to_cpumask_ptr(pnodemask, n);
  6414. cpus_complement(*notcovered, *covered);
  6415. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6416. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6417. if (cpus_empty(*tmpmask))
  6418. break;
  6419. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6420. if (cpus_empty(*tmpmask))
  6421. continue;
  6422. sg = kmalloc_node(sizeof(struct sched_group),
  6423. GFP_KERNEL, i);
  6424. if (!sg) {
  6425. printk(KERN_WARNING
  6426. "Can not alloc domain group for node %d\n", j);
  6427. goto error;
  6428. }
  6429. sg->__cpu_power = 0;
  6430. sg->cpumask = *tmpmask;
  6431. sg->next = prev->next;
  6432. cpus_or(*covered, *covered, *tmpmask);
  6433. prev->next = sg;
  6434. prev = sg;
  6435. }
  6436. }
  6437. #endif
  6438. /* Calculate CPU power for physical packages and nodes */
  6439. #ifdef CONFIG_SCHED_SMT
  6440. for_each_cpu_mask(i, *cpu_map) {
  6441. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6442. init_sched_groups_power(i, sd);
  6443. }
  6444. #endif
  6445. #ifdef CONFIG_SCHED_MC
  6446. for_each_cpu_mask(i, *cpu_map) {
  6447. struct sched_domain *sd = &per_cpu(core_domains, i);
  6448. init_sched_groups_power(i, sd);
  6449. }
  6450. #endif
  6451. for_each_cpu_mask(i, *cpu_map) {
  6452. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6453. init_sched_groups_power(i, sd);
  6454. }
  6455. #ifdef CONFIG_NUMA
  6456. for (i = 0; i < MAX_NUMNODES; i++)
  6457. init_numa_sched_groups_power(sched_group_nodes[i]);
  6458. if (sd_allnodes) {
  6459. struct sched_group *sg;
  6460. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6461. tmpmask);
  6462. init_numa_sched_groups_power(sg);
  6463. }
  6464. #endif
  6465. /* Attach the domains */
  6466. for_each_cpu_mask(i, *cpu_map) {
  6467. struct sched_domain *sd;
  6468. #ifdef CONFIG_SCHED_SMT
  6469. sd = &per_cpu(cpu_domains, i);
  6470. #elif defined(CONFIG_SCHED_MC)
  6471. sd = &per_cpu(core_domains, i);
  6472. #else
  6473. sd = &per_cpu(phys_domains, i);
  6474. #endif
  6475. cpu_attach_domain(sd, rd, i);
  6476. }
  6477. SCHED_CPUMASK_FREE((void *)allmasks);
  6478. return 0;
  6479. #ifdef CONFIG_NUMA
  6480. error:
  6481. free_sched_groups(cpu_map, tmpmask);
  6482. SCHED_CPUMASK_FREE((void *)allmasks);
  6483. return -ENOMEM;
  6484. #endif
  6485. }
  6486. static int build_sched_domains(const cpumask_t *cpu_map)
  6487. {
  6488. return __build_sched_domains(cpu_map, NULL);
  6489. }
  6490. static cpumask_t *doms_cur; /* current sched domains */
  6491. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6492. static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
  6493. in 'doms_cur' */
  6494. /*
  6495. * Special case: If a kmalloc of a doms_cur partition (array of
  6496. * cpumask_t) fails, then fallback to a single sched domain,
  6497. * as determined by the single cpumask_t fallback_doms.
  6498. */
  6499. static cpumask_t fallback_doms;
  6500. void __attribute__((weak)) arch_update_cpu_topology(void)
  6501. {
  6502. }
  6503. /*
  6504. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6505. * For now this just excludes isolated cpus, but could be used to
  6506. * exclude other special cases in the future.
  6507. */
  6508. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6509. {
  6510. int err;
  6511. arch_update_cpu_topology();
  6512. ndoms_cur = 1;
  6513. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6514. if (!doms_cur)
  6515. doms_cur = &fallback_doms;
  6516. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6517. dattr_cur = NULL;
  6518. err = build_sched_domains(doms_cur);
  6519. register_sched_domain_sysctl();
  6520. return err;
  6521. }
  6522. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6523. cpumask_t *tmpmask)
  6524. {
  6525. free_sched_groups(cpu_map, tmpmask);
  6526. }
  6527. /*
  6528. * Detach sched domains from a group of cpus specified in cpu_map
  6529. * These cpus will now be attached to the NULL domain
  6530. */
  6531. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6532. {
  6533. cpumask_t tmpmask;
  6534. int i;
  6535. unregister_sched_domain_sysctl();
  6536. for_each_cpu_mask(i, *cpu_map)
  6537. cpu_attach_domain(NULL, &def_root_domain, i);
  6538. synchronize_sched();
  6539. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6540. }
  6541. /* handle null as "default" */
  6542. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6543. struct sched_domain_attr *new, int idx_new)
  6544. {
  6545. struct sched_domain_attr tmp;
  6546. /* fast path */
  6547. if (!new && !cur)
  6548. return 1;
  6549. tmp = SD_ATTR_INIT;
  6550. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6551. new ? (new + idx_new) : &tmp,
  6552. sizeof(struct sched_domain_attr));
  6553. }
  6554. /*
  6555. * Partition sched domains as specified by the 'ndoms_new'
  6556. * cpumasks in the array doms_new[] of cpumasks. This compares
  6557. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6558. * It destroys each deleted domain and builds each new domain.
  6559. *
  6560. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6561. * The masks don't intersect (don't overlap.) We should setup one
  6562. * sched domain for each mask. CPUs not in any of the cpumasks will
  6563. * not be load balanced. If the same cpumask appears both in the
  6564. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6565. * it as it is.
  6566. *
  6567. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6568. * ownership of it and will kfree it when done with it. If the caller
  6569. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6570. * and partition_sched_domains() will fallback to the single partition
  6571. * 'fallback_doms'.
