cpuset.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. *
  18. * This file is subject to the terms and conditions of the GNU General Public
  19. * License. See the file COPYING in the main directory of the Linux
  20. * distribution for more details.
  21. */
  22. #include <linux/cpu.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/err.h>
  26. #include <linux/errno.h>
  27. #include <linux/file.h>
  28. #include <linux/fs.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kernel.h>
  32. #include <linux/kmod.h>
  33. #include <linux/list.h>
  34. #include <linux/mempolicy.h>
  35. #include <linux/mm.h>
  36. #include <linux/module.h>
  37. #include <linux/mount.h>
  38. #include <linux/namei.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/sched.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/security.h>
  45. #include <linux/slab.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/stat.h>
  48. #include <linux/string.h>
  49. #include <linux/time.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/sort.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/atomic.h>
  54. #include <linux/mutex.h>
  55. #include <linux/kfifo.h>
  56. #include <linux/workqueue.h>
  57. #include <linux/cgroup.h>
  58. /*
  59. * Tracks how many cpusets are currently defined in system.
  60. * When there is only one cpuset (the root cpuset) we can
  61. * short circuit some hooks.
  62. */
  63. int number_of_cpusets __read_mostly;
  64. /* Forward declare cgroup structures */
  65. struct cgroup_subsys cpuset_subsys;
  66. struct cpuset;
  67. /* See "Frequency meter" comments, below. */
  68. struct fmeter {
  69. int cnt; /* unprocessed events count */
  70. int val; /* most recent output value */
  71. time_t time; /* clock (secs) when val computed */
  72. spinlock_t lock; /* guards read or write of above */
  73. };
  74. struct cpuset {
  75. struct cgroup_subsys_state css;
  76. unsigned long flags; /* "unsigned long" so bitops work */
  77. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  78. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  79. struct cpuset *parent; /* my parent */
  80. /*
  81. * Copy of global cpuset_mems_generation as of the most
  82. * recent time this cpuset changed its mems_allowed.
  83. */
  84. int mems_generation;
  85. struct fmeter fmeter; /* memory_pressure filter */
  86. /* partition number for rebuild_sched_domains() */
  87. int pn;
  88. /* for custom sched domain */
  89. int relax_domain_level;
  90. /* used for walking a cpuset heirarchy */
  91. struct list_head stack_list;
  92. };
  93. /* Retrieve the cpuset for a cgroup */
  94. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  95. {
  96. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  97. struct cpuset, css);
  98. }
  99. /* Retrieve the cpuset for a task */
  100. static inline struct cpuset *task_cs(struct task_struct *task)
  101. {
  102. return container_of(task_subsys_state(task, cpuset_subsys_id),
  103. struct cpuset, css);
  104. }
  105. struct cpuset_hotplug_scanner {
  106. struct cgroup_scanner scan;
  107. struct cgroup *to;
  108. };
  109. /* bits in struct cpuset flags field */
  110. typedef enum {
  111. CS_CPU_EXCLUSIVE,
  112. CS_MEM_EXCLUSIVE,
  113. CS_MEM_HARDWALL,
  114. CS_MEMORY_MIGRATE,
  115. CS_SCHED_LOAD_BALANCE,
  116. CS_SPREAD_PAGE,
  117. CS_SPREAD_SLAB,
  118. } cpuset_flagbits_t;
  119. /* convenient tests for these bits */
  120. static inline int is_cpu_exclusive(const struct cpuset *cs)
  121. {
  122. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  123. }
  124. static inline int is_mem_exclusive(const struct cpuset *cs)
  125. {
  126. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  127. }
  128. static inline int is_mem_hardwall(const struct cpuset *cs)
  129. {
  130. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  131. }
  132. static inline int is_sched_load_balance(const struct cpuset *cs)
  133. {
  134. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  135. }
  136. static inline int is_memory_migrate(const struct cpuset *cs)
  137. {
  138. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  139. }
  140. static inline int is_spread_page(const struct cpuset *cs)
  141. {
  142. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  143. }
  144. static inline int is_spread_slab(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  147. }
  148. /*
  149. * Increment this integer everytime any cpuset changes its
  150. * mems_allowed value. Users of cpusets can track this generation
  151. * number, and avoid having to lock and reload mems_allowed unless
  152. * the cpuset they're using changes generation.
  153. *
  154. * A single, global generation is needed because cpuset_attach_task() could
  155. * reattach a task to a different cpuset, which must not have its
  156. * generation numbers aliased with those of that tasks previous cpuset.
  157. *
  158. * Generations are needed for mems_allowed because one task cannot
  159. * modify another's memory placement. So we must enable every task,
  160. * on every visit to __alloc_pages(), to efficiently check whether
  161. * its current->cpuset->mems_allowed has changed, requiring an update
  162. * of its current->mems_allowed.
  163. *
  164. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  165. * there is no need to mark it atomic.
  166. */
  167. static int cpuset_mems_generation;
  168. static struct cpuset top_cpuset = {
  169. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  170. .cpus_allowed = CPU_MASK_ALL,
  171. .mems_allowed = NODE_MASK_ALL,
  172. };
  173. /*
  174. * There are two global mutexes guarding cpuset structures. The first
  175. * is the main control groups cgroup_mutex, accessed via
  176. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  177. * callback_mutex, below. They can nest. It is ok to first take
  178. * cgroup_mutex, then nest callback_mutex. We also require taking
  179. * task_lock() when dereferencing a task's cpuset pointer. See "The
  180. * task_lock() exception", at the end of this comment.
  181. *
  182. * A task must hold both mutexes to modify cpusets. If a task
  183. * holds cgroup_mutex, then it blocks others wanting that mutex,
  184. * ensuring that it is the only task able to also acquire callback_mutex
  185. * and be able to modify cpusets. It can perform various checks on
  186. * the cpuset structure first, knowing nothing will change. It can
  187. * also allocate memory while just holding cgroup_mutex. While it is
  188. * performing these checks, various callback routines can briefly
  189. * acquire callback_mutex to query cpusets. Once it is ready to make
  190. * the changes, it takes callback_mutex, blocking everyone else.
  191. *
  192. * Calls to the kernel memory allocator can not be made while holding
  193. * callback_mutex, as that would risk double tripping on callback_mutex
  194. * from one of the callbacks into the cpuset code from within
  195. * __alloc_pages().
  196. *
  197. * If a task is only holding callback_mutex, then it has read-only
  198. * access to cpusets.
  199. *
  200. * The task_struct fields mems_allowed and mems_generation may only
  201. * be accessed in the context of that task, so require no locks.
  202. *
  203. * The cpuset_common_file_write handler for operations that modify
  204. * the cpuset hierarchy holds cgroup_mutex across the entire operation,
  205. * single threading all such cpuset modifications across the system.
  206. *
  207. * The cpuset_common_file_read() handlers only hold callback_mutex across
  208. * small pieces of code, such as when reading out possibly multi-word
  209. * cpumasks and nodemasks.
  210. *
  211. * Accessing a task's cpuset should be done in accordance with the
  212. * guidelines for accessing subsystem state in kernel/cgroup.c
  213. */
  214. static DEFINE_MUTEX(callback_mutex);
  215. /* This is ugly, but preserves the userspace API for existing cpuset
  216. * users. If someone tries to mount the "cpuset" filesystem, we
  217. * silently switch it to mount "cgroup" instead */
  218. static int cpuset_get_sb(struct file_system_type *fs_type,
  219. int flags, const char *unused_dev_name,
  220. void *data, struct vfsmount *mnt)
  221. {
  222. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  223. int ret = -ENODEV;
  224. if (cgroup_fs) {
  225. char mountopts[] =
  226. "cpuset,noprefix,"
  227. "release_agent=/sbin/cpuset_release_agent";
  228. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  229. unused_dev_name, mountopts, mnt);
  230. put_filesystem(cgroup_fs);
  231. }
  232. return ret;
  233. }
  234. static struct file_system_type cpuset_fs_type = {
  235. .name = "cpuset",
  236. .get_sb = cpuset_get_sb,
  237. };
  238. /*
  239. * Return in *pmask the portion of a cpusets's cpus_allowed that
  240. * are online. If none are online, walk up the cpuset hierarchy
  241. * until we find one that does have some online cpus. If we get
  242. * all the way to the top and still haven't found any online cpus,
  243. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  244. * task, return cpu_online_map.
  245. *
  246. * One way or another, we guarantee to return some non-empty subset
  247. * of cpu_online_map.
  248. *
  249. * Call with callback_mutex held.
  250. */
  251. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  252. {
  253. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  254. cs = cs->parent;
  255. if (cs)
  256. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  257. else
  258. *pmask = cpu_online_map;
  259. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  260. }
  261. /*
  262. * Return in *pmask the portion of a cpusets's mems_allowed that
  263. * are online, with memory. If none are online with memory, walk
  264. * up the cpuset hierarchy until we find one that does have some
  265. * online mems. If we get all the way to the top and still haven't
  266. * found any online mems, return node_states[N_HIGH_MEMORY].
  267. *
  268. * One way or another, we guarantee to return some non-empty subset
  269. * of node_states[N_HIGH_MEMORY].
  270. *
  271. * Call with callback_mutex held.
