rt2800pci.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2800pci
  19. Abstract: rt2800pci device specific routines.
  20. Supported chipsets: RT2800E & RT2800ED.
  21. */
  22. #include <linux/crc-ccitt.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/eeprom_93cx6.h>
  31. #include "rt2x00.h"
  32. #include "rt2x00pci.h"
  33. #include "rt2x00soc.h"
  34. #include "rt2800lib.h"
  35. #include "rt2800.h"
  36. #include "rt2800pci.h"
  37. #ifdef CONFIG_RT2800PCI_PCI_MODULE
  38. #define CONFIG_RT2800PCI_PCI
  39. #endif
  40. #ifdef CONFIG_RT2800PCI_WISOC_MODULE
  41. #define CONFIG_RT2800PCI_WISOC
  42. #endif
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 1;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. for (i = 0; i < 200; i++) {
  54. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  55. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  56. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  57. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  58. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  59. break;
  60. udelay(REGISTER_BUSY_DELAY);
  61. }
  62. if (i == 200)
  63. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  64. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  65. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  66. }
  67. #ifdef CONFIG_RT2800PCI_WISOC
  68. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  69. {
  70. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  71. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  72. }
  73. #else
  74. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. }
  77. #endif /* CONFIG_RT2800PCI_WISOC */
  78. #ifdef CONFIG_RT2800PCI_PCI
  79. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  80. {
  81. struct rt2x00_dev *rt2x00dev = eeprom->data;
  82. u32 reg;
  83. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  84. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  85. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  86. eeprom->reg_data_clock =
  87. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  88. eeprom->reg_chip_select =
  89. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  90. }
  91. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  92. {
  93. struct rt2x00_dev *rt2x00dev = eeprom->data;
  94. u32 reg = 0;
  95. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  96. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  97. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  98. !!eeprom->reg_data_clock);
  99. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  100. !!eeprom->reg_chip_select);
  101. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  102. }
  103. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  104. {
  105. struct eeprom_93cx6 eeprom;
  106. u32 reg;
  107. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  108. eeprom.data = rt2x00dev;
  109. eeprom.register_read = rt2800pci_eepromregister_read;
  110. eeprom.register_write = rt2800pci_eepromregister_write;
  111. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  112. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  113. eeprom.reg_data_in = 0;
  114. eeprom.reg_data_out = 0;
  115. eeprom.reg_data_clock = 0;
  116. eeprom.reg_chip_select = 0;
  117. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  118. EEPROM_SIZE / sizeof(u16));
  119. }
  120. static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
  121. unsigned int i)
  122. {
  123. u32 reg;
  124. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  125. rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
  126. rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
  127. rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
  128. rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
  129. /* Wait until the EEPROM has been loaded */
  130. rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
  131. /* Apparently the data is read from end to start */
  132. rt2800_register_read(rt2x00dev, EFUSE_DATA3,
  133. (u32 *)&rt2x00dev->eeprom[i]);
  134. rt2800_register_read(rt2x00dev, EFUSE_DATA2,
  135. (u32 *)&rt2x00dev->eeprom[i + 2]);
  136. rt2800_register_read(rt2x00dev, EFUSE_DATA1,
  137. (u32 *)&rt2x00dev->eeprom[i + 4]);
  138. rt2800_register_read(rt2x00dev, EFUSE_DATA0,
  139. (u32 *)&rt2x00dev->eeprom[i + 6]);
  140. }
  141. static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  142. {
  143. unsigned int i;
  144. for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
  145. rt2800pci_efuse_read(rt2x00dev, i);
  146. }
  147. #else
  148. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  149. {
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u16 fw_crc;
  166. u16 crc;
  167. /*
  168. * Only support 8kb firmware files.
  169. */
  170. if (len != 8192)
  171. return FW_BAD_LENGTH;
  172. /*
  173. * The last 2 bytes in the firmware array are the crc checksum itself,
  174. * this means that we should never pass those 2 bytes to the crc
  175. * algorithm.
  176. */
  177. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  178. /*
  179. * Use the crc ccitt algorithm.
  180. * This will return the same value as the legacy driver which
  181. * used bit ordering reversion on the both the firmware bytes
  182. * before input input as well as on the final output.
  183. * Obviously using crc ccitt directly is much more efficient.
  184. */
  185. crc = crc_ccitt(~0, data, len - 2);
  186. /*
  187. * There is a small difference between the crc-itu-t + bitrev and
  188. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  189. * will be swapped, use swab16 to convert the crc to the correct
  190. * value.
  191. */
  192. crc = swab16(crc);
  193. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  194. }
  195. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  196. const u8 *data, const size_t len)
  197. {
  198. unsigned int i;
  199. u32 reg;
  200. /*
  201. * Wait for stable hardware.
  202. */
  203. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  204. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  205. if (reg && reg != ~0)
  206. break;
  207. msleep(1);
  208. }
  209. if (i == REGISTER_BUSY_COUNT) {
  210. ERROR(rt2x00dev, "Unstable hardware.\n");
  211. return -EBUSY;
  212. }
  213. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  214. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  215. /*
  216. * Disable DMA, will be reenabled later when enabling
  217. * the radio.
