pgtable-ppc64.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
  2. #define _ASM_POWERPC_PGTABLE_PPC64_H_
  3. /*
  4. * This file contains the functions and defines necessary to modify and use
  5. * the ppc64 hashed page table.
  6. */
  7. #ifndef __ASSEMBLY__
  8. #include <linux/stddef.h>
  9. #include <asm/tlbflush.h>
  10. #endif /* __ASSEMBLY__ */
  11. #ifdef CONFIG_PPC_64K_PAGES
  12. #include <asm/pgtable-64k.h>
  13. #else
  14. #include <asm/pgtable-4k.h>
  15. #endif
  16. #define FIRST_USER_ADDRESS 0
  17. /*
  18. * Size of EA range mapped by our pagetables.
  19. */
  20. #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  21. PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  22. #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
  23. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  24. #error TASK_SIZE_USER64 exceeds pagetable range
  25. #endif
  26. #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
  27. #error TASK_SIZE_USER64 exceeds user VSID range
  28. #endif
  29. /*
  30. * Define the address range of the vmalloc VM area.
  31. */
  32. #define VMALLOC_START ASM_CONST(0xD000000000000000)
  33. #define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
  34. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  35. /*
  36. * Define the address ranges for MMIO and IO space :
  37. *
  38. * ISA_IO_BASE = VMALLOC_END, 64K reserved area
  39. * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
  40. * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
  41. */
  42. #define FULL_IO_SIZE 0x80000000ul
  43. #define ISA_IO_BASE (VMALLOC_END)
  44. #define ISA_IO_END (VMALLOC_END + 0x10000ul)
  45. #define PHB_IO_BASE (ISA_IO_END)
  46. #define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
  47. #define IOREMAP_BASE (PHB_IO_END)
  48. #define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
  49. /*
  50. * Region IDs
  51. */
  52. #define REGION_SHIFT 60UL
  53. #define REGION_MASK (0xfUL << REGION_SHIFT)
  54. #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
  55. #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
  56. #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
  57. #define VMEMMAP_REGION_ID (0xfUL)
  58. #define USER_REGION_ID (0UL)
  59. /*
  60. * Defines the address of the vmemap area, in its own region
  61. */
  62. #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
  63. #define vmemmap ((struct page *)VMEMMAP_BASE)
  64. /*
  65. * Common bits in a linux-style PTE. These match the bits in the
  66. * (hardware-defined) PowerPC PTE as closely as possible. Additional
  67. * bits may be defined in pgtable-*.h
  68. */
  69. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  70. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  71. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  72. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  73. #define _PAGE_GUARDED 0x0008
  74. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  75. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  76. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  77. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  78. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  79. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  80. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  81. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  82. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  83. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  84. /* __pgprot defined in asm-powerpc/page.h */
  85. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  86. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  87. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  88. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  89. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  90. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  91. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  92. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  93. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  94. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  95. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  96. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  97. #define HAVE_PAGE_AGP
  98. /* PTEIDX nibble */
  99. #define _PTEIDX_SECONDARY 0x8
  100. #define _PTEIDX_GROUP_IX 0x7
  101. /*
  102. * POWER4 and newer have per page execute protection, older chips can only
  103. * do this on a segment (256MB) basis.
  104. *
  105. * Also, write permissions imply read permissions.
  106. * This is the closest we can get..
