raid5.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702
  1. /*
  2. * raid5.c : Multiple Devices driver for Linux
  3. * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  4. * Copyright (C) 1999, 2000 Ingo Molnar
  5. * Copyright (C) 2002, 2003 H. Peter Anvin
  6. *
  7. * RAID-4/5/6 management functions.
  8. * Thanks to Penguin Computing for making the RAID-6 development possible
  9. * by donating a test server!
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. /*
  21. * BITMAP UNPLUGGING:
  22. *
  23. * The sequencing for updating the bitmap reliably is a little
  24. * subtle (and I got it wrong the first time) so it deserves some
  25. * explanation.
  26. *
  27. * We group bitmap updates into batches. Each batch has a number.
  28. * We may write out several batches at once, but that isn't very important.
  29. * conf->bm_write is the number of the last batch successfully written.
  30. * conf->bm_flush is the number of the last batch that was closed to
  31. * new additions.
  32. * When we discover that we will need to write to any block in a stripe
  33. * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  34. * the number of the batch it will be in. This is bm_flush+1.
  35. * When we are ready to do a write, if that batch hasn't been written yet,
  36. * we plug the array and queue the stripe for later.
  37. * When an unplug happens, we increment bm_flush, thus closing the current
  38. * batch.
  39. * When we notice that bm_flush > bm_write, we write out all pending updates
  40. * to the bitmap, and advance bm_write to where bm_flush was.
  41. * This may occasionally write a bit out twice, but is sure never to
  42. * miss any bits.
  43. */
  44. #include <linux/module.h>
  45. #include <linux/slab.h>
  46. #include <linux/highmem.h>
  47. #include <linux/bitops.h>
  48. #include <linux/kthread.h>
  49. #include <asm/atomic.h>
  50. #include "raid6.h"
  51. #include <linux/raid/bitmap.h>
  52. #include <linux/async_tx.h>
  53. /*
  54. * Stripe cache
  55. */
  56. #define NR_STRIPES 256
  57. #define STRIPE_SIZE PAGE_SIZE
  58. #define STRIPE_SHIFT (PAGE_SHIFT - 9)
  59. #define STRIPE_SECTORS (STRIPE_SIZE>>9)
  60. #define IO_THRESHOLD 1
  61. #define BYPASS_THRESHOLD 1
  62. #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
  63. #define HASH_MASK (NR_HASH - 1)
  64. #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
  65. /* bio's attached to a stripe+device for I/O are linked together in bi_sector
  66. * order without overlap. There may be several bio's per stripe+device, and
  67. * a bio could span several devices.
  68. * When walking this list for a particular stripe+device, we must never proceed
  69. * beyond a bio that extends past this device, as the next bio might no longer
  70. * be valid.
  71. * This macro is used to determine the 'next' bio in the list, given the sector
  72. * of the current stripe+device
  73. */
  74. #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  75. /*
  76. * The following can be used to debug the driver
  77. */
  78. #define RAID5_PARANOIA 1
  79. #if RAID5_PARANOIA && defined(CONFIG_SMP)
  80. # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  81. #else
  82. # define CHECK_DEVLOCK()
  83. #endif
  84. #ifdef DEBUG
  85. #define inline
  86. #define __inline__
  87. #endif
  88. #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
  89. #if !RAID6_USE_EMPTY_ZERO_PAGE
  90. /* In .bss so it's zeroed */
  91. const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
  92. #endif
  93. static inline int raid6_next_disk(int disk, int raid_disks)
  94. {
  95. disk++;
  96. return (disk < raid_disks) ? disk : 0;
  97. }
  98. static void return_io(struct bio *return_bi)
  99. {
  100. struct bio *bi = return_bi;
  101. while (bi) {
  102. return_bi = bi->bi_next;
  103. bi->bi_next = NULL;
  104. bi->bi_size = 0;
  105. bio_endio(bi, 0);
  106. bi = return_bi;
  107. }
  108. }
  109. static void print_raid5_conf (raid5_conf_t *conf);
  110. static int stripe_operations_active(struct stripe_head *sh)
  111. {
  112. return sh->check_state || sh->reconstruct_state ||
  113. test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
  114. test_bit(STRIPE_COMPUTE_RUN, &sh->state);
  115. }
  116. static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
  117. {
  118. if (atomic_dec_and_test(&sh->count)) {
  119. BUG_ON(!list_empty(&sh->lru));
  120. BUG_ON(atomic_read(&conf->active_stripes)==0);
  121. if (test_bit(STRIPE_HANDLE, &sh->state)) {
  122. if (test_bit(STRIPE_DELAYED, &sh->state)) {
  123. list_add_tail(&sh->lru, &conf->delayed_list);
  124. blk_plug_device(conf->mddev->queue);
  125. } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
  126. sh->bm_seq - conf->seq_write > 0) {
  127. list_add_tail(&sh->lru, &conf->bitmap_list);
  128. blk_plug_device(conf->mddev->queue);
  129. } else {
  130. clear_bit(STRIPE_BIT_DELAY, &sh->state);
  131. list_add_tail(&sh->lru, &conf->handle_list);
  132. }
  133. md_wakeup_thread(conf->mddev->thread);
  134. } else {
  135. BUG_ON(stripe_operations_active(sh));
  136. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  137. atomic_dec(&conf->preread_active_stripes);
  138. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
  139. md_wakeup_thread(conf->mddev->thread);
  140. }
  141. atomic_dec(&conf->active_stripes);
  142. if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
  143. list_add_tail(&sh->lru, &conf->inactive_list);
  144. wake_up(&conf->wait_for_stripe);
  145. if (conf->retry_read_aligned)
  146. md_wakeup_thread(conf->mddev->thread);
  147. }
  148. }
  149. }
  150. }
  151. static void release_stripe(struct stripe_head *sh)
  152. {
  153. raid5_conf_t *conf = sh->raid_conf;
  154. unsigned long flags;
  155. spin_lock_irqsave(&conf->device_lock, flags);
  156. __release_stripe(conf, sh);
  157. spin_unlock_irqrestore(&conf->device_lock, flags);
  158. }
  159. static inline void remove_hash(struct stripe_head *sh)
  160. {
  161. pr_debug("remove_hash(), stripe %llu\n",
  162. (unsigned long long)sh->sector);
  163. hlist_del_init(&sh->hash);
  164. }
  165. static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
  166. {
  167. struct hlist_head *hp = stripe_hash(conf, sh->sector);
  168. pr_debug("insert_hash(), stripe %llu\n",
  169. (unsigned long long)sh->sector);
  170. CHECK_DEVLOCK();
  171. hlist_add_head(&sh->hash, hp);
  172. }
  173. /* find an idle stripe, make sure it is unhashed, and return it. */
  174. static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
  175. {
  176. struct stripe_head *sh = NULL;
  177. struct list_head *first;
  178. CHECK_DEVLOCK();
  179. if (list_empty(&conf->inactive_list))
  180. goto out;
  181. first = conf->inactive_list.next;
  182. sh = list_entry(first, struct stripe_head, lru);
  183. list_del_init(first);
  184. remove_hash(sh);
  185. atomic_inc(&conf->active_stripes);
  186. out:
  187. return sh;
  188. }
  189. static void shrink_buffers(struct stripe_head *sh, int num)
  190. {
  191. struct page *p;
  192. int i;
  193. for (i=0; i<num ; i++) {
  194. p = sh->dev[i].page;
  195. if (!p)
  196. continue;
  197. sh->dev[i].page = NULL;
  198. put_page(p);
  199. }
  200. }
  201. static int grow_buffers(struct stripe_head *sh, int num)
  202. {
  203. int i;
  204. for (i=0; i<num; i++) {
  205. struct page *page;
  206. if (!(page = alloc_page(GFP_KERNEL))) {
  207. return 1;
  208. }
  209. sh->dev[i].page = page;
  210. }
  211. return 0;
  212. }
  213. static void raid5_build_block (struct stripe_head *sh, int i);
  214. static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
  215. {
  216. raid5_conf_t *conf = sh->raid_conf;
  217. int i;
  218. BUG_ON(atomic_read(&sh->count) != 0);
  219. BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
  220. BUG_ON(stripe_operations_active(sh));
  221. CHECK_DEVLOCK();
  222. pr_debug("init_stripe called, stripe %llu\n",
  223. (unsigned long long)sh->sector);
  224. remove_hash(sh);
  225. sh->sector = sector;
  226. sh->pd_idx = pd_idx;
  227. sh->state = 0;
  228. sh->disks = disks;
  229. for (i = sh->disks; i--; ) {
  230. struct r5dev *dev = &sh->dev[i];
  231. if (dev->toread || dev->read || dev->towrite || dev->written ||
  232. test_bit(R5_LOCKED, &dev->flags)) {
  233. printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
  234. (unsigned long long)sh->sector, i, dev->toread,
  235. dev->read, dev->towrite, dev->written,
  236. test_bit(R5_LOCKED, &dev->flags));
  237. BUG();
  238. }
  239. dev->flags = 0;
  240. raid5_build_block(sh, i);
  241. }
  242. insert_hash(conf, sh);
  243. }
  244. static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
  245. {
  246. struct stripe_head *sh;
  247. struct hlist_node *hn;
  248. CHECK_DEVLOCK();
  249. pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
  250. hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
  251. if (sh->sector == sector && sh->disks == disks)
  252. return sh;
  253. pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
  254. return NULL;
  255. }
  256. static void unplug_slaves(mddev_t *mddev);
  257. static void raid5_unplug_device(struct request_queue *q);
  258. static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
  259. int pd_idx, int noblock)
  260. {
  261. struct stripe_head *sh;
  262. pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
  263. spin_lock_irq(&conf->device_lock);
  264. do {
  265. wait_event_lock_irq(conf->wait_for_stripe,
  266. conf->quiesce == 0,
  267. conf->device_lock, /* nothing */);
  268. sh = __find_stripe(conf, sector, disks);
  269. if (!sh) {
  270. if (!conf->inactive_blocked)
  271. sh = get_free_stripe(conf);
  272. if (noblock && sh == NULL)
  273. break;
  274. if (!sh) {
  275. conf->inactive_blocked = 1;
  276. wait_event_lock_irq(conf->wait_for_stripe,
  277. !list_empty(&conf->inactive_list) &&
  278. (atomic_read(&conf->active_stripes)
  279. < (conf->max_nr_stripes *3/4)
  280. || !conf->inactive_blocked),
  281. conf->device_lock,
  282. raid5_unplug_device(conf->mddev->queue)
  283. );
  284. conf->inactive_blocked = 0;
  285. } else
  286. init_stripe(sh, sector, pd_idx, disks);
  287. } else {
  288. if (atomic_read(&sh->count)) {
  289. BUG_ON(!list_empty(&sh->lru));
  290. } else {
  291. if (!test_bit(STRIPE_HANDLE, &sh->state))
  292. atomic_inc(&conf->active_stripes);
  293. if (list_empty(&sh->lru) &&
  294. !test_bit(STRIPE_EXPANDING, &sh->state))
  295. BUG();
  296. list_del_init(&sh->lru);
  297. }
  298. }
  299. } while (sh == NULL);
  300. if (sh)
  301. atomic_inc(&sh->count);
  302. spin_unlock_irq(&conf->device_lock);
  303. return sh;
  304. }
  305. static void
  306. raid5_end_read_request(struct bio *bi, int error);
  307. static void
  308. raid5_end_write_request(struct bio *bi, int error);
  309. static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
  310. {
  311. raid5_conf_t *conf = sh->raid_conf;
  312. int i, disks = sh->disks;
  313. might_sleep();
  314. for (i = disks; i--; ) {
  315. int rw;
  316. struct bio *bi;
  317. mdk_rdev_t *rdev;
  318. if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
  319. rw = WRITE;
  320. else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
  321. rw = READ;
  322. else
  323. continue;
  324. bi = &sh->dev[i].req;
  325. bi->bi_rw = rw;
  326. if (rw == WRITE)
  327. bi->bi_end_io = raid5_end_write_request;
  328. else
  329. bi->bi_end_io = raid5_end_read_request;
  330. rcu_read_lock();
  331. rdev = rcu_dereference(conf->disks[i].rdev);
  332. if (rdev && test_bit(Faulty, &rdev->flags))
  333. rdev = NULL;
  334. if (rdev)
  335. atomic_inc(&rdev->nr_pending);
  336. rcu_read_unlock();
  337. if (rdev) {
  338. if (s->syncing || s->expanding || s->expanded)
  339. md_sync_acct(rdev->bdev, STRIPE_SECTORS);
  340. set_bit(STRIPE_IO_STARTED, &sh->state);
  341. bi->bi_bdev = rdev->bdev;
  342. pr_debug("%s: for %llu schedule op %ld on disc %d\n",
  343. __func__, (unsigned long long)sh->sector,
  344. bi->bi_rw, i);
  345. atomic_inc(&sh->count);
  346. bi->bi_sector = sh->sector + rdev->data_offset;
  347. bi->bi_flags = 1 << BIO_UPTODATE;
  348. bi->bi_vcnt = 1;
  349. bi->bi_max_vecs = 1;
  350. bi->bi_idx = 0;
  351. bi->bi_io_vec = &sh->dev[i].vec;
  352. bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
  353. bi->bi_io_vec[0].bv_offset = 0;
  354. bi->bi_size = STRIPE_SIZE;
  355. bi->bi_next = NULL;
  356. if (rw == WRITE &&
  357. test_bit(R5_ReWrite, &sh->dev[i].flags))
  358. atomic_add(STRIPE_SECTORS,
  359. &rdev->corrected_errors);
  360. generic_make_request(bi);
  361. } else {
  362. if (rw == WRITE)
  363. set_bit(STRIPE_DEGRADED, &sh->state);
  364. pr_debug("skip op %ld on disc %d for sector %llu\n",
  365. bi->bi_rw, i, (unsigned long long)sh->sector);
  366. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  367. set_bit(STRIPE_HANDLE, &sh->state);
  368. }
  369. }
  370. }
  371. static struct dma_async_tx_descriptor *
  372. async_copy_data(int frombio, struct bio *bio, struct page *page,
  373. sector_t sector, struct dma_async_tx_descriptor *tx)
  374. {
  375. struct bio_vec *bvl;
  376. struct page *bio_page;
  377. int i;
  378. int page_offset;
  379. if (bio->bi_sector >= sector)
  380. page_offset = (signed)(bio->bi_sector - sector) * 512;
  381. else
  382. page_offset = (signed)(sector - bio->bi_sector) * -512;
  383. bio_for_each_segment(bvl, bio, i) {
  384. int len = bio_iovec_idx(bio, i)->bv_len;
  385. int clen;
  386. int b_offset = 0;
  387. if (page_offset < 0) {
  388. b_offset = -page_offset;
  389. page_offset += b_offset;
  390. len -= b_offset;
  391. }
  392. if (len > 0 && page_offset + len > STRIPE_SIZE)
  393. clen = STRIPE_SIZE - page_offset;
  394. else
  395. clen = len;
  396. if (clen > 0) {
  397. b_offset += bio_iovec_idx(bio, i)->bv_offset;
  398. bio_page = bio_iovec_idx(bio, i)->bv_page;
  399. if (frombio)
  400. tx = async_memcpy(page, bio_page, page_offset,
  401. b_offset, clen,
  402. ASYNC_TX_DEP_ACK,
  403. tx, NULL, NULL);
  404. else
  405. tx = async_memcpy(bio_page, page, b_offset,
  406. page_offset, clen,
  407. ASYNC_TX_DEP_ACK,
  408. tx, NULL, NULL);
  409. }
  410. if (clen < len) /* hit end of page */
  411. break;
  412. page_offset += len;
  413. }
  414. return tx;
  415. }
  416. static void ops_complete_biofill(void *stripe_head_ref)
  417. {
  418. struct stripe_head *sh = stripe_head_ref;
  419. struct bio *return_bi = NULL;
  420. raid5_conf_t *conf = sh->raid_conf;
  421. int i;
  422. pr_debug("%s: stripe %llu\n", __func__,
  423. (unsigned long long)sh->sector);
  424. /* clear completed biofills */
  425. spin_lock_irq(&conf->device_lock);
  426. for (i = sh->disks; i--; ) {
  427. struct r5dev *dev = &sh->dev[i];
  428. /* acknowledge completion of a biofill operation */
  429. /* and check if we need to reply to a read request,
  430. * new R5_Wantfill requests are held off until
  431. * !STRIPE_BIOFILL_RUN
  432. */
  433. if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
  434. struct bio *rbi, *rbi2;
  435. BUG_ON(!dev->read);
  436. rbi = dev->read;
  437. dev->read = NULL;
  438. while (rbi && rbi->bi_sector <
  439. dev->sector + STRIPE_SECTORS) {
  440. rbi2 = r5_next_bio(rbi, dev->sector);
  441. if (--rbi->bi_phys_segments == 0) {
  442. rbi->bi_next = return_bi;
  443. return_bi = rbi;
  444. }
  445. rbi = rbi2;
  446. }
  447. }
  448. }
  449. spin_unlock_irq(&conf->device_lock);
  450. clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
  451. return_io(return_bi);
  452. set_bit(STRIPE_HANDLE, &sh->state);
  453. release_stripe(sh);
  454. }
  455. static void ops_run_biofill(struct stripe_head *sh)
  456. {
  457. struct dma_async_tx_descriptor *tx = NULL;
  458. raid5_conf_t *conf = sh->raid_conf;
  459. int i;
  460. pr_debug("%s: stripe %llu\n", __func__,
  461. (unsigned long long)sh->sector);
  462. for (i = sh->disks; i--; ) {
  463. struct r5dev *dev = &sh->dev[i];
  464. if (test_bit(R5_Wantfill, &dev->flags)) {
  465. struct bio *rbi;
  466. spin_lock_irq(&conf->device_lock);
  467. dev->read = rbi = dev->toread;
  468. dev->toread = NULL;
  469. spin_unlock_irq(&conf->device_lock);
  470. while (rbi && rbi->bi_sector <
  471. dev->sector + STRIPE_SECTORS) {
  472. tx = async_copy_data(0, rbi, dev->page,
  473. dev->sector, tx);
  474. rbi = r5_next_bio(rbi, dev->sector);
  475. }
  476. }
  477. }
  478. atomic_inc(&sh->count);
  479. async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
  480. ops_complete_biofill, sh);
  481. }
  482. static void ops_complete_compute5(void *stripe_head_ref)
  483. {
  484. struct stripe_head *sh = stripe_head_ref;
  485. int target = sh->ops.target;
  486. struct r5dev *tgt = &sh->dev[target];
  487. pr_debug("%s: stripe %llu\n", __func__,
  488. (unsigned long long)sh->sector);
  489. set_bit(R5_UPTODATE, &tgt->flags);
  490. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  491. clear_bit(R5_Wantcompute, &tgt->flags);
  492. clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
  493. if (sh->check_state == check_state_compute_run)
  494. sh->check_state = check_state_compute_result;
  495. set_bit(STRIPE_HANDLE, &sh->state);
  496. release_stripe(sh);
  497. }
  498. static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
  499. {
  500. /* kernel stack size limits the total number of disks */
  501. int disks = sh->disks;
  502. struct page *xor_srcs[disks];
  503. int target = sh->ops.target;
  504. struct r5dev *tgt = &sh->dev[target];
  505. struct page *xor_dest = tgt->page;
  506. int count = 0;
  507. struct dma_async_tx_descriptor *tx;
  508. int i;
  509. pr_debug("%s: stripe %llu block: %d\n",
  510. __func__, (unsigned long long)sh->sector, target);
  511. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  512. for (i = disks; i--; )
  513. if (i != target)
  514. xor_srcs[count++] = sh->dev[i].page;
  515. atomic_inc(&sh->count);
  516. if (unlikely(count == 1))
  517. tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
  518. 0, NULL, ops_complete_compute5, sh);
  519. else
  520. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  521. ASYNC_TX_XOR_ZERO_DST, NULL,
  522. ops_complete_compute5, sh);
  523. return tx;
  524. }
  525. static void ops_complete_prexor(void *stripe_head_ref)
  526. {
  527. struct stripe_head *sh = stripe_head_ref;
  528. pr_debug("%s: stripe %llu\n", __func__,
  529. (unsigned long long)sh->sector);
  530. }
  531. static struct dma_async_tx_descriptor *
  532. ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  533. {
  534. /* kernel stack size limits the total number of disks */
  535. int disks = sh->disks;
  536. struct page *xor_srcs[disks];
  537. int count = 0, pd_idx = sh->pd_idx, i;
  538. /* existing parity data subtracted */
