process.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*
  2. * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Licensed under the GPL
  5. */
  6. #include "linux/kernel.h"
  7. #include "linux/sched.h"
  8. #include "linux/interrupt.h"
  9. #include "linux/string.h"
  10. #include "linux/mm.h"
  11. #include "linux/slab.h"
  12. #include "linux/utsname.h"
  13. #include "linux/fs.h"
  14. #include "linux/utime.h"
  15. #include "linux/smp_lock.h"
  16. #include "linux/module.h"
  17. #include "linux/init.h"
  18. #include "linux/capability.h"
  19. #include "linux/vmalloc.h"
  20. #include "linux/spinlock.h"
  21. #include "linux/proc_fs.h"
  22. #include "linux/ptrace.h"
  23. #include "linux/random.h"
  24. #include "linux/personality.h"
  25. #include "asm/unistd.h"
  26. #include "asm/mman.h"
  27. #include "asm/segment.h"
  28. #include "asm/stat.h"
  29. #include "asm/pgtable.h"
  30. #include "asm/processor.h"
  31. #include "asm/tlbflush.h"
  32. #include "asm/uaccess.h"
  33. #include "asm/user.h"
  34. #include "kern_util.h"
  35. #include "as-layout.h"
  36. #include "kern.h"
  37. #include "signal_kern.h"
  38. #include "init.h"
  39. #include "irq_user.h"
  40. #include "mem_user.h"
  41. #include "tlb.h"
  42. #include "frame_kern.h"
  43. #include "sigcontext.h"
  44. #include "os.h"
  45. #include "mode.h"
  46. #include "mode_kern.h"
  47. #include "choose-mode.h"
  48. #include "um_malloc.h"
  49. /* This is a per-cpu array. A processor only modifies its entry and it only
  50. * cares about its entry, so it's OK if another processor is modifying its
  51. * entry.
  52. */
  53. struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  54. static inline int external_pid(struct task_struct *task)
  55. {
  56. return CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task);
  57. }
  58. int pid_to_processor_id(int pid)
  59. {
  60. int i;
  61. for(i = 0; i < ncpus; i++){
  62. if(cpu_tasks[i].pid == pid)
  63. return i;
  64. }
  65. return -1;
  66. }
  67. void free_stack(unsigned long stack, int order)
  68. {
  69. free_pages(stack, order);
  70. }
  71. unsigned long alloc_stack(int order, int atomic)
  72. {
  73. unsigned long page;
  74. gfp_t flags = GFP_KERNEL;
  75. if (atomic)
  76. flags = GFP_ATOMIC;
  77. page = __get_free_pages(flags, order);
  78. if(page == 0)
  79. return 0;
  80. stack_protections(page);
  81. return page;
  82. }
  83. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  84. {
  85. int pid;
  86. current->thread.request.u.thread.proc = fn;
  87. current->thread.request.u.thread.arg = arg;
  88. pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  89. &current->thread.regs, 0, NULL, NULL);
  90. if(pid < 0)
  91. panic("do_fork failed in kernel_thread, errno = %d", pid);
  92. return pid;
  93. }
  94. static inline void set_current(struct task_struct *task)
  95. {
  96. cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  97. { external_pid(task), task });
  98. }
  99. void *_switch_to(void *prev, void *next, void *last)
  100. {
  101. struct task_struct *from = prev;
  102. struct task_struct *to= next;
  103. to->thread.prev_sched = from;
  104. set_current(to);
  105. do {
  106. current->thread.saved_task = NULL ;
  107. CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
  108. if(current->thread.saved_task)
  109. show_regs(&(current->thread.regs));
  110. next= current->thread.saved_task;
  111. prev= current;
  112. } while(current->thread.saved_task);
  113. return current->thread.prev_sched;
  114. }
  115. void interrupt_end(void)
  116. {
  117. if(need_resched())
  118. schedule();
  119. if(test_tsk_thread_flag(current, TIF_SIGPENDING))
  120. do_signal();
  121. }
  122. void release_thread(struct task_struct *task)
  123. {
  124. CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
  125. }
  126. void exit_thread(void)
  127. {
  128. unprotect_stack((unsigned long) current_thread);
  129. }
  130. void *get_current(void)
  131. {
  132. return current;
  133. }
  134. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  135. unsigned long stack_top, struct task_struct * p,
  136. struct pt_regs *regs)
  137. {
  138. int ret;
  139. p->thread = (struct thread_struct) INIT_THREAD;
  140. ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
  141. clone_flags, sp, stack_top, p, regs);
  142. if (ret || !current->thread.forking)
  143. goto out;
  144. clear_flushed_tls(p);
  145. /*
  146. * Set a new TLS for the child thread?
  147. */
  148. if (clone_flags & CLONE_SETTLS)
  149. ret = arch_copy_tls(p);
  150. out:
  151. return ret;
  152. }
  153. void initial_thread_cb(void (*proc)(void *), void *arg)
  154. {
  155. int save_kmalloc_ok = kmalloc_ok;
  156. kmalloc_ok = 0;
  157. CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
  158. arg);
  159. kmalloc_ok = save_kmalloc_ok;
  160. }
  161. #ifdef CONFIG_MODE_TT
  162. unsigned long stack_sp(unsigned long page)
  163. {
  164. return page + PAGE_SIZE - sizeof(void *);
  165. }
  166. #endif
  167. void default_idle(void)
  168. {
  169. CHOOSE_MODE(uml_idle_timer(), (void) 0);
  170. while(1){
  171. /* endless idle loop with no priority at all */
  172. /*
  173. * although we are an idle CPU, we do not want to
  174. * get into the scheduler unnecessarily.