  218. */
  219. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  220. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  221. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  222. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  223. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  224. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  225. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  226. /*
  227. * enable Host program ram write selection
  228. */
  229. reg = 0;
  230. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  231. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  232. /*
  233. * Write firmware to device.
  234. */
  235. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  236. data, len);
  237. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  238. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  239. /*
  240. * Wait for device to stabilize.
  241. */
  242. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  243. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  244. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  245. break;
  246. msleep(1);
  247. }
  248. if (i == REGISTER_BUSY_COUNT) {
  249. ERROR(rt2x00dev, "PBF system register not ready.\n");
  250. return -EBUSY;
  251. }
  252. /*
  253. * Disable interrupts
  254. */
  255. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  256. /*
  257. * Initialize BBP R/W access agent
  258. */
  259. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  260. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  261. return 0;
  262. }
  263. /*
  264. * Initialization functions.
  265. */
  266. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  267. {
  268. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  269. u32 word;
  270. if (entry->queue->qid == QID_RX) {
  271. rt2x00_desc_read(entry_priv->desc, 1, &word);
  272. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  273. } else {
  274. rt2x00_desc_read(entry_priv->desc, 1, &word);
  275. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  276. }
  277. }
  278. static void rt2800pci_clear_entry(struct queue_entry *entry)
  279. {
  280. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  281. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  282. u32 word;
  283. if (entry->queue->qid == QID_RX) {
  284. rt2x00_desc_read(entry_priv->desc, 0, &word);
  285. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  286. rt2x00_desc_write(entry_priv->desc, 0, word);
  287. rt2x00_desc_read(entry_priv->desc, 1, &word);
  288. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  289. rt2x00_desc_write(entry_priv->desc, 1, word);
  290. } else {
  291. rt2x00_desc_read(entry_priv->desc, 1, &word);
  292. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  293. rt2x00_desc_write(entry_priv->desc, 1, word);
  294. }
  295. }
  296. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  297. {
  298. struct queue_entry_priv_pci *entry_priv;
  299. u32 reg;
  300. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  301. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  302. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  303. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  304. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  305. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  306. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  307. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  308. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  309. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  310. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  311. /*
  312. * Initialize registers.
  313. */
  314. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  315. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  316. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  317. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  318. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  319. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  320. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  321. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  322. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  323. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  324. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  325. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  326. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  327. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  328. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  329. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  330. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  331. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  332. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  333. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  334. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  335. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  336. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  337. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  338. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  339. /*
  340. * Enable global DMA configuration
  341. */
  342. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  343. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  344. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  345. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  346. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  347. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  348. return 0;
  349. }
  350. /*
  351. * Device state switch handlers.
  352. */
  353. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  354. enum dev_state state)
  355. {
  356. u32 reg;
  357. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  358. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  359. (state == STATE_RADIO_RX_ON) ||
  360. (state == STATE_RADIO_RX_ON_LINK));
  361. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  362. }
  363. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  364. enum dev_state state)
  365. {
  366. int mask = (state == STATE_RADIO_IRQ_ON);
  367. u32 reg;
  368. /*
  369. * When interrupts are being enabled, the interrupt registers
  370. * should clear the register to assure a clean state.
  371. */
  372. if (state == STATE_RADIO_IRQ_ON) {
  373. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  374. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  375. }
  376. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  385. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  386. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  387. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  388. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  389. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  390. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  391. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  392. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  393. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  394. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  395. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  396. }
  397. static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  398. {
  399. unsigned int i;
  400. u32 reg;
  401. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  402. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  403. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  404. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  405. return 0;
  406. msleep(1);
  407. }
  408. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  409. return -EACCES;
  410. }
  411. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  412. {
  413. u32 reg;
  414. u16 word;
  415. /*
  416. * Initialize all registers.
  417. */
  418. if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  419. rt2800pci_init_queues(rt2x00dev) ||
  420. rt2800_init_registers(rt2x00dev) ||
  421. rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  422. rt2800_init_bbp(rt2x00dev) ||
  423. rt2800_init_rfcsr(rt2x00dev)))
  424. return -EIO;
  425. /*
  426. * Send signal to firmware during boot time.
  427. */
  428. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  429. /*
  430. * Enable RX.
  431. */
  432. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  433. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  434. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  435. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  436. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  437. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  438. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  439. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  440. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  441. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  442. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  443. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  444. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  445. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  446. /*
  447. * Initialize LED control
  448. */
  449. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  450. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  451. word & 0xff, (word >> 8) & 0xff);
  452. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  453. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  454. word & 0xff, (word >> 8) & 0xff);
  455. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  456. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  457. word & 0xff, (word >> 8) & 0xff);
  458. return 0;
  459. }
  460. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  461. {
  462. u32 reg;
  463. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  464. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  465. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  466. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  467. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  468. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  469. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  470. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  471. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  472. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  473. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  474. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  475. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  476. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  477. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  478. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  479. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  480. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  481. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  482. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  483. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  484. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  485. /* Wait for DMA, ignore error */
  486. rt2800pci_wait_wpdma_ready(rt2x00dev);
  487. }
  488. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  489. enum dev_state state)
  490. {
  491. /*
  492. * Always put the device to sleep (even when we intend to wakeup!)