  539. struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  540. pr_debug("%s: stripe %llu\n", __func__,
  541. (unsigned long long)sh->sector);
  542. for (i = disks; i--; ) {
  543. struct r5dev *dev = &sh->dev[i];
  544. /* Only process blocks that are known to be uptodate */
  545. if (test_bit(R5_Wantdrain, &dev->flags))
  546. xor_srcs[count++] = dev->page;
  547. }
  548. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  549. ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
  550. ops_complete_prexor, sh);
  551. return tx;
  552. }
  553. static struct dma_async_tx_descriptor *
  554. ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  555. {
  556. int disks = sh->disks;
  557. int i;
  558. pr_debug("%s: stripe %llu\n", __func__,
  559. (unsigned long long)sh->sector);
  560. for (i = disks; i--; ) {
  561. struct r5dev *dev = &sh->dev[i];
  562. struct bio *chosen;
  563. if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
  564. struct bio *wbi;
  565. spin_lock(&sh->lock);
  566. chosen = dev->towrite;
  567. dev->towrite = NULL;
  568. BUG_ON(dev->written);
  569. wbi = dev->written = chosen;
  570. spin_unlock(&sh->lock);
  571. while (wbi && wbi->bi_sector <
  572. dev->sector + STRIPE_SECTORS) {
  573. tx = async_copy_data(1, wbi, dev->page,
  574. dev->sector, tx);
  575. wbi = r5_next_bio(wbi, dev->sector);
  576. }
  577. }
  578. }
  579. return tx;
  580. }
  581. static void ops_complete_postxor(void *stripe_head_ref)
  582. {
  583. struct stripe_head *sh = stripe_head_ref;
  584. int disks = sh->disks, i, pd_idx = sh->pd_idx;
  585. pr_debug("%s: stripe %llu\n", __func__,
  586. (unsigned long long)sh->sector);
  587. for (i = disks; i--; ) {
  588. struct r5dev *dev = &sh->dev[i];
  589. if (dev->written || i == pd_idx)
  590. set_bit(R5_UPTODATE, &dev->flags);
  591. }
  592. if (sh->reconstruct_state == reconstruct_state_drain_run)
  593. sh->reconstruct_state = reconstruct_state_drain_result;
  594. else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
  595. sh->reconstruct_state = reconstruct_state_prexor_drain_result;
  596. else {
  597. BUG_ON(sh->reconstruct_state != reconstruct_state_run);
  598. sh->reconstruct_state = reconstruct_state_result;
  599. }
  600. set_bit(STRIPE_HANDLE, &sh->state);
  601. release_stripe(sh);
  602. }
  603. static void
  604. ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  605. {
  606. /* kernel stack size limits the total number of disks */
  607. int disks = sh->disks;
  608. struct page *xor_srcs[disks];
  609. int count = 0, pd_idx = sh->pd_idx, i;
  610. struct page *xor_dest;
  611. int prexor = 0;
  612. unsigned long flags;
  613. pr_debug("%s: stripe %llu\n", __func__,
  614. (unsigned long long)sh->sector);
  615. /* check if prexor is active which means only process blocks
  616. * that are part of a read-modify-write (written)
  617. */
  618. if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
  619. prexor = 1;
  620. xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  621. for (i = disks; i--; ) {
  622. struct r5dev *dev = &sh->dev[i];
  623. if (dev->written)
  624. xor_srcs[count++] = dev->page;
  625. }
  626. } else {
  627. xor_dest = sh->dev[pd_idx].page;
  628. for (i = disks; i--; ) {
  629. struct r5dev *dev = &sh->dev[i];
  630. if (i != pd_idx)
  631. xor_srcs[count++] = dev->page;
  632. }
  633. }
  634. /* 1/ if we prexor'd then the dest is reused as a source
  635. * 2/ if we did not prexor then we are redoing the parity
  636. * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
  637. * for the synchronous xor case
  638. */
  639. flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
  640. (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
  641. atomic_inc(&sh->count);
  642. if (unlikely(count == 1)) {
  643. flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
  644. tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
  645. flags, tx, ops_complete_postxor, sh);
  646. } else
  647. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  648. flags, tx, ops_complete_postxor, sh);
  649. }
  650. static void ops_complete_check(void *stripe_head_ref)
  651. {
  652. struct stripe_head *sh = stripe_head_ref;
  653. pr_debug("%s: stripe %llu\n", __func__,
  654. (unsigned long long)sh->sector);
  655. sh->check_state = check_state_check_result;
  656. set_bit(STRIPE_HANDLE, &sh->state);
  657. release_stripe(sh);
  658. }
  659. static void ops_run_check(struct stripe_head *sh)
  660. {
  661. /* kernel stack size limits the total number of disks */
  662. int disks = sh->disks;
  663. struct page *xor_srcs[disks];
  664. struct dma_async_tx_descriptor *tx;
  665. int count = 0, pd_idx = sh->pd_idx, i;
  666. struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  667. pr_debug("%s: stripe %llu\n", __func__,
  668. (unsigned long long)sh->sector);
  669. for (i = disks; i--; ) {
  670. struct r5dev *dev = &sh->dev[i];
  671. if (i != pd_idx)
  672. xor_srcs[count++] = dev->page;
  673. }
  674. tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  675. &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
  676. atomic_inc(&sh->count);
  677. tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
  678. ops_complete_check, sh);
  679. }
  680. static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
  681. {
  682. int overlap_clear = 0, i, disks = sh->disks;
  683. struct dma_async_tx_descriptor *tx = NULL;
  684. if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
  685. ops_run_biofill(sh);
  686. overlap_clear++;
  687. }
  688. if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
  689. tx = ops_run_compute5(sh);
  690. /* terminate the chain if postxor is not set to be run */
  691. if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
  692. async_tx_ack(tx);
  693. }
  694. if (test_bit(STRIPE_OP_PREXOR, &ops_request))
  695. tx = ops_run_prexor(sh, tx);
  696. if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
  697. tx = ops_run_biodrain(sh, tx);
  698. overlap_clear++;
  699. }
  700. if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
  701. ops_run_postxor(sh, tx);
  702. if (test_bit(STRIPE_OP_CHECK, &ops_request))
  703. ops_run_check(sh);
  704. if (overlap_clear)
  705. for (i = disks; i--; ) {
  706. struct r5dev *dev = &sh->dev[i];
  707. if (test_and_clear_bit(R5_Overlap, &dev->flags))
  708. wake_up(&sh->raid_conf->wait_for_overlap);
  709. }
  710. }
  711. static int grow_one_stripe(raid5_conf_t *conf)
  712. {
  713. struct stripe_head *sh;
  714. sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
  715. if (!sh)
  716. return 0;
  717. memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
  718. sh->raid_conf = conf;
  719. spin_lock_init(&sh->lock);
  720. if (grow_buffers(sh, conf->raid_disks)) {
  721. shrink_buffers(sh, conf->raid_disks);
  722. kmem_cache_free(conf->slab_cache, sh);
  723. return 0;
  724. }
  725. sh->disks = conf->raid_disks;
  726. /* we just created an active stripe so... */
  727. atomic_set(&sh->count, 1);
  728. atomic_inc(&conf->active_stripes);
  729. INIT_LIST_HEAD(&sh->lru);
  730. release_stripe(sh);
  731. return 1;
  732. }
  733. static int grow_stripes(raid5_conf_t *conf, int num)
  734. {
  735. struct kmem_cache *sc;
  736. int devs = conf->raid_disks;
  737. sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
  738. sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
  739. conf->active_name = 0;
  740. sc = kmem_cache_create(conf->cache_name[conf->active_name],
  741. sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
  742. 0, 0, NULL);
  743. if (!sc)
  744. return 1;
  745. conf->slab_cache = sc;
  746. conf->pool_size = devs;
  747. while (num--)
  748. if (!grow_one_stripe(conf))
  749. return 1;
  750. return 0;
  751. }
  752. #ifdef CONFIG_MD_RAID5_RESHAPE
  753. static int resize_stripes(raid5_conf_t *conf, int newsize)
  754. {
  755. /* Make all the stripes able to hold 'newsize' devices.
  756. * New slots in each stripe get 'page' set to a new page.
  757. *
  758. * This happens in stages:
  759. * 1/ create a new kmem_cache and allocate the required number of
  760. * stripe_heads.
  761. * 2/ gather all the old stripe_heads and tranfer the pages across
  762. * to the new stripe_heads. This will have the side effect of
  763. * freezing the array as once all stripe_heads have been collected,
  764. * no IO will be possible. Old stripe heads are freed once their
  765. * pages have been transferred over, and the old kmem_cache is
  766. * freed when all stripes are done.
  767. * 3/ reallocate conf->disks to be suitable bigger. If this fails,
  768. * we simple return a failre status - no need to clean anything up.
  769. * 4/ allocate new pages for the new slots in the new stripe_heads.
  770. * If this fails, we don't bother trying the shrink the
  771. * stripe_heads down again, we just leave them as they are.
  772. * As each stripe_head is processed the new one is released into
  773. * active service.
  774. *
  775. * Once step2 is started, we cannot afford to wait for a write,
  776. * so we use GFP_NOIO allocations.
  777. */
  778. struct stripe_head *osh, *nsh;
  779. LIST_HEAD(newstripes);
  780. struct disk_info *ndisks;
  781. int err = 0;
  782. struct kmem_cache *sc;
  783. int i;
  784. if (newsize <= conf->pool_size)
  785. return 0; /* never bother to shrink */
  786. md_allow_write(conf->mddev);
  787. /* Step 1 */
  788. sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
  789. sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
  790. 0, 0, NULL);
  791. if (!sc)
  792. return -ENOMEM;
  793. for (i = conf->max_nr_stripes; i; i--) {
  794. nsh = kmem_cache_alloc(sc, GFP_KERNEL);
  795. if (!nsh)
  796. break;
  797. memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
  798. nsh->raid_conf = conf;
  799. spin_lock_init(&nsh->lock);
  800. list_add(&nsh->lru, &newstripes);
  801. }
  802. if (i) {
  803. /* didn't get enough, give up */
  804. while (!list_empty(&newstripes)) {
  805. nsh = list_entry(newstripes.next, struct stripe_head, lru);
  806. list_del(&nsh->lru);
  807. kmem_cache_free(sc, nsh);
  808. }
  809. kmem_cache_destroy(sc);
  810. return -ENOMEM;
  811. }
  812. /* Step 2 - Must use GFP_NOIO now.
  813. * OK, we have enough stripes, start collecting inactive
  814. * stripes and copying them over
  815. */
  816. list_for_each_entry(nsh, &newstripes, lru) {
  817. spin_lock_irq(&conf->device_lock);
  818. wait_event_lock_irq(conf->wait_for_stripe,
  819. !list_empty(&conf->inactive_list),
  820. conf->device_lock,
  821. unplug_slaves(conf->mddev)
  822. );
  823. osh = get_free_stripe(conf);
  824. spin_unlock_irq(&conf->device_lock);
  825. atomic_set(&nsh->count, 1);
  826. for(i=0; i<conf->pool_size; i++)
  827. nsh->dev[i].page = osh->dev[i].page;
  828. for( ; i<newsize; i++)
  829. nsh->dev[i].page = NULL;
  830. kmem_cache_free(conf->slab_cache, osh);
  831. }
  832. kmem_cache_destroy(conf->slab_cache);
  833. /* Step 3.
  834. * At this point, we are holding all the stripes so the array
  835. * is completely stalled, so now is a good time to resize
  836. * conf->disks.
  837. */
  838. ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
  839. if (ndisks) {
  840. for (i=0; i<conf->raid_disks; i++)
  841. ndisks[i] = conf->disks[i];
  842. kfree(conf->disks);
  843. conf->disks = ndisks;
  844. } else
  845. err = -ENOMEM;
  846. /* Step 4, return new stripes to service */
  847. while(!list_empty(&newstripes)) {
  848. nsh = list_entry(newstripes.next, struct stripe_head, lru);
  849. list_del_init(&nsh->lru);
  850. for (i=conf->raid_disks; i < newsize; i++)
  851. if (nsh->dev[i].page == NULL) {
  852. struct page *p = alloc_page(GFP_NOIO);
  853. nsh->dev[i].page = p;
  854. if (!p)
  855. err = -ENOMEM;
  856. }
  857. release_stripe(nsh);
  858. }
  859. /* critical section pass, GFP_NOIO no longer needed */
  860. conf->slab_cache = sc;
  861. conf->active_name = 1-conf->active_name;
  862. conf->pool_size = newsize;
  863. return err;
  864. }
  865. #endif
  866. static int drop_one_stripe(raid5_conf_t *conf)
  867. {
  868. struct stripe_head *sh;
  869. spin_lock_irq(&conf->device_lock);
  870. sh = get_free_stripe(conf);
  871. spin_unlock_irq(&conf->device_lock);
  872. if (!sh)
  873. return 0;
  874. BUG_ON(atomic_read(&sh->count));
  875. shrink_buffers(sh, conf->pool_size);
  876. kmem_cache_free(conf->slab_cache, sh);
  877. atomic_dec(&conf->active_stripes);
  878. return 1;
  879. }
  880. static void shrink_stripes(raid5_conf_t *conf)
  881. {
  882. while (drop_one_stripe(conf))
  883. ;
  884. if (conf->slab_cache)
  885. kmem_cache_destroy(conf->slab_cache);
  886. conf->slab_cache = NULL;
  887. }
  888. static void raid5_end_read_request(struct bio * bi, int error)
  889. {
  890. struct stripe_head *sh = bi->bi_private;
  891. raid5_conf_t *conf = sh->raid_conf;
  892. int disks = sh->disks, i;
  893. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  894. char b[BDEVNAME_SIZE];
  895. mdk_rdev_t *rdev;
  896. for (i=0 ; i<disks; i++)
  897. if (bi == &sh->dev[i].req)
  898. break;
  899. pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
  900. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  901. uptodate);
  902. if (i == disks) {
  903. BUG();
  904. return;
  905. }
  906. if (uptodate) {
  907. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  908. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  909. rdev = conf->disks[i].rdev;
  910. printk_rl(KERN_INFO "raid5:%s: read error corrected"
  911. " (%lu sectors at %llu on %s)\n",
  912. mdname(conf->mddev), STRIPE_SECTORS,
  913. (unsigned long long)(sh->sector
  914. + rdev->data_offset),
  915. bdevname(rdev->bdev, b));
  916. clear_bit(R5_ReadError, &sh->dev[i].flags);
  917. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  918. }
  919. if (atomic_read(&conf->disks[i].rdev->read_errors))
  920. atomic_set(&conf->disks[i].rdev->read_errors, 0);
  921. } else {
  922. const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
  923. int retry = 0;
  924. rdev = conf->disks[i].rdev;
  925. clear_bit(R5_UPTODATE, &sh->dev[i].flags);
  926. atomic_inc(&rdev->read_errors);
  927. if (conf->mddev->degraded)
  928. printk_rl(KERN_WARNING
  929. "raid5:%s: read error not correctable "
  930. "(sector %llu on %s).\n",
  931. mdname(conf->mddev),
  932. (unsigned long long)(sh->sector
  933. + rdev->data_offset),
  934. bdn);
  935. else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
  936. /* Oh, no!!! */
  937. printk_rl(KERN_WARNING
  938. "raid5:%s: read error NOT corrected!! "
  939. "(sector %llu on %s).\n",
  940. mdname(conf->mddev),
  941. (unsigned long long)(sh->sector
  942. + rdev->data_offset),
  943. bdn);
  944. else if (atomic_read(&rdev->read_errors)
  945. > conf->max_nr_stripes)
  946. printk(KERN_WARNING
  947. "raid5:%s: Too many read errors, failing device %s.\n",
  948. mdname(conf->mddev), bdn);
  949. else
  950. retry = 1;
  951. if (retry)
  952. set_bit(R5_ReadError, &sh->dev[i].flags);
  953. else {
  954. clear_bit(R5_ReadError, &sh->dev[i].flags);
  955. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  956. md_error(conf->mddev, rdev);
  957. }
  958. }
  959. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  960. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  961. set_bit(STRIPE_HANDLE, &sh->state);
  962. release_stripe(sh);
  963. }
  964. static void raid5_end_write_request (struct bio *bi, int error)
  965. {
  966. struct stripe_head *sh = bi->bi_private;
  967. raid5_conf_t *conf = sh->raid_conf;
  968. int disks = sh->disks, i;
  969. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  970. for (i=0 ; i<disks; i++)
  971. if (bi == &sh->dev[i].req)
  972. break;
  973. pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
  974. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  975. uptodate);
  976. if (i == disks) {
  977. BUG();
  978. return;
  979. }
  980. if (!uptodate)
  981. md_error(conf->mddev, conf->disks[i].rdev);
  982. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  983. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  984. set_bit(STRIPE_HANDLE, &sh->state);
  985. release_stripe(sh);
  986. }
  987. static sector_t compute_blocknr(struct stripe_head *sh, int i);
  988. static void raid5_build_block (struct stripe_head *sh, int i)
  989. {
  990. struct r5dev *dev = &sh->dev[i];
  991. bio_init(&dev->req);
  992. dev->req.bi_io_vec = &dev->vec;
  993. dev->req.bi_vcnt++;
  994. dev->req.bi_max_vecs++;
  995. dev->vec.bv_page = dev->page;
  996. dev->vec.bv_len = STRIPE_SIZE;
  997. dev->vec.bv_offset = 0;
  998. dev->req.bi_sector = sh->sector;
  999. dev->req.bi_private = sh;
  1000. dev->flags = 0;
  1001. dev->sector = compute_blocknr(sh, i);
  1002. }
  1003. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  1004. {
  1005. char b[BDEVNAME_SIZE];
  1006. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  1007. pr_debug("raid5: error called\n");
  1008. if (!test_bit(Faulty, &rdev->flags)) {
  1009. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1010. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1011. unsigned long flags;
  1012. spin_lock_irqsave(&conf->device_lock, flags);
  1013. mddev->degraded++;
  1014. spin_unlock_irqrestore(&conf->device_lock, flags);
  1015. /*
  1016. * if recovery was running, make sure it aborts.
  1017. */
  1018. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1019. }
  1020. set_bit(Faulty, &rdev->flags);
  1021. printk (KERN_ALERT
  1022. "raid5: Disk failure on %s, disabling device.\n"
  1023. "raid5: Operation continuing on %d devices.\n",
  1024. bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
  1025. }
  1026. }
  1027. /*
  1028. * Input: a 'big' sector number,
  1029. * Output: index of the data and parity disk, and the sector # in them.
  1030. */
  1031. static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
  1032. unsigned int data_disks, unsigned int * dd_idx,
  1033. unsigned int * pd_idx, raid5_conf_t *conf)
  1034. {
  1035. long stripe;
  1036. unsigned long chunk_number;
  1037. unsigned int chunk_offset;
  1038. sector_t new_sector;
  1039. int sectors_per_chunk = conf->chunk_size >> 9;
  1040. /* First compute the information on this sector */
  1041. /*
  1042. * Compute the chunk number and the sector offset inside the chunk
  1043. */
  1044. chunk_offset = sector_div(r_sector, sectors_per_chunk);
  1045. chunk_number = r_sector;
  1046. BUG_ON(r_sector != chunk_number);
  1047. /*
  1048. * Compute the stripe number
  1049. */
  1050. stripe = chunk_number / data_disks;
  1051. /*
  1052. * Compute the data disk and parity disk indexes inside the stripe
  1053. */
  1054. *dd_idx = chunk_number % data_disks;
  1055. /*
  1056. * Select the parity disk based on the user selected algorithm.
