md.c 221 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static void md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int cpu;
  293. unsigned int sectors;
  294. if (mddev == NULL || mddev->pers == NULL
  295. || !mddev->ready) {
  296. bio_io_error(bio);
  297. return;
  298. }
  299. smp_rmb(); /* Ensure implications of 'active' are visible */
  300. rcu_read_lock();
  301. if (mddev->suspended) {
  302. DEFINE_WAIT(__wait);
  303. for (;;) {
  304. prepare_to_wait(&mddev->sb_wait, &__wait,
  305. TASK_UNINTERRUPTIBLE);
  306. if (!mddev->suspended)
  307. break;
  308. rcu_read_unlock();
  309. schedule();
  310. rcu_read_lock();
  311. }
  312. finish_wait(&mddev->sb_wait, &__wait);
  313. }
  314. atomic_inc(&mddev->active_io);
  315. rcu_read_unlock();
  316. /*
  317. * save the sectors now since our bio can
  318. * go away inside make_request
  319. */
  320. sectors = bio_sectors(bio);
  321. mddev->pers->make_request(mddev, bio);
  322. cpu = part_stat_lock();
  323. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  324. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  325. part_stat_unlock();
  326. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  327. wake_up(&mddev->sb_wait);
  328. }
  329. /* mddev_suspend makes sure no new requests are submitted
  330. * to the device, and that any requests that have been submitted
  331. * are completely handled.
  332. * Once ->stop is called and completes, the module will be completely
  333. * unused.
  334. */
  335. void mddev_suspend(struct mddev *mddev)
  336. {
  337. BUG_ON(mddev->suspended);
  338. mddev->suspended = 1;
  339. synchronize_rcu();
  340. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  341. mddev->pers->quiesce(mddev, 1);
  342. del_timer_sync(&mddev->safemode_timer);
  343. }
  344. EXPORT_SYMBOL_GPL(mddev_suspend);
  345. void mddev_resume(struct mddev *mddev)
  346. {
  347. mddev->suspended = 0;
  348. wake_up(&mddev->sb_wait);
  349. mddev->pers->quiesce(mddev, 0);
  350. md_wakeup_thread(mddev->thread);
  351. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  352. }
  353. EXPORT_SYMBOL_GPL(mddev_resume);
  354. int mddev_congested(struct mddev *mddev, int bits)
  355. {
  356. return mddev->suspended;
  357. }
  358. EXPORT_SYMBOL(mddev_congested);
  359. /*
  360. * Generic flush handling for md
  361. */
  362. static void md_end_flush(struct bio *bio, int err)
  363. {
  364. struct md_rdev *rdev = bio->bi_private;
  365. struct mddev *mddev = rdev->mddev;
  366. rdev_dec_pending(rdev, mddev);
  367. if (atomic_dec_and_test(&mddev->flush_pending)) {
  368. /* The pre-request flush has finished */
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. bio_put(bio);
  372. }
  373. static void md_submit_flush_data(struct work_struct *ws);
  374. static void submit_flushes(struct work_struct *ws)
  375. {
  376. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  377. struct md_rdev *rdev;
  378. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  379. atomic_set(&mddev->flush_pending, 1);
  380. rcu_read_lock();
  381. rdev_for_each_rcu(rdev, mddev)
  382. if (rdev->raid_disk >= 0 &&
  383. !test_bit(Faulty, &rdev->flags)) {
  384. /* Take two references, one is dropped
  385. * when request finishes, one after
  386. * we reclaim rcu_read_lock
  387. */
  388. struct bio *bi;
  389. atomic_inc(&rdev->nr_pending);
  390. atomic_inc(&rdev->nr_pending);
  391. rcu_read_unlock();
  392. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  393. bi->bi_end_io = md_end_flush;
  394. bi->bi_private = rdev;
  395. bi->bi_bdev = rdev->bdev;
  396. atomic_inc(&mddev->flush_pending);
  397. submit_bio(WRITE_FLUSH, bi);
  398. rcu_read_lock();
  399. rdev_dec_pending(rdev, mddev);
  400. }
  401. rcu_read_unlock();
  402. if (atomic_dec_and_test(&mddev->flush_pending))
  403. queue_work(md_wq, &mddev->flush_work);
  404. }
  405. static void md_submit_flush_data(struct work_struct *ws)
  406. {
  407. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  408. struct bio *bio = mddev->flush_bio;
  409. if (bio->bi_size == 0)
  410. /* an empty barrier - all done */
  411. bio_endio(bio, 0);
  412. else {
  413. bio->bi_rw &= ~REQ_FLUSH;
  414. mddev->pers->make_request(mddev, bio);
  415. }
  416. mddev->flush_bio = NULL;
  417. wake_up(&mddev->sb_wait);
  418. }
  419. void md_flush_request(struct mddev *mddev, struct bio *bio)
  420. {
  421. spin_lock_irq(&mddev->write_lock);
  422. wait_event_lock_irq(mddev->sb_wait,
  423. !mddev->flush_bio,
  424. mddev->write_lock, /*nothing*/);
  425. mddev->flush_bio = bio;
  426. spin_unlock_irq(&mddev->write_lock);
  427. INIT_WORK(&mddev->flush_work, submit_flushes);
  428. queue_work(md_wq, &mddev->flush_work);
  429. }
  430. EXPORT_SYMBOL(md_flush_request);
  431. /* Support for plugging.
  432. * This mirrors the plugging support in request_queue, but does not
  433. * require having a whole queue or request structures.
  434. * We allocate an md_plug_cb for each md device and each thread it gets
  435. * plugged on. This links tot the private plug_handle structure in the
  436. * personality data where we keep a count of the number of outstanding
  437. * plugs so other code can see if a plug is active.
  438. */
  439. struct md_plug_cb {
  440. struct blk_plug_cb cb;
  441. struct mddev *mddev;
  442. };
  443. static void plugger_unplug(struct blk_plug_cb *cb)
  444. {
  445. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  446. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  447. md_wakeup_thread(mdcb->mddev->thread);
  448. kfree(mdcb);
  449. }
  450. /* Check that an unplug wakeup will come shortly.
  451. * If not, wakeup the md thread immediately
  452. */
  453. int mddev_check_plugged(struct mddev *mddev)
  454. {
  455. struct blk_plug *plug = current->plug;
  456. struct md_plug_cb *mdcb;
  457. if (!plug)
  458. return 0;
  459. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  460. if (mdcb->cb.callback == plugger_unplug &&
  461. mdcb->mddev == mddev) {
  462. /* Already on the list, move to top */
  463. if (mdcb != list_first_entry(&plug->cb_list,
  464. struct md_plug_cb,
  465. cb.list))
  466. list_move(&mdcb->cb.list, &plug->cb_list);
  467. return 1;
  468. }
  469. }
  470. /* Not currently on the callback list */
  471. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  472. if (!mdcb)
  473. return 0;
  474. mdcb->mddev = mddev;
  475. mdcb->cb.callback = plugger_unplug;
  476. atomic_inc(&mddev->plug_cnt);
  477. list_add(&mdcb->cb.list, &plug->cb_list);
  478. return 1;
  479. }
  480. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  481. static inline struct mddev *mddev_get(struct mddev *mddev)
  482. {
  483. atomic_inc(&mddev->active);
  484. return mddev;
  485. }
  486. static void mddev_delayed_delete(struct work_struct *ws);
  487. static void mddev_put(struct mddev *mddev)
  488. {
  489. struct bio_set *bs = NULL;
  490. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  491. return;
  492. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  493. mddev->ctime == 0 && !mddev->hold_active) {
  494. /* Array is not configured at all, and not held active,
  495. * so destroy it */
  496. list_del_init(&mddev->all_mddevs);
  497. bs = mddev->bio_set;
  498. mddev->bio_set = NULL;
  499. if (mddev->gendisk) {
  500. /* We did a probe so need to clean up. Call
  501. * queue_work inside the spinlock so that
  502. * flush_workqueue() after mddev_find will
  503. * succeed in waiting for the work to be done.
  504. */
  505. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  506. queue_work(md_misc_wq, &mddev->del_work);
  507. } else
  508. kfree(mddev);
  509. }
  510. spin_unlock(&all_mddevs_lock);
  511. if (bs)
  512. bioset_free(bs);
  513. }
  514. void mddev_init(struct mddev *mddev)
  515. {
  516. mutex_init(&mddev->open_mutex);
  517. mutex_init(&mddev->reconfig_mutex);
  518. mutex_init(&mddev->bitmap_info.mutex);
  519. INIT_LIST_HEAD(&mddev->disks);
  520. INIT_LIST_HEAD(&mddev->all_mddevs);
  521. init_timer(&mddev->safemode_timer);
  522. atomic_set(&mddev->active, 1);
  523. atomic_set(&mddev->openers, 0);
  524. atomic_set(&mddev->active_io, 0);
  525. atomic_set(&mddev->plug_cnt, 0);
  526. spin_lock_init(&mddev->write_lock);
  527. atomic_set(&mddev->flush_pending, 0);
  528. init_waitqueue_head(&mddev->sb_wait);
  529. init_waitqueue_head(&mddev->recovery_wait);
  530. mddev->reshape_position = MaxSector;
  531. mddev->reshape_backwards = 0;
  532. mddev->resync_min = 0;
  533. mddev->resync_max = MaxSector;
  534. mddev->level = LEVEL_NONE;
  535. }
  536. EXPORT_SYMBOL_GPL(mddev_init);
  537. static struct mddev * mddev_find(dev_t unit)
  538. {
  539. struct mddev *mddev, *new = NULL;
  540. if (unit && MAJOR(unit) != MD_MAJOR)
  541. unit &= ~((1<<MdpMinorShift)-1);
  542. retry:
  543. spin_lock(&all_mddevs_lock);
  544. if (unit) {
  545. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  546. if (mddev->unit == unit) {
  547. mddev_get(mddev);
  548. spin_unlock(&all_mddevs_lock);
  549. kfree(new);
  550. return mddev;
  551. }
  552. if (new) {
  553. list_add(&new->all_mddevs, &all_mddevs);
  554. spin_unlock(&all_mddevs_lock);
  555. new->hold_active = UNTIL_IOCTL;
  556. return new;
  557. }
  558. } else if (new) {
  559. /* find an unused unit number */
  560. static int next_minor = 512;
  561. int start = next_minor;
  562. int is_free = 0;
  563. int dev = 0;
  564. while (!is_free) {
  565. dev = MKDEV(MD_MAJOR, next_minor);
  566. next_minor++;
  567. if (next_minor > MINORMASK)
  568. next_minor = 0;
  569. if (next_minor == start) {
  570. /* Oh dear, all in use. */
  571. spin_unlock(&all_mddevs_lock);
  572. kfree(new);
  573. return NULL;
  574. }
  575. is_free = 1;
  576. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  577. if (mddev->unit == dev) {
  578. is_free = 0;
  579. break;
  580. }
  581. }
  582. new->unit = dev;
  583. new->md_minor = MINOR(dev);
  584. new->hold_active = UNTIL_STOP;
  585. list_add(&new->all_mddevs, &all_mddevs);
  586. spin_unlock(&all_mddevs_lock);
  587. return new;
  588. }
  589. spin_unlock(&all_mddevs_lock);
  590. new = kzalloc(sizeof(*new), GFP_KERNEL);
  591. if (!new)
  592. return NULL;
  593. new->unit = unit;
  594. if (MAJOR(unit) == MD_MAJOR)
  595. new->md_minor = MINOR(unit);
  596. else
  597. new->md_minor = MINOR(unit) >> MdpMinorShift;
  598. mddev_init(new);
  599. goto retry;
  600. }
  601. static inline int mddev_lock(struct mddev * mddev)
  602. {
  603. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  604. }
  605. static inline int mddev_is_locked(struct mddev *mddev)
  606. {
  607. return mutex_is_locked(&mddev->reconfig_mutex);
  608. }
  609. static inline int mddev_trylock(struct mddev * mddev)
  610. {
  611. return mutex_trylock(&mddev->reconfig_mutex);
  612. }
  613. static struct attribute_group md_redundancy_group;
  614. static void mddev_unlock(struct mddev * mddev)
  615. {
  616. if (mddev->to_remove) {
  617. /* These cannot be removed under reconfig_mutex as
  618. * an access to the files will try to take reconfig_mutex
  619. * while holding the file unremovable, which leads to
  620. * a deadlock.
  621. * So hold set sysfs_active while the remove in happeing,
  622. * and anything else which might set ->to_remove or my
  623. * otherwise change the sysfs namespace will fail with
  624. * -EBUSY if sysfs_active is still set.
  625. * We set sysfs_active under reconfig_mutex and elsewhere
  626. * test it under the same mutex to ensure its correct value
  627. * is seen.
  628. */
  629. struct attribute_group *to_remove = mddev->to_remove;
  630. mddev->to_remove = NULL;
  631. mddev->sysfs_active = 1;
  632. mutex_unlock(&mddev->reconfig_mutex);
  633. if (mddev->kobj.sd) {
  634. if (to_remove != &md_redundancy_group)
  635. sysfs_remove_group(&mddev->kobj, to_remove);
  636. if (mddev->pers == NULL ||
  637. mddev->pers->sync_request == NULL) {
  638. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  639. if (mddev->sysfs_action)
  640. sysfs_put(mddev->sysfs_action);
  641. mddev->sysfs_action = NULL;
  642. }
  643. }
  644. mddev->sysfs_active = 0;
  645. } else
  646. mutex_unlock(&mddev->reconfig_mutex);
  647. /* As we've dropped the mutex we need a spinlock to
  648. * make sure the thread doesn't disappear
  649. */
  650. spin_lock(&pers_lock);
  651. md_wakeup_thread(mddev->thread);
  652. spin_unlock(&pers_lock);
  653. }
  654. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  655. {
  656. struct md_rdev *rdev;
  657. rdev_for_each(rdev, mddev)
  658. if (rdev->desc_nr == nr)
  659. return rdev;
  660. return NULL;
  661. }
  662. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  663. {
  664. struct md_rdev *rdev;
  665. rdev_for_each(rdev, mddev)
  666. if (rdev->bdev->bd_dev == dev)
  667. return rdev;
  668. return NULL;
  669. }
  670. static struct md_personality *find_pers(int level, char *clevel)
  671. {
  672. struct md_personality *pers;
  673. list_for_each_entry(pers, &pers_list, list) {
  674. if (level != LEVEL_NONE && pers->level == level)
  675. return pers;
  676. if (strcmp(pers->name, clevel)==0)
  677. return pers;
  678. }
  679. return NULL;
  680. }
  681. /* return the offset of the super block in 512byte sectors */
  682. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  683. {
  684. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  685. return MD_NEW_SIZE_SECTORS(num_sectors);
  686. }
  687. static int alloc_disk_sb(struct md_rdev * rdev)
  688. {
  689. if (rdev->sb_page)
  690. MD_BUG();
  691. rdev->sb_page = alloc_page(GFP_KERNEL);
  692. if (!rdev->sb_page) {
  693. printk(KERN_ALERT "md: out of memory.\n");
  694. return -ENOMEM;
  695. }
  696. return 0;
  697. }
  698. static void free_disk_sb(struct md_rdev * rdev)
  699. {
  700. if (rdev->sb_page) {
  701. put_page(rdev->sb_page);
  702. rdev->sb_loaded = 0;
  703. rdev->sb_page = NULL;
  704. rdev->sb_start = 0;
  705. rdev->sectors = 0;
  706. }
  707. if (rdev->bb_page) {
  708. put_page(rdev->bb_page);
  709. rdev->bb_page = NULL;
  710. }
  711. }
  712. static void super_written(struct bio *bio, int error)
  713. {
  714. struct md_rdev *rdev = bio->bi_private;
  715. struct mddev *mddev = rdev->mddev;
  716. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  717. printk("md: super_written gets error=%d, uptodate=%d\n",
  718. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  719. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  720. md_error(mddev, rdev);
  721. }
  722. if (atomic_dec_and_test(&mddev->pending_writes))
  723. wake_up(&mddev->sb_wait);
  724. bio_put(bio);
  725. }
  726. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  727. sector_t sector, int size, struct page *page)
  728. {
  729. /* write first size bytes of page to sector of rdev
  730. * Increment mddev->pending_writes before returning
  731. * and decrement it on completion, waking up sb_wait
  732. * if zero is reached.
  733. * If an error occurred, call md_error
  734. */
  735. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  736. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  737. bio->bi_sector = sector;
  738. bio_add_page(bio, page, size, 0);
  739. bio->bi_private = rdev;
  740. bio->bi_end_io = super_written;
  741. atomic_inc(&mddev->pending_writes);
  742. submit_bio(WRITE_FLUSH_FUA, bio);
  743. }
  744. void md_super_wait(struct mddev *mddev)
  745. {
  746. /* wait for all superblock writes that were scheduled to complete */
  747. DEFINE_WAIT(wq);
  748. for(;;) {
  749. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  750. if (atomic_read(&mddev->pending_writes)==0)
  751. break;
  752. schedule();
  753. }
  754. finish_wait(&mddev->sb_wait, &wq);
  755. }
  756. static void bi_complete(struct bio *bio, int error)
  757. {
  758. complete((struct completion*)bio->bi_private);
  759. }
  760. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  761. struct page *page, int rw, bool metadata_op)
  762. {
  763. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  764. struct completion event;
  765. int ret;
  766. rw |= REQ_SYNC;
  767. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  768. rdev->meta_bdev : rdev->bdev;
  769. if (metadata_op)
  770. bio->bi_sector = sector + rdev->sb_start;
  771. else if (rdev->mddev->reshape_position != MaxSector &&
  772. (rdev->mddev->reshape_backwards ==
  773. (sector >= rdev->mddev->reshape_position)))
  774. bio->bi_sector = sector + rdev->new_data_offset;
  775. else
  776. bio->bi_sector = sector + rdev->data_offset;
  777. bio_add_page(bio, page, size, 0);
  778. init_completion(&event);
  779. bio->bi_private = &event;
  780. bio->bi_end_io = bi_complete;
  781. submit_bio(rw, bio);
  782. wait_for_completion(&event);
  783. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  784. bio_put(bio);
  785. return ret;
  786. }
  787. EXPORT_SYMBOL_GPL(sync_page_io);
  788. static int read_disk_sb(struct md_rdev * rdev, int size)
  789. {
  790. char b[BDEVNAME_SIZE];
  791. if (!rdev->sb_page) {
  792. MD_BUG();
  793. return -EINVAL;
  794. }
  795. if (rdev->sb_loaded)
  796. return 0;
  797. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  798. goto fail;
  799. rdev->sb_loaded = 1;
  800. return 0;
  801. fail:
  802. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  803. bdevname(rdev->bdev,b));
  804. return -EINVAL;
  805. }
  806. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  807. {
  808. return sb1->set_uuid0 == sb2->set_uuid0 &&
  809. sb1->set_uuid1 == sb2->set_uuid1 &&
  810. sb1->set_uuid2 == sb2->set_uuid2 &&
  811. sb1->set_uuid3 == sb2->set_uuid3;
  812. }
  813. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  814. {
  815. int ret;
  816. mdp_super_t *tmp1, *tmp2;
  817. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  818. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  819. if (!tmp1 || !tmp2) {
  820. ret = 0;
  821. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  822. goto abort;
  823. }
  824. *tmp1 = *sb1;
  825. *tmp2 = *sb2;
  826. /*
  827. * nr_disks is not constant
  828. */
  829. tmp1->nr_disks = 0;
  830. tmp2->nr_disks = 0;
  831. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  832. abort:
  833. kfree(tmp1);
  834. kfree(tmp2);
  835. return ret;
  836. }
  837. static u32 md_csum_fold(u32 csum)
  838. {
  839. csum = (csum & 0xffff) + (csum >> 16);
  840. return (csum & 0xffff) + (csum >> 16);
  841. }
  842. static unsigned int calc_sb_csum(mdp_super_t * sb)
  843. {
  844. u64 newcsum = 0;
  845. u32 *sb32 = (u32*)sb;
  846. int i;
  847. unsigned int disk_csum, csum;
  848. disk_csum = sb->sb_csum;
  849. sb->sb_csum = 0;
  850. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  851. newcsum += sb32[i];
  852. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  853. #ifdef CONFIG_ALPHA
  854. /* This used to use csum_partial, which was wrong for several
  855. * reasons including that different results are returned on
  856. * different architectures. It isn't critical that we get exactly
  857. * the same return value as before (we always csum_fold before
  858. * testing, and that removes any differences). However as we
  859. * know that csum_partial always returned a 16bit value on
  860. * alphas, do a fold to maximise conformity to previous behaviour.
  861. */
  862. sb->sb_csum = md_csum_fold(disk_csum);
  863. #else
  864. sb->sb_csum = disk_csum;
  865. #endif
  866. return csum;
  867. }
  868. /*
  869. * Handle superblock details.
  870. * We want to be able to handle multiple superblock formats
  871. * so we have a common interface to them all, and an array of
  872. * different handlers.
  873. * We rely on user-space to write the initial superblock, and support
  874. * reading and updating of superblocks.
  875. * Interface methods are:
  876. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  877. * loads and validates a superblock on dev.
  878. * if refdev != NULL, compare superblocks on both devices
  879. * Return:
  880. * 0 - dev has a superblock that is compatible with refdev
  881. * 1 - dev has a superblock that is compatible and newer than refdev
  882. * so dev should be used as the refdev in future
  883. * -EINVAL superblock incompatible or invalid
  884. * -othererror e.g. -EIO
  885. *
  886. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  887. * Verify that dev is acceptable into mddev.
  888. * The first time, mddev->raid_disks will be 0, and data from
  889. * dev should be merged in. Subsequent calls check that dev
  890. * is new enough. Return 0 or -EINVAL
  891. *
  892. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  893. * Update the superblock for rdev with data in mddev
  894. * This does not write to disc.
  895. *
  896. */
  897. struct super_type {
  898. char *name;
  899. struct module *owner;
  900. int (*load_super)(struct md_rdev *rdev,
  901. struct md_rdev *refdev,
  902. int minor_version);
  903. int (*validate_super)(struct mddev *mddev,
  904. struct md_rdev *rdev);
  905. void (*sync_super)(struct mddev *mddev,
  906. struct md_rdev *rdev);
  907. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  908. sector_t num_sectors);
  909. int (*allow_new_offset)(struct md_rdev *rdev,
  910. unsigned long long new_offset);
  911. };
  912. /*
  913. * Check that the given mddev has no bitmap.
  914. *
  915. * This function is called from the run method of all personalities that do not
  916. * support bitmaps. It prints an error message and returns non-zero if mddev
  917. * has a bitmap. Otherwise, it returns 0.
  918. *
  919. */
  920. int md_check_no_bitmap(struct mddev *mddev)
  921. {
  922. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  923. return 0;
  924. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  925. mdname(mddev), mddev->pers->name);
  926. return 1;
  927. }
  928. EXPORT_SYMBOL(md_check_no_bitmap);
  929. /*
  930. * load_super for 0.90.0
  931. */
  932. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  933. {
  934. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  935. mdp_super_t *sb;
  936. int ret;
  937. /*
  938. * Calculate the position of the superblock (512byte sectors),
  939. * it's at the end of the disk.
  940. *
  941. * It also happens to be a multiple of 4Kb.
