exec.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mman.h>
  27. #include <linux/a.out.h>
  28. #include <linux/stat.h>
  29. #include <linux/fcntl.h>
  30. #include <linux/smp_lock.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/highmem.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/key.h>
  37. #include <linux/personality.h>
  38. #include <linux/binfmts.h>
  39. #include <linux/swap.h>
  40. #include <linux/utsname.h>
  41. #include <linux/pid_namespace.h>
  42. #include <linux/module.h>
  43. #include <linux/namei.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/ptrace.h>
  46. #include <linux/mount.h>
  47. #include <linux/security.h>
  48. #include <linux/syscalls.h>
  49. #include <linux/rmap.h>
  50. #include <linux/tsacct_kern.h>
  51. #include <linux/cn_proc.h>
  52. #include <linux/audit.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/mmu_context.h>
  55. #include <asm/tlb.h>
  56. #ifdef CONFIG_KMOD
  57. #include <linux/kmod.h>
  58. #endif
  59. int core_uses_pid;
  60. char core_pattern[CORENAME_MAX_SIZE] = "core";
  61. int suid_dumpable = 0;
  62. /* The maximal length of core_pattern is also specified in sysctl.c */
  63. static LIST_HEAD(formats);
  64. static DEFINE_RWLOCK(binfmt_lock);
  65. int register_binfmt(struct linux_binfmt * fmt)
  66. {
  67. if (!fmt)
  68. return -EINVAL;
  69. write_lock(&binfmt_lock);
  70. list_add(&fmt->lh, &formats);
  71. write_unlock(&binfmt_lock);
  72. return 0;
  73. }
  74. EXPORT_SYMBOL(register_binfmt);
  75. void unregister_binfmt(struct linux_binfmt * fmt)
  76. {
  77. write_lock(&binfmt_lock);
  78. list_del(&fmt->lh);
  79. write_unlock(&binfmt_lock);
  80. }
  81. EXPORT_SYMBOL(unregister_binfmt);
  82. static inline void put_binfmt(struct linux_binfmt * fmt)
  83. {
  84. module_put(fmt->module);
  85. }
  86. /*
  87. * Note that a shared library must be both readable and executable due to
  88. * security reasons.
  89. *
  90. * Also note that we take the address to load from from the file itself.
  91. */
  92. asmlinkage long sys_uselib(const char __user * library)
  93. {
  94. struct file * file;
  95. struct nameidata nd;
  96. int error;
  97. error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
  98. if (error)
  99. goto out;
  100. error = -EINVAL;
  101. if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
  102. goto exit;
  103. error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
  104. if (error)
  105. goto exit;
  106. file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
  107. error = PTR_ERR(file);
  108. if (IS_ERR(file))
  109. goto out;
  110. error = -ENOEXEC;
  111. if(file->f_op) {
  112. struct linux_binfmt * fmt;
  113. read_lock(&binfmt_lock);
  114. list_for_each_entry(fmt, &formats, lh) {
  115. if (!fmt->load_shlib)
  116. continue;
  117. if (!try_module_get(fmt->module))
  118. continue;
  119. read_unlock(&binfmt_lock);
  120. error = fmt->load_shlib(file);
  121. read_lock(&binfmt_lock);
  122. put_binfmt(fmt);
  123. if (error != -ENOEXEC)
  124. break;
  125. }
  126. read_unlock(&binfmt_lock);
  127. }
  128. fput(file);
  129. out:
  130. return error;
  131. exit:
  132. release_open_intent(&nd);
  133. path_put(&nd.path);
  134. goto out;
  135. }
  136. #ifdef CONFIG_MMU
  137. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  138. int write)
  139. {
  140. struct page *page;
  141. int ret;
  142. #ifdef CONFIG_STACK_GROWSUP
  143. if (write) {
  144. ret = expand_stack_downwards(bprm->vma, pos);
  145. if (ret < 0)
  146. return NULL;
  147. }
  148. #endif
  149. ret = get_user_pages(current, bprm->mm, pos,
  150. 1, write, 1, &page, NULL);
  151. if (ret <= 0)
  152. return NULL;
  153. if (write) {
  154. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  155. struct rlimit *rlim;
  156. /*
  157. * We've historically supported up to 32 pages (ARG_MAX)
  158. * of argument strings even with small stacks
  159. */
  160. if (size <= ARG_MAX)
  161. return page;
  162. /*
  163. * Limit to 1/4-th the stack size for the argv+env strings.
  164. * This ensures that:
  165. * - the remaining binfmt code will not run out of stack space,
  166. * - the program will have a reasonable amount of stack left
  167. * to work from.
  168. */
  169. rlim = current->signal->rlim;
  170. if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
  171. put_page(page);
  172. return NULL;
  173. }
  174. }
  175. return page;
  176. }
  177. static void put_arg_page(struct page *page)
  178. {
  179. put_page(page);
  180. }
  181. static void free_arg_page(struct linux_binprm *bprm, int i)
  182. {
  183. }
  184. static void free_arg_pages(struct linux_binprm *bprm)
  185. {
  186. }
  187. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  188. struct page *page)
  189. {
  190. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  191. }
  192. static int __bprm_mm_init(struct linux_binprm *bprm)
  193. {
  194. int err = -ENOMEM;
  195. struct vm_area_struct *vma = NULL;
  196. struct mm_struct *mm = bprm->mm;
  197. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  198. if (!vma)
  199. goto err;
  200. down_write(&mm->mmap_sem);
  201. vma->vm_mm = mm;
  202. /*
  203. * Place the stack at the largest stack address the architecture
  204. * supports. Later, we'll move this to an appropriate place. We don't
  205. * use STACK_TOP because that can depend on attributes which aren't
  206. * configured yet.