  272. */
  273. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  274. {
  275. while (cs && !nodes_intersects(cs->mems_allowed,
  276. node_states[N_HIGH_MEMORY]))
  277. cs = cs->parent;
  278. if (cs)
  279. nodes_and(*pmask, cs->mems_allowed,
  280. node_states[N_HIGH_MEMORY]);
  281. else
  282. *pmask = node_states[N_HIGH_MEMORY];
  283. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  284. }
  285. /**
  286. * cpuset_update_task_memory_state - update task memory placement
  287. *
  288. * If the current tasks cpusets mems_allowed changed behind our
  289. * backs, update current->mems_allowed, mems_generation and task NUMA
  290. * mempolicy to the new value.
  291. *
  292. * Task mempolicy is updated by rebinding it relative to the
  293. * current->cpuset if a task has its memory placement changed.
  294. * Do not call this routine if in_interrupt().
  295. *
  296. * Call without callback_mutex or task_lock() held. May be
  297. * called with or without cgroup_mutex held. Thanks in part to
  298. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  299. * be NULL. This routine also might acquire callback_mutex during
  300. * call.
  301. *
  302. * Reading current->cpuset->mems_generation doesn't need task_lock
  303. * to guard the current->cpuset derefence, because it is guarded
  304. * from concurrent freeing of current->cpuset using RCU.
  305. *
  306. * The rcu_dereference() is technically probably not needed,
  307. * as I don't actually mind if I see a new cpuset pointer but
  308. * an old value of mems_generation. However this really only
  309. * matters on alpha systems using cpusets heavily. If I dropped
  310. * that rcu_dereference(), it would save them a memory barrier.
  311. * For all other arch's, rcu_dereference is a no-op anyway, and for
  312. * alpha systems not using cpusets, another planned optimization,
  313. * avoiding the rcu critical section for tasks in the root cpuset
  314. * which is statically allocated, so can't vanish, will make this
  315. * irrelevant. Better to use RCU as intended, than to engage in
  316. * some cute trick to save a memory barrier that is impossible to
  317. * test, for alpha systems using cpusets heavily, which might not
  318. * even exist.
  319. *
  320. * This routine is needed to update the per-task mems_allowed data,
  321. * within the tasks context, when it is trying to allocate memory
  322. * (in various mm/mempolicy.c routines) and notices that some other
  323. * task has been modifying its cpuset.
  324. */
  325. void cpuset_update_task_memory_state(void)
  326. {
  327. int my_cpusets_mem_gen;
  328. struct task_struct *tsk = current;
  329. struct cpuset *cs;
  330. if (task_cs(tsk) == &top_cpuset) {
  331. /* Don't need rcu for top_cpuset. It's never freed. */
  332. my_cpusets_mem_gen = top_cpuset.mems_generation;
  333. } else {
  334. rcu_read_lock();
  335. my_cpusets_mem_gen = task_cs(current)->mems_generation;
  336. rcu_read_unlock();
  337. }
  338. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  339. mutex_lock(&callback_mutex);
  340. task_lock(tsk);
  341. cs = task_cs(tsk); /* Maybe changed when task not locked */
  342. guarantee_online_mems(cs, &tsk->mems_allowed);
  343. tsk->cpuset_mems_generation = cs->mems_generation;
  344. if (is_spread_page(cs))
  345. tsk->flags |= PF_SPREAD_PAGE;
  346. else
  347. tsk->flags &= ~PF_SPREAD_PAGE;
  348. if (is_spread_slab(cs))
  349. tsk->flags |= PF_SPREAD_SLAB;
  350. else
  351. tsk->flags &= ~PF_SPREAD_SLAB;
  352. task_unlock(tsk);
  353. mutex_unlock(&callback_mutex);
  354. mpol_rebind_task(tsk, &tsk->mems_allowed);
  355. }
  356. }
  357. /*
  358. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  359. *
  360. * One cpuset is a subset of another if all its allowed CPUs and
  361. * Memory Nodes are a subset of the other, and its exclusive flags
  362. * are only set if the other's are set. Call holding cgroup_mutex.
  363. */
  364. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  365. {
  366. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  367. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  368. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  369. is_mem_exclusive(p) <= is_mem_exclusive(q);
  370. }
  371. /*
  372. * validate_change() - Used to validate that any proposed cpuset change
  373. * follows the structural rules for cpusets.
  374. *
  375. * If we replaced the flag and mask values of the current cpuset
  376. * (cur) with those values in the trial cpuset (trial), would
  377. * our various subset and exclusive rules still be valid? Presumes
  378. * cgroup_mutex held.
  379. *
  380. * 'cur' is the address of an actual, in-use cpuset. Operations
  381. * such as list traversal that depend on the actual address of the
  382. * cpuset in the list must use cur below, not trial.
  383. *
  384. * 'trial' is the address of bulk structure copy of cur, with
  385. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  386. * or flags changed to new, trial values.
  387. *
  388. * Return 0 if valid, -errno if not.
  389. */
  390. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  391. {
  392. struct cgroup *cont;
  393. struct cpuset *c, *par;
  394. /* Each of our child cpusets must be a subset of us */
  395. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  396. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  397. return -EBUSY;
  398. }
  399. /* Remaining checks don't apply to root cpuset */
  400. if (cur == &top_cpuset)
  401. return 0;
  402. par = cur->parent;
  403. /* We must be a subset of our parent cpuset */
  404. if (!is_cpuset_subset(trial, par))
  405. return -EACCES;
  406. /*
  407. * If either I or some sibling (!= me) is exclusive, we can't
  408. * overlap
  409. */
  410. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  411. c = cgroup_cs(cont);
  412. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  413. c != cur &&
  414. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  415. return -EINVAL;
  416. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  417. c != cur &&
  418. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  419. return -EINVAL;
  420. }
  421. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  422. if (cgroup_task_count(cur->css.cgroup)) {
  423. if (cpus_empty(trial->cpus_allowed) ||
  424. nodes_empty(trial->mems_allowed)) {
  425. return -ENOSPC;
  426. }
  427. }
  428. return 0;
  429. }
  430. /*
  431. * Helper routine for rebuild_sched_domains().
  432. * Do cpusets a, b have overlapping cpus_allowed masks?
  433. */
  434. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  435. {
  436. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  437. }
  438. static void
  439. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  440. {
  441. if (!dattr)
  442. return;
  443. if (dattr->relax_domain_level < c->relax_domain_level)
  444. dattr->relax_domain_level = c->relax_domain_level;
  445. return;
  446. }
  447. /*
  448. * rebuild_sched_domains()
  449. *
  450. * If the flag 'sched_load_balance' of any cpuset with non-empty
  451. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  452. * which has that flag enabled, or if any cpuset with a non-empty
  453. * 'cpus' is removed, then call this routine to rebuild the
  454. * scheduler's dynamic sched domains.
  455. *
  456. * This routine builds a partial partition of the systems CPUs
  457. * (the set of non-overlappping cpumask_t's in the array 'part'
  458. * below), and passes that partial partition to the kernel/sched.c
  459. * partition_sched_domains() routine, which will rebuild the
  460. * schedulers load balancing domains (sched domains) as specified
  461. * by that partial partition. A 'partial partition' is a set of
  462. * non-overlapping subsets whose union is a subset of that set.
  463. *
  464. * See "What is sched_load_balance" in Documentation/cpusets.txt
  465. * for a background explanation of this.
  466. *
  467. * Does not return errors, on the theory that the callers of this
  468. * routine would rather not worry about failures to rebuild sched
  469. * domains when operating in the severe memory shortage situations
  470. * that could cause allocation failures below.
  471. *
  472. * Call with cgroup_mutex held. May take callback_mutex during
  473. * call due to the kfifo_alloc() and kmalloc() calls. May nest
  474. * a call to the get_online_cpus()/put_online_cpus() pair.
  475. * Must not be called holding callback_mutex, because we must not
  476. * call get_online_cpus() while holding callback_mutex. Elsewhere
  477. * the kernel nests callback_mutex inside get_online_cpus() calls.
  478. * So the reverse nesting would risk an ABBA deadlock.
  479. *
  480. * The three key local variables below are:
  481. * q - a kfifo queue of cpuset pointers, used to implement a
  482. * top-down scan of all cpusets. This scan loads a pointer
  483. * to each cpuset marked is_sched_load_balance into the
  484. * array 'csa'. For our purposes, rebuilding the schedulers
  485. * sched domains, we can ignore !is_sched_load_balance cpusets.
  486. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  487. * that need to be load balanced, for convenient iterative
  488. * access by the subsequent code that finds the best partition,
  489. * i.e the set of domains (subsets) of CPUs such that the
  490. * cpus_allowed of every cpuset marked is_sched_load_balance
  491. * is a subset of one of these domains, while there are as
  492. * many such domains as possible, each as small as possible.
  493. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  494. * the kernel/sched.c routine partition_sched_domains() in a
  495. * convenient format, that can be easily compared to the prior
  496. * value to determine what partition elements (sched domains)
  497. * were changed (added or removed.)
  498. *
  499. * Finding the best partition (set of domains):
  500. * The triple nested loops below over i, j, k scan over the
  501. * load balanced cpusets (using the array of cpuset pointers in
  502. * csa[]) looking for pairs of cpusets that have overlapping
  503. * cpus_allowed, but which don't have the same 'pn' partition
  504. * number and gives them in the same partition number. It keeps
  505. * looping on the 'restart' label until it can no longer find
  506. * any such pairs.
  507. *
  508. * The union of the cpus_allowed masks from the set of
  509. * all cpusets having the same 'pn' value then form the one
  510. * element of the partition (one sched domain) to be passed to
  511. * partition_sched_domains().
