timer.h 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. #ifndef _ASMi386_TIMER_H
  2. #define _ASMi386_TIMER_H
  3. #include <linux/init.h>
  4. #include <linux/pm.h>
  5. #include <linux/percpu.h>
  6. #define TICK_SIZE (tick_nsec / 1000)
  7. unsigned long long native_sched_clock(void);
  8. unsigned long native_calculate_cpu_khz(void);
  9. extern int timer_ack;
  10. extern int no_timer_check;
  11. extern int recalibrate_cpu_khz(void);
  12. #ifndef CONFIG_PARAVIRT
  13. #define calculate_cpu_khz() native_calculate_cpu_khz()
  14. #endif
  15. /* Accelerators for sched_clock()
  16. * convert from cycles(64bits) => nanoseconds (64bits)
  17. * basic equation:
  18. * ns = cycles / (freq / ns_per_sec)
  19. * ns = cycles * (ns_per_sec / freq)
  20. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  21. * ns = cycles * (10^6 / cpu_khz)
  22. *
  23. * Then we use scaling math (suggested by george@mvista.com) to get:
  24. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  25. * ns = cycles * cyc2ns_scale / SC
  26. *
  27. * And since SC is a constant power of two, we can convert the div
  28. * into a shift.
  29. *
  30. * We can use khz divisor instead of mhz to keep a better precision, since
  31. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  32. * (mathieu.desnoyers@polymtl.ca)
  33. *
  34. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  35. */
  36. DECLARE_PER_CPU(unsigned long, cyc2ns);
  37. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  38. static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
  39. {
  40. return cyc * per_cpu(cyc2ns, smp_processor_id()) >> CYC2NS_SCALE_FACTOR;
  41. }
  42. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  43. {
  44. unsigned long long ns;
  45. unsigned long flags;
  46. local_irq_save(flags);
  47. ns = __cycles_2_ns(cyc);
  48. local_irq_restore(flags);
  49. return ns;
  50. }
  51. #endif