setup.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/ia32.h>
  48. #include <asm/machvec.h>
  49. #include <asm/mca.h>
  50. #include <asm/meminit.h>
  51. #include <asm/page.h>
  52. #include <asm/patch.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/sal.h>
  56. #include <asm/sections.h>
  57. #include <asm/setup.h>
  58. #include <asm/smp.h>
  59. #include <asm/system.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/unistd.h>
  62. #include <asm/hpsim.h>
  63. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  64. # error "struct cpuinfo_ia64 too big!"
  65. #endif
  66. #ifdef CONFIG_SMP
  67. unsigned long __per_cpu_offset[NR_CPUS];
  68. EXPORT_SYMBOL(__per_cpu_offset);
  69. #endif
  70. DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  71. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  72. unsigned long ia64_cycles_per_usec;
  73. struct ia64_boot_param *ia64_boot_param;
  74. struct screen_info screen_info;
  75. unsigned long vga_console_iobase;
  76. unsigned long vga_console_membase;
  77. static struct resource data_resource = {
  78. .name = "Kernel data",
  79. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  80. };
  81. static struct resource code_resource = {
  82. .name = "Kernel code",
  83. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  84. };
  85. static struct resource bss_resource = {
  86. .name = "Kernel bss",
  87. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  88. };
  89. unsigned long ia64_max_cacheline_size;
  90. int dma_get_cache_alignment(void)
  91. {
  92. return ia64_max_cacheline_size;
  93. }
  94. EXPORT_SYMBOL(dma_get_cache_alignment);
  95. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  96. EXPORT_SYMBOL(ia64_iobase);
  97. struct io_space io_space[MAX_IO_SPACES];
  98. EXPORT_SYMBOL(io_space);
  99. unsigned int num_io_spaces;
  100. /*
  101. * "flush_icache_range()" needs to know what processor dependent stride size to use
  102. * when it makes i-cache(s) coherent with d-caches.
  103. */
  104. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  105. unsigned long ia64_i_cache_stride_shift = ~0;
  106. /*
  107. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  108. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  109. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  110. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  111. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  112. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  113. * page-size of 2^64.
  114. */
  115. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  116. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  117. /*
  118. * We use a special marker for the end of memory and it uses the extra (+1) slot
  119. */
  120. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  121. int num_rsvd_regions __initdata;
  122. /*
  123. * Filter incoming memory segments based on the primitive map created from the boot
  124. * parameters. Segments contained in the map are removed from the memory ranges. A
  125. * caller-specified function is called with the memory ranges that remain after filtering.
  126. * This routine does not assume the incoming segments are sorted.
  127. */
  128. int __init
  129. filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
  130. {
  131. unsigned long range_start, range_end, prev_start;
  132. void (*func)(unsigned long, unsigned long, int);
  133. int i;
  134. #if IGNORE_PFN0
  135. if (start == PAGE_OFFSET) {
  136. printk(KERN_WARNING "warning: skipping physical page 0\n");
  137. start += PAGE_SIZE;
  138. if (start >= end) return 0;
  139. }
  140. #endif
  141. /*
  142. * lowest possible address(walker uses virtual)
  143. */
  144. prev_start = PAGE_OFFSET;
  145. func = arg;
  146. for (i = 0; i < num_rsvd_regions; ++i) {
  147. range_start = max(start, prev_start);
  148. range_end = min(end, rsvd_region[i].start);
  149. if (range_start < range_end)
  150. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  151. /* nothing more available in this segment */
  152. if (range_end == end) return 0;
  153. prev_start = rsvd_region[i].end;
  154. }
  155. /* end of memory marker allows full processing inside loop body */
  156. return 0;
  157. }
  158. /*
  159. * Similar to "filter_rsvd_memory()", but the reserved memory ranges
  160. * are not filtered out.