  512. */
  513. static void rebuild_sched_domains(void)
  514. {
  515. struct kfifo *q; /* queue of cpusets to be scanned */
  516. struct cpuset *cp; /* scans q */
  517. struct cpuset **csa; /* array of all cpuset ptrs */
  518. int csn; /* how many cpuset ptrs in csa so far */
  519. int i, j, k; /* indices for partition finding loops */
  520. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  521. struct sched_domain_attr *dattr; /* attributes for custom domains */
  522. int ndoms; /* number of sched domains in result */
  523. int nslot; /* next empty doms[] cpumask_t slot */
  524. q = NULL;
  525. csa = NULL;
  526. doms = NULL;
  527. dattr = NULL;
  528. /* Special case for the 99% of systems with one, full, sched domain */
  529. if (is_sched_load_balance(&top_cpuset)) {
  530. ndoms = 1;
  531. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  532. if (!doms)
  533. goto rebuild;
  534. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  535. if (dattr) {
  536. *dattr = SD_ATTR_INIT;
  537. update_domain_attr(dattr, &top_cpuset);
  538. }
  539. *doms = top_cpuset.cpus_allowed;
  540. goto rebuild;
  541. }
  542. q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
  543. if (IS_ERR(q))
  544. goto done;
  545. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  546. if (!csa)
  547. goto done;
  548. csn = 0;
  549. cp = &top_cpuset;
  550. __kfifo_put(q, (void *)&cp, sizeof(cp));
  551. while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
  552. struct cgroup *cont;
  553. struct cpuset *child; /* scans child cpusets of cp */
  554. if (is_sched_load_balance(cp))
  555. csa[csn++] = cp;
  556. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  557. child = cgroup_cs(cont);
  558. __kfifo_put(q, (void *)&child, sizeof(cp));
  559. }
  560. }
  561. for (i = 0; i < csn; i++)
  562. csa[i]->pn = i;
  563. ndoms = csn;
  564. restart:
  565. /* Find the best partition (set of sched domains) */
  566. for (i = 0; i < csn; i++) {
  567. struct cpuset *a = csa[i];
  568. int apn = a->pn;
  569. for (j = 0; j < csn; j++) {
  570. struct cpuset *b = csa[j];
  571. int bpn = b->pn;
  572. if (apn != bpn && cpusets_overlap(a, b)) {
  573. for (k = 0; k < csn; k++) {
  574. struct cpuset *c = csa[k];
  575. if (c->pn == bpn)
  576. c->pn = apn;
  577. }
  578. ndoms--; /* one less element */
  579. goto restart;
  580. }
  581. }
  582. }
  583. /* Convert <csn, csa> to <ndoms, doms> */
  584. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  585. if (!doms)
  586. goto rebuild;
  587. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  588. for (nslot = 0, i = 0; i < csn; i++) {
  589. struct cpuset *a = csa[i];
  590. int apn = a->pn;
  591. if (apn >= 0) {
  592. cpumask_t *dp = doms + nslot;
  593. if (nslot == ndoms) {
  594. static int warnings = 10;
  595. if (warnings) {
  596. printk(KERN_WARNING
  597. "rebuild_sched_domains confused:"
  598. " nslot %d, ndoms %d, csn %d, i %d,"
  599. " apn %d\n",
  600. nslot, ndoms, csn, i, apn);
  601. warnings--;
  602. }
  603. continue;
  604. }
  605. cpus_clear(*dp);
  606. if (dattr)
  607. *(dattr + nslot) = SD_ATTR_INIT;
  608. for (j = i; j < csn; j++) {
  609. struct cpuset *b = csa[j];
  610. if (apn == b->pn) {
  611. cpus_or(*dp, *dp, b->cpus_allowed);
  612. b->pn = -1;
  613. update_domain_attr(dattr, b);
  614. }
  615. }
  616. nslot++;
  617. }
  618. }
  619. BUG_ON(nslot != ndoms);
  620. rebuild:
  621. /* Have scheduler rebuild sched domains */
  622. get_online_cpus();
  623. partition_sched_domains(ndoms, doms, dattr);
  624. put_online_cpus();
  625. done:
  626. if (q && !IS_ERR(q))
  627. kfifo_free(q);
  628. kfree(csa);
  629. /* Don't kfree(doms) -- partition_sched_domains() does that. */
  630. /* Don't kfree(dattr) -- partition_sched_domains() does that. */
  631. }
  632. static inline int started_after_time(struct task_struct *t1,
  633. struct timespec *time,
  634. struct task_struct *t2)
  635. {
  636. int start_diff = timespec_compare(&t1->start_time, time);
  637. if (start_diff > 0) {
  638. return 1;
  639. } else if (start_diff < 0) {
  640. return 0;
  641. } else {
  642. /*
  643. * Arbitrarily, if two processes started at the same
  644. * time, we'll say that the lower pointer value
  645. * started first. Note that t2 may have exited by now
  646. * so this may not be a valid pointer any longer, but
  647. * that's fine - it still serves to distinguish
  648. * between two tasks started (effectively)
  649. * simultaneously.
  650. */
  651. return t1 > t2;
  652. }
  653. }
  654. static inline int started_after(void *p1, void *p2)
  655. {
  656. struct task_struct *t1 = p1;
  657. struct task_struct *t2 = p2;
  658. return started_after_time(t1, &t2->start_time, t2);
  659. }
  660. /**
  661. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  662. * @tsk: task to test
  663. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  664. *
  665. * Call with cgroup_mutex held. May take callback_mutex during call.
  666. * Called for each task in a cgroup by cgroup_scan_tasks().
  667. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  668. * words, if its mask is not equal to its cpuset's mask).
  669. */
  670. static int cpuset_test_cpumask(struct task_struct *tsk,
  671. struct cgroup_scanner *scan)
  672. {
  673. return !cpus_equal(tsk->cpus_allowed,
  674. (cgroup_cs(scan->cg))->cpus_allowed);
  675. }
  676. /**
  677. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  678. * @tsk: task to test
  679. * @scan: struct cgroup_scanner containing the cgroup of the task
  680. *
  681. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  682. * cpus_allowed mask needs to be changed.
  683. *
  684. * We don't need to re-check for the cgroup/cpuset membership, since we're
  685. * holding cgroup_lock() at this point.
  686. */
  687. static void cpuset_change_cpumask(struct task_struct *tsk,
  688. struct cgroup_scanner *scan)
  689. {
  690. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  691. }
  692. /**
  693. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  694. * @cs: the cpuset to consider
  695. * @buf: buffer of cpu numbers written to this cpuset
  696. */
  697. static int update_cpumask(struct cpuset *cs, char *buf)
  698. {
  699. struct cpuset trialcs;
  700. struct cgroup_scanner scan;
  701. struct ptr_heap heap;
  702. int retval;
  703. int is_load_balanced;
  704. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  705. if (cs == &top_cpuset)
  706. return -EACCES;
  707. trialcs = *cs;
  708. /*
  709. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  710. * Since cpulist_parse() fails on an empty mask, we special case
  711. * that parsing. The validate_change() call ensures that cpusets
  712. * with tasks have cpus.
  713. */
  714. buf = strstrip(buf);
  715. if (!*buf) {
  716. cpus_clear(trialcs.cpus_allowed);
  717. } else {
  718. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  719. if (retval < 0)
  720. return retval;
  721. }
  722. cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
  723. retval = validate_change(cs, &trialcs);
  724. if (retval < 0)
  725. return retval;
  726. /* Nothing to do if the cpus didn't change */
  727. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  728. return 0;
  729. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  730. if (retval)
  731. return retval;
  732. is_load_balanced = is_sched_load_balance(&trialcs);
  733. mutex_lock(&callback_mutex);
  734. cs->cpus_allowed = trialcs.cpus_allowed;
  735. mutex_unlock(&callback_mutex);
  736. /*
  737. * Scan tasks in the cpuset, and update the cpumasks of any
  738. * that need an update.
  739. */
  740. scan.cg = cs->css.cgroup;
  741. scan.test_task = cpuset_test_cpumask;
  742. scan.process_task = cpuset_change_cpumask;
  743. scan.heap = &heap;
  744. cgroup_scan_tasks(&scan);
  745. heap_free(&heap);
  746. if (is_load_balanced)
  747. rebuild_sched_domains();
  748. return 0;
  749. }
  750. /*
  751. * cpuset_migrate_mm
  752. *
  753. * Migrate memory region from one set of nodes to another.
  754. *
  755. * Temporarilly set tasks mems_allowed to target nodes of migration,
  756. * so that the migration code can allocate pages on these nodes.
  757. *
  758. * Call holding cgroup_mutex, so current's cpuset won't change
  759. * during this call, as manage_mutex holds off any cpuset_attach()
  760. * calls. Therefore we don't need to take task_lock around the
  761. * call to guarantee_online_mems(), as we know no one is changing
  762. * our task's cpuset.
  763. *
  764. * Hold callback_mutex around the two modifications of our tasks
  765. * mems_allowed to synchronize with cpuset_mems_allowed().
  766. *
  767. * While the mm_struct we are migrating is typically from some
  768. * other task, the task_struct mems_allowed that we are hacking
  769. * is for our current task, which must allocate new pages for that
  770. * migrating memory region.
  771. *
  772. * We call cpuset_update_task_memory_state() before hacking
  773. * our tasks mems_allowed, so that we are assured of being in
  774. * sync with our tasks cpuset, and in particular, callbacks to
  775. * cpuset_update_task_memory_state() from nested page allocations
  776. * won't see any mismatch of our cpuset and task mems_generation
  777. * values, so won't overwrite our hacked tasks mems_allowed
  778. * nodemask.