  207. */
  208. vma->vm_end = STACK_TOP_MAX;
  209. vma->vm_start = vma->vm_end - PAGE_SIZE;
  210. vma->vm_flags = VM_STACK_FLAGS;
  211. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  212. err = insert_vm_struct(mm, vma);
  213. if (err) {
  214. up_write(&mm->mmap_sem);
  215. goto err;
  216. }
  217. mm->stack_vm = mm->total_vm = 1;
  218. up_write(&mm->mmap_sem);
  219. bprm->p = vma->vm_end - sizeof(void *);
  220. return 0;
  221. err:
  222. if (vma) {
  223. bprm->vma = NULL;
  224. kmem_cache_free(vm_area_cachep, vma);
  225. }
  226. return err;
  227. }
  228. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  229. {
  230. return len <= MAX_ARG_STRLEN;
  231. }
  232. #else
  233. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  234. int write)
  235. {
  236. struct page *page;
  237. page = bprm->page[pos / PAGE_SIZE];
  238. if (!page && write) {
  239. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  240. if (!page)
  241. return NULL;
  242. bprm->page[pos / PAGE_SIZE] = page;
  243. }
  244. return page;
  245. }
  246. static void put_arg_page(struct page *page)
  247. {
  248. }
  249. static void free_arg_page(struct linux_binprm *bprm, int i)
  250. {
  251. if (bprm->page[i]) {
  252. __free_page(bprm->page[i]);
  253. bprm->page[i] = NULL;
  254. }
  255. }
  256. static void free_arg_pages(struct linux_binprm *bprm)
  257. {
  258. int i;
  259. for (i = 0; i < MAX_ARG_PAGES; i++)
  260. free_arg_page(bprm, i);
  261. }
  262. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  263. struct page *page)
  264. {
  265. }
  266. static int __bprm_mm_init(struct linux_binprm *bprm)
  267. {
  268. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  269. return 0;
  270. }
  271. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  272. {
  273. return len <= bprm->p;
  274. }
  275. #endif /* CONFIG_MMU */
  276. /*
  277. * Create a new mm_struct and populate it with a temporary stack
  278. * vm_area_struct. We don't have enough context at this point to set the stack
  279. * flags, permissions, and offset, so we use temporary values. We'll update
  280. * them later in setup_arg_pages().
  281. */
  282. int bprm_mm_init(struct linux_binprm *bprm)
  283. {
  284. int err;
  285. struct mm_struct *mm = NULL;
  286. bprm->mm = mm = mm_alloc();
  287. err = -ENOMEM;
  288. if (!mm)
  289. goto err;
  290. err = init_new_context(current, mm);
  291. if (err)
  292. goto err;
  293. err = __bprm_mm_init(bprm);
  294. if (err)
  295. goto err;
  296. return 0;
  297. err:
  298. if (mm) {
  299. bprm->mm = NULL;
  300. mmdrop(mm);
  301. }
  302. return err;
  303. }
  304. /*
  305. * count() counts the number of strings in array ARGV.
  306. */
  307. static int count(char __user * __user * argv, int max)
  308. {
  309. int i = 0;
  310. if (argv != NULL) {
  311. for (;;) {
  312. char __user * p;
  313. if (get_user(p, argv))
  314. return -EFAULT;
  315. if (!p)
  316. break;
  317. argv++;
  318. if(++i > max)
  319. return -E2BIG;
  320. cond_resched();
  321. }
  322. }
  323. return i;
  324. }
  325. /*
  326. * 'copy_strings()' copies argument/environment strings from the old
  327. * processes's memory to the new process's stack. The call to get_user_pages()
  328. * ensures the destination page is created and not swapped out.
  329. */
  330. static int copy_strings(int argc, char __user * __user * argv,
  331. struct linux_binprm *bprm)
  332. {
  333. struct page *kmapped_page = NULL;
  334. char *kaddr = NULL;
  335. unsigned long kpos = 0;
  336. int ret;
  337. while (argc-- > 0) {
  338. char __user *str;
  339. int len;
  340. unsigned long pos;
  341. if (get_user(str, argv+argc) ||
  342. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  343. ret = -EFAULT;
  344. goto out;
  345. }
  346. if (!valid_arg_len(bprm, len)) {
  347. ret = -E2BIG;
  348. goto out;
  349. }
  350. /* We're going to work our way backwords. */
  351. pos = bprm->p;
  352. str += len;
  353. bprm->p -= len;
  354. while (len > 0) {
  355. int offset, bytes_to_copy;
  356. offset = pos % PAGE_SIZE;
  357. if (offset == 0)
  358. offset = PAGE_SIZE;
  359. bytes_to_copy = offset;
  360. if (bytes_to_copy > len)
  361. bytes_to_copy = len;
  362. offset -= bytes_to_copy;
  363. pos -= bytes_to_copy;
  364. str -= bytes_to_copy;
  365. len -= bytes_to_copy;
  366. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  367. struct page *page;
  368. page = get_arg_page(bprm, pos, 1);
  369. if (!page) {
  370. ret = -E2BIG;
  371. goto out;
  372. }
  373. if (kmapped_page) {
  374. flush_kernel_dcache_page(kmapped_page);
  375. kunmap(kmapped_page);
  376. put_arg_page(kmapped_page);
  377. }
  378. kmapped_page = page;
  379. kaddr = kmap(kmapped_page);
  380. kpos = pos & PAGE_MASK;
  381. flush_arg_page(bprm, kpos, kmapped_page);
  382. }
  383. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  384. ret = -EFAULT;
  385. goto out;
  386. }
  387. }
  388. }
  389. ret = 0;
  390. out:
  391. if (kmapped_page) {
  392. flush_kernel_dcache_page(kmapped_page);
  393. kunmap(kmapped_page);
  394. put_arg_page(kmapped_page);
  395. }
  396. return ret;
  397. }
  398. /*
  399. * Like copy_strings, but get argv and its values from kernel memory.
  400. */
  401. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  402. {
  403. int r;
  404. mm_segment_t oldfs = get_fs();
  405. set_fs(KERNEL_DS);
  406. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  407. set_fs(oldfs);
  408. return r;
  409. }
  410. EXPORT_SYMBOL(copy_strings_kernel);
  411. #ifdef CONFIG_MMU
  412. /*
  413. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  414. * the binfmt code determines where the new stack should reside, we shift it to
  415. * its final location. The process proceeds as follows:
  416. *
  417. * 1) Use shift to calculate the new vma endpoints.
  418. * 2) Extend vma to cover both the old and new ranges. This ensures the
  419. * arguments passed to subsequent functions are consistent.
  420. * 3) Move vma's page tables to the new range.
  421. * 4) Free up any cleared pgd range.
  422. * 5) Shrink the vma to cover only the new range.
  423. */
  424. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  425. {
  426. struct mm_struct *mm = vma->vm_mm;
  427. unsigned long old_start = vma->vm_start;
  428. unsigned long old_end = vma->vm_end;
  429. unsigned long length = old_end - old_start;
  430. unsigned long new_start = old_start - shift;
  431. unsigned long new_end = old_end - shift;
  432. struct mmu_gather *tlb;
  433. BUG_ON(new_start > new_end);
  434. /*
  435. * ensure there are no vmas between where we want to go
  436. * and where we are
  437. */
  438. if (vma != find_vma(mm, new_start))
  439. return -EFAULT;
  440. /*
  441. * cover the whole range: [new_start, old_end)
  442. */
  443. vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
  444. /*
  445. * move the page tables downwards, on failure we rely on
  446. * process cleanup to remove whatever mess we made.