  942. */
  943. rdev->sb_start = calc_dev_sboffset(rdev);
  944. ret = read_disk_sb(rdev, MD_SB_BYTES);
  945. if (ret) return ret;
  946. ret = -EINVAL;
  947. bdevname(rdev->bdev, b);
  948. sb = page_address(rdev->sb_page);
  949. if (sb->md_magic != MD_SB_MAGIC) {
  950. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  951. b);
  952. goto abort;
  953. }
  954. if (sb->major_version != 0 ||
  955. sb->minor_version < 90 ||
  956. sb->minor_version > 91) {
  957. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  958. sb->major_version, sb->minor_version,
  959. b);
  960. goto abort;
  961. }
  962. if (sb->raid_disks <= 0)
  963. goto abort;
  964. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  965. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  966. b);
  967. goto abort;
  968. }
  969. rdev->preferred_minor = sb->md_minor;
  970. rdev->data_offset = 0;
  971. rdev->new_data_offset = 0;
  972. rdev->sb_size = MD_SB_BYTES;
  973. rdev->badblocks.shift = -1;
  974. if (sb->level == LEVEL_MULTIPATH)
  975. rdev->desc_nr = -1;
  976. else
  977. rdev->desc_nr = sb->this_disk.number;
  978. if (!refdev) {
  979. ret = 1;
  980. } else {
  981. __u64 ev1, ev2;
  982. mdp_super_t *refsb = page_address(refdev->sb_page);
  983. if (!uuid_equal(refsb, sb)) {
  984. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  985. b, bdevname(refdev->bdev,b2));
  986. goto abort;
  987. }
  988. if (!sb_equal(refsb, sb)) {
  989. printk(KERN_WARNING "md: %s has same UUID"
  990. " but different superblock to %s\n",
  991. b, bdevname(refdev->bdev, b2));
  992. goto abort;
  993. }
  994. ev1 = md_event(sb);
  995. ev2 = md_event(refsb);
  996. if (ev1 > ev2)
  997. ret = 1;
  998. else
  999. ret = 0;
  1000. }
  1001. rdev->sectors = rdev->sb_start;
  1002. /* Limit to 4TB as metadata cannot record more than that */
  1003. if (rdev->sectors >= (2ULL << 32))
  1004. rdev->sectors = (2ULL << 32) - 2;
  1005. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  1006. /* "this cannot possibly happen" ... */
  1007. ret = -EINVAL;
  1008. abort:
  1009. return ret;
  1010. }
  1011. /*
  1012. * validate_super for 0.90.0
  1013. */
  1014. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1015. {
  1016. mdp_disk_t *desc;
  1017. mdp_super_t *sb = page_address(rdev->sb_page);
  1018. __u64 ev1 = md_event(sb);
  1019. rdev->raid_disk = -1;
  1020. clear_bit(Faulty, &rdev->flags);
  1021. clear_bit(In_sync, &rdev->flags);
  1022. clear_bit(WriteMostly, &rdev->flags);
  1023. if (mddev->raid_disks == 0) {
  1024. mddev->major_version = 0;
  1025. mddev->minor_version = sb->minor_version;
  1026. mddev->patch_version = sb->patch_version;
  1027. mddev->external = 0;
  1028. mddev->chunk_sectors = sb->chunk_size >> 9;
  1029. mddev->ctime = sb->ctime;
  1030. mddev->utime = sb->utime;
  1031. mddev->level = sb->level;
  1032. mddev->clevel[0] = 0;
  1033. mddev->layout = sb->layout;
  1034. mddev->raid_disks = sb->raid_disks;
  1035. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1036. mddev->events = ev1;
  1037. mddev->bitmap_info.offset = 0;
  1038. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1039. mddev->reshape_backwards = 0;
  1040. if (mddev->minor_version >= 91) {
  1041. mddev->reshape_position = sb->reshape_position;
  1042. mddev->delta_disks = sb->delta_disks;
  1043. mddev->new_level = sb->new_level;
  1044. mddev->new_layout = sb->new_layout;
  1045. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1046. if (mddev->delta_disks < 0)
  1047. mddev->reshape_backwards = 1;
  1048. } else {
  1049. mddev->reshape_position = MaxSector;
  1050. mddev->delta_disks = 0;
  1051. mddev->new_level = mddev->level;
  1052. mddev->new_layout = mddev->layout;
  1053. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1054. }
  1055. if (sb->state & (1<<MD_SB_CLEAN))
  1056. mddev->recovery_cp = MaxSector;
  1057. else {
  1058. if (sb->events_hi == sb->cp_events_hi &&
  1059. sb->events_lo == sb->cp_events_lo) {
  1060. mddev->recovery_cp = sb->recovery_cp;
  1061. } else
  1062. mddev->recovery_cp = 0;
  1063. }
  1064. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1065. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1066. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1067. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1068. mddev->max_disks = MD_SB_DISKS;
  1069. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1070. mddev->bitmap_info.file == NULL)
  1071. mddev->bitmap_info.offset =
  1072. mddev->bitmap_info.default_offset;
  1073. } else if (mddev->pers == NULL) {
  1074. /* Insist on good event counter while assembling, except
  1075. * for spares (which don't need an event count) */
  1076. ++ev1;
  1077. if (sb->disks[rdev->desc_nr].state & (
  1078. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1079. if (ev1 < mddev->events)
  1080. return -EINVAL;
  1081. } else if (mddev->bitmap) {
  1082. /* if adding to array with a bitmap, then we can accept an
  1083. * older device ... but not too old.
  1084. */
  1085. if (ev1 < mddev->bitmap->events_cleared)
  1086. return 0;
  1087. } else {
  1088. if (ev1 < mddev->events)
  1089. /* just a hot-add of a new device, leave raid_disk at -1 */
  1090. return 0;
  1091. }
  1092. if (mddev->level != LEVEL_MULTIPATH) {
  1093. desc = sb->disks + rdev->desc_nr;
  1094. if (desc->state & (1<<MD_DISK_FAULTY))
  1095. set_bit(Faulty, &rdev->flags);
  1096. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1097. desc->raid_disk < mddev->raid_disks */) {
  1098. set_bit(In_sync, &rdev->flags);
  1099. rdev->raid_disk = desc->raid_disk;
  1100. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1101. /* active but not in sync implies recovery up to
  1102. * reshape position. We don't know exactly where
  1103. * that is, so set to zero for now */
  1104. if (mddev->minor_version >= 91) {
  1105. rdev->recovery_offset = 0;
  1106. rdev->raid_disk = desc->raid_disk;
  1107. }
  1108. }
  1109. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1110. set_bit(WriteMostly, &rdev->flags);
  1111. } else /* MULTIPATH are always insync */
  1112. set_bit(In_sync, &rdev->flags);
  1113. return 0;
  1114. }
  1115. /*
  1116. * sync_super for 0.90.0
  1117. */
  1118. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1119. {
  1120. mdp_super_t *sb;
  1121. struct md_rdev *rdev2;
  1122. int next_spare = mddev->raid_disks;
  1123. /* make rdev->sb match mddev data..
  1124. *
  1125. * 1/ zero out disks
  1126. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1127. * 3/ any empty disks < next_spare become removed
  1128. *
  1129. * disks[0] gets initialised to REMOVED because
  1130. * we cannot be sure from other fields if it has
  1131. * been initialised or not.
  1132. */
  1133. int i;
  1134. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1135. rdev->sb_size = MD_SB_BYTES;
  1136. sb = page_address(rdev->sb_page);
  1137. memset(sb, 0, sizeof(*sb));
  1138. sb->md_magic = MD_SB_MAGIC;
  1139. sb->major_version = mddev->major_version;
  1140. sb->patch_version = mddev->patch_version;
  1141. sb->gvalid_words = 0; /* ignored */
  1142. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1143. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1144. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1145. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1146. sb->ctime = mddev->ctime;
  1147. sb->level = mddev->level;
  1148. sb->size = mddev->dev_sectors / 2;
  1149. sb->raid_disks = mddev->raid_disks;
  1150. sb->md_minor = mddev->md_minor;
  1151. sb->not_persistent = 0;
  1152. sb->utime = mddev->utime;
  1153. sb->state = 0;
  1154. sb->events_hi = (mddev->events>>32);
  1155. sb->events_lo = (u32)mddev->events;
  1156. if (mddev->reshape_position == MaxSector)
  1157. sb->minor_version = 90;
  1158. else {
  1159. sb->minor_version = 91;
  1160. sb->reshape_position = mddev->reshape_position;
  1161. sb->new_level = mddev->new_level;
  1162. sb->delta_disks = mddev->delta_disks;
  1163. sb->new_layout = mddev->new_layout;
  1164. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1165. }
  1166. mddev->minor_version = sb->minor_version;
  1167. if (mddev->in_sync)
  1168. {
  1169. sb->recovery_cp = mddev->recovery_cp;
  1170. sb->cp_events_hi = (mddev->events>>32);
  1171. sb->cp_events_lo = (u32)mddev->events;
  1172. if (mddev->recovery_cp == MaxSector)
  1173. sb->state = (1<< MD_SB_CLEAN);
  1174. } else
  1175. sb->recovery_cp = 0;
  1176. sb->layout = mddev->layout;
  1177. sb->chunk_size = mddev->chunk_sectors << 9;
  1178. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1179. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1180. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1181. rdev_for_each(rdev2, mddev) {
  1182. mdp_disk_t *d;
  1183. int desc_nr;
  1184. int is_active = test_bit(In_sync, &rdev2->flags);
  1185. if (rdev2->raid_disk >= 0 &&
  1186. sb->minor_version >= 91)
  1187. /* we have nowhere to store the recovery_offset,
  1188. * but if it is not below the reshape_position,
  1189. * we can piggy-back on that.
  1190. */
  1191. is_active = 1;
  1192. if (rdev2->raid_disk < 0 ||
  1193. test_bit(Faulty, &rdev2->flags))
  1194. is_active = 0;
  1195. if (is_active)
  1196. desc_nr = rdev2->raid_disk;
  1197. else
  1198. desc_nr = next_spare++;
  1199. rdev2->desc_nr = desc_nr;
  1200. d = &sb->disks[rdev2->desc_nr];
  1201. nr_disks++;
  1202. d->number = rdev2->desc_nr;
  1203. d->major = MAJOR(rdev2->bdev->bd_dev);
  1204. d->minor = MINOR(rdev2->bdev->bd_dev);
  1205. if (is_active)
  1206. d->raid_disk = rdev2->raid_disk;
  1207. else
  1208. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1209. if (test_bit(Faulty, &rdev2->flags))
  1210. d->state = (1<<MD_DISK_FAULTY);
  1211. else if (is_active) {
  1212. d->state = (1<<MD_DISK_ACTIVE);
  1213. if (test_bit(In_sync, &rdev2->flags))
  1214. d->state |= (1<<MD_DISK_SYNC);
  1215. active++;
  1216. working++;
  1217. } else {
  1218. d->state = 0;
  1219. spare++;
  1220. working++;
  1221. }
  1222. if (test_bit(WriteMostly, &rdev2->flags))
  1223. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1224. }
  1225. /* now set the "removed" and "faulty" bits on any missing devices */
  1226. for (i=0 ; i < mddev->raid_disks ; i++) {
  1227. mdp_disk_t *d = &sb->disks[i];
  1228. if (d->state == 0 && d->number == 0) {
  1229. d->number = i;
  1230. d->raid_disk = i;
  1231. d->state = (1<<MD_DISK_REMOVED);
  1232. d->state |= (1<<MD_DISK_FAULTY);
  1233. failed++;
  1234. }
  1235. }
  1236. sb->nr_disks = nr_disks;
  1237. sb->active_disks = active;
  1238. sb->working_disks = working;
  1239. sb->failed_disks = failed;
  1240. sb->spare_disks = spare;
  1241. sb->this_disk = sb->disks[rdev->desc_nr];
  1242. sb->sb_csum = calc_sb_csum(sb);
  1243. }
  1244. /*
  1245. * rdev_size_change for 0.90.0
  1246. */
  1247. static unsigned long long
  1248. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1249. {
  1250. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1251. return 0; /* component must fit device */
  1252. if (rdev->mddev->bitmap_info.offset)
  1253. return 0; /* can't move bitmap */
  1254. rdev->sb_start = calc_dev_sboffset(rdev);
  1255. if (!num_sectors || num_sectors > rdev->sb_start)
  1256. num_sectors = rdev->sb_start;
  1257. /* Limit to 4TB as metadata cannot record more than that.
  1258. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1259. */
  1260. if (num_sectors >= (2ULL << 32))
  1261. num_sectors = (2ULL << 32) - 2;
  1262. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1263. rdev->sb_page);
  1264. md_super_wait(rdev->mddev);
  1265. return num_sectors;
  1266. }
  1267. static int
  1268. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1269. {
  1270. /* non-zero offset changes not possible with v0.90 */
  1271. return new_offset == 0;
  1272. }
  1273. /*
  1274. * version 1 superblock
  1275. */
  1276. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1277. {
  1278. __le32 disk_csum;
  1279. u32 csum;
  1280. unsigned long long newcsum;
  1281. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1282. __le32 *isuper = (__le32*)sb;
  1283. int i;
  1284. disk_csum = sb->sb_csum;
  1285. sb->sb_csum = 0;
  1286. newcsum = 0;
  1287. for (i=0; size>=4; size -= 4 )
  1288. newcsum += le32_to_cpu(*isuper++);
  1289. if (size == 2)
  1290. newcsum += le16_to_cpu(*(__le16*) isuper);
  1291. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1292. sb->sb_csum = disk_csum;
  1293. return cpu_to_le32(csum);
  1294. }
  1295. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1296. int acknowledged);
  1297. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1298. {
  1299. struct mdp_superblock_1 *sb;
  1300. int ret;
  1301. sector_t sb_start;
  1302. sector_t sectors;
  1303. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1304. int bmask;
  1305. /*
  1306. * Calculate the position of the superblock in 512byte sectors.
  1307. * It is always aligned to a 4K boundary and
  1308. * depeding on minor_version, it can be:
  1309. * 0: At least 8K, but less than 12K, from end of device
  1310. * 1: At start of device
  1311. * 2: 4K from start of device.
  1312. */
  1313. switch(minor_version) {
  1314. case 0:
  1315. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1316. sb_start -= 8*2;
  1317. sb_start &= ~(sector_t)(4*2-1);
  1318. break;
  1319. case 1:
  1320. sb_start = 0;
  1321. break;
  1322. case 2:
  1323. sb_start = 8;
  1324. break;
  1325. default:
  1326. return -EINVAL;
  1327. }
  1328. rdev->sb_start = sb_start;
  1329. /* superblock is rarely larger than 1K, but it can be larger,
  1330. * and it is safe to read 4k, so we do that
  1331. */
  1332. ret = read_disk_sb(rdev, 4096);
  1333. if (ret) return ret;
  1334. sb = page_address(rdev->sb_page);
  1335. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1336. sb->major_version != cpu_to_le32(1) ||
  1337. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1338. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1339. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1340. return -EINVAL;
  1341. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1342. printk("md: invalid superblock checksum on %s\n",
  1343. bdevname(rdev->bdev,b));
  1344. return -EINVAL;
  1345. }
  1346. if (le64_to_cpu(sb->data_size) < 10) {
  1347. printk("md: data_size too small on %s\n",
  1348. bdevname(rdev->bdev,b));
  1349. return -EINVAL;
  1350. }
  1351. if (sb->pad0 ||
  1352. sb->pad3[0] ||
  1353. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1354. /* Some padding is non-zero, might be a new feature */
  1355. return -EINVAL;
  1356. rdev->preferred_minor = 0xffff;
  1357. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1358. rdev->new_data_offset = rdev->data_offset;
  1359. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1360. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1361. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1362. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1363. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1364. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1365. if (rdev->sb_size & bmask)
  1366. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1367. if (minor_version
  1368. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1369. return -EINVAL;
  1370. if (minor_version
  1371. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1372. return -EINVAL;
  1373. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1374. rdev->desc_nr = -1;
  1375. else
  1376. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1377. if (!rdev->bb_page) {
  1378. rdev->bb_page = alloc_page(GFP_KERNEL);
  1379. if (!rdev->bb_page)
  1380. return -ENOMEM;
  1381. }
  1382. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1383. rdev->badblocks.count == 0) {
  1384. /* need to load the bad block list.
  1385. * Currently we limit it to one page.
  1386. */
  1387. s32 offset;
  1388. sector_t bb_sector;
  1389. u64 *bbp;
  1390. int i;
  1391. int sectors = le16_to_cpu(sb->bblog_size);
  1392. if (sectors > (PAGE_SIZE / 512))
  1393. return -EINVAL;
  1394. offset = le32_to_cpu(sb->bblog_offset);
  1395. if (offset == 0)
  1396. return -EINVAL;
  1397. bb_sector = (long long)offset;
  1398. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1399. rdev->bb_page, READ, true))
  1400. return -EIO;
  1401. bbp = (u64 *)page_address(rdev->bb_page);
  1402. rdev->badblocks.shift = sb->bblog_shift;
  1403. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1404. u64 bb = le64_to_cpu(*bbp);
  1405. int count = bb & (0x3ff);
  1406. u64 sector = bb >> 10;
  1407. sector <<= sb->bblog_shift;
  1408. count <<= sb->bblog_shift;
  1409. if (bb + 1 == 0)
  1410. break;
  1411. if (md_set_badblocks(&rdev->badblocks,
  1412. sector, count, 1) == 0)
  1413. return -EINVAL;
  1414. }
  1415. } else if (sb->bblog_offset == 0)
  1416. rdev->badblocks.shift = -1;
  1417. if (!refdev) {
  1418. ret = 1;
  1419. } else {
  1420. __u64 ev1, ev2;
  1421. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1422. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1423. sb->level != refsb->level ||
  1424. sb->layout != refsb->layout ||
  1425. sb->chunksize != refsb->chunksize) {
  1426. printk(KERN_WARNING "md: %s has strangely different"
  1427. " superblock to %s\n",
  1428. bdevname(rdev->bdev,b),
  1429. bdevname(refdev->bdev,b2));
  1430. return -EINVAL;
  1431. }
  1432. ev1 = le64_to_cpu(sb->events);
  1433. ev2 = le64_to_cpu(refsb->events);
  1434. if (ev1 > ev2)
  1435. ret = 1;
  1436. else
  1437. ret = 0;
  1438. }
  1439. if (minor_version) {
  1440. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1441. sectors -= rdev->data_offset;
  1442. } else
  1443. sectors = rdev->sb_start;
  1444. if (sectors < le64_to_cpu(sb->data_size))
  1445. return -EINVAL;
  1446. rdev->sectors = le64_to_cpu(sb->data_size);
  1447. return ret;
  1448. }
  1449. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1450. {
  1451. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1452. __u64 ev1 = le64_to_cpu(sb->events);
  1453. rdev->raid_disk = -1;
  1454. clear_bit(Faulty, &rdev->flags);
  1455. clear_bit(In_sync, &rdev->flags);
  1456. clear_bit(WriteMostly, &rdev->flags);
  1457. if (mddev->raid_disks == 0) {
  1458. mddev->major_version = 1;
  1459. mddev->patch_version = 0;
  1460. mddev->external = 0;
  1461. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1462. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1463. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1464. mddev->level = le32_to_cpu(sb->level);
  1465. mddev->clevel[0] = 0;
  1466. mddev->layout = le32_to_cpu(sb->layout);
  1467. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1468. mddev->dev_sectors = le64_to_cpu(sb->size);
  1469. mddev->events = ev1;
  1470. mddev->bitmap_info.offset = 0;
  1471. mddev->bitmap_info.default_offset = 1024 >> 9;
  1472. mddev->reshape_backwards = 0;
  1473. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1474. memcpy(mddev->uuid, sb->set_uuid, 16);
  1475. mddev->max_disks = (4096-256)/2;
  1476. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1477. mddev->bitmap_info.file == NULL )
  1478. mddev->bitmap_info.offset =
  1479. (__s32)le32_to_cpu(sb->bitmap_offset);
  1480. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1481. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1482. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1483. mddev->new_level = le32_to_cpu(sb->new_level);
  1484. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1485. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1486. if (mddev->delta_disks < 0 ||
  1487. (mddev->delta_disks == 0 &&
  1488. (le32_to_cpu(sb->feature_map)
  1489. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1490. mddev->reshape_backwards = 1;
  1491. } else {
  1492. mddev->reshape_position = MaxSector;
  1493. mddev->delta_disks = 0;
  1494. mddev->new_level = mddev->level;
  1495. mddev->new_layout = mddev->layout;
  1496. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1497. }
  1498. } else if (mddev->pers == NULL) {
  1499. /* Insist of good event counter while assembling, except for
  1500. * spares (which don't need an event count) */
  1501. ++ev1;
  1502. if (rdev->desc_nr >= 0 &&
  1503. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1504. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1505. if (ev1 < mddev->events)
  1506. return -EINVAL;
  1507. } else if (mddev->bitmap) {
  1508. /* If adding to array with a bitmap, then we can accept an
  1509. * older device, but not too old.