  493. * if the device is booting and wasn't asleep it will return
  494. * failure when attempting to wakeup.
  495. */
  496. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  497. if (state == STATE_AWAKE) {
  498. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  499. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  500. }
  501. return 0;
  502. }
  503. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  504. enum dev_state state)
  505. {
  506. int retval = 0;
  507. switch (state) {
  508. case STATE_RADIO_ON:
  509. /*
  510. * Before the radio can be enabled, the device first has
  511. * to be woken up. After that it needs a bit of time
  512. * to be fully awake and then the radio can be enabled.
  513. */
  514. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  515. msleep(1);
  516. retval = rt2800pci_enable_radio(rt2x00dev);
  517. break;
  518. case STATE_RADIO_OFF:
  519. /*
  520. * After the radio has been disabled, the device should
  521. * be put to sleep for powersaving.
  522. */
  523. rt2800pci_disable_radio(rt2x00dev);
  524. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  525. break;
  526. case STATE_RADIO_RX_ON:
  527. case STATE_RADIO_RX_ON_LINK:
  528. case STATE_RADIO_RX_OFF:
  529. case STATE_RADIO_RX_OFF_LINK:
  530. rt2800pci_toggle_rx(rt2x00dev, state);
  531. break;
  532. case STATE_RADIO_IRQ_ON:
  533. case STATE_RADIO_IRQ_OFF:
  534. rt2800pci_toggle_irq(rt2x00dev, state);
  535. break;
  536. case STATE_DEEP_SLEEP:
  537. case STATE_SLEEP:
  538. case STATE_STANDBY:
  539. case STATE_AWAKE:
  540. retval = rt2800pci_set_state(rt2x00dev, state);
  541. break;
  542. default:
  543. retval = -ENOTSUPP;
  544. break;
  545. }
  546. if (unlikely(retval))
  547. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  548. state, retval);
  549. return retval;
  550. }
  551. /*
  552. * TX descriptor initialization
  553. */
  554. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  555. struct sk_buff *skb,
  556. struct txentry_desc *txdesc)
  557. {
  558. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  559. __le32 *txd = skbdesc->desc;
  560. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
  561. u32 word;
  562. /*
  563. * Initialize TX Info descriptor
  564. */
  565. rt2x00_desc_read(txwi, 0, &word);
  566. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  567. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  568. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  569. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  570. rt2x00_set_field32(&word, TXWI_W0_TS,
  571. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  572. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  573. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  574. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  575. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  576. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  577. rt2x00_set_field32(&word, TXWI_W0_BW,
  578. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  579. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  580. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  581. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  582. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  583. rt2x00_desc_write(txwi, 0, word);
  584. rt2x00_desc_read(txwi, 1, &word);
  585. rt2x00_set_field32(&word, TXWI_W1_ACK,
  586. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  587. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  588. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  589. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  590. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  591. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  592. txdesc->key_idx : 0xff);
  593. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  594. skb->len - txdesc->l2pad);
  595. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  596. skbdesc->entry->queue->qid + 1);
  597. rt2x00_desc_write(txwi, 1, word);
  598. /*
  599. * Always write 0 to IV/EIV fields, hardware will insert the IV
  600. * from the IVEIV register when TXD_W3_WIV is set to 0.
  601. * When TXD_W3_WIV is set to 1 it will use the IV data
  602. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  603. * crypto entry in the registers should be used to encrypt the frame.
  604. */
  605. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  606. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  607. /*
  608. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  609. * must contains a TXWI structure + 802.11 header + padding + 802.11
  610. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  611. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  612. * data. It means that LAST_SEC0 is always 0.
  613. */
  614. /*
  615. * Initialize TX descriptor
  616. */
  617. rt2x00_desc_read(txd, 0, &word);
  618. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  619. rt2x00_desc_write(txd, 0, word);
  620. rt2x00_desc_read(txd, 1, &word);
  621. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  622. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  623. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  624. rt2x00_set_field32(&word, TXD_W1_BURST,
  625. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  626. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  627. rt2x00dev->hw->extra_tx_headroom);
  628. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  629. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  630. rt2x00_desc_write(txd, 1, word);
  631. rt2x00_desc_read(txd, 2, &word);
  632. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  633. skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
  634. rt2x00_desc_write(txd, 2, word);
  635. rt2x00_desc_read(txd, 3, &word);
  636. rt2x00_set_field32(&word, TXD_W3_WIV,
  637. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  638. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  639. rt2x00_desc_write(txd, 3, word);
  640. }
  641. /*
  642. * TX data initialization
  643. */
  644. static void rt2800pci_write_beacon(struct queue_entry *entry)
  645. {
  646. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  647. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  648. unsigned int beacon_base;
  649. u32 reg;
  650. /*
  651. * Disable beaconing while we are reloading the beacon data,
  652. * otherwise we might be sending out invalid data.