  447. */
  448. if (length != move_page_tables(vma, old_start,
  449. vma, new_start, length))
  450. return -ENOMEM;
  451. lru_add_drain();
  452. tlb = tlb_gather_mmu(mm, 0);
  453. if (new_end > old_start) {
  454. /*
  455. * when the old and new regions overlap clear from new_end.
  456. */
  457. free_pgd_range(&tlb, new_end, old_end, new_end,
  458. vma->vm_next ? vma->vm_next->vm_start : 0);
  459. } else {
  460. /*
  461. * otherwise, clean from old_start; this is done to not touch
  462. * the address space in [new_end, old_start) some architectures
  463. * have constraints on va-space that make this illegal (IA64) -
  464. * for the others its just a little faster.
  465. */
  466. free_pgd_range(&tlb, old_start, old_end, new_end,
  467. vma->vm_next ? vma->vm_next->vm_start : 0);
  468. }
  469. tlb_finish_mmu(tlb, new_end, old_end);
  470. /*
  471. * shrink the vma to just the new range.
  472. */
  473. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  474. return 0;
  475. }
  476. #define EXTRA_STACK_VM_PAGES 20 /* random */
  477. /*
  478. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  479. * the stack is optionally relocated, and some extra space is added.
  480. */
  481. int setup_arg_pages(struct linux_binprm *bprm,
  482. unsigned long stack_top,
  483. int executable_stack)
  484. {
  485. unsigned long ret;
  486. unsigned long stack_shift;
  487. struct mm_struct *mm = current->mm;
  488. struct vm_area_struct *vma = bprm->vma;
  489. struct vm_area_struct *prev = NULL;
  490. unsigned long vm_flags;
  491. unsigned long stack_base;
  492. #ifdef CONFIG_STACK_GROWSUP
  493. /* Limit stack size to 1GB */
  494. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  495. if (stack_base > (1 << 30))
  496. stack_base = 1 << 30;
  497. /* Make sure we didn't let the argument array grow too large. */
  498. if (vma->vm_end - vma->vm_start > stack_base)
  499. return -ENOMEM;
  500. stack_base = PAGE_ALIGN(stack_top - stack_base);
  501. stack_shift = vma->vm_start - stack_base;
  502. mm->arg_start = bprm->p - stack_shift;
  503. bprm->p = vma->vm_end - stack_shift;
  504. #else
  505. stack_top = arch_align_stack(stack_top);
  506. stack_top = PAGE_ALIGN(stack_top);
  507. stack_shift = vma->vm_end - stack_top;
  508. bprm->p -= stack_shift;
  509. mm->arg_start = bprm->p;
  510. #endif
  511. if (bprm->loader)
  512. bprm->loader -= stack_shift;
  513. bprm->exec -= stack_shift;
  514. down_write(&mm->mmap_sem);
  515. vm_flags = vma->vm_flags;
  516. /*
  517. * Adjust stack execute permissions; explicitly enable for
  518. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  519. * (arch default) otherwise.
  520. */
  521. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  522. vm_flags |= VM_EXEC;
  523. else if (executable_stack == EXSTACK_DISABLE_X)
  524. vm_flags &= ~VM_EXEC;
  525. vm_flags |= mm->def_flags;
  526. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  527. vm_flags);
  528. if (ret)
  529. goto out_unlock;
  530. BUG_ON(prev != vma);
  531. /* Move stack pages down in memory. */
  532. if (stack_shift) {
  533. ret = shift_arg_pages(vma, stack_shift);
  534. if (ret) {
  535. up_write(&mm->mmap_sem);
  536. return ret;
  537. }
  538. }
  539. #ifdef CONFIG_STACK_GROWSUP
  540. stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  541. #else
  542. stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  543. #endif
  544. ret = expand_stack(vma, stack_base);
  545. if (ret)
  546. ret = -EFAULT;
  547. out_unlock:
  548. up_write(&mm->mmap_sem);
  549. return 0;
  550. }
  551. EXPORT_SYMBOL(setup_arg_pages);
  552. #endif /* CONFIG_MMU */
  553. struct file *open_exec(const char *name)
  554. {
  555. struct nameidata nd;
  556. int err;
  557. struct file *file;
  558. err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
  559. file = ERR_PTR(err);
  560. if (!err) {
  561. struct inode *inode = nd.path.dentry->d_inode;
  562. file = ERR_PTR(-EACCES);
  563. if (S_ISREG(inode->i_mode)) {
  564. int err = vfs_permission(&nd, MAY_EXEC);
  565. file = ERR_PTR(err);
  566. if (!err) {
  567. file = nameidata_to_filp(&nd,
  568. O_RDONLY|O_LARGEFILE);
  569. if (!IS_ERR(file)) {
  570. err = deny_write_access(file);
  571. if (err) {
  572. fput(file);
  573. file = ERR_PTR(err);
  574. }
  575. }
  576. out:
  577. return file;
  578. }
  579. }
  580. release_open_intent(&nd);
  581. path_put(&nd.path);
  582. }
  583. goto out;
  584. }
  585. EXPORT_SYMBOL(open_exec);
  586. int kernel_read(struct file *file, unsigned long offset,
  587. char *addr, unsigned long count)
  588. {
  589. mm_segment_t old_fs;
  590. loff_t pos = offset;
  591. int result;
  592. old_fs = get_fs();
  593. set_fs(get_ds());
  594. /* The cast to a user pointer is valid due to the set_fs() */
  595. result = vfs_read(file, (void __user *)addr, count, &pos);
  596. set_fs(old_fs);
  597. return result;
  598. }
  599. EXPORT_SYMBOL(kernel_read);
  600. static int exec_mmap(struct mm_struct *mm)
  601. {
  602. struct task_struct *tsk;
  603. struct mm_struct * old_mm, *active_mm;
  604. /* Notify parent that we're no longer interested in the old VM */
  605. tsk = current;
  606. old_mm = current->mm;
  607. mm_release(tsk, old_mm);
  608. if (old_mm) {
  609. /*
  610. * Make sure that if there is a core dump in progress
  611. * for the old mm, we get out and die instead of going
  612. * through with the exec. We must hold mmap_sem around
  613. * checking core_waiters and changing tsk->mm. The
  614. * core-inducing thread will increment core_waiters for
  615. * each thread whose ->mm == old_mm.