  1510. */
  1511. if (ev1 < mddev->bitmap->events_cleared)
  1512. return 0;
  1513. } else {
  1514. if (ev1 < mddev->events)
  1515. /* just a hot-add of a new device, leave raid_disk at -1 */
  1516. return 0;
  1517. }
  1518. if (mddev->level != LEVEL_MULTIPATH) {
  1519. int role;
  1520. if (rdev->desc_nr < 0 ||
  1521. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1522. role = 0xffff;
  1523. rdev->desc_nr = -1;
  1524. } else
  1525. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1526. switch(role) {
  1527. case 0xffff: /* spare */
  1528. break;
  1529. case 0xfffe: /* faulty */
  1530. set_bit(Faulty, &rdev->flags);
  1531. break;
  1532. default:
  1533. if ((le32_to_cpu(sb->feature_map) &
  1534. MD_FEATURE_RECOVERY_OFFSET))
  1535. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1536. else
  1537. set_bit(In_sync, &rdev->flags);
  1538. rdev->raid_disk = role;
  1539. break;
  1540. }
  1541. if (sb->devflags & WriteMostly1)
  1542. set_bit(WriteMostly, &rdev->flags);
  1543. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1544. set_bit(Replacement, &rdev->flags);
  1545. } else /* MULTIPATH are always insync */
  1546. set_bit(In_sync, &rdev->flags);
  1547. return 0;
  1548. }
  1549. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1550. {
  1551. struct mdp_superblock_1 *sb;
  1552. struct md_rdev *rdev2;
  1553. int max_dev, i;
  1554. /* make rdev->sb match mddev and rdev data. */
  1555. sb = page_address(rdev->sb_page);
  1556. sb->feature_map = 0;
  1557. sb->pad0 = 0;
  1558. sb->recovery_offset = cpu_to_le64(0);
  1559. memset(sb->pad3, 0, sizeof(sb->pad3));
  1560. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1561. sb->events = cpu_to_le64(mddev->events);
  1562. if (mddev->in_sync)
  1563. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1564. else
  1565. sb->resync_offset = cpu_to_le64(0);
  1566. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1567. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1568. sb->size = cpu_to_le64(mddev->dev_sectors);
  1569. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1570. sb->level = cpu_to_le32(mddev->level);
  1571. sb->layout = cpu_to_le32(mddev->layout);
  1572. if (test_bit(WriteMostly, &rdev->flags))
  1573. sb->devflags |= WriteMostly1;
  1574. else
  1575. sb->devflags &= ~WriteMostly1;
  1576. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1577. sb->data_size = cpu_to_le64(rdev->sectors);
  1578. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1579. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1580. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1581. }
  1582. if (rdev->raid_disk >= 0 &&
  1583. !test_bit(In_sync, &rdev->flags)) {
  1584. sb->feature_map |=
  1585. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1586. sb->recovery_offset =
  1587. cpu_to_le64(rdev->recovery_offset);
  1588. }
  1589. if (test_bit(Replacement, &rdev->flags))
  1590. sb->feature_map |=
  1591. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1592. if (mddev->reshape_position != MaxSector) {
  1593. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1594. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1595. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1596. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1597. sb->new_level = cpu_to_le32(mddev->new_level);
  1598. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1599. if (mddev->delta_disks == 0 &&
  1600. mddev->reshape_backwards)
  1601. sb->feature_map
  1602. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1603. if (rdev->new_data_offset != rdev->data_offset) {
  1604. sb->feature_map
  1605. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1606. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1607. - rdev->data_offset));
  1608. }
  1609. }
  1610. if (rdev->badblocks.count == 0)
  1611. /* Nothing to do for bad blocks*/ ;
  1612. else if (sb->bblog_offset == 0)
  1613. /* Cannot record bad blocks on this device */
  1614. md_error(mddev, rdev);
  1615. else {
  1616. struct badblocks *bb = &rdev->badblocks;
  1617. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1618. u64 *p = bb->page;
  1619. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1620. if (bb->changed) {
  1621. unsigned seq;
  1622. retry:
  1623. seq = read_seqbegin(&bb->lock);
  1624. memset(bbp, 0xff, PAGE_SIZE);
  1625. for (i = 0 ; i < bb->count ; i++) {
  1626. u64 internal_bb = *p++;
  1627. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1628. | BB_LEN(internal_bb));
  1629. *bbp++ = cpu_to_le64(store_bb);
  1630. }
  1631. bb->changed = 0;
  1632. if (read_seqretry(&bb->lock, seq))
  1633. goto retry;
  1634. bb->sector = (rdev->sb_start +
  1635. (int)le32_to_cpu(sb->bblog_offset));
  1636. bb->size = le16_to_cpu(sb->bblog_size);
  1637. }
  1638. }
  1639. max_dev = 0;
  1640. rdev_for_each(rdev2, mddev)
  1641. if (rdev2->desc_nr+1 > max_dev)
  1642. max_dev = rdev2->desc_nr+1;
  1643. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1644. int bmask;
  1645. sb->max_dev = cpu_to_le32(max_dev);
  1646. rdev->sb_size = max_dev * 2 + 256;
  1647. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1648. if (rdev->sb_size & bmask)
  1649. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1650. } else
  1651. max_dev = le32_to_cpu(sb->max_dev);
  1652. for (i=0; i<max_dev;i++)
  1653. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1654. rdev_for_each(rdev2, mddev) {
  1655. i = rdev2->desc_nr;
  1656. if (test_bit(Faulty, &rdev2->flags))
  1657. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1658. else if (test_bit(In_sync, &rdev2->flags))
  1659. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1660. else if (rdev2->raid_disk >= 0)
  1661. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1662. else
  1663. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1664. }
  1665. sb->sb_csum = calc_sb_1_csum(sb);
  1666. }
  1667. static unsigned long long
  1668. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1669. {
  1670. struct mdp_superblock_1 *sb;
  1671. sector_t max_sectors;
  1672. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1673. return 0; /* component must fit device */
  1674. if (rdev->data_offset != rdev->new_data_offset)
  1675. return 0; /* too confusing */
  1676. if (rdev->sb_start < rdev->data_offset) {
  1677. /* minor versions 1 and 2; superblock before data */
  1678. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1679. max_sectors -= rdev->data_offset;
  1680. if (!num_sectors || num_sectors > max_sectors)
  1681. num_sectors = max_sectors;
  1682. } else if (rdev->mddev->bitmap_info.offset) {
  1683. /* minor version 0 with bitmap we can't move */
  1684. return 0;
  1685. } else {
  1686. /* minor version 0; superblock after data */
  1687. sector_t sb_start;
  1688. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1689. sb_start &= ~(sector_t)(4*2 - 1);
  1690. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1691. if (!num_sectors || num_sectors > max_sectors)
  1692. num_sectors = max_sectors;
  1693. rdev->sb_start = sb_start;
  1694. }
  1695. sb = page_address(rdev->sb_page);
  1696. sb->data_size = cpu_to_le64(num_sectors);
  1697. sb->super_offset = rdev->sb_start;
  1698. sb->sb_csum = calc_sb_1_csum(sb);
  1699. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1700. rdev->sb_page);
  1701. md_super_wait(rdev->mddev);
  1702. return num_sectors;
  1703. }
  1704. static int
  1705. super_1_allow_new_offset(struct md_rdev *rdev,
  1706. unsigned long long new_offset)
  1707. {
  1708. /* All necessary checks on new >= old have been done */
  1709. struct bitmap *bitmap;
  1710. if (new_offset >= rdev->data_offset)
  1711. return 1;
  1712. /* with 1.0 metadata, there is no metadata to tread on
  1713. * so we can always move back */
  1714. if (rdev->mddev->minor_version == 0)
  1715. return 1;
  1716. /* otherwise we must be sure not to step on
  1717. * any metadata, so stay:
  1718. * 36K beyond start of superblock
  1719. * beyond end of badblocks
  1720. * beyond write-intent bitmap
  1721. */
  1722. if (rdev->sb_start + (32+4)*2 > new_offset)
  1723. return 0;
  1724. bitmap = rdev->mddev->bitmap;
  1725. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1726. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1727. bitmap->file_pages * (PAGE_SIZE>>9) > new_offset)
  1728. return 0;
  1729. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1730. return 0;
  1731. return 1;
  1732. }
  1733. static struct super_type super_types[] = {
  1734. [0] = {
  1735. .name = "0.90.0",
  1736. .owner = THIS_MODULE,
  1737. .load_super = super_90_load,
  1738. .validate_super = super_90_validate,
  1739. .sync_super = super_90_sync,
  1740. .rdev_size_change = super_90_rdev_size_change,
  1741. .allow_new_offset = super_90_allow_new_offset,
  1742. },
  1743. [1] = {
  1744. .name = "md-1",
  1745. .owner = THIS_MODULE,
  1746. .load_super = super_1_load,
  1747. .validate_super = super_1_validate,
  1748. .sync_super = super_1_sync,
  1749. .rdev_size_change = super_1_rdev_size_change,
  1750. .allow_new_offset = super_1_allow_new_offset,
  1751. },
  1752. };
  1753. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1754. {
  1755. if (mddev->sync_super) {
  1756. mddev->sync_super(mddev, rdev);
  1757. return;
  1758. }
  1759. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1760. super_types[mddev->major_version].sync_super(mddev, rdev);
  1761. }
  1762. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1763. {
  1764. struct md_rdev *rdev, *rdev2;
  1765. rcu_read_lock();
  1766. rdev_for_each_rcu(rdev, mddev1)
  1767. rdev_for_each_rcu(rdev2, mddev2)
  1768. if (rdev->bdev->bd_contains ==
  1769. rdev2->bdev->bd_contains) {
  1770. rcu_read_unlock();
  1771. return 1;
  1772. }
  1773. rcu_read_unlock();
  1774. return 0;
  1775. }
  1776. static LIST_HEAD(pending_raid_disks);
  1777. /*
  1778. * Try to register data integrity profile for an mddev
  1779. *
  1780. * This is called when an array is started and after a disk has been kicked
  1781. * from the array. It only succeeds if all working and active component devices
  1782. * are integrity capable with matching profiles.
  1783. */
  1784. int md_integrity_register(struct mddev *mddev)
  1785. {
  1786. struct md_rdev *rdev, *reference = NULL;
  1787. if (list_empty(&mddev->disks))
  1788. return 0; /* nothing to do */
  1789. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1790. return 0; /* shouldn't register, or already is */
  1791. rdev_for_each(rdev, mddev) {
  1792. /* skip spares and non-functional disks */
  1793. if (test_bit(Faulty, &rdev->flags))
  1794. continue;
  1795. if (rdev->raid_disk < 0)
  1796. continue;
  1797. if (!reference) {
  1798. /* Use the first rdev as the reference */
  1799. reference = rdev;
  1800. continue;
  1801. }
  1802. /* does this rdev's profile match the reference profile? */
  1803. if (blk_integrity_compare(reference->bdev->bd_disk,
  1804. rdev->bdev->bd_disk) < 0)
  1805. return -EINVAL;
  1806. }
  1807. if (!reference || !bdev_get_integrity(reference->bdev))
  1808. return 0;
  1809. /*
  1810. * All component devices are integrity capable and have matching
  1811. * profiles, register the common profile for the md device.
  1812. */
  1813. if (blk_integrity_register(mddev->gendisk,
  1814. bdev_get_integrity(reference->bdev)) != 0) {
  1815. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1816. mdname(mddev));
  1817. return -EINVAL;
  1818. }
  1819. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1820. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1821. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1822. mdname(mddev));
  1823. return -EINVAL;
  1824. }
  1825. return 0;
  1826. }
  1827. EXPORT_SYMBOL(md_integrity_register);
  1828. /* Disable data integrity if non-capable/non-matching disk is being added */
  1829. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1830. {
  1831. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1832. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1833. if (!bi_mddev) /* nothing to do */
  1834. return;
  1835. if (rdev->raid_disk < 0) /* skip spares */
  1836. return;
  1837. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1838. rdev->bdev->bd_disk) >= 0)
  1839. return;
  1840. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1841. blk_integrity_unregister(mddev->gendisk);
  1842. }
  1843. EXPORT_SYMBOL(md_integrity_add_rdev);
  1844. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1845. {
  1846. char b[BDEVNAME_SIZE];
  1847. struct kobject *ko;
  1848. char *s;
  1849. int err;
  1850. if (rdev->mddev) {
  1851. MD_BUG();
  1852. return -EINVAL;
  1853. }
  1854. /* prevent duplicates */
  1855. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1856. return -EEXIST;
  1857. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1858. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1859. rdev->sectors < mddev->dev_sectors)) {
  1860. if (mddev->pers) {
  1861. /* Cannot change size, so fail
  1862. * If mddev->level <= 0, then we don't care
  1863. * about aligning sizes (e.g. linear)
  1864. */
  1865. if (mddev->level > 0)
  1866. return -ENOSPC;
  1867. } else
  1868. mddev->dev_sectors = rdev->sectors;
  1869. }
  1870. /* Verify rdev->desc_nr is unique.
  1871. * If it is -1, assign a free number, else
  1872. * check number is not in use
  1873. */
  1874. if (rdev->desc_nr < 0) {
  1875. int choice = 0;
  1876. if (mddev->pers) choice = mddev->raid_disks;
  1877. while (find_rdev_nr(mddev, choice))
  1878. choice++;
  1879. rdev->desc_nr = choice;
  1880. } else {
  1881. if (find_rdev_nr(mddev, rdev->desc_nr))
  1882. return -EBUSY;
  1883. }
  1884. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1885. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1886. mdname(mddev), mddev->max_disks);
  1887. return -EBUSY;
  1888. }
  1889. bdevname(rdev->bdev,b);
  1890. while ( (s=strchr(b, '/')) != NULL)
  1891. *s = '!';
  1892. rdev->mddev = mddev;
  1893. printk(KERN_INFO "md: bind<%s>\n", b);
  1894. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1895. goto fail;
  1896. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1897. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1898. /* failure here is OK */;
  1899. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1900. list_add_rcu(&rdev->same_set, &mddev->disks);
  1901. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1902. /* May as well allow recovery to be retried once */
  1903. mddev->recovery_disabled++;
  1904. return 0;
  1905. fail:
  1906. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1907. b, mdname(mddev));
  1908. return err;
  1909. }
  1910. static void md_delayed_delete(struct work_struct *ws)
  1911. {
  1912. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1913. kobject_del(&rdev->kobj);
  1914. kobject_put(&rdev->kobj);
  1915. }
  1916. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1917. {
  1918. char b[BDEVNAME_SIZE];
  1919. if (!rdev->mddev) {
  1920. MD_BUG();
  1921. return;
  1922. }
  1923. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1924. list_del_rcu(&rdev->same_set);
  1925. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1926. rdev->mddev = NULL;
  1927. sysfs_remove_link(&rdev->kobj, "block");
  1928. sysfs_put(rdev->sysfs_state);
  1929. rdev->sysfs_state = NULL;
  1930. kfree(rdev->badblocks.page);
  1931. rdev->badblocks.count = 0;
  1932. rdev->badblocks.page = NULL;
  1933. /* We need to delay this, otherwise we can deadlock when
  1934. * writing to 'remove' to "dev/state". We also need
  1935. * to delay it due to rcu usage.
  1936. */
  1937. synchronize_rcu();
  1938. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1939. kobject_get(&rdev->kobj);
  1940. queue_work(md_misc_wq, &rdev->del_work);
  1941. }
  1942. /*
  1943. * prevent the device from being mounted, repartitioned or
  1944. * otherwise reused by a RAID array (or any other kernel
  1945. * subsystem), by bd_claiming the device.
  1946. */
  1947. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1948. {
  1949. int err = 0;
  1950. struct block_device *bdev;
  1951. char b[BDEVNAME_SIZE];
  1952. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1953. shared ? (struct md_rdev *)lock_rdev : rdev);
  1954. if (IS_ERR(bdev)) {
  1955. printk(KERN_ERR "md: could not open %s.\n",
  1956. __bdevname(dev, b));
  1957. return PTR_ERR(bdev);
  1958. }
  1959. rdev->bdev = bdev;
  1960. return err;
  1961. }
  1962. static void unlock_rdev(struct md_rdev *rdev)
  1963. {
  1964. struct block_device *bdev = rdev->bdev;
  1965. rdev->bdev = NULL;
  1966. if (!bdev)
  1967. MD_BUG();
  1968. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1969. }
  1970. void md_autodetect_dev(dev_t dev);
  1971. static void export_rdev(struct md_rdev * rdev)
  1972. {
  1973. char b[BDEVNAME_SIZE];
  1974. printk(KERN_INFO "md: export_rdev(%s)\n",
  1975. bdevname(rdev->bdev,b));
  1976. if (rdev->mddev)
  1977. MD_BUG();
  1978. free_disk_sb(rdev);
  1979. #ifndef MODULE
  1980. if (test_bit(AutoDetected, &rdev->flags))
  1981. md_autodetect_dev(rdev->bdev->bd_dev);
  1982. #endif
  1983. unlock_rdev(rdev);
  1984. kobject_put(&rdev->kobj);
  1985. }
  1986. static void kick_rdev_from_array(struct md_rdev * rdev)
  1987. {
  1988. unbind_rdev_from_array(rdev);
  1989. export_rdev(rdev);
  1990. }
  1991. static void export_array(struct mddev *mddev)
  1992. {
  1993. struct md_rdev *rdev, *tmp;
  1994. rdev_for_each_safe(rdev, tmp, mddev) {
  1995. if (!rdev->mddev) {
  1996. MD_BUG();
  1997. continue;
  1998. }
  1999. kick_rdev_from_array(rdev);
  2000. }
  2001. if (!list_empty(&mddev->disks))
  2002. MD_BUG();
  2003. mddev->raid_disks = 0;
  2004. mddev->major_version = 0;
  2005. }
  2006. static void print_desc(mdp_disk_t *desc)
  2007. {
  2008. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  2009. desc->major,desc->minor,desc->raid_disk,desc->state);
  2010. }
  2011. static void print_sb_90(mdp_super_t *sb)
  2012. {
  2013. int i;
  2014. printk(KERN_INFO
  2015. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  2016. sb->major_version, sb->minor_version, sb->patch_version,
  2017. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  2018. sb->ctime);
  2019. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  2020. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2021. sb->md_minor, sb->layout, sb->chunk_size);
  2022. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2023. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2024. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2025. sb->failed_disks, sb->spare_disks,
  2026. sb->sb_csum, (unsigned long)sb->events_lo);
  2027. printk(KERN_INFO);
  2028. for (i = 0; i < MD_SB_DISKS; i++) {
  2029. mdp_disk_t *desc;
  2030. desc = sb->disks + i;
  2031. if (desc->number || desc->major || desc->minor ||
  2032. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2033. printk(" D %2d: ", i);
  2034. print_desc(desc);
  2035. }
  2036. }
  2037. printk(KERN_INFO "md: THIS: ");
  2038. print_desc(&sb->this_disk);
  2039. }
  2040. static void print_sb_1(struct mdp_superblock_1 *sb)
  2041. {
  2042. __u8 *uuid;
  2043. uuid = sb->set_uuid;
  2044. printk(KERN_INFO
  2045. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2046. "md: Name: \"%s\" CT:%llu\n",
  2047. le32_to_cpu(sb->major_version),
  2048. le32_to_cpu(sb->feature_map),
  2049. uuid,
  2050. sb->set_name,
  2051. (unsigned long long)le64_to_cpu(sb->ctime)
  2052. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2053. uuid = sb->device_uuid;
  2054. printk(KERN_INFO
  2055. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2056. " RO:%llu\n"
  2057. "md: Dev:%08x UUID: %pU\n"
  2058. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2059. "md: (MaxDev:%u) \n",
  2060. le32_to_cpu(sb->level),
  2061. (unsigned long long)le64_to_cpu(sb->size),
  2062. le32_to_cpu(sb->raid_disks),
  2063. le32_to_cpu(sb->layout),
  2064. le32_to_cpu(sb->chunksize),
  2065. (unsigned long long)le64_to_cpu(sb->data_offset),
  2066. (unsigned long long)le64_to_cpu(sb->data_size),
  2067. (unsigned long long)le64_to_cpu(sb->super_offset),
  2068. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2069. le32_to_cpu(sb->dev_number),
  2070. uuid,
  2071. sb->devflags,
  2072. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2073. (unsigned long long)le64_to_cpu(sb->events),
  2074. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2075. le32_to_cpu(sb->sb_csum),
  2076. le32_to_cpu(sb->max_dev)
  2077. );
  2078. }
  2079. static void print_rdev(struct md_rdev *rdev, int major_version)
  2080. {
  2081. char b[BDEVNAME_SIZE];
  2082. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2083. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2084. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2085. rdev->desc_nr);
  2086. if (rdev->sb_loaded) {
  2087. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2088. switch (major_version) {
  2089. case 0:
  2090. print_sb_90(page_address(rdev->sb_page));
  2091. break;
  2092. case 1:
  2093. print_sb_1(page_address(rdev->sb_page));
  2094. break;
  2095. }
  2096. } else
  2097. printk(KERN_INFO "md: no rdev superblock!\n");
  2098. }
  2099. static void md_print_devices(void)
  2100. {
  2101. struct list_head *tmp;
  2102. struct md_rdev *rdev;
  2103. struct mddev *mddev;
  2104. char b[BDEVNAME_SIZE];
  2105. printk("\n");
  2106. printk("md: **********************************\n");
  2107. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2108. printk("md: **********************************\n");
  2109. for_each_mddev(mddev, tmp) {
  2110. if (mddev->bitmap)
  2111. bitmap_print_sb(mddev->bitmap);
  2112. else
  2113. printk("%s: ", mdname(mddev));
  2114. rdev_for_each(rdev, mddev)
  2115. printk("<%s>", bdevname(rdev->bdev,b));
  2116. printk("\n");
  2117. rdev_for_each(rdev, mddev)
  2118. print_rdev(rdev, mddev->major_version);
  2119. }
  2120. printk("md: **********************************\n");
  2121. printk("\n");
  2122. }
  2123. static void sync_sbs(struct mddev * mddev, int nospares)
  2124. {
  2125. /* Update each superblock (in-memory image), but
  2126. * if we are allowed to, skip spares which already
  2127. * have the right event counter, or have one earlier
  2128. * (which would mean they aren't being marked as dirty
  2129. * with the rest of the array)
  2130. */
  2131. struct md_rdev *rdev;
  2132. rdev_for_each(rdev, mddev) {
  2133. if (rdev->sb_events == mddev->events ||
  2134. (nospares &&
  2135. rdev->raid_disk < 0 &&
  2136. rdev->sb_events+1 == mddev->events)) {
  2137. /* Don't update this superblock */
  2138. rdev->sb_loaded = 2;
  2139. } else {
  2140. sync_super(mddev, rdev);
  2141. rdev->sb_loaded = 1;
  2142. }
  2143. }
  2144. }
  2145. static void md_update_sb(struct mddev * mddev, int force_change)
  2146. {
  2147. struct md_rdev *rdev;
  2148. int sync_req;
  2149. int nospares = 0;
  2150. int any_badblocks_changed = 0;
  2151. repeat:
  2152. /* First make sure individual recovery_offsets are correct */
  2153. rdev_for_each(rdev, mddev) {
  2154. if (rdev->raid_disk >= 0 &&
  2155. mddev->delta_disks >= 0 &&
  2156. !test_bit(In_sync, &rdev->flags) &&
  2157. mddev->curr_resync_completed > rdev->recovery_offset)
  2158. rdev->recovery_offset = mddev->curr_resync_completed;
  2159. }
  2160. if (!mddev->persistent) {
  2161. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2162. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2163. if (!mddev->external) {
  2164. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2165. rdev_for_each(rdev, mddev) {
  2166. if (rdev->badblocks.changed) {
  2167. rdev->badblocks.changed = 0;
  2168. md_ack_all_badblocks(&rdev->badblocks);
  2169. md_error(mddev, rdev);
  2170. }
  2171. clear_bit(Blocked, &rdev->flags);
  2172. clear_bit(BlockedBadBlocks, &rdev->flags);
  2173. wake_up(&rdev->blocked_wait);
  2174. }
  2175. }
  2176. wake_up(&mddev->sb_wait);
  2177. return;
  2178. }
  2179. spin_lock_irq(&mddev->write_lock);
  2180. mddev->utime = get_seconds();
  2181. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2182. force_change = 1;
  2183. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2184. /* just a clean<-> dirty transition, possibly leave spares alone,
  2185. * though if events isn't the right even/odd, we will have to do
  2186. * spares after all
  2187. */
  2188. nospares = 1;
  2189. if (force_change)
  2190. nospares = 0;
  2191. if (mddev->degraded)
  2192. /* If the array is degraded, then skipping spares is both
  2193. * dangerous and fairly pointless.
  2194. * Dangerous because a device that was removed from the array
  2195. * might have a event_count that still looks up-to-date,
  2196. * so it can be re-added without a resync.
  2197. * Pointless because if there are any spares to skip,
  2198. * then a recovery will happen and soon that array won't
  2199. * be degraded any more and the spare can go back to sleep then.
  2200. */
  2201. nospares = 0;
  2202. sync_req = mddev->in_sync;
  2203. /* If this is just a dirty<->clean transition, and the array is clean
  2204. * and 'events' is odd, we can roll back to the previous clean state */
  2205. if (nospares
  2206. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2207. && mddev->can_decrease_events
  2208. && mddev->events != 1) {
  2209. mddev->events--;
  2210. mddev->can_decrease_events = 0;
  2211. } else {
  2212. /* otherwise we have to go forward and ... */
  2213. mddev->events ++;
  2214. mddev->can_decrease_events = nospares;
  2215. }
  2216. if (!mddev->events) {
  2217. /*
  2218. * oops, this 64-bit counter should never wrap.