  161. */
  162. int __init
  163. filter_memory(unsigned long start, unsigned long end, void *arg)
  164. {
  165. void (*func)(unsigned long, unsigned long, int);
  166. #if IGNORE_PFN0
  167. if (start == PAGE_OFFSET) {
  168. printk(KERN_WARNING "warning: skipping physical page 0\n");
  169. start += PAGE_SIZE;
  170. if (start >= end)
  171. return 0;
  172. }
  173. #endif
  174. func = arg;
  175. if (start < end)
  176. call_pernode_memory(__pa(start), end - start, func);
  177. return 0;
  178. }
  179. static void __init
  180. sort_regions (struct rsvd_region *rsvd_region, int max)
  181. {
  182. int j;
  183. /* simple bubble sorting */
  184. while (max--) {
  185. for (j = 0; j < max; ++j) {
  186. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  187. struct rsvd_region tmp;
  188. tmp = rsvd_region[j];
  189. rsvd_region[j] = rsvd_region[j + 1];
  190. rsvd_region[j + 1] = tmp;
  191. }
  192. }
  193. }
  194. }
  195. /*
  196. * Request address space for all standard resources
  197. */
  198. static int __init register_memory(void)
  199. {
  200. code_resource.start = ia64_tpa(_text);
  201. code_resource.end = ia64_tpa(_etext) - 1;
  202. data_resource.start = ia64_tpa(_etext);
  203. data_resource.end = ia64_tpa(_edata) - 1;
  204. bss_resource.start = ia64_tpa(__bss_start);
  205. bss_resource.end = ia64_tpa(_end) - 1;
  206. efi_initialize_iomem_resources(&code_resource, &data_resource,
  207. &bss_resource);
  208. return 0;
  209. }
  210. __initcall(register_memory);
  211. #ifdef CONFIG_KEXEC
  212. /*
  213. * This function checks if the reserved crashkernel is allowed on the specific
  214. * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
  215. * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
  216. * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
  217. * in kdump case. See the comment in sba_init() in sba_iommu.c.
  218. *
  219. * So, the only machvec that really supports loading the kdump kernel
  220. * over 4 GB is "sn2".
  221. */
  222. static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
  223. {
  224. if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
  225. return 1;
  226. else
  227. return pbase < (1UL << 32);
  228. }
  229. static void __init setup_crashkernel(unsigned long total, int *n)
  230. {
  231. unsigned long long base = 0, size = 0;
  232. int ret;
  233. ret = parse_crashkernel(boot_command_line, total,
  234. &size, &base);
  235. if (ret == 0 && size > 0) {
  236. if (!base) {
  237. sort_regions(rsvd_region, *n);
  238. base = kdump_find_rsvd_region(size,
  239. rsvd_region, *n);
  240. }
  241. if (!check_crashkernel_memory(base, size)) {
  242. pr_warning("crashkernel: There would be kdump memory "
  243. "at %ld GB but this is unusable because it "
  244. "must\nbe below 4 GB. Change the memory "
  245. "configuration of the machine.\n",
  246. (unsigned long)(base >> 30));
  247. return;
  248. }
  249. if (base != ~0UL) {
  250. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  251. "for crashkernel (System RAM: %ldMB)\n",
  252. (unsigned long)(size >> 20),
  253. (unsigned long)(base >> 20),
  254. (unsigned long)(total >> 20));
  255. rsvd_region[*n].start =
  256. (unsigned long)__va(base);
  257. rsvd_region[*n].end =
  258. (unsigned long)__va(base + size);
  259. (*n)++;
  260. crashk_res.start = base;
  261. crashk_res.end = base + size - 1;
  262. }
  263. }
  264. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  265. efi_memmap_res.end = efi_memmap_res.start +
  266. ia64_boot_param->efi_memmap_size;
  267. boot_param_res.start = __pa(ia64_boot_param);
  268. boot_param_res.end = boot_param_res.start +
  269. sizeof(*ia64_boot_param);
  270. }
  271. #else
  272. static inline void __init setup_crashkernel(unsigned long total, int *n)
  273. {}
  274. #endif
  275. /**
  276. * reserve_memory - setup reserved memory areas
  277. *
  278. * Setup the reserved memory areas set aside for the boot parameters,
  279. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  280. * see include/asm-ia64/meminit.h if you need to define more.