  616. */
  617. down_read(&old_mm->mmap_sem);
  618. if (unlikely(old_mm->core_waiters)) {
  619. up_read(&old_mm->mmap_sem);
  620. return -EINTR;
  621. }
  622. }
  623. task_lock(tsk);
  624. active_mm = tsk->active_mm;
  625. tsk->mm = mm;
  626. tsk->active_mm = mm;
  627. activate_mm(active_mm, mm);
  628. task_unlock(tsk);
  629. mm_update_next_owner(old_mm);
  630. arch_pick_mmap_layout(mm);
  631. if (old_mm) {
  632. up_read(&old_mm->mmap_sem);
  633. BUG_ON(active_mm != old_mm);
  634. mmput(old_mm);
  635. return 0;
  636. }
  637. mmdrop(active_mm);
  638. return 0;
  639. }
  640. /*
  641. * This function makes sure the current process has its own signal table,
  642. * so that flush_signal_handlers can later reset the handlers without
  643. * disturbing other processes. (Other processes might share the signal
  644. * table via the CLONE_SIGHAND option to clone().)
  645. */
  646. static int de_thread(struct task_struct *tsk)
  647. {
  648. struct signal_struct *sig = tsk->signal;
  649. struct sighand_struct *oldsighand = tsk->sighand;
  650. spinlock_t *lock = &oldsighand->siglock;
  651. struct task_struct *leader = NULL;
  652. int count;
  653. if (thread_group_empty(tsk))
  654. goto no_thread_group;
  655. /*
  656. * Kill all other threads in the thread group.
  657. */
  658. spin_lock_irq(lock);
  659. if (signal_group_exit(sig)) {
  660. /*
  661. * Another group action in progress, just
  662. * return so that the signal is processed.
  663. */
  664. spin_unlock_irq(lock);
  665. return -EAGAIN;
  666. }
  667. sig->group_exit_task = tsk;
  668. zap_other_threads(tsk);
  669. /* Account for the thread group leader hanging around: */
  670. count = thread_group_leader(tsk) ? 1 : 2;
  671. sig->notify_count = count;
  672. while (atomic_read(&sig->count) > count) {
  673. __set_current_state(TASK_UNINTERRUPTIBLE);
  674. spin_unlock_irq(lock);
  675. schedule();
  676. spin_lock_irq(lock);
  677. }
  678. spin_unlock_irq(lock);
  679. /*
  680. * At this point all other threads have exited, all we have to
  681. * do is to wait for the thread group leader to become inactive,
  682. * and to assume its PID:
  683. */
  684. if (!thread_group_leader(tsk)) {
  685. leader = tsk->group_leader;
  686. sig->notify_count = -1; /* for exit_notify() */
  687. for (;;) {
  688. write_lock_irq(&tasklist_lock);
  689. if (likely(leader->exit_state))
  690. break;
  691. __set_current_state(TASK_UNINTERRUPTIBLE);
  692. write_unlock_irq(&tasklist_lock);
  693. schedule();
  694. }
  695. if (unlikely(task_child_reaper(tsk) == leader))
  696. task_active_pid_ns(tsk)->child_reaper = tsk;
  697. /*
  698. * The only record we have of the real-time age of a
  699. * process, regardless of execs it's done, is start_time.
  700. * All the past CPU time is accumulated in signal_struct
  701. * from sister threads now dead. But in this non-leader
  702. * exec, nothing survives from the original leader thread,
  703. * whose birth marks the true age of this process now.
  704. * When we take on its identity by switching to its PID, we
  705. * also take its birthdate (always earlier than our own).
  706. */
  707. tsk->start_time = leader->start_time;
  708. BUG_ON(!same_thread_group(leader, tsk));
  709. BUG_ON(has_group_leader_pid(tsk));
  710. /*
  711. * An exec() starts a new thread group with the
  712. * TGID of the previous thread group. Rehash the
  713. * two threads with a switched PID, and release
  714. * the former thread group leader:
  715. */
  716. /* Become a process group leader with the old leader's pid.
  717. * The old leader becomes a thread of the this thread group.
  718. * Note: The old leader also uses this pid until release_task
  719. * is called. Odd but simple and correct.
  720. */
  721. detach_pid(tsk, PIDTYPE_PID);
  722. tsk->pid = leader->pid;
  723. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  724. transfer_pid(leader, tsk, PIDTYPE_PGID);
  725. transfer_pid(leader, tsk, PIDTYPE_SID);
  726. list_replace_rcu(&leader->tasks, &tsk->tasks);
  727. tsk->group_leader = tsk;
  728. leader->group_leader = tsk;
  729. tsk->exit_signal = SIGCHLD;
  730. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  731. leader->exit_state = EXIT_DEAD;
  732. write_unlock_irq(&tasklist_lock);
  733. }
  734. sig->group_exit_task = NULL;
  735. sig->notify_count = 0;
  736. no_thread_group:
  737. exit_itimers(sig);
  738. if (leader)
  739. release_task(leader);
  740. if (atomic_read(&oldsighand->count) != 1) {
  741. struct sighand_struct *newsighand;
  742. /*
  743. * This ->sighand is shared with the CLONE_SIGHAND
  744. * but not CLONE_THREAD task, switch to the new one.
  745. */
  746. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  747. if (!newsighand)
  748. return -ENOMEM;
  749. atomic_set(&newsighand->count, 1);
  750. memcpy(newsighand->action, oldsighand->action,
  751. sizeof(newsighand->action));
  752. write_lock_irq(&tasklist_lock);
  753. spin_lock(&oldsighand->siglock);
  754. rcu_assign_pointer(tsk->sighand, newsighand);
  755. spin_unlock(&oldsighand->siglock);
  756. write_unlock_irq(&tasklist_lock);
  757. __cleanup_sighand(oldsighand);
  758. }
  759. BUG_ON(!thread_group_leader(tsk));
  760. return 0;
  761. }
  762. /*
  763. * These functions flushes out all traces of the currently running executable
  764. * so that a new one can be started
  765. */
  766. static void flush_old_files(struct files_struct * files)
  767. {
  768. long j = -1;
  769. struct fdtable *fdt;
  770. spin_lock(&files->file_lock);
  771. for (;;) {
  772. unsigned long set, i;
  773. j++;
  774. i = j * __NFDBITS;
  775. fdt = files_fdtable(files);
  776. if (i >= fdt->max_fds)
  777. break;
  778. set = fdt->close_on_exec->fds_bits[j];
  779. if (!set)
  780. continue;
  781. fdt->close_on_exec->fds_bits[j] = 0;
  782. spin_unlock(&files->file_lock);
  783. for ( ; set ; i++,set >>= 1) {
  784. if (set & 1) {
  785. sys_close(i);
  786. }
  787. }
  788. spin_lock(&files->file_lock);
  789. }
  790. spin_unlock(&files->file_lock);
  791. }
  792. char *get_task_comm(char *buf, struct task_struct *tsk)
  793. {
  794. /* buf must be at least sizeof(tsk->comm) in size */
  795. task_lock(tsk);
  796. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  797. task_unlock(tsk);
  798. return buf;
  799. }
  800. void set_task_comm(struct task_struct *tsk, char *buf)
  801. {
  802. task_lock(tsk);
  803. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  804. task_unlock(tsk);
  805. }
  806. int flush_old_exec(struct linux_binprm * bprm)
  807. {
  808. char * name;
  809. int i, ch, retval;
  810. char tcomm[sizeof(current->comm)];
  811. /*
  812. * Make sure we have a private signal table and that
  813. * we are unassociated from the previous thread group.