  2219. * Either we are in around ~1 trillion A.C., assuming
  2220. * 1 reboot per second, or we have a bug:
  2221. */
  2222. MD_BUG();
  2223. mddev->events --;
  2224. }
  2225. rdev_for_each(rdev, mddev) {
  2226. if (rdev->badblocks.changed)
  2227. any_badblocks_changed++;
  2228. if (test_bit(Faulty, &rdev->flags))
  2229. set_bit(FaultRecorded, &rdev->flags);
  2230. }
  2231. sync_sbs(mddev, nospares);
  2232. spin_unlock_irq(&mddev->write_lock);
  2233. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2234. mdname(mddev), mddev->in_sync);
  2235. bitmap_update_sb(mddev->bitmap);
  2236. rdev_for_each(rdev, mddev) {
  2237. char b[BDEVNAME_SIZE];
  2238. if (rdev->sb_loaded != 1)
  2239. continue; /* no noise on spare devices */
  2240. if (!test_bit(Faulty, &rdev->flags) &&
  2241. rdev->saved_raid_disk == -1) {
  2242. md_super_write(mddev,rdev,
  2243. rdev->sb_start, rdev->sb_size,
  2244. rdev->sb_page);
  2245. pr_debug("md: (write) %s's sb offset: %llu\n",
  2246. bdevname(rdev->bdev, b),
  2247. (unsigned long long)rdev->sb_start);
  2248. rdev->sb_events = mddev->events;
  2249. if (rdev->badblocks.size) {
  2250. md_super_write(mddev, rdev,
  2251. rdev->badblocks.sector,
  2252. rdev->badblocks.size << 9,
  2253. rdev->bb_page);
  2254. rdev->badblocks.size = 0;
  2255. }
  2256. } else if (test_bit(Faulty, &rdev->flags))
  2257. pr_debug("md: %s (skipping faulty)\n",
  2258. bdevname(rdev->bdev, b));
  2259. else
  2260. pr_debug("(skipping incremental s/r ");
  2261. if (mddev->level == LEVEL_MULTIPATH)
  2262. /* only need to write one superblock... */
  2263. break;
  2264. }
  2265. md_super_wait(mddev);
  2266. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2267. spin_lock_irq(&mddev->write_lock);
  2268. if (mddev->in_sync != sync_req ||
  2269. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2270. /* have to write it out again */
  2271. spin_unlock_irq(&mddev->write_lock);
  2272. goto repeat;
  2273. }
  2274. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2275. spin_unlock_irq(&mddev->write_lock);
  2276. wake_up(&mddev->sb_wait);
  2277. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2278. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2279. rdev_for_each(rdev, mddev) {
  2280. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2281. clear_bit(Blocked, &rdev->flags);
  2282. if (any_badblocks_changed)
  2283. md_ack_all_badblocks(&rdev->badblocks);
  2284. clear_bit(BlockedBadBlocks, &rdev->flags);
  2285. wake_up(&rdev->blocked_wait);
  2286. }
  2287. }
  2288. /* words written to sysfs files may, or may not, be \n terminated.
  2289. * We want to accept with case. For this we use cmd_match.
  2290. */
  2291. static int cmd_match(const char *cmd, const char *str)
  2292. {
  2293. /* See if cmd, written into a sysfs file, matches
  2294. * str. They must either be the same, or cmd can
  2295. * have a trailing newline
  2296. */
  2297. while (*cmd && *str && *cmd == *str) {
  2298. cmd++;
  2299. str++;
  2300. }
  2301. if (*cmd == '\n')
  2302. cmd++;
  2303. if (*str || *cmd)
  2304. return 0;
  2305. return 1;
  2306. }
  2307. struct rdev_sysfs_entry {
  2308. struct attribute attr;
  2309. ssize_t (*show)(struct md_rdev *, char *);
  2310. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2311. };
  2312. static ssize_t
  2313. state_show(struct md_rdev *rdev, char *page)
  2314. {
  2315. char *sep = "";
  2316. size_t len = 0;
  2317. if (test_bit(Faulty, &rdev->flags) ||
  2318. rdev->badblocks.unacked_exist) {
  2319. len+= sprintf(page+len, "%sfaulty",sep);
  2320. sep = ",";
  2321. }
  2322. if (test_bit(In_sync, &rdev->flags)) {
  2323. len += sprintf(page+len, "%sin_sync",sep);
  2324. sep = ",";
  2325. }
  2326. if (test_bit(WriteMostly, &rdev->flags)) {
  2327. len += sprintf(page+len, "%swrite_mostly",sep);
  2328. sep = ",";
  2329. }
  2330. if (test_bit(Blocked, &rdev->flags) ||
  2331. (rdev->badblocks.unacked_exist
  2332. && !test_bit(Faulty, &rdev->flags))) {
  2333. len += sprintf(page+len, "%sblocked", sep);
  2334. sep = ",";
  2335. }
  2336. if (!test_bit(Faulty, &rdev->flags) &&
  2337. !test_bit(In_sync, &rdev->flags)) {
  2338. len += sprintf(page+len, "%sspare", sep);
  2339. sep = ",";
  2340. }
  2341. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2342. len += sprintf(page+len, "%swrite_error", sep);
  2343. sep = ",";
  2344. }
  2345. if (test_bit(WantReplacement, &rdev->flags)) {
  2346. len += sprintf(page+len, "%swant_replacement", sep);
  2347. sep = ",";
  2348. }
  2349. if (test_bit(Replacement, &rdev->flags)) {
  2350. len += sprintf(page+len, "%sreplacement", sep);
  2351. sep = ",";
  2352. }
  2353. return len+sprintf(page+len, "\n");
  2354. }
  2355. static ssize_t
  2356. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2357. {
  2358. /* can write
  2359. * faulty - simulates an error
  2360. * remove - disconnects the device
  2361. * writemostly - sets write_mostly
  2362. * -writemostly - clears write_mostly
  2363. * blocked - sets the Blocked flags
  2364. * -blocked - clears the Blocked and possibly simulates an error
  2365. * insync - sets Insync providing device isn't active
  2366. * write_error - sets WriteErrorSeen
  2367. * -write_error - clears WriteErrorSeen
  2368. */
  2369. int err = -EINVAL;
  2370. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2371. md_error(rdev->mddev, rdev);
  2372. if (test_bit(Faulty, &rdev->flags))
  2373. err = 0;
  2374. else
  2375. err = -EBUSY;
  2376. } else if (cmd_match(buf, "remove")) {
  2377. if (rdev->raid_disk >= 0)
  2378. err = -EBUSY;
  2379. else {
  2380. struct mddev *mddev = rdev->mddev;
  2381. kick_rdev_from_array(rdev);
  2382. if (mddev->pers)
  2383. md_update_sb(mddev, 1);
  2384. md_new_event(mddev);
  2385. err = 0;
  2386. }
  2387. } else if (cmd_match(buf, "writemostly")) {
  2388. set_bit(WriteMostly, &rdev->flags);
  2389. err = 0;
  2390. } else if (cmd_match(buf, "-writemostly")) {
  2391. clear_bit(WriteMostly, &rdev->flags);
  2392. err = 0;
  2393. } else if (cmd_match(buf, "blocked")) {
  2394. set_bit(Blocked, &rdev->flags);
  2395. err = 0;
  2396. } else if (cmd_match(buf, "-blocked")) {
  2397. if (!test_bit(Faulty, &rdev->flags) &&
  2398. rdev->badblocks.unacked_exist) {
  2399. /* metadata handler doesn't understand badblocks,
  2400. * so we need to fail the device
  2401. */
  2402. md_error(rdev->mddev, rdev);
  2403. }
  2404. clear_bit(Blocked, &rdev->flags);
  2405. clear_bit(BlockedBadBlocks, &rdev->flags);
  2406. wake_up(&rdev->blocked_wait);
  2407. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2408. md_wakeup_thread(rdev->mddev->thread);
  2409. err = 0;
  2410. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2411. set_bit(In_sync, &rdev->flags);
  2412. err = 0;
  2413. } else if (cmd_match(buf, "write_error")) {
  2414. set_bit(WriteErrorSeen, &rdev->flags);
  2415. err = 0;
  2416. } else if (cmd_match(buf, "-write_error")) {
  2417. clear_bit(WriteErrorSeen, &rdev->flags);
  2418. err = 0;
  2419. } else if (cmd_match(buf, "want_replacement")) {
  2420. /* Any non-spare device that is not a replacement can
  2421. * become want_replacement at any time, but we then need to
  2422. * check if recovery is needed.
  2423. */
  2424. if (rdev->raid_disk >= 0 &&
  2425. !test_bit(Replacement, &rdev->flags))
  2426. set_bit(WantReplacement, &rdev->flags);
  2427. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2428. md_wakeup_thread(rdev->mddev->thread);
  2429. err = 0;
  2430. } else if (cmd_match(buf, "-want_replacement")) {
  2431. /* Clearing 'want_replacement' is always allowed.
  2432. * Once replacements starts it is too late though.
  2433. */
  2434. err = 0;
  2435. clear_bit(WantReplacement, &rdev->flags);
  2436. } else if (cmd_match(buf, "replacement")) {
  2437. /* Can only set a device as a replacement when array has not
  2438. * yet been started. Once running, replacement is automatic
  2439. * from spares, or by assigning 'slot'.
  2440. */
  2441. if (rdev->mddev->pers)
  2442. err = -EBUSY;
  2443. else {
  2444. set_bit(Replacement, &rdev->flags);
  2445. err = 0;
  2446. }
  2447. } else if (cmd_match(buf, "-replacement")) {
  2448. /* Similarly, can only clear Replacement before start */
  2449. if (rdev->mddev->pers)
  2450. err = -EBUSY;
  2451. else {
  2452. clear_bit(Replacement, &rdev->flags);
  2453. err = 0;
  2454. }
  2455. }
  2456. if (!err)
  2457. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2458. return err ? err : len;
  2459. }
  2460. static struct rdev_sysfs_entry rdev_state =
  2461. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2462. static ssize_t
  2463. errors_show(struct md_rdev *rdev, char *page)
  2464. {
  2465. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2466. }
  2467. static ssize_t
  2468. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2469. {
  2470. char *e;
  2471. unsigned long n = simple_strtoul(buf, &e, 10);
  2472. if (*buf && (*e == 0 || *e == '\n')) {
  2473. atomic_set(&rdev->corrected_errors, n);
  2474. return len;
  2475. }
  2476. return -EINVAL;
  2477. }
  2478. static struct rdev_sysfs_entry rdev_errors =
  2479. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2480. static ssize_t
  2481. slot_show(struct md_rdev *rdev, char *page)
  2482. {
  2483. if (rdev->raid_disk < 0)
  2484. return sprintf(page, "none\n");
  2485. else
  2486. return sprintf(page, "%d\n", rdev->raid_disk);
  2487. }
  2488. static ssize_t
  2489. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2490. {
  2491. char *e;
  2492. int err;
  2493. int slot = simple_strtoul(buf, &e, 10);
  2494. if (strncmp(buf, "none", 4)==0)
  2495. slot = -1;
  2496. else if (e==buf || (*e && *e!= '\n'))
  2497. return -EINVAL;
  2498. if (rdev->mddev->pers && slot == -1) {
  2499. /* Setting 'slot' on an active array requires also
  2500. * updating the 'rd%d' link, and communicating
  2501. * with the personality with ->hot_*_disk.
  2502. * For now we only support removing
  2503. * failed/spare devices. This normally happens automatically,
  2504. * but not when the metadata is externally managed.
  2505. */
  2506. if (rdev->raid_disk == -1)
  2507. return -EEXIST;
  2508. /* personality does all needed checks */
  2509. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2510. return -EINVAL;
  2511. err = rdev->mddev->pers->
  2512. hot_remove_disk(rdev->mddev, rdev);
  2513. if (err)
  2514. return err;
  2515. sysfs_unlink_rdev(rdev->mddev, rdev);
  2516. rdev->raid_disk = -1;
  2517. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2518. md_wakeup_thread(rdev->mddev->thread);
  2519. } else if (rdev->mddev->pers) {
  2520. /* Activating a spare .. or possibly reactivating
  2521. * if we ever get bitmaps working here.
  2522. */
  2523. if (rdev->raid_disk != -1)
  2524. return -EBUSY;
  2525. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2526. return -EBUSY;
  2527. if (rdev->mddev->pers->hot_add_disk == NULL)
  2528. return -EINVAL;
  2529. if (slot >= rdev->mddev->raid_disks &&
  2530. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2531. return -ENOSPC;
  2532. rdev->raid_disk = slot;
  2533. if (test_bit(In_sync, &rdev->flags))
  2534. rdev->saved_raid_disk = slot;
  2535. else
  2536. rdev->saved_raid_disk = -1;
  2537. clear_bit(In_sync, &rdev->flags);
  2538. err = rdev->mddev->pers->
  2539. hot_add_disk(rdev->mddev, rdev);
  2540. if (err) {
  2541. rdev->raid_disk = -1;
  2542. return err;
  2543. } else
  2544. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2545. if (sysfs_link_rdev(rdev->mddev, rdev))
  2546. /* failure here is OK */;
  2547. /* don't wakeup anyone, leave that to userspace. */
  2548. } else {
  2549. if (slot >= rdev->mddev->raid_disks &&
  2550. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2551. return -ENOSPC;
  2552. rdev->raid_disk = slot;
  2553. /* assume it is working */
  2554. clear_bit(Faulty, &rdev->flags);
  2555. clear_bit(WriteMostly, &rdev->flags);
  2556. set_bit(In_sync, &rdev->flags);
  2557. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2558. }
  2559. return len;
  2560. }
  2561. static struct rdev_sysfs_entry rdev_slot =
  2562. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2563. static ssize_t
  2564. offset_show(struct md_rdev *rdev, char *page)
  2565. {
  2566. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2567. }
  2568. static ssize_t
  2569. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2570. {
  2571. unsigned long long offset;
  2572. if (strict_strtoull(buf, 10, &offset) < 0)
  2573. return -EINVAL;
  2574. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2575. return -EBUSY;
  2576. if (rdev->sectors && rdev->mddev->external)
  2577. /* Must set offset before size, so overlap checks
  2578. * can be sane */
  2579. return -EBUSY;
  2580. rdev->data_offset = offset;
  2581. return len;
  2582. }
  2583. static struct rdev_sysfs_entry rdev_offset =
  2584. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2585. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2586. {
  2587. return sprintf(page, "%llu\n",
  2588. (unsigned long long)rdev->new_data_offset);
  2589. }
  2590. static ssize_t new_offset_store(struct md_rdev *rdev,
  2591. const char *buf, size_t len)
  2592. {
  2593. unsigned long long new_offset;
  2594. struct mddev *mddev = rdev->mddev;
  2595. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2596. return -EINVAL;
  2597. if (mddev->sync_thread)
  2598. return -EBUSY;
  2599. if (new_offset == rdev->data_offset)
  2600. /* reset is always permitted */
  2601. ;
  2602. else if (new_offset > rdev->data_offset) {
  2603. /* must not push array size beyond rdev_sectors */
  2604. if (new_offset - rdev->data_offset
  2605. + mddev->dev_sectors > rdev->sectors)
  2606. return -E2BIG;
  2607. }
  2608. /* Metadata worries about other space details. */
  2609. /* decreasing the offset is inconsistent with a backwards
  2610. * reshape.
  2611. */
  2612. if (new_offset < rdev->data_offset &&
  2613. mddev->reshape_backwards)
  2614. return -EINVAL;
  2615. /* Increasing offset is inconsistent with forwards
  2616. * reshape. reshape_direction should be set to
  2617. * 'backwards' first.
  2618. */
  2619. if (new_offset > rdev->data_offset &&
  2620. !mddev->reshape_backwards)
  2621. return -EINVAL;
  2622. if (mddev->pers && mddev->persistent &&
  2623. !super_types[mddev->major_version]
  2624. .allow_new_offset(rdev, new_offset))
  2625. return -E2BIG;
  2626. rdev->new_data_offset = new_offset;
  2627. if (new_offset > rdev->data_offset)
  2628. mddev->reshape_backwards = 1;
  2629. else if (new_offset < rdev->data_offset)
  2630. mddev->reshape_backwards = 0;
  2631. return len;
  2632. }
  2633. static struct rdev_sysfs_entry rdev_new_offset =
  2634. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2635. static ssize_t
  2636. rdev_size_show(struct md_rdev *rdev, char *page)
  2637. {
  2638. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2639. }
  2640. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2641. {
  2642. /* check if two start/length pairs overlap */
  2643. if (s1+l1 <= s2)
  2644. return 0;
  2645. if (s2+l2 <= s1)
  2646. return 0;
  2647. return 1;
  2648. }
  2649. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2650. {
  2651. unsigned long long blocks;
  2652. sector_t new;
  2653. if (strict_strtoull(buf, 10, &blocks) < 0)
  2654. return -EINVAL;
  2655. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2656. return -EINVAL; /* sector conversion overflow */
  2657. new = blocks * 2;
  2658. if (new != blocks * 2)
  2659. return -EINVAL; /* unsigned long long to sector_t overflow */
  2660. *sectors = new;
  2661. return 0;
  2662. }
  2663. static ssize_t
  2664. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2665. {
  2666. struct mddev *my_mddev = rdev->mddev;
  2667. sector_t oldsectors = rdev->sectors;
  2668. sector_t sectors;
  2669. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2670. return -EINVAL;
  2671. if (rdev->data_offset != rdev->new_data_offset)
  2672. return -EINVAL; /* too confusing */
  2673. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2674. if (my_mddev->persistent) {
  2675. sectors = super_types[my_mddev->major_version].
  2676. rdev_size_change(rdev, sectors);
  2677. if (!sectors)
  2678. return -EBUSY;
  2679. } else if (!sectors)
  2680. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2681. rdev->data_offset;
  2682. }
  2683. if (sectors < my_mddev->dev_sectors)
  2684. return -EINVAL; /* component must fit device */
  2685. rdev->sectors = sectors;
  2686. if (sectors > oldsectors && my_mddev->external) {
  2687. /* need to check that all other rdevs with the same ->bdev
  2688. * do not overlap. We need to unlock the mddev to avoid
  2689. * a deadlock. We have already changed rdev->sectors, and if
  2690. * we have to change it back, we will have the lock again.
  2691. */
  2692. struct mddev *mddev;
  2693. int overlap = 0;
  2694. struct list_head *tmp;
  2695. mddev_unlock(my_mddev);
  2696. for_each_mddev(mddev, tmp) {
  2697. struct md_rdev *rdev2;
  2698. mddev_lock(mddev);
  2699. rdev_for_each(rdev2, mddev)
  2700. if (rdev->bdev == rdev2->bdev &&
  2701. rdev != rdev2 &&
  2702. overlaps(rdev->data_offset, rdev->sectors,
  2703. rdev2->data_offset,
  2704. rdev2->sectors)) {
  2705. overlap = 1;
  2706. break;
  2707. }
  2708. mddev_unlock(mddev);
  2709. if (overlap) {
  2710. mddev_put(mddev);
  2711. break;
  2712. }
  2713. }
  2714. mddev_lock(my_mddev);
  2715. if (overlap) {
  2716. /* Someone else could have slipped in a size
  2717. * change here, but doing so is just silly.
  2718. * We put oldsectors back because we *know* it is
  2719. * safe, and trust userspace not to race with
  2720. * itself
  2721. */
  2722. rdev->sectors = oldsectors;
  2723. return -EBUSY;
  2724. }
  2725. }
  2726. return len;
  2727. }
  2728. static struct rdev_sysfs_entry rdev_size =
  2729. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2730. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2731. {
  2732. unsigned long long recovery_start = rdev->recovery_offset;
  2733. if (test_bit(In_sync, &rdev->flags) ||
  2734. recovery_start == MaxSector)
  2735. return sprintf(page, "none\n");
  2736. return sprintf(page, "%llu\n", recovery_start);
  2737. }
  2738. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2739. {
  2740. unsigned long long recovery_start;
  2741. if (cmd_match(buf, "none"))
  2742. recovery_start = MaxSector;
  2743. else if (strict_strtoull(buf, 10, &recovery_start))
  2744. return -EINVAL;
  2745. if (rdev->mddev->pers &&
  2746. rdev->raid_disk >= 0)
  2747. return -EBUSY;
  2748. rdev->recovery_offset = recovery_start;
  2749. if (recovery_start == MaxSector)
  2750. set_bit(In_sync, &rdev->flags);
  2751. else
  2752. clear_bit(In_sync, &rdev->flags);
  2753. return len;
  2754. }
  2755. static struct rdev_sysfs_entry rdev_recovery_start =
  2756. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2757. static ssize_t
  2758. badblocks_show(struct badblocks *bb, char *page, int unack);
  2759. static ssize_t
  2760. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2761. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2762. {
  2763. return badblocks_show(&rdev->badblocks, page, 0);
  2764. }
  2765. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2766. {
  2767. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2768. /* Maybe that ack was all we needed */
  2769. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2770. wake_up(&rdev->blocked_wait);
  2771. return rv;
  2772. }
  2773. static struct rdev_sysfs_entry rdev_bad_blocks =
  2774. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2775. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2776. {
  2777. return badblocks_show(&rdev->badblocks, page, 1);
  2778. }
  2779. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2780. {
  2781. return badblocks_store(&rdev->badblocks, page, len, 1);
  2782. }
  2783. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2784. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2785. static struct attribute *rdev_default_attrs[] = {
  2786. &rdev_state.attr,
  2787. &rdev_errors.attr,
  2788. &rdev_slot.attr,
  2789. &rdev_offset.attr,
  2790. &rdev_new_offset.attr,
  2791. &rdev_size.attr,
  2792. &rdev_recovery_start.attr,
  2793. &rdev_bad_blocks.attr,
  2794. &rdev_unack_bad_blocks.attr,
  2795. NULL,
  2796. };
  2797. static ssize_t
  2798. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2799. {
  2800. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2801. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2802. struct mddev *mddev = rdev->mddev;
  2803. ssize_t rv;
  2804. if (!entry->show)
  2805. return -EIO;
  2806. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2807. if (!rv) {
  2808. if (rdev->mddev == NULL)
  2809. rv = -EBUSY;
  2810. else
  2811. rv = entry->show(rdev, page);
  2812. mddev_unlock(mddev);
  2813. }
  2814. return rv;
  2815. }
  2816. static ssize_t
  2817. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2818. const char *page, size_t length)
  2819. {
  2820. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2821. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2822. ssize_t rv;
  2823. struct mddev *mddev = rdev->mddev;
  2824. if (!entry->store)
  2825. return -EIO;
  2826. if (!capable(CAP_SYS_ADMIN))
  2827. return -EACCES;
  2828. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2829. if (!rv) {
  2830. if (rdev->mddev == NULL)
  2831. rv = -EBUSY;
  2832. else
  2833. rv = entry->store(rdev, page, length);
  2834. mddev_unlock(mddev);
  2835. }
  2836. return rv;
  2837. }
  2838. static void rdev_free(struct kobject *ko)
  2839. {
  2840. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2841. kfree(rdev);
  2842. }
  2843. static const struct sysfs_ops rdev_sysfs_ops = {
  2844. .show = rdev_attr_show,
  2845. .store = rdev_attr_store,
  2846. };
  2847. static struct kobj_type rdev_ktype = {
  2848. .release = rdev_free,
  2849. .sysfs_ops = &rdev_sysfs_ops,
  2850. .default_attrs = rdev_default_attrs,
  2851. };
  2852. int md_rdev_init(struct md_rdev *rdev)
  2853. {
  2854. rdev->desc_nr = -1;
  2855. rdev->saved_raid_disk = -1;
  2856. rdev->raid_disk = -1;
  2857. rdev->flags = 0;
  2858. rdev->data_offset = 0;
  2859. rdev->new_data_offset = 0;
  2860. rdev->sb_events = 0;
  2861. rdev->last_read_error.tv_sec = 0;
  2862. rdev->last_read_error.tv_nsec = 0;
  2863. rdev->sb_loaded = 0;
  2864. rdev->bb_page = NULL;
  2865. atomic_set(&rdev->nr_pending, 0);
  2866. atomic_set(&rdev->read_errors, 0);
  2867. atomic_set(&rdev->corrected_errors, 0);
  2868. INIT_LIST_HEAD(&rdev->same_set);
  2869. init_waitqueue_head(&rdev->blocked_wait);
  2870. /* Add space to store bad block list.
  2871. * This reserves the space even on arrays where it cannot
  2872. * be used - I wonder if that matters
  2873. */
  2874. rdev->badblocks.count = 0;
  2875. rdev->badblocks.shift = 0;
  2876. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2877. seqlock_init(&rdev->badblocks.lock);
  2878. if (rdev->badblocks.page == NULL)
  2879. return -ENOMEM;
  2880. return 0;
  2881. }
  2882. EXPORT_SYMBOL_GPL(md_rdev_init);
  2883. /*
  2884. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2885. *
  2886. * mark the device faulty if:
  2887. *
  2888. * - the device is nonexistent (zero size)
  2889. * - the device has no valid superblock
  2890. *
  2891. * a faulty rdev _never_ has rdev->sb set.