  653. */
  654. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  655. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  656. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  657. /*
  658. * Write entire beacon with descriptor to register.
  659. */
  660. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  661. rt2800_register_multiwrite(rt2x00dev,
  662. beacon_base,
  663. skbdesc->desc, skbdesc->desc_len);
  664. rt2800_register_multiwrite(rt2x00dev,
  665. beacon_base + skbdesc->desc_len,
  666. entry->skb->data, entry->skb->len);
  667. /*
  668. * Clean up beacon skb.
  669. */
  670. dev_kfree_skb_any(entry->skb);
  671. entry->skb = NULL;
  672. }
  673. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  674. const enum data_queue_qid queue_idx)
  675. {
  676. struct data_queue *queue;
  677. unsigned int idx, qidx = 0;
  678. u32 reg;
  679. if (queue_idx == QID_BEACON) {
  680. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  681. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  682. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  683. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  684. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  685. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  686. }
  687. return;
  688. }
  689. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  690. return;
  691. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  692. idx = queue->index[Q_INDEX];
  693. if (queue_idx == QID_MGMT)
  694. qidx = 5;
  695. else
  696. qidx = queue_idx;
  697. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  698. }
  699. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  700. const enum data_queue_qid qid)
  701. {
  702. u32 reg;
  703. if (qid == QID_BEACON) {
  704. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  705. return;
  706. }
  707. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  708. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  709. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  710. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  711. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  712. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  713. }
  714. /*
  715. * RX control handlers
  716. */
  717. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  718. struct rxdone_entry_desc *rxdesc)
  719. {
  720. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  721. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  722. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  723. __le32 *rxd = entry_priv->desc;
  724. __le32 *rxwi = (__le32 *)entry->skb->data;
  725. u32 rxd3;
  726. u32 rxwi0;
  727. u32 rxwi1;
  728. u32 rxwi2;
  729. u32 rxwi3;
  730. rt2x00_desc_read(rxd, 3, &rxd3);
  731. rt2x00_desc_read(rxwi, 0, &rxwi0);
  732. rt2x00_desc_read(rxwi, 1, &rxwi1);
  733. rt2x00_desc_read(rxwi, 2, &rxwi2);
  734. rt2x00_desc_read(rxwi, 3, &rxwi3);
  735. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  736. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  737. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  738. /*
  739. * Unfortunately we don't know the cipher type used during
  740. * decryption. This prevents us from correct providing
  741. * correct statistics through debugfs.
  742. */
  743. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  744. rxdesc->cipher_status =
  745. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  746. }
  747. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  748. /*
  749. * Hardware has stripped IV/EIV data from 802.11 frame during
  750. * decryption. Unfortunately the descriptor doesn't contain
  751. * any fields with the EIV/IV data either, so they can't
  752. * be restored by rt2x00lib.
  753. */
  754. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  755. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  756. rxdesc->flags |= RX_FLAG_DECRYPTED;
  757. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  758. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  759. }
  760. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  761. rxdesc->dev_flags |= RXDONE_MY_BSS;
  762. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
  763. rxdesc->dev_flags |= RXDONE_L2PAD;
  764. skbdesc->flags |= SKBDESC_L2_PADDED;
  765. }
  766. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  767. rxdesc->flags |= RX_FLAG_SHORT_GI;
  768. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  769. rxdesc->flags |= RX_FLAG_40MHZ;
  770. /*
  771. * Detect RX rate, always use MCS as signal type.
  772. */
  773. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  774. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  775. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  776. /*
  777. * Mask of 0x8 bit to remove the short preamble flag.
  778. */
  779. if (rxdesc->rate_mode == RATE_MODE_CCK)
  780. rxdesc->signal &= ~0x8;
  781. rxdesc->rssi =
  782. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  783. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  784. rxdesc->noise =
  785. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  786. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  787. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  788. /*
  789. * Set RX IDX in register to inform hardware that we have handled
  790. * this entry and it is available for reuse again.
  791. */
  792. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  793. /*
  794. * Remove TXWI descriptor from start of buffer.
  795. */
  796. skb_pull(entry->skb, RXWI_DESC_SIZE);
  797. skb_trim(entry->skb, rxdesc->size);
  798. }
  799. /*
  800. * Interrupt functions.