  1057. */
  1058. switch(conf->level) {
  1059. case 4:
  1060. *pd_idx = data_disks;
  1061. break;
  1062. case 5:
  1063. switch (conf->algorithm) {
  1064. case ALGORITHM_LEFT_ASYMMETRIC:
  1065. *pd_idx = data_disks - stripe % raid_disks;
  1066. if (*dd_idx >= *pd_idx)
  1067. (*dd_idx)++;
  1068. break;
  1069. case ALGORITHM_RIGHT_ASYMMETRIC:
  1070. *pd_idx = stripe % raid_disks;
  1071. if (*dd_idx >= *pd_idx)
  1072. (*dd_idx)++;
  1073. break;
  1074. case ALGORITHM_LEFT_SYMMETRIC:
  1075. *pd_idx = data_disks - stripe % raid_disks;
  1076. *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
  1077. break;
  1078. case ALGORITHM_RIGHT_SYMMETRIC:
  1079. *pd_idx = stripe % raid_disks;
  1080. *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
  1081. break;
  1082. default:
  1083. printk(KERN_ERR "raid5: unsupported algorithm %d\n",
  1084. conf->algorithm);
  1085. }
  1086. break;
  1087. case 6:
  1088. /**** FIX THIS ****/
  1089. switch (conf->algorithm) {
  1090. case ALGORITHM_LEFT_ASYMMETRIC:
  1091. *pd_idx = raid_disks - 1 - (stripe % raid_disks);
  1092. if (*pd_idx == raid_disks-1)
  1093. (*dd_idx)++; /* Q D D D P */
  1094. else if (*dd_idx >= *pd_idx)
  1095. (*dd_idx) += 2; /* D D P Q D */
  1096. break;
  1097. case ALGORITHM_RIGHT_ASYMMETRIC:
  1098. *pd_idx = stripe % raid_disks;
  1099. if (*pd_idx == raid_disks-1)
  1100. (*dd_idx)++; /* Q D D D P */
  1101. else if (*dd_idx >= *pd_idx)
  1102. (*dd_idx) += 2; /* D D P Q D */
  1103. break;
  1104. case ALGORITHM_LEFT_SYMMETRIC:
  1105. *pd_idx = raid_disks - 1 - (stripe % raid_disks);
  1106. *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
  1107. break;
  1108. case ALGORITHM_RIGHT_SYMMETRIC:
  1109. *pd_idx = stripe % raid_disks;
  1110. *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
  1111. break;
  1112. default:
  1113. printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
  1114. conf->algorithm);
  1115. }
  1116. break;
  1117. }
  1118. /*
  1119. * Finally, compute the new sector number
  1120. */
  1121. new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
  1122. return new_sector;
  1123. }
  1124. static sector_t compute_blocknr(struct stripe_head *sh, int i)
  1125. {
  1126. raid5_conf_t *conf = sh->raid_conf;
  1127. int raid_disks = sh->disks;
  1128. int data_disks = raid_disks - conf->max_degraded;
  1129. sector_t new_sector = sh->sector, check;
  1130. int sectors_per_chunk = conf->chunk_size >> 9;
  1131. sector_t stripe;
  1132. int chunk_offset;
  1133. int chunk_number, dummy1, dummy2, dd_idx = i;
  1134. sector_t r_sector;
  1135. chunk_offset = sector_div(new_sector, sectors_per_chunk);
  1136. stripe = new_sector;
  1137. BUG_ON(new_sector != stripe);
  1138. if (i == sh->pd_idx)
  1139. return 0;
  1140. switch(conf->level) {
  1141. case 4: break;
  1142. case 5:
  1143. switch (conf->algorithm) {
  1144. case ALGORITHM_LEFT_ASYMMETRIC:
  1145. case ALGORITHM_RIGHT_ASYMMETRIC:
  1146. if (i > sh->pd_idx)
  1147. i--;
  1148. break;
  1149. case ALGORITHM_LEFT_SYMMETRIC:
  1150. case ALGORITHM_RIGHT_SYMMETRIC:
  1151. if (i < sh->pd_idx)
  1152. i += raid_disks;
  1153. i -= (sh->pd_idx + 1);
  1154. break;
  1155. default:
  1156. printk(KERN_ERR "raid5: unsupported algorithm %d\n",
  1157. conf->algorithm);
  1158. }
  1159. break;
  1160. case 6:
  1161. if (i == raid6_next_disk(sh->pd_idx, raid_disks))
  1162. return 0; /* It is the Q disk */
  1163. switch (conf->algorithm) {
  1164. case ALGORITHM_LEFT_ASYMMETRIC:
  1165. case ALGORITHM_RIGHT_ASYMMETRIC:
  1166. if (sh->pd_idx == raid_disks-1)
  1167. i--; /* Q D D D P */
  1168. else if (i > sh->pd_idx)
  1169. i -= 2; /* D D P Q D */
  1170. break;
  1171. case ALGORITHM_LEFT_SYMMETRIC:
  1172. case ALGORITHM_RIGHT_SYMMETRIC:
  1173. if (sh->pd_idx == raid_disks-1)
  1174. i--; /* Q D D D P */
  1175. else {
  1176. /* D D P Q D */
  1177. if (i < sh->pd_idx)
  1178. i += raid_disks;
  1179. i -= (sh->pd_idx + 2);
  1180. }
  1181. break;
  1182. default:
  1183. printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
  1184. conf->algorithm);
  1185. }
  1186. break;
  1187. }
  1188. chunk_number = stripe * data_disks + i;
  1189. r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
  1190. check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
  1191. if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
  1192. printk(KERN_ERR "compute_blocknr: map not correct\n");
  1193. return 0;
  1194. }
  1195. return r_sector;
  1196. }
  1197. /*
  1198. * Copy data between a page in the stripe cache, and one or more bion
  1199. * The page could align with the middle of the bio, or there could be
  1200. * several bion, each with several bio_vecs, which cover part of the page
  1201. * Multiple bion are linked together on bi_next. There may be extras
  1202. * at the end of this list. We ignore them.
  1203. */
  1204. static void copy_data(int frombio, struct bio *bio,
  1205. struct page *page,
  1206. sector_t sector)
  1207. {
  1208. char *pa = page_address(page);
  1209. struct bio_vec *bvl;
  1210. int i;
  1211. int page_offset;
  1212. if (bio->bi_sector >= sector)
  1213. page_offset = (signed)(bio->bi_sector - sector) * 512;
  1214. else
  1215. page_offset = (signed)(sector - bio->bi_sector) * -512;
  1216. bio_for_each_segment(bvl, bio, i) {
  1217. int len = bio_iovec_idx(bio,i)->bv_len;
  1218. int clen;
  1219. int b_offset = 0;
  1220. if (page_offset < 0) {
  1221. b_offset = -page_offset;
  1222. page_offset += b_offset;
  1223. len -= b_offset;
  1224. }
  1225. if (len > 0 && page_offset + len > STRIPE_SIZE)
  1226. clen = STRIPE_SIZE - page_offset;
  1227. else clen = len;
  1228. if (clen > 0) {
  1229. char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
  1230. if (frombio)
  1231. memcpy(pa+page_offset, ba+b_offset, clen);
  1232. else
  1233. memcpy(ba+b_offset, pa+page_offset, clen);
  1234. __bio_kunmap_atomic(ba, KM_USER0);
  1235. }
  1236. if (clen < len) /* hit end of page */
  1237. break;
  1238. page_offset += len;
  1239. }
  1240. }
  1241. #define check_xor() do { \
  1242. if (count == MAX_XOR_BLOCKS) { \
  1243. xor_blocks(count, STRIPE_SIZE, dest, ptr);\
  1244. count = 0; \
  1245. } \
  1246. } while(0)
  1247. static void compute_parity6(struct stripe_head *sh, int method)
  1248. {
  1249. raid6_conf_t *conf = sh->raid_conf;
  1250. int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
  1251. struct bio *chosen;
  1252. /**** FIX THIS: This could be very bad if disks is close to 256 ****/
  1253. void *ptrs[disks];
  1254. qd_idx = raid6_next_disk(pd_idx, disks);
  1255. d0_idx = raid6_next_disk(qd_idx, disks);
  1256. pr_debug("compute_parity, stripe %llu, method %d\n",
  1257. (unsigned long long)sh->sector, method);
  1258. switch(method) {
  1259. case READ_MODIFY_WRITE:
  1260. BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
  1261. case RECONSTRUCT_WRITE:
  1262. for (i= disks; i-- ;)
  1263. if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
  1264. chosen = sh->dev[i].towrite;
  1265. sh->dev[i].towrite = NULL;
  1266. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  1267. wake_up(&conf->wait_for_overlap);
  1268. BUG_ON(sh->dev[i].written);
  1269. sh->dev[i].written = chosen;
  1270. }
  1271. break;
  1272. case CHECK_PARITY:
  1273. BUG(); /* Not implemented yet */
  1274. }
  1275. for (i = disks; i--;)
  1276. if (sh->dev[i].written) {
  1277. sector_t sector = sh->dev[i].sector;
  1278. struct bio *wbi = sh->dev[i].written;
  1279. while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
  1280. copy_data(1, wbi, sh->dev[i].page, sector);
  1281. wbi = r5_next_bio(wbi, sector);
  1282. }
  1283. set_bit(R5_LOCKED, &sh->dev[i].flags);
  1284. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  1285. }
  1286. // switch(method) {
  1287. // case RECONSTRUCT_WRITE:
  1288. // case CHECK_PARITY:
  1289. // case UPDATE_PARITY:
  1290. /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
  1291. /* FIX: Is this ordering of drives even remotely optimal? */
  1292. count = 0;
  1293. i = d0_idx;
  1294. do {
  1295. ptrs[count++] = page_address(sh->dev[i].page);
  1296. if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
  1297. printk("block %d/%d not uptodate on parity calc\n", i,count);
  1298. i = raid6_next_disk(i, disks);
  1299. } while ( i != d0_idx );
  1300. // break;
  1301. // }
  1302. raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
  1303. switch(method) {
  1304. case RECONSTRUCT_WRITE:
  1305. set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1306. set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
  1307. set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
  1308. set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
  1309. break;
  1310. case UPDATE_PARITY:
  1311. set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1312. set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
  1313. break;
  1314. }
  1315. }
  1316. /* Compute one missing block */
  1317. static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
  1318. {
  1319. int i, count, disks = sh->disks;
  1320. void *ptr[MAX_XOR_BLOCKS], *dest, *p;
  1321. int pd_idx = sh->pd_idx;
  1322. int qd_idx = raid6_next_disk(pd_idx, disks);
  1323. pr_debug("compute_block_1, stripe %llu, idx %d\n",
  1324. (unsigned long long)sh->sector, dd_idx);
  1325. if ( dd_idx == qd_idx ) {
  1326. /* We're actually computing the Q drive */
  1327. compute_parity6(sh, UPDATE_PARITY);
  1328. } else {
  1329. dest = page_address(sh->dev[dd_idx].page);
  1330. if (!nozero) memset(dest, 0, STRIPE_SIZE);
  1331. count = 0;
  1332. for (i = disks ; i--; ) {
  1333. if (i == dd_idx || i == qd_idx)
  1334. continue;
  1335. p = page_address(sh->dev[i].page);
  1336. if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
  1337. ptr[count++] = p;
  1338. else
  1339. printk("compute_block() %d, stripe %llu, %d"
  1340. " not present\n", dd_idx,
  1341. (unsigned long long)sh->sector, i);
  1342. check_xor();
  1343. }
  1344. if (count)
  1345. xor_blocks(count, STRIPE_SIZE, dest, ptr);
  1346. if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
  1347. else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
  1348. }
  1349. }
  1350. /* Compute two missing blocks */
  1351. static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
  1352. {
  1353. int i, count, disks = sh->disks;
  1354. int pd_idx = sh->pd_idx;
  1355. int qd_idx = raid6_next_disk(pd_idx, disks);
  1356. int d0_idx = raid6_next_disk(qd_idx, disks);
  1357. int faila, failb;
  1358. /* faila and failb are disk numbers relative to d0_idx */
  1359. /* pd_idx become disks-2 and qd_idx become disks-1 */
  1360. faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
  1361. failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
  1362. BUG_ON(faila == failb);
  1363. if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
  1364. pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
  1365. (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
  1366. if ( failb == disks-1 ) {
  1367. /* Q disk is one of the missing disks */
  1368. if ( faila == disks-2 ) {
  1369. /* Missing P+Q, just recompute */
  1370. compute_parity6(sh, UPDATE_PARITY);
  1371. return;
  1372. } else {
  1373. /* We're missing D+Q; recompute D from P */
  1374. compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
  1375. compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
  1376. return;
  1377. }
  1378. }
  1379. /* We're missing D+P or D+D; build pointer table */
  1380. {
  1381. /**** FIX THIS: This could be very bad if disks is close to 256 ****/
  1382. void *ptrs[disks];
  1383. count = 0;
  1384. i = d0_idx;
  1385. do {
  1386. ptrs[count++] = page_address(sh->dev[i].page);
  1387. i = raid6_next_disk(i, disks);
  1388. if (i != dd_idx1 && i != dd_idx2 &&
  1389. !test_bit(R5_UPTODATE, &sh->dev[i].flags))
  1390. printk("compute_2 with missing block %d/%d\n", count, i);
  1391. } while ( i != d0_idx );
  1392. if ( failb == disks-2 ) {
  1393. /* We're missing D+P. */
  1394. raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
  1395. } else {
  1396. /* We're missing D+D. */
  1397. raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
  1398. }
  1399. /* Both the above update both missing blocks */
  1400. set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
  1401. set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
  1402. }
  1403. }
  1404. static void
  1405. schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
  1406. int rcw, int expand)
  1407. {
  1408. int i, pd_idx = sh->pd_idx, disks = sh->disks;
  1409. if (rcw) {
  1410. /* if we are not expanding this is a proper write request, and
  1411. * there will be bios with new data to be drained into the
  1412. * stripe cache
  1413. */
  1414. if (!expand) {
  1415. sh->reconstruct_state = reconstruct_state_drain_run;
  1416. set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
  1417. } else
  1418. sh->reconstruct_state = reconstruct_state_run;
  1419. set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
  1420. for (i = disks; i--; ) {
  1421. struct r5dev *dev = &sh->dev[i];
  1422. if (dev->towrite) {
  1423. set_bit(R5_LOCKED, &dev->flags);
  1424. set_bit(R5_Wantdrain, &dev->flags);
  1425. if (!expand)
  1426. clear_bit(R5_UPTODATE, &dev->flags);
  1427. s->locked++;
  1428. }
  1429. }
  1430. if (s->locked + 1 == disks)
  1431. if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
  1432. atomic_inc(&sh->raid_conf->pending_full_writes);
  1433. } else {
  1434. BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
  1435. test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
  1436. sh->reconstruct_state = reconstruct_state_prexor_drain_run;
  1437. set_bit(STRIPE_OP_PREXOR, &s->ops_request);
  1438. set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
  1439. set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
  1440. for (i = disks; i--; ) {
  1441. struct r5dev *dev = &sh->dev[i];
  1442. if (i == pd_idx)
  1443. continue;
  1444. if (dev->towrite &&
  1445. (test_bit(R5_UPTODATE, &dev->flags) ||
  1446. test_bit(R5_Wantcompute, &dev->flags))) {
  1447. set_bit(R5_Wantdrain, &dev->flags);
  1448. set_bit(R5_LOCKED, &dev->flags);
  1449. clear_bit(R5_UPTODATE, &dev->flags);
  1450. s->locked++;
  1451. }
  1452. }
  1453. }
  1454. /* keep the parity disk locked while asynchronous operations
  1455. * are in flight
  1456. */
  1457. set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
  1458. clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1459. s->locked++;
  1460. pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
  1461. __func__, (unsigned long long)sh->sector,
  1462. s->locked, s->ops_request);
  1463. }
  1464. /*
  1465. * Each stripe/dev can have one or more bion attached.
  1466. * toread/towrite point to the first in a chain.
  1467. * The bi_next chain must be in order.
  1468. */
  1469. static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
  1470. {
  1471. struct bio **bip;
  1472. raid5_conf_t *conf = sh->raid_conf;
  1473. int firstwrite=0;
  1474. pr_debug("adding bh b#%llu to stripe s#%llu\n",
  1475. (unsigned long long)bi->bi_sector,
  1476. (unsigned long long)sh->sector);
  1477. spin_lock(&sh->lock);
  1478. spin_lock_irq(&conf->device_lock);
  1479. if (forwrite) {
  1480. bip = &sh->dev[dd_idx].towrite;
  1481. if (*bip == NULL && sh->dev[dd_idx].written == NULL)
  1482. firstwrite = 1;
  1483. } else
  1484. bip = &sh->dev[dd_idx].toread;
  1485. while (*bip && (*bip)->bi_sector < bi->bi_sector) {
  1486. if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
  1487. goto overlap;
  1488. bip = & (*bip)->bi_next;
  1489. }
  1490. if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
  1491. goto overlap;
  1492. BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
  1493. if (*bip)
  1494. bi->bi_next = *bip;
  1495. *bip = bi;
  1496. bi->bi_phys_segments ++;
  1497. spin_unlock_irq(&conf->device_lock);
  1498. spin_unlock(&sh->lock);
  1499. pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
  1500. (unsigned long long)bi->bi_sector,
  1501. (unsigned long long)sh->sector, dd_idx);
  1502. if (conf->mddev->bitmap && firstwrite) {
  1503. bitmap_startwrite(conf->mddev->bitmap, sh->sector,
  1504. STRIPE_SECTORS, 0);
  1505. sh->bm_seq = conf->seq_flush+1;
  1506. set_bit(STRIPE_BIT_DELAY, &sh->state);
  1507. }
  1508. if (forwrite) {
  1509. /* check if page is covered */
  1510. sector_t sector = sh->dev[dd_idx].sector;
  1511. for (bi=sh->dev[dd_idx].towrite;
  1512. sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
  1513. bi && bi->bi_sector <= sector;
  1514. bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
  1515. if (bi->bi_sector + (bi->bi_size>>9) >= sector)
  1516. sector = bi->bi_sector + (bi->bi_size>>9);
  1517. }
  1518. if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
  1519. set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
  1520. }
  1521. return 1;
  1522. overlap:
  1523. set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
  1524. spin_unlock_irq(&conf->device_lock);
  1525. spin_unlock(&sh->lock);
  1526. return 0;
  1527. }
  1528. static void end_reshape(raid5_conf_t *conf);
  1529. static int page_is_zero(struct page *p)
  1530. {
  1531. char *a = page_address(p);
  1532. return ((*(u32*)a) == 0 &&
  1533. memcmp(a, a+4, STRIPE_SIZE-4)==0);
  1534. }
  1535. static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
  1536. {
  1537. int sectors_per_chunk = conf->chunk_size >> 9;
  1538. int pd_idx, dd_idx;
  1539. int chunk_offset = sector_div(stripe, sectors_per_chunk);
  1540. raid5_compute_sector(stripe * (disks - conf->max_degraded)
  1541. *sectors_per_chunk + chunk_offset,
  1542. disks, disks - conf->max_degraded,
  1543. &dd_idx, &pd_idx, conf);
  1544. return pd_idx;
  1545. }
  1546. static void
  1547. handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
  1548. struct stripe_head_state *s, int disks,
  1549. struct bio **return_bi)
  1550. {
  1551. int i;
  1552. for (i = disks; i--; ) {
  1553. struct bio *bi;
  1554. int bitmap_end = 0;
  1555. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  1556. mdk_rdev_t *rdev;
  1557. rcu_read_lock();
  1558. rdev = rcu_dereference(conf->disks[i].rdev);
  1559. if (rdev && test_bit(In_sync, &rdev->flags))
  1560. /* multiple read failures in one stripe */
  1561. md_error(conf->mddev, rdev);
  1562. rcu_read_unlock();
  1563. }
  1564. spin_lock_irq(&conf->device_lock);
  1565. /* fail all writes first */
  1566. bi = sh->dev[i].towrite;
  1567. sh->dev[i].towrite = NULL;
  1568. if (bi) {
  1569. s->to_write--;
  1570. bitmap_end = 1;
  1571. }
  1572. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  1573. wake_up(&conf->wait_for_overlap);
  1574. while (bi && bi->bi_sector <
  1575. sh->dev[i].sector + STRIPE_SECTORS) {
  1576. struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
  1577. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1578. if (--bi->bi_phys_segments == 0) {
  1579. md_write_end(conf->mddev);
  1580. bi->bi_next = *return_bi;
  1581. *return_bi = bi;
  1582. }
  1583. bi = nextbi;
  1584. }
  1585. /* and fail all 'written' */
  1586. bi = sh->dev[i].written;
  1587. sh->dev[i].written = NULL;
  1588. if (bi) bitmap_end = 1;
  1589. while (bi && bi->bi_sector <
  1590. sh->dev[i].sector + STRIPE_SECTORS) {
  1591. struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
  1592. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1593. if (--bi->bi_phys_segments == 0) {
  1594. md_write_end(conf->mddev);
  1595. bi->bi_next = *return_bi;
  1596. *return_bi = bi;
  1597. }
  1598. bi = bi2;
  1599. }
  1600. /* fail any reads if this device is non-operational and
  1601. * the data has not reached the cache yet.
  1602. */
  1603. if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
  1604. (!test_bit(R5_Insync, &sh->dev[i].flags) ||
  1605. test_bit(R5_ReadError, &sh->dev[i].flags))) {
  1606. bi = sh->dev[i].toread;
  1607. sh->dev[i].toread = NULL;
  1608. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  1609. wake_up(&conf->wait_for_overlap);
  1610. if (bi) s->to_read--;
  1611. while (bi && bi->bi_sector <
  1612. sh->dev[i].sector + STRIPE_SECTORS) {
  1613. struct bio *nextbi =
  1614. r5_next_bio(bi, sh->dev[i].sector);
  1615. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1616. if (--bi->bi_phys_segments == 0) {
  1617. bi->bi_next = *return_bi;
  1618. *return_bi = bi;
  1619. }
  1620. bi = nextbi;
  1621. }
  1622. }
  1623. spin_unlock_irq(&conf->device_lock);
  1624. if (bitmap_end)
  1625. bitmap_endwrite(conf->mddev->bitmap, sh->sector,
  1626. STRIPE_SECTORS, 0, 0);
  1627. }
  1628. if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
  1629. if (atomic_dec_and_test(&conf->pending_full_writes))
  1630. md_wakeup_thread(conf->mddev->thread);
  1631. }
  1632. /* fetch_block5 - checks the given member device to see if its data needs
  1633. * to be read or computed to satisfy a request.