  6572. *
  6573. * Call with hotplug lock held
  6574. */
  6575. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6576. struct sched_domain_attr *dattr_new)
  6577. {
  6578. int i, j;
  6579. mutex_lock(&sched_domains_mutex);
  6580. /* always unregister in case we don't destroy any domains */
  6581. unregister_sched_domain_sysctl();
  6582. if (doms_new == NULL) {
  6583. ndoms_new = 1;
  6584. doms_new = &fallback_doms;
  6585. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6586. dattr_new = NULL;
  6587. }
  6588. /* Destroy deleted domains */
  6589. for (i = 0; i < ndoms_cur; i++) {
  6590. for (j = 0; j < ndoms_new; j++) {
  6591. if (cpus_equal(doms_cur[i], doms_new[j])
  6592. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6593. goto match1;
  6594. }
  6595. /* no match - a current sched domain not in new doms_new[] */
  6596. detach_destroy_domains(doms_cur + i);
  6597. match1:
  6598. ;
  6599. }
  6600. /* Build new domains */
  6601. for (i = 0; i < ndoms_new; i++) {
  6602. for (j = 0; j < ndoms_cur; j++) {
  6603. if (cpus_equal(doms_new[i], doms_cur[j])
  6604. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6605. goto match2;
  6606. }
  6607. /* no match - add a new doms_new */
  6608. __build_sched_domains(doms_new + i,
  6609. dattr_new ? dattr_new + i : NULL);
  6610. match2:
  6611. ;
  6612. }
  6613. /* Remember the new sched domains */
  6614. if (doms_cur != &fallback_doms)
  6615. kfree(doms_cur);
  6616. kfree(dattr_cur); /* kfree(NULL) is safe */
  6617. doms_cur = doms_new;
  6618. dattr_cur = dattr_new;
  6619. ndoms_cur = ndoms_new;
  6620. register_sched_domain_sysctl();
  6621. mutex_unlock(&sched_domains_mutex);
  6622. }
  6623. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6624. int arch_reinit_sched_domains(void)
  6625. {
  6626. int err;
  6627. get_online_cpus();
  6628. mutex_lock(&sched_domains_mutex);
  6629. detach_destroy_domains(&cpu_online_map);
  6630. err = arch_init_sched_domains(&cpu_online_map);
  6631. mutex_unlock(&sched_domains_mutex);
  6632. put_online_cpus();
  6633. return err;
  6634. }
  6635. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6636. {
  6637. int ret;
  6638. if (buf[0] != '0' && buf[0] != '1')
  6639. return -EINVAL;
  6640. if (smt)
  6641. sched_smt_power_savings = (buf[0] == '1');
  6642. else
  6643. sched_mc_power_savings = (buf[0] == '1');
  6644. ret = arch_reinit_sched_domains();
  6645. return ret ? ret : count;
  6646. }
  6647. #ifdef CONFIG_SCHED_MC
  6648. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6649. {
  6650. return sprintf(page, "%u\n", sched_mc_power_savings);
  6651. }
  6652. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6653. const char *buf, size_t count)
  6654. {
  6655. return sched_power_savings_store(buf, count, 0);
  6656. }
  6657. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6658. sched_mc_power_savings_store);
  6659. #endif
  6660. #ifdef CONFIG_SCHED_SMT
  6661. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6662. {
  6663. return sprintf(page, "%u\n", sched_smt_power_savings);
  6664. }
  6665. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6666. const char *buf, size_t count)
  6667. {
  6668. return sched_power_savings_store(buf, count, 1);
  6669. }
  6670. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6671. sched_smt_power_savings_store);
  6672. #endif
  6673. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6674. {
  6675. int err = 0;
  6676. #ifdef CONFIG_SCHED_SMT
  6677. if (smt_capable())
  6678. err = sysfs_create_file(&cls->kset.kobj,
  6679. &attr_sched_smt_power_savings.attr);
  6680. #endif
  6681. #ifdef CONFIG_SCHED_MC
  6682. if (!err && mc_capable())
  6683. err = sysfs_create_file(&cls->kset.kobj,
  6684. &attr_sched_mc_power_savings.attr);
  6685. #endif
  6686. return err;
  6687. }
  6688. #endif
  6689. /*
  6690. * Force a reinitialization of the sched domains hierarchy. The domains
  6691. * and groups cannot be updated in place without racing with the balancing
  6692. * code, so we temporarily attach all running cpus to the NULL domain
  6693. * which will prevent rebalancing while the sched domains are recalculated.
  6694. */
  6695. static int update_sched_domains(struct notifier_block *nfb,
  6696. unsigned long action, void *hcpu)
  6697. {
  6698. switch (action) {
  6699. case CPU_UP_PREPARE:
  6700. case CPU_UP_PREPARE_FROZEN:
  6701. case CPU_DOWN_PREPARE:
  6702. case CPU_DOWN_PREPARE_FROZEN:
  6703. detach_destroy_domains(&cpu_online_map);
  6704. return NOTIFY_OK;
  6705. case CPU_UP_CANCELED:
  6706. case CPU_UP_CANCELED_FROZEN:
  6707. case CPU_DOWN_FAILED:
  6708. case CPU_DOWN_FAILED_FROZEN:
  6709. case CPU_ONLINE:
  6710. case CPU_ONLINE_FROZEN:
  6711. case CPU_DEAD:
  6712. case CPU_DEAD_FROZEN:
  6713. /*
  6714. * Fall through and re-initialise the domains.