  779. */
  780. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  781. const nodemask_t *to)
  782. {
  783. struct task_struct *tsk = current;
  784. cpuset_update_task_memory_state();
  785. mutex_lock(&callback_mutex);
  786. tsk->mems_allowed = *to;
  787. mutex_unlock(&callback_mutex);
  788. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  789. mutex_lock(&callback_mutex);
  790. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  791. mutex_unlock(&callback_mutex);
  792. }
  793. /*
  794. * Handle user request to change the 'mems' memory placement
  795. * of a cpuset. Needs to validate the request, update the
  796. * cpusets mems_allowed and mems_generation, and for each
  797. * task in the cpuset, rebind any vma mempolicies and if
  798. * the cpuset is marked 'memory_migrate', migrate the tasks
  799. * pages to the new memory.
  800. *
  801. * Call with cgroup_mutex held. May take callback_mutex during call.
  802. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  803. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  804. * their mempolicies to the cpusets new mems_allowed.
  805. */
  806. static void *cpuset_being_rebound;
  807. static int update_nodemask(struct cpuset *cs, char *buf)
  808. {
  809. struct cpuset trialcs;
  810. nodemask_t oldmem;
  811. struct task_struct *p;
  812. struct mm_struct **mmarray;
  813. int i, n, ntasks;
  814. int migrate;
  815. int fudge;
  816. int retval;
  817. struct cgroup_iter it;
  818. /*
  819. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  820. * it's read-only
  821. */
  822. if (cs == &top_cpuset)
  823. return -EACCES;
  824. trialcs = *cs;
  825. /*
  826. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  827. * Since nodelist_parse() fails on an empty mask, we special case
  828. * that parsing. The validate_change() call ensures that cpusets
  829. * with tasks have memory.
  830. */
  831. buf = strstrip(buf);
  832. if (!*buf) {
  833. nodes_clear(trialcs.mems_allowed);
  834. } else {
  835. retval = nodelist_parse(buf, trialcs.mems_allowed);
  836. if (retval < 0)
  837. goto done;
  838. }
  839. nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
  840. node_states[N_HIGH_MEMORY]);
  841. oldmem = cs->mems_allowed;
  842. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  843. retval = 0; /* Too easy - nothing to do */
  844. goto done;
  845. }
  846. retval = validate_change(cs, &trialcs);
  847. if (retval < 0)
  848. goto done;
  849. mutex_lock(&callback_mutex);
  850. cs->mems_allowed = trialcs.mems_allowed;
  851. cs->mems_generation = cpuset_mems_generation++;
  852. mutex_unlock(&callback_mutex);
  853. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  854. fudge = 10; /* spare mmarray[] slots */
  855. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  856. retval = -ENOMEM;
  857. /*
  858. * Allocate mmarray[] to hold mm reference for each task
  859. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  860. * tasklist_lock. We could use GFP_ATOMIC, but with a
  861. * few more lines of code, we can retry until we get a big
  862. * enough mmarray[] w/o using GFP_ATOMIC.
  863. */
  864. while (1) {
  865. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  866. ntasks += fudge;
  867. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  868. if (!mmarray)
  869. goto done;
  870. read_lock(&tasklist_lock); /* block fork */
  871. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  872. break; /* got enough */
  873. read_unlock(&tasklist_lock); /* try again */
  874. kfree(mmarray);
  875. }
  876. n = 0;
  877. /* Load up mmarray[] with mm reference for each task in cpuset. */
  878. cgroup_iter_start(cs->css.cgroup, &it);
  879. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  880. struct mm_struct *mm;
  881. if (n >= ntasks) {
  882. printk(KERN_WARNING
  883. "Cpuset mempolicy rebind incomplete.\n");
  884. break;
  885. }
  886. mm = get_task_mm(p);
  887. if (!mm)
  888. continue;
  889. mmarray[n++] = mm;
  890. }
  891. cgroup_iter_end(cs->css.cgroup, &it);
  892. read_unlock(&tasklist_lock);
  893. /*
  894. * Now that we've dropped the tasklist spinlock, we can
  895. * rebind the vma mempolicies of each mm in mmarray[] to their
  896. * new cpuset, and release that mm. The mpol_rebind_mm()
  897. * call takes mmap_sem, which we couldn't take while holding
  898. * tasklist_lock. Forks can happen again now - the mpol_dup()
  899. * cpuset_being_rebound check will catch such forks, and rebind
  900. * their vma mempolicies too. Because we still hold the global
  901. * cgroup_mutex, we know that no other rebind effort will
  902. * be contending for the global variable cpuset_being_rebound.
  903. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  904. * is idempotent. Also migrate pages in each mm to new nodes.
  905. */
  906. migrate = is_memory_migrate(cs);
  907. for (i = 0; i < n; i++) {
  908. struct mm_struct *mm = mmarray[i];
  909. mpol_rebind_mm(mm, &cs->mems_allowed);
  910. if (migrate)
  911. cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
  912. mmput(mm);
  913. }
  914. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  915. kfree(mmarray);
  916. cpuset_being_rebound = NULL;
  917. retval = 0;
  918. done:
  919. return retval;
  920. }
  921. int current_cpuset_is_being_rebound(void)
  922. {
  923. return task_cs(current) == cpuset_being_rebound;
  924. }
  925. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  926. {
  927. if ((int)val < 0)
  928. val = -1;
  929. if (val != cs->relax_domain_level) {
  930. cs->relax_domain_level = val;
  931. rebuild_sched_domains();
  932. }
  933. return 0;
  934. }
  935. /*
  936. * update_flag - read a 0 or a 1 in a file and update associated flag
  937. * bit: the bit to update (see cpuset_flagbits_t)
  938. * cs: the cpuset to update
  939. * turning_on: whether the flag is being set or cleared
  940. *
  941. * Call with cgroup_mutex held.
  942. */
  943. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  944. int turning_on)
  945. {
  946. struct cpuset trialcs;
  947. int err;
  948. int cpus_nonempty, balance_flag_changed;
  949. trialcs = *cs;
  950. if (turning_on)
  951. set_bit(bit, &trialcs.flags);
  952. else
  953. clear_bit(bit, &trialcs.flags);
  954. err = validate_change(cs, &trialcs);
  955. if (err < 0)
  956. return err;
  957. cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
  958. balance_flag_changed = (is_sched_load_balance(cs) !=
  959. is_sched_load_balance(&trialcs));
  960. mutex_lock(&callback_mutex);
  961. cs->flags = trialcs.flags;
  962. mutex_unlock(&callback_mutex);
  963. if (cpus_nonempty && balance_flag_changed)
  964. rebuild_sched_domains();
  965. return 0;
  966. }
  967. /*
  968. * Frequency meter - How fast is some event occurring?
  969. *
  970. * These routines manage a digitally filtered, constant time based,
  971. * event frequency meter. There are four routines:
  972. * fmeter_init() - initialize a frequency meter.
  973. * fmeter_markevent() - called each time the event happens.
  974. * fmeter_getrate() - returns the recent rate of such events.
  975. * fmeter_update() - internal routine used to update fmeter.
  976. *
  977. * A common data structure is passed to each of these routines,
  978. * which is used to keep track of the state required to manage the
  979. * frequency meter and its digital filter.
  980. *
  981. * The filter works on the number of events marked per unit time.
  982. * The filter is single-pole low-pass recursive (IIR). The time unit
  983. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  984. * simulate 3 decimal digits of precision (multiplied by 1000).
  985. *
  986. * With an FM_COEF of 933, and a time base of 1 second, the filter
  987. * has a half-life of 10 seconds, meaning that if the events quit
  988. * happening, then the rate returned from the fmeter_getrate()
  989. * will be cut in half each 10 seconds, until it converges to zero.
  990. *
  991. * It is not worth doing a real infinitely recursive filter. If more
  992. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  993. * just compute FM_MAXTICKS ticks worth, by which point the level
  994. * will be stable.
  995. *
  996. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  997. * arithmetic overflow in the fmeter_update() routine.
  998. *
  999. * Given the simple 32 bit integer arithmetic used, this meter works
  1000. * best for reporting rates between one per millisecond (msec) and
  1001. * one per 32 (approx) seconds. At constant rates faster than one
  1002. * per msec it maxes out at values just under 1,000,000. At constant
  1003. * rates between one per msec, and one per second it will stabilize
  1004. * to a value N*1000, where N is the rate of events per second.
  1005. * At constant rates between one per second and one per 32 seconds,
  1006. * it will be choppy, moving up on the seconds that have an event,
  1007. * and then decaying until the next event. At rates slower than
  1008. * about one in 32 seconds, it decays all the way back to zero between
  1009. * each event.