  814. */
  815. retval = de_thread(current);
  816. if (retval)
  817. goto out;
  818. set_mm_exe_file(bprm->mm, bprm->file);
  819. /*
  820. * Release all of the old mmap stuff
  821. */
  822. retval = exec_mmap(bprm->mm);
  823. if (retval)
  824. goto out;
  825. bprm->mm = NULL; /* We're using it now */
  826. /* This is the point of no return */
  827. current->sas_ss_sp = current->sas_ss_size = 0;
  828. if (current->euid == current->uid && current->egid == current->gid)
  829. set_dumpable(current->mm, 1);
  830. else
  831. set_dumpable(current->mm, suid_dumpable);
  832. name = bprm->filename;
  833. /* Copies the binary name from after last slash */
  834. for (i=0; (ch = *(name++)) != '\0';) {
  835. if (ch == '/')
  836. i = 0; /* overwrite what we wrote */
  837. else
  838. if (i < (sizeof(tcomm) - 1))
  839. tcomm[i++] = ch;
  840. }
  841. tcomm[i] = '\0';
  842. set_task_comm(current, tcomm);
  843. current->flags &= ~PF_RANDOMIZE;
  844. flush_thread();
  845. /* Set the new mm task size. We have to do that late because it may
  846. * depend on TIF_32BIT which is only updated in flush_thread() on
  847. * some architectures like powerpc
  848. */
  849. current->mm->task_size = TASK_SIZE;
  850. if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
  851. suid_keys(current);
  852. set_dumpable(current->mm, suid_dumpable);
  853. current->pdeath_signal = 0;
  854. } else if (file_permission(bprm->file, MAY_READ) ||
  855. (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
  856. suid_keys(current);
  857. set_dumpable(current->mm, suid_dumpable);
  858. }
  859. /* An exec changes our domain. We are no longer part of the thread
  860. group */
  861. current->self_exec_id++;
  862. flush_signal_handlers(current, 0);
  863. flush_old_files(current->files);
  864. return 0;
  865. out:
  866. return retval;
  867. }
  868. EXPORT_SYMBOL(flush_old_exec);
  869. /*
  870. * Fill the binprm structure from the inode.
  871. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  872. */
  873. int prepare_binprm(struct linux_binprm *bprm)
  874. {
  875. int mode;
  876. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  877. int retval;
  878. mode = inode->i_mode;
  879. if (bprm->file->f_op == NULL)
  880. return -EACCES;
  881. bprm->e_uid = current->euid;
  882. bprm->e_gid = current->egid;
  883. if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  884. /* Set-uid? */
  885. if (mode & S_ISUID) {
  886. current->personality &= ~PER_CLEAR_ON_SETID;
  887. bprm->e_uid = inode->i_uid;
  888. }
  889. /* Set-gid? */
  890. /*
  891. * If setgid is set but no group execute bit then this
  892. * is a candidate for mandatory locking, not a setgid
  893. * executable.
  894. */
  895. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  896. current->personality &= ~PER_CLEAR_ON_SETID;
  897. bprm->e_gid = inode->i_gid;
  898. }
  899. }
  900. /* fill in binprm security blob */
  901. retval = security_bprm_set(bprm);
  902. if (retval)
  903. return retval;
  904. memset(bprm->buf,0,BINPRM_BUF_SIZE);
  905. return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
  906. }
  907. EXPORT_SYMBOL(prepare_binprm);
  908. static int unsafe_exec(struct task_struct *p)
  909. {
  910. int unsafe = 0;
  911. if (p->ptrace & PT_PTRACED) {
  912. if (p->ptrace & PT_PTRACE_CAP)
  913. unsafe |= LSM_UNSAFE_PTRACE_CAP;
  914. else
  915. unsafe |= LSM_UNSAFE_PTRACE;
  916. }
  917. if (atomic_read(&p->fs->count) > 1 ||
  918. atomic_read(&p->files->count) > 1 ||
  919. atomic_read(&p->sighand->count) > 1)
  920. unsafe |= LSM_UNSAFE_SHARE;
  921. return unsafe;
  922. }
  923. void compute_creds(struct linux_binprm *bprm)
  924. {
  925. int unsafe;
  926. if (bprm->e_uid != current->uid) {
  927. suid_keys(current);
  928. current->pdeath_signal = 0;
  929. }
  930. exec_keys(current);
  931. task_lock(current);
  932. unsafe = unsafe_exec(current);
  933. security_bprm_apply_creds(bprm, unsafe);
  934. task_unlock(current);
  935. security_bprm_post_apply_creds(bprm);
  936. }
  937. EXPORT_SYMBOL(compute_creds);
  938. /*
  939. * Arguments are '\0' separated strings found at the location bprm->p
  940. * points to; chop off the first by relocating brpm->p to right after
  941. * the first '\0' encountered.