  2892. */
  2893. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2894. {
  2895. char b[BDEVNAME_SIZE];
  2896. int err;
  2897. struct md_rdev *rdev;
  2898. sector_t size;
  2899. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2900. if (!rdev) {
  2901. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2902. return ERR_PTR(-ENOMEM);
  2903. }
  2904. err = md_rdev_init(rdev);
  2905. if (err)
  2906. goto abort_free;
  2907. err = alloc_disk_sb(rdev);
  2908. if (err)
  2909. goto abort_free;
  2910. err = lock_rdev(rdev, newdev, super_format == -2);
  2911. if (err)
  2912. goto abort_free;
  2913. kobject_init(&rdev->kobj, &rdev_ktype);
  2914. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2915. if (!size) {
  2916. printk(KERN_WARNING
  2917. "md: %s has zero or unknown size, marking faulty!\n",
  2918. bdevname(rdev->bdev,b));
  2919. err = -EINVAL;
  2920. goto abort_free;
  2921. }
  2922. if (super_format >= 0) {
  2923. err = super_types[super_format].
  2924. load_super(rdev, NULL, super_minor);
  2925. if (err == -EINVAL) {
  2926. printk(KERN_WARNING
  2927. "md: %s does not have a valid v%d.%d "
  2928. "superblock, not importing!\n",
  2929. bdevname(rdev->bdev,b),
  2930. super_format, super_minor);
  2931. goto abort_free;
  2932. }
  2933. if (err < 0) {
  2934. printk(KERN_WARNING
  2935. "md: could not read %s's sb, not importing!\n",
  2936. bdevname(rdev->bdev,b));
  2937. goto abort_free;
  2938. }
  2939. }
  2940. if (super_format == -1)
  2941. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2942. rdev->badblocks.shift = -1;
  2943. return rdev;
  2944. abort_free:
  2945. if (rdev->bdev)
  2946. unlock_rdev(rdev);
  2947. free_disk_sb(rdev);
  2948. kfree(rdev->badblocks.page);
  2949. kfree(rdev);
  2950. return ERR_PTR(err);
  2951. }
  2952. /*
  2953. * Check a full RAID array for plausibility
  2954. */
  2955. static void analyze_sbs(struct mddev * mddev)
  2956. {
  2957. int i;
  2958. struct md_rdev *rdev, *freshest, *tmp;
  2959. char b[BDEVNAME_SIZE];
  2960. freshest = NULL;
  2961. rdev_for_each_safe(rdev, tmp, mddev)
  2962. switch (super_types[mddev->major_version].
  2963. load_super(rdev, freshest, mddev->minor_version)) {
  2964. case 1:
  2965. freshest = rdev;
  2966. break;
  2967. case 0:
  2968. break;
  2969. default:
  2970. printk( KERN_ERR \
  2971. "md: fatal superblock inconsistency in %s"
  2972. " -- removing from array\n",
  2973. bdevname(rdev->bdev,b));
  2974. kick_rdev_from_array(rdev);
  2975. }
  2976. super_types[mddev->major_version].
  2977. validate_super(mddev, freshest);
  2978. i = 0;
  2979. rdev_for_each_safe(rdev, tmp, mddev) {
  2980. if (mddev->max_disks &&
  2981. (rdev->desc_nr >= mddev->max_disks ||
  2982. i > mddev->max_disks)) {
  2983. printk(KERN_WARNING
  2984. "md: %s: %s: only %d devices permitted\n",
  2985. mdname(mddev), bdevname(rdev->bdev, b),
  2986. mddev->max_disks);
  2987. kick_rdev_from_array(rdev);
  2988. continue;
  2989. }
  2990. if (rdev != freshest)
  2991. if (super_types[mddev->major_version].
  2992. validate_super(mddev, rdev)) {
  2993. printk(KERN_WARNING "md: kicking non-fresh %s"
  2994. " from array!\n",
  2995. bdevname(rdev->bdev,b));
  2996. kick_rdev_from_array(rdev);
  2997. continue;
  2998. }
  2999. if (mddev->level == LEVEL_MULTIPATH) {
  3000. rdev->desc_nr = i++;
  3001. rdev->raid_disk = rdev->desc_nr;
  3002. set_bit(In_sync, &rdev->flags);
  3003. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  3004. rdev->raid_disk = -1;
  3005. clear_bit(In_sync, &rdev->flags);
  3006. }
  3007. }
  3008. }
  3009. /* Read a fixed-point number.
  3010. * Numbers in sysfs attributes should be in "standard" units where
  3011. * possible, so time should be in seconds.
  3012. * However we internally use a a much smaller unit such as
  3013. * milliseconds or jiffies.
  3014. * This function takes a decimal number with a possible fractional
  3015. * component, and produces an integer which is the result of
  3016. * multiplying that number by 10^'scale'.
  3017. * all without any floating-point arithmetic.
  3018. */
  3019. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3020. {
  3021. unsigned long result = 0;
  3022. long decimals = -1;
  3023. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3024. if (*cp == '.')
  3025. decimals = 0;
  3026. else if (decimals < scale) {
  3027. unsigned int value;
  3028. value = *cp - '0';
  3029. result = result * 10 + value;
  3030. if (decimals >= 0)
  3031. decimals++;
  3032. }
  3033. cp++;
  3034. }
  3035. if (*cp == '\n')
  3036. cp++;
  3037. if (*cp)
  3038. return -EINVAL;
  3039. if (decimals < 0)
  3040. decimals = 0;
  3041. while (decimals < scale) {
  3042. result *= 10;
  3043. decimals ++;
  3044. }
  3045. *res = result;
  3046. return 0;
  3047. }
  3048. static void md_safemode_timeout(unsigned long data);
  3049. static ssize_t
  3050. safe_delay_show(struct mddev *mddev, char *page)
  3051. {
  3052. int msec = (mddev->safemode_delay*1000)/HZ;
  3053. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3054. }
  3055. static ssize_t
  3056. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3057. {
  3058. unsigned long msec;
  3059. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3060. return -EINVAL;
  3061. if (msec == 0)
  3062. mddev->safemode_delay = 0;
  3063. else {
  3064. unsigned long old_delay = mddev->safemode_delay;
  3065. mddev->safemode_delay = (msec*HZ)/1000;
  3066. if (mddev->safemode_delay == 0)
  3067. mddev->safemode_delay = 1;
  3068. if (mddev->safemode_delay < old_delay)
  3069. md_safemode_timeout((unsigned long)mddev);
  3070. }
  3071. return len;
  3072. }
  3073. static struct md_sysfs_entry md_safe_delay =
  3074. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3075. static ssize_t
  3076. level_show(struct mddev *mddev, char *page)
  3077. {
  3078. struct md_personality *p = mddev->pers;
  3079. if (p)
  3080. return sprintf(page, "%s\n", p->name);
  3081. else if (mddev->clevel[0])
  3082. return sprintf(page, "%s\n", mddev->clevel);
  3083. else if (mddev->level != LEVEL_NONE)
  3084. return sprintf(page, "%d\n", mddev->level);
  3085. else
  3086. return 0;
  3087. }
  3088. static ssize_t
  3089. level_store(struct mddev *mddev, const char *buf, size_t len)
  3090. {
  3091. char clevel[16];
  3092. ssize_t rv = len;
  3093. struct md_personality *pers;
  3094. long level;
  3095. void *priv;
  3096. struct md_rdev *rdev;
  3097. if (mddev->pers == NULL) {
  3098. if (len == 0)
  3099. return 0;
  3100. if (len >= sizeof(mddev->clevel))
  3101. return -ENOSPC;
  3102. strncpy(mddev->clevel, buf, len);
  3103. if (mddev->clevel[len-1] == '\n')
  3104. len--;
  3105. mddev->clevel[len] = 0;
  3106. mddev->level = LEVEL_NONE;
  3107. return rv;
  3108. }
  3109. /* request to change the personality. Need to ensure:
  3110. * - array is not engaged in resync/recovery/reshape
  3111. * - old personality can be suspended
  3112. * - new personality will access other array.
  3113. */
  3114. if (mddev->sync_thread ||
  3115. mddev->reshape_position != MaxSector ||
  3116. mddev->sysfs_active)
  3117. return -EBUSY;
  3118. if (!mddev->pers->quiesce) {
  3119. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3120. mdname(mddev), mddev->pers->name);
  3121. return -EINVAL;
  3122. }
  3123. /* Now find the new personality */
  3124. if (len == 0 || len >= sizeof(clevel))
  3125. return -EINVAL;
  3126. strncpy(clevel, buf, len);
  3127. if (clevel[len-1] == '\n')
  3128. len--;
  3129. clevel[len] = 0;
  3130. if (strict_strtol(clevel, 10, &level))
  3131. level = LEVEL_NONE;
  3132. if (request_module("md-%s", clevel) != 0)
  3133. request_module("md-level-%s", clevel);
  3134. spin_lock(&pers_lock);
  3135. pers = find_pers(level, clevel);
  3136. if (!pers || !try_module_get(pers->owner)) {
  3137. spin_unlock(&pers_lock);
  3138. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3139. return -EINVAL;
  3140. }
  3141. spin_unlock(&pers_lock);
  3142. if (pers == mddev->pers) {
  3143. /* Nothing to do! */
  3144. module_put(pers->owner);
  3145. return rv;
  3146. }
  3147. if (!pers->takeover) {
  3148. module_put(pers->owner);
  3149. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3150. mdname(mddev), clevel);
  3151. return -EINVAL;
  3152. }
  3153. rdev_for_each(rdev, mddev)
  3154. rdev->new_raid_disk = rdev->raid_disk;
  3155. /* ->takeover must set new_* and/or delta_disks
  3156. * if it succeeds, and may set them when it fails.
  3157. */
  3158. priv = pers->takeover(mddev);
  3159. if (IS_ERR(priv)) {
  3160. mddev->new_level = mddev->level;
  3161. mddev->new_layout = mddev->layout;
  3162. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3163. mddev->raid_disks -= mddev->delta_disks;
  3164. mddev->delta_disks = 0;
  3165. mddev->reshape_backwards = 0;
  3166. module_put(pers->owner);
  3167. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3168. mdname(mddev), clevel);
  3169. return PTR_ERR(priv);
  3170. }
  3171. /* Looks like we have a winner */
  3172. mddev_suspend(mddev);
  3173. mddev->pers->stop(mddev);
  3174. if (mddev->pers->sync_request == NULL &&
  3175. pers->sync_request != NULL) {
  3176. /* need to add the md_redundancy_group */
  3177. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3178. printk(KERN_WARNING
  3179. "md: cannot register extra attributes for %s\n",
  3180. mdname(mddev));
  3181. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3182. }
  3183. if (mddev->pers->sync_request != NULL &&
  3184. pers->sync_request == NULL) {
  3185. /* need to remove the md_redundancy_group */
  3186. if (mddev->to_remove == NULL)
  3187. mddev->to_remove = &md_redundancy_group;
  3188. }
  3189. if (mddev->pers->sync_request == NULL &&
  3190. mddev->external) {
  3191. /* We are converting from a no-redundancy array
  3192. * to a redundancy array and metadata is managed
  3193. * externally so we need to be sure that writes
  3194. * won't block due to a need to transition
  3195. * clean->dirty
  3196. * until external management is started.
  3197. */
  3198. mddev->in_sync = 0;
  3199. mddev->safemode_delay = 0;
  3200. mddev->safemode = 0;
  3201. }
  3202. rdev_for_each(rdev, mddev) {
  3203. if (rdev->raid_disk < 0)
  3204. continue;
  3205. if (rdev->new_raid_disk >= mddev->raid_disks)
  3206. rdev->new_raid_disk = -1;
  3207. if (rdev->new_raid_disk == rdev->raid_disk)
  3208. continue;
  3209. sysfs_unlink_rdev(mddev, rdev);
  3210. }
  3211. rdev_for_each(rdev, mddev) {
  3212. if (rdev->raid_disk < 0)
  3213. continue;
  3214. if (rdev->new_raid_disk == rdev->raid_disk)
  3215. continue;
  3216. rdev->raid_disk = rdev->new_raid_disk;
  3217. if (rdev->raid_disk < 0)
  3218. clear_bit(In_sync, &rdev->flags);
  3219. else {
  3220. if (sysfs_link_rdev(mddev, rdev))
  3221. printk(KERN_WARNING "md: cannot register rd%d"
  3222. " for %s after level change\n",
  3223. rdev->raid_disk, mdname(mddev));
  3224. }
  3225. }
  3226. module_put(mddev->pers->owner);
  3227. mddev->pers = pers;
  3228. mddev->private = priv;
  3229. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3230. mddev->level = mddev->new_level;
  3231. mddev->layout = mddev->new_layout;
  3232. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3233. mddev->delta_disks = 0;
  3234. mddev->reshape_backwards = 0;
  3235. mddev->degraded = 0;
  3236. if (mddev->pers->sync_request == NULL) {
  3237. /* this is now an array without redundancy, so
  3238. * it must always be in_sync
  3239. */
  3240. mddev->in_sync = 1;
  3241. del_timer_sync(&mddev->safemode_timer);
  3242. }
  3243. pers->run(mddev);
  3244. mddev_resume(mddev);
  3245. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3246. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3247. md_wakeup_thread(mddev->thread);
  3248. sysfs_notify(&mddev->kobj, NULL, "level");
  3249. md_new_event(mddev);
  3250. return rv;
  3251. }
  3252. static struct md_sysfs_entry md_level =
  3253. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3254. static ssize_t
  3255. layout_show(struct mddev *mddev, char *page)
  3256. {
  3257. /* just a number, not meaningful for all levels */
  3258. if (mddev->reshape_position != MaxSector &&
  3259. mddev->layout != mddev->new_layout)
  3260. return sprintf(page, "%d (%d)\n",
  3261. mddev->new_layout, mddev->layout);
  3262. return sprintf(page, "%d\n", mddev->layout);
  3263. }
  3264. static ssize_t
  3265. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3266. {
  3267. char *e;
  3268. unsigned long n = simple_strtoul(buf, &e, 10);
  3269. if (!*buf || (*e && *e != '\n'))
  3270. return -EINVAL;
  3271. if (mddev->pers) {
  3272. int err;
  3273. if (mddev->pers->check_reshape == NULL)
  3274. return -EBUSY;
  3275. mddev->new_layout = n;
  3276. err = mddev->pers->check_reshape(mddev);
  3277. if (err) {
  3278. mddev->new_layout = mddev->layout;
  3279. return err;
  3280. }
  3281. } else {
  3282. mddev->new_layout = n;
  3283. if (mddev->reshape_position == MaxSector)
  3284. mddev->layout = n;
  3285. }
  3286. return len;
  3287. }
  3288. static struct md_sysfs_entry md_layout =
  3289. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3290. static ssize_t
  3291. raid_disks_show(struct mddev *mddev, char *page)
  3292. {
  3293. if (mddev->raid_disks == 0)
  3294. return 0;
  3295. if (mddev->reshape_position != MaxSector &&
  3296. mddev->delta_disks != 0)
  3297. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3298. mddev->raid_disks - mddev->delta_disks);
  3299. return sprintf(page, "%d\n", mddev->raid_disks);
  3300. }
  3301. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3302. static ssize_t
  3303. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3304. {
  3305. char *e;
  3306. int rv = 0;
  3307. unsigned long n = simple_strtoul(buf, &e, 10);
  3308. if (!*buf || (*e && *e != '\n'))
  3309. return -EINVAL;
  3310. if (mddev->pers)
  3311. rv = update_raid_disks(mddev, n);
  3312. else if (mddev->reshape_position != MaxSector) {
  3313. struct md_rdev *rdev;
  3314. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3315. rdev_for_each(rdev, mddev) {
  3316. if (olddisks < n &&
  3317. rdev->data_offset < rdev->new_data_offset)
  3318. return -EINVAL;
  3319. if (olddisks > n &&
  3320. rdev->data_offset > rdev->new_data_offset)
  3321. return -EINVAL;
  3322. }
  3323. mddev->delta_disks = n - olddisks;
  3324. mddev->raid_disks = n;
  3325. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3326. } else
  3327. mddev->raid_disks = n;
  3328. return rv ? rv : len;
  3329. }
  3330. static struct md_sysfs_entry md_raid_disks =
  3331. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3332. static ssize_t
  3333. chunk_size_show(struct mddev *mddev, char *page)
  3334. {
  3335. if (mddev->reshape_position != MaxSector &&
  3336. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3337. return sprintf(page, "%d (%d)\n",
  3338. mddev->new_chunk_sectors << 9,
  3339. mddev->chunk_sectors << 9);
  3340. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3341. }
  3342. static ssize_t
  3343. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3344. {
  3345. char *e;
  3346. unsigned long n = simple_strtoul(buf, &e, 10);
  3347. if (!*buf || (*e && *e != '\n'))
  3348. return -EINVAL;
  3349. if (mddev->pers) {
  3350. int err;
  3351. if (mddev->pers->check_reshape == NULL)
  3352. return -EBUSY;
  3353. mddev->new_chunk_sectors = n >> 9;
  3354. err = mddev->pers->check_reshape(mddev);
  3355. if (err) {
  3356. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3357. return err;
  3358. }
  3359. } else {
  3360. mddev->new_chunk_sectors = n >> 9;
  3361. if (mddev->reshape_position == MaxSector)
  3362. mddev->chunk_sectors = n >> 9;
  3363. }
  3364. return len;
  3365. }
  3366. static struct md_sysfs_entry md_chunk_size =
  3367. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3368. static ssize_t
  3369. resync_start_show(struct mddev *mddev, char *page)
  3370. {
  3371. if (mddev->recovery_cp == MaxSector)
  3372. return sprintf(page, "none\n");
  3373. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3374. }
  3375. static ssize_t
  3376. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3377. {
  3378. char *e;
  3379. unsigned long long n = simple_strtoull(buf, &e, 10);
  3380. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3381. return -EBUSY;
  3382. if (cmd_match(buf, "none"))
  3383. n = MaxSector;
  3384. else if (!*buf || (*e && *e != '\n'))
  3385. return -EINVAL;
  3386. mddev->recovery_cp = n;
  3387. return len;
  3388. }
  3389. static struct md_sysfs_entry md_resync_start =
  3390. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3391. /*
  3392. * The array state can be:
  3393. *
  3394. * clear
  3395. * No devices, no size, no level
  3396. * Equivalent to STOP_ARRAY ioctl
  3397. * inactive
  3398. * May have some settings, but array is not active
  3399. * all IO results in error
  3400. * When written, doesn't tear down array, but just stops it
  3401. * suspended (not supported yet)
  3402. * All IO requests will block. The array can be reconfigured.
  3403. * Writing this, if accepted, will block until array is quiescent
  3404. * readonly
  3405. * no resync can happen. no superblocks get written.
  3406. * write requests fail
  3407. * read-auto
  3408. * like readonly, but behaves like 'clean' on a write request.
  3409. *
  3410. * clean - no pending writes, but otherwise active.
  3411. * When written to inactive array, starts without resync
  3412. * If a write request arrives then
  3413. * if metadata is known, mark 'dirty' and switch to 'active'.
  3414. * if not known, block and switch to write-pending
  3415. * If written to an active array that has pending writes, then fails.
  3416. * active
  3417. * fully active: IO and resync can be happening.
  3418. * When written to inactive array, starts with resync
  3419. *
  3420. * write-pending
  3421. * clean, but writes are blocked waiting for 'active' to be written.
  3422. *
  3423. * active-idle
  3424. * like active, but no writes have been seen for a while (100msec).
  3425. *
  3426. */
  3427. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3428. write_pending, active_idle, bad_word};
  3429. static char *array_states[] = {
  3430. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3431. "write-pending", "active-idle", NULL };
  3432. static int match_word(const char *word, char **list)
  3433. {
  3434. int n;
  3435. for (n=0; list[n]; n++)
  3436. if (cmd_match(word, list[n]))
  3437. break;
  3438. return n;
  3439. }
  3440. static ssize_t
  3441. array_state_show(struct mddev *mddev, char *page)
  3442. {
  3443. enum array_state st = inactive;
  3444. if (mddev->pers)
  3445. switch(mddev->ro) {
  3446. case 1:
  3447. st = readonly;
  3448. break;
  3449. case 2:
  3450. st = read_auto;
  3451. break;
  3452. case 0:
  3453. if (mddev->in_sync)
  3454. st = clean;
  3455. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3456. st = write_pending;
  3457. else if (mddev->safemode)
  3458. st = active_idle;
  3459. else
  3460. st = active;
  3461. }
  3462. else {
  3463. if (list_empty(&mddev->disks) &&
  3464. mddev->raid_disks == 0 &&
  3465. mddev->dev_sectors == 0)
  3466. st = clear;
  3467. else
  3468. st = inactive;
  3469. }
  3470. return sprintf(page, "%s\n", array_states[st]);
  3471. }
  3472. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3473. static int md_set_readonly(struct mddev * mddev, int is_open);
  3474. static int do_md_run(struct mddev * mddev);
  3475. static int restart_array(struct mddev *mddev);
  3476. static ssize_t
  3477. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3478. {
  3479. int err = -EINVAL;
  3480. enum array_state st = match_word(buf, array_states);
  3481. switch(st) {
  3482. case bad_word:
  3483. break;
  3484. case clear:
  3485. /* stopping an active array */
  3486. if (atomic_read(&mddev->openers) > 0)
  3487. return -EBUSY;
  3488. err = do_md_stop(mddev, 0, 0);
  3489. break;
  3490. case inactive:
  3491. /* stopping an active array */
  3492. if (mddev->pers) {
  3493. if (atomic_read(&mddev->openers) > 0)
  3494. return -EBUSY;
  3495. err = do_md_stop(mddev, 2, 0);
  3496. } else
  3497. err = 0; /* already inactive */
  3498. break;
  3499. case suspended:
  3500. break; /* not supported yet */
  3501. case readonly:
  3502. if (mddev->pers)
  3503. err = md_set_readonly(mddev, 0);
  3504. else {
  3505. mddev->ro = 1;
  3506. set_disk_ro(mddev->gendisk, 1);
  3507. err = do_md_run(mddev);
  3508. }
  3509. break;
  3510. case read_auto:
  3511. if (mddev->pers) {
  3512. if (mddev->ro == 0)
  3513. err = md_set_readonly(mddev, 0);
  3514. else if (mddev->ro == 1)
  3515. err = restart_array(mddev);
  3516. if (err == 0) {
  3517. mddev->ro = 2;
  3518. set_disk_ro(mddev->gendisk, 0);
  3519. }
  3520. } else {
  3521. mddev->ro = 2;
  3522. err = do_md_run(mddev);
  3523. }
  3524. break;
  3525. case clean:
  3526. if (mddev->pers) {
  3527. restart_array(mddev);
  3528. spin_lock_irq(&mddev->write_lock);
  3529. if (atomic_read(&mddev->writes_pending) == 0) {
  3530. if (mddev->in_sync == 0) {
  3531. mddev->in_sync = 1;
  3532. if (mddev->safemode == 1)
  3533. mddev->safemode = 0;
  3534. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3535. }
  3536. err = 0;
  3537. } else
  3538. err = -EBUSY;
  3539. spin_unlock_irq(&mddev->write_lock);
  3540. } else
  3541. err = -EINVAL;
  3542. break;
  3543. case active:
  3544. if (mddev->pers) {
  3545. restart_array(mddev);
  3546. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3547. wake_up(&mddev->sb_wait);
  3548. err = 0;
  3549. } else {
  3550. mddev->ro = 0;
  3551. set_disk_ro(mddev->gendisk, 0);
  3552. err = do_md_run(mddev);
  3553. }
  3554. break;
  3555. case write_pending:
  3556. case active_idle:
  3557. /* these cannot be set */
  3558. break;
  3559. }
  3560. if (err)
  3561. return err;
  3562. else {
  3563. if (mddev->hold_active == UNTIL_IOCTL)
  3564. mddev->hold_active = 0;
  3565. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3566. return len;
  3567. }
  3568. }
  3569. static struct md_sysfs_entry md_array_state =
  3570. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3571. static ssize_t
  3572. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3573. return sprintf(page, "%d\n",
  3574. atomic_read(&mddev->max_corr_read_errors));
  3575. }
  3576. static ssize_t
  3577. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3578. {
  3579. char *e;
  3580. unsigned long n = simple_strtoul(buf, &e, 10);
  3581. if (*buf && (*e == 0 || *e == '\n')) {
  3582. atomic_set(&mddev->max_corr_read_errors, n);
  3583. return len;
  3584. }
  3585. return -EINVAL;
  3586. }
  3587. static struct md_sysfs_entry max_corr_read_errors =
  3588. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3589. max_corrected_read_errors_store);
  3590. static ssize_t
  3591. null_show(struct mddev *mddev, char *page)
  3592. {
  3593. return -EINVAL;
  3594. }
  3595. static ssize_t
  3596. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3597. {
  3598. /* buf must be %d:%d\n? giving major and minor numbers */
  3599. /* The new device is added to the array.