  1634. *
  1635. * Returns 1 when no more member devices need to be checked, otherwise returns
  1636. * 0 to tell the loop in handle_stripe_fill5 to continue
  1637. */
  1638. static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
  1639. int disk_idx, int disks)
  1640. {
  1641. struct r5dev *dev = &sh->dev[disk_idx];
  1642. struct r5dev *failed_dev = &sh->dev[s->failed_num];
  1643. /* is the data in this block needed, and can we get it? */
  1644. if (!test_bit(R5_LOCKED, &dev->flags) &&
  1645. !test_bit(R5_UPTODATE, &dev->flags) &&
  1646. (dev->toread ||
  1647. (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
  1648. s->syncing || s->expanding ||
  1649. (s->failed &&
  1650. (failed_dev->toread ||
  1651. (failed_dev->towrite &&
  1652. !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
  1653. /* We would like to get this block, possibly by computing it,
  1654. * otherwise read it if the backing disk is insync
  1655. */
  1656. if ((s->uptodate == disks - 1) &&
  1657. (s->failed && disk_idx == s->failed_num)) {
  1658. set_bit(STRIPE_COMPUTE_RUN, &sh->state);
  1659. set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
  1660. set_bit(R5_Wantcompute, &dev->flags);
  1661. sh->ops.target = disk_idx;
  1662. s->req_compute = 1;
  1663. /* Careful: from this point on 'uptodate' is in the eye
  1664. * of raid5_run_ops which services 'compute' operations
  1665. * before writes. R5_Wantcompute flags a block that will
  1666. * be R5_UPTODATE by the time it is needed for a
  1667. * subsequent operation.
  1668. */
  1669. s->uptodate++;
  1670. return 1; /* uptodate + compute == disks */
  1671. } else if (test_bit(R5_Insync, &dev->flags)) {
  1672. set_bit(R5_LOCKED, &dev->flags);
  1673. set_bit(R5_Wantread, &dev->flags);
  1674. s->locked++;
  1675. pr_debug("Reading block %d (sync=%d)\n", disk_idx,
  1676. s->syncing);
  1677. }
  1678. }
  1679. return 0;
  1680. }
  1681. /**
  1682. * handle_stripe_fill5 - read or compute data to satisfy pending requests.
  1683. */
  1684. static void handle_stripe_fill5(struct stripe_head *sh,
  1685. struct stripe_head_state *s, int disks)
  1686. {
  1687. int i;
  1688. /* look for blocks to read/compute, skip this if a compute
  1689. * is already in flight, or if the stripe contents are in the
  1690. * midst of changing due to a write
  1691. */
  1692. if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
  1693. !sh->reconstruct_state)
  1694. for (i = disks; i--; )
  1695. if (fetch_block5(sh, s, i, disks))
  1696. break;
  1697. set_bit(STRIPE_HANDLE, &sh->state);
  1698. }
  1699. static void handle_stripe_fill6(struct stripe_head *sh,
  1700. struct stripe_head_state *s, struct r6_state *r6s,
  1701. int disks)
  1702. {
  1703. int i;
  1704. for (i = disks; i--; ) {
  1705. struct r5dev *dev = &sh->dev[i];
  1706. if (!test_bit(R5_LOCKED, &dev->flags) &&
  1707. !test_bit(R5_UPTODATE, &dev->flags) &&
  1708. (dev->toread || (dev->towrite &&
  1709. !test_bit(R5_OVERWRITE, &dev->flags)) ||
  1710. s->syncing || s->expanding ||
  1711. (s->failed >= 1 &&
  1712. (sh->dev[r6s->failed_num[0]].toread ||
  1713. s->to_write)) ||
  1714. (s->failed >= 2 &&
  1715. (sh->dev[r6s->failed_num[1]].toread ||
  1716. s->to_write)))) {
  1717. /* we would like to get this block, possibly
  1718. * by computing it, but we might not be able to
  1719. */
  1720. if ((s->uptodate == disks - 1) &&
  1721. (s->failed && (i == r6s->failed_num[0] ||
  1722. i == r6s->failed_num[1]))) {
  1723. pr_debug("Computing stripe %llu block %d\n",
  1724. (unsigned long long)sh->sector, i);
  1725. compute_block_1(sh, i, 0);
  1726. s->uptodate++;
  1727. } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
  1728. /* Computing 2-failure is *very* expensive; only
  1729. * do it if failed >= 2
  1730. */
  1731. int other;
  1732. for (other = disks; other--; ) {
  1733. if (other == i)
  1734. continue;
  1735. if (!test_bit(R5_UPTODATE,
  1736. &sh->dev[other].flags))
  1737. break;
  1738. }
  1739. BUG_ON(other < 0);
  1740. pr_debug("Computing stripe %llu blocks %d,%d\n",
  1741. (unsigned long long)sh->sector,
  1742. i, other);
  1743. compute_block_2(sh, i, other);
  1744. s->uptodate += 2;
  1745. } else if (test_bit(R5_Insync, &dev->flags)) {
  1746. set_bit(R5_LOCKED, &dev->flags);
  1747. set_bit(R5_Wantread, &dev->flags);
  1748. s->locked++;
  1749. pr_debug("Reading block %d (sync=%d)\n",
  1750. i, s->syncing);
  1751. }
  1752. }
  1753. }
  1754. set_bit(STRIPE_HANDLE, &sh->state);
  1755. }
  1756. /* handle_stripe_clean_event
  1757. * any written block on an uptodate or failed drive can be returned.
  1758. * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
  1759. * never LOCKED, so we don't need to test 'failed' directly.
  1760. */
  1761. static void handle_stripe_clean_event(raid5_conf_t *conf,
  1762. struct stripe_head *sh, int disks, struct bio **return_bi)
  1763. {
  1764. int i;
  1765. struct r5dev *dev;
  1766. for (i = disks; i--; )
  1767. if (sh->dev[i].written) {
  1768. dev = &sh->dev[i];
  1769. if (!test_bit(R5_LOCKED, &dev->flags) &&
  1770. test_bit(R5_UPTODATE, &dev->flags)) {
  1771. /* We can return any write requests */
  1772. struct bio *wbi, *wbi2;
  1773. int bitmap_end = 0;
  1774. pr_debug("Return write for disc %d\n", i);
  1775. spin_lock_irq(&conf->device_lock);
  1776. wbi = dev->written;
  1777. dev->written = NULL;
  1778. while (wbi && wbi->bi_sector <
  1779. dev->sector + STRIPE_SECTORS) {
  1780. wbi2 = r5_next_bio(wbi, dev->sector);
  1781. if (--wbi->bi_phys_segments == 0) {
  1782. md_write_end(conf->mddev);
  1783. wbi->bi_next = *return_bi;
  1784. *return_bi = wbi;
  1785. }
  1786. wbi = wbi2;
  1787. }
  1788. if (dev->towrite == NULL)
  1789. bitmap_end = 1;
  1790. spin_unlock_irq(&conf->device_lock);
  1791. if (bitmap_end)
  1792. bitmap_endwrite(conf->mddev->bitmap,
  1793. sh->sector,
  1794. STRIPE_SECTORS,
  1795. !test_bit(STRIPE_DEGRADED, &sh->state),
  1796. 0);
  1797. }
  1798. }
  1799. if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
  1800. if (atomic_dec_and_test(&conf->pending_full_writes))
  1801. md_wakeup_thread(conf->mddev->thread);
  1802. }
  1803. static void handle_stripe_dirtying5(raid5_conf_t *conf,
  1804. struct stripe_head *sh, struct stripe_head_state *s, int disks)
  1805. {
  1806. int rmw = 0, rcw = 0, i;
  1807. for (i = disks; i--; ) {
  1808. /* would I have to read this buffer for read_modify_write */
  1809. struct r5dev *dev = &sh->dev[i];
  1810. if ((dev->towrite || i == sh->pd_idx) &&
  1811. !test_bit(R5_LOCKED, &dev->flags) &&
  1812. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1813. test_bit(R5_Wantcompute, &dev->flags))) {
  1814. if (test_bit(R5_Insync, &dev->flags))
  1815. rmw++;
  1816. else
  1817. rmw += 2*disks; /* cannot read it */
  1818. }
  1819. /* Would I have to read this buffer for reconstruct_write */
  1820. if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
  1821. !test_bit(R5_LOCKED, &dev->flags) &&
  1822. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1823. test_bit(R5_Wantcompute, &dev->flags))) {
  1824. if (test_bit(R5_Insync, &dev->flags)) rcw++;
  1825. else
  1826. rcw += 2*disks;
  1827. }
  1828. }
  1829. pr_debug("for sector %llu, rmw=%d rcw=%d\n",
  1830. (unsigned long long)sh->sector, rmw, rcw);
  1831. set_bit(STRIPE_HANDLE, &sh->state);
  1832. if (rmw < rcw && rmw > 0)
  1833. /* prefer read-modify-write, but need to get some data */
  1834. for (i = disks; i--; ) {
  1835. struct r5dev *dev = &sh->dev[i];
  1836. if ((dev->towrite || i == sh->pd_idx) &&
  1837. !test_bit(R5_LOCKED, &dev->flags) &&
  1838. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1839. test_bit(R5_Wantcompute, &dev->flags)) &&
  1840. test_bit(R5_Insync, &dev->flags)) {
  1841. if (
  1842. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1843. pr_debug("Read_old block "
  1844. "%d for r-m-w\n", i);
  1845. set_bit(R5_LOCKED, &dev->flags);
  1846. set_bit(R5_Wantread, &dev->flags);
  1847. s->locked++;
  1848. } else {
  1849. set_bit(STRIPE_DELAYED, &sh->state);
  1850. set_bit(STRIPE_HANDLE, &sh->state);
  1851. }
  1852. }
  1853. }
  1854. if (rcw <= rmw && rcw > 0)
  1855. /* want reconstruct write, but need to get some data */
  1856. for (i = disks; i--; ) {
  1857. struct r5dev *dev = &sh->dev[i];
  1858. if (!test_bit(R5_OVERWRITE, &dev->flags) &&
  1859. i != sh->pd_idx &&
  1860. !test_bit(R5_LOCKED, &dev->flags) &&
  1861. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1862. test_bit(R5_Wantcompute, &dev->flags)) &&
  1863. test_bit(R5_Insync, &dev->flags)) {
  1864. if (
  1865. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1866. pr_debug("Read_old block "
  1867. "%d for Reconstruct\n", i);
  1868. set_bit(R5_LOCKED, &dev->flags);
  1869. set_bit(R5_Wantread, &dev->flags);
  1870. s->locked++;
  1871. } else {
  1872. set_bit(STRIPE_DELAYED, &sh->state);
  1873. set_bit(STRIPE_HANDLE, &sh->state);
  1874. }
  1875. }
  1876. }
  1877. /* now if nothing is locked, and if we have enough data,
  1878. * we can start a write request
  1879. */
  1880. /* since handle_stripe can be called at any time we need to handle the
  1881. * case where a compute block operation has been submitted and then a
  1882. * subsequent call wants to start a write request. raid5_run_ops only
  1883. * handles the case where compute block and postxor are requested
  1884. * simultaneously. If this is not the case then new writes need to be
  1885. * held off until the compute completes.
  1886. */
  1887. if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
  1888. (s->locked == 0 && (rcw == 0 || rmw == 0) &&
  1889. !test_bit(STRIPE_BIT_DELAY, &sh->state)))
  1890. schedule_reconstruction5(sh, s, rcw == 0, 0);
  1891. }
  1892. static void handle_stripe_dirtying6(raid5_conf_t *conf,
  1893. struct stripe_head *sh, struct stripe_head_state *s,
  1894. struct r6_state *r6s, int disks)
  1895. {
  1896. int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
  1897. int qd_idx = r6s->qd_idx;
  1898. for (i = disks; i--; ) {
  1899. struct r5dev *dev = &sh->dev[i];
  1900. /* Would I have to read this buffer for reconstruct_write */
  1901. if (!test_bit(R5_OVERWRITE, &dev->flags)
  1902. && i != pd_idx && i != qd_idx
  1903. && (!test_bit(R5_LOCKED, &dev->flags)
  1904. ) &&
  1905. !test_bit(R5_UPTODATE, &dev->flags)) {
  1906. if (test_bit(R5_Insync, &dev->flags)) rcw++;
  1907. else {
  1908. pr_debug("raid6: must_compute: "
  1909. "disk %d flags=%#lx\n", i, dev->flags);
  1910. must_compute++;
  1911. }
  1912. }
  1913. }
  1914. pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
  1915. (unsigned long long)sh->sector, rcw, must_compute);
  1916. set_bit(STRIPE_HANDLE, &sh->state);
  1917. if (rcw > 0)
  1918. /* want reconstruct write, but need to get some data */
  1919. for (i = disks; i--; ) {
  1920. struct r5dev *dev = &sh->dev[i];
  1921. if (!test_bit(R5_OVERWRITE, &dev->flags)
  1922. && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
  1923. && !test_bit(R5_LOCKED, &dev->flags) &&
  1924. !test_bit(R5_UPTODATE, &dev->flags) &&
  1925. test_bit(R5_Insync, &dev->flags)) {
  1926. if (
  1927. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1928. pr_debug("Read_old stripe %llu "
  1929. "block %d for Reconstruct\n",
  1930. (unsigned long long)sh->sector, i);
  1931. set_bit(R5_LOCKED, &dev->flags);
  1932. set_bit(R5_Wantread, &dev->flags);
  1933. s->locked++;
  1934. } else {
  1935. pr_debug("Request delayed stripe %llu "
  1936. "block %d for Reconstruct\n",
  1937. (unsigned long long)sh->sector, i);
  1938. set_bit(STRIPE_DELAYED, &sh->state);
  1939. set_bit(STRIPE_HANDLE, &sh->state);
  1940. }
  1941. }
  1942. }
  1943. /* now if nothing is locked, and if we have enough data, we can start a
  1944. * write request
  1945. */
  1946. if (s->locked == 0 && rcw == 0 &&
  1947. !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
  1948. if (must_compute > 0) {
  1949. /* We have failed blocks and need to compute them */
  1950. switch (s->failed) {
  1951. case 0:
  1952. BUG();
  1953. case 1:
  1954. compute_block_1(sh, r6s->failed_num[0], 0);
  1955. break;
  1956. case 2:
  1957. compute_block_2(sh, r6s->failed_num[0],
  1958. r6s->failed_num[1]);
  1959. break;
  1960. default: /* This request should have been failed? */
  1961. BUG();
  1962. }
  1963. }
  1964. pr_debug("Computing parity for stripe %llu\n",
  1965. (unsigned long long)sh->sector);
  1966. compute_parity6(sh, RECONSTRUCT_WRITE);
  1967. /* now every locked buffer is ready to be written */
  1968. for (i = disks; i--; )
  1969. if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
  1970. pr_debug("Writing stripe %llu block %d\n",
  1971. (unsigned long long)sh->sector, i);
  1972. s->locked++;
  1973. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  1974. }
  1975. if (s->locked == disks)
  1976. if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
  1977. atomic_inc(&conf->pending_full_writes);
  1978. /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
  1979. set_bit(STRIPE_INSYNC, &sh->state);
  1980. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1981. atomic_dec(&conf->preread_active_stripes);
  1982. if (atomic_read(&conf->preread_active_stripes) <
  1983. IO_THRESHOLD)
  1984. md_wakeup_thread(conf->mddev->thread);
  1985. }
  1986. }
  1987. }
  1988. static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
  1989. struct stripe_head_state *s, int disks)
  1990. {
  1991. struct r5dev *dev = NULL;
  1992. set_bit(STRIPE_HANDLE, &sh->state);
  1993. switch (sh->check_state) {
  1994. case check_state_idle:
  1995. /* start a new check operation if there are no failures */
  1996. if (s->failed == 0) {
  1997. BUG_ON(s->uptodate != disks);
  1998. sh->check_state = check_state_run;
  1999. set_bit(STRIPE_OP_CHECK, &s->ops_request);
  2000. clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
  2001. s->uptodate--;
  2002. break;
  2003. }
  2004. dev = &sh->dev[s->failed_num];
  2005. /* fall through */
  2006. case check_state_compute_result:
  2007. sh->check_state = check_state_idle;
  2008. if (!dev)
  2009. dev = &sh->dev[sh->pd_idx];
  2010. /* check that a write has not made the stripe insync */
  2011. if (test_bit(STRIPE_INSYNC, &sh->state))
  2012. break;
  2013. /* either failed parity check, or recovery is happening */
  2014. BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
  2015. BUG_ON(s->uptodate != disks);
  2016. set_bit(R5_LOCKED, &dev->flags);
  2017. s->locked++;
  2018. set_bit(R5_Wantwrite, &dev->flags);
  2019. clear_bit(STRIPE_DEGRADED, &sh->state);
  2020. set_bit(STRIPE_INSYNC, &sh->state);
  2021. break;
  2022. case check_state_run:
  2023. break; /* we will be called again upon completion */
  2024. case check_state_check_result:
  2025. sh->check_state = check_state_idle;
  2026. /* if a failure occurred during the check operation, leave
  2027. * STRIPE_INSYNC not set and let the stripe be handled again
  2028. */
  2029. if (s->failed)
  2030. break;
  2031. /* handle a successful check operation, if parity is correct
  2032. * we are done. Otherwise update the mismatch count and repair
  2033. * parity if !MD_RECOVERY_CHECK
  2034. */
  2035. if (sh->ops.zero_sum_result == 0)
  2036. /* parity is correct (on disc,
  2037. * not in buffer any more)
  2038. */
  2039. set_bit(STRIPE_INSYNC, &sh->state);
  2040. else {
  2041. conf->mddev->resync_mismatches += STRIPE_SECTORS;
  2042. if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
  2043. /* don't try to repair!! */
  2044. set_bit(STRIPE_INSYNC, &sh->state);
  2045. else {
  2046. sh->check_state = check_state_compute_run;
  2047. set_bit(STRIPE_COMPUTE_RUN, &sh->state);
  2048. set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
  2049. set_bit(R5_Wantcompute,
  2050. &sh->dev[sh->pd_idx].flags);
  2051. sh->ops.target = sh->pd_idx;
  2052. s->uptodate++;
  2053. }
  2054. }
  2055. break;
  2056. case check_state_compute_run:
  2057. break;
  2058. default:
  2059. printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
  2060. __func__, sh->check_state,
  2061. (unsigned long long) sh->sector);
  2062. BUG();
  2063. }
  2064. }
  2065. static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
  2066. struct stripe_head_state *s,
  2067. struct r6_state *r6s, struct page *tmp_page,
  2068. int disks)
  2069. {
  2070. int update_p = 0, update_q = 0;
  2071. struct r5dev *dev;
  2072. int pd_idx = sh->pd_idx;
  2073. int qd_idx = r6s->qd_idx;
  2074. set_bit(STRIPE_HANDLE, &sh->state);
  2075. BUG_ON(s->failed > 2);
  2076. BUG_ON(s->uptodate < disks);
  2077. /* Want to check and possibly repair P and Q.
  2078. * However there could be one 'failed' device, in which
  2079. * case we can only check one of them, possibly using the
  2080. * other to generate missing data
  2081. */
  2082. /* If !tmp_page, we cannot do the calculations,
  2083. * but as we have set STRIPE_HANDLE, we will soon be called
  2084. * by stripe_handle with a tmp_page - just wait until then.
  2085. */
  2086. if (tmp_page) {
  2087. if (s->failed == r6s->q_failed) {
  2088. /* The only possible failed device holds 'Q', so it
  2089. * makes sense to check P (If anything else were failed,
  2090. * we would have used P to recreate it).