  281. */
  282. void __init
  283. reserve_memory (void)
  284. {
  285. int n = 0;
  286. unsigned long total_memory;
  287. /*
  288. * none of the entries in this table overlap
  289. */
  290. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  291. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  292. n++;
  293. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  294. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  295. n++;
  296. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  297. rsvd_region[n].end = (rsvd_region[n].start
  298. + strlen(__va(ia64_boot_param->command_line)) + 1);
  299. n++;
  300. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  301. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  302. n++;
  303. #ifdef CONFIG_BLK_DEV_INITRD
  304. if (ia64_boot_param->initrd_start) {
  305. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  306. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  307. n++;
  308. }
  309. #endif
  310. #ifdef CONFIG_PROC_VMCORE
  311. if (reserve_elfcorehdr(&rsvd_region[n].start,
  312. &rsvd_region[n].end) == 0)
  313. n++;
  314. #endif
  315. total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  316. n++;
  317. setup_crashkernel(total_memory, &n);
  318. /* end of memory marker */
  319. rsvd_region[n].start = ~0UL;
  320. rsvd_region[n].end = ~0UL;
  321. n++;
  322. num_rsvd_regions = n;
  323. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  324. sort_regions(rsvd_region, num_rsvd_regions);
  325. }
  326. /**
  327. * find_initrd - get initrd parameters from the boot parameter structure
  328. *
  329. * Grab the initrd start and end from the boot parameter struct given us by
  330. * the boot loader.
  331. */
  332. void __init
  333. find_initrd (void)
  334. {
  335. #ifdef CONFIG_BLK_DEV_INITRD
  336. if (ia64_boot_param->initrd_start) {
  337. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  338. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  339. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  340. initrd_start, ia64_boot_param->initrd_size);
  341. }
  342. #endif
  343. }
  344. static void __init
  345. io_port_init (void)
  346. {
  347. unsigned long phys_iobase;
  348. /*
  349. * Set `iobase' based on the EFI memory map or, failing that, the
  350. * value firmware left in ar.k0.
  351. *
  352. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  353. * the port's virtual address, so ia32_load_state() loads it with a
  354. * user virtual address. But in ia64 mode, glibc uses the
  355. * *physical* address in ar.k0 to mmap the appropriate area from
  356. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  357. * cases, user-mode can only use the legacy 0-64K I/O port space.
  358. *
  359. * ar.k0 is not involved in kernel I/O port accesses, which can use
  360. * any of the I/O port spaces and are done via MMIO using the
  361. * virtual mmio_base from the appropriate io_space[].
  362. */
  363. phys_iobase = efi_get_iobase();
  364. if (!phys_iobase) {
  365. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  366. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  367. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  368. }
  369. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  370. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  371. /* setup legacy IO port space */
  372. io_space[0].mmio_base = ia64_iobase;
  373. io_space[0].sparse = 1;
  374. num_io_spaces = 1;
  375. }
  376. /**
  377. * early_console_setup - setup debugging console
  378. *
  379. * Consoles started here require little enough setup that we can start using
  380. * them very early in the boot process, either right after the machine
  381. * vector initialization, or even before if the drivers can detect their hw.
  382. *
  383. * Returns non-zero if a console couldn't be setup.
  384. */
  385. static inline int __init
  386. early_console_setup (char *cmdline)
  387. {
  388. int earlycons = 0;
  389. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  390. {
  391. extern int sn_serial_console_early_setup(void);
  392. if (!sn_serial_console_early_setup())
  393. earlycons++;
  394. }
  395. #endif
  396. #ifdef CONFIG_EFI_PCDP
  397. if (!efi_setup_pcdp_console(cmdline))
  398. earlycons++;
  399. #endif
  400. if (!simcons_register())
  401. earlycons++;
  402. return (earlycons) ? 0 : -1;
  403. }
  404. static inline void
  405. mark_bsp_online (void)
  406. {
  407. #ifdef CONFIG_SMP
  408. /* If we register an early console, allow CPU 0 to printk */
  409. cpu_set(smp_processor_id(), cpu_online_map);
  410. #endif
  411. }
  412. static __initdata int nomca;
  413. static __init int setup_nomca(char *s)
  414. {
  415. nomca = 1;
  416. return 0;
  417. }
  418. early_param("nomca", setup_nomca);
  419. #ifdef CONFIG_PROC_VMCORE
  420. /* elfcorehdr= specifies the location of elf core header
  421. * stored by the crashed kernel.