  3600. * If the array has a persistent superblock, we read the
  3601. * superblock to initialise info and check validity.
  3602. * Otherwise, only checking done is that in bind_rdev_to_array,
  3603. * which mainly checks size.
  3604. */
  3605. char *e;
  3606. int major = simple_strtoul(buf, &e, 10);
  3607. int minor;
  3608. dev_t dev;
  3609. struct md_rdev *rdev;
  3610. int err;
  3611. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3612. return -EINVAL;
  3613. minor = simple_strtoul(e+1, &e, 10);
  3614. if (*e && *e != '\n')
  3615. return -EINVAL;
  3616. dev = MKDEV(major, minor);
  3617. if (major != MAJOR(dev) ||
  3618. minor != MINOR(dev))
  3619. return -EOVERFLOW;
  3620. if (mddev->persistent) {
  3621. rdev = md_import_device(dev, mddev->major_version,
  3622. mddev->minor_version);
  3623. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3624. struct md_rdev *rdev0
  3625. = list_entry(mddev->disks.next,
  3626. struct md_rdev, same_set);
  3627. err = super_types[mddev->major_version]
  3628. .load_super(rdev, rdev0, mddev->minor_version);
  3629. if (err < 0)
  3630. goto out;
  3631. }
  3632. } else if (mddev->external)
  3633. rdev = md_import_device(dev, -2, -1);
  3634. else
  3635. rdev = md_import_device(dev, -1, -1);
  3636. if (IS_ERR(rdev))
  3637. return PTR_ERR(rdev);
  3638. err = bind_rdev_to_array(rdev, mddev);
  3639. out:
  3640. if (err)
  3641. export_rdev(rdev);
  3642. return err ? err : len;
  3643. }
  3644. static struct md_sysfs_entry md_new_device =
  3645. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3646. static ssize_t
  3647. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3648. {
  3649. char *end;
  3650. unsigned long chunk, end_chunk;
  3651. if (!mddev->bitmap)
  3652. goto out;
  3653. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3654. while (*buf) {
  3655. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3656. if (buf == end) break;
  3657. if (*end == '-') { /* range */
  3658. buf = end + 1;
  3659. end_chunk = simple_strtoul(buf, &end, 0);
  3660. if (buf == end) break;
  3661. }
  3662. if (*end && !isspace(*end)) break;
  3663. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3664. buf = skip_spaces(end);
  3665. }
  3666. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3667. out:
  3668. return len;
  3669. }
  3670. static struct md_sysfs_entry md_bitmap =
  3671. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3672. static ssize_t
  3673. size_show(struct mddev *mddev, char *page)
  3674. {
  3675. return sprintf(page, "%llu\n",
  3676. (unsigned long long)mddev->dev_sectors / 2);
  3677. }
  3678. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3679. static ssize_t
  3680. size_store(struct mddev *mddev, const char *buf, size_t len)
  3681. {
  3682. /* If array is inactive, we can reduce the component size, but
  3683. * not increase it (except from 0).
  3684. * If array is active, we can try an on-line resize
  3685. */
  3686. sector_t sectors;
  3687. int err = strict_blocks_to_sectors(buf, &sectors);
  3688. if (err < 0)
  3689. return err;
  3690. if (mddev->pers) {
  3691. err = update_size(mddev, sectors);
  3692. md_update_sb(mddev, 1);
  3693. } else {
  3694. if (mddev->dev_sectors == 0 ||
  3695. mddev->dev_sectors > sectors)
  3696. mddev->dev_sectors = sectors;
  3697. else
  3698. err = -ENOSPC;
  3699. }
  3700. return err ? err : len;
  3701. }
  3702. static struct md_sysfs_entry md_size =
  3703. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3704. /* Metdata version.
  3705. * This is one of
  3706. * 'none' for arrays with no metadata (good luck...)
  3707. * 'external' for arrays with externally managed metadata,
  3708. * or N.M for internally known formats
  3709. */
  3710. static ssize_t
  3711. metadata_show(struct mddev *mddev, char *page)
  3712. {
  3713. if (mddev->persistent)
  3714. return sprintf(page, "%d.%d\n",
  3715. mddev->major_version, mddev->minor_version);
  3716. else if (mddev->external)
  3717. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3718. else
  3719. return sprintf(page, "none\n");
  3720. }
  3721. static ssize_t
  3722. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3723. {
  3724. int major, minor;
  3725. char *e;
  3726. /* Changing the details of 'external' metadata is
  3727. * always permitted. Otherwise there must be
  3728. * no devices attached to the array.
  3729. */
  3730. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3731. ;
  3732. else if (!list_empty(&mddev->disks))
  3733. return -EBUSY;
  3734. if (cmd_match(buf, "none")) {
  3735. mddev->persistent = 0;
  3736. mddev->external = 0;
  3737. mddev->major_version = 0;
  3738. mddev->minor_version = 90;
  3739. return len;
  3740. }
  3741. if (strncmp(buf, "external:", 9) == 0) {
  3742. size_t namelen = len-9;
  3743. if (namelen >= sizeof(mddev->metadata_type))
  3744. namelen = sizeof(mddev->metadata_type)-1;
  3745. strncpy(mddev->metadata_type, buf+9, namelen);
  3746. mddev->metadata_type[namelen] = 0;
  3747. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3748. mddev->metadata_type[--namelen] = 0;
  3749. mddev->persistent = 0;
  3750. mddev->external = 1;
  3751. mddev->major_version = 0;
  3752. mddev->minor_version = 90;
  3753. return len;
  3754. }
  3755. major = simple_strtoul(buf, &e, 10);
  3756. if (e==buf || *e != '.')
  3757. return -EINVAL;
  3758. buf = e+1;
  3759. minor = simple_strtoul(buf, &e, 10);
  3760. if (e==buf || (*e && *e != '\n') )
  3761. return -EINVAL;
  3762. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3763. return -ENOENT;
  3764. mddev->major_version = major;
  3765. mddev->minor_version = minor;
  3766. mddev->persistent = 1;
  3767. mddev->external = 0;
  3768. return len;
  3769. }
  3770. static struct md_sysfs_entry md_metadata =
  3771. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3772. static ssize_t
  3773. action_show(struct mddev *mddev, char *page)
  3774. {
  3775. char *type = "idle";
  3776. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3777. type = "frozen";
  3778. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3779. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3780. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3781. type = "reshape";
  3782. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3783. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3784. type = "resync";
  3785. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3786. type = "check";
  3787. else
  3788. type = "repair";
  3789. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3790. type = "recover";
  3791. }
  3792. return sprintf(page, "%s\n", type);
  3793. }
  3794. static void reap_sync_thread(struct mddev *mddev);
  3795. static ssize_t
  3796. action_store(struct mddev *mddev, const char *page, size_t len)
  3797. {
  3798. if (!mddev->pers || !mddev->pers->sync_request)
  3799. return -EINVAL;
  3800. if (cmd_match(page, "frozen"))
  3801. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3802. else
  3803. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3804. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3805. if (mddev->sync_thread) {
  3806. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3807. reap_sync_thread(mddev);
  3808. }
  3809. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3810. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3811. return -EBUSY;
  3812. else if (cmd_match(page, "resync"))
  3813. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3814. else if (cmd_match(page, "recover")) {
  3815. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3816. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3817. } else if (cmd_match(page, "reshape")) {
  3818. int err;
  3819. if (mddev->pers->start_reshape == NULL)
  3820. return -EINVAL;
  3821. err = mddev->pers->start_reshape(mddev);
  3822. if (err)
  3823. return err;
  3824. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3825. } else {
  3826. if (cmd_match(page, "check"))
  3827. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3828. else if (!cmd_match(page, "repair"))
  3829. return -EINVAL;
  3830. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3831. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3832. }
  3833. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3834. md_wakeup_thread(mddev->thread);
  3835. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3836. return len;
  3837. }
  3838. static ssize_t
  3839. mismatch_cnt_show(struct mddev *mddev, char *page)
  3840. {
  3841. return sprintf(page, "%llu\n",
  3842. (unsigned long long) mddev->resync_mismatches);
  3843. }
  3844. static struct md_sysfs_entry md_scan_mode =
  3845. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3846. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3847. static ssize_t
  3848. sync_min_show(struct mddev *mddev, char *page)
  3849. {
  3850. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3851. mddev->sync_speed_min ? "local": "system");
  3852. }
  3853. static ssize_t
  3854. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3855. {
  3856. int min;
  3857. char *e;
  3858. if (strncmp(buf, "system", 6)==0) {
  3859. mddev->sync_speed_min = 0;
  3860. return len;
  3861. }
  3862. min = simple_strtoul(buf, &e, 10);
  3863. if (buf == e || (*e && *e != '\n') || min <= 0)
  3864. return -EINVAL;
  3865. mddev->sync_speed_min = min;
  3866. return len;
  3867. }
  3868. static struct md_sysfs_entry md_sync_min =
  3869. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3870. static ssize_t
  3871. sync_max_show(struct mddev *mddev, char *page)
  3872. {
  3873. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3874. mddev->sync_speed_max ? "local": "system");
  3875. }
  3876. static ssize_t
  3877. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3878. {
  3879. int max;
  3880. char *e;
  3881. if (strncmp(buf, "system", 6)==0) {
  3882. mddev->sync_speed_max = 0;
  3883. return len;
  3884. }
  3885. max = simple_strtoul(buf, &e, 10);
  3886. if (buf == e || (*e && *e != '\n') || max <= 0)
  3887. return -EINVAL;
  3888. mddev->sync_speed_max = max;
  3889. return len;
  3890. }
  3891. static struct md_sysfs_entry md_sync_max =
  3892. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3893. static ssize_t
  3894. degraded_show(struct mddev *mddev, char *page)
  3895. {
  3896. return sprintf(page, "%d\n", mddev->degraded);
  3897. }
  3898. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3899. static ssize_t
  3900. sync_force_parallel_show(struct mddev *mddev, char *page)
  3901. {
  3902. return sprintf(page, "%d\n", mddev->parallel_resync);
  3903. }
  3904. static ssize_t
  3905. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3906. {
  3907. long n;
  3908. if (strict_strtol(buf, 10, &n))
  3909. return -EINVAL;
  3910. if (n != 0 && n != 1)
  3911. return -EINVAL;
  3912. mddev->parallel_resync = n;
  3913. if (mddev->sync_thread)
  3914. wake_up(&resync_wait);
  3915. return len;
  3916. }
  3917. /* force parallel resync, even with shared block devices */
  3918. static struct md_sysfs_entry md_sync_force_parallel =
  3919. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3920. sync_force_parallel_show, sync_force_parallel_store);
  3921. static ssize_t
  3922. sync_speed_show(struct mddev *mddev, char *page)
  3923. {
  3924. unsigned long resync, dt, db;
  3925. if (mddev->curr_resync == 0)
  3926. return sprintf(page, "none\n");
  3927. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3928. dt = (jiffies - mddev->resync_mark) / HZ;
  3929. if (!dt) dt++;
  3930. db = resync - mddev->resync_mark_cnt;
  3931. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3932. }
  3933. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3934. static ssize_t
  3935. sync_completed_show(struct mddev *mddev, char *page)
  3936. {
  3937. unsigned long long max_sectors, resync;
  3938. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3939. return sprintf(page, "none\n");
  3940. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3941. max_sectors = mddev->resync_max_sectors;
  3942. else
  3943. max_sectors = mddev->dev_sectors;
  3944. resync = mddev->curr_resync_completed;
  3945. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3946. }
  3947. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3948. static ssize_t
  3949. min_sync_show(struct mddev *mddev, char *page)
  3950. {
  3951. return sprintf(page, "%llu\n",
  3952. (unsigned long long)mddev->resync_min);
  3953. }
  3954. static ssize_t
  3955. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3956. {
  3957. unsigned long long min;
  3958. if (strict_strtoull(buf, 10, &min))
  3959. return -EINVAL;
  3960. if (min > mddev->resync_max)
  3961. return -EINVAL;
  3962. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3963. return -EBUSY;
  3964. /* Must be a multiple of chunk_size */
  3965. if (mddev->chunk_sectors) {
  3966. sector_t temp = min;
  3967. if (sector_div(temp, mddev->chunk_sectors))
  3968. return -EINVAL;
  3969. }
  3970. mddev->resync_min = min;
  3971. return len;
  3972. }
  3973. static struct md_sysfs_entry md_min_sync =
  3974. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3975. static ssize_t
  3976. max_sync_show(struct mddev *mddev, char *page)
  3977. {
  3978. if (mddev->resync_max == MaxSector)
  3979. return sprintf(page, "max\n");
  3980. else
  3981. return sprintf(page, "%llu\n",
  3982. (unsigned long long)mddev->resync_max);
  3983. }
  3984. static ssize_t
  3985. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3986. {
  3987. if (strncmp(buf, "max", 3) == 0)
  3988. mddev->resync_max = MaxSector;
  3989. else {
  3990. unsigned long long max;
  3991. if (strict_strtoull(buf, 10, &max))
  3992. return -EINVAL;
  3993. if (max < mddev->resync_min)
  3994. return -EINVAL;
  3995. if (max < mddev->resync_max &&
  3996. mddev->ro == 0 &&
  3997. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3998. return -EBUSY;
  3999. /* Must be a multiple of chunk_size */
  4000. if (mddev->chunk_sectors) {
  4001. sector_t temp = max;
  4002. if (sector_div(temp, mddev->chunk_sectors))
  4003. return -EINVAL;
  4004. }
  4005. mddev->resync_max = max;
  4006. }
  4007. wake_up(&mddev->recovery_wait);
  4008. return len;
  4009. }
  4010. static struct md_sysfs_entry md_max_sync =
  4011. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4012. static ssize_t
  4013. suspend_lo_show(struct mddev *mddev, char *page)
  4014. {
  4015. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4016. }
  4017. static ssize_t
  4018. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4019. {
  4020. char *e;
  4021. unsigned long long new = simple_strtoull(buf, &e, 10);
  4022. unsigned long long old = mddev->suspend_lo;
  4023. if (mddev->pers == NULL ||
  4024. mddev->pers->quiesce == NULL)
  4025. return -EINVAL;
  4026. if (buf == e || (*e && *e != '\n'))
  4027. return -EINVAL;
  4028. mddev->suspend_lo = new;
  4029. if (new >= old)
  4030. /* Shrinking suspended region */
  4031. mddev->pers->quiesce(mddev, 2);
  4032. else {
  4033. /* Expanding suspended region - need to wait */
  4034. mddev->pers->quiesce(mddev, 1);
  4035. mddev->pers->quiesce(mddev, 0);
  4036. }
  4037. return len;
  4038. }
  4039. static struct md_sysfs_entry md_suspend_lo =
  4040. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4041. static ssize_t
  4042. suspend_hi_show(struct mddev *mddev, char *page)
  4043. {
  4044. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4045. }
  4046. static ssize_t
  4047. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4048. {
  4049. char *e;
  4050. unsigned long long new = simple_strtoull(buf, &e, 10);
  4051. unsigned long long old = mddev->suspend_hi;
  4052. if (mddev->pers == NULL ||
  4053. mddev->pers->quiesce == NULL)
  4054. return -EINVAL;
  4055. if (buf == e || (*e && *e != '\n'))
  4056. return -EINVAL;
  4057. mddev->suspend_hi = new;
  4058. if (new <= old)
  4059. /* Shrinking suspended region */
  4060. mddev->pers->quiesce(mddev, 2);
  4061. else {
  4062. /* Expanding suspended region - need to wait */
  4063. mddev->pers->quiesce(mddev, 1);
  4064. mddev->pers->quiesce(mddev, 0);
  4065. }
  4066. return len;
  4067. }
  4068. static struct md_sysfs_entry md_suspend_hi =
  4069. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4070. static ssize_t
  4071. reshape_position_show(struct mddev *mddev, char *page)
  4072. {
  4073. if (mddev->reshape_position != MaxSector)
  4074. return sprintf(page, "%llu\n",
  4075. (unsigned long long)mddev->reshape_position);
  4076. strcpy(page, "none\n");
  4077. return 5;
  4078. }
  4079. static ssize_t
  4080. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4081. {
  4082. struct md_rdev *rdev;
  4083. char *e;
  4084. unsigned long long new = simple_strtoull(buf, &e, 10);
  4085. if (mddev->pers)
  4086. return -EBUSY;
  4087. if (buf == e || (*e && *e != '\n'))
  4088. return -EINVAL;
  4089. mddev->reshape_position = new;
  4090. mddev->delta_disks = 0;
  4091. mddev->reshape_backwards = 0;
  4092. mddev->new_level = mddev->level;
  4093. mddev->new_layout = mddev->layout;
  4094. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4095. rdev_for_each(rdev, mddev)
  4096. rdev->new_data_offset = rdev->data_offset;
  4097. return len;
  4098. }
  4099. static struct md_sysfs_entry md_reshape_position =
  4100. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4101. reshape_position_store);
  4102. static ssize_t
  4103. reshape_direction_show(struct mddev *mddev, char *page)
  4104. {
  4105. return sprintf(page, "%s\n",
  4106. mddev->reshape_backwards ? "backwards" : "forwards");
  4107. }
  4108. static ssize_t
  4109. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4110. {
  4111. int backwards = 0;
  4112. if (cmd_match(buf, "forwards"))
  4113. backwards = 0;
  4114. else if (cmd_match(buf, "backwards"))
  4115. backwards = 1;
  4116. else
  4117. return -EINVAL;
  4118. if (mddev->reshape_backwards == backwards)
  4119. return len;
  4120. /* check if we are allowed to change */
  4121. if (mddev->delta_disks)
  4122. return -EBUSY;
  4123. if (mddev->persistent &&
  4124. mddev->major_version == 0)
  4125. return -EINVAL;
  4126. mddev->reshape_backwards = backwards;
  4127. return len;
  4128. }
  4129. static struct md_sysfs_entry md_reshape_direction =
  4130. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4131. reshape_direction_store);
  4132. static ssize_t
  4133. array_size_show(struct mddev *mddev, char *page)
  4134. {
  4135. if (mddev->external_size)
  4136. return sprintf(page, "%llu\n",
  4137. (unsigned long long)mddev->array_sectors/2);
  4138. else
  4139. return sprintf(page, "default\n");
  4140. }
  4141. static ssize_t
  4142. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4143. {
  4144. sector_t sectors;
  4145. if (strncmp(buf, "default", 7) == 0) {
  4146. if (mddev->pers)
  4147. sectors = mddev->pers->size(mddev, 0, 0);
  4148. else
  4149. sectors = mddev->array_sectors;
  4150. mddev->external_size = 0;
  4151. } else {
  4152. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4153. return -EINVAL;
  4154. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4155. return -E2BIG;
  4156. mddev->external_size = 1;
  4157. }
  4158. mddev->array_sectors = sectors;
  4159. if (mddev->pers) {
  4160. set_capacity(mddev->gendisk, mddev->array_sectors);
  4161. revalidate_disk(mddev->gendisk);
  4162. }
  4163. return len;
  4164. }
  4165. static struct md_sysfs_entry md_array_size =
  4166. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4167. array_size_store);
  4168. static struct attribute *md_default_attrs[] = {
  4169. &md_level.attr,
  4170. &md_layout.attr,
  4171. &md_raid_disks.attr,
  4172. &md_chunk_size.attr,
  4173. &md_size.attr,
  4174. &md_resync_start.attr,
  4175. &md_metadata.attr,
  4176. &md_new_device.attr,
  4177. &md_safe_delay.attr,
  4178. &md_array_state.attr,
  4179. &md_reshape_position.attr,
  4180. &md_reshape_direction.attr,
  4181. &md_array_size.attr,
  4182. &max_corr_read_errors.attr,
  4183. NULL,
  4184. };
  4185. static struct attribute *md_redundancy_attrs[] = {
  4186. &md_scan_mode.attr,
  4187. &md_mismatches.attr,
  4188. &md_sync_min.attr,
  4189. &md_sync_max.attr,
  4190. &md_sync_speed.attr,
  4191. &md_sync_force_parallel.attr,
  4192. &md_sync_completed.attr,
  4193. &md_min_sync.attr,
  4194. &md_max_sync.attr,
  4195. &md_suspend_lo.attr,
  4196. &md_suspend_hi.attr,
  4197. &md_bitmap.attr,
  4198. &md_degraded.attr,
  4199. NULL,
  4200. };
  4201. static struct attribute_group md_redundancy_group = {
  4202. .name = NULL,
  4203. .attrs = md_redundancy_attrs,
  4204. };
  4205. static ssize_t
  4206. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4207. {
  4208. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4209. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4210. ssize_t rv;
  4211. if (!entry->show)
  4212. return -EIO;
  4213. spin_lock(&all_mddevs_lock);
  4214. if (list_empty(&mddev->all_mddevs)) {
  4215. spin_unlock(&all_mddevs_lock);
  4216. return -EBUSY;
  4217. }
  4218. mddev_get(mddev);
  4219. spin_unlock(&all_mddevs_lock);
  4220. rv = mddev_lock(mddev);
  4221. if (!rv) {
  4222. rv = entry->show(mddev, page);
  4223. mddev_unlock(mddev);
  4224. }
  4225. mddev_put(mddev);
  4226. return rv;
  4227. }
  4228. static ssize_t
  4229. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4230. const char *page, size_t length)
  4231. {
  4232. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4233. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4234. ssize_t rv;
  4235. if (!entry->store)
  4236. return -EIO;
  4237. if (!capable(CAP_SYS_ADMIN))
  4238. return -EACCES;
  4239. spin_lock(&all_mddevs_lock);
  4240. if (list_empty(&mddev->all_mddevs)) {
  4241. spin_unlock(&all_mddevs_lock);
  4242. return -EBUSY;
  4243. }
  4244. mddev_get(mddev);
  4245. spin_unlock(&all_mddevs_lock);
  4246. rv = mddev_lock(mddev);
  4247. if (!rv) {
  4248. rv = entry->store(mddev, page, length);
  4249. mddev_unlock(mddev);
  4250. }
  4251. mddev_put(mddev);
  4252. return rv;
  4253. }
  4254. static void md_free(struct kobject *ko)
  4255. {
  4256. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4257. if (mddev->sysfs_state)
  4258. sysfs_put(mddev->sysfs_state);
  4259. if (mddev->gendisk) {
  4260. del_gendisk(mddev->gendisk);
  4261. put_disk(mddev->gendisk);
  4262. }
  4263. if (mddev->queue)
  4264. blk_cleanup_queue(mddev->queue);
  4265. kfree(mddev);
  4266. }
  4267. static const struct sysfs_ops md_sysfs_ops = {
  4268. .show = md_attr_show,
  4269. .store = md_attr_store,
  4270. };
  4271. static struct kobj_type md_ktype = {
  4272. .release = md_free,
  4273. .sysfs_ops = &md_sysfs_ops,
  4274. .default_attrs = md_default_attrs,
  4275. };
  4276. int mdp_major = 0;
  4277. static void mddev_delayed_delete(struct work_struct *ws)
  4278. {
  4279. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4280. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4281. kobject_del(&mddev->kobj);
  4282. kobject_put(&mddev->kobj);
  4283. }
  4284. static int md_alloc(dev_t dev, char *name)
  4285. {
  4286. static DEFINE_MUTEX(disks_mutex);
  4287. struct mddev *mddev = mddev_find(dev);
  4288. struct gendisk *disk;
  4289. int partitioned;
  4290. int shift;
  4291. int unit;
  4292. int error;
  4293. if (!mddev)
  4294. return -ENODEV;
  4295. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4296. shift = partitioned ? MdpMinorShift : 0;
  4297. unit = MINOR(mddev->unit) >> shift;
  4298. /* wait for any previous instance of this device to be
  4299. * completely removed (mddev_delayed_delete).