  942. */
  943. int remove_arg_zero(struct linux_binprm *bprm)
  944. {
  945. int ret = 0;
  946. unsigned long offset;
  947. char *kaddr;
  948. struct page *page;
  949. if (!bprm->argc)
  950. return 0;
  951. do {
  952. offset = bprm->p & ~PAGE_MASK;
  953. page = get_arg_page(bprm, bprm->p, 0);
  954. if (!page) {
  955. ret = -EFAULT;
  956. goto out;
  957. }
  958. kaddr = kmap_atomic(page, KM_USER0);
  959. for (; offset < PAGE_SIZE && kaddr[offset];
  960. offset++, bprm->p++)
  961. ;
  962. kunmap_atomic(kaddr, KM_USER0);
  963. put_arg_page(page);
  964. if (offset == PAGE_SIZE)
  965. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  966. } while (offset == PAGE_SIZE);
  967. bprm->p++;
  968. bprm->argc--;
  969. ret = 0;
  970. out:
  971. return ret;
  972. }
  973. EXPORT_SYMBOL(remove_arg_zero);
  974. /*
  975. * cycle the list of binary formats handler, until one recognizes the image
  976. */
  977. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  978. {
  979. int try,retval;
  980. struct linux_binfmt *fmt;
  981. #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
  982. /* handle /sbin/loader.. */
  983. {
  984. struct exec * eh = (struct exec *) bprm->buf;
  985. if (!bprm->loader && eh->fh.f_magic == 0x183 &&
  986. (eh->fh.f_flags & 0x3000) == 0x3000)
  987. {
  988. struct file * file;
  989. unsigned long loader;
  990. allow_write_access(bprm->file);
  991. fput(bprm->file);
  992. bprm->file = NULL;
  993. loader = bprm->vma->vm_end - sizeof(void *);
  994. file = open_exec("/sbin/loader");
  995. retval = PTR_ERR(file);
  996. if (IS_ERR(file))
  997. return retval;
  998. /* Remember if the application is TASO. */
  999. bprm->sh_bang = eh->ah.entry < 0x100000000UL;
  1000. bprm->file = file;
  1001. bprm->loader = loader;
  1002. retval = prepare_binprm(bprm);
  1003. if (retval<0)
  1004. return retval;
  1005. /* should call search_binary_handler recursively here,
  1006. but it does not matter */
  1007. }
  1008. }
  1009. #endif
  1010. retval = security_bprm_check(bprm);
  1011. if (retval)
  1012. return retval;
  1013. /* kernel module loader fixup */
  1014. /* so we don't try to load run modprobe in kernel space. */
  1015. set_fs(USER_DS);
  1016. retval = audit_bprm(bprm);
  1017. if (retval)
  1018. return retval;
  1019. retval = -ENOENT;
  1020. for (try=0; try<2; try++) {
  1021. read_lock(&binfmt_lock);
  1022. list_for_each_entry(fmt, &formats, lh) {
  1023. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1024. if (!fn)
  1025. continue;
  1026. if (!try_module_get(fmt->module))
  1027. continue;
  1028. read_unlock(&binfmt_lock);
  1029. retval = fn(bprm, regs);
  1030. if (retval >= 0) {
  1031. put_binfmt(fmt);
  1032. allow_write_access(bprm->file);
  1033. if (bprm->file)
  1034. fput(bprm->file);
  1035. bprm->file = NULL;
  1036. current->did_exec = 1;
  1037. proc_exec_connector(current);
  1038. return retval;
  1039. }
  1040. read_lock(&binfmt_lock);
  1041. put_binfmt(fmt);
  1042. if (retval != -ENOEXEC || bprm->mm == NULL)
  1043. break;
  1044. if (!bprm->file) {
  1045. read_unlock(&binfmt_lock);
  1046. return retval;
  1047. }
  1048. }
  1049. read_unlock(&binfmt_lock);
  1050. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1051. break;
  1052. #ifdef CONFIG_KMOD
  1053. }else{
  1054. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1055. if (printable(bprm->buf[0]) &&
  1056. printable(bprm->buf[1]) &&
  1057. printable(bprm->buf[2]) &&
  1058. printable(bprm->buf[3]))
  1059. break; /* -ENOEXEC */
  1060. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1061. #endif
  1062. }
  1063. }
  1064. return retval;
  1065. }
  1066. EXPORT_SYMBOL(search_binary_handler);
  1067. void free_bprm(struct linux_binprm *bprm)
  1068. {
  1069. free_arg_pages(bprm);
  1070. kfree(bprm);
  1071. }
  1072. /*
  1073. * sys_execve() executes a new program.
  1074. */
  1075. int do_execve(char * filename,
  1076. char __user *__user *argv,
  1077. char __user *__user *envp,
  1078. struct pt_regs * regs)
  1079. {
  1080. struct linux_binprm *bprm;
  1081. struct file *file;
  1082. struct files_struct *displaced;
  1083. int retval;
  1084. retval = unshare_files(&displaced);
  1085. if (retval)
  1086. goto out_ret;
  1087. retval = -ENOMEM;
  1088. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1089. if (!bprm)
  1090. goto out_files;
  1091. file = open_exec(filename);
  1092. retval = PTR_ERR(file);
  1093. if (IS_ERR(file))
  1094. goto out_kfree;
  1095. sched_exec();
  1096. bprm->file = file;
  1097. bprm->filename = filename;
  1098. bprm->interp = filename;
  1099. retval = bprm_mm_init(bprm);
  1100. if (retval)
  1101. goto out_file;
  1102. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1103. if ((retval = bprm->argc) < 0)
  1104. goto out_mm;
  1105. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1106. if ((retval = bprm->envc) < 0)
  1107. goto out_mm;
  1108. retval = security_bprm_alloc(bprm);
  1109. if (retval)
  1110. goto out;
  1111. retval = prepare_binprm(bprm);
  1112. if (retval < 0)
  1113. goto out;
  1114. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1115. if (retval < 0)
  1116. goto out;
  1117. bprm->exec = bprm->p;
  1118. retval = copy_strings(bprm->envc, envp, bprm);
  1119. if (retval < 0)
  1120. goto out;
  1121. retval = copy_strings(bprm->argc, argv, bprm);
  1122. if (retval < 0)
  1123. goto out;
  1124. retval = search_binary_handler(bprm,regs);
  1125. if (retval >= 0) {
  1126. /* execve success */
  1127. security_bprm_free(bprm);
  1128. acct_update_integrals(current);
  1129. free_bprm(bprm);
  1130. if (displaced)
  1131. put_files_struct(displaced);
  1132. return retval;
  1133. }
  1134. out:
  1135. if (bprm->security)
  1136. security_bprm_free(bprm);
  1137. out_mm:
  1138. if (bprm->mm)
  1139. mmput (bprm->mm);
  1140. out_file:
  1141. if (bprm->file) {
  1142. allow_write_access(bprm->file);
  1143. fput(bprm->file);
  1144. }
  1145. out_kfree:
  1146. free_bprm(bprm);
  1147. out_files:
  1148. if (displaced)
  1149. reset_files_struct(displaced);
  1150. out_ret:
  1151. return retval;
  1152. }
  1153. int set_binfmt(struct linux_binfmt *new)
  1154. {
  1155. struct linux_binfmt *old = current->binfmt;
  1156. if (new) {
  1157. if (!try_module_get(new->module))
  1158. return -1;
  1159. }
  1160. current->binfmt = new;
  1161. if (old)
  1162. module_put(old->module);
  1163. return 0;
  1164. }
  1165. EXPORT_SYMBOL(set_binfmt);