  6715. */
  6716. break;
  6717. default:
  6718. return NOTIFY_DONE;
  6719. }
  6720. /* The hotplug lock is already held by cpu_up/cpu_down */
  6721. arch_init_sched_domains(&cpu_online_map);
  6722. return NOTIFY_OK;
  6723. }
  6724. void __init sched_init_smp(void)
  6725. {
  6726. cpumask_t non_isolated_cpus;
  6727. #if defined(CONFIG_NUMA)
  6728. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6729. GFP_KERNEL);
  6730. BUG_ON(sched_group_nodes_bycpu == NULL);
  6731. #endif
  6732. get_online_cpus();
  6733. mutex_lock(&sched_domains_mutex);
  6734. arch_init_sched_domains(&cpu_online_map);
  6735. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6736. if (cpus_empty(non_isolated_cpus))
  6737. cpu_set(smp_processor_id(), non_isolated_cpus);
  6738. mutex_unlock(&sched_domains_mutex);
  6739. put_online_cpus();
  6740. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6741. hotcpu_notifier(update_sched_domains, 0);
  6742. init_hrtick();
  6743. /* Move init over to a non-isolated CPU */
  6744. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6745. BUG();
  6746. sched_init_granularity();
  6747. }
  6748. #else
  6749. void __init sched_init_smp(void)
  6750. {
  6751. sched_init_granularity();
  6752. }
  6753. #endif /* CONFIG_SMP */
  6754. int in_sched_functions(unsigned long addr)
  6755. {
  6756. return in_lock_functions(addr) ||
  6757. (addr >= (unsigned long)__sched_text_start
  6758. && addr < (unsigned long)__sched_text_end);
  6759. }
  6760. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6761. {
  6762. cfs_rq->tasks_timeline = RB_ROOT;
  6763. INIT_LIST_HEAD(&cfs_rq->tasks);
  6764. #ifdef CONFIG_FAIR_GROUP_SCHED
  6765. cfs_rq->rq = rq;
  6766. #endif
  6767. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6768. }
  6769. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6770. {
  6771. struct rt_prio_array *array;
  6772. int i;
  6773. array = &rt_rq->active;
  6774. for (i = 0; i < MAX_RT_PRIO; i++) {
  6775. INIT_LIST_HEAD(array->queue + i);
  6776. __clear_bit(i, array->bitmap);
  6777. }
  6778. /* delimiter for bitsearch: */
  6779. __set_bit(MAX_RT_PRIO, array->bitmap);
  6780. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6781. rt_rq->highest_prio = MAX_RT_PRIO;
  6782. #endif
  6783. #ifdef CONFIG_SMP
  6784. rt_rq->rt_nr_migratory = 0;
  6785. rt_rq->overloaded = 0;
  6786. #endif
  6787. rt_rq->rt_time = 0;
  6788. rt_rq->rt_throttled = 0;
  6789. rt_rq->rt_runtime = 0;
  6790. spin_lock_init(&rt_rq->rt_runtime_lock);
  6791. #ifdef CONFIG_RT_GROUP_SCHED
  6792. rt_rq->rt_nr_boosted = 0;
  6793. rt_rq->rq = rq;
  6794. #endif
  6795. }
  6796. #ifdef CONFIG_FAIR_GROUP_SCHED
  6797. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6798. struct sched_entity *se, int cpu, int add,
  6799. struct sched_entity *parent)
  6800. {
  6801. struct rq *rq = cpu_rq(cpu);
  6802. tg->cfs_rq[cpu] = cfs_rq;
  6803. init_cfs_rq(cfs_rq, rq);
  6804. cfs_rq->tg = tg;
  6805. if (add)
  6806. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6807. tg->se[cpu] = se;
  6808. /* se could be NULL for init_task_group */
  6809. if (!se)
  6810. return;
  6811. if (!parent)
  6812. se->cfs_rq = &rq->cfs;
  6813. else
  6814. se->cfs_rq = parent->my_q;
  6815. se->my_q = cfs_rq;
  6816. se->load.weight = tg->shares;
  6817. se->load.inv_weight = 0;
  6818. se->parent = parent;
  6819. }
  6820. #endif
  6821. #ifdef CONFIG_RT_GROUP_SCHED
  6822. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6823. struct sched_rt_entity *rt_se, int cpu, int add,
  6824. struct sched_rt_entity *parent)
  6825. {
  6826. struct rq *rq = cpu_rq(cpu);
  6827. tg->rt_rq[cpu] = rt_rq;
  6828. init_rt_rq(rt_rq, rq);
  6829. rt_rq->tg = tg;
  6830. rt_rq->rt_se = rt_se;
  6831. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6832. if (add)
  6833. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6834. tg->rt_se[cpu] = rt_se;
  6835. if (!rt_se)
  6836. return;
  6837. if (!parent)
  6838. rt_se->rt_rq = &rq->rt;
  6839. else
  6840. rt_se->rt_rq = parent->my_q;
  6841. rt_se->rt_rq = &rq->rt;
  6842. rt_se->my_q = rt_rq;
  6843. rt_se->parent = parent;
  6844. INIT_LIST_HEAD(&rt_se->run_list);
  6845. }
  6846. #endif
  6847. void __init sched_init(void)
  6848. {
  6849. int i, j;
  6850. unsigned long alloc_size = 0, ptr;
  6851. #ifdef CONFIG_FAIR_GROUP_SCHED
  6852. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6853. #endif
  6854. #ifdef CONFIG_RT_GROUP_SCHED
  6855. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6856. #endif
  6857. #ifdef CONFIG_USER_SCHED
  6858. alloc_size *= 2;
  6859. #endif
  6860. /*
  6861. * As sched_init() is called before page_alloc is setup,
  6862. * we use alloc_bootmem().
  6863. */
  6864. if (alloc_size) {
  6865. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6866. #ifdef CONFIG_FAIR_GROUP_SCHED
  6867. init_task_group.se = (struct sched_entity **)ptr;
  6868. ptr += nr_cpu_ids * sizeof(void **);
  6869. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6870. ptr += nr_cpu_ids * sizeof(void **);
  6871. #ifdef CONFIG_USER_SCHED
  6872. root_task_group.se = (struct sched_entity **)ptr;
  6873. ptr += nr_cpu_ids * sizeof(void **);
  6874. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6875. ptr += nr_cpu_ids * sizeof(void **);
  6876. #endif
  6877. #endif
  6878. #ifdef CONFIG_RT_GROUP_SCHED
  6879. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6880. ptr += nr_cpu_ids * sizeof(void **);
  6881. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6882. ptr += nr_cpu_ids * sizeof(void **);
  6883. #ifdef CONFIG_USER_SCHED
  6884. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6885. ptr += nr_cpu_ids * sizeof(void **);
  6886. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6887. ptr += nr_cpu_ids * sizeof(void **);
  6888. #endif
  6889. #endif
  6890. }
  6891. #ifdef CONFIG_SMP
  6892. init_aggregate();
  6893. init_defrootdomain();
  6894. #endif
  6895. init_rt_bandwidth(&def_rt_bandwidth,
  6896. global_rt_period(), global_rt_runtime());
  6897. #ifdef CONFIG_RT_GROUP_SCHED
  6898. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6899. global_rt_period(), global_rt_runtime());
  6900. #ifdef CONFIG_USER_SCHED
  6901. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6902. global_rt_period(), RUNTIME_INF);
  6903. #endif
  6904. #endif
  6905. #ifdef CONFIG_GROUP_SCHED
  6906. list_add(&init_task_group.list, &task_groups);
  6907. INIT_LIST_HEAD(&init_task_group.children);
  6908. #ifdef CONFIG_USER_SCHED
  6909. INIT_LIST_HEAD(&root_task_group.children);
  6910. init_task_group.parent = &root_task_group;
  6911. list_add(&init_task_group.siblings, &root_task_group.children);
  6912. #endif
  6913. #endif
  6914. for_each_possible_cpu(i) {
  6915. struct rq *rq;
  6916. rq = cpu_rq(i);
  6917. spin_lock_init(&rq->lock);
  6918. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6919. rq->nr_running = 0;
  6920. init_cfs_rq(&rq->cfs, rq);
  6921. init_rt_rq(&rq->rt, rq);
  6922. #ifdef CONFIG_FAIR_GROUP_SCHED
  6923. init_task_group.shares = init_task_group_load;
  6924. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6925. #ifdef CONFIG_CGROUP_SCHED
  6926. /*
  6927. * How much cpu bandwidth does init_task_group get?