  2091. */
  2092. compute_block_1(sh, pd_idx, 1);
  2093. if (!page_is_zero(sh->dev[pd_idx].page)) {
  2094. compute_block_1(sh, pd_idx, 0);
  2095. update_p = 1;
  2096. }
  2097. }
  2098. if (!r6s->q_failed && s->failed < 2) {
  2099. /* q is not failed, and we didn't use it to generate
  2100. * anything, so it makes sense to check it
  2101. */
  2102. memcpy(page_address(tmp_page),
  2103. page_address(sh->dev[qd_idx].page),
  2104. STRIPE_SIZE);
  2105. compute_parity6(sh, UPDATE_PARITY);
  2106. if (memcmp(page_address(tmp_page),
  2107. page_address(sh->dev[qd_idx].page),
  2108. STRIPE_SIZE) != 0) {
  2109. clear_bit(STRIPE_INSYNC, &sh->state);
  2110. update_q = 1;
  2111. }
  2112. }
  2113. if (update_p || update_q) {
  2114. conf->mddev->resync_mismatches += STRIPE_SECTORS;
  2115. if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
  2116. /* don't try to repair!! */
  2117. update_p = update_q = 0;
  2118. }
  2119. /* now write out any block on a failed drive,
  2120. * or P or Q if they need it
  2121. */
  2122. if (s->failed == 2) {
  2123. dev = &sh->dev[r6s->failed_num[1]];
  2124. s->locked++;
  2125. set_bit(R5_LOCKED, &dev->flags);
  2126. set_bit(R5_Wantwrite, &dev->flags);
  2127. }
  2128. if (s->failed >= 1) {
  2129. dev = &sh->dev[r6s->failed_num[0]];
  2130. s->locked++;
  2131. set_bit(R5_LOCKED, &dev->flags);
  2132. set_bit(R5_Wantwrite, &dev->flags);
  2133. }
  2134. if (update_p) {
  2135. dev = &sh->dev[pd_idx];
  2136. s->locked++;
  2137. set_bit(R5_LOCKED, &dev->flags);
  2138. set_bit(R5_Wantwrite, &dev->flags);
  2139. }
  2140. if (update_q) {
  2141. dev = &sh->dev[qd_idx];
  2142. s->locked++;
  2143. set_bit(R5_LOCKED, &dev->flags);
  2144. set_bit(R5_Wantwrite, &dev->flags);
  2145. }
  2146. clear_bit(STRIPE_DEGRADED, &sh->state);
  2147. set_bit(STRIPE_INSYNC, &sh->state);
  2148. }
  2149. }
  2150. static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
  2151. struct r6_state *r6s)
  2152. {
  2153. int i;
  2154. /* We have read all the blocks in this stripe and now we need to
  2155. * copy some of them into a target stripe for expand.
  2156. */
  2157. struct dma_async_tx_descriptor *tx = NULL;
  2158. clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2159. for (i = 0; i < sh->disks; i++)
  2160. if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
  2161. int dd_idx, pd_idx, j;
  2162. struct stripe_head *sh2;
  2163. sector_t bn = compute_blocknr(sh, i);
  2164. sector_t s = raid5_compute_sector(bn, conf->raid_disks,
  2165. conf->raid_disks -
  2166. conf->max_degraded, &dd_idx,
  2167. &pd_idx, conf);
  2168. sh2 = get_active_stripe(conf, s, conf->raid_disks,
  2169. pd_idx, 1);
  2170. if (sh2 == NULL)
  2171. /* so far only the early blocks of this stripe
  2172. * have been requested. When later blocks
  2173. * get requested, we will try again
  2174. */
  2175. continue;
  2176. if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
  2177. test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
  2178. /* must have already done this block */
  2179. release_stripe(sh2);
  2180. continue;
  2181. }
  2182. /* place all the copies on one channel */
  2183. tx = async_memcpy(sh2->dev[dd_idx].page,
  2184. sh->dev[i].page, 0, 0, STRIPE_SIZE,
  2185. ASYNC_TX_DEP_ACK, tx, NULL, NULL);
  2186. set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
  2187. set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
  2188. for (j = 0; j < conf->raid_disks; j++)
  2189. if (j != sh2->pd_idx &&
  2190. (!r6s || j != raid6_next_disk(sh2->pd_idx,
  2191. sh2->disks)) &&
  2192. !test_bit(R5_Expanded, &sh2->dev[j].flags))
  2193. break;
  2194. if (j == conf->raid_disks) {
  2195. set_bit(STRIPE_EXPAND_READY, &sh2->state);
  2196. set_bit(STRIPE_HANDLE, &sh2->state);
  2197. }
  2198. release_stripe(sh2);
  2199. }
  2200. /* done submitting copies, wait for them to complete */
  2201. if (tx) {
  2202. async_tx_ack(tx);
  2203. dma_wait_for_async_tx(tx);
  2204. }
  2205. }
  2206. /*
  2207. * handle_stripe - do things to a stripe.
  2208. *
  2209. * We lock the stripe and then examine the state of various bits
  2210. * to see what needs to be done.
  2211. * Possible results:
  2212. * return some read request which now have data
  2213. * return some write requests which are safely on disc
  2214. * schedule a read on some buffers
  2215. * schedule a write of some buffers
  2216. * return confirmation of parity correctness
  2217. *
  2218. * buffers are taken off read_list or write_list, and bh_cache buffers
  2219. * get BH_Lock set before the stripe lock is released.
  2220. *
  2221. */
  2222. static void handle_stripe5(struct stripe_head *sh)
  2223. {
  2224. raid5_conf_t *conf = sh->raid_conf;
  2225. int disks = sh->disks, i;
  2226. struct bio *return_bi = NULL;
  2227. struct stripe_head_state s;
  2228. struct r5dev *dev;
  2229. mdk_rdev_t *blocked_rdev = NULL;
  2230. int prexor;
  2231. memset(&s, 0, sizeof(s));
  2232. pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
  2233. "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
  2234. atomic_read(&sh->count), sh->pd_idx, sh->check_state,
  2235. sh->reconstruct_state);
  2236. spin_lock(&sh->lock);
  2237. clear_bit(STRIPE_HANDLE, &sh->state);
  2238. clear_bit(STRIPE_DELAYED, &sh->state);
  2239. s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
  2240. s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2241. s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
  2242. /* Now to look around and see what can be done */
  2243. rcu_read_lock();
  2244. for (i=disks; i--; ) {
  2245. mdk_rdev_t *rdev;
  2246. struct r5dev *dev = &sh->dev[i];
  2247. clear_bit(R5_Insync, &dev->flags);
  2248. pr_debug("check %d: state 0x%lx toread %p read %p write %p "
  2249. "written %p\n", i, dev->flags, dev->toread, dev->read,
  2250. dev->towrite, dev->written);
  2251. /* maybe we can request a biofill operation
  2252. *
  2253. * new wantfill requests are only permitted while
  2254. * ops_complete_biofill is guaranteed to be inactive
  2255. */
  2256. if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
  2257. !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
  2258. set_bit(R5_Wantfill, &dev->flags);
  2259. /* now count some things */
  2260. if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
  2261. if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
  2262. if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
  2263. if (test_bit(R5_Wantfill, &dev->flags))
  2264. s.to_fill++;
  2265. else if (dev->toread)
  2266. s.to_read++;
  2267. if (dev->towrite) {
  2268. s.to_write++;
  2269. if (!test_bit(R5_OVERWRITE, &dev->flags))
  2270. s.non_overwrite++;
  2271. }
  2272. if (dev->written)
  2273. s.written++;
  2274. rdev = rcu_dereference(conf->disks[i].rdev);
  2275. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  2276. blocked_rdev = rdev;
  2277. atomic_inc(&rdev->nr_pending);
  2278. break;
  2279. }
  2280. if (!rdev || !test_bit(In_sync, &rdev->flags)) {
  2281. /* The ReadError flag will just be confusing now */
  2282. clear_bit(R5_ReadError, &dev->flags);
  2283. clear_bit(R5_ReWrite, &dev->flags);
  2284. }
  2285. if (!rdev || !test_bit(In_sync, &rdev->flags)
  2286. || test_bit(R5_ReadError, &dev->flags)) {
  2287. s.failed++;
  2288. s.failed_num = i;
  2289. } else
  2290. set_bit(R5_Insync, &dev->flags);
  2291. }
  2292. rcu_read_unlock();
  2293. if (unlikely(blocked_rdev)) {
  2294. set_bit(STRIPE_HANDLE, &sh->state);
  2295. goto unlock;
  2296. }
  2297. if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
  2298. set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
  2299. set_bit(STRIPE_BIOFILL_RUN, &sh->state);
  2300. }
  2301. pr_debug("locked=%d uptodate=%d to_read=%d"
  2302. " to_write=%d failed=%d failed_num=%d\n",
  2303. s.locked, s.uptodate, s.to_read, s.to_write,
  2304. s.failed, s.failed_num);
  2305. /* check if the array has lost two devices and, if so, some requests might
  2306. * need to be failed
  2307. */
  2308. if (s.failed > 1 && s.to_read+s.to_write+s.written)
  2309. handle_failed_stripe(conf, sh, &s, disks, &return_bi);
  2310. if (s.failed > 1 && s.syncing) {
  2311. md_done_sync(conf->mddev, STRIPE_SECTORS,0);
  2312. clear_bit(STRIPE_SYNCING, &sh->state);
  2313. s.syncing = 0;
  2314. }
  2315. /* might be able to return some write requests if the parity block
  2316. * is safe, or on a failed drive
  2317. */
  2318. dev = &sh->dev[sh->pd_idx];
  2319. if ( s.written &&
  2320. ((test_bit(R5_Insync, &dev->flags) &&
  2321. !test_bit(R5_LOCKED, &dev->flags) &&
  2322. test_bit(R5_UPTODATE, &dev->flags)) ||
  2323. (s.failed == 1 && s.failed_num == sh->pd_idx)))
  2324. handle_stripe_clean_event(conf, sh, disks, &return_bi);
  2325. /* Now we might consider reading some blocks, either to check/generate
  2326. * parity, or to satisfy requests
  2327. * or to load a block that is being partially written.
  2328. */
  2329. if (s.to_read || s.non_overwrite ||
  2330. (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
  2331. handle_stripe_fill5(sh, &s, disks);
  2332. /* Now we check to see if any write operations have recently
  2333. * completed
  2334. */
  2335. prexor = 0;
  2336. if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
  2337. prexor = 1;
  2338. if (sh->reconstruct_state == reconstruct_state_drain_result ||
  2339. sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
  2340. sh->reconstruct_state = reconstruct_state_idle;
  2341. /* All the 'written' buffers and the parity block are ready to
  2342. * be written back to disk
  2343. */
  2344. BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
  2345. for (i = disks; i--; ) {
  2346. dev = &sh->dev[i];
  2347. if (test_bit(R5_LOCKED, &dev->flags) &&
  2348. (i == sh->pd_idx || dev->written)) {
  2349. pr_debug("Writing block %d\n", i);
  2350. set_bit(R5_Wantwrite, &dev->flags);
  2351. if (prexor)
  2352. continue;
  2353. if (!test_bit(R5_Insync, &dev->flags) ||
  2354. (i == sh->pd_idx && s.failed == 0))
  2355. set_bit(STRIPE_INSYNC, &sh->state);
  2356. }
  2357. }
  2358. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  2359. atomic_dec(&conf->preread_active_stripes);
  2360. if (atomic_read(&conf->preread_active_stripes) <
  2361. IO_THRESHOLD)
  2362. md_wakeup_thread(conf->mddev->thread);
  2363. }
  2364. }
  2365. /* Now to consider new write requests and what else, if anything
  2366. * should be read. We do not handle new writes when:
  2367. * 1/ A 'write' operation (copy+xor) is already in flight.
  2368. * 2/ A 'check' operation is in flight, as it may clobber the parity
  2369. * block.
  2370. */
  2371. if (s.to_write && !sh->reconstruct_state && !sh->check_state)
  2372. handle_stripe_dirtying5(conf, sh, &s, disks);
  2373. /* maybe we need to check and possibly fix the parity for this stripe
  2374. * Any reads will already have been scheduled, so we just see if enough
  2375. * data is available. The parity check is held off while parity
  2376. * dependent operations are in flight.
  2377. */
  2378. if (sh->check_state ||
  2379. (s.syncing && s.locked == 0 &&
  2380. !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
  2381. !test_bit(STRIPE_INSYNC, &sh->state)))
  2382. handle_parity_checks5(conf, sh, &s, disks);
  2383. if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
  2384. md_done_sync(conf->mddev, STRIPE_SECTORS,1);
  2385. clear_bit(STRIPE_SYNCING, &sh->state);
  2386. }
  2387. /* If the failed drive is just a ReadError, then we might need to progress
  2388. * the repair/check process
  2389. */
  2390. if (s.failed == 1 && !conf->mddev->ro &&
  2391. test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
  2392. && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
  2393. && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
  2394. ) {
  2395. dev = &sh->dev[s.failed_num];
  2396. if (!test_bit(R5_ReWrite, &dev->flags)) {
  2397. set_bit(R5_Wantwrite, &dev->flags);
  2398. set_bit(R5_ReWrite, &dev->flags);
  2399. set_bit(R5_LOCKED, &dev->flags);
  2400. s.locked++;
  2401. } else {
  2402. /* let's read it back */
  2403. set_bit(R5_Wantread, &dev->flags);
  2404. set_bit(R5_LOCKED, &dev->flags);
  2405. s.locked++;
  2406. }
  2407. }
  2408. /* Finish reconstruct operations initiated by the expansion process */
  2409. if (sh->reconstruct_state == reconstruct_state_result) {
  2410. sh->reconstruct_state = reconstruct_state_idle;
  2411. clear_bit(STRIPE_EXPANDING, &sh->state);
  2412. for (i = conf->raid_disks; i--; )
  2413. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  2414. set_bit(R5_LOCKED, &dev->flags);
  2415. s.locked++;
  2416. }
  2417. if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
  2418. !sh->reconstruct_state) {
  2419. /* Need to write out all blocks after computing parity */
  2420. sh->disks = conf->raid_disks;
  2421. sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
  2422. conf->raid_disks);
  2423. schedule_reconstruction5(sh, &s, 1, 1);
  2424. } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
  2425. clear_bit(STRIPE_EXPAND_READY, &sh->state);
  2426. atomic_dec(&conf->reshape_stripes);
  2427. wake_up(&conf->wait_for_overlap);
  2428. md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
  2429. }
  2430. if (s.expanding && s.locked == 0 &&
  2431. !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
  2432. handle_stripe_expansion(conf, sh, NULL);
  2433. unlock:
  2434. spin_unlock(&sh->lock);
  2435. /* wait for this device to become unblocked */
  2436. if (unlikely(blocked_rdev))
  2437. md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
  2438. if (s.ops_request)
  2439. raid5_run_ops(sh, s.ops_request);
  2440. ops_run_io(sh, &s);
  2441. return_io(return_bi);
  2442. }
  2443. static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
  2444. {
  2445. raid6_conf_t *conf = sh->raid_conf;
  2446. int disks = sh->disks;
  2447. struct bio *return_bi = NULL;
  2448. int i, pd_idx = sh->pd_idx;
  2449. struct stripe_head_state s;
  2450. struct r6_state r6s;
  2451. struct r5dev *dev, *pdev, *qdev;
  2452. mdk_rdev_t *blocked_rdev = NULL;
  2453. r6s.qd_idx = raid6_next_disk(pd_idx, disks);
  2454. pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
  2455. "pd_idx=%d, qd_idx=%d\n",
  2456. (unsigned long long)sh->sector, sh->state,
  2457. atomic_read(&sh->count), pd_idx, r6s.qd_idx);
  2458. memset(&s, 0, sizeof(s));
  2459. spin_lock(&sh->lock);
  2460. clear_bit(STRIPE_HANDLE, &sh->state);
  2461. clear_bit(STRIPE_DELAYED, &sh->state);
  2462. s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
  2463. s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2464. s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
  2465. /* Now to look around and see what can be done */
  2466. rcu_read_lock();
  2467. for (i=disks; i--; ) {
  2468. mdk_rdev_t *rdev;
  2469. dev = &sh->dev[i];
  2470. clear_bit(R5_Insync, &dev->flags);
  2471. pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
  2472. i, dev->flags, dev->toread, dev->towrite, dev->written);
  2473. /* maybe we can reply to a read */
  2474. if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
  2475. struct bio *rbi, *rbi2;
  2476. pr_debug("Return read for disc %d\n", i);
  2477. spin_lock_irq(&conf->device_lock);
  2478. rbi = dev->toread;
  2479. dev->toread = NULL;
  2480. if (test_and_clear_bit(R5_Overlap, &dev->flags))
  2481. wake_up(&conf->wait_for_overlap);
  2482. spin_unlock_irq(&conf->device_lock);
  2483. while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
  2484. copy_data(0, rbi, dev->page, dev->sector);
  2485. rbi2 = r5_next_bio(rbi, dev->sector);
  2486. spin_lock_irq(&conf->device_lock);
  2487. if (--rbi->bi_phys_segments == 0) {
  2488. rbi->bi_next = return_bi;
  2489. return_bi = rbi;
  2490. }
  2491. spin_unlock_irq(&conf->device_lock);
  2492. rbi = rbi2;
  2493. }
  2494. }
  2495. /* now count some things */
  2496. if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
  2497. if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
  2498. if (dev->toread)
  2499. s.to_read++;
  2500. if (dev->towrite) {
  2501. s.to_write++;
  2502. if (!test_bit(R5_OVERWRITE, &dev->flags))
  2503. s.non_overwrite++;
  2504. }
  2505. if (dev->written)
  2506. s.written++;
  2507. rdev = rcu_dereference(conf->disks[i].rdev);
  2508. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  2509. blocked_rdev = rdev;
  2510. atomic_inc(&rdev->nr_pending);
  2511. break;
  2512. }
  2513. if (!rdev || !test_bit(In_sync, &rdev->flags)) {
  2514. /* The ReadError flag will just be confusing now */
  2515. clear_bit(R5_ReadError, &dev->flags);
  2516. clear_bit(R5_ReWrite, &dev->flags);
  2517. }
  2518. if (!rdev || !test_bit(In_sync, &rdev->flags)
  2519. || test_bit(R5_ReadError, &dev->flags)) {
  2520. if (s.failed < 2)
  2521. r6s.failed_num[s.failed] = i;
  2522. s.failed++;
  2523. } else
  2524. set_bit(R5_Insync, &dev->flags);
  2525. }
  2526. rcu_read_unlock();
  2527. if (unlikely(blocked_rdev)) {
  2528. set_bit(STRIPE_HANDLE, &sh->state);
  2529. goto unlock;
  2530. }
  2531. pr_debug("locked=%d uptodate=%d to_read=%d"
  2532. " to_write=%d failed=%d failed_num=%d,%d\n",
  2533. s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
  2534. r6s.failed_num[0], r6s.failed_num[1]);
  2535. /* check if the array has lost >2 devices and, if so, some requests
  2536. * might need to be failed
  2537. */
  2538. if (s.failed > 2 && s.to_read+s.to_write+s.written)
  2539. handle_failed_stripe(conf, sh, &s, disks, &return_bi);
  2540. if (s.failed > 2 && s.syncing) {
  2541. md_done_sync(conf->mddev, STRIPE_SECTORS,0);
  2542. clear_bit(STRIPE_SYNCING, &sh->state);
  2543. s.syncing = 0;
  2544. }
  2545. /*
  2546. * might be able to return some write requests if the parity blocks
  2547. * are safe, or on a failed drive
  2548. */
  2549. pdev = &sh->dev[pd_idx];
  2550. r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
  2551. || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
  2552. qdev = &sh->dev[r6s.qd_idx];
  2553. r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
  2554. || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
  2555. if ( s.written &&
  2556. ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
  2557. && !test_bit(R5_LOCKED, &pdev->flags)
  2558. && test_bit(R5_UPTODATE, &pdev->flags)))) &&
  2559. ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
  2560. && !test_bit(R5_LOCKED, &qdev->flags)
  2561. && test_bit(R5_UPTODATE, &qdev->flags)))))
  2562. handle_stripe_clean_event(conf, sh, disks, &return_bi);
  2563. /* Now we might consider reading some blocks, either to check/generate
  2564. * parity, or to satisfy requests
  2565. * or to load a block that is being partially written.