  1010. */
  1011. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1012. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1013. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1014. #define FM_SCALE 1000 /* faux fixed point scale */
  1015. /* Initialize a frequency meter */
  1016. static void fmeter_init(struct fmeter *fmp)
  1017. {
  1018. fmp->cnt = 0;
  1019. fmp->val = 0;
  1020. fmp->time = 0;
  1021. spin_lock_init(&fmp->lock);
  1022. }
  1023. /* Internal meter update - process cnt events and update value */
  1024. static void fmeter_update(struct fmeter *fmp)
  1025. {
  1026. time_t now = get_seconds();
  1027. time_t ticks = now - fmp->time;
  1028. if (ticks == 0)
  1029. return;
  1030. ticks = min(FM_MAXTICKS, ticks);
  1031. while (ticks-- > 0)
  1032. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1033. fmp->time = now;
  1034. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1035. fmp->cnt = 0;
  1036. }
  1037. /* Process any previous ticks, then bump cnt by one (times scale). */
  1038. static void fmeter_markevent(struct fmeter *fmp)
  1039. {
  1040. spin_lock(&fmp->lock);
  1041. fmeter_update(fmp);
  1042. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1043. spin_unlock(&fmp->lock);
  1044. }
  1045. /* Process any previous ticks, then return current value. */
  1046. static int fmeter_getrate(struct fmeter *fmp)
  1047. {
  1048. int val;
  1049. spin_lock(&fmp->lock);
  1050. fmeter_update(fmp);
  1051. val = fmp->val;
  1052. spin_unlock(&fmp->lock);
  1053. return val;
  1054. }
  1055. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1056. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1057. struct cgroup *cont, struct task_struct *tsk)
  1058. {
  1059. struct cpuset *cs = cgroup_cs(cont);
  1060. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1061. return -ENOSPC;
  1062. return security_task_setscheduler(tsk, 0, NULL);
  1063. }
  1064. static void cpuset_attach(struct cgroup_subsys *ss,
  1065. struct cgroup *cont, struct cgroup *oldcont,
  1066. struct task_struct *tsk)
  1067. {
  1068. cpumask_t cpus;
  1069. nodemask_t from, to;
  1070. struct mm_struct *mm;
  1071. struct cpuset *cs = cgroup_cs(cont);
  1072. struct cpuset *oldcs = cgroup_cs(oldcont);
  1073. mutex_lock(&callback_mutex);
  1074. guarantee_online_cpus(cs, &cpus);
  1075. set_cpus_allowed_ptr(tsk, &cpus);
  1076. mutex_unlock(&callback_mutex);
  1077. from = oldcs->mems_allowed;
  1078. to = cs->mems_allowed;
  1079. mm = get_task_mm(tsk);
  1080. if (mm) {
  1081. mpol_rebind_mm(mm, &to);
  1082. if (is_memory_migrate(cs))
  1083. cpuset_migrate_mm(mm, &from, &to);
  1084. mmput(mm);
  1085. }
  1086. }
  1087. /* The various types of files and directories in a cpuset file system */
  1088. typedef enum {
  1089. FILE_MEMORY_MIGRATE,
  1090. FILE_CPULIST,
  1091. FILE_MEMLIST,
  1092. FILE_CPU_EXCLUSIVE,
  1093. FILE_MEM_EXCLUSIVE,
  1094. FILE_MEM_HARDWALL,
  1095. FILE_SCHED_LOAD_BALANCE,
  1096. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1097. FILE_MEMORY_PRESSURE_ENABLED,
  1098. FILE_MEMORY_PRESSURE,
  1099. FILE_SPREAD_PAGE,
  1100. FILE_SPREAD_SLAB,
  1101. } cpuset_filetype_t;
  1102. static ssize_t cpuset_common_file_write(struct cgroup *cont,
  1103. struct cftype *cft,
  1104. struct file *file,
  1105. const char __user *userbuf,
  1106. size_t nbytes, loff_t *unused_ppos)
  1107. {
  1108. struct cpuset *cs = cgroup_cs(cont);
  1109. cpuset_filetype_t type = cft->private;
  1110. char *buffer;
  1111. int retval = 0;
  1112. /* Crude upper limit on largest legitimate cpulist user might write. */
  1113. if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
  1114. return -E2BIG;
  1115. /* +1 for nul-terminator */
  1116. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  1117. if (!buffer)
  1118. return -ENOMEM;
  1119. if (copy_from_user(buffer, userbuf, nbytes)) {
  1120. retval = -EFAULT;
  1121. goto out1;
  1122. }
  1123. buffer[nbytes] = 0; /* nul-terminate */
  1124. cgroup_lock();
  1125. if (cgroup_is_removed(cont)) {
  1126. retval = -ENODEV;
  1127. goto out2;
  1128. }
  1129. switch (type) {
  1130. case FILE_CPULIST:
  1131. retval = update_cpumask(cs, buffer);
  1132. break;
  1133. case FILE_MEMLIST:
  1134. retval = update_nodemask(cs, buffer);
  1135. break;
  1136. default:
  1137. retval = -EINVAL;
  1138. goto out2;
  1139. }
  1140. if (retval == 0)
  1141. retval = nbytes;
  1142. out2:
  1143. cgroup_unlock();
  1144. out1:
  1145. kfree(buffer);
  1146. return retval;
  1147. }
  1148. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1149. {
  1150. int retval = 0;
  1151. struct cpuset *cs = cgroup_cs(cgrp);
  1152. cpuset_filetype_t type = cft->private;
  1153. cgroup_lock();
  1154. if (cgroup_is_removed(cgrp)) {
  1155. cgroup_unlock();
  1156. return -ENODEV;
  1157. }
  1158. switch (type) {
  1159. case FILE_CPU_EXCLUSIVE:
  1160. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1161. break;
  1162. case FILE_MEM_EXCLUSIVE:
  1163. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1164. break;
  1165. case FILE_MEM_HARDWALL:
  1166. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1167. break;
  1168. case FILE_SCHED_LOAD_BALANCE:
  1169. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1170. break;
  1171. case FILE_MEMORY_MIGRATE:
  1172. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1173. break;
  1174. case FILE_MEMORY_PRESSURE_ENABLED:
  1175. cpuset_memory_pressure_enabled = !!val;
  1176. break;
  1177. case FILE_MEMORY_PRESSURE:
  1178. retval = -EACCES;
  1179. break;
  1180. case FILE_SPREAD_PAGE:
  1181. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1182. cs->mems_generation = cpuset_mems_generation++;
  1183. break;
  1184. case FILE_SPREAD_SLAB:
  1185. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1186. cs->mems_generation = cpuset_mems_generation++;
  1187. break;
  1188. default:
  1189. retval = -EINVAL;
  1190. break;
  1191. }
  1192. cgroup_unlock();
  1193. return retval;
  1194. }
  1195. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1196. {
  1197. int retval = 0;
  1198. struct cpuset *cs = cgroup_cs(cgrp);
  1199. cpuset_filetype_t type = cft->private;
  1200. cgroup_lock();
  1201. if (cgroup_is_removed(cgrp)) {
  1202. cgroup_unlock();
  1203. return -ENODEV;
  1204. }
  1205. switch (type) {
  1206. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1207. retval = update_relax_domain_level(cs, val);
  1208. break;
  1209. default:
  1210. retval = -EINVAL;
  1211. break;
  1212. }
  1213. cgroup_unlock();
  1214. return retval;
  1215. }
  1216. /*
  1217. * These ascii lists should be read in a single call, by using a user
  1218. * buffer large enough to hold the entire map. If read in smaller
  1219. * chunks, there is no guarantee of atomicity. Since the display format
  1220. * used, list of ranges of sequential numbers, is variable length,
  1221. * and since these maps can change value dynamically, one could read
  1222. * gibberish by doing partial reads while a list was changing.
  1223. * A single large read to a buffer that crosses a page boundary is
  1224. * ok, because the result being copied to user land is not recomputed
  1225. * across a page fault.