  4300. */
  4301. flush_workqueue(md_misc_wq);
  4302. mutex_lock(&disks_mutex);
  4303. error = -EEXIST;
  4304. if (mddev->gendisk)
  4305. goto abort;
  4306. if (name) {
  4307. /* Need to ensure that 'name' is not a duplicate.
  4308. */
  4309. struct mddev *mddev2;
  4310. spin_lock(&all_mddevs_lock);
  4311. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4312. if (mddev2->gendisk &&
  4313. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4314. spin_unlock(&all_mddevs_lock);
  4315. goto abort;
  4316. }
  4317. spin_unlock(&all_mddevs_lock);
  4318. }
  4319. error = -ENOMEM;
  4320. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4321. if (!mddev->queue)
  4322. goto abort;
  4323. mddev->queue->queuedata = mddev;
  4324. blk_queue_make_request(mddev->queue, md_make_request);
  4325. blk_set_stacking_limits(&mddev->queue->limits);
  4326. disk = alloc_disk(1 << shift);
  4327. if (!disk) {
  4328. blk_cleanup_queue(mddev->queue);
  4329. mddev->queue = NULL;
  4330. goto abort;
  4331. }
  4332. disk->major = MAJOR(mddev->unit);
  4333. disk->first_minor = unit << shift;
  4334. if (name)
  4335. strcpy(disk->disk_name, name);
  4336. else if (partitioned)
  4337. sprintf(disk->disk_name, "md_d%d", unit);
  4338. else
  4339. sprintf(disk->disk_name, "md%d", unit);
  4340. disk->fops = &md_fops;
  4341. disk->private_data = mddev;
  4342. disk->queue = mddev->queue;
  4343. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4344. /* Allow extended partitions. This makes the
  4345. * 'mdp' device redundant, but we can't really
  4346. * remove it now.
  4347. */
  4348. disk->flags |= GENHD_FL_EXT_DEVT;
  4349. mddev->gendisk = disk;
  4350. /* As soon as we call add_disk(), another thread could get
  4351. * through to md_open, so make sure it doesn't get too far
  4352. */
  4353. mutex_lock(&mddev->open_mutex);
  4354. add_disk(disk);
  4355. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4356. &disk_to_dev(disk)->kobj, "%s", "md");
  4357. if (error) {
  4358. /* This isn't possible, but as kobject_init_and_add is marked
  4359. * __must_check, we must do something with the result
  4360. */
  4361. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4362. disk->disk_name);
  4363. error = 0;
  4364. }
  4365. if (mddev->kobj.sd &&
  4366. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4367. printk(KERN_DEBUG "pointless warning\n");
  4368. mutex_unlock(&mddev->open_mutex);
  4369. abort:
  4370. mutex_unlock(&disks_mutex);
  4371. if (!error && mddev->kobj.sd) {
  4372. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4373. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4374. }
  4375. mddev_put(mddev);
  4376. return error;
  4377. }
  4378. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4379. {
  4380. md_alloc(dev, NULL);
  4381. return NULL;
  4382. }
  4383. static int add_named_array(const char *val, struct kernel_param *kp)
  4384. {
  4385. /* val must be "md_*" where * is not all digits.
  4386. * We allocate an array with a large free minor number, and
  4387. * set the name to val. val must not already be an active name.
  4388. */
  4389. int len = strlen(val);
  4390. char buf[DISK_NAME_LEN];
  4391. while (len && val[len-1] == '\n')
  4392. len--;
  4393. if (len >= DISK_NAME_LEN)
  4394. return -E2BIG;
  4395. strlcpy(buf, val, len+1);
  4396. if (strncmp(buf, "md_", 3) != 0)
  4397. return -EINVAL;
  4398. return md_alloc(0, buf);
  4399. }
  4400. static void md_safemode_timeout(unsigned long data)
  4401. {
  4402. struct mddev *mddev = (struct mddev *) data;
  4403. if (!atomic_read(&mddev->writes_pending)) {
  4404. mddev->safemode = 1;
  4405. if (mddev->external)
  4406. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4407. }
  4408. md_wakeup_thread(mddev->thread);
  4409. }
  4410. static int start_dirty_degraded;
  4411. int md_run(struct mddev *mddev)
  4412. {
  4413. int err;
  4414. struct md_rdev *rdev;
  4415. struct md_personality *pers;
  4416. if (list_empty(&mddev->disks))
  4417. /* cannot run an array with no devices.. */
  4418. return -EINVAL;
  4419. if (mddev->pers)
  4420. return -EBUSY;
  4421. /* Cannot run until previous stop completes properly */
  4422. if (mddev->sysfs_active)
  4423. return -EBUSY;
  4424. /*
  4425. * Analyze all RAID superblock(s)
  4426. */
  4427. if (!mddev->raid_disks) {
  4428. if (!mddev->persistent)
  4429. return -EINVAL;
  4430. analyze_sbs(mddev);
  4431. }
  4432. if (mddev->level != LEVEL_NONE)
  4433. request_module("md-level-%d", mddev->level);
  4434. else if (mddev->clevel[0])
  4435. request_module("md-%s", mddev->clevel);
  4436. /*
  4437. * Drop all container device buffers, from now on
  4438. * the only valid external interface is through the md
  4439. * device.
  4440. */
  4441. rdev_for_each(rdev, mddev) {
  4442. if (test_bit(Faulty, &rdev->flags))
  4443. continue;
  4444. sync_blockdev(rdev->bdev);
  4445. invalidate_bdev(rdev->bdev);
  4446. /* perform some consistency tests on the device.
  4447. * We don't want the data to overlap the metadata,
  4448. * Internal Bitmap issues have been handled elsewhere.
  4449. */
  4450. if (rdev->meta_bdev) {
  4451. /* Nothing to check */;
  4452. } else if (rdev->data_offset < rdev->sb_start) {
  4453. if (mddev->dev_sectors &&
  4454. rdev->data_offset + mddev->dev_sectors
  4455. > rdev->sb_start) {
  4456. printk("md: %s: data overlaps metadata\n",
  4457. mdname(mddev));
  4458. return -EINVAL;
  4459. }
  4460. } else {
  4461. if (rdev->sb_start + rdev->sb_size/512
  4462. > rdev->data_offset) {
  4463. printk("md: %s: metadata overlaps data\n",
  4464. mdname(mddev));
  4465. return -EINVAL;
  4466. }
  4467. }
  4468. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4469. }
  4470. if (mddev->bio_set == NULL)
  4471. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4472. sizeof(struct mddev *));
  4473. spin_lock(&pers_lock);
  4474. pers = find_pers(mddev->level, mddev->clevel);
  4475. if (!pers || !try_module_get(pers->owner)) {
  4476. spin_unlock(&pers_lock);
  4477. if (mddev->level != LEVEL_NONE)
  4478. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4479. mddev->level);
  4480. else
  4481. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4482. mddev->clevel);
  4483. return -EINVAL;
  4484. }
  4485. mddev->pers = pers;
  4486. spin_unlock(&pers_lock);
  4487. if (mddev->level != pers->level) {
  4488. mddev->level = pers->level;
  4489. mddev->new_level = pers->level;
  4490. }
  4491. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4492. if (mddev->reshape_position != MaxSector &&
  4493. pers->start_reshape == NULL) {
  4494. /* This personality cannot handle reshaping... */
  4495. mddev->pers = NULL;
  4496. module_put(pers->owner);
  4497. return -EINVAL;
  4498. }
  4499. if (pers->sync_request) {
  4500. /* Warn if this is a potentially silly
  4501. * configuration.
  4502. */
  4503. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4504. struct md_rdev *rdev2;
  4505. int warned = 0;
  4506. rdev_for_each(rdev, mddev)
  4507. rdev_for_each(rdev2, mddev) {
  4508. if (rdev < rdev2 &&
  4509. rdev->bdev->bd_contains ==
  4510. rdev2->bdev->bd_contains) {
  4511. printk(KERN_WARNING
  4512. "%s: WARNING: %s appears to be"
  4513. " on the same physical disk as"
  4514. " %s.\n",
  4515. mdname(mddev),
  4516. bdevname(rdev->bdev,b),
  4517. bdevname(rdev2->bdev,b2));
  4518. warned = 1;
  4519. }
  4520. }
  4521. if (warned)
  4522. printk(KERN_WARNING
  4523. "True protection against single-disk"
  4524. " failure might be compromised.\n");
  4525. }
  4526. mddev->recovery = 0;
  4527. /* may be over-ridden by personality */
  4528. mddev->resync_max_sectors = mddev->dev_sectors;
  4529. mddev->ok_start_degraded = start_dirty_degraded;
  4530. if (start_readonly && mddev->ro == 0)
  4531. mddev->ro = 2; /* read-only, but switch on first write */
  4532. err = mddev->pers->run(mddev);
  4533. if (err)
  4534. printk(KERN_ERR "md: pers->run() failed ...\n");
  4535. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4536. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4537. " but 'external_size' not in effect?\n", __func__);
  4538. printk(KERN_ERR
  4539. "md: invalid array_size %llu > default size %llu\n",
  4540. (unsigned long long)mddev->array_sectors / 2,
  4541. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4542. err = -EINVAL;
  4543. mddev->pers->stop(mddev);
  4544. }
  4545. if (err == 0 && mddev->pers->sync_request) {
  4546. err = bitmap_create(mddev);
  4547. if (err) {
  4548. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4549. mdname(mddev), err);
  4550. mddev->pers->stop(mddev);
  4551. }
  4552. }
  4553. if (err) {
  4554. module_put(mddev->pers->owner);
  4555. mddev->pers = NULL;
  4556. bitmap_destroy(mddev);
  4557. return err;
  4558. }
  4559. if (mddev->pers->sync_request) {
  4560. if (mddev->kobj.sd &&
  4561. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4562. printk(KERN_WARNING
  4563. "md: cannot register extra attributes for %s\n",
  4564. mdname(mddev));
  4565. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4566. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4567. mddev->ro = 0;
  4568. atomic_set(&mddev->writes_pending,0);
  4569. atomic_set(&mddev->max_corr_read_errors,
  4570. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4571. mddev->safemode = 0;
  4572. mddev->safemode_timer.function = md_safemode_timeout;
  4573. mddev->safemode_timer.data = (unsigned long) mddev;
  4574. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4575. mddev->in_sync = 1;
  4576. smp_wmb();
  4577. mddev->ready = 1;
  4578. rdev_for_each(rdev, mddev)
  4579. if (rdev->raid_disk >= 0)
  4580. if (sysfs_link_rdev(mddev, rdev))
  4581. /* failure here is OK */;
  4582. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4583. if (mddev->flags)
  4584. md_update_sb(mddev, 0);
  4585. md_new_event(mddev);
  4586. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4587. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4588. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4589. return 0;
  4590. }
  4591. EXPORT_SYMBOL_GPL(md_run);
  4592. static int do_md_run(struct mddev *mddev)
  4593. {
  4594. int err;
  4595. err = md_run(mddev);
  4596. if (err)
  4597. goto out;
  4598. err = bitmap_load(mddev);
  4599. if (err) {
  4600. bitmap_destroy(mddev);
  4601. goto out;
  4602. }
  4603. md_wakeup_thread(mddev->thread);
  4604. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4605. set_capacity(mddev->gendisk, mddev->array_sectors);
  4606. revalidate_disk(mddev->gendisk);
  4607. mddev->changed = 1;
  4608. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4609. out:
  4610. return err;
  4611. }
  4612. static int restart_array(struct mddev *mddev)
  4613. {
  4614. struct gendisk *disk = mddev->gendisk;
  4615. /* Complain if it has no devices */
  4616. if (list_empty(&mddev->disks))
  4617. return -ENXIO;
  4618. if (!mddev->pers)
  4619. return -EINVAL;
  4620. if (!mddev->ro)
  4621. return -EBUSY;
  4622. mddev->safemode = 0;
  4623. mddev->ro = 0;
  4624. set_disk_ro(disk, 0);
  4625. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4626. mdname(mddev));
  4627. /* Kick recovery or resync if necessary */
  4628. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4629. md_wakeup_thread(mddev->thread);
  4630. md_wakeup_thread(mddev->sync_thread);
  4631. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4632. return 0;
  4633. }
  4634. /* similar to deny_write_access, but accounts for our holding a reference
  4635. * to the file ourselves */
  4636. static int deny_bitmap_write_access(struct file * file)
  4637. {
  4638. struct inode *inode = file->f_mapping->host;
  4639. spin_lock(&inode->i_lock);
  4640. if (atomic_read(&inode->i_writecount) > 1) {
  4641. spin_unlock(&inode->i_lock);
  4642. return -ETXTBSY;
  4643. }
  4644. atomic_set(&inode->i_writecount, -1);
  4645. spin_unlock(&inode->i_lock);
  4646. return 0;
  4647. }
  4648. void restore_bitmap_write_access(struct file *file)
  4649. {
  4650. struct inode *inode = file->f_mapping->host;
  4651. spin_lock(&inode->i_lock);
  4652. atomic_set(&inode->i_writecount, 1);
  4653. spin_unlock(&inode->i_lock);
  4654. }
  4655. static void md_clean(struct mddev *mddev)
  4656. {
  4657. mddev->array_sectors = 0;
  4658. mddev->external_size = 0;
  4659. mddev->dev_sectors = 0;
  4660. mddev->raid_disks = 0;
  4661. mddev->recovery_cp = 0;
  4662. mddev->resync_min = 0;
  4663. mddev->resync_max = MaxSector;
  4664. mddev->reshape_position = MaxSector;
  4665. mddev->external = 0;
  4666. mddev->persistent = 0;
  4667. mddev->level = LEVEL_NONE;
  4668. mddev->clevel[0] = 0;
  4669. mddev->flags = 0;
  4670. mddev->ro = 0;
  4671. mddev->metadata_type[0] = 0;
  4672. mddev->chunk_sectors = 0;
  4673. mddev->ctime = mddev->utime = 0;
  4674. mddev->layout = 0;
  4675. mddev->max_disks = 0;
  4676. mddev->events = 0;
  4677. mddev->can_decrease_events = 0;
  4678. mddev->delta_disks = 0;
  4679. mddev->reshape_backwards = 0;
  4680. mddev->new_level = LEVEL_NONE;
  4681. mddev->new_layout = 0;
  4682. mddev->new_chunk_sectors = 0;
  4683. mddev->curr_resync = 0;
  4684. mddev->resync_mismatches = 0;
  4685. mddev->suspend_lo = mddev->suspend_hi = 0;
  4686. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4687. mddev->recovery = 0;
  4688. mddev->in_sync = 0;
  4689. mddev->changed = 0;
  4690. mddev->degraded = 0;
  4691. mddev->safemode = 0;
  4692. mddev->merge_check_needed = 0;
  4693. mddev->bitmap_info.offset = 0;
  4694. mddev->bitmap_info.default_offset = 0;
  4695. mddev->bitmap_info.chunksize = 0;
  4696. mddev->bitmap_info.daemon_sleep = 0;
  4697. mddev->bitmap_info.max_write_behind = 0;
  4698. }
  4699. static void __md_stop_writes(struct mddev *mddev)
  4700. {
  4701. if (mddev->sync_thread) {
  4702. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4703. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4704. reap_sync_thread(mddev);
  4705. }
  4706. del_timer_sync(&mddev->safemode_timer);
  4707. bitmap_flush(mddev);
  4708. md_super_wait(mddev);
  4709. if (!mddev->in_sync || mddev->flags) {
  4710. /* mark array as shutdown cleanly */
  4711. mddev->in_sync = 1;
  4712. md_update_sb(mddev, 1);
  4713. }
  4714. }
  4715. void md_stop_writes(struct mddev *mddev)
  4716. {
  4717. mddev_lock(mddev);
  4718. __md_stop_writes(mddev);
  4719. mddev_unlock(mddev);
  4720. }
  4721. EXPORT_SYMBOL_GPL(md_stop_writes);
  4722. void md_stop(struct mddev *mddev)
  4723. {
  4724. mddev->ready = 0;
  4725. mddev->pers->stop(mddev);
  4726. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4727. mddev->to_remove = &md_redundancy_group;
  4728. module_put(mddev->pers->owner);
  4729. mddev->pers = NULL;
  4730. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4731. }
  4732. EXPORT_SYMBOL_GPL(md_stop);
  4733. static int md_set_readonly(struct mddev *mddev, int is_open)
  4734. {
  4735. int err = 0;
  4736. mutex_lock(&mddev->open_mutex);
  4737. if (atomic_read(&mddev->openers) > is_open) {
  4738. printk("md: %s still in use.\n",mdname(mddev));
  4739. err = -EBUSY;
  4740. goto out;
  4741. }
  4742. if (mddev->pers) {
  4743. __md_stop_writes(mddev);
  4744. err = -ENXIO;
  4745. if (mddev->ro==1)
  4746. goto out;
  4747. mddev->ro = 1;
  4748. set_disk_ro(mddev->gendisk, 1);
  4749. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4750. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4751. err = 0;
  4752. }
  4753. out:
  4754. mutex_unlock(&mddev->open_mutex);
  4755. return err;
  4756. }
  4757. /* mode:
  4758. * 0 - completely stop and dis-assemble array
  4759. * 2 - stop but do not disassemble array
  4760. */
  4761. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4762. {
  4763. struct gendisk *disk = mddev->gendisk;
  4764. struct md_rdev *rdev;
  4765. mutex_lock(&mddev->open_mutex);
  4766. if (atomic_read(&mddev->openers) > is_open ||
  4767. mddev->sysfs_active) {
  4768. printk("md: %s still in use.\n",mdname(mddev));
  4769. mutex_unlock(&mddev->open_mutex);
  4770. return -EBUSY;
  4771. }
  4772. if (mddev->pers) {
  4773. if (mddev->ro)
  4774. set_disk_ro(disk, 0);
  4775. __md_stop_writes(mddev);
  4776. md_stop(mddev);
  4777. mddev->queue->merge_bvec_fn = NULL;
  4778. mddev->queue->backing_dev_info.congested_fn = NULL;
  4779. /* tell userspace to handle 'inactive' */
  4780. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4781. rdev_for_each(rdev, mddev)
  4782. if (rdev->raid_disk >= 0)
  4783. sysfs_unlink_rdev(mddev, rdev);
  4784. set_capacity(disk, 0);
  4785. mutex_unlock(&mddev->open_mutex);
  4786. mddev->changed = 1;
  4787. revalidate_disk(disk);
  4788. if (mddev->ro)
  4789. mddev->ro = 0;
  4790. } else
  4791. mutex_unlock(&mddev->open_mutex);
  4792. /*
  4793. * Free resources if final stop
  4794. */
  4795. if (mode == 0) {
  4796. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4797. bitmap_destroy(mddev);
  4798. if (mddev->bitmap_info.file) {
  4799. restore_bitmap_write_access(mddev->bitmap_info.file);
  4800. fput(mddev->bitmap_info.file);
  4801. mddev->bitmap_info.file = NULL;
  4802. }
  4803. mddev->bitmap_info.offset = 0;
  4804. export_array(mddev);
  4805. md_clean(mddev);
  4806. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4807. if (mddev->hold_active == UNTIL_STOP)
  4808. mddev->hold_active = 0;
  4809. }
  4810. blk_integrity_unregister(disk);
  4811. md_new_event(mddev);
  4812. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4813. return 0;
  4814. }
  4815. #ifndef MODULE
  4816. static void autorun_array(struct mddev *mddev)
  4817. {
  4818. struct md_rdev *rdev;
  4819. int err;
  4820. if (list_empty(&mddev->disks))
  4821. return;
  4822. printk(KERN_INFO "md: running: ");
  4823. rdev_for_each(rdev, mddev) {
  4824. char b[BDEVNAME_SIZE];
  4825. printk("<%s>", bdevname(rdev->bdev,b));
  4826. }
  4827. printk("\n");
  4828. err = do_md_run(mddev);
  4829. if (err) {
  4830. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4831. do_md_stop(mddev, 0, 0);
  4832. }
  4833. }
  4834. /*
  4835. * lets try to run arrays based on all disks that have arrived
  4836. * until now. (those are in pending_raid_disks)
  4837. *
  4838. * the method: pick the first pending disk, collect all disks with
  4839. * the same UUID, remove all from the pending list and put them into
  4840. * the 'same_array' list. Then order this list based on superblock
  4841. * update time (freshest comes first), kick out 'old' disks and
  4842. * compare superblocks. If everything's fine then run it.
  4843. *
  4844. * If "unit" is allocated, then bump its reference count
  4845. */
  4846. static void autorun_devices(int part)
  4847. {
  4848. struct md_rdev *rdev0, *rdev, *tmp;
  4849. struct mddev *mddev;
  4850. char b[BDEVNAME_SIZE];
  4851. printk(KERN_INFO "md: autorun ...\n");
  4852. while (!list_empty(&pending_raid_disks)) {
  4853. int unit;
  4854. dev_t dev;
  4855. LIST_HEAD(candidates);
  4856. rdev0 = list_entry(pending_raid_disks.next,
  4857. struct md_rdev, same_set);
  4858. printk(KERN_INFO "md: considering %s ...\n",
  4859. bdevname(rdev0->bdev,b));
  4860. INIT_LIST_HEAD(&candidates);
  4861. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4862. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4863. printk(KERN_INFO "md: adding %s ...\n",
  4864. bdevname(rdev->bdev,b));
  4865. list_move(&rdev->same_set, &candidates);
  4866. }
  4867. /*
  4868. * now we have a set of devices, with all of them having
  4869. * mostly sane superblocks. It's time to allocate the
  4870. * mddev.
  4871. */
  4872. if (part) {
  4873. dev = MKDEV(mdp_major,
  4874. rdev0->preferred_minor << MdpMinorShift);
  4875. unit = MINOR(dev) >> MdpMinorShift;
  4876. } else {
  4877. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4878. unit = MINOR(dev);
  4879. }
  4880. if (rdev0->preferred_minor != unit) {
  4881. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4882. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4883. break;
  4884. }
  4885. md_probe(dev, NULL, NULL);
  4886. mddev = mddev_find(dev);
  4887. if (!mddev || !mddev->gendisk) {
  4888. if (mddev)
  4889. mddev_put(mddev);
  4890. printk(KERN_ERR
  4891. "md: cannot allocate memory for md drive.\n");
  4892. break;
  4893. }
  4894. if (mddev_lock(mddev))
  4895. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4896. mdname(mddev));
  4897. else if (mddev->raid_disks || mddev->major_version
  4898. || !list_empty(&mddev->disks)) {
  4899. printk(KERN_WARNING
  4900. "md: %s already running, cannot run %s\n",
  4901. mdname(mddev), bdevname(rdev0->bdev,b));
  4902. mddev_unlock(mddev);
  4903. } else {
  4904. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4905. mddev->persistent = 1;
  4906. rdev_for_each_list(rdev, tmp, &candidates) {
  4907. list_del_init(&rdev->same_set);
  4908. if (bind_rdev_to_array(rdev, mddev))
  4909. export_rdev(rdev);
  4910. }
  4911. autorun_array(mddev);
  4912. mddev_unlock(mddev);
  4913. }
  4914. /* on success, candidates will be empty, on error
  4915. * it won't...