  107. *
  108. * Note due to the way vm flags are laid out, the bits are XWR
  109. */
  110. #define __P000 PAGE_NONE
  111. #define __P001 PAGE_READONLY
  112. #define __P010 PAGE_COPY
  113. #define __P011 PAGE_COPY
  114. #define __P100 PAGE_READONLY_X
  115. #define __P101 PAGE_READONLY_X
  116. #define __P110 PAGE_COPY_X
  117. #define __P111 PAGE_COPY_X
  118. #define __S000 PAGE_NONE
  119. #define __S001 PAGE_READONLY
  120. #define __S010 PAGE_SHARED
  121. #define __S011 PAGE_SHARED
  122. #define __S100 PAGE_READONLY_X
  123. #define __S101 PAGE_READONLY_X
  124. #define __S110 PAGE_SHARED_X
  125. #define __S111 PAGE_SHARED_X
  126. #ifdef CONFIG_HUGETLB_PAGE
  127. #define HAVE_ARCH_UNMAPPED_AREA
  128. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  129. #endif
  130. #ifndef __ASSEMBLY__
  131. /*
  132. * Conversion functions: convert a page and protection to a page entry,
  133. * and a page entry and page directory to the page they refer to.
  134. *
  135. * mk_pte takes a (struct page *) as input
  136. */
  137. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  138. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  139. {
  140. pte_t pte;
  141. pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
  142. return pte;
  143. }
  144. #define pte_modify(_pte, newprot) \
  145. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  146. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  147. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  148. /* pte_clear moved to later in this file */
  149. #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
  150. #define pte_page(x) pfn_to_page(pte_pfn(x))
  151. #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
  152. #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
  153. #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
  154. #define pmd_none(pmd) (!pmd_val(pmd))
  155. #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
  156. || (pmd_val(pmd) & PMD_BAD_BITS))
  157. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  158. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  159. #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
  160. #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
  161. #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
  162. #define pud_none(pud) (!pud_val(pud))
  163. #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
  164. || (pud_val(pud) & PUD_BAD_BITS))
  165. #define pud_present(pud) (pud_val(pud) != 0)
  166. #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
  167. #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
  168. #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
  169. #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
  170. /*
  171. * Find an entry in a page-table-directory. We combine the address region
  172. * (the high order N bits) and the pgd portion of the address.
  173. */
  174. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  175. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
  176. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  177. #define pmd_offset(pudp,addr) \
  178. (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  179. #define pte_offset_kernel(dir,addr) \
  180. (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  181. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  182. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  183. #define pte_unmap(pte) do { } while(0)
  184. #define pte_unmap_nested(pte) do { } while(0)
  185. /* to find an entry in a kernel page-table-directory */
  186. /* This now only contains the vmalloc pages */
  187. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  188. /*
  189. * The following only work if pte_present() is true.
  190. * Undefined behaviour if not..
  191. */
  192. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  193. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  194. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  195. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  196. static inline int pte_special(pte_t pte) { return 0; }
  197. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  198. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  199. static inline pte_t pte_wrprotect(pte_t pte) {
  200. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  201. static inline pte_t pte_mkclean(pte_t pte) {
  202. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  203. static inline pte_t pte_mkold(pte_t pte) {
  204. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  205. static inline pte_t pte_mkwrite(pte_t pte) {
  206. pte_val(pte) |= _PAGE_RW; return pte; }
  207. static inline pte_t pte_mkdirty(pte_t pte) {
  208. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  209. static inline pte_t pte_mkyoung(pte_t pte) {
  210. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  211. static inline pte_t pte_mkhuge(pte_t pte) {
  212. return pte; }
  213. static inline pte_t pte_mkspecial(pte_t pte) {
  214. return pte; }
  215. /* Atomic PTE updates */
  216. static inline unsigned long pte_update(struct mm_struct *mm,
  217. unsigned long addr,
  218. pte_t *ptep, unsigned long clr,
  219. int huge)
  220. {
  221. unsigned long old, tmp;
  222. __asm__ __volatile__(
  223. "1: ldarx %0,0,%3 # pte_update\n\
  224. andi. %1,%0,%6\n\
  225. bne- 1b \n\
  226. andc %1,%0,%4 \n\
  227. stdcx. %1,0,%3 \n\
  228. bne- 1b"
  229. : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
  230. : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
  231. : "cc" );
  232. if (old & _PAGE_HASHPTE)
  233. hpte_need_flush(mm, addr, ptep, old, huge);
  234. return old;
  235. }
  236. static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
  237. unsigned long addr, pte_t *ptep)
  238. {
  239. unsigned long old;
  240. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  241. return 0;
  242. old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
  243. return (old & _PAGE_ACCESSED) != 0;
  244. }
  245. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  246. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  247. ({ \
  248. int __r; \
  249. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  250. __r; \
  251. })
  252. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  253. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
  254. pte_t *ptep)
  255. {
  256. unsigned long old;
  257. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  258. return;
  259. old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
  260. }
  261. /*
  262. * We currently remove entries from the hashtable regardless of whether
  263. * the entry was young or dirty. The generic routines only flush if the
  264. * entry was young or dirty which is not good enough.