  6928. *
  6929. * In case of task-groups formed thr' the cgroup filesystem, it
  6930. * gets 100% of the cpu resources in the system. This overall
  6931. * system cpu resource is divided among the tasks of
  6932. * init_task_group and its child task-groups in a fair manner,
  6933. * based on each entity's (task or task-group's) weight
  6934. * (se->load.weight).
  6935. *
  6936. * In other words, if init_task_group has 10 tasks of weight
  6937. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6938. * then A0's share of the cpu resource is:
  6939. *
  6940. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6941. *
  6942. * We achieve this by letting init_task_group's tasks sit
  6943. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6944. */
  6945. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6946. #elif defined CONFIG_USER_SCHED
  6947. root_task_group.shares = NICE_0_LOAD;
  6948. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6949. /*
  6950. * In case of task-groups formed thr' the user id of tasks,
  6951. * init_task_group represents tasks belonging to root user.
  6952. * Hence it forms a sibling of all subsequent groups formed.
  6953. * In this case, init_task_group gets only a fraction of overall
  6954. * system cpu resource, based on the weight assigned to root
  6955. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6956. * by letting tasks of init_task_group sit in a separate cfs_rq
  6957. * (init_cfs_rq) and having one entity represent this group of
  6958. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6959. */
  6960. init_tg_cfs_entry(&init_task_group,
  6961. &per_cpu(init_cfs_rq, i),
  6962. &per_cpu(init_sched_entity, i), i, 1,
  6963. root_task_group.se[i]);
  6964. #endif
  6965. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6966. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6967. #ifdef CONFIG_RT_GROUP_SCHED
  6968. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6969. #ifdef CONFIG_CGROUP_SCHED
  6970. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6971. #elif defined CONFIG_USER_SCHED
  6972. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6973. init_tg_rt_entry(&init_task_group,
  6974. &per_cpu(init_rt_rq, i),
  6975. &per_cpu(init_sched_rt_entity, i), i, 1,
  6976. root_task_group.rt_se[i]);
  6977. #endif
  6978. #endif
  6979. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6980. rq->cpu_load[j] = 0;
  6981. #ifdef CONFIG_SMP
  6982. rq->sd = NULL;
  6983. rq->rd = NULL;
  6984. rq->active_balance = 0;
  6985. rq->next_balance = jiffies;
  6986. rq->push_cpu = 0;
  6987. rq->cpu = i;
  6988. rq->migration_thread = NULL;
  6989. INIT_LIST_HEAD(&rq->migration_queue);
  6990. rq_attach_root(rq, &def_root_domain);
  6991. #endif
  6992. init_rq_hrtick(rq);
  6993. atomic_set(&rq->nr_iowait, 0);
  6994. }
  6995. set_load_weight(&init_task);
  6996. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6997. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6998. #endif
  6999. #ifdef CONFIG_SMP
  7000. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  7001. #endif
  7002. #ifdef CONFIG_RT_MUTEXES
  7003. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7004. #endif
  7005. /*
  7006. * The boot idle thread does lazy MMU switching as well:
  7007. */
  7008. atomic_inc(&init_mm.mm_count);
  7009. enter_lazy_tlb(&init_mm, current);
  7010. /*
  7011. * Make us the idle thread. Technically, schedule() should not be
  7012. * called from this thread, however somewhere below it might be,
  7013. * but because we are the idle thread, we just pick up running again
  7014. * when this runqueue becomes "idle".
  7015. */
  7016. init_idle(current, smp_processor_id());
  7017. /*
  7018. * During early bootup we pretend to be a normal task:
  7019. */
  7020. current->sched_class = &fair_sched_class;
  7021. scheduler_running = 1;
  7022. }
  7023. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7024. void __might_sleep(char *file, int line)
  7025. {
  7026. #ifdef in_atomic
  7027. static unsigned long prev_jiffy; /* ratelimiting */
  7028. if ((in_atomic() || irqs_disabled()) &&
  7029. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  7030. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7031. return;
  7032. prev_jiffy = jiffies;
  7033. printk(KERN_ERR "BUG: sleeping function called from invalid"
  7034. " context at %s:%d\n", file, line);
  7035. printk("in_atomic():%d, irqs_disabled():%d\n",
  7036. in_atomic(), irqs_disabled());
  7037. debug_show_held_locks(current);
  7038. if (irqs_disabled())
  7039. print_irqtrace_events(current);
  7040. dump_stack();
  7041. }
  7042. #endif
  7043. }
  7044. EXPORT_SYMBOL(__might_sleep);
  7045. #endif
  7046. #ifdef CONFIG_MAGIC_SYSRQ
  7047. static void normalize_task(struct rq *rq, struct task_struct *p)
  7048. {
  7049. int on_rq;
  7050. update_rq_clock(rq);
  7051. on_rq = p->se.on_rq;
  7052. if (on_rq)
  7053. deactivate_task(rq, p, 0);
  7054. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7055. if (on_rq) {
  7056. activate_task(rq, p, 0);
  7057. resched_task(rq->curr);
  7058. }
  7059. }
  7060. void normalize_rt_tasks(void)
  7061. {
  7062. struct task_struct *g, *p;
  7063. unsigned long flags;
  7064. struct rq *rq;
  7065. read_lock_irqsave(&tasklist_lock, flags);
  7066. do_each_thread(g, p) {
  7067. /*
  7068. * Only normalize user tasks:
  7069. */
  7070. if (!p->mm)
  7071. continue;
  7072. p->se.exec_start = 0;
  7073. #ifdef CONFIG_SCHEDSTATS
  7074. p->se.wait_start = 0;
  7075. p->se.sleep_start = 0;
  7076. p->se.block_start = 0;
  7077. #endif
  7078. if (!rt_task(p)) {
  7079. /*
  7080. * Renice negative nice level userspace
  7081. * tasks back to 0:
  7082. */
  7083. if (TASK_NICE(p) < 0 && p->mm)
  7084. set_user_nice(p, 0);
  7085. continue;
  7086. }
  7087. spin_lock(&p->pi_lock);
  7088. rq = __task_rq_lock(p);
  7089. normalize_task(rq, p);
  7090. __task_rq_unlock(rq);
  7091. spin_unlock(&p->pi_lock);
  7092. } while_each_thread(g, p);
  7093. read_unlock_irqrestore(&tasklist_lock, flags);
  7094. }
  7095. #endif /* CONFIG_MAGIC_SYSRQ */
  7096. #ifdef CONFIG_IA64
  7097. /*
  7098. * These functions are only useful for the IA64 MCA handling.