  422. */
  423. static int __init parse_elfcorehdr(char *arg)
  424. {
  425. if (!arg)
  426. return -EINVAL;
  427. elfcorehdr_addr = memparse(arg, &arg);
  428. return 0;
  429. }
  430. early_param("elfcorehdr", parse_elfcorehdr);
  431. int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
  432. {
  433. unsigned long length;
  434. /* We get the address using the kernel command line,
  435. * but the size is extracted from the EFI tables.
  436. * Both address and size are required for reservation
  437. * to work properly.
  438. */
  439. if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
  440. return -EINVAL;
  441. if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
  442. elfcorehdr_addr = ELFCORE_ADDR_MAX;
  443. return -EINVAL;
  444. }
  445. *start = (unsigned long)__va(elfcorehdr_addr);
  446. *end = *start + length;
  447. return 0;
  448. }
  449. #endif /* CONFIG_PROC_VMCORE */
  450. void __init
  451. setup_arch (char **cmdline_p)
  452. {
  453. unw_init();
  454. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  455. *cmdline_p = __va(ia64_boot_param->command_line);
  456. strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  457. efi_init();
  458. io_port_init();
  459. #ifdef CONFIG_IA64_GENERIC
  460. /* machvec needs to be parsed from the command line
  461. * before parse_early_param() is called to ensure
  462. * that ia64_mv is initialised before any command line
  463. * settings may cause console setup to occur
  464. */
  465. machvec_init_from_cmdline(*cmdline_p);
  466. #endif
  467. parse_early_param();
  468. if (early_console_setup(*cmdline_p) == 0)
  469. mark_bsp_online();
  470. #ifdef CONFIG_ACPI
  471. /* Initialize the ACPI boot-time table parser */
  472. acpi_table_init();
  473. # ifdef CONFIG_ACPI_NUMA
  474. acpi_numa_init();
  475. per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
  476. 32 : cpus_weight(early_cpu_possible_map)), additional_cpus);
  477. # endif
  478. #else
  479. # ifdef CONFIG_SMP
  480. smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
  481. # endif
  482. #endif /* CONFIG_APCI_BOOT */
  483. find_memory();
  484. /* process SAL system table: */
  485. ia64_sal_init(__va(efi.sal_systab));
  486. #ifdef CONFIG_SMP
  487. cpu_physical_id(0) = hard_smp_processor_id();
  488. #endif
  489. cpu_init(); /* initialize the bootstrap CPU */
  490. mmu_context_init(); /* initialize context_id bitmap */
  491. check_sal_cache_flush();
  492. #ifdef CONFIG_ACPI
  493. acpi_boot_init();
  494. #endif
  495. #ifdef CONFIG_VT
  496. if (!conswitchp) {
  497. # if defined(CONFIG_DUMMY_CONSOLE)
  498. conswitchp = &dummy_con;
  499. # endif
  500. # if defined(CONFIG_VGA_CONSOLE)
  501. /*
  502. * Non-legacy systems may route legacy VGA MMIO range to system
  503. * memory. vga_con probes the MMIO hole, so memory looks like
  504. * a VGA device to it. The EFI memory map can tell us if it's
  505. * memory so we can avoid this problem.
  506. */
  507. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  508. conswitchp = &vga_con;
  509. # endif
  510. }
  511. #endif
  512. /* enable IA-64 Machine Check Abort Handling unless disabled */
  513. if (!nomca)
  514. ia64_mca_init();
  515. platform_setup(cmdline_p);
  516. paging_init();
  517. }
  518. /*
  519. * Display cpu info for all CPUs.