  801. */
  802. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  803. {
  804. struct data_queue *queue;
  805. struct queue_entry *entry;
  806. struct queue_entry *entry_done;
  807. struct queue_entry_priv_pci *entry_priv;
  808. struct txdone_entry_desc txdesc;
  809. u32 word;
  810. u32 reg;
  811. u32 old_reg;
  812. unsigned int type;
  813. unsigned int index;
  814. u16 mcs, real_mcs;
  815. /*
  816. * During each loop we will compare the freshly read
  817. * TX_STA_FIFO register value with the value read from
  818. * the previous loop. If the 2 values are equal then
  819. * we should stop processing because the chance it
  820. * quite big that the device has been unplugged and
  821. * we risk going into an endless loop.
  822. */
  823. old_reg = 0;
  824. while (1) {
  825. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  826. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  827. break;
  828. if (old_reg == reg)
  829. break;
  830. old_reg = reg;
  831. /*
  832. * Skip this entry when it contains an invalid
  833. * queue identication number.
  834. */
  835. type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
  836. if (type >= QID_RX)
  837. continue;
  838. queue = rt2x00queue_get_queue(rt2x00dev, type);
  839. if (unlikely(!queue))
  840. continue;
  841. /*
  842. * Skip this entry when it contains an invalid
  843. * index number.
  844. */
  845. index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
  846. if (unlikely(index >= queue->limit))
  847. continue;
  848. entry = &queue->entries[index];
  849. entry_priv = entry->priv_data;
  850. rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
  851. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  852. while (entry != entry_done) {
  853. /*
  854. * Catch up.
  855. * Just report any entries we missed as failed.
  856. */
  857. WARNING(rt2x00dev,
  858. "TX status report missed for entry %d\n",
  859. entry_done->entry_idx);
  860. txdesc.flags = 0;
  861. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  862. txdesc.retry = 0;
  863. rt2x00lib_txdone(entry_done, &txdesc);
  864. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  865. }
  866. /*
  867. * Obtain the status about this packet.
  868. */
  869. txdesc.flags = 0;
  870. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
  871. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  872. else
  873. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  874. /*
  875. * Ralink has a retry mechanism using a global fallback
  876. * table. We setup this fallback table to try immediate
  877. * lower rate for all rates. In the TX_STA_FIFO,
  878. * the MCS field contains the MCS used for the successfull
  879. * transmission. If the first transmission succeed,
  880. * we have mcs == tx_mcs. On the second transmission,
  881. * we have mcs = tx_mcs - 1. So the number of
  882. * retry is (tx_mcs - mcs).
  883. */
  884. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  885. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  886. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  887. txdesc.retry = mcs - min(mcs, real_mcs);
  888. rt2x00lib_txdone(entry, &txdesc);
  889. }
  890. }
  891. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  892. {
  893. struct rt2x00_dev *rt2x00dev = dev_instance;
  894. u32 reg;
  895. /* Read status and ACK all interrupts */
  896. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  897. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  898. if (!reg)
  899. return IRQ_NONE;
  900. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  901. return IRQ_HANDLED;
  902. /*
  903. * 1 - Rx ring done interrupt.
  904. */
  905. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  906. rt2x00pci_rxdone(rt2x00dev);
  907. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  908. rt2800pci_txdone(rt2x00dev);
  909. return IRQ_HANDLED;
  910. }
  911. /*
  912. * Device probe functions.
  913. */
  914. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  915. {
  916. u16 word;
  917. u8 *mac;
  918. u8 default_lna_gain;
  919. /*
  920. * Read EEPROM into buffer
  921. */
  922. switch(rt2x00dev->chip.rt) {
  923. case RT2880:
  924. case RT3052:
  925. rt2800pci_read_eeprom_soc(rt2x00dev);
  926. break;
  927. case RT3090:
  928. rt2800pci_read_eeprom_efuse(rt2x00dev);
  929. break;
  930. default:
  931. rt2800pci_read_eeprom_pci(rt2x00dev);
  932. break;
  933. }
  934. /*
  935. * Start validation of the data that has been read.
  936. */
  937. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  938. if (!is_valid_ether_addr(mac)) {
  939. random_ether_addr(mac);
  940. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  941. }
  942. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  943. if (word == 0xffff) {
  944. rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
  945. rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
  946. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
  947. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  948. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  949. } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
  950. /*
  951. * There is a max of 2 RX streams for RT2860 series
  952. */
  953. if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
  954. rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
  955. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  956. }
  957. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  958. if (word == 0xffff) {
  959. rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
  960. rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
  961. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  962. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  963. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  964. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
  965. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
  966. rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
  967. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
  968. rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
  969. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  970. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  971. }
  972. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  973. if ((word & 0x00ff) == 0x00ff) {
  974. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  975. rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
  976. LED_MODE_TXRX_ACTIVITY);
  977. rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
  978. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  979. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
  980. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
  981. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
  982. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  983. }
  984. /*
  985. * During the LNA validation we are going to use
  986. * lna0 as correct value. Note that EEPROM_LNA
  987. * is never validated.