  7099. *
  7100. * They can only be called when the whole system has been
  7101. * stopped - every CPU needs to be quiescent, and no scheduling
  7102. * activity can take place. Using them for anything else would
  7103. * be a serious bug, and as a result, they aren't even visible
  7104. * under any other configuration.
  7105. */
  7106. /**
  7107. * curr_task - return the current task for a given cpu.
  7108. * @cpu: the processor in question.
  7109. *
  7110. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7111. */
  7112. struct task_struct *curr_task(int cpu)
  7113. {
  7114. return cpu_curr(cpu);
  7115. }
  7116. /**
  7117. * set_curr_task - set the current task for a given cpu.
  7118. * @cpu: the processor in question.
  7119. * @p: the task pointer to set.
  7120. *
  7121. * Description: This function must only be used when non-maskable interrupts
  7122. * are serviced on a separate stack. It allows the architecture to switch the
  7123. * notion of the current task on a cpu in a non-blocking manner. This function
  7124. * must be called with all CPU's synchronized, and interrupts disabled, the
  7125. * and caller must save the original value of the current task (see
  7126. * curr_task() above) and restore that value before reenabling interrupts and
  7127. * re-starting the system.
  7128. *
  7129. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7130. */
  7131. void set_curr_task(int cpu, struct task_struct *p)
  7132. {
  7133. cpu_curr(cpu) = p;
  7134. }
  7135. #endif
  7136. #ifdef CONFIG_FAIR_GROUP_SCHED
  7137. static void free_fair_sched_group(struct task_group *tg)
  7138. {
  7139. int i;
  7140. for_each_possible_cpu(i) {
  7141. if (tg->cfs_rq)
  7142. kfree(tg->cfs_rq[i]);
  7143. if (tg->se)
  7144. kfree(tg->se[i]);
  7145. }
  7146. kfree(tg->cfs_rq);
  7147. kfree(tg->se);
  7148. }
  7149. static
  7150. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7151. {
  7152. struct cfs_rq *cfs_rq;
  7153. struct sched_entity *se, *parent_se;
  7154. struct rq *rq;
  7155. int i;
  7156. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7157. if (!tg->cfs_rq)
  7158. goto err;
  7159. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7160. if (!tg->se)
  7161. goto err;
  7162. tg->shares = NICE_0_LOAD;
  7163. for_each_possible_cpu(i) {
  7164. rq = cpu_rq(i);
  7165. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7166. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7167. if (!cfs_rq)
  7168. goto err;
  7169. se = kmalloc_node(sizeof(struct sched_entity),
  7170. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7171. if (!se)
  7172. goto err;
  7173. parent_se = parent ? parent->se[i] : NULL;
  7174. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7175. }
  7176. return 1;
  7177. err:
  7178. return 0;
  7179. }
  7180. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7181. {
  7182. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7183. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7184. }
  7185. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7186. {
  7187. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7188. }
  7189. #else
  7190. static inline void free_fair_sched_group(struct task_group *tg)
  7191. {
  7192. }
  7193. static inline
  7194. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7195. {
  7196. return 1;
  7197. }
  7198. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7199. {
  7200. }
  7201. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7202. {
  7203. }
  7204. #endif
  7205. #ifdef CONFIG_RT_GROUP_SCHED
  7206. static void free_rt_sched_group(struct task_group *tg)
  7207. {
  7208. int i;
  7209. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7210. for_each_possible_cpu(i) {
  7211. if (tg->rt_rq)
  7212. kfree(tg->rt_rq[i]);
  7213. if (tg->rt_se)
  7214. kfree(tg->rt_se[i]);
  7215. }
  7216. kfree(tg->rt_rq);
  7217. kfree(tg->rt_se);
  7218. }
  7219. static
  7220. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7221. {
  7222. struct rt_rq *rt_rq;
  7223. struct sched_rt_entity *rt_se, *parent_se;
  7224. struct rq *rq;
  7225. int i;
  7226. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7227. if (!tg->rt_rq)
  7228. goto err;
  7229. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7230. if (!tg->rt_se)
  7231. goto err;
  7232. init_rt_bandwidth(&tg->rt_bandwidth,
  7233. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7234. for_each_possible_cpu(i) {
  7235. rq = cpu_rq(i);
  7236. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7237. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7238. if (!rt_rq)
  7239. goto err;
  7240. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7241. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7242. if (!rt_se)
  7243. goto err;
  7244. parent_se = parent ? parent->rt_se[i] : NULL;
  7245. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7246. }
  7247. return 1;
  7248. err:
  7249. return 0;
  7250. }
  7251. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7252. {
  7253. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7254. &cpu_rq(cpu)->leaf_rt_rq_list);
  7255. }
  7256. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7257. {
  7258. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7259. }
  7260. #else
  7261. static inline void free_rt_sched_group(struct task_group *tg)
  7262. {
  7263. }
  7264. static inline
  7265. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7266. {
  7267. return 1;
  7268. }
  7269. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7270. {
  7271. }
  7272. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7273. {
  7274. }
  7275. #endif
  7276. #ifdef CONFIG_GROUP_SCHED
  7277. static void free_sched_group(struct task_group *tg)
  7278. {
  7279. free_fair_sched_group(tg);
  7280. free_rt_sched_group(tg);
  7281. kfree(tg);
  7282. }
  7283. /* allocate runqueue etc for a new task group */
  7284. struct task_group *sched_create_group(struct task_group *parent)
  7285. {
  7286. struct task_group *tg;
  7287. unsigned long flags;
  7288. int i;
  7289. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7290. if (!tg)
  7291. return ERR_PTR(-ENOMEM);
  7292. if (!alloc_fair_sched_group(tg, parent))
  7293. goto err;
  7294. if (!alloc_rt_sched_group(tg, parent))
  7295. goto err;
  7296. spin_lock_irqsave(&task_group_lock, flags);
  7297. for_each_possible_cpu(i) {
  7298. register_fair_sched_group(tg, i);
  7299. register_rt_sched_group(tg, i);
  7300. }
  7301. list_add_rcu(&tg->list, &task_groups);
  7302. WARN_ON(!parent); /* root should already exist */
  7303. tg->parent = parent;
  7304. list_add_rcu(&tg->siblings, &parent->children);
  7305. INIT_LIST_HEAD(&tg->children);
  7306. spin_unlock_irqrestore(&task_group_lock, flags);
  7307. return tg;
  7308. err:
  7309. free_sched_group(tg);
  7310. return ERR_PTR(-ENOMEM);
  7311. }
  7312. /* rcu callback to free various structures associated with a task group */
  7313. static void free_sched_group_rcu(struct rcu_head *rhp)
  7314. {
  7315. /* now it should be safe to free those cfs_rqs */
  7316. free_sched_group(container_of(rhp, struct task_group, rcu));
  7317. }
  7318. /* Destroy runqueue etc associated with a task group */
  7319. void sched_destroy_group(struct task_group *tg)
  7320. {
  7321. unsigned long flags;
  7322. int i;
  7323. spin_lock_irqsave(&task_group_lock, flags);
  7324. for_each_possible_cpu(i) {
  7325. unregister_fair_sched_group(tg, i);
  7326. unregister_rt_sched_group(tg, i);
  7327. }
  7328. list_del_rcu(&tg->list);
  7329. list_del_rcu(&tg->siblings);
  7330. spin_unlock_irqrestore(&task_group_lock, flags);
  7331. /* wait for possible concurrent references to cfs_rqs complete */
  7332. call_rcu(&tg->rcu, free_sched_group_rcu);
  7333. }
  7334. /* change task's runqueue when it moves between groups.