  1166. /* format_corename will inspect the pattern parameter, and output a
  1167. * name into corename, which must have space for at least
  1168. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1169. */
  1170. static int format_corename(char *corename, const char *pattern, long signr)
  1171. {
  1172. const char *pat_ptr = pattern;
  1173. char *out_ptr = corename;
  1174. char *const out_end = corename + CORENAME_MAX_SIZE;
  1175. int rc;
  1176. int pid_in_pattern = 0;
  1177. int ispipe = 0;
  1178. if (*pattern == '|')
  1179. ispipe = 1;
  1180. /* Repeat as long as we have more pattern to process and more output
  1181. space */
  1182. while (*pat_ptr) {
  1183. if (*pat_ptr != '%') {
  1184. if (out_ptr == out_end)
  1185. goto out;
  1186. *out_ptr++ = *pat_ptr++;
  1187. } else {
  1188. switch (*++pat_ptr) {
  1189. case 0:
  1190. goto out;
  1191. /* Double percent, output one percent */
  1192. case '%':
  1193. if (out_ptr == out_end)
  1194. goto out;
  1195. *out_ptr++ = '%';
  1196. break;
  1197. /* pid */
  1198. case 'p':
  1199. pid_in_pattern = 1;
  1200. rc = snprintf(out_ptr, out_end - out_ptr,
  1201. "%d", task_tgid_vnr(current));
  1202. if (rc > out_end - out_ptr)
  1203. goto out;
  1204. out_ptr += rc;
  1205. break;
  1206. /* uid */
  1207. case 'u':
  1208. rc = snprintf(out_ptr, out_end - out_ptr,
  1209. "%d", current->uid);
  1210. if (rc > out_end - out_ptr)
  1211. goto out;
  1212. out_ptr += rc;
  1213. break;
  1214. /* gid */
  1215. case 'g':
  1216. rc = snprintf(out_ptr, out_end - out_ptr,
  1217. "%d", current->gid);
  1218. if (rc > out_end - out_ptr)
  1219. goto out;
  1220. out_ptr += rc;
  1221. break;
  1222. /* signal that caused the coredump */
  1223. case 's':
  1224. rc = snprintf(out_ptr, out_end - out_ptr,
  1225. "%ld", signr);
  1226. if (rc > out_end - out_ptr)
  1227. goto out;
  1228. out_ptr += rc;
  1229. break;
  1230. /* UNIX time of coredump */
  1231. case 't': {
  1232. struct timeval tv;
  1233. do_gettimeofday(&tv);
  1234. rc = snprintf(out_ptr, out_end - out_ptr,
  1235. "%lu", tv.tv_sec);
  1236. if (rc > out_end - out_ptr)
  1237. goto out;
  1238. out_ptr += rc;
  1239. break;
  1240. }
  1241. /* hostname */
  1242. case 'h':
  1243. down_read(&uts_sem);
  1244. rc = snprintf(out_ptr, out_end - out_ptr,
  1245. "%s", utsname()->nodename);
  1246. up_read(&uts_sem);
  1247. if (rc > out_end - out_ptr)
  1248. goto out;
  1249. out_ptr += rc;
  1250. break;
  1251. /* executable */
  1252. case 'e':
  1253. rc = snprintf(out_ptr, out_end - out_ptr,
  1254. "%s", current->comm);
  1255. if (rc > out_end - out_ptr)
  1256. goto out;
  1257. out_ptr += rc;
  1258. break;
  1259. /* core limit size */
  1260. case 'c':
  1261. rc = snprintf(out_ptr, out_end - out_ptr,
  1262. "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
  1263. if (rc > out_end - out_ptr)
  1264. goto out;
  1265. out_ptr += rc;
  1266. break;
  1267. default:
  1268. break;
  1269. }
  1270. ++pat_ptr;
  1271. }
  1272. }
  1273. /* Backward compatibility with core_uses_pid:
  1274. *
  1275. * If core_pattern does not include a %p (as is the default)
  1276. * and core_uses_pid is set, then .%pid will be appended to
  1277. * the filename. Do not do this for piped commands. */
  1278. if (!ispipe && !pid_in_pattern
  1279. && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
  1280. rc = snprintf(out_ptr, out_end - out_ptr,
  1281. ".%d", task_tgid_vnr(current));
  1282. if (rc > out_end - out_ptr)
  1283. goto out;
  1284. out_ptr += rc;
  1285. }
  1286. out:
  1287. *out_ptr = 0;
  1288. return ispipe;
  1289. }
  1290. static void zap_process(struct task_struct *start)
  1291. {
  1292. struct task_struct *t;
  1293. start->signal->flags = SIGNAL_GROUP_EXIT;
  1294. start->signal->group_stop_count = 0;
  1295. t = start;
  1296. do {
  1297. if (t != current && t->mm) {
  1298. t->mm->core_waiters++;
  1299. sigaddset(&t->pending.signal, SIGKILL);
  1300. signal_wake_up(t, 1);
  1301. }
  1302. } while ((t = next_thread(t)) != start);
  1303. }
  1304. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1305. int exit_code)
  1306. {
  1307. struct task_struct *g, *p;
  1308. unsigned long flags;
  1309. int err = -EAGAIN;
  1310. spin_lock_irq(&tsk->sighand->siglock);
  1311. if (!signal_group_exit(tsk->signal)) {
  1312. tsk->signal->group_exit_code = exit_code;
  1313. zap_process(tsk);
  1314. err = 0;
  1315. }
  1316. spin_unlock_irq(&tsk->sighand->siglock);
  1317. if (err)
  1318. return err;
  1319. if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
  1320. goto done;
  1321. rcu_read_lock();
  1322. for_each_process(g) {
  1323. if (g == tsk->group_leader)
  1324. continue;
  1325. p = g;
  1326. do {
  1327. if (p->mm) {
  1328. if (p->mm == mm) {
  1329. /*
  1330. * p->sighand can't disappear, but
  1331. * may be changed by de_thread()
  1332. */
  1333. lock_task_sighand(p, &flags);
  1334. zap_process(p);
  1335. unlock_task_sighand(p, &flags);
  1336. }
  1337. break;
  1338. }
  1339. } while ((p = next_thread(p)) != g);
  1340. }
  1341. rcu_read_unlock();
  1342. done:
  1343. return mm->core_waiters;
  1344. }
  1345. static int coredump_wait(int exit_code)
  1346. {
  1347. struct task_struct *tsk = current;
  1348. struct mm_struct *mm = tsk->mm;
  1349. struct completion startup_done;
  1350. struct completion *vfork_done;
  1351. int core_waiters;
  1352. init_completion(&mm->core_done);
  1353. init_completion(&startup_done);
  1354. mm->core_startup_done = &startup_done;
  1355. core_waiters = zap_threads(tsk, mm, exit_code);
  1356. up_write(&mm->mmap_sem);
  1357. if (unlikely(core_waiters < 0))
  1358. goto fail;
  1359. /*
  1360. * Make sure nobody is waiting for us to release the VM,
  1361. * otherwise we can deadlock when we wait on each other
  1362. */
  1363. vfork_done = tsk->vfork_done;
  1364. if (vfork_done) {
  1365. tsk->vfork_done = NULL;
  1366. complete(vfork_done);
  1367. }
  1368. if (core_waiters)
  1369. wait_for_completion(&startup_done);
  1370. fail:
  1371. BUG_ON(mm->core_waiters);
  1372. return core_waiters;
  1373. }
  1374. /*
  1375. * set_dumpable converts traditional three-value dumpable to two flags and
  1376. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1377. * these bits are not changed atomically. So get_dumpable can observe the
  1378. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1379. * return either old dumpable or new one by paying attention to the order of
  1380. * modifying the bits.