  988. */
  989. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
  990. default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
  991. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
  992. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
  993. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
  994. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
  995. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
  996. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
  997. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
  998. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
  999. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
  1000. if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
  1001. rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
  1002. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
  1003. default_lna_gain);
  1004. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
  1005. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
  1006. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
  1007. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
  1008. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
  1009. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
  1010. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
  1011. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
  1012. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
  1013. rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
  1014. if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
  1015. rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
  1016. rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
  1017. default_lna_gain);
  1018. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
  1019. return 0;
  1020. }
  1021. static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1022. {
  1023. u32 reg;
  1024. u16 value;
  1025. u16 eeprom;
  1026. /*
  1027. * Read EEPROM word for configuration.
  1028. */
  1029. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1030. /*
  1031. * Identify RF chipset.
  1032. */
  1033. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1034. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  1035. rt2x00_set_chip_rf(rt2x00dev, value, reg);
  1036. if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
  1037. !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
  1038. !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
  1039. !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
  1040. !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
  1041. !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
  1042. !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
  1043. !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
  1044. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1045. return -ENODEV;
  1046. }
  1047. /*
  1048. * Identify default antenna configuration.
  1049. */
  1050. rt2x00dev->default_ant.tx =
  1051. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
  1052. rt2x00dev->default_ant.rx =
  1053. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
  1054. /*
  1055. * Read frequency offset and RF programming sequence.
  1056. */
  1057. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1058. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1059. /*
  1060. * Read external LNA informations.
  1061. */
  1062. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1063. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1064. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1065. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1066. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1067. /*
  1068. * Detect if this device has an hardware controlled radio.
  1069. */
  1070. if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
  1071. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1072. /*
  1073. * Store led settings, for correct led behaviour.
  1074. */
  1075. #ifdef CONFIG_RT2X00_LIB_LEDS
  1076. rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1077. rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  1078. rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
  1079. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
  1080. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1081. return 0;
  1082. }
  1083. /*
  1084. * RF value list for rt2860
  1085. * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
  1086. */
  1087. static const struct rf_channel rf_vals[] = {
  1088. { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
  1089. { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
  1090. { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
  1091. { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
  1092. { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
  1093. { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
  1094. { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
  1095. { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
  1096. { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
  1097. { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
  1098. { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
  1099. { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
  1100. { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
  1101. { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
  1102. /* 802.11 UNI / HyperLan 2 */
  1103. { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
  1104. { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
  1105. { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
  1106. { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
  1107. { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
  1108. { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
  1109. { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
  1110. { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
  1111. { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
  1112. { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
  1113. { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
  1114. { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
  1115. /* 802.11 HyperLan 2 */
  1116. { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
  1117. { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
  1118. { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
  1119. { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
  1120. { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
  1121. { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
  1122. { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
  1123. { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
  1124. { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
  1125. { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
  1126. { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
  1127. { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
  1128. { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
  1129. { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
  1130. { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
  1131. { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
  1132. /* 802.11 UNII */
  1133. { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
  1134. { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
  1135. { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
  1136. { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
  1137. { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
  1138. { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
  1139. { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
  1140. /* 802.11 Japan */
  1141. { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
  1142. { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
  1143. { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
  1144. { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
  1145. { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
  1146. { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
  1147. { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
  1148. };
  1149. static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1150. {
  1151. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1152. struct channel_info *info;
  1153. char *tx_power1;
  1154. char *tx_power2;
  1155. unsigned int i;
  1156. u16 eeprom;
  1157. /*
  1158. * Initialize all hw fields.
  1159. */
  1160. rt2x00dev->hw->flags =
  1161. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1162. IEEE80211_HW_SIGNAL_DBM |
  1163. IEEE80211_HW_SUPPORTS_PS |
  1164. IEEE80211_HW_PS_NULLFUNC_STACK;
  1165. rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
  1166. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1167. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1168. rt2x00_eeprom_addr(rt2x00dev,
  1169. EEPROM_MAC_ADDR_0));
  1170. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1171. /*
  1172. * Initialize hw_mode information.
  1173. */
  1174. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1175. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1176. if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
  1177. rt2x00_rf(&rt2x00dev->chip, RF2720) ||
  1178. rt2x00_rf(&rt2x00dev->chip, RF3020) ||
  1179. rt2x00_rf(&rt2x00dev->chip, RF3021) ||
  1180. rt2x00_rf(&rt2x00dev->chip, RF3022) ||
  1181. rt2x00_rf(&rt2x00dev->chip, RF2020) ||
  1182. rt2x00_rf(&rt2x00dev->chip, RF3052)) {
  1183. spec->num_channels = 14;
  1184. spec->channels = rf_vals;
  1185. } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
  1186. rt2x00_rf(&rt2x00dev->chip, RF2750)) {
  1187. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1188. spec->num_channels = ARRAY_SIZE(rf_vals);
  1189. spec->channels = rf_vals;
  1190. }
  1191. /*
  1192. * Initialize HT information.