  520. */
  521. static int
  522. show_cpuinfo (struct seq_file *m, void *v)
  523. {
  524. #ifdef CONFIG_SMP
  525. # define lpj c->loops_per_jiffy
  526. # define cpunum c->cpu
  527. #else
  528. # define lpj loops_per_jiffy
  529. # define cpunum 0
  530. #endif
  531. static struct {
  532. unsigned long mask;
  533. const char *feature_name;
  534. } feature_bits[] = {
  535. { 1UL << 0, "branchlong" },
  536. { 1UL << 1, "spontaneous deferral"},
  537. { 1UL << 2, "16-byte atomic ops" }
  538. };
  539. char features[128], *cp, *sep;
  540. struct cpuinfo_ia64 *c = v;
  541. unsigned long mask;
  542. unsigned long proc_freq;
  543. int i, size;
  544. mask = c->features;
  545. /* build the feature string: */
  546. memcpy(features, "standard", 9);
  547. cp = features;
  548. size = sizeof(features);
  549. sep = "";
  550. for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
  551. if (mask & feature_bits[i].mask) {
  552. cp += snprintf(cp, size, "%s%s", sep,
  553. feature_bits[i].feature_name),
  554. sep = ", ";
  555. mask &= ~feature_bits[i].mask;
  556. size = sizeof(features) - (cp - features);
  557. }
  558. }
  559. if (mask && size > 1) {
  560. /* print unknown features as a hex value */
  561. snprintf(cp, size, "%s0x%lx", sep, mask);
  562. }
  563. proc_freq = cpufreq_quick_get(cpunum);
  564. if (!proc_freq)
  565. proc_freq = c->proc_freq / 1000;
  566. seq_printf(m,
  567. "processor : %d\n"
  568. "vendor : %s\n"
  569. "arch : IA-64\n"
  570. "family : %u\n"
  571. "model : %u\n"
  572. "model name : %s\n"
  573. "revision : %u\n"
  574. "archrev : %u\n"
  575. "features : %s\n"
  576. "cpu number : %lu\n"
  577. "cpu regs : %u\n"
  578. "cpu MHz : %lu.%03lu\n"
  579. "itc MHz : %lu.%06lu\n"
  580. "BogoMIPS : %lu.%02lu\n",
  581. cpunum, c->vendor, c->family, c->model,
  582. c->model_name, c->revision, c->archrev,
  583. features, c->ppn, c->number,
  584. proc_freq / 1000, proc_freq % 1000,
  585. c->itc_freq / 1000000, c->itc_freq % 1000000,
  586. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  587. #ifdef CONFIG_SMP
  588. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  589. if (c->socket_id != -1)
  590. seq_printf(m, "physical id: %u\n", c->socket_id);
  591. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  592. seq_printf(m,
  593. "core id : %u\n"
  594. "thread id : %u\n",
  595. c->core_id, c->thread_id);
  596. #endif
  597. seq_printf(m,"\n");
  598. return 0;
  599. }
  600. static void *
  601. c_start (struct seq_file *m, loff_t *pos)
  602. {
  603. #ifdef CONFIG_SMP
  604. while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
  605. ++*pos;
  606. #endif
  607. return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
  608. }
  609. static void *
  610. c_next (struct seq_file *m, void *v, loff_t *pos)
  611. {
  612. ++*pos;
  613. return c_start(m, pos);
  614. }
  615. static void
  616. c_stop (struct seq_file *m, void *v)
  617. {
  618. }
  619. const struct seq_operations cpuinfo_op = {
  620. .start = c_start,
  621. .next = c_next,
  622. .stop = c_stop,
  623. .show = show_cpuinfo
  624. };
  625. #define MAX_BRANDS 8
  626. static char brandname[MAX_BRANDS][128];
  627. static char * __cpuinit
  628. get_model_name(__u8 family, __u8 model)
  629. {
  630. static int overflow;
  631. char brand[128];
  632. int i;
  633. memcpy(brand, "Unknown", 8);
  634. if (ia64_pal_get_brand_info(brand)) {
  635. if (family == 0x7)
  636. memcpy(brand, "Merced", 7);
  637. else if (family == 0x1f) switch (model) {
  638. case 0: memcpy(brand, "McKinley", 9); break;
  639. case 1: memcpy(brand, "Madison", 8); break;
  640. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  641. }
  642. }
  643. for (i = 0; i < MAX_BRANDS; i++)
  644. if (strcmp(brandname[i], brand) == 0)
  645. return brandname[i];
  646. for (i = 0; i < MAX_BRANDS; i++)
  647. if (brandname[i][0] == '\0')
  648. return strcpy(brandname[i], brand);
  649. if (overflow++ == 0)
  650. printk(KERN_ERR
  651. "%s: Table overflow. Some processor model information will be missing\n",
  652. __func__);
  653. return "Unknown";
  654. }