  1226. */
  1227. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1228. {
  1229. cpumask_t mask;
  1230. mutex_lock(&callback_mutex);
  1231. mask = cs->cpus_allowed;
  1232. mutex_unlock(&callback_mutex);
  1233. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1234. }
  1235. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1236. {
  1237. nodemask_t mask;
  1238. mutex_lock(&callback_mutex);
  1239. mask = cs->mems_allowed;
  1240. mutex_unlock(&callback_mutex);
  1241. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1242. }
  1243. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1244. struct cftype *cft,
  1245. struct file *file,
  1246. char __user *buf,
  1247. size_t nbytes, loff_t *ppos)
  1248. {
  1249. struct cpuset *cs = cgroup_cs(cont);
  1250. cpuset_filetype_t type = cft->private;
  1251. char *page;
  1252. ssize_t retval = 0;
  1253. char *s;
  1254. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1255. return -ENOMEM;
  1256. s = page;
  1257. switch (type) {
  1258. case FILE_CPULIST:
  1259. s += cpuset_sprintf_cpulist(s, cs);
  1260. break;
  1261. case FILE_MEMLIST:
  1262. s += cpuset_sprintf_memlist(s, cs);
  1263. break;
  1264. default:
  1265. retval = -EINVAL;
  1266. goto out;
  1267. }
  1268. *s++ = '\n';
  1269. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1270. out:
  1271. free_page((unsigned long)page);
  1272. return retval;
  1273. }
  1274. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1275. {
  1276. struct cpuset *cs = cgroup_cs(cont);
  1277. cpuset_filetype_t type = cft->private;
  1278. switch (type) {
  1279. case FILE_CPU_EXCLUSIVE:
  1280. return is_cpu_exclusive(cs);
  1281. case FILE_MEM_EXCLUSIVE:
  1282. return is_mem_exclusive(cs);
  1283. case FILE_MEM_HARDWALL:
  1284. return is_mem_hardwall(cs);
  1285. case FILE_SCHED_LOAD_BALANCE:
  1286. return is_sched_load_balance(cs);
  1287. case FILE_MEMORY_MIGRATE:
  1288. return is_memory_migrate(cs);
  1289. case FILE_MEMORY_PRESSURE_ENABLED:
  1290. return cpuset_memory_pressure_enabled;
  1291. case FILE_MEMORY_PRESSURE:
  1292. return fmeter_getrate(&cs->fmeter);
  1293. case FILE_SPREAD_PAGE:
  1294. return is_spread_page(cs);
  1295. case FILE_SPREAD_SLAB:
  1296. return is_spread_slab(cs);
  1297. default:
  1298. BUG();
  1299. }
  1300. }
  1301. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1302. {
  1303. struct cpuset *cs = cgroup_cs(cont);
  1304. cpuset_filetype_t type = cft->private;
  1305. switch (type) {
  1306. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1307. return cs->relax_domain_level;
  1308. default:
  1309. BUG();
  1310. }
  1311. }
  1312. /*
  1313. * for the common functions, 'private' gives the type of file
  1314. */
  1315. static struct cftype files[] = {
  1316. {
  1317. .name = "cpus",
  1318. .read = cpuset_common_file_read,
  1319. .write = cpuset_common_file_write,
  1320. .private = FILE_CPULIST,
  1321. },
  1322. {
  1323. .name = "mems",
  1324. .read = cpuset_common_file_read,
  1325. .write = cpuset_common_file_write,
  1326. .private = FILE_MEMLIST,
  1327. },
  1328. {
  1329. .name = "cpu_exclusive",
  1330. .read_u64 = cpuset_read_u64,
  1331. .write_u64 = cpuset_write_u64,
  1332. .private = FILE_CPU_EXCLUSIVE,
  1333. },
  1334. {
  1335. .name = "mem_exclusive",
  1336. .read_u64 = cpuset_read_u64,
  1337. .write_u64 = cpuset_write_u64,
  1338. .private = FILE_MEM_EXCLUSIVE,
  1339. },
  1340. {
  1341. .name = "mem_hardwall",
  1342. .read_u64 = cpuset_read_u64,
  1343. .write_u64 = cpuset_write_u64,
  1344. .private = FILE_MEM_HARDWALL,
  1345. },
  1346. {
  1347. .name = "sched_load_balance",
  1348. .read_u64 = cpuset_read_u64,
  1349. .write_u64 = cpuset_write_u64,
  1350. .private = FILE_SCHED_LOAD_BALANCE,
  1351. },
  1352. {
  1353. .name = "sched_relax_domain_level",
  1354. .read_s64 = cpuset_read_s64,
  1355. .write_s64 = cpuset_write_s64,
  1356. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1357. },
  1358. {
  1359. .name = "memory_migrate",
  1360. .read_u64 = cpuset_read_u64,
  1361. .write_u64 = cpuset_write_u64,
  1362. .private = FILE_MEMORY_MIGRATE,
  1363. },
  1364. {
  1365. .name = "memory_pressure",
  1366. .read_u64 = cpuset_read_u64,
  1367. .write_u64 = cpuset_write_u64,
  1368. .private = FILE_MEMORY_PRESSURE,
  1369. },
  1370. {
  1371. .name = "memory_spread_page",
  1372. .read_u64 = cpuset_read_u64,
  1373. .write_u64 = cpuset_write_u64,
  1374. .private = FILE_SPREAD_PAGE,
  1375. },
  1376. {
  1377. .name = "memory_spread_slab",
  1378. .read_u64 = cpuset_read_u64,
  1379. .write_u64 = cpuset_write_u64,
  1380. .private = FILE_SPREAD_SLAB,
  1381. },
  1382. };
  1383. static struct cftype cft_memory_pressure_enabled = {
  1384. .name = "memory_pressure_enabled",
  1385. .read_u64 = cpuset_read_u64,
  1386. .write_u64 = cpuset_write_u64,
  1387. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1388. };
  1389. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1390. {
  1391. int err;
  1392. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1393. if (err)
  1394. return err;
  1395. /* memory_pressure_enabled is in root cpuset only */
  1396. if (!cont->parent)
  1397. err = cgroup_add_file(cont, ss,
  1398. &cft_memory_pressure_enabled);
  1399. return err;
  1400. }
  1401. /*
  1402. * post_clone() is called at the end of cgroup_clone().
  1403. * 'cgroup' was just created automatically as a result of
  1404. * a cgroup_clone(), and the current task is about to
  1405. * be moved into 'cgroup'.
  1406. *
  1407. * Currently we refuse to set up the cgroup - thereby
  1408. * refusing the task to be entered, and as a result refusing
  1409. * the sys_unshare() or clone() which initiated it - if any
  1410. * sibling cpusets have exclusive cpus or mem.
  1411. *
  1412. * If this becomes a problem for some users who wish to
  1413. * allow that scenario, then cpuset_post_clone() could be
  1414. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1415. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1416. * held.
  1417. */
  1418. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1419. struct cgroup *cgroup)
  1420. {
  1421. struct cgroup *parent, *child;
  1422. struct cpuset *cs, *parent_cs;
  1423. parent = cgroup->parent;
  1424. list_for_each_entry(child, &parent->children, sibling) {
  1425. cs = cgroup_cs(child);
  1426. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1427. return;
  1428. }
  1429. cs = cgroup_cs(cgroup);
  1430. parent_cs = cgroup_cs(parent);
  1431. cs->mems_allowed = parent_cs->mems_allowed;
  1432. cs->cpus_allowed = parent_cs->cpus_allowed;
  1433. return;
  1434. }
  1435. /*
  1436. * cpuset_create - create a cpuset
  1437. * ss: cpuset cgroup subsystem
  1438. * cont: control group that the new cpuset will be part of
  1439. */
  1440. static struct cgroup_subsys_state *cpuset_create(
  1441. struct cgroup_subsys *ss,
  1442. struct cgroup *cont)
  1443. {
  1444. struct cpuset *cs;
  1445. struct cpuset *parent;
  1446. if (!cont->parent) {
  1447. /* This is early initialization for the top cgroup */
  1448. top_cpuset.mems_generation = cpuset_mems_generation++;
  1449. return &top_cpuset.css;
  1450. }
  1451. parent = cgroup_cs(cont->parent);
  1452. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1453. if (!cs)
  1454. return ERR_PTR(-ENOMEM);
  1455. cpuset_update_task_memory_state();
  1456. cs->flags = 0;
  1457. if (is_spread_page(parent))
  1458. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1459. if (is_spread_slab(parent))
  1460. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1461. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1462. cpus_clear(cs->cpus_allowed);
  1463. nodes_clear(cs->mems_allowed);
  1464. cs->mems_generation = cpuset_mems_generation++;
  1465. fmeter_init(&cs->fmeter);
  1466. cs->relax_domain_level = -1;
  1467. cs->parent = parent;
  1468. number_of_cpusets++;
  1469. return &cs->css ;
  1470. }
  1471. /*
  1472. * Locking note on the strange update_flag() call below:
  1473. *
  1474. * If the cpuset being removed has its flag 'sched_load_balance'
  1475. * enabled, then simulate turning sched_load_balance off, which
  1476. * will call rebuild_sched_domains(). The get_online_cpus()
  1477. * call in rebuild_sched_domains() must not be made while holding
  1478. * callback_mutex. Elsewhere the kernel nests callback_mutex inside
  1479. * get_online_cpus() calls. So the reverse nesting would risk an
  1480. * ABBA deadlock.
  1481. */
  1482. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1483. {
  1484. struct cpuset *cs = cgroup_cs(cont);
  1485. cpuset_update_task_memory_state();
  1486. if (is_sched_load_balance(cs))
  1487. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1488. number_of_cpusets--;
  1489. kfree(cs);
  1490. }
  1491. struct cgroup_subsys cpuset_subsys = {
  1492. .name = "cpuset",
  1493. .create = cpuset_create,
  1494. .destroy = cpuset_destroy,
  1495. .can_attach = cpuset_can_attach,
  1496. .attach = cpuset_attach,
  1497. .populate = cpuset_populate,
  1498. .post_clone = cpuset_post_clone,
  1499. .subsys_id = cpuset_subsys_id,
  1500. .early_init = 1,
  1501. };
  1502. /*
  1503. * cpuset_init_early - just enough so that the calls to
  1504. * cpuset_update_task_memory_state() in early init code
  1505. * are harmless.
  1506. */
  1507. int __init cpuset_init_early(void)
  1508. {
  1509. top_cpuset.mems_generation = cpuset_mems_generation++;
  1510. return 0;
  1511. }
  1512. /**
  1513. * cpuset_init - initialize cpusets at system boot
  1514. *
  1515. * Description: Initialize top_cpuset and the cpuset internal file system,
  1516. **/
  1517. int __init cpuset_init(void)
  1518. {
  1519. int err = 0;
  1520. cpus_setall(top_cpuset.cpus_allowed);
  1521. nodes_setall(top_cpuset.mems_allowed);
  1522. fmeter_init(&top_cpuset.fmeter);
  1523. top_cpuset.mems_generation = cpuset_mems_generation++;
  1524. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1525. top_cpuset.relax_domain_level = -1;
  1526. err = register_filesystem(&cpuset_fs_type);
  1527. if (err < 0)
  1528. return err;
  1529. number_of_cpusets = 1;
  1530. return 0;
  1531. }
  1532. /**
  1533. * cpuset_do_move_task - move a given task to another cpuset
  1534. * @tsk: pointer to task_struct the task to move
  1535. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1536. *
  1537. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1538. * Return nonzero to stop the walk through the tasks.
  1539. */
  1540. static void cpuset_do_move_task(struct task_struct *tsk,
  1541. struct cgroup_scanner *scan)
  1542. {
  1543. struct cpuset_hotplug_scanner *chsp;
  1544. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1545. cgroup_attach_task(chsp->to, tsk);
  1546. }
  1547. /**
  1548. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1549. * @from: cpuset in which the tasks currently reside
  1550. * @to: cpuset to which the tasks will be moved
  1551. *
  1552. * Called with cgroup_mutex held
  1553. * callback_mutex must not be held, as cpuset_attach() will take it.