  1193. */
  1194. spec->ht.ht_supported = true;
  1195. spec->ht.cap =
  1196. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  1197. IEEE80211_HT_CAP_GRN_FLD |
  1198. IEEE80211_HT_CAP_SGI_20 |
  1199. IEEE80211_HT_CAP_SGI_40 |
  1200. IEEE80211_HT_CAP_TX_STBC |
  1201. IEEE80211_HT_CAP_RX_STBC |
  1202. IEEE80211_HT_CAP_PSMP_SUPPORT;
  1203. spec->ht.ampdu_factor = 3;
  1204. spec->ht.ampdu_density = 4;
  1205. spec->ht.mcs.tx_params =
  1206. IEEE80211_HT_MCS_TX_DEFINED |
  1207. IEEE80211_HT_MCS_TX_RX_DIFF |
  1208. ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
  1209. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  1210. switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
  1211. case 3:
  1212. spec->ht.mcs.rx_mask[2] = 0xff;
  1213. case 2:
  1214. spec->ht.mcs.rx_mask[1] = 0xff;
  1215. case 1:
  1216. spec->ht.mcs.rx_mask[0] = 0xff;
  1217. spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
  1218. break;
  1219. }
  1220. /*
  1221. * Create channel information array
  1222. */
  1223. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1224. if (!info)
  1225. return -ENOMEM;
  1226. spec->channels_info = info;
  1227. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
  1228. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
  1229. for (i = 0; i < 14; i++) {
  1230. info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
  1231. info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
  1232. }
  1233. if (spec->num_channels > 14) {
  1234. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
  1235. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
  1236. for (i = 14; i < spec->num_channels; i++) {
  1237. info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
  1238. info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
  1239. }
  1240. }
  1241. return 0;
  1242. }
  1243. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  1244. .register_read = rt2x00pci_register_read,
  1245. .register_write = rt2x00pci_register_write,
  1246. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  1247. .register_multiread = rt2x00pci_register_multiread,
  1248. .register_multiwrite = rt2x00pci_register_multiwrite,
  1249. .regbusy_read = rt2x00pci_regbusy_read,
  1250. };
  1251. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1252. {
  1253. int retval;
  1254. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  1255. /*
  1256. * Allocate eeprom data.
  1257. */
  1258. retval = rt2800pci_validate_eeprom(rt2x00dev);
  1259. if (retval)
  1260. return retval;
  1261. retval = rt2800pci_init_eeprom(rt2x00dev);
  1262. if (retval)
  1263. return retval;
  1264. /*
  1265. * Initialize hw specifications.
  1266. */
  1267. retval = rt2800pci_probe_hw_mode(rt2x00dev);
  1268. if (retval)
  1269. return retval;
  1270. /*
  1271. * This device has multiple filters for control frames
  1272. * and has a separate filter for PS Poll frames.
  1273. */
  1274. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  1275. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  1276. /*
  1277. * This device requires firmware.
  1278. */
  1279. if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
  1280. !rt2x00_rt(&rt2x00dev->chip, RT3052))
  1281. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1282. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1283. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  1284. if (!modparam_nohwcrypt)
  1285. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1286. /*
  1287. * Set the rssi offset.
  1288. */
  1289. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1290. return 0;
  1291. }
  1292. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  1293. .irq_handler = rt2800pci_interrupt,
  1294. .probe_hw = rt2800pci_probe_hw,
  1295. .get_firmware_name = rt2800pci_get_firmware_name,
  1296. .check_firmware = rt2800pci_check_firmware,
  1297. .load_firmware = rt2800pci_load_firmware,
  1298. .initialize = rt2x00pci_initialize,
  1299. .uninitialize = rt2x00pci_uninitialize,
  1300. .get_entry_state = rt2800pci_get_entry_state,
  1301. .clear_entry = rt2800pci_clear_entry,
  1302. .set_device_state = rt2800pci_set_device_state,
  1303. .rfkill_poll = rt2800_rfkill_poll,
  1304. .link_stats = rt2800_link_stats,
  1305. .reset_tuner = rt2800_reset_tuner,
  1306. .link_tuner = rt2800_link_tuner,
  1307. .write_tx_desc = rt2800pci_write_tx_desc,
  1308. .write_tx_data = rt2x00pci_write_tx_data,
  1309. .write_beacon = rt2800pci_write_beacon,
  1310. .kick_tx_queue = rt2800pci_kick_tx_queue,
  1311. .kill_tx_queue = rt2800pci_kill_tx_queue,
  1312. .fill_rxdone = rt2800pci_fill_rxdone,
  1313. .config_shared_key = rt2800_config_shared_key,
  1314. .config_pairwise_key = rt2800_config_pairwise_key,
  1315. .config_filter = rt2800_config_filter,
  1316. .config_intf = rt2800_config_intf,
  1317. .config_erp = rt2800_config_erp,
  1318. .config_ant = rt2800_config_ant,
  1319. .config = rt2800_config,