  2566. */
  2567. if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
  2568. (s.syncing && (s.uptodate < disks)) || s.expanding)
  2569. handle_stripe_fill6(sh, &s, &r6s, disks);
  2570. /* now to consider writing and what else, if anything should be read */
  2571. if (s.to_write)
  2572. handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
  2573. /* maybe we need to check and possibly fix the parity for this stripe
  2574. * Any reads will already have been scheduled, so we just see if enough
  2575. * data is available
  2576. */
  2577. if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
  2578. handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
  2579. if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
  2580. md_done_sync(conf->mddev, STRIPE_SECTORS,1);
  2581. clear_bit(STRIPE_SYNCING, &sh->state);
  2582. }
  2583. /* If the failed drives are just a ReadError, then we might need
  2584. * to progress the repair/check process
  2585. */
  2586. if (s.failed <= 2 && !conf->mddev->ro)
  2587. for (i = 0; i < s.failed; i++) {
  2588. dev = &sh->dev[r6s.failed_num[i]];
  2589. if (test_bit(R5_ReadError, &dev->flags)
  2590. && !test_bit(R5_LOCKED, &dev->flags)
  2591. && test_bit(R5_UPTODATE, &dev->flags)
  2592. ) {
  2593. if (!test_bit(R5_ReWrite, &dev->flags)) {
  2594. set_bit(R5_Wantwrite, &dev->flags);
  2595. set_bit(R5_ReWrite, &dev->flags);
  2596. set_bit(R5_LOCKED, &dev->flags);
  2597. } else {
  2598. /* let's read it back */
  2599. set_bit(R5_Wantread, &dev->flags);
  2600. set_bit(R5_LOCKED, &dev->flags);
  2601. }
  2602. }
  2603. }
  2604. if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
  2605. /* Need to write out all blocks after computing P&Q */
  2606. sh->disks = conf->raid_disks;
  2607. sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
  2608. conf->raid_disks);
  2609. compute_parity6(sh, RECONSTRUCT_WRITE);
  2610. for (i = conf->raid_disks ; i-- ; ) {
  2611. set_bit(R5_LOCKED, &sh->dev[i].flags);
  2612. s.locked++;
  2613. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  2614. }
  2615. clear_bit(STRIPE_EXPANDING, &sh->state);
  2616. } else if (s.expanded) {
  2617. clear_bit(STRIPE_EXPAND_READY, &sh->state);
  2618. atomic_dec(&conf->reshape_stripes);
  2619. wake_up(&conf->wait_for_overlap);
  2620. md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
  2621. }
  2622. if (s.expanding && s.locked == 0 &&
  2623. !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
  2624. handle_stripe_expansion(conf, sh, &r6s);
  2625. unlock:
  2626. spin_unlock(&sh->lock);
  2627. /* wait for this device to become unblocked */
  2628. if (unlikely(blocked_rdev))
  2629. md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
  2630. ops_run_io(sh, &s);
  2631. return_io(return_bi);
  2632. }
  2633. static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
  2634. {
  2635. if (sh->raid_conf->level == 6)
  2636. handle_stripe6(sh, tmp_page);
  2637. else
  2638. handle_stripe5(sh);
  2639. }
  2640. static void raid5_activate_delayed(raid5_conf_t *conf)
  2641. {
  2642. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
  2643. while (!list_empty(&conf->delayed_list)) {
  2644. struct list_head *l = conf->delayed_list.next;
  2645. struct stripe_head *sh;
  2646. sh = list_entry(l, struct stripe_head, lru);
  2647. list_del_init(l);
  2648. clear_bit(STRIPE_DELAYED, &sh->state);
  2649. if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  2650. atomic_inc(&conf->preread_active_stripes);
  2651. list_add_tail(&sh->lru, &conf->hold_list);
  2652. }
  2653. } else
  2654. blk_plug_device(conf->mddev->queue);
  2655. }
  2656. static void activate_bit_delay(raid5_conf_t *conf)
  2657. {
  2658. /* device_lock is held */
  2659. struct list_head head;
  2660. list_add(&head, &conf->bitmap_list);
  2661. list_del_init(&conf->bitmap_list);
  2662. while (!list_empty(&head)) {
  2663. struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
  2664. list_del_init(&sh->lru);
  2665. atomic_inc(&sh->count);
  2666. __release_stripe(conf, sh);
  2667. }
  2668. }
  2669. static void unplug_slaves(mddev_t *mddev)
  2670. {
  2671. raid5_conf_t *conf = mddev_to_conf(mddev);
  2672. int i;
  2673. rcu_read_lock();
  2674. for (i=0; i<mddev->raid_disks; i++) {
  2675. mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
  2676. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  2677. struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
  2678. atomic_inc(&rdev->nr_pending);
  2679. rcu_read_unlock();
  2680. blk_unplug(r_queue);
  2681. rdev_dec_pending(rdev, mddev);
  2682. rcu_read_lock();
  2683. }
  2684. }
  2685. rcu_read_unlock();
  2686. }
  2687. static void raid5_unplug_device(struct request_queue *q)
  2688. {
  2689. mddev_t *mddev = q->queuedata;
  2690. raid5_conf_t *conf = mddev_to_conf(mddev);
  2691. unsigned long flags;
  2692. spin_lock_irqsave(&conf->device_lock, flags);
  2693. if (blk_remove_plug(q)) {
  2694. conf->seq_flush++;
  2695. raid5_activate_delayed(conf);
  2696. }
  2697. md_wakeup_thread(mddev->thread);
  2698. spin_unlock_irqrestore(&conf->device_lock, flags);
  2699. unplug_slaves(mddev);
  2700. }
  2701. static int raid5_congested(void *data, int bits)
  2702. {
  2703. mddev_t *mddev = data;
  2704. raid5_conf_t *conf = mddev_to_conf(mddev);
  2705. /* No difference between reads and writes. Just check
  2706. * how busy the stripe_cache is
  2707. */
  2708. if (conf->inactive_blocked)
  2709. return 1;
  2710. if (conf->quiesce)
  2711. return 1;
  2712. if (list_empty_careful(&conf->inactive_list))
  2713. return 1;
  2714. return 0;
  2715. }
  2716. /* We want read requests to align with chunks where possible,
  2717. * but write requests don't need to.
  2718. */
  2719. static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
  2720. {
  2721. mddev_t *mddev = q->queuedata;
  2722. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  2723. int max;
  2724. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  2725. unsigned int bio_sectors = bio->bi_size >> 9;
  2726. if (bio_data_dir(bio) == WRITE)
  2727. return biovec->bv_len; /* always allow writes to be mergeable */
  2728. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  2729. if (max < 0) max = 0;
  2730. if (max <= biovec->bv_len && bio_sectors == 0)
  2731. return biovec->bv_len;
  2732. else
  2733. return max;
  2734. }
  2735. static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
  2736. {
  2737. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  2738. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  2739. unsigned int bio_sectors = bio->bi_size >> 9;
  2740. return chunk_sectors >=
  2741. ((sector & (chunk_sectors - 1)) + bio_sectors);
  2742. }
  2743. /*
  2744. * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
  2745. * later sampled by raid5d.
  2746. */
  2747. static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
  2748. {
  2749. unsigned long flags;
  2750. spin_lock_irqsave(&conf->device_lock, flags);
  2751. bi->bi_next = conf->retry_read_aligned_list;
  2752. conf->retry_read_aligned_list = bi;
  2753. spin_unlock_irqrestore(&conf->device_lock, flags);
  2754. md_wakeup_thread(conf->mddev->thread);
  2755. }
  2756. static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
  2757. {
  2758. struct bio *bi;
  2759. bi = conf->retry_read_aligned;
  2760. if (bi) {
  2761. conf->retry_read_aligned = NULL;
  2762. return bi;
  2763. }
  2764. bi = conf->retry_read_aligned_list;
  2765. if(bi) {
  2766. conf->retry_read_aligned_list = bi->bi_next;
  2767. bi->bi_next = NULL;
  2768. bi->bi_phys_segments = 1; /* biased count of active stripes */
  2769. bi->bi_hw_segments = 0; /* count of processed stripes */
  2770. }
  2771. return bi;
  2772. }
  2773. /*
  2774. * The "raid5_align_endio" should check if the read succeeded and if it
  2775. * did, call bio_endio on the original bio (having bio_put the new bio
  2776. * first).
  2777. * If the read failed..
  2778. */
  2779. static void raid5_align_endio(struct bio *bi, int error)
  2780. {
  2781. struct bio* raid_bi = bi->bi_private;
  2782. mddev_t *mddev;
  2783. raid5_conf_t *conf;
  2784. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  2785. mdk_rdev_t *rdev;
  2786. bio_put(bi);
  2787. mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
  2788. conf = mddev_to_conf(mddev);
  2789. rdev = (void*)raid_bi->bi_next;
  2790. raid_bi->bi_next = NULL;
  2791. rdev_dec_pending(rdev, conf->mddev);
  2792. if (!error && uptodate) {
  2793. bio_endio(raid_bi, 0);
  2794. if (atomic_dec_and_test(&conf->active_aligned_reads))
  2795. wake_up(&conf->wait_for_stripe);
  2796. return;
  2797. }
  2798. pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
  2799. add_bio_to_retry(raid_bi, conf);
  2800. }
  2801. static int bio_fits_rdev(struct bio *bi)
  2802. {
  2803. struct request_queue *q = bdev_get_queue(bi->bi_bdev);
  2804. if ((bi->bi_size>>9) > q->max_sectors)
  2805. return 0;
  2806. blk_recount_segments(q, bi);
  2807. if (bi->bi_phys_segments > q->max_phys_segments ||
  2808. bi->bi_hw_segments > q->max_hw_segments)
  2809. return 0;
  2810. if (q->merge_bvec_fn)
  2811. /* it's too hard to apply the merge_bvec_fn at this stage,
  2812. * just just give up
  2813. */
  2814. return 0;
  2815. return 1;
  2816. }
  2817. static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
  2818. {
  2819. mddev_t *mddev = q->queuedata;
  2820. raid5_conf_t *conf = mddev_to_conf(mddev);
  2821. const unsigned int raid_disks = conf->raid_disks;
  2822. const unsigned int data_disks = raid_disks - conf->max_degraded;
  2823. unsigned int dd_idx, pd_idx;
  2824. struct bio* align_bi;
  2825. mdk_rdev_t *rdev;
  2826. if (!in_chunk_boundary(mddev, raid_bio)) {
  2827. pr_debug("chunk_aligned_read : non aligned\n");
  2828. return 0;
  2829. }
  2830. /*
  2831. * use bio_clone to make a copy of the bio
  2832. */
  2833. align_bi = bio_clone(raid_bio, GFP_NOIO);
  2834. if (!align_bi)
  2835. return 0;
  2836. /*
  2837. * set bi_end_io to a new function, and set bi_private to the
  2838. * original bio.
  2839. */
  2840. align_bi->bi_end_io = raid5_align_endio;
  2841. align_bi->bi_private = raid_bio;
  2842. /*
  2843. * compute position
  2844. */
  2845. align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
  2846. raid_disks,
  2847. data_disks,
  2848. &dd_idx,
  2849. &pd_idx,
  2850. conf);
  2851. rcu_read_lock();
  2852. rdev = rcu_dereference(conf->disks[dd_idx].rdev);
  2853. if (rdev && test_bit(In_sync, &rdev->flags)) {
  2854. atomic_inc(&rdev->nr_pending);
  2855. rcu_read_unlock();
  2856. raid_bio->bi_next = (void*)rdev;
  2857. align_bi->bi_bdev = rdev->bdev;
  2858. align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
  2859. align_bi->bi_sector += rdev->data_offset;
  2860. if (!bio_fits_rdev(align_bi)) {
  2861. /* too big in some way */
  2862. bio_put(align_bi);
  2863. rdev_dec_pending(rdev, mddev);
  2864. return 0;
  2865. }
  2866. spin_lock_irq(&conf->device_lock);
  2867. wait_event_lock_irq(conf->wait_for_stripe,
  2868. conf->quiesce == 0,
  2869. conf->device_lock, /* nothing */);
  2870. atomic_inc(&conf->active_aligned_reads);
  2871. spin_unlock_irq(&conf->device_lock);
  2872. generic_make_request(align_bi);
  2873. return 1;
  2874. } else {
  2875. rcu_read_unlock();
  2876. bio_put(align_bi);
  2877. return 0;
  2878. }
  2879. }
  2880. /* __get_priority_stripe - get the next stripe to process
  2881. *
  2882. * Full stripe writes are allowed to pass preread active stripes up until
  2883. * the bypass_threshold is exceeded. In general the bypass_count
  2884. * increments when the handle_list is handled before the hold_list; however, it
  2885. * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
  2886. * stripe with in flight i/o. The bypass_count will be reset when the
  2887. * head of the hold_list has changed, i.e. the head was promoted to the
  2888. * handle_list.
  2889. */
  2890. static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
  2891. {
  2892. struct stripe_head *sh;
  2893. pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
  2894. __func__,
  2895. list_empty(&conf->handle_list) ? "empty" : "busy",
  2896. list_empty(&conf->hold_list) ? "empty" : "busy",
  2897. atomic_read(&conf->pending_full_writes), conf->bypass_count);
  2898. if (!list_empty(&conf->handle_list)) {
  2899. sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
  2900. if (list_empty(&conf->hold_list))
  2901. conf->bypass_count = 0;
  2902. else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
  2903. if (conf->hold_list.next == conf->last_hold)
  2904. conf->bypass_count++;
  2905. else {
  2906. conf->last_hold = conf->hold_list.next;
  2907. conf->bypass_count -= conf->bypass_threshold;
  2908. if (conf->bypass_count < 0)
  2909. conf->bypass_count = 0;
  2910. }
  2911. }
  2912. } else if (!list_empty(&conf->hold_list) &&
  2913. ((conf->bypass_threshold &&
  2914. conf->bypass_count > conf->bypass_threshold) ||
  2915. atomic_read(&conf->pending_full_writes) == 0)) {
  2916. sh = list_entry(conf->hold_list.next,
  2917. typeof(*sh), lru);
  2918. conf->bypass_count -= conf->bypass_threshold;
  2919. if (conf->bypass_count < 0)
  2920. conf->bypass_count = 0;
  2921. } else
  2922. return NULL;
  2923. list_del_init(&sh->lru);
  2924. atomic_inc(&sh->count);
  2925. BUG_ON(atomic_read(&sh->count) != 1);
  2926. return sh;
  2927. }
  2928. static int make_request(struct request_queue *q, struct bio * bi)
  2929. {
  2930. mddev_t *mddev = q->queuedata;
  2931. raid5_conf_t *conf = mddev_to_conf(mddev);
  2932. unsigned int dd_idx, pd_idx;
  2933. sector_t new_sector;
  2934. sector_t logical_sector, last_sector;
  2935. struct stripe_head *sh;
  2936. const int rw = bio_data_dir(bi);
  2937. int remaining;
  2938. if (unlikely(bio_barrier(bi))) {
  2939. bio_endio(bi, -EOPNOTSUPP);
  2940. return 0;
  2941. }
  2942. md_write_start(mddev, bi);
  2943. disk_stat_inc(mddev->gendisk, ios[rw]);
  2944. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
  2945. if (rw == READ &&
  2946. mddev->reshape_position == MaxSector &&
  2947. chunk_aligned_read(q,bi))
  2948. return 0;
  2949. logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  2950. last_sector = bi->bi_sector + (bi->bi_size>>9);
  2951. bi->bi_next = NULL;
  2952. bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
  2953. for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
  2954. DEFINE_WAIT(w);
  2955. int disks, data_disks;
  2956. retry:
  2957. prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
  2958. if (likely(conf->expand_progress == MaxSector))
  2959. disks = conf->raid_disks;
  2960. else {
  2961. /* spinlock is needed as expand_progress may be
  2962. * 64bit on a 32bit platform, and so it might be
  2963. * possible to see a half-updated value
  2964. * Ofcourse expand_progress could change after
  2965. * the lock is dropped, so once we get a reference
  2966. * to the stripe that we think it is, we will have
  2967. * to check again.
  2968. */
  2969. spin_lock_irq(&conf->device_lock);
  2970. disks = conf->raid_disks;
  2971. if (logical_sector >= conf->expand_progress)
  2972. disks = conf->previous_raid_disks;
  2973. else {
  2974. if (logical_sector >= conf->expand_lo) {
  2975. spin_unlock_irq(&conf->device_lock);
  2976. schedule();
  2977. goto retry;
  2978. }
  2979. }
  2980. spin_unlock_irq(&conf->device_lock);
  2981. }
  2982. data_disks = disks - conf->max_degraded;
  2983. new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
  2984. &dd_idx, &pd_idx, conf);
  2985. pr_debug("raid5: make_request, sector %llu logical %llu\n",
  2986. (unsigned long long)new_sector,
  2987. (unsigned long long)logical_sector);
  2988. sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
  2989. if (sh) {
  2990. if (unlikely(conf->expand_progress != MaxSector)) {
  2991. /* expansion might have moved on while waiting for a
  2992. * stripe, so we must do the range check again.
  2993. * Expansion could still move past after this
  2994. * test, but as we are holding a reference to
  2995. * 'sh', we know that if that happens,
  2996. * STRIPE_EXPANDING will get set and the expansion
  2997. * won't proceed until we finish with the stripe.
  2998. */
  2999. int must_retry = 0;
  3000. spin_lock_irq(&conf->device_lock);
  3001. if (logical_sector < conf->expand_progress &&
  3002. disks == conf->previous_raid_disks)
  3003. /* mismatch, need to try again */
  3004. must_retry = 1;
  3005. spin_unlock_irq(&conf->device_lock);
  3006. if (must_retry) {
  3007. release_stripe(sh);
  3008. goto retry;
  3009. }
  3010. }
  3011. /* FIXME what if we get a false positive because these
  3012. * are being updated.
  3013. */
  3014. if (logical_sector >= mddev->suspend_lo &&
  3015. logical_sector < mddev->suspend_hi) {
  3016. release_stripe(sh);
  3017. schedule();
  3018. goto retry;
  3019. }
  3020. if (test_bit(STRIPE_EXPANDING, &sh->state) ||
  3021. !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
  3022. /* Stripe is busy expanding or
  3023. * add failed due to overlap. Flush everything
  3024. * and wait a while
  3025. */
  3026. raid5_unplug_device(mddev->queue);
  3027. release_stripe(sh);
  3028. schedule();
  3029. goto retry;
  3030. }
  3031. finish_wait(&conf->wait_for_overlap, &w);
  3032. set_bit(STRIPE_HANDLE, &sh->state);
  3033. clear_bit(STRIPE_DELAYED, &sh->state);
  3034. release_stripe(sh);
  3035. } else {
  3036. /* cannot get stripe for read-ahead, just give-up */
  3037. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  3038. finish_wait(&conf->wait_for_overlap, &w);
  3039. break;
  3040. }
  3041. }
  3042. spin_lock_irq(&conf->device_lock);
  3043. remaining = --bi->bi_phys_segments;
  3044. spin_unlock_irq(&conf->device_lock);
  3045. if (remaining == 0) {
  3046. if ( rw == WRITE )
  3047. md_write_end(mddev);
  3048. bio_endio(bi, 0);
  3049. }
  3050. return 0;
  3051. }
  3052. static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
  3053. {
  3054. /* reshaping is quite different to recovery/resync so it is
  3055. * handled quite separately ... here.
  3056. *
  3057. * On each call to sync_request, we gather one chunk worth of
  3058. * destination stripes and flag them as expanding.
  3059. * Then we find all the source stripes and request reads.
  3060. * As the reads complete, handle_stripe will copy the data
  3061. * into the destination stripe and release that stripe.
  3062. */
  3063. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3064. struct stripe_head *sh;
  3065. int pd_idx;
  3066. sector_t first_sector, last_sector;
  3067. int raid_disks = conf->previous_raid_disks;
  3068. int data_disks = raid_disks - conf->max_degraded;
  3069. int new_data_disks = conf->raid_disks - conf->max_degraded;
  3070. int i;
  3071. int dd_idx;
  3072. sector_t writepos, safepos, gap;
  3073. if (sector_nr == 0 &&
  3074. conf->expand_progress != 0) {
  3075. /* restarting in the middle, skip the initial sectors */
  3076. sector_nr = conf->expand_progress;
  3077. sector_div(sector_nr, new_data_disks);
  3078. *skipped = 1;
  3079. return sector_nr;
  3080. }
  3081. /* we update the metadata when there is more than 3Meg
  3082. * in the block range (that is rather arbitrary, should
  3083. * probably be time based) or when the data about to be
  3084. * copied would over-write the source of the data at
  3085. * the front of the range.