  7335. * The caller of this function should have put the task in its new group
  7336. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7337. * reflect its new group.
  7338. */
  7339. void sched_move_task(struct task_struct *tsk)
  7340. {
  7341. int on_rq, running;
  7342. unsigned long flags;
  7343. struct rq *rq;
  7344. rq = task_rq_lock(tsk, &flags);
  7345. update_rq_clock(rq);
  7346. running = task_current(rq, tsk);
  7347. on_rq = tsk->se.on_rq;
  7348. if (on_rq)
  7349. dequeue_task(rq, tsk, 0);
  7350. if (unlikely(running))
  7351. tsk->sched_class->put_prev_task(rq, tsk);
  7352. set_task_rq(tsk, task_cpu(tsk));
  7353. #ifdef CONFIG_FAIR_GROUP_SCHED
  7354. if (tsk->sched_class->moved_group)
  7355. tsk->sched_class->moved_group(tsk);
  7356. #endif
  7357. if (unlikely(running))
  7358. tsk->sched_class->set_curr_task(rq);
  7359. if (on_rq)
  7360. enqueue_task(rq, tsk, 0);
  7361. task_rq_unlock(rq, &flags);
  7362. }
  7363. #endif
  7364. #ifdef CONFIG_FAIR_GROUP_SCHED
  7365. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7366. {
  7367. struct cfs_rq *cfs_rq = se->cfs_rq;
  7368. int on_rq;
  7369. on_rq = se->on_rq;
  7370. if (on_rq)
  7371. dequeue_entity(cfs_rq, se, 0);
  7372. se->load.weight = shares;
  7373. se->load.inv_weight = 0;
  7374. if (on_rq)
  7375. enqueue_entity(cfs_rq, se, 0);
  7376. }
  7377. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7378. {
  7379. struct cfs_rq *cfs_rq = se->cfs_rq;
  7380. struct rq *rq = cfs_rq->rq;
  7381. unsigned long flags;
  7382. spin_lock_irqsave(&rq->lock, flags);
  7383. __set_se_shares(se, shares);
  7384. spin_unlock_irqrestore(&rq->lock, flags);
  7385. }
  7386. static DEFINE_MUTEX(shares_mutex);
  7387. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7388. {
  7389. int i;
  7390. unsigned long flags;
  7391. /*
  7392. * We can't change the weight of the root cgroup.
  7393. */
  7394. if (!tg->se[0])
  7395. return -EINVAL;
  7396. if (shares < MIN_SHARES)
  7397. shares = MIN_SHARES;
  7398. else if (shares > MAX_SHARES)
  7399. shares = MAX_SHARES;
  7400. mutex_lock(&shares_mutex);
  7401. if (tg->shares == shares)
  7402. goto done;
  7403. spin_lock_irqsave(&task_group_lock, flags);
  7404. for_each_possible_cpu(i)
  7405. unregister_fair_sched_group(tg, i);
  7406. list_del_rcu(&tg->siblings);
  7407. spin_unlock_irqrestore(&task_group_lock, flags);
  7408. /* wait for any ongoing reference to this group to finish */
  7409. synchronize_sched();
  7410. /*
  7411. * Now we are free to modify the group's share on each cpu
  7412. * w/o tripping rebalance_share or load_balance_fair.
  7413. */
  7414. tg->shares = shares;
  7415. for_each_possible_cpu(i) {
  7416. /*
  7417. * force a rebalance
  7418. */
  7419. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7420. set_se_shares(tg->se[i], shares);
  7421. }
  7422. /*
  7423. * Enable load balance activity on this group, by inserting it back on
  7424. * each cpu's rq->leaf_cfs_rq_list.
  7425. */
  7426. spin_lock_irqsave(&task_group_lock, flags);
  7427. for_each_possible_cpu(i)
  7428. register_fair_sched_group(tg, i);
  7429. list_add_rcu(&tg->siblings, &tg->parent->children);
  7430. spin_unlock_irqrestore(&task_group_lock, flags);
  7431. done:
  7432. mutex_unlock(&shares_mutex);
  7433. return 0;
  7434. }
  7435. unsigned long sched_group_shares(struct task_group *tg)
  7436. {
  7437. return tg->shares;
  7438. }
  7439. #endif
  7440. #ifdef CONFIG_RT_GROUP_SCHED
  7441. /*
  7442. * Ensure that the real time constraints are schedulable.