  655. static void __cpuinit
  656. identify_cpu (struct cpuinfo_ia64 *c)
  657. {
  658. union {
  659. unsigned long bits[5];
  660. struct {
  661. /* id 0 & 1: */
  662. char vendor[16];
  663. /* id 2 */
  664. u64 ppn; /* processor serial number */
  665. /* id 3: */
  666. unsigned number : 8;
  667. unsigned revision : 8;
  668. unsigned model : 8;
  669. unsigned family : 8;
  670. unsigned archrev : 8;
  671. unsigned reserved : 24;
  672. /* id 4: */
  673. u64 features;
  674. } field;
  675. } cpuid;
  676. pal_vm_info_1_u_t vm1;
  677. pal_vm_info_2_u_t vm2;
  678. pal_status_t status;
  679. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  680. int i;
  681. for (i = 0; i < 5; ++i)
  682. cpuid.bits[i] = ia64_get_cpuid(i);
  683. memcpy(c->vendor, cpuid.field.vendor, 16);
  684. #ifdef CONFIG_SMP
  685. c->cpu = smp_processor_id();
  686. /* below default values will be overwritten by identify_siblings()
  687. * for Multi-Threading/Multi-Core capable CPUs
  688. */
  689. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  690. c->socket_id = -1;
  691. identify_siblings(c);
  692. if (c->threads_per_core > smp_num_siblings)
  693. smp_num_siblings = c->threads_per_core;
  694. #endif
  695. c->ppn = cpuid.field.ppn;
  696. c->number = cpuid.field.number;
  697. c->revision = cpuid.field.revision;
  698. c->model = cpuid.field.model;
  699. c->family = cpuid.field.family;
  700. c->archrev = cpuid.field.archrev;
  701. c->features = cpuid.field.features;
  702. c->model_name = get_model_name(c->family, c->model);
  703. status = ia64_pal_vm_summary(&vm1, &vm2);
  704. if (status == PAL_STATUS_SUCCESS) {
  705. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  706. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  707. }
  708. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  709. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  710. }
  711. void __init
  712. setup_per_cpu_areas (void)
  713. {
  714. /* start_kernel() requires this... */
  715. #ifdef CONFIG_ACPI_HOTPLUG_CPU
  716. prefill_possible_map();
  717. #endif
  718. }
  719. /*
  720. * Calculate the max. cache line size.
  721. *
  722. * In addition, the minimum of the i-cache stride sizes is calculated for
  723. * "flush_icache_range()".
  724. */
  725. static void __cpuinit
  726. get_max_cacheline_size (void)
  727. {
  728. unsigned long line_size, max = 1;
  729. u64 l, levels, unique_caches;
  730. pal_cache_config_info_t cci;
  731. s64 status;
  732. status = ia64_pal_cache_summary(&levels, &unique_caches);
  733. if (status != 0) {
  734. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  735. __func__, status);
  736. max = SMP_CACHE_BYTES;
  737. /* Safest setup for "flush_icache_range()" */
  738. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  739. goto out;
  740. }
  741. for (l = 0; l < levels; ++l) {
  742. status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
  743. &cci);
  744. if (status != 0) {
  745. printk(KERN_ERR
  746. "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
  747. __func__, l, status);
  748. max = SMP_CACHE_BYTES;
  749. /* The safest setup for "flush_icache_range()" */
  750. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  751. cci.pcci_unified = 1;
  752. }
  753. line_size = 1 << cci.pcci_line_size;
  754. if (line_size > max)
  755. max = line_size;
  756. if (!cci.pcci_unified) {
  757. status = ia64_pal_cache_config_info(l,
  758. /* cache_type (instruction)= */ 1,
  759. &cci);
  760. if (status != 0) {
  761. printk(KERN_ERR
  762. "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
  763. __func__, l, status);
  764. /* The safest setup for "flush_icache_range()" */
  765. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  766. }
  767. }
  768. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  769. ia64_i_cache_stride_shift = cci.pcci_stride;
  770. }
  771. out:
  772. if (max > ia64_max_cacheline_size)
  773. ia64_max_cacheline_size = max;
  774. }
  775. /*
  776. * cpu_init() initializes state that is per-CPU. This function acts
  777. * as a 'CPU state barrier', nothing should get across.