  1381. *
  1382. * dumpable | mm->flags (binary)
  1383. * old new | initial interim final
  1384. * ---------+-----------------------
  1385. * 0 1 | 00 01 01
  1386. * 0 2 | 00 10(*) 11
  1387. * 1 0 | 01 00 00
  1388. * 1 2 | 01 11 11
  1389. * 2 0 | 11 10(*) 00
  1390. * 2 1 | 11 11 01
  1391. *
  1392. * (*) get_dumpable regards interim value of 10 as 11.
  1393. */
  1394. void set_dumpable(struct mm_struct *mm, int value)
  1395. {
  1396. switch (value) {
  1397. case 0:
  1398. clear_bit(MMF_DUMPABLE, &mm->flags);
  1399. smp_wmb();
  1400. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1401. break;
  1402. case 1:
  1403. set_bit(MMF_DUMPABLE, &mm->flags);
  1404. smp_wmb();
  1405. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1406. break;
  1407. case 2:
  1408. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1409. smp_wmb();
  1410. set_bit(MMF_DUMPABLE, &mm->flags);
  1411. break;
  1412. }
  1413. }
  1414. int get_dumpable(struct mm_struct *mm)
  1415. {
  1416. int ret;
  1417. ret = mm->flags & 0x3;
  1418. return (ret >= 2) ? 2 : ret;
  1419. }
  1420. int do_coredump(long signr, int exit_code, struct pt_regs * regs)
  1421. {
  1422. char corename[CORENAME_MAX_SIZE + 1];
  1423. struct mm_struct *mm = current->mm;
  1424. struct linux_binfmt * binfmt;
  1425. struct inode * inode;
  1426. struct file * file;
  1427. int retval = 0;
  1428. int fsuid = current->fsuid;
  1429. int flag = 0;
  1430. int ispipe = 0;
  1431. unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
  1432. char **helper_argv = NULL;
  1433. int helper_argc = 0;
  1434. char *delimit;
  1435. audit_core_dumps(signr);
  1436. binfmt = current->binfmt;
  1437. if (!binfmt || !binfmt->core_dump)
  1438. goto fail;
  1439. down_write(&mm->mmap_sem);
  1440. /*
  1441. * If another thread got here first, or we are not dumpable, bail out.
  1442. */
  1443. if (mm->core_waiters || !get_dumpable(mm)) {
  1444. up_write(&mm->mmap_sem);
  1445. goto fail;
  1446. }
  1447. /*
  1448. * We cannot trust fsuid as being the "true" uid of the
  1449. * process nor do we know its entire history. We only know it
  1450. * was tainted so we dump it as root in mode 2.
  1451. */
  1452. if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
  1453. flag = O_EXCL; /* Stop rewrite attacks */
  1454. current->fsuid = 0; /* Dump root private */
  1455. }
  1456. retval = coredump_wait(exit_code);
  1457. if (retval < 0)
  1458. goto fail;
  1459. /*
  1460. * Clear any false indication of pending signals that might
  1461. * be seen by the filesystem code called to write the core file.
  1462. */
  1463. clear_thread_flag(TIF_SIGPENDING);
  1464. /*
  1465. * lock_kernel() because format_corename() is controlled by sysctl, which
  1466. * uses lock_kernel()
  1467. */
  1468. lock_kernel();
  1469. ispipe = format_corename(corename, core_pattern, signr);
  1470. unlock_kernel();
  1471. /*
  1472. * Don't bother to check the RLIMIT_CORE value if core_pattern points
  1473. * to a pipe. Since we're not writing directly to the filesystem
  1474. * RLIMIT_CORE doesn't really apply, as no actual core file will be
  1475. * created unless the pipe reader choses to write out the core file
  1476. * at which point file size limits and permissions will be imposed
  1477. * as it does with any other process
  1478. */
  1479. if ((!ispipe) && (core_limit < binfmt->min_coredump))
  1480. goto fail_unlock;
  1481. if (ispipe) {
  1482. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1483. /* Terminate the string before the first option */
  1484. delimit = strchr(corename, ' ');
  1485. if (delimit)
  1486. *delimit = '\0';
  1487. delimit = strrchr(helper_argv[0], '/');
  1488. if (delimit)
  1489. delimit++;
  1490. else
  1491. delimit = helper_argv[0];
  1492. if (!strcmp(delimit, current->comm)) {
  1493. printk(KERN_NOTICE "Recursive core dump detected, "
  1494. "aborting\n");
  1495. goto fail_unlock;
  1496. }
  1497. core_limit = RLIM_INFINITY;
  1498. /* SIGPIPE can happen, but it's just never processed */
  1499. if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
  1500. &file)) {
  1501. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1502. corename);
  1503. goto fail_unlock;
  1504. }
  1505. } else
  1506. file = filp_open(corename,
  1507. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1508. 0600);
  1509. if (IS_ERR(file))
  1510. goto fail_unlock;
  1511. inode = file->f_path.dentry->d_inode;
  1512. if (inode->i_nlink > 1)
  1513. goto close_fail; /* multiple links - don't dump */
  1514. if (!ispipe && d_unhashed(file->f_path.dentry))
  1515. goto close_fail;
  1516. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1517. but keep the previous behaviour for now. */
  1518. if (!ispipe && !S_ISREG(inode->i_mode))
  1519. goto close_fail;
  1520. /*
  1521. * Dont allow local users get cute and trick others to coredump
  1522. * into their pre-created files:
  1523. */
  1524. if (inode->i_uid != current->fsuid)
  1525. goto close_fail;
  1526. if (!file->f_op)
  1527. goto close_fail;
  1528. if (!file->f_op->write)
  1529. goto close_fail;
  1530. if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
  1531. goto close_fail;
  1532. retval = binfmt->core_dump(signr, regs, file, core_limit);
  1533. if (retval)
  1534. current->signal->group_exit_code |= 0x80;
  1535. close_fail:
  1536. filp_close(file, NULL);
  1537. fail_unlock:
  1538. if (helper_argv)
  1539. argv_free(helper_argv);
  1540. current->fsuid = fsuid;
  1541. complete_all(&mm->core_done);
  1542. fail:
  1543. return retval;
  1544. }