  7443. */
  7444. static DEFINE_MUTEX(rt_constraints_mutex);
  7445. static unsigned long to_ratio(u64 period, u64 runtime)
  7446. {
  7447. if (runtime == RUNTIME_INF)
  7448. return 1ULL << 16;
  7449. return div64_u64(runtime << 16, period);
  7450. }
  7451. #ifdef CONFIG_CGROUP_SCHED
  7452. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7453. {
  7454. struct task_group *tgi, *parent = tg->parent;
  7455. unsigned long total = 0;
  7456. if (!parent) {
  7457. if (global_rt_period() < period)
  7458. return 0;
  7459. return to_ratio(period, runtime) <
  7460. to_ratio(global_rt_period(), global_rt_runtime());
  7461. }
  7462. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7463. return 0;
  7464. rcu_read_lock();
  7465. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7466. if (tgi == tg)
  7467. continue;
  7468. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7469. tgi->rt_bandwidth.rt_runtime);
  7470. }
  7471. rcu_read_unlock();
  7472. return total + to_ratio(period, runtime) <
  7473. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7474. parent->rt_bandwidth.rt_runtime);
  7475. }
  7476. #elif defined CONFIG_USER_SCHED
  7477. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7478. {
  7479. struct task_group *tgi;
  7480. unsigned long total = 0;
  7481. unsigned long global_ratio =
  7482. to_ratio(global_rt_period(), global_rt_runtime());
  7483. rcu_read_lock();
  7484. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7485. if (tgi == tg)
  7486. continue;
  7487. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7488. tgi->rt_bandwidth.rt_runtime);
  7489. }
  7490. rcu_read_unlock();
  7491. return total + to_ratio(period, runtime) < global_ratio;
  7492. }
  7493. #endif
  7494. /* Must be called with tasklist_lock held */
  7495. static inline int tg_has_rt_tasks(struct task_group *tg)
  7496. {
  7497. struct task_struct *g, *p;
  7498. do_each_thread(g, p) {
  7499. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7500. return 1;
  7501. } while_each_thread(g, p);
  7502. return 0;
  7503. }
  7504. static int tg_set_bandwidth(struct task_group *tg,
  7505. u64 rt_period, u64 rt_runtime)
  7506. {
  7507. int i, err = 0;
  7508. mutex_lock(&rt_constraints_mutex);
  7509. read_lock(&tasklist_lock);
  7510. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7511. err = -EBUSY;
  7512. goto unlock;
  7513. }
  7514. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7515. err = -EINVAL;
  7516. goto unlock;
  7517. }
  7518. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7519. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7520. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7521. for_each_possible_cpu(i) {
  7522. struct rt_rq *rt_rq = tg->rt_rq[i];
  7523. spin_lock(&rt_rq->rt_runtime_lock);
  7524. rt_rq->rt_runtime = rt_runtime;
  7525. spin_unlock(&rt_rq->rt_runtime_lock);
  7526. }
  7527. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7528. unlock:
  7529. read_unlock(&tasklist_lock);
  7530. mutex_unlock(&rt_constraints_mutex);
  7531. return err;
  7532. }
  7533. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7534. {
  7535. u64 rt_runtime, rt_period;
  7536. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7537. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7538. if (rt_runtime_us < 0)
  7539. rt_runtime = RUNTIME_INF;
  7540. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7541. }
  7542. long sched_group_rt_runtime(struct task_group *tg)
  7543. {
  7544. u64 rt_runtime_us;
  7545. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7546. return -1;
  7547. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7548. do_div(rt_runtime_us, NSEC_PER_USEC);
  7549. return rt_runtime_us;
  7550. }
  7551. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7552. {
  7553. u64 rt_runtime, rt_period;
  7554. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7555. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7556. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7557. }
  7558. long sched_group_rt_period(struct task_group *tg)
  7559. {
  7560. u64 rt_period_us;
  7561. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7562. do_div(rt_period_us, NSEC_PER_USEC);
  7563. return rt_period_us;
  7564. }
  7565. static int sched_rt_global_constraints(void)
  7566. {
  7567. int ret = 0;
  7568. mutex_lock(&rt_constraints_mutex);
  7569. if (!__rt_schedulable(NULL, 1, 0))
  7570. ret = -EINVAL;
  7571. mutex_unlock(&rt_constraints_mutex);
  7572. return ret;
  7573. }
  7574. #else
  7575. static int sched_rt_global_constraints(void)
  7576. {
  7577. unsigned long flags;
  7578. int i;
  7579. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7580. for_each_possible_cpu(i) {
  7581. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7582. spin_lock(&rt_rq->rt_runtime_lock);
  7583. rt_rq->rt_runtime = global_rt_runtime();
  7584. spin_unlock(&rt_rq->rt_runtime_lock);
  7585. }
  7586. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7587. return 0;
  7588. }
  7589. #endif
  7590. int sched_rt_handler(struct ctl_table *table, int write,
  7591. struct file *filp, void __user *buffer, size_t *lenp,
  7592. loff_t *ppos)
  7593. {
  7594. int ret;
  7595. int old_period, old_runtime;
  7596. static DEFINE_MUTEX(mutex);
  7597. mutex_lock(&mutex);
  7598. old_period = sysctl_sched_rt_period;
  7599. old_runtime = sysctl_sched_rt_runtime;
  7600. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7601. if (!ret && write) {
  7602. ret = sched_rt_global_constraints();
  7603. if (ret) {
  7604. sysctl_sched_rt_period = old_period;
  7605. sysctl_sched_rt_runtime = old_runtime;
  7606. } else {
  7607. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7608. def_rt_bandwidth.rt_period =
  7609. ns_to_ktime(global_rt_period());
  7610. }
  7611. }
  7612. mutex_unlock(&mutex);
  7613. return ret;
  7614. }
  7615. #ifdef CONFIG_CGROUP_SCHED
  7616. /* return corresponding task_group object of a cgroup */
  7617. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7618. {
  7619. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7620. struct task_group, css);
  7621. }
  7622. static struct cgroup_subsys_state *
  7623. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7624. {
  7625. struct task_group *tg, *parent;
  7626. if (!cgrp->parent) {
  7627. /* This is early initialization for the top cgroup */
  7628. init_task_group.css.cgroup = cgrp;
  7629. return &init_task_group.css;
  7630. }
  7631. parent = cgroup_tg(cgrp->parent);
  7632. tg = sched_create_group(parent);
  7633. if (IS_ERR(tg))
  7634. return ERR_PTR(-ENOMEM);
  7635. /* Bind the cgroup to task_group object we just created */
  7636. tg->css.cgroup = cgrp;