  1320. };
  1321. static const struct data_queue_desc rt2800pci_queue_rx = {
  1322. .entry_num = RX_ENTRIES,
  1323. .data_size = AGGREGATION_SIZE,
  1324. .desc_size = RXD_DESC_SIZE,
  1325. .priv_size = sizeof(struct queue_entry_priv_pci),
  1326. };
  1327. static const struct data_queue_desc rt2800pci_queue_tx = {
  1328. .entry_num = TX_ENTRIES,
  1329. .data_size = AGGREGATION_SIZE,
  1330. .desc_size = TXD_DESC_SIZE,
  1331. .priv_size = sizeof(struct queue_entry_priv_pci),
  1332. };
  1333. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1334. .entry_num = 8 * BEACON_ENTRIES,
  1335. .data_size = 0, /* No DMA required for beacons */
  1336. .desc_size = TXWI_DESC_SIZE,
  1337. .priv_size = sizeof(struct queue_entry_priv_pci),
  1338. };
  1339. static const struct rt2x00_ops rt2800pci_ops = {
  1340. .name = KBUILD_MODNAME,
  1341. .max_sta_intf = 1,
  1342. .max_ap_intf = 8,
  1343. .eeprom_size = EEPROM_SIZE,
  1344. .rf_size = RF_SIZE,
  1345. .tx_queues = NUM_TX_QUEUES,
  1346. .rx = &rt2800pci_queue_rx,
  1347. .tx = &rt2800pci_queue_tx,
  1348. .bcn = &rt2800pci_queue_bcn,
  1349. .lib = &rt2800pci_rt2x00_ops,
  1350. .hw = &rt2800_mac80211_ops,
  1351. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1352. .debugfs = &rt2800_rt2x00debug,
  1353. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1354. };
  1355. /*
  1356. * RT2800pci module information.
  1357. */
  1358. static struct pci_device_id rt2800pci_device_table[] = {
  1359. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1360. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1361. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1362. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1363. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1364. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1365. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1366. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1367. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1368. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1369. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1370. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1371. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1372. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1373. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1374. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1375. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1376. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1377. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1378. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1379. { 0, }
  1380. };
  1381. MODULE_AUTHOR(DRV_PROJECT);
  1382. MODULE_VERSION(DRV_VERSION);
  1383. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1384. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1385. #ifdef CONFIG_RT2800PCI_PCI
  1386. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1387. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1388. #endif /* CONFIG_RT2800PCI_PCI */
  1389. MODULE_LICENSE("GPL");
  1390. #ifdef CONFIG_RT2800PCI_WISOC
  1391. #if defined(CONFIG_RALINK_RT288X)
  1392. __rt2x00soc_probe(RT2880, &rt2800pci_ops);
  1393. #elif defined(CONFIG_RALINK_RT305X)
  1394. __rt2x00soc_probe(RT3052, &rt2800pci_ops);
  1395. #endif
  1396. static struct platform_driver rt2800soc_driver = {
  1397. .driver = {
  1398. .name = "rt2800_wmac",
  1399. .owner = THIS_MODULE,
  1400. .mod_name = KBUILD_MODNAME,
  1401. },
  1402. .probe = __rt2x00soc_probe,
  1403. .remove = __devexit_p(rt2x00soc_remove),
  1404. .suspend = rt2x00soc_suspend,
  1405. .resume = rt2x00soc_resume,
  1406. };
  1407. #endif /* CONFIG_RT2800PCI_WISOC */
  1408. #ifdef CONFIG_RT2800PCI_PCI
  1409. static struct pci_driver rt2800pci_driver = {
  1410. .name = KBUILD_MODNAME,
  1411. .id_table = rt2800pci_device_table,
  1412. .probe = rt2x00pci_probe,
  1413. .remove = __devexit_p(rt2x00pci_remove),
  1414. .suspend = rt2x00pci_suspend,
  1415. .resume = rt2x00pci_resume,
  1416. };
  1417. #endif /* CONFIG_RT2800PCI_PCI */
  1418. static int __init rt2800pci_init(void)
  1419. {
  1420. int ret = 0;
  1421. #ifdef CONFIG_RT2800PCI_WISOC
  1422. ret = platform_driver_register(&rt2800soc_driver);
  1423. if (ret)
  1424. return ret;
  1425. #endif
  1426. #ifdef CONFIG_RT2800PCI_PCI
  1427. ret = pci_register_driver(&rt2800pci_driver);
  1428. if (ret) {
  1429. #ifdef CONFIG_RT2800PCI_WISOC
  1430. platform_driver_unregister(&rt2800soc_driver);
  1431. #endif
  1432. return ret;
  1433. }
  1434. #endif
  1435. return ret;
  1436. }
  1437. static void __exit rt2800pci_exit(void)
  1438. {
  1439. #ifdef CONFIG_RT2800PCI_PCI
  1440. pci_unregister_driver(&rt2800pci_driver);
  1441. #endif
  1442. #ifdef CONFIG_RT2800PCI_WISOC
  1443. platform_driver_unregister(&rt2800soc_driver);
  1444. #endif
  1445. }
  1446. module_init(rt2800pci_init);
  1447. module_exit(rt2800pci_exit);