  778. */
  779. void __cpuinit
  780. cpu_init (void)
  781. {
  782. extern void __cpuinit ia64_mmu_init (void *);
  783. static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
  784. unsigned long num_phys_stacked;
  785. pal_vm_info_2_u_t vmi;
  786. unsigned int max_ctx;
  787. struct cpuinfo_ia64 *cpu_info;
  788. void *cpu_data;
  789. cpu_data = per_cpu_init();
  790. #ifdef CONFIG_SMP
  791. /*
  792. * insert boot cpu into sibling and core mapes
  793. * (must be done after per_cpu area is setup)
  794. */
  795. if (smp_processor_id() == 0) {
  796. cpu_set(0, per_cpu(cpu_sibling_map, 0));
  797. cpu_set(0, cpu_core_map[0]);
  798. }
  799. #endif
  800. /*
  801. * We set ar.k3 so that assembly code in MCA handler can compute
  802. * physical addresses of per cpu variables with a simple:
  803. * phys = ar.k3 + &per_cpu_var
  804. */
  805. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  806. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  807. get_max_cacheline_size();
  808. /*
  809. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  810. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  811. * depends on the data returned by identify_cpu(). We break the dependency by
  812. * accessing cpu_data() through the canonical per-CPU address.
  813. */
  814. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
  815. identify_cpu(cpu_info);
  816. #ifdef CONFIG_MCKINLEY
  817. {
  818. # define FEATURE_SET 16
  819. struct ia64_pal_retval iprv;
  820. if (cpu_info->family == 0x1f) {
  821. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  822. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  823. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  824. (iprv.v1 | 0x80), FEATURE_SET, 0);
  825. }
  826. }
  827. #endif
  828. /* Clear the stack memory reserved for pt_regs: */
  829. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  830. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  831. /*
  832. * Initialize the page-table base register to a global
  833. * directory with all zeroes. This ensure that we can handle
  834. * TLB-misses to user address-space even before we created the
  835. * first user address-space. This may happen, e.g., due to
  836. * aggressive use of lfetch.fault.
  837. */
  838. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  839. /*
  840. * Initialize default control register to defer speculative faults except
  841. * for those arising from TLB misses, which are not deferred. The
  842. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  843. * the kernel must have recovery code for all speculative accesses). Turn on
  844. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  845. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  846. * be fine).
  847. */
  848. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  849. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  850. atomic_inc(&init_mm.mm_count);
  851. current->active_mm = &init_mm;
  852. if (current->mm)
  853. BUG();
  854. ia64_mmu_init(ia64_imva(cpu_data));
  855. ia64_mca_cpu_init(ia64_imva(cpu_data));
  856. #ifdef CONFIG_IA32_SUPPORT
  857. ia32_cpu_init();
  858. #endif
  859. /* Clear ITC to eliminate sched_clock() overflows in human time. */
  860. ia64_set_itc(0);
  861. /* disable all local interrupt sources: */
  862. ia64_set_itv(1 << 16);
  863. ia64_set_lrr0(1 << 16);
  864. ia64_set_lrr1(1 << 16);
  865. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  866. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  867. /* clear TPR & XTP to enable all interrupt classes: */
  868. ia64_setreg(_IA64_REG_CR_TPR, 0);
  869. /* Clear any pending interrupts left by SAL/EFI */
  870. while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
  871. ia64_eoi();
  872. #ifdef CONFIG_SMP
  873. normal_xtp();
  874. #endif
  875. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  876. if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
  877. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  878. setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
  879. } else {
  880. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  881. max_ctx = (1U << 15) - 1; /* use architected minimum */
  882. }
  883. while (max_ctx < ia64_ctx.max_ctx) {
  884. unsigned int old = ia64_ctx.max_ctx;
  885. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  886. break;
  887. }
  888. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  889. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  890. "stacked regs\n");
  891. num_phys_stacked = 96;
  892. }
  893. /* size of physical stacked register partition plus 8 bytes: */
  894. if (num_phys_stacked > max_num_phys_stacked) {
  895. ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
  896. max_num_phys_stacked = num_phys_stacked;
  897. }
  898. platform_cpu_init();
  899. pm_idle = default_idle;
  900. }
  901. void __init
  902. check_bugs (void)
  903. {
  904. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  905. (unsigned long) __end___mckinley_e9_bundles);
  906. }
  907. static int __init run_dmi_scan(void)
  908. {
  909. dmi_scan_machine();
  910. return 0;
  911. }
  912. core_initcall(run_dmi_scan);