  175. */
  176. if(need_resched())
  177. schedule();
  178. idle_sleep(10);
  179. }
  180. }
  181. void cpu_idle(void)
  182. {
  183. CHOOSE_MODE(init_idle_tt(), init_idle_skas());
  184. }
  185. void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
  186. pte_t *pte_out)
  187. {
  188. pgd_t *pgd;
  189. pud_t *pud;
  190. pmd_t *pmd;
  191. pte_t *pte;
  192. pte_t ptent;
  193. if(task->mm == NULL)
  194. return ERR_PTR(-EINVAL);
  195. pgd = pgd_offset(task->mm, addr);
  196. if(!pgd_present(*pgd))
  197. return ERR_PTR(-EINVAL);
  198. pud = pud_offset(pgd, addr);
  199. if(!pud_present(*pud))
  200. return ERR_PTR(-EINVAL);
  201. pmd = pmd_offset(pud, addr);
  202. if(!pmd_present(*pmd))
  203. return ERR_PTR(-EINVAL);
  204. pte = pte_offset_kernel(pmd, addr);
  205. ptent = *pte;
  206. if(!pte_present(ptent))
  207. return ERR_PTR(-EINVAL);
  208. if(pte_out != NULL)
  209. *pte_out = ptent;
  210. return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
  211. }
  212. char *current_cmd(void)
  213. {
  214. #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
  215. return "(Unknown)";
  216. #else
  217. void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
  218. return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
  219. #endif
  220. }
  221. void dump_thread(struct pt_regs *regs, struct user *u)
  222. {
  223. }
  224. void *um_kmalloc(int size)
  225. {
  226. return kmalloc(size, GFP_KERNEL);
  227. }
  228. void *um_kmalloc_atomic(int size)
  229. {
  230. return kmalloc(size, GFP_ATOMIC);
  231. }
  232. void *um_vmalloc(int size)
  233. {
  234. return vmalloc(size);
  235. }
  236. int __cant_sleep(void) {
  237. return in_atomic() || irqs_disabled() || in_interrupt();
  238. /* Is in_interrupt() really needed? */
  239. }
  240. int user_context(unsigned long sp)
  241. {
  242. unsigned long stack;
  243. stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
  244. return stack != (unsigned long) current_thread;
  245. }
  246. extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
  247. void do_uml_exitcalls(void)
  248. {
  249. exitcall_t *call;
  250. call = &__uml_exitcall_end;
  251. while (--call >= &__uml_exitcall_begin)
  252. (*call)();
  253. }
  254. char *uml_strdup(char *string)
  255. {
  256. return kstrdup(string, GFP_KERNEL);
  257. }
  258. int copy_to_user_proc(void __user *to, void *from, int size)
  259. {
  260. return copy_to_user(to, from, size);
  261. }
  262. int copy_from_user_proc(void *to, void __user *from, int size)
  263. {
  264. return copy_from_user(to, from, size);
  265. }
  266. int clear_user_proc(void __user *buf, int size)
  267. {
  268. return clear_user(buf, size);
  269. }
  270. int strlen_user_proc(char __user *str)
  271. {
  272. return strlen_user(str);
  273. }
  274. int smp_sigio_handler(void)
  275. {
  276. #ifdef CONFIG_SMP
  277. int cpu = current_thread->cpu;
  278. IPI_handler(cpu);
  279. if(cpu != 0)
  280. return 1;
  281. #endif
  282. return 0;
  283. }
  284. int cpu(void)
  285. {
  286. return current_thread->cpu;
  287. }
  288. static atomic_t using_sysemu = ATOMIC_INIT(0);
  289. int sysemu_supported;
  290. void set_using_sysemu(int value)
  291. {
  292. if (value > sysemu_supported)
  293. return;
  294. atomic_set(&using_sysemu, value);
  295. }
  296. int get_using_sysemu(void)
  297. {
  298. return atomic_read(&using_sysemu);
  299. }
  300. static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
  301. {
  302. if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
  303. *eof = 1;
  304. return strlen(buf);
  305. }
  306. static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
  307. {
  308. char tmp[2];
  309. if (copy_from_user(tmp, buf, 1))
  310. return -EFAULT;
  311. if (tmp[0] >= '0' && tmp[0] <= '2')
  312. set_using_sysemu(tmp[0] - '0');
  313. return count; /*We use the first char, but pretend to write everything*/
  314. }
  315. int __init make_proc_sysemu(void)
  316. {
  317. struct proc_dir_entry *ent;
  318. if (!sysemu_supported)
  319. return 0;
  320. ent = create_proc_entry("sysemu", 0600, &proc_root);
  321. if (ent == NULL)
  322. {
  323. printk(KERN_WARNING "Failed to register /proc/sysemu\n");
  324. return 0;
  325. }
  326. ent->read_proc = proc_read_sysemu;
  327. ent->write_proc = proc_write_sysemu;
  328. return 0;
  329. }
  330. late_initcall(make_proc_sysemu);
  331. int singlestepping(void * t)
  332. {
  333. struct task_struct *task = t ? t : current;
  334. if ( ! (task->ptrace & PT_DTRACE) )
  335. return(0);
  336. if (task->thread.singlestep_syscall)
  337. return(1);
  338. return 2;
  339. }
  340. /*
  341. * Only x86 and x86_64 have an arch_align_stack().
  342. * All other arches have "#define arch_align_stack(x) (x)"
  343. * in their asm/system.h
  344. * As this is included in UML from asm-um/system-generic.h,
  345. * we can use it to behave as the subarch does.
  346. */
  347. #ifndef arch_align_stack
  348. unsigned long arch_align_stack(unsigned long sp)
  349. {
  350. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  351. sp -= get_random_int() % 8192;
  352. return sp & ~0xf;
  353. }
  354. #endif