  265. *
  266. * We should be more intelligent about this but for the moment we override
  267. * these functions and force a tlb flush unconditionally
  268. */
  269. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  270. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  271. ({ \
  272. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  273. __ptep); \
  274. __young; \
  275. })
  276. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  277. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  278. unsigned long addr, pte_t *ptep)
  279. {
  280. unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
  281. return __pte(old);
  282. }
  283. static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
  284. pte_t * ptep)
  285. {
  286. pte_update(mm, addr, ptep, ~0UL, 0);
  287. }
  288. /*
  289. * set_pte stores a linux PTE into the linux page table.
  290. */
  291. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  292. pte_t *ptep, pte_t pte)
  293. {
  294. if (pte_present(*ptep))
  295. pte_clear(mm, addr, ptep);
  296. pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  297. *ptep = pte;
  298. }
  299. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  300. * function doesn't need to flush the hash entry
  301. */
  302. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  303. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  304. {
  305. unsigned long bits = pte_val(entry) &
  306. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  307. unsigned long old, tmp;
  308. __asm__ __volatile__(
  309. "1: ldarx %0,0,%4\n\
  310. andi. %1,%0,%6\n\
  311. bne- 1b \n\
  312. or %0,%3,%0\n\
  313. stdcx. %0,0,%4\n\
  314. bne- 1b"
  315. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  316. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  317. :"cc");
  318. }
  319. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  320. ({ \
  321. int __changed = !pte_same(*(__ptep), __entry); \
  322. if (__changed) { \
  323. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  324. flush_tlb_page_nohash(__vma, __address); \
  325. } \
  326. __changed; \
  327. })
  328. /*
  329. * Macro to mark a page protection value as "uncacheable".
  330. */
  331. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  332. struct file;
  333. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  334. unsigned long size, pgprot_t vma_prot);
  335. #define __HAVE_PHYS_MEM_ACCESS_PROT
  336. #define __HAVE_ARCH_PTE_SAME
  337. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  338. #define pte_ERROR(e) \
  339. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  340. #define pmd_ERROR(e) \
  341. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
  342. #define pgd_ERROR(e) \
  343. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  344. /* Encode and de-code a swap entry */
  345. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  346. #define __swp_offset(entry) ((entry).val >> 8)
  347. #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
  348. #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
  349. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
  350. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
  351. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
  352. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
  353. void pgtable_cache_init(void);
  354. /*
  355. * find_linux_pte returns the address of a linux pte for a given
  356. * effective address and directory. If not found, it returns zero.
  357. */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  358. {
  359. pgd_t *pg;
  360. pud_t *pu;
  361. pmd_t *pm;
  362. pte_t *pt = NULL;
  363. pg = pgdir + pgd_index(ea);
  364. if (!pgd_none(*pg)) {
  365. pu = pud_offset(pg, ea);
  366. if (!pud_none(*pu)) {
  367. pm = pmd_offset(pu, ea);
  368. if (pmd_present(*pm))
  369. pt = pte_offset_kernel(pm, ea);
  370. }
  371. }
  372. return pt;
  373. }
  374. #endif /* __ASSEMBLY__ */
  375. #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */