cfpkt_skbuff.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. /*
  2. * Copyright (C) ST-Ericsson AB 2010
  3. * Author: Sjur Brendeland/sjur.brandeland@stericsson.com
  4. * License terms: GNU General Public License (GPL) version 2
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ":%s(): " fmt, __func__
  7. #include <linux/string.h>
  8. #include <linux/skbuff.h>
  9. #include <linux/hardirq.h>
  10. #include <linux/export.h>
  11. #include <net/caif/cfpkt.h>
  12. #define PKT_PREFIX 48
  13. #define PKT_POSTFIX 2
  14. #define PKT_LEN_WHEN_EXTENDING 128
  15. #define PKT_ERROR(pkt, errmsg) \
  16. do { \
  17. cfpkt_priv(pkt)->erronous = true; \
  18. skb_reset_tail_pointer(&pkt->skb); \
  19. pr_warn(errmsg); \
  20. } while (0)
  21. struct cfpktq {
  22. struct sk_buff_head head;
  23. atomic_t count;
  24. /* Lock protects count updates */
  25. spinlock_t lock;
  26. };
  27. /*
  28. * net/caif/ is generic and does not
  29. * understand SKB, so we do this typecast
  30. */
  31. struct cfpkt {
  32. struct sk_buff skb;
  33. };
  34. /* Private data inside SKB */
  35. struct cfpkt_priv_data {
  36. struct dev_info dev_info;
  37. bool erronous;
  38. };
  39. static inline struct cfpkt_priv_data *cfpkt_priv(struct cfpkt *pkt)
  40. {
  41. return (struct cfpkt_priv_data *) pkt->skb.cb;
  42. }
  43. static inline bool is_erronous(struct cfpkt *pkt)
  44. {
  45. return cfpkt_priv(pkt)->erronous;
  46. }
  47. static inline struct sk_buff *pkt_to_skb(struct cfpkt *pkt)
  48. {
  49. return &pkt->skb;
  50. }
  51. static inline struct cfpkt *skb_to_pkt(struct sk_buff *skb)
  52. {
  53. return (struct cfpkt *) skb;
  54. }
  55. struct cfpkt *cfpkt_fromnative(enum caif_direction dir, void *nativepkt)
  56. {
  57. struct cfpkt *pkt = skb_to_pkt(nativepkt);
  58. cfpkt_priv(pkt)->erronous = false;
  59. return pkt;
  60. }
  61. EXPORT_SYMBOL(cfpkt_fromnative);
  62. void *cfpkt_tonative(struct cfpkt *pkt)
  63. {
  64. return (void *) pkt;
  65. }
  66. EXPORT_SYMBOL(cfpkt_tonative);
  67. static struct cfpkt *cfpkt_create_pfx(u16 len, u16 pfx)
  68. {
  69. struct sk_buff *skb;
  70. if (likely(in_interrupt()))
  71. skb = alloc_skb(len + pfx, GFP_ATOMIC);
  72. else
  73. skb = alloc_skb(len + pfx, GFP_KERNEL);
  74. if (unlikely(skb == NULL))
  75. return NULL;
  76. skb_reserve(skb, pfx);
  77. return skb_to_pkt(skb);
  78. }
  79. inline struct cfpkt *cfpkt_create(u16 len)
  80. {
  81. return cfpkt_create_pfx(len + PKT_POSTFIX, PKT_PREFIX);
  82. }
  83. void cfpkt_destroy(struct cfpkt *pkt)
  84. {
  85. struct sk_buff *skb = pkt_to_skb(pkt);
  86. kfree_skb(skb);
  87. }
  88. inline bool cfpkt_more(struct cfpkt *pkt)
  89. {
  90. struct sk_buff *skb = pkt_to_skb(pkt);
  91. return skb->len > 0;
  92. }
  93. int cfpkt_peek_head(struct cfpkt *pkt, void *data, u16 len)
  94. {
  95. struct sk_buff *skb = pkt_to_skb(pkt);
  96. if (skb_headlen(skb) >= len) {
  97. memcpy(data, skb->data, len);
  98. return 0;
  99. }
  100. return !cfpkt_extr_head(pkt, data, len) &&
  101. !cfpkt_add_head(pkt, data, len);
  102. }
  103. int cfpkt_extr_head(struct cfpkt *pkt, void *data, u16 len)
  104. {
  105. struct sk_buff *skb = pkt_to_skb(pkt);
  106. u8 *from;
  107. if (unlikely(is_erronous(pkt)))
  108. return -EPROTO;
  109. if (unlikely(len > skb->len)) {
  110. PKT_ERROR(pkt, "read beyond end of packet\n");
  111. return -EPROTO;
  112. }
  113. if (unlikely(len > skb_headlen(skb))) {
  114. if (unlikely(skb_linearize(skb) != 0)) {
  115. PKT_ERROR(pkt, "linearize failed\n");
  116. return -EPROTO;
  117. }
  118. }
  119. from = skb_pull(skb, len);
  120. from -= len;
  121. if (data)
  122. memcpy(data, from, len);
  123. return 0;
  124. }
  125. int cfpkt_extr_trail(struct cfpkt *pkt, void *dta, u16 len)
  126. {
  127. struct sk_buff *skb = pkt_to_skb(pkt);
  128. u8 *data = dta;
  129. u8 *from;
  130. if (unlikely(is_erronous(pkt)))
  131. return -EPROTO;
  132. if (unlikely(skb_linearize(skb) != 0)) {
  133. PKT_ERROR(pkt, "linearize failed\n");
  134. return -EPROTO;
  135. }
  136. if (unlikely(skb->data + len > skb_tail_pointer(skb))) {
  137. PKT_ERROR(pkt, "read beyond end of packet\n");
  138. return -EPROTO;
  139. }
  140. from = skb_tail_pointer(skb) - len;
  141. skb_trim(skb, skb->len - len);
  142. memcpy(data, from, len);
  143. return 0;
  144. }
  145. int cfpkt_pad_trail(struct cfpkt *pkt, u16 len)
  146. {
  147. return cfpkt_add_body(pkt, NULL, len);
  148. }
  149. int cfpkt_add_body(struct cfpkt *pkt, const void *data, u16 len)
  150. {
  151. struct sk_buff *skb = pkt_to_skb(pkt);
  152. struct sk_buff *lastskb;
  153. u8 *to;
  154. u16 addlen = 0;
  155. if (unlikely(is_erronous(pkt)))
  156. return -EPROTO;
  157. lastskb = skb;
  158. /* Check whether we need to add space at the tail */
  159. if (unlikely(skb_tailroom(skb) < len)) {
  160. if (likely(len < PKT_LEN_WHEN_EXTENDING))
  161. addlen = PKT_LEN_WHEN_EXTENDING;
  162. else
  163. addlen = len;
  164. }
  165. /* Check whether we need to change the SKB before writing to the tail */
  166. if (unlikely((addlen > 0) || skb_cloned(skb) || skb_shared(skb))) {
  167. /* Make sure data is writable */
  168. if (unlikely(skb_cow_data(skb, addlen, &lastskb) < 0)) {
  169. PKT_ERROR(pkt, "cow failed\n");
  170. return -EPROTO;
  171. }
  172. /*
  173. * Is the SKB non-linear after skb_cow_data()? If so, we are
  174. * going to add data to the last SKB, so we need to adjust
  175. * lengths of the top SKB.
  176. */
  177. if (lastskb != skb) {
  178. pr_warn("Packet is non-linear\n");
  179. skb->len += len;
  180. skb->data_len += len;
  181. }
  182. }
  183. /* All set to put the last SKB and optionally write data there. */
  184. to = skb_put(lastskb, len);
  185. if (likely(data))
  186. memcpy(to, data, len);
  187. return 0;
  188. }
  189. inline int cfpkt_addbdy(struct cfpkt *pkt, u8 data)
  190. {
  191. return cfpkt_add_body(pkt, &data, 1);
  192. }
  193. int cfpkt_add_head(struct cfpkt *pkt, const void *data2, u16 len)
  194. {
  195. struct sk_buff *skb = pkt_to_skb(pkt);
  196. struct sk_buff *lastskb;
  197. u8 *to;
  198. const u8 *data = data2;
  199. int ret;
  200. if (unlikely(is_erronous(pkt)))
  201. return -EPROTO;
  202. if (unlikely(skb_headroom(skb) < len)) {
  203. PKT_ERROR(pkt, "no headroom\n");
  204. return -EPROTO;
  205. }
  206. /* Make sure data is writable */
  207. ret = skb_cow_data(skb, 0, &lastskb);
  208. if (unlikely(ret < 0)) {
  209. PKT_ERROR(pkt, "cow failed\n");
  210. return ret;
  211. }
  212. to = skb_push(skb, len);
  213. memcpy(to, data, len);
  214. return 0;
  215. }
  216. inline int cfpkt_add_trail(struct cfpkt *pkt, const void *data, u16 len)
  217. {
  218. return cfpkt_add_body(pkt, data, len);
  219. }
  220. inline u16 cfpkt_getlen(struct cfpkt *pkt)
  221. {
  222. struct sk_buff *skb = pkt_to_skb(pkt);
  223. return skb->len;
  224. }
  225. inline u16 cfpkt_iterate(struct cfpkt *pkt,
  226. u16 (*iter_func)(u16, void *, u16),
  227. u16 data)
  228. {
  229. /*
  230. * Don't care about the performance hit of linearizing,
  231. * Checksum should not be used on high-speed interfaces anyway.
  232. */
  233. if (unlikely(is_erronous(pkt)))
  234. return -EPROTO;
  235. if (unlikely(skb_linearize(&pkt->skb) != 0)) {
  236. PKT_ERROR(pkt, "linearize failed\n");
  237. return -EPROTO;
  238. }
  239. return iter_func(data, pkt->skb.data, cfpkt_getlen(pkt));
  240. }
  241. int cfpkt_setlen(struct cfpkt *pkt, u16 len)
  242. {
  243. struct sk_buff *skb = pkt_to_skb(pkt);
  244. if (unlikely(is_erronous(pkt)))
  245. return -EPROTO;
  246. if (likely(len <= skb->len)) {
  247. if (unlikely(skb->data_len))
  248. ___pskb_trim(skb, len);
  249. else
  250. skb_trim(skb, len);
  251. return cfpkt_getlen(pkt);
  252. }
  253. /* Need to expand SKB */
  254. if (unlikely(!cfpkt_pad_trail(pkt, len - skb->len)))
  255. PKT_ERROR(pkt, "skb_pad_trail failed\n");
  256. return cfpkt_getlen(pkt);
  257. }
  258. struct cfpkt *cfpkt_append(struct cfpkt *dstpkt,
  259. struct cfpkt *addpkt,
  260. u16 expectlen)
  261. {
  262. struct sk_buff *dst = pkt_to_skb(dstpkt);
  263. struct sk_buff *add = pkt_to_skb(addpkt);
  264. u16 addlen = skb_headlen(add);
  265. u16 neededtailspace;
  266. struct sk_buff *tmp;
  267. u16 dstlen;
  268. u16 createlen;
  269. if (unlikely(is_erronous(dstpkt) || is_erronous(addpkt))) {
  270. return dstpkt;
  271. }
  272. if (expectlen > addlen)
  273. neededtailspace = expectlen;
  274. else
  275. neededtailspace = addlen;
  276. if (dst->tail + neededtailspace > dst->end) {
  277. /* Create a dumplicate of 'dst' with more tail space */
  278. struct cfpkt *tmppkt;
  279. dstlen = skb_headlen(dst);
  280. createlen = dstlen + neededtailspace;
  281. tmppkt = cfpkt_create(createlen + PKT_PREFIX + PKT_POSTFIX);
  282. if (tmppkt == NULL)
  283. return NULL;
  284. tmp = pkt_to_skb(tmppkt);
  285. skb_set_tail_pointer(tmp, dstlen);
  286. tmp->len = dstlen;
  287. memcpy(tmp->data, dst->data, dstlen);
  288. cfpkt_destroy(dstpkt);
  289. dst = tmp;
  290. }
  291. memcpy(skb_tail_pointer(dst), add->data, skb_headlen(add));
  292. cfpkt_destroy(addpkt);
  293. dst->tail += addlen;
  294. dst->len += addlen;
  295. return skb_to_pkt(dst);
  296. }
  297. struct cfpkt *cfpkt_split(struct cfpkt *pkt, u16 pos)
  298. {
  299. struct sk_buff *skb2;
  300. struct sk_buff *skb = pkt_to_skb(pkt);
  301. struct cfpkt *tmppkt;
  302. u8 *split = skb->data + pos;
  303. u16 len2nd = skb_tail_pointer(skb) - split;
  304. if (unlikely(is_erronous(pkt)))
  305. return NULL;
  306. if (skb->data + pos > skb_tail_pointer(skb)) {
  307. PKT_ERROR(pkt, "trying to split beyond end of packet\n");
  308. return NULL;
  309. }
  310. /* Create a new packet for the second part of the data */
  311. tmppkt = cfpkt_create_pfx(len2nd + PKT_PREFIX + PKT_POSTFIX,
  312. PKT_PREFIX);
  313. if (tmppkt == NULL)
  314. return NULL;
  315. skb2 = pkt_to_skb(tmppkt);
  316. if (skb2 == NULL)
  317. return NULL;
  318. /* Reduce the length of the original packet */
  319. skb_set_tail_pointer(skb, pos);
  320. skb->len = pos;
  321. memcpy(skb2->data, split, len2nd);
  322. skb2->tail += len2nd;
  323. skb2->len += len2nd;
  324. return skb_to_pkt(skb2);
  325. }
  326. bool cfpkt_erroneous(struct cfpkt *pkt)
  327. {
  328. return cfpkt_priv(pkt)->erronous;
  329. }
  330. struct caif_payload_info *cfpkt_info(struct cfpkt *pkt)
  331. {
  332. return (struct caif_payload_info *)&pkt_to_skb(pkt)->cb;
  333. }