  1554. *
  1555. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1556. * calling callback functions for each.
  1557. */
  1558. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1559. {
  1560. struct cpuset_hotplug_scanner scan;
  1561. scan.scan.cg = from->css.cgroup;
  1562. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1563. scan.scan.process_task = cpuset_do_move_task;
  1564. scan.scan.heap = NULL;
  1565. scan.to = to->css.cgroup;
  1566. if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
  1567. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1568. "cgroup_scan_tasks failed\n");
  1569. }
  1570. /*
  1571. * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
  1572. * or memory nodes, we need to walk over the cpuset hierarchy,
  1573. * removing that CPU or node from all cpusets. If this removes the
  1574. * last CPU or node from a cpuset, then move the tasks in the empty
  1575. * cpuset to its next-highest non-empty parent.
  1576. *
  1577. * Called with cgroup_mutex held
  1578. * callback_mutex must not be held, as cpuset_attach() will take it.
  1579. */
  1580. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1581. {
  1582. struct cpuset *parent;
  1583. /*
  1584. * The cgroup's css_sets list is in use if there are tasks
  1585. * in the cpuset; the list is empty if there are none;
  1586. * the cs->css.refcnt seems always 0.
  1587. */
  1588. if (list_empty(&cs->css.cgroup->css_sets))
  1589. return;
  1590. /*
  1591. * Find its next-highest non-empty parent, (top cpuset
  1592. * has online cpus, so can't be empty).
  1593. */
  1594. parent = cs->parent;
  1595. while (cpus_empty(parent->cpus_allowed) ||
  1596. nodes_empty(parent->mems_allowed))
  1597. parent = parent->parent;
  1598. move_member_tasks_to_cpuset(cs, parent);
  1599. }
  1600. /*
  1601. * Walk the specified cpuset subtree and look for empty cpusets.
  1602. * The tasks of such cpuset must be moved to a parent cpuset.
  1603. *
  1604. * Called with cgroup_mutex held. We take callback_mutex to modify
  1605. * cpus_allowed and mems_allowed.
  1606. *
  1607. * This walk processes the tree from top to bottom, completing one layer
  1608. * before dropping down to the next. It always processes a node before
  1609. * any of its children.
  1610. *
  1611. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1612. * that has tasks along with an empty 'mems'. But if we did see such
  1613. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1614. */
  1615. static void scan_for_empty_cpusets(const struct cpuset *root)
  1616. {
  1617. struct cpuset *cp; /* scans cpusets being updated */
  1618. struct cpuset *child; /* scans child cpusets of cp */
  1619. struct list_head queue;
  1620. struct cgroup *cont;
  1621. INIT_LIST_HEAD(&queue);
  1622. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1623. while (!list_empty(&queue)) {
  1624. cp = container_of(queue.next, struct cpuset, stack_list);
  1625. list_del(queue.next);
  1626. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1627. child = cgroup_cs(cont);
  1628. list_add_tail(&child->stack_list, &queue);
  1629. }
  1630. cont = cp->css.cgroup;
  1631. /* Continue past cpusets with all cpus, mems online */
  1632. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1633. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1634. continue;
  1635. /* Remove offline cpus and mems from this cpuset. */
  1636. mutex_lock(&callback_mutex);
  1637. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1638. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1639. node_states[N_HIGH_MEMORY]);
  1640. mutex_unlock(&callback_mutex);
  1641. /* Move tasks from the empty cpuset to a parent */
  1642. if (cpus_empty(cp->cpus_allowed) ||
  1643. nodes_empty(cp->mems_allowed))
  1644. remove_tasks_in_empty_cpuset(cp);
  1645. }
  1646. }
  1647. /*
  1648. * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
  1649. * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
  1650. * track what's online after any CPU or memory node hotplug or unplug event.
  1651. *
  1652. * Since there are two callers of this routine, one for CPU hotplug
  1653. * events and one for memory node hotplug events, we could have coded
  1654. * two separate routines here. We code it as a single common routine
  1655. * in order to minimize text size.
  1656. */
  1657. static void common_cpu_mem_hotplug_unplug(void)
  1658. {
  1659. cgroup_lock();
  1660. top_cpuset.cpus_allowed = cpu_online_map;
  1661. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1662. scan_for_empty_cpusets(&top_cpuset);
  1663. cgroup_unlock();
  1664. }
  1665. /*
  1666. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1667. * period. This is necessary in order to make cpusets transparent
  1668. * (of no affect) on systems that are actively using CPU hotplug
  1669. * but making no active use of cpusets.
  1670. *
  1671. * This routine ensures that top_cpuset.cpus_allowed tracks
  1672. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1673. */
  1674. static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
  1675. unsigned long phase, void *unused_cpu)
  1676. {
  1677. if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
  1678. return NOTIFY_DONE;
  1679. common_cpu_mem_hotplug_unplug();
  1680. return 0;
  1681. }
  1682. #ifdef CONFIG_MEMORY_HOTPLUG
  1683. /*
  1684. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1685. * Call this routine anytime after you change
  1686. * node_states[N_HIGH_MEMORY].
  1687. * See also the previous routine cpuset_handle_cpuhp().
  1688. */
  1689. void cpuset_track_online_nodes(void)
  1690. {
  1691. common_cpu_mem_hotplug_unplug();
  1692. }
  1693. #endif
  1694. /**
  1695. * cpuset_init_smp - initialize cpus_allowed
  1696. *
  1697. * Description: Finish top cpuset after cpu, node maps are initialized
  1698. **/
  1699. void __init cpuset_init_smp(void)
  1700. {
  1701. top_cpuset.cpus_allowed = cpu_online_map;
  1702. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1703. hotcpu_notifier(cpuset_handle_cpuhp, 0);
  1704. }
  1705. /**
  1706. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1707. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1708. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1709. *
  1710. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1711. * attached to the specified @tsk. Guaranteed to return some non-empty
  1712. * subset of cpu_online_map, even if this means going outside the
  1713. * tasks cpuset.
  1714. **/
  1715. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1716. {
  1717. mutex_lock(&callback_mutex);
  1718. cpuset_cpus_allowed_locked(tsk, pmask);
  1719. mutex_unlock(&callback_mutex);
  1720. }
  1721. /**
  1722. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1723. * Must be called with callback_mutex held.
  1724. **/
  1725. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1726. {
  1727. task_lock(tsk);
  1728. guarantee_online_cpus(task_cs(tsk), pmask);
  1729. task_unlock(tsk);
  1730. }
  1731. void cpuset_init_current_mems_allowed(void)
  1732. {
  1733. nodes_setall(current->mems_allowed);
  1734. }
  1735. /**
  1736. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1737. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1738. *
  1739. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1740. * attached to the specified @tsk. Guaranteed to return some non-empty
  1741. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1742. * tasks cpuset.
  1743. **/
  1744. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1745. {
  1746. nodemask_t mask;
  1747. mutex_lock(&callback_mutex);
  1748. task_lock(tsk);
  1749. guarantee_online_mems(task_cs(tsk), &mask);
  1750. task_unlock(tsk);
  1751. mutex_unlock(&callback_mutex);
  1752. return mask;
  1753. }
  1754. /**
  1755. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1756. * @nodemask: the nodemask to be checked
  1757. *
  1758. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1759. */
  1760. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1761. {
  1762. return nodes_intersects(*nodemask, current->mems_allowed);
  1763. }
  1764. /*
  1765. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1766. * mem_hardwall ancestor to the specified cpuset. Call holding
  1767. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1768. * (an unusual configuration), then returns the root cpuset.
  1769. */
  1770. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1771. {
  1772. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1773. cs = cs->parent;
  1774. return cs;
  1775. }
  1776. /**
  1777. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1778. * @z: is this zone on an allowed node?
  1779. * @gfp_mask: memory allocation flags
  1780. *
  1781. * If we're in interrupt, yes, we can always allocate. If
  1782. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1783. * z's node is in our tasks mems_allowed, yes. If it's not a
  1784. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1785. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1786. * If the task has been OOM killed and has access to memory reserves
  1787. * as specified by the TIF_MEMDIE flag, yes.
  1788. * Otherwise, no.
  1789. *
  1790. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1791. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1792. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1793. * from an enclosing cpuset.
  1794. *
  1795. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1796. * hardwall cpusets, and never sleeps.
  1797. *
  1798. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1799. * by forcibly using a zonelist starting at a specified node, and by
  1800. * (in get_page_from_freelist()) refusing to consider the zones for
  1801. * any node on the zonelist except the first. By the time any such
  1802. * calls get to this routine, we should just shut up and say 'yes'.
  1803. *
  1804. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1805. * and do not allow allocations outside the current tasks cpuset
  1806. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1807. * GFP_KERNEL allocations are not so marked, so can escape to the
  1808. * nearest enclosing hardwalled ancestor cpuset.
  1809. *
  1810. * Scanning up parent cpusets requires callback_mutex. The
  1811. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1812. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1813. * current tasks mems_allowed came up empty on the first pass over
  1814. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1815. * cpuset are short of memory, might require taking the callback_mutex
  1816. * mutex.
  1817. *
  1818. * The first call here from mm/page_alloc:get_page_from_freelist()
  1819. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1820. * so no allocation on a node outside the cpuset is allowed (unless
  1821. * in interrupt, of course).