  7637. return &tg->css;
  7638. }
  7639. static void
  7640. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7641. {
  7642. struct task_group *tg = cgroup_tg(cgrp);
  7643. sched_destroy_group(tg);
  7644. }
  7645. static int
  7646. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7647. struct task_struct *tsk)
  7648. {
  7649. #ifdef CONFIG_RT_GROUP_SCHED
  7650. /* Don't accept realtime tasks when there is no way for them to run */
  7651. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7652. return -EINVAL;
  7653. #else
  7654. /* We don't support RT-tasks being in separate groups */
  7655. if (tsk->sched_class != &fair_sched_class)
  7656. return -EINVAL;
  7657. #endif
  7658. return 0;
  7659. }
  7660. static void
  7661. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7662. struct cgroup *old_cont, struct task_struct *tsk)
  7663. {
  7664. sched_move_task(tsk);
  7665. }
  7666. #ifdef CONFIG_FAIR_GROUP_SCHED
  7667. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7668. u64 shareval)
  7669. {
  7670. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7671. }
  7672. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7673. {
  7674. struct task_group *tg = cgroup_tg(cgrp);
  7675. return (u64) tg->shares;
  7676. }
  7677. #endif
  7678. #ifdef CONFIG_RT_GROUP_SCHED
  7679. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7680. s64 val)
  7681. {
  7682. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7683. }
  7684. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7685. {
  7686. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7687. }
  7688. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7689. u64 rt_period_us)
  7690. {
  7691. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7692. }
  7693. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7694. {
  7695. return sched_group_rt_period(cgroup_tg(cgrp));
  7696. }
  7697. #endif
  7698. static struct cftype cpu_files[] = {
  7699. #ifdef CONFIG_FAIR_GROUP_SCHED
  7700. {
  7701. .name = "shares",
  7702. .read_u64 = cpu_shares_read_u64,
  7703. .write_u64 = cpu_shares_write_u64,
  7704. },
  7705. #endif
  7706. #ifdef CONFIG_RT_GROUP_SCHED
  7707. {
  7708. .name = "rt_runtime_us",
  7709. .read_s64 = cpu_rt_runtime_read,
  7710. .write_s64 = cpu_rt_runtime_write,
  7711. },
  7712. {
  7713. .name = "rt_period_us",
  7714. .read_u64 = cpu_rt_period_read_uint,
  7715. .write_u64 = cpu_rt_period_write_uint,
  7716. },
  7717. #endif
  7718. };
  7719. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7720. {
  7721. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7722. }
  7723. struct cgroup_subsys cpu_cgroup_subsys = {
  7724. .name = "cpu",
  7725. .create = cpu_cgroup_create,
  7726. .destroy = cpu_cgroup_destroy,
  7727. .can_attach = cpu_cgroup_can_attach,
  7728. .attach = cpu_cgroup_attach,
  7729. .populate = cpu_cgroup_populate,
  7730. .subsys_id = cpu_cgroup_subsys_id,
  7731. .early_init = 1,
  7732. };
  7733. #endif /* CONFIG_CGROUP_SCHED */
  7734. #ifdef CONFIG_CGROUP_CPUACCT
  7735. /*
  7736. * CPU accounting code for task groups.
  7737. *
  7738. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7739. * (balbir@in.ibm.com).
  7740. */
  7741. /* track cpu usage of a group of tasks */
  7742. struct cpuacct {
  7743. struct cgroup_subsys_state css;
  7744. /* cpuusage holds pointer to a u64-type object on every cpu */
  7745. u64 *cpuusage;
  7746. };
  7747. struct cgroup_subsys cpuacct_subsys;
  7748. /* return cpu accounting group corresponding to this container */
  7749. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7750. {
  7751. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7752. struct cpuacct, css);
  7753. }
  7754. /* return cpu accounting group to which this task belongs */
  7755. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7756. {
  7757. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7758. struct cpuacct, css);
  7759. }
  7760. /* create a new cpu accounting group */
  7761. static struct cgroup_subsys_state *cpuacct_create(
  7762. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7763. {
  7764. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7765. if (!ca)
  7766. return ERR_PTR(-ENOMEM);
  7767. ca->cpuusage = alloc_percpu(u64);
  7768. if (!ca->cpuusage) {
  7769. kfree(ca);
  7770. return ERR_PTR(-ENOMEM);
  7771. }
  7772. return &ca->css;
  7773. }
  7774. /* destroy an existing cpu accounting group */
  7775. static void
  7776. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7777. {
  7778. struct cpuacct *ca = cgroup_ca(cgrp);
  7779. free_percpu(ca->cpuusage);
  7780. kfree(ca);
  7781. }
  7782. /* return total cpu usage (in nanoseconds) of a group */
  7783. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7784. {
  7785. struct cpuacct *ca = cgroup_ca(cgrp);
  7786. u64 totalcpuusage = 0;
  7787. int i;
  7788. for_each_possible_cpu(i) {
  7789. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7790. /*
  7791. * Take rq->lock to make 64-bit addition safe on 32-bit
  7792. * platforms.
  7793. */
  7794. spin_lock_irq(&cpu_rq(i)->lock);
  7795. totalcpuusage += *cpuusage;
  7796. spin_unlock_irq(&cpu_rq(i)->lock);
  7797. }
  7798. return totalcpuusage;
  7799. }
  7800. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7801. u64 reset)
  7802. {
  7803. struct cpuacct *ca = cgroup_ca(cgrp);
  7804. int err = 0;
  7805. int i;
  7806. if (reset) {
  7807. err = -EINVAL;
  7808. goto out;
  7809. }
  7810. for_each_possible_cpu(i) {
  7811. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7812. spin_lock_irq(&cpu_rq(i)->lock);
  7813. *cpuusage = 0;
  7814. spin_unlock_irq(&cpu_rq(i)->lock);
  7815. }
  7816. out:
  7817. return err;
  7818. }
  7819. static struct cftype files[] = {
  7820. {
  7821. .name = "usage",
  7822. .read_u64 = cpuusage_read,
  7823. .write_u64 = cpuusage_write,
  7824. },
  7825. };
  7826. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7827. {
  7828. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7829. }
  7830. /*
  7831. * charge this task's execution time to its accounting group.
  7832. *
  7833. * called with rq->lock held.
  7834. */
  7835. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7836. {
  7837. struct cpuacct *ca;
  7838. if (!cpuacct_subsys.active)
  7839. return;
  7840. ca = task_ca(tsk);
  7841. if (ca) {
  7842. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7843. *cpuusage += cputime;
  7844. }
  7845. }
  7846. struct cgroup_subsys cpuacct_subsys = {
  7847. .name = "cpuacct",
  7848. .create = cpuacct_create,
  7849. .destroy = cpuacct_destroy,
  7850. .populate = cpuacct_populate,
  7851. .subsys_id = cpuacct_subsys_id,
  7852. };
  7853. #endif /* CONFIG_CGROUP_CPUACCT */