  3086. * i.e. one new_stripe forward from expand_progress new_maps
  3087. * to after where expand_lo old_maps to
  3088. */
  3089. writepos = conf->expand_progress +
  3090. conf->chunk_size/512*(new_data_disks);
  3091. sector_div(writepos, new_data_disks);
  3092. safepos = conf->expand_lo;
  3093. sector_div(safepos, data_disks);
  3094. gap = conf->expand_progress - conf->expand_lo;
  3095. if (writepos >= safepos ||
  3096. gap > (new_data_disks)*3000*2 /*3Meg*/) {
  3097. /* Cannot proceed until we've updated the superblock... */
  3098. wait_event(conf->wait_for_overlap,
  3099. atomic_read(&conf->reshape_stripes)==0);
  3100. mddev->reshape_position = conf->expand_progress;
  3101. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3102. md_wakeup_thread(mddev->thread);
  3103. wait_event(mddev->sb_wait, mddev->flags == 0 ||
  3104. kthread_should_stop());
  3105. spin_lock_irq(&conf->device_lock);
  3106. conf->expand_lo = mddev->reshape_position;
  3107. spin_unlock_irq(&conf->device_lock);
  3108. wake_up(&conf->wait_for_overlap);
  3109. }
  3110. for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
  3111. int j;
  3112. int skipped = 0;
  3113. pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
  3114. sh = get_active_stripe(conf, sector_nr+i,
  3115. conf->raid_disks, pd_idx, 0);
  3116. set_bit(STRIPE_EXPANDING, &sh->state);
  3117. atomic_inc(&conf->reshape_stripes);
  3118. /* If any of this stripe is beyond the end of the old
  3119. * array, then we need to zero those blocks
  3120. */
  3121. for (j=sh->disks; j--;) {
  3122. sector_t s;
  3123. if (j == sh->pd_idx)
  3124. continue;
  3125. if (conf->level == 6 &&
  3126. j == raid6_next_disk(sh->pd_idx, sh->disks))
  3127. continue;
  3128. s = compute_blocknr(sh, j);
  3129. if (s < (mddev->array_size<<1)) {
  3130. skipped = 1;
  3131. continue;
  3132. }
  3133. memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
  3134. set_bit(R5_Expanded, &sh->dev[j].flags);
  3135. set_bit(R5_UPTODATE, &sh->dev[j].flags);
  3136. }
  3137. if (!skipped) {
  3138. set_bit(STRIPE_EXPAND_READY, &sh->state);
  3139. set_bit(STRIPE_HANDLE, &sh->state);
  3140. }
  3141. release_stripe(sh);
  3142. }
  3143. spin_lock_irq(&conf->device_lock);
  3144. conf->expand_progress = (sector_nr + i) * new_data_disks;
  3145. spin_unlock_irq(&conf->device_lock);
  3146. /* Ok, those stripe are ready. We can start scheduling
  3147. * reads on the source stripes.
  3148. * The source stripes are determined by mapping the first and last
  3149. * block on the destination stripes.
  3150. */
  3151. first_sector =
  3152. raid5_compute_sector(sector_nr*(new_data_disks),
  3153. raid_disks, data_disks,
  3154. &dd_idx, &pd_idx, conf);
  3155. last_sector =
  3156. raid5_compute_sector((sector_nr+conf->chunk_size/512)
  3157. *(new_data_disks) -1,
  3158. raid_disks, data_disks,
  3159. &dd_idx, &pd_idx, conf);
  3160. if (last_sector >= (mddev->size<<1))
  3161. last_sector = (mddev->size<<1)-1;
  3162. while (first_sector <= last_sector) {
  3163. pd_idx = stripe_to_pdidx(first_sector, conf,
  3164. conf->previous_raid_disks);
  3165. sh = get_active_stripe(conf, first_sector,
  3166. conf->previous_raid_disks, pd_idx, 0);
  3167. set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  3168. set_bit(STRIPE_HANDLE, &sh->state);
  3169. release_stripe(sh);
  3170. first_sector += STRIPE_SECTORS;
  3171. }
  3172. /* If this takes us to the resync_max point where we have to pause,
  3173. * then we need to write out the superblock.
  3174. */
  3175. sector_nr += conf->chunk_size>>9;
  3176. if (sector_nr >= mddev->resync_max) {
  3177. /* Cannot proceed until we've updated the superblock... */
  3178. wait_event(conf->wait_for_overlap,
  3179. atomic_read(&conf->reshape_stripes) == 0);
  3180. mddev->reshape_position = conf->expand_progress;
  3181. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3182. md_wakeup_thread(mddev->thread);
  3183. wait_event(mddev->sb_wait,
  3184. !test_bit(MD_CHANGE_DEVS, &mddev->flags)
  3185. || kthread_should_stop());
  3186. spin_lock_irq(&conf->device_lock);
  3187. conf->expand_lo = mddev->reshape_position;
  3188. spin_unlock_irq(&conf->device_lock);
  3189. wake_up(&conf->wait_for_overlap);
  3190. }
  3191. return conf->chunk_size>>9;
  3192. }
  3193. /* FIXME go_faster isn't used */
  3194. static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  3195. {
  3196. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3197. struct stripe_head *sh;
  3198. int pd_idx;
  3199. int raid_disks = conf->raid_disks;
  3200. sector_t max_sector = mddev->size << 1;
  3201. int sync_blocks;
  3202. int still_degraded = 0;
  3203. int i;
  3204. if (sector_nr >= max_sector) {
  3205. /* just being told to finish up .. nothing much to do */
  3206. unplug_slaves(mddev);
  3207. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
  3208. end_reshape(conf);
  3209. return 0;
  3210. }
  3211. if (mddev->curr_resync < max_sector) /* aborted */
  3212. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  3213. &sync_blocks, 1);
  3214. else /* completed sync */
  3215. conf->fullsync = 0;
  3216. bitmap_close_sync(mddev->bitmap);
  3217. return 0;
  3218. }
  3219. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3220. return reshape_request(mddev, sector_nr, skipped);
  3221. /* No need to check resync_max as we never do more than one
  3222. * stripe, and as resync_max will always be on a chunk boundary,
  3223. * if the check in md_do_sync didn't fire, there is no chance
  3224. * of overstepping resync_max here
  3225. */
  3226. /* if there is too many failed drives and we are trying
  3227. * to resync, then assert that we are finished, because there is
  3228. * nothing we can do.
  3229. */
  3230. if (mddev->degraded >= conf->max_degraded &&
  3231. test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3232. sector_t rv = (mddev->size << 1) - sector_nr;
  3233. *skipped = 1;
  3234. return rv;
  3235. }
  3236. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  3237. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  3238. !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
  3239. /* we can skip this block, and probably more */
  3240. sync_blocks /= STRIPE_SECTORS;
  3241. *skipped = 1;
  3242. return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
  3243. }
  3244. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  3245. pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
  3246. sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
  3247. if (sh == NULL) {
  3248. sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
  3249. /* make sure we don't swamp the stripe cache if someone else
  3250. * is trying to get access
  3251. */
  3252. schedule_timeout_uninterruptible(1);
  3253. }
  3254. /* Need to check if array will still be degraded after recovery/resync
  3255. * We don't need to check the 'failed' flag as when that gets set,
  3256. * recovery aborts.
  3257. */
  3258. for (i=0; i<mddev->raid_disks; i++)
  3259. if (conf->disks[i].rdev == NULL)
  3260. still_degraded = 1;
  3261. bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
  3262. spin_lock(&sh->lock);
  3263. set_bit(STRIPE_SYNCING, &sh->state);
  3264. clear_bit(STRIPE_INSYNC, &sh->state);
  3265. spin_unlock(&sh->lock);
  3266. handle_stripe(sh, NULL);
  3267. release_stripe(sh);
  3268. return STRIPE_SECTORS;
  3269. }
  3270. static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
  3271. {
  3272. /* We may not be able to submit a whole bio at once as there
  3273. * may not be enough stripe_heads available.
  3274. * We cannot pre-allocate enough stripe_heads as we may need
  3275. * more than exist in the cache (if we allow ever large chunks).
  3276. * So we do one stripe head at a time and record in
  3277. * ->bi_hw_segments how many have been done.
  3278. *
  3279. * We *know* that this entire raid_bio is in one chunk, so
  3280. * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
  3281. */
  3282. struct stripe_head *sh;
  3283. int dd_idx, pd_idx;
  3284. sector_t sector, logical_sector, last_sector;
  3285. int scnt = 0;
  3286. int remaining;
  3287. int handled = 0;
  3288. logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  3289. sector = raid5_compute_sector( logical_sector,
  3290. conf->raid_disks,
  3291. conf->raid_disks - conf->max_degraded,
  3292. &dd_idx,
  3293. &pd_idx,
  3294. conf);
  3295. last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
  3296. for (; logical_sector < last_sector;
  3297. logical_sector += STRIPE_SECTORS,
  3298. sector += STRIPE_SECTORS,
  3299. scnt++) {
  3300. if (scnt < raid_bio->bi_hw_segments)
  3301. /* already done this stripe */
  3302. continue;
  3303. sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
  3304. if (!sh) {
  3305. /* failed to get a stripe - must wait */
  3306. raid_bio->bi_hw_segments = scnt;
  3307. conf->retry_read_aligned = raid_bio;
  3308. return handled;
  3309. }
  3310. set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
  3311. if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
  3312. release_stripe(sh);
  3313. raid_bio->bi_hw_segments = scnt;
  3314. conf->retry_read_aligned = raid_bio;
  3315. return handled;
  3316. }
  3317. handle_stripe(sh, NULL);
  3318. release_stripe(sh);
  3319. handled++;
  3320. }
  3321. spin_lock_irq(&conf->device_lock);
  3322. remaining = --raid_bio->bi_phys_segments;
  3323. spin_unlock_irq(&conf->device_lock);
  3324. if (remaining == 0)
  3325. bio_endio(raid_bio, 0);
  3326. if (atomic_dec_and_test(&conf->active_aligned_reads))
  3327. wake_up(&conf->wait_for_stripe);
  3328. return handled;
  3329. }
  3330. /*
  3331. * This is our raid5 kernel thread.
  3332. *
  3333. * We scan the hash table for stripes which can be handled now.
  3334. * During the scan, completed stripes are saved for us by the interrupt
  3335. * handler, so that they will not have to wait for our next wakeup.
  3336. */
  3337. static void raid5d(mddev_t *mddev)
  3338. {
  3339. struct stripe_head *sh;
  3340. raid5_conf_t *conf = mddev_to_conf(mddev);
  3341. int handled;
  3342. pr_debug("+++ raid5d active\n");
  3343. md_check_recovery(mddev);
  3344. handled = 0;
  3345. spin_lock_irq(&conf->device_lock);
  3346. while (1) {
  3347. struct bio *bio;
  3348. if (conf->seq_flush != conf->seq_write) {
  3349. int seq = conf->seq_flush;
  3350. spin_unlock_irq(&conf->device_lock);
  3351. bitmap_unplug(mddev->bitmap);
  3352. spin_lock_irq(&conf->device_lock);
  3353. conf->seq_write = seq;
  3354. activate_bit_delay(conf);
  3355. }
  3356. while ((bio = remove_bio_from_retry(conf))) {
  3357. int ok;
  3358. spin_unlock_irq(&conf->device_lock);
  3359. ok = retry_aligned_read(conf, bio);
  3360. spin_lock_irq(&conf->device_lock);
  3361. if (!ok)
  3362. break;
  3363. handled++;
  3364. }
  3365. sh = __get_priority_stripe(conf);
  3366. if (!sh) {
  3367. async_tx_issue_pending_all();
  3368. break;
  3369. }
  3370. spin_unlock_irq(&conf->device_lock);
  3371. handled++;
  3372. handle_stripe(sh, conf->spare_page);
  3373. release_stripe(sh);
  3374. spin_lock_irq(&conf->device_lock);
  3375. }
  3376. pr_debug("%d stripes handled\n", handled);
  3377. spin_unlock_irq(&conf->device_lock);
  3378. unplug_slaves(mddev);
  3379. pr_debug("--- raid5d inactive\n");
  3380. }
  3381. static ssize_t
  3382. raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
  3383. {
  3384. raid5_conf_t *conf = mddev_to_conf(mddev);
  3385. if (conf)
  3386. return sprintf(page, "%d\n", conf->max_nr_stripes);
  3387. else
  3388. return 0;
  3389. }
  3390. static ssize_t
  3391. raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
  3392. {
  3393. raid5_conf_t *conf = mddev_to_conf(mddev);
  3394. unsigned long new;
  3395. if (len >= PAGE_SIZE)
  3396. return -EINVAL;
  3397. if (!conf)
  3398. return -ENODEV;
  3399. if (strict_strtoul(page, 10, &new))
  3400. return -EINVAL;
  3401. if (new <= 16 || new > 32768)
  3402. return -EINVAL;
  3403. while (new < conf->max_nr_stripes) {
  3404. if (drop_one_stripe(conf))
  3405. conf->max_nr_stripes--;
  3406. else
  3407. break;
  3408. }
  3409. md_allow_write(mddev);
  3410. while (new > conf->max_nr_stripes) {
  3411. if (grow_one_stripe(conf))
  3412. conf->max_nr_stripes++;
  3413. else break;
  3414. }
  3415. return len;
  3416. }
  3417. static struct md_sysfs_entry
  3418. raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
  3419. raid5_show_stripe_cache_size,
  3420. raid5_store_stripe_cache_size);
  3421. static ssize_t
  3422. raid5_show_preread_threshold(mddev_t *mddev, char *page)
  3423. {
  3424. raid5_conf_t *conf = mddev_to_conf(mddev);
  3425. if (conf)
  3426. return sprintf(page, "%d\n", conf->bypass_threshold);
  3427. else
  3428. return 0;
  3429. }
  3430. static ssize_t
  3431. raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
  3432. {
  3433. raid5_conf_t *conf = mddev_to_conf(mddev);
  3434. unsigned long new;
  3435. if (len >= PAGE_SIZE)
  3436. return -EINVAL;
  3437. if (!conf)
  3438. return -ENODEV;
  3439. if (strict_strtoul(page, 10, &new))
  3440. return -EINVAL;
  3441. if (new > conf->max_nr_stripes)
  3442. return -EINVAL;
  3443. conf->bypass_threshold = new;
  3444. return len;
  3445. }
  3446. static struct md_sysfs_entry
  3447. raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
  3448. S_IRUGO | S_IWUSR,
  3449. raid5_show_preread_threshold,
  3450. raid5_store_preread_threshold);
  3451. static ssize_t
  3452. stripe_cache_active_show(mddev_t *mddev, char *page)
  3453. {
  3454. raid5_conf_t *conf = mddev_to_conf(mddev);
  3455. if (conf)
  3456. return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
  3457. else
  3458. return 0;
  3459. }
  3460. static struct md_sysfs_entry
  3461. raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
  3462. static struct attribute *raid5_attrs[] = {
  3463. &raid5_stripecache_size.attr,
  3464. &raid5_stripecache_active.attr,
  3465. &raid5_preread_bypass_threshold.attr,
  3466. NULL,
  3467. };
  3468. static struct attribute_group raid5_attrs_group = {
  3469. .name = NULL,
  3470. .attrs = raid5_attrs,
  3471. };
  3472. static int run(mddev_t *mddev)
  3473. {
  3474. raid5_conf_t *conf;
  3475. int raid_disk, memory;
  3476. mdk_rdev_t *rdev;
  3477. struct disk_info *disk;
  3478. struct list_head *tmp;
  3479. int working_disks = 0;
  3480. if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
  3481. printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
  3482. mdname(mddev), mddev->level);
  3483. return -EIO;
  3484. }
  3485. if (mddev->reshape_position != MaxSector) {
  3486. /* Check that we can continue the reshape.
  3487. * Currently only disks can change, it must
  3488. * increase, and we must be past the point where
  3489. * a stripe over-writes itself
  3490. */
  3491. sector_t here_new, here_old;
  3492. int old_disks;
  3493. int max_degraded = (mddev->level == 5 ? 1 : 2);
  3494. if (mddev->new_level != mddev->level ||
  3495. mddev->new_layout != mddev->layout ||
  3496. mddev->new_chunk != mddev->chunk_size) {
  3497. printk(KERN_ERR "raid5: %s: unsupported reshape "
  3498. "required - aborting.\n",
  3499. mdname(mddev));
  3500. return -EINVAL;
  3501. }
  3502. if (mddev->delta_disks <= 0) {
  3503. printk(KERN_ERR "raid5: %s: unsupported reshape "
  3504. "(reduce disks) required - aborting.\n",
  3505. mdname(mddev));
  3506. return -EINVAL;
  3507. }
  3508. old_disks = mddev->raid_disks - mddev->delta_disks;
  3509. /* reshape_position must be on a new-stripe boundary, and one
  3510. * further up in new geometry must map after here in old
  3511. * geometry.
  3512. */
  3513. here_new = mddev->reshape_position;
  3514. if (sector_div(here_new, (mddev->chunk_size>>9)*
  3515. (mddev->raid_disks - max_degraded))) {
  3516. printk(KERN_ERR "raid5: reshape_position not "
  3517. "on a stripe boundary\n");
  3518. return -EINVAL;
  3519. }
  3520. /* here_new is the stripe we will write to */
  3521. here_old = mddev->reshape_position;
  3522. sector_div(here_old, (mddev->chunk_size>>9)*
  3523. (old_disks-max_degraded));
  3524. /* here_old is the first stripe that we might need to read
  3525. * from */
  3526. if (here_new >= here_old) {
  3527. /* Reading from the same stripe as writing to - bad */
  3528. printk(KERN_ERR "raid5: reshape_position too early for "
  3529. "auto-recovery - aborting.\n");
  3530. return -EINVAL;
  3531. }
  3532. printk(KERN_INFO "raid5: reshape will continue\n");
  3533. /* OK, we should be able to continue; */
  3534. }
  3535. mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
  3536. if ((conf = mddev->private) == NULL)
  3537. goto abort;
  3538. if (mddev->reshape_position == MaxSector) {
  3539. conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
  3540. } else {
  3541. conf->raid_disks = mddev->raid_disks;
  3542. conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
  3543. }
  3544. conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
  3545. GFP_KERNEL);
  3546. if (!conf->disks)
  3547. goto abort;
  3548. conf->mddev = mddev;
  3549. if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
  3550. goto abort;
  3551. if (mddev->level == 6) {
  3552. conf->spare_page = alloc_page(GFP_KERNEL);
  3553. if (!conf->spare_page)
  3554. goto abort;
  3555. }
  3556. spin_lock_init(&conf->device_lock);
  3557. mddev->queue->queue_lock = &conf->device_lock;
  3558. init_waitqueue_head(&conf->wait_for_stripe);
  3559. init_waitqueue_head(&conf->wait_for_overlap);
  3560. INIT_LIST_HEAD(&conf->handle_list);
  3561. INIT_LIST_HEAD(&conf->hold_list);
  3562. INIT_LIST_HEAD(&conf->delayed_list);
  3563. INIT_LIST_HEAD(&conf->bitmap_list);
  3564. INIT_LIST_HEAD(&conf->inactive_list);
  3565. atomic_set(&conf->active_stripes, 0);
  3566. atomic_set(&conf->preread_active_stripes, 0);
  3567. atomic_set(&conf->active_aligned_reads, 0);
  3568. conf->bypass_threshold = BYPASS_THRESHOLD;
  3569. pr_debug("raid5: run(%s) called.\n", mdname(mddev));
  3570. rdev_for_each(rdev, tmp, mddev) {
  3571. raid_disk = rdev->raid_disk;
  3572. if (raid_disk >= conf->raid_disks
  3573. || raid_disk < 0)
  3574. continue;
  3575. disk = conf->disks + raid_disk;
  3576. disk->rdev = rdev;
  3577. if (test_bit(In_sync, &rdev->flags)) {
  3578. char b[BDEVNAME_SIZE];
  3579. printk(KERN_INFO "raid5: device %s operational as raid"
  3580. " disk %d\n", bdevname(rdev->bdev,b),
  3581. raid_disk);
  3582. working_disks++;
  3583. } else
  3584. /* Cannot rely on bitmap to complete recovery */
  3585. conf->fullsync = 1;
  3586. }
  3587. /*
  3588. * 0 for a fully functional array, 1 or 2 for a degraded array.