  1822. *
  1823. * The second pass through get_page_from_freelist() doesn't even call
  1824. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1825. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1826. * in alloc_flags. That logic and the checks below have the combined
  1827. * affect that:
  1828. * in_interrupt - any node ok (current task context irrelevant)
  1829. * GFP_ATOMIC - any node ok
  1830. * TIF_MEMDIE - any node ok
  1831. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1832. * GFP_USER - only nodes in current tasks mems allowed ok.
  1833. *
  1834. * Rule:
  1835. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1836. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1837. * the code that might scan up ancestor cpusets and sleep.
  1838. */
  1839. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1840. {
  1841. int node; /* node that zone z is on */
  1842. const struct cpuset *cs; /* current cpuset ancestors */
  1843. int allowed; /* is allocation in zone z allowed? */
  1844. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1845. return 1;
  1846. node = zone_to_nid(z);
  1847. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1848. if (node_isset(node, current->mems_allowed))
  1849. return 1;
  1850. /*
  1851. * Allow tasks that have access to memory reserves because they have
  1852. * been OOM killed to get memory anywhere.
  1853. */
  1854. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1855. return 1;
  1856. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1857. return 0;
  1858. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1859. return 1;
  1860. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1861. mutex_lock(&callback_mutex);
  1862. task_lock(current);
  1863. cs = nearest_hardwall_ancestor(task_cs(current));
  1864. task_unlock(current);
  1865. allowed = node_isset(node, cs->mems_allowed);
  1866. mutex_unlock(&callback_mutex);
  1867. return allowed;
  1868. }
  1869. /*
  1870. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1871. * @z: is this zone on an allowed node?
  1872. * @gfp_mask: memory allocation flags
  1873. *
  1874. * If we're in interrupt, yes, we can always allocate.
  1875. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1876. * z's node is in our tasks mems_allowed, yes. If the task has been
  1877. * OOM killed and has access to memory reserves as specified by the
  1878. * TIF_MEMDIE flag, yes. Otherwise, no.
  1879. *
  1880. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1881. * by forcibly using a zonelist starting at a specified node, and by
  1882. * (in get_page_from_freelist()) refusing to consider the zones for
  1883. * any node on the zonelist except the first. By the time any such
  1884. * calls get to this routine, we should just shut up and say 'yes'.
  1885. *
  1886. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1887. * this variant requires that the zone be in the current tasks
  1888. * mems_allowed or that we're in interrupt. It does not scan up the
  1889. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1890. * It never sleeps.
  1891. */
  1892. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1893. {
  1894. int node; /* node that zone z is on */
  1895. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1896. return 1;
  1897. node = zone_to_nid(z);
  1898. if (node_isset(node, current->mems_allowed))
  1899. return 1;
  1900. /*
  1901. * Allow tasks that have access to memory reserves because they have
  1902. * been OOM killed to get memory anywhere.
  1903. */
  1904. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1905. return 1;
  1906. return 0;
  1907. }
  1908. /**
  1909. * cpuset_lock - lock out any changes to cpuset structures
  1910. *
  1911. * The out of memory (oom) code needs to mutex_lock cpusets
  1912. * from being changed while it scans the tasklist looking for a
  1913. * task in an overlapping cpuset. Expose callback_mutex via this
  1914. * cpuset_lock() routine, so the oom code can lock it, before
  1915. * locking the task list. The tasklist_lock is a spinlock, so
  1916. * must be taken inside callback_mutex.
  1917. */
  1918. void cpuset_lock(void)
  1919. {
  1920. mutex_lock(&callback_mutex);
  1921. }
  1922. /**
  1923. * cpuset_unlock - release lock on cpuset changes
  1924. *
  1925. * Undo the lock taken in a previous cpuset_lock() call.
  1926. */
  1927. void cpuset_unlock(void)
  1928. {
  1929. mutex_unlock(&callback_mutex);
  1930. }
  1931. /**
  1932. * cpuset_mem_spread_node() - On which node to begin search for a page
  1933. *
  1934. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  1935. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  1936. * and if the memory allocation used cpuset_mem_spread_node()
  1937. * to determine on which node to start looking, as it will for
  1938. * certain page cache or slab cache pages such as used for file
  1939. * system buffers and inode caches, then instead of starting on the
  1940. * local node to look for a free page, rather spread the starting
  1941. * node around the tasks mems_allowed nodes.
  1942. *
  1943. * We don't have to worry about the returned node being offline
  1944. * because "it can't happen", and even if it did, it would be ok.
  1945. *
  1946. * The routines calling guarantee_online_mems() are careful to
  1947. * only set nodes in task->mems_allowed that are online. So it
  1948. * should not be possible for the following code to return an
  1949. * offline node. But if it did, that would be ok, as this routine
  1950. * is not returning the node where the allocation must be, only
  1951. * the node where the search should start. The zonelist passed to
  1952. * __alloc_pages() will include all nodes. If the slab allocator
  1953. * is passed an offline node, it will fall back to the local node.
  1954. * See kmem_cache_alloc_node().
  1955. */
  1956. int cpuset_mem_spread_node(void)
  1957. {
  1958. int node;
  1959. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  1960. if (node == MAX_NUMNODES)
  1961. node = first_node(current->mems_allowed);
  1962. current->cpuset_mem_spread_rotor = node;
  1963. return node;
  1964. }
  1965. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  1966. /**
  1967. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  1968. * @tsk1: pointer to task_struct of some task.
  1969. * @tsk2: pointer to task_struct of some other task.
  1970. *
  1971. * Description: Return true if @tsk1's mems_allowed intersects the
  1972. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  1973. * one of the task's memory usage might impact the memory available
  1974. * to the other.
  1975. **/
  1976. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  1977. const struct task_struct *tsk2)
  1978. {
  1979. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  1980. }
  1981. /*
  1982. * Collection of memory_pressure is suppressed unless
  1983. * this flag is enabled by writing "1" to the special
  1984. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  1985. */
  1986. int cpuset_memory_pressure_enabled __read_mostly;
  1987. /**
  1988. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  1989. *
  1990. * Keep a running average of the rate of synchronous (direct)
  1991. * page reclaim efforts initiated by tasks in each cpuset.
  1992. *
  1993. * This represents the rate at which some task in the cpuset
  1994. * ran low on memory on all nodes it was allowed to use, and
  1995. * had to enter the kernels page reclaim code in an effort to
  1996. * create more free memory by tossing clean pages or swapping
  1997. * or writing dirty pages.
  1998. *
  1999. * Display to user space in the per-cpuset read-only file
  2000. * "memory_pressure". Value displayed is an integer
  2001. * representing the recent rate of entry into the synchronous
  2002. * (direct) page reclaim by any task attached to the cpuset.
  2003. **/
  2004. void __cpuset_memory_pressure_bump(void)
  2005. {
  2006. task_lock(current);
  2007. fmeter_markevent(&task_cs(current)->fmeter);
  2008. task_unlock(current);
  2009. }
  2010. #ifdef CONFIG_PROC_PID_CPUSET
  2011. /*
  2012. * proc_cpuset_show()
  2013. * - Print tasks cpuset path into seq_file.
  2014. * - Used for /proc/<pid>/cpuset.
  2015. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2016. * doesn't really matter if tsk->cpuset changes after we read it,
  2017. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2018. * anyway.
  2019. */
  2020. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2021. {
  2022. struct pid *pid;
  2023. struct task_struct *tsk;
  2024. char *buf;
  2025. struct cgroup_subsys_state *css;
  2026. int retval;
  2027. retval = -ENOMEM;
  2028. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2029. if (!buf)
  2030. goto out;
  2031. retval = -ESRCH;
  2032. pid = m->private;
  2033. tsk = get_pid_task(pid, PIDTYPE_PID);
  2034. if (!tsk)
  2035. goto out_free;
  2036. retval = -EINVAL;
  2037. cgroup_lock();
  2038. css = task_subsys_state(tsk, cpuset_subsys_id);
  2039. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2040. if (retval < 0)
  2041. goto out_unlock;
  2042. seq_puts(m, buf);
  2043. seq_putc(m, '\n');
  2044. out_unlock:
  2045. cgroup_unlock();
  2046. put_task_struct(tsk);
  2047. out_free:
  2048. kfree(buf);
  2049. out:
  2050. return retval;
  2051. }
  2052. static int cpuset_open(struct inode *inode, struct file *file)
  2053. {
  2054. struct pid *pid = PROC_I(inode)->pid;
  2055. return single_open(file, proc_cpuset_show, pid);
  2056. }
  2057. const struct file_operations proc_cpuset_operations = {
  2058. .open = cpuset_open,
  2059. .read = seq_read,
  2060. .llseek = seq_lseek,
  2061. .release = single_release,
  2062. };
  2063. #endif /* CONFIG_PROC_PID_CPUSET */
  2064. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2065. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2066. {
  2067. seq_printf(m, "Cpus_allowed:\t");
  2068. m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
  2069. task->cpus_allowed);
  2070. seq_printf(m, "\n");
  2071. seq_printf(m, "Cpus_allowed_list:\t");
  2072. m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
  2073. task->cpus_allowed);
  2074. seq_printf(m, "\n");
  2075. seq_printf(m, "Mems_allowed:\t");
  2076. m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
  2077. task->mems_allowed);
  2078. seq_printf(m, "\n");
  2079. seq_printf(m, "Mems_allowed_list:\t");
  2080. m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
  2081. task->mems_allowed);
  2082. seq_printf(m, "\n");
  2083. }