  3589. */
  3590. mddev->degraded = conf->raid_disks - working_disks;
  3591. conf->mddev = mddev;
  3592. conf->chunk_size = mddev->chunk_size;
  3593. conf->level = mddev->level;
  3594. if (conf->level == 6)
  3595. conf->max_degraded = 2;
  3596. else
  3597. conf->max_degraded = 1;
  3598. conf->algorithm = mddev->layout;
  3599. conf->max_nr_stripes = NR_STRIPES;
  3600. conf->expand_progress = mddev->reshape_position;
  3601. /* device size must be a multiple of chunk size */
  3602. mddev->size &= ~(mddev->chunk_size/1024 -1);
  3603. mddev->resync_max_sectors = mddev->size << 1;
  3604. if (conf->level == 6 && conf->raid_disks < 4) {
  3605. printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
  3606. mdname(mddev), conf->raid_disks);
  3607. goto abort;
  3608. }
  3609. if (!conf->chunk_size || conf->chunk_size % 4) {
  3610. printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
  3611. conf->chunk_size, mdname(mddev));
  3612. goto abort;
  3613. }
  3614. if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
  3615. printk(KERN_ERR
  3616. "raid5: unsupported parity algorithm %d for %s\n",
  3617. conf->algorithm, mdname(mddev));
  3618. goto abort;
  3619. }
  3620. if (mddev->degraded > conf->max_degraded) {
  3621. printk(KERN_ERR "raid5: not enough operational devices for %s"
  3622. " (%d/%d failed)\n",
  3623. mdname(mddev), mddev->degraded, conf->raid_disks);
  3624. goto abort;
  3625. }
  3626. if (mddev->degraded > 0 &&
  3627. mddev->recovery_cp != MaxSector) {
  3628. if (mddev->ok_start_degraded)
  3629. printk(KERN_WARNING
  3630. "raid5: starting dirty degraded array: %s"
  3631. "- data corruption possible.\n",
  3632. mdname(mddev));
  3633. else {
  3634. printk(KERN_ERR
  3635. "raid5: cannot start dirty degraded array for %s\n",
  3636. mdname(mddev));
  3637. goto abort;
  3638. }
  3639. }
  3640. {
  3641. mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
  3642. if (!mddev->thread) {
  3643. printk(KERN_ERR
  3644. "raid5: couldn't allocate thread for %s\n",
  3645. mdname(mddev));
  3646. goto abort;
  3647. }
  3648. }
  3649. memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
  3650. conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
  3651. if (grow_stripes(conf, conf->max_nr_stripes)) {
  3652. printk(KERN_ERR
  3653. "raid5: couldn't allocate %dkB for buffers\n", memory);
  3654. shrink_stripes(conf);
  3655. md_unregister_thread(mddev->thread);
  3656. goto abort;
  3657. } else
  3658. printk(KERN_INFO "raid5: allocated %dkB for %s\n",
  3659. memory, mdname(mddev));
  3660. if (mddev->degraded == 0)
  3661. printk("raid5: raid level %d set %s active with %d out of %d"
  3662. " devices, algorithm %d\n", conf->level, mdname(mddev),
  3663. mddev->raid_disks-mddev->degraded, mddev->raid_disks,
  3664. conf->algorithm);
  3665. else
  3666. printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
  3667. " out of %d devices, algorithm %d\n", conf->level,
  3668. mdname(mddev), mddev->raid_disks - mddev->degraded,
  3669. mddev->raid_disks, conf->algorithm);
  3670. print_raid5_conf(conf);
  3671. if (conf->expand_progress != MaxSector) {
  3672. printk("...ok start reshape thread\n");
  3673. conf->expand_lo = conf->expand_progress;
  3674. atomic_set(&conf->reshape_stripes, 0);
  3675. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3676. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3677. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3678. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3679. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3680. "%s_reshape");
  3681. }
  3682. /* read-ahead size must cover two whole stripes, which is
  3683. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  3684. */
  3685. {
  3686. int data_disks = conf->previous_raid_disks - conf->max_degraded;
  3687. int stripe = data_disks *
  3688. (mddev->chunk_size / PAGE_SIZE);
  3689. if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  3690. mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  3691. }
  3692. /* Ok, everything is just fine now */
  3693. if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
  3694. printk(KERN_WARNING
  3695. "raid5: failed to create sysfs attributes for %s\n",
  3696. mdname(mddev));
  3697. mddev->queue->unplug_fn = raid5_unplug_device;
  3698. mddev->queue->backing_dev_info.congested_data = mddev;
  3699. mddev->queue->backing_dev_info.congested_fn = raid5_congested;
  3700. mddev->array_size = mddev->size * (conf->previous_raid_disks -
  3701. conf->max_degraded);
  3702. blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
  3703. return 0;
  3704. abort:
  3705. if (conf) {
  3706. print_raid5_conf(conf);
  3707. safe_put_page(conf->spare_page);
  3708. kfree(conf->disks);
  3709. kfree(conf->stripe_hashtbl);
  3710. kfree(conf);
  3711. }
  3712. mddev->private = NULL;
  3713. printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
  3714. return -EIO;
  3715. }
  3716. static int stop(mddev_t *mddev)
  3717. {
  3718. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3719. md_unregister_thread(mddev->thread);
  3720. mddev->thread = NULL;
  3721. shrink_stripes(conf);
  3722. kfree(conf->stripe_hashtbl);
  3723. mddev->queue->backing_dev_info.congested_fn = NULL;
  3724. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  3725. sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
  3726. kfree(conf->disks);
  3727. kfree(conf);
  3728. mddev->private = NULL;
  3729. return 0;
  3730. }
  3731. #ifdef DEBUG
  3732. static void print_sh (struct seq_file *seq, struct stripe_head *sh)
  3733. {
  3734. int i;
  3735. seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
  3736. (unsigned long long)sh->sector, sh->pd_idx, sh->state);
  3737. seq_printf(seq, "sh %llu, count %d.\n",
  3738. (unsigned long long)sh->sector, atomic_read(&sh->count));
  3739. seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
  3740. for (i = 0; i < sh->disks; i++) {
  3741. seq_printf(seq, "(cache%d: %p %ld) ",
  3742. i, sh->dev[i].page, sh->dev[i].flags);
  3743. }
  3744. seq_printf(seq, "\n");
  3745. }
  3746. static void printall (struct seq_file *seq, raid5_conf_t *conf)
  3747. {
  3748. struct stripe_head *sh;
  3749. struct hlist_node *hn;
  3750. int i;
  3751. spin_lock_irq(&conf->device_lock);
  3752. for (i = 0; i < NR_HASH; i++) {
  3753. hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
  3754. if (sh->raid_conf != conf)
  3755. continue;
  3756. print_sh(seq, sh);
  3757. }
  3758. }
  3759. spin_unlock_irq(&conf->device_lock);
  3760. }
  3761. #endif
  3762. static void status (struct seq_file *seq, mddev_t *mddev)
  3763. {
  3764. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3765. int i;
  3766. seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
  3767. seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
  3768. for (i = 0; i < conf->raid_disks; i++)
  3769. seq_printf (seq, "%s",
  3770. conf->disks[i].rdev &&
  3771. test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
  3772. seq_printf (seq, "]");
  3773. #ifdef DEBUG
  3774. seq_printf (seq, "\n");
  3775. printall(seq, conf);
  3776. #endif
  3777. }
  3778. static void print_raid5_conf (raid5_conf_t *conf)
  3779. {
  3780. int i;
  3781. struct disk_info *tmp;
  3782. printk("RAID5 conf printout:\n");
  3783. if (!conf) {
  3784. printk("(conf==NULL)\n");
  3785. return;
  3786. }
  3787. printk(" --- rd:%d wd:%d\n", conf->raid_disks,
  3788. conf->raid_disks - conf->mddev->degraded);
  3789. for (i = 0; i < conf->raid_disks; i++) {
  3790. char b[BDEVNAME_SIZE];
  3791. tmp = conf->disks + i;
  3792. if (tmp->rdev)
  3793. printk(" disk %d, o:%d, dev:%s\n",
  3794. i, !test_bit(Faulty, &tmp->rdev->flags),
  3795. bdevname(tmp->rdev->bdev,b));
  3796. }
  3797. }
  3798. static int raid5_spare_active(mddev_t *mddev)
  3799. {
  3800. int i;
  3801. raid5_conf_t *conf = mddev->private;
  3802. struct disk_info *tmp;
  3803. for (i = 0; i < conf->raid_disks; i++) {
  3804. tmp = conf->disks + i;
  3805. if (tmp->rdev
  3806. && !test_bit(Faulty, &tmp->rdev->flags)
  3807. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  3808. unsigned long flags;
  3809. spin_lock_irqsave(&conf->device_lock, flags);
  3810. mddev->degraded--;
  3811. spin_unlock_irqrestore(&conf->device_lock, flags);
  3812. }
  3813. }
  3814. print_raid5_conf(conf);
  3815. return 0;
  3816. }
  3817. static int raid5_remove_disk(mddev_t *mddev, int number)
  3818. {
  3819. raid5_conf_t *conf = mddev->private;
  3820. int err = 0;
  3821. mdk_rdev_t *rdev;
  3822. struct disk_info *p = conf->disks + number;
  3823. print_raid5_conf(conf);
  3824. rdev = p->rdev;
  3825. if (rdev) {
  3826. if (test_bit(In_sync, &rdev->flags) ||
  3827. atomic_read(&rdev->nr_pending)) {
  3828. err = -EBUSY;
  3829. goto abort;
  3830. }
  3831. /* Only remove non-faulty devices if recovery
  3832. * isn't possible.
  3833. */
  3834. if (!test_bit(Faulty, &rdev->flags) &&
  3835. mddev->degraded <= conf->max_degraded) {
  3836. err = -EBUSY;
  3837. goto abort;
  3838. }
  3839. p->rdev = NULL;
  3840. synchronize_rcu();
  3841. if (atomic_read(&rdev->nr_pending)) {
  3842. /* lost the race, try later */
  3843. err = -EBUSY;
  3844. p->rdev = rdev;
  3845. }
  3846. }
  3847. abort:
  3848. print_raid5_conf(conf);
  3849. return err;
  3850. }
  3851. static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  3852. {
  3853. raid5_conf_t *conf = mddev->private;
  3854. int err = -EEXIST;
  3855. int disk;
  3856. struct disk_info *p;
  3857. int first = 0;
  3858. int last = conf->raid_disks - 1;
  3859. if (mddev->degraded > conf->max_degraded)
  3860. /* no point adding a device */
  3861. return -EINVAL;
  3862. if (rdev->raid_disk >= 0)
  3863. first = last = rdev->raid_disk;
  3864. /*
  3865. * find the disk ... but prefer rdev->saved_raid_disk
  3866. * if possible.
  3867. */
  3868. if (rdev->saved_raid_disk >= 0 &&
  3869. rdev->saved_raid_disk >= first &&
  3870. conf->disks[rdev->saved_raid_disk].rdev == NULL)
  3871. disk = rdev->saved_raid_disk;
  3872. else
  3873. disk = first;
  3874. for ( ; disk <= last ; disk++)
  3875. if ((p=conf->disks + disk)->rdev == NULL) {
  3876. clear_bit(In_sync, &rdev->flags);
  3877. rdev->raid_disk = disk;
  3878. err = 0;
  3879. if (rdev->saved_raid_disk != disk)
  3880. conf->fullsync = 1;
  3881. rcu_assign_pointer(p->rdev, rdev);
  3882. break;
  3883. }
  3884. print_raid5_conf(conf);
  3885. return err;
  3886. }
  3887. static int raid5_resize(mddev_t *mddev, sector_t sectors)
  3888. {
  3889. /* no resync is happening, and there is enough space
  3890. * on all devices, so we can resize.
  3891. * We need to make sure resync covers any new space.
  3892. * If the array is shrinking we should possibly wait until
  3893. * any io in the removed space completes, but it hardly seems
  3894. * worth it.
  3895. */
  3896. raid5_conf_t *conf = mddev_to_conf(mddev);
  3897. sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
  3898. mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
  3899. set_capacity(mddev->gendisk, mddev->array_size << 1);
  3900. mddev->changed = 1;
  3901. if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
  3902. mddev->recovery_cp = mddev->size << 1;
  3903. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3904. }
  3905. mddev->size = sectors /2;
  3906. mddev->resync_max_sectors = sectors;
  3907. return 0;
  3908. }
  3909. #ifdef CONFIG_MD_RAID5_RESHAPE
  3910. static int raid5_check_reshape(mddev_t *mddev)
  3911. {
  3912. raid5_conf_t *conf = mddev_to_conf(mddev);
  3913. int err;
  3914. if (mddev->delta_disks < 0 ||
  3915. mddev->new_level != mddev->level)
  3916. return -EINVAL; /* Cannot shrink array or change level yet */
  3917. if (mddev->delta_disks == 0)
  3918. return 0; /* nothing to do */
  3919. /* Can only proceed if there are plenty of stripe_heads.
  3920. * We need a minimum of one full stripe,, and for sensible progress
  3921. * it is best to have about 4 times that.
  3922. * If we require 4 times, then the default 256 4K stripe_heads will
  3923. * allow for chunk sizes up to 256K, which is probably OK.
  3924. * If the chunk size is greater, user-space should request more
  3925. * stripe_heads first.
  3926. */
  3927. if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
  3928. (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
  3929. printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
  3930. (mddev->chunk_size / STRIPE_SIZE)*4);
  3931. return -ENOSPC;
  3932. }
  3933. err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
  3934. if (err)
  3935. return err;
  3936. if (mddev->degraded > conf->max_degraded)
  3937. return -EINVAL;
  3938. /* looks like we might be able to manage this */
  3939. return 0;
  3940. }
  3941. static int raid5_start_reshape(mddev_t *mddev)
  3942. {
  3943. raid5_conf_t *conf = mddev_to_conf(mddev);
  3944. mdk_rdev_t *rdev;
  3945. struct list_head *rtmp;
  3946. int spares = 0;
  3947. int added_devices = 0;
  3948. unsigned long flags;
  3949. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3950. return -EBUSY;
  3951. rdev_for_each(rdev, rtmp, mddev)
  3952. if (rdev->raid_disk < 0 &&
  3953. !test_bit(Faulty, &rdev->flags))
  3954. spares++;
  3955. if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
  3956. /* Not enough devices even to make a degraded array
  3957. * of that size
  3958. */
  3959. return -EINVAL;
  3960. atomic_set(&conf->reshape_stripes, 0);
  3961. spin_lock_irq(&conf->device_lock);
  3962. conf->previous_raid_disks = conf->raid_disks;
  3963. conf->raid_disks += mddev->delta_disks;
  3964. conf->expand_progress = 0;
  3965. conf->expand_lo = 0;
  3966. spin_unlock_irq(&conf->device_lock);
  3967. /* Add some new drives, as many as will fit.
  3968. * We know there are enough to make the newly sized array work.
  3969. */
  3970. rdev_for_each(rdev, rtmp, mddev)
  3971. if (rdev->raid_disk < 0 &&
  3972. !test_bit(Faulty, &rdev->flags)) {
  3973. if (raid5_add_disk(mddev, rdev) == 0) {
  3974. char nm[20];
  3975. set_bit(In_sync, &rdev->flags);
  3976. added_devices++;
  3977. rdev->recovery_offset = 0;
  3978. sprintf(nm, "rd%d", rdev->raid_disk);
  3979. if (sysfs_create_link(&mddev->kobj,
  3980. &rdev->kobj, nm))
  3981. printk(KERN_WARNING
  3982. "raid5: failed to create "
  3983. " link %s for %s\n",
  3984. nm, mdname(mddev));
  3985. } else
  3986. break;
  3987. }
  3988. spin_lock_irqsave(&conf->device_lock, flags);
  3989. mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
  3990. spin_unlock_irqrestore(&conf->device_lock, flags);
  3991. mddev->raid_disks = conf->raid_disks;
  3992. mddev->reshape_position = 0;
  3993. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3994. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3995. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3996. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3997. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3998. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3999. "%s_reshape");
  4000. if (!mddev->sync_thread) {
  4001. mddev->recovery = 0;
  4002. spin_lock_irq(&conf->device_lock);
  4003. mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
  4004. conf->expand_progress = MaxSector;
  4005. spin_unlock_irq(&conf->device_lock);
  4006. return -EAGAIN;
  4007. }
  4008. md_wakeup_thread(mddev->sync_thread);
  4009. md_new_event(mddev);
  4010. return 0;
  4011. }
  4012. #endif
  4013. static void end_reshape(raid5_conf_t *conf)
  4014. {
  4015. struct block_device *bdev;
  4016. if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
  4017. conf->mddev->array_size = conf->mddev->size *
  4018. (conf->raid_disks - conf->max_degraded);
  4019. set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
  4020. conf->mddev->changed = 1;
  4021. bdev = bdget_disk(conf->mddev->gendisk, 0);
  4022. if (bdev) {
  4023. mutex_lock(&bdev->bd_inode->i_mutex);
  4024. i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
  4025. mutex_unlock(&bdev->bd_inode->i_mutex);
  4026. bdput(bdev);
  4027. }
  4028. spin_lock_irq(&conf->device_lock);
  4029. conf->expand_progress = MaxSector;
  4030. spin_unlock_irq(&conf->device_lock);
  4031. conf->mddev->reshape_position = MaxSector;
  4032. /* read-ahead size must cover two whole stripes, which is
  4033. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  4034. */
  4035. {
  4036. int data_disks = conf->previous_raid_disks - conf->max_degraded;
  4037. int stripe = data_disks *
  4038. (conf->mddev->chunk_size / PAGE_SIZE);
  4039. if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  4040. conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  4041. }
  4042. }
  4043. }
  4044. static void raid5_quiesce(mddev_t *mddev, int state)
  4045. {
  4046. raid5_conf_t *conf = mddev_to_conf(mddev);
  4047. switch(state) {
  4048. case 2: /* resume for a suspend */
  4049. wake_up(&conf->wait_for_overlap);
  4050. break;
  4051. case 1: /* stop all writes */
  4052. spin_lock_irq(&conf->device_lock);
  4053. conf->quiesce = 1;
  4054. wait_event_lock_irq(conf->wait_for_stripe,
  4055. atomic_read(&conf->active_stripes) == 0 &&
  4056. atomic_read(&conf->active_aligned_reads) == 0,
  4057. conf->device_lock, /* nothing */);
  4058. spin_unlock_irq(&conf->device_lock);
  4059. break;
  4060. case 0: /* re-enable writes */
  4061. spin_lock_irq(&conf->device_lock);
  4062. conf->quiesce = 0;
  4063. wake_up(&conf->wait_for_stripe);
  4064. wake_up(&conf->wait_for_overlap);
  4065. spin_unlock_irq(&conf->device_lock);
  4066. break;
  4067. }
  4068. }
  4069. static struct mdk_personality raid6_personality =
  4070. {
  4071. .name = "raid6",
  4072. .level = 6,
  4073. .owner = THIS_MODULE,
  4074. .make_request = make_request,
  4075. .run = run,
  4076. .stop = stop,
  4077. .status = status,
  4078. .error_handler = error,
  4079. .hot_add_disk = raid5_add_disk,
  4080. .hot_remove_disk= raid5_remove_disk,
  4081. .spare_active = raid5_spare_active,
  4082. .sync_request = sync_request,
  4083. .resize = raid5_resize,
  4084. #ifdef CONFIG_MD_RAID5_RESHAPE
  4085. .check_reshape = raid5_check_reshape,
  4086. .start_reshape = raid5_start_reshape,
  4087. #endif
  4088. .quiesce = raid5_quiesce,
  4089. };
  4090. static struct mdk_personality raid5_personality =
  4091. {
  4092. .name = "raid5",
  4093. .level = 5,
  4094. .owner = THIS_MODULE,
  4095. .make_request = make_request,
  4096. .run = run,
  4097. .stop = stop,
  4098. .status = status,
  4099. .error_handler = error,
  4100. .hot_add_disk = raid5_add_disk,
  4101. .hot_remove_disk= raid5_remove_disk,
  4102. .spare_active = raid5_spare_active,
  4103. .sync_request = sync_request,
  4104. .resize = raid5_resize,
  4105. #ifdef CONFIG_MD_RAID5_RESHAPE
  4106. .check_reshape = raid5_check_reshape,
  4107. .start_reshape = raid5_start_reshape,
  4108. #endif
  4109. .quiesce = raid5_quiesce,
  4110. };
  4111. static struct mdk_personality raid4_personality =
  4112. {
  4113. .name = "raid4",
  4114. .level = 4,
  4115. .owner = THIS_MODULE,
  4116. .make_request = make_request,
  4117. .run = run,
  4118. .stop = stop,
  4119. .status = status,
  4120. .error_handler = error,
  4121. .hot_add_disk = raid5_add_disk,
  4122. .hot_remove_disk= raid5_remove_disk,
  4123. .spare_active = raid5_spare_active,
  4124. .sync_request = sync_request,
  4125. .resize = raid5_resize,
  4126. #ifdef CONFIG_MD_RAID5_RESHAPE
  4127. .check_reshape = raid5_check_reshape,
  4128. .start_reshape = raid5_start_reshape,
  4129. #endif
  4130. .quiesce = raid5_quiesce,
  4131. };
  4132. static int __init raid5_init(void)
  4133. {
  4134. int e;
  4135. e = raid6_select_algo();
  4136. if ( e )
  4137. return e;
  4138. register_md_personality(&raid6_personality);
  4139. register_md_personality(&raid5_personality);
  4140. register_md_personality(&raid4_personality);
  4141. return 0;
  4142. }
  4143. static void raid5_exit(void)
  4144. {
  4145. unregister_md_personality(&raid6_personality);
  4146. unregister_md_personality(&raid5_personality);
  4147. unregister_md_personality(&raid4_personality);
  4148. }
  4149. module_init(raid5_init);
  4150. module_exit(raid5_exit);
  4151. MODULE_LICENSE("GPL");
  4152. MODULE_ALIAS("md-personality-4"); /* RAID5 */
  4153. MODULE_ALIAS("md-raid5");
  4154. MODULE_ALIAS("md-raid4");
  4155. MODULE_ALIAS("md-level-5");
  4156. MODULE_ALIAS("md-level-4");
  4157. MODULE_ALIAS("md-personality-8"); /* RAID6 */
  4158. MODULE_ALIAS("md-raid6");
  4159. MODULE_ALIAS("md-level-6");
  4160. /* This used to be two separate modules, they were: */
  4161. MODULE_ALIAS("raid5");
  4162. MODULE_ALIAS("raid6");