  4916. */
  4917. rdev_for_each_list(rdev, tmp, &candidates) {
  4918. list_del_init(&rdev->same_set);
  4919. export_rdev(rdev);
  4920. }
  4921. mddev_put(mddev);
  4922. }
  4923. printk(KERN_INFO "md: ... autorun DONE.\n");
  4924. }
  4925. #endif /* !MODULE */
  4926. static int get_version(void __user * arg)
  4927. {
  4928. mdu_version_t ver;
  4929. ver.major = MD_MAJOR_VERSION;
  4930. ver.minor = MD_MINOR_VERSION;
  4931. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4932. if (copy_to_user(arg, &ver, sizeof(ver)))
  4933. return -EFAULT;
  4934. return 0;
  4935. }
  4936. static int get_array_info(struct mddev * mddev, void __user * arg)
  4937. {
  4938. mdu_array_info_t info;
  4939. int nr,working,insync,failed,spare;
  4940. struct md_rdev *rdev;
  4941. nr=working=insync=failed=spare=0;
  4942. rdev_for_each(rdev, mddev) {
  4943. nr++;
  4944. if (test_bit(Faulty, &rdev->flags))
  4945. failed++;
  4946. else {
  4947. working++;
  4948. if (test_bit(In_sync, &rdev->flags))
  4949. insync++;
  4950. else
  4951. spare++;
  4952. }
  4953. }
  4954. info.major_version = mddev->major_version;
  4955. info.minor_version = mddev->minor_version;
  4956. info.patch_version = MD_PATCHLEVEL_VERSION;
  4957. info.ctime = mddev->ctime;
  4958. info.level = mddev->level;
  4959. info.size = mddev->dev_sectors / 2;
  4960. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4961. info.size = -1;
  4962. info.nr_disks = nr;
  4963. info.raid_disks = mddev->raid_disks;
  4964. info.md_minor = mddev->md_minor;
  4965. info.not_persistent= !mddev->persistent;
  4966. info.utime = mddev->utime;
  4967. info.state = 0;
  4968. if (mddev->in_sync)
  4969. info.state = (1<<MD_SB_CLEAN);
  4970. if (mddev->bitmap && mddev->bitmap_info.offset)
  4971. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4972. info.active_disks = insync;
  4973. info.working_disks = working;
  4974. info.failed_disks = failed;
  4975. info.spare_disks = spare;
  4976. info.layout = mddev->layout;
  4977. info.chunk_size = mddev->chunk_sectors << 9;
  4978. if (copy_to_user(arg, &info, sizeof(info)))
  4979. return -EFAULT;
  4980. return 0;
  4981. }
  4982. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4983. {
  4984. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4985. char *ptr, *buf = NULL;
  4986. int err = -ENOMEM;
  4987. if (md_allow_write(mddev))
  4988. file = kmalloc(sizeof(*file), GFP_NOIO);
  4989. else
  4990. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4991. if (!file)
  4992. goto out;
  4993. /* bitmap disabled, zero the first byte and copy out */
  4994. if (!mddev->bitmap || !mddev->bitmap->file) {
  4995. file->pathname[0] = '\0';
  4996. goto copy_out;
  4997. }
  4998. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4999. if (!buf)
  5000. goto out;
  5001. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  5002. if (IS_ERR(ptr))
  5003. goto out;
  5004. strcpy(file->pathname, ptr);
  5005. copy_out:
  5006. err = 0;
  5007. if (copy_to_user(arg, file, sizeof(*file)))
  5008. err = -EFAULT;
  5009. out:
  5010. kfree(buf);
  5011. kfree(file);
  5012. return err;
  5013. }
  5014. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5015. {
  5016. mdu_disk_info_t info;
  5017. struct md_rdev *rdev;
  5018. if (copy_from_user(&info, arg, sizeof(info)))
  5019. return -EFAULT;
  5020. rdev = find_rdev_nr(mddev, info.number);
  5021. if (rdev) {
  5022. info.major = MAJOR(rdev->bdev->bd_dev);
  5023. info.minor = MINOR(rdev->bdev->bd_dev);
  5024. info.raid_disk = rdev->raid_disk;
  5025. info.state = 0;
  5026. if (test_bit(Faulty, &rdev->flags))
  5027. info.state |= (1<<MD_DISK_FAULTY);
  5028. else if (test_bit(In_sync, &rdev->flags)) {
  5029. info.state |= (1<<MD_DISK_ACTIVE);
  5030. info.state |= (1<<MD_DISK_SYNC);
  5031. }
  5032. if (test_bit(WriteMostly, &rdev->flags))
  5033. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5034. } else {
  5035. info.major = info.minor = 0;
  5036. info.raid_disk = -1;
  5037. info.state = (1<<MD_DISK_REMOVED);
  5038. }
  5039. if (copy_to_user(arg, &info, sizeof(info)))
  5040. return -EFAULT;
  5041. return 0;
  5042. }
  5043. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5044. {
  5045. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5046. struct md_rdev *rdev;
  5047. dev_t dev = MKDEV(info->major,info->minor);
  5048. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5049. return -EOVERFLOW;
  5050. if (!mddev->raid_disks) {
  5051. int err;
  5052. /* expecting a device which has a superblock */
  5053. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5054. if (IS_ERR(rdev)) {
  5055. printk(KERN_WARNING
  5056. "md: md_import_device returned %ld\n",
  5057. PTR_ERR(rdev));
  5058. return PTR_ERR(rdev);
  5059. }
  5060. if (!list_empty(&mddev->disks)) {
  5061. struct md_rdev *rdev0
  5062. = list_entry(mddev->disks.next,
  5063. struct md_rdev, same_set);
  5064. err = super_types[mddev->major_version]
  5065. .load_super(rdev, rdev0, mddev->minor_version);
  5066. if (err < 0) {
  5067. printk(KERN_WARNING
  5068. "md: %s has different UUID to %s\n",
  5069. bdevname(rdev->bdev,b),
  5070. bdevname(rdev0->bdev,b2));
  5071. export_rdev(rdev);
  5072. return -EINVAL;
  5073. }
  5074. }
  5075. err = bind_rdev_to_array(rdev, mddev);
  5076. if (err)
  5077. export_rdev(rdev);
  5078. return err;
  5079. }
  5080. /*
  5081. * add_new_disk can be used once the array is assembled
  5082. * to add "hot spares". They must already have a superblock
  5083. * written
  5084. */
  5085. if (mddev->pers) {
  5086. int err;
  5087. if (!mddev->pers->hot_add_disk) {
  5088. printk(KERN_WARNING
  5089. "%s: personality does not support diskops!\n",
  5090. mdname(mddev));
  5091. return -EINVAL;
  5092. }
  5093. if (mddev->persistent)
  5094. rdev = md_import_device(dev, mddev->major_version,
  5095. mddev->minor_version);
  5096. else
  5097. rdev = md_import_device(dev, -1, -1);
  5098. if (IS_ERR(rdev)) {
  5099. printk(KERN_WARNING
  5100. "md: md_import_device returned %ld\n",
  5101. PTR_ERR(rdev));
  5102. return PTR_ERR(rdev);
  5103. }
  5104. /* set saved_raid_disk if appropriate */
  5105. if (!mddev->persistent) {
  5106. if (info->state & (1<<MD_DISK_SYNC) &&
  5107. info->raid_disk < mddev->raid_disks) {
  5108. rdev->raid_disk = info->raid_disk;
  5109. set_bit(In_sync, &rdev->flags);
  5110. } else
  5111. rdev->raid_disk = -1;
  5112. } else
  5113. super_types[mddev->major_version].
  5114. validate_super(mddev, rdev);
  5115. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5116. (!test_bit(In_sync, &rdev->flags) ||
  5117. rdev->raid_disk != info->raid_disk)) {
  5118. /* This was a hot-add request, but events doesn't
  5119. * match, so reject it.
  5120. */
  5121. export_rdev(rdev);
  5122. return -EINVAL;
  5123. }
  5124. if (test_bit(In_sync, &rdev->flags))
  5125. rdev->saved_raid_disk = rdev->raid_disk;
  5126. else
  5127. rdev->saved_raid_disk = -1;
  5128. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5129. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5130. set_bit(WriteMostly, &rdev->flags);
  5131. else
  5132. clear_bit(WriteMostly, &rdev->flags);
  5133. rdev->raid_disk = -1;
  5134. err = bind_rdev_to_array(rdev, mddev);
  5135. if (!err && !mddev->pers->hot_remove_disk) {
  5136. /* If there is hot_add_disk but no hot_remove_disk
  5137. * then added disks for geometry changes,
  5138. * and should be added immediately.
  5139. */
  5140. super_types[mddev->major_version].
  5141. validate_super(mddev, rdev);
  5142. err = mddev->pers->hot_add_disk(mddev, rdev);
  5143. if (err)
  5144. unbind_rdev_from_array(rdev);
  5145. }
  5146. if (err)
  5147. export_rdev(rdev);
  5148. else
  5149. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5150. md_update_sb(mddev, 1);
  5151. if (mddev->degraded)
  5152. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5153. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5154. if (!err)
  5155. md_new_event(mddev);
  5156. md_wakeup_thread(mddev->thread);
  5157. return err;
  5158. }
  5159. /* otherwise, add_new_disk is only allowed
  5160. * for major_version==0 superblocks
  5161. */
  5162. if (mddev->major_version != 0) {
  5163. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5164. mdname(mddev));
  5165. return -EINVAL;
  5166. }
  5167. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5168. int err;
  5169. rdev = md_import_device(dev, -1, 0);
  5170. if (IS_ERR(rdev)) {
  5171. printk(KERN_WARNING
  5172. "md: error, md_import_device() returned %ld\n",
  5173. PTR_ERR(rdev));
  5174. return PTR_ERR(rdev);
  5175. }
  5176. rdev->desc_nr = info->number;
  5177. if (info->raid_disk < mddev->raid_disks)
  5178. rdev->raid_disk = info->raid_disk;
  5179. else
  5180. rdev->raid_disk = -1;
  5181. if (rdev->raid_disk < mddev->raid_disks)
  5182. if (info->state & (1<<MD_DISK_SYNC))
  5183. set_bit(In_sync, &rdev->flags);
  5184. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5185. set_bit(WriteMostly, &rdev->flags);
  5186. if (!mddev->persistent) {
  5187. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5188. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5189. } else
  5190. rdev->sb_start = calc_dev_sboffset(rdev);
  5191. rdev->sectors = rdev->sb_start;
  5192. err = bind_rdev_to_array(rdev, mddev);
  5193. if (err) {
  5194. export_rdev(rdev);
  5195. return err;
  5196. }
  5197. }
  5198. return 0;
  5199. }
  5200. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5201. {
  5202. char b[BDEVNAME_SIZE];
  5203. struct md_rdev *rdev;
  5204. rdev = find_rdev(mddev, dev);
  5205. if (!rdev)
  5206. return -ENXIO;
  5207. if (rdev->raid_disk >= 0)
  5208. goto busy;
  5209. kick_rdev_from_array(rdev);
  5210. md_update_sb(mddev, 1);
  5211. md_new_event(mddev);
  5212. return 0;
  5213. busy:
  5214. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5215. bdevname(rdev->bdev,b), mdname(mddev));
  5216. return -EBUSY;
  5217. }
  5218. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5219. {
  5220. char b[BDEVNAME_SIZE];
  5221. int err;
  5222. struct md_rdev *rdev;
  5223. if (!mddev->pers)
  5224. return -ENODEV;
  5225. if (mddev->major_version != 0) {
  5226. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5227. " version-0 superblocks.\n",
  5228. mdname(mddev));
  5229. return -EINVAL;
  5230. }
  5231. if (!mddev->pers->hot_add_disk) {
  5232. printk(KERN_WARNING
  5233. "%s: personality does not support diskops!\n",
  5234. mdname(mddev));
  5235. return -EINVAL;
  5236. }
  5237. rdev = md_import_device(dev, -1, 0);
  5238. if (IS_ERR(rdev)) {
  5239. printk(KERN_WARNING
  5240. "md: error, md_import_device() returned %ld\n",
  5241. PTR_ERR(rdev));
  5242. return -EINVAL;
  5243. }
  5244. if (mddev->persistent)
  5245. rdev->sb_start = calc_dev_sboffset(rdev);
  5246. else
  5247. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5248. rdev->sectors = rdev->sb_start;
  5249. if (test_bit(Faulty, &rdev->flags)) {
  5250. printk(KERN_WARNING
  5251. "md: can not hot-add faulty %s disk to %s!\n",
  5252. bdevname(rdev->bdev,b), mdname(mddev));
  5253. err = -EINVAL;
  5254. goto abort_export;
  5255. }
  5256. clear_bit(In_sync, &rdev->flags);
  5257. rdev->desc_nr = -1;
  5258. rdev->saved_raid_disk = -1;
  5259. err = bind_rdev_to_array(rdev, mddev);
  5260. if (err)
  5261. goto abort_export;
  5262. /*
  5263. * The rest should better be atomic, we can have disk failures
  5264. * noticed in interrupt contexts ...
  5265. */
  5266. rdev->raid_disk = -1;
  5267. md_update_sb(mddev, 1);
  5268. /*
  5269. * Kick recovery, maybe this spare has to be added to the
  5270. * array immediately.
  5271. */
  5272. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5273. md_wakeup_thread(mddev->thread);
  5274. md_new_event(mddev);
  5275. return 0;
  5276. abort_export:
  5277. export_rdev(rdev);
  5278. return err;
  5279. }
  5280. static int set_bitmap_file(struct mddev *mddev, int fd)
  5281. {
  5282. int err;
  5283. if (mddev->pers) {
  5284. if (!mddev->pers->quiesce)
  5285. return -EBUSY;
  5286. if (mddev->recovery || mddev->sync_thread)
  5287. return -EBUSY;
  5288. /* we should be able to change the bitmap.. */
  5289. }
  5290. if (fd >= 0) {
  5291. if (mddev->bitmap)
  5292. return -EEXIST; /* cannot add when bitmap is present */
  5293. mddev->bitmap_info.file = fget(fd);
  5294. if (mddev->bitmap_info.file == NULL) {
  5295. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5296. mdname(mddev));
  5297. return -EBADF;
  5298. }
  5299. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5300. if (err) {
  5301. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5302. mdname(mddev));
  5303. fput(mddev->bitmap_info.file);
  5304. mddev->bitmap_info.file = NULL;
  5305. return err;
  5306. }
  5307. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5308. } else if (mddev->bitmap == NULL)
  5309. return -ENOENT; /* cannot remove what isn't there */
  5310. err = 0;
  5311. if (mddev->pers) {
  5312. mddev->pers->quiesce(mddev, 1);
  5313. if (fd >= 0) {
  5314. err = bitmap_create(mddev);
  5315. if (!err)
  5316. err = bitmap_load(mddev);
  5317. }
  5318. if (fd < 0 || err) {
  5319. bitmap_destroy(mddev);
  5320. fd = -1; /* make sure to put the file */
  5321. }
  5322. mddev->pers->quiesce(mddev, 0);
  5323. }
  5324. if (fd < 0) {
  5325. if (mddev->bitmap_info.file) {
  5326. restore_bitmap_write_access(mddev->bitmap_info.file);
  5327. fput(mddev->bitmap_info.file);
  5328. }
  5329. mddev->bitmap_info.file = NULL;
  5330. }
  5331. return err;
  5332. }
  5333. /*
  5334. * set_array_info is used two different ways
  5335. * The original usage is when creating a new array.
  5336. * In this usage, raid_disks is > 0 and it together with
  5337. * level, size, not_persistent,layout,chunksize determine the
  5338. * shape of the array.
  5339. * This will always create an array with a type-0.90.0 superblock.
  5340. * The newer usage is when assembling an array.
  5341. * In this case raid_disks will be 0, and the major_version field is
  5342. * use to determine which style super-blocks are to be found on the devices.
  5343. * The minor and patch _version numbers are also kept incase the
  5344. * super_block handler wishes to interpret them.
  5345. */
  5346. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5347. {
  5348. if (info->raid_disks == 0) {
  5349. /* just setting version number for superblock loading */
  5350. if (info->major_version < 0 ||
  5351. info->major_version >= ARRAY_SIZE(super_types) ||
  5352. super_types[info->major_version].name == NULL) {
  5353. /* maybe try to auto-load a module? */
  5354. printk(KERN_INFO
  5355. "md: superblock version %d not known\n",
  5356. info->major_version);
  5357. return -EINVAL;
  5358. }
  5359. mddev->major_version = info->major_version;
  5360. mddev->minor_version = info->minor_version;
  5361. mddev->patch_version = info->patch_version;
  5362. mddev->persistent = !info->not_persistent;
  5363. /* ensure mddev_put doesn't delete this now that there
  5364. * is some minimal configuration.
  5365. */
  5366. mddev->ctime = get_seconds();
  5367. return 0;
  5368. }
  5369. mddev->major_version = MD_MAJOR_VERSION;
  5370. mddev->minor_version = MD_MINOR_VERSION;
  5371. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5372. mddev->ctime = get_seconds();
  5373. mddev->level = info->level;
  5374. mddev->clevel[0] = 0;
  5375. mddev->dev_sectors = 2 * (sector_t)info->size;
  5376. mddev->raid_disks = info->raid_disks;
  5377. /* don't set md_minor, it is determined by which /dev/md* was
  5378. * openned
  5379. */
  5380. if (info->state & (1<<MD_SB_CLEAN))
  5381. mddev->recovery_cp = MaxSector;
  5382. else
  5383. mddev->recovery_cp = 0;
  5384. mddev->persistent = ! info->not_persistent;
  5385. mddev->external = 0;
  5386. mddev->layout = info->layout;
  5387. mddev->chunk_sectors = info->chunk_size >> 9;
  5388. mddev->max_disks = MD_SB_DISKS;
  5389. if (mddev->persistent)
  5390. mddev->flags = 0;
  5391. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5392. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5393. mddev->bitmap_info.offset = 0;
  5394. mddev->reshape_position = MaxSector;
  5395. /*
  5396. * Generate a 128 bit UUID
  5397. */
  5398. get_random_bytes(mddev->uuid, 16);
  5399. mddev->new_level = mddev->level;
  5400. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5401. mddev->new_layout = mddev->layout;
  5402. mddev->delta_disks = 0;
  5403. mddev->reshape_backwards = 0;
  5404. return 0;
  5405. }
  5406. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5407. {
  5408. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5409. if (mddev->external_size)
  5410. return;
  5411. mddev->array_sectors = array_sectors;
  5412. }
  5413. EXPORT_SYMBOL(md_set_array_sectors);
  5414. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5415. {
  5416. struct md_rdev *rdev;
  5417. int rv;
  5418. int fit = (num_sectors == 0);
  5419. if (mddev->pers->resize == NULL)
  5420. return -EINVAL;
  5421. /* The "num_sectors" is the number of sectors of each device that
  5422. * is used. This can only make sense for arrays with redundancy.
  5423. * linear and raid0 always use whatever space is available. We can only
  5424. * consider changing this number if no resync or reconstruction is
  5425. * happening, and if the new size is acceptable. It must fit before the
  5426. * sb_start or, if that is <data_offset, it must fit before the size
  5427. * of each device. If num_sectors is zero, we find the largest size
  5428. * that fits.
  5429. */
  5430. if (mddev->sync_thread)
  5431. return -EBUSY;
  5432. if (mddev->bitmap)
  5433. /* Sorry, cannot grow a bitmap yet, just remove it,
  5434. * grow, and re-add.
  5435. */
  5436. return -EBUSY;
  5437. rdev_for_each(rdev, mddev) {
  5438. sector_t avail = rdev->sectors;
  5439. if (fit && (num_sectors == 0 || num_sectors > avail))
  5440. num_sectors = avail;
  5441. if (avail < num_sectors)
  5442. return -ENOSPC;
  5443. }
  5444. rv = mddev->pers->resize(mddev, num_sectors);
  5445. if (!rv)
  5446. revalidate_disk(mddev->gendisk);
  5447. return rv;
  5448. }
  5449. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5450. {
  5451. int rv;
  5452. struct md_rdev *rdev;
  5453. /* change the number of raid disks */
  5454. if (mddev->pers->check_reshape == NULL)
  5455. return -EINVAL;
  5456. if (raid_disks <= 0 ||
  5457. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5458. return -EINVAL;
  5459. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5460. return -EBUSY;
  5461. rdev_for_each(rdev, mddev) {
  5462. if (mddev->raid_disks < raid_disks &&
  5463. rdev->data_offset < rdev->new_data_offset)
  5464. return -EINVAL;
  5465. if (mddev->raid_disks > raid_disks &&
  5466. rdev->data_offset > rdev->new_data_offset)
  5467. return -EINVAL;
  5468. }
  5469. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5470. if (mddev->delta_disks < 0)
  5471. mddev->reshape_backwards = 1;
  5472. else if (mddev->delta_disks > 0)
  5473. mddev->reshape_backwards = 0;
  5474. rv = mddev->pers->check_reshape(mddev);
  5475. if (rv < 0) {
  5476. mddev->delta_disks = 0;
  5477. mddev->reshape_backwards = 0;
  5478. }
  5479. return rv;
  5480. }
  5481. /*
  5482. * update_array_info is used to change the configuration of an
  5483. * on-line array.
  5484. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5485. * fields in the info are checked against the array.
  5486. * Any differences that cannot be handled will cause an error.
  5487. * Normally, only one change can be managed at a time.
  5488. */
  5489. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5490. {
  5491. int rv = 0;
  5492. int cnt = 0;
  5493. int state = 0;
  5494. /* calculate expected state,ignoring low bits */
  5495. if (mddev->bitmap && mddev->bitmap_info.offset)
  5496. state |= (1 << MD_SB_BITMAP_PRESENT);
  5497. if (mddev->major_version != info->major_version ||
  5498. mddev->minor_version != info->minor_version ||
  5499. /* mddev->patch_version != info->patch_version || */
  5500. mddev->ctime != info->ctime ||
  5501. mddev->level != info->level ||
  5502. /* mddev->layout != info->layout || */
  5503. !mddev->persistent != info->not_persistent||
  5504. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5505. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5506. ((state^info->state) & 0xfffffe00)
  5507. )
  5508. return -EINVAL;
  5509. /* Check there is only one change */
  5510. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5511. cnt++;
  5512. if (mddev->raid_disks != info->raid_disks)
  5513. cnt++;
  5514. if (mddev->layout != info->layout)
  5515. cnt++;
  5516. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5517. cnt++;
  5518. if (cnt == 0)
  5519. return 0;
  5520. if (cnt > 1)
  5521. return -EINVAL;
  5522. if (mddev->layout != info->layout) {
  5523. /* Change layout
  5524. * we don't need to do anything at the md level, the
  5525. * personality will take care of it all.
  5526. */
  5527. if (mddev->pers->check_reshape == NULL)
  5528. return -EINVAL;
  5529. else {
  5530. mddev->new_layout = info->layout;
  5531. rv = mddev->pers->check_reshape(mddev);
  5532. if (rv)
  5533. mddev->new_layout = mddev->layout;
  5534. return rv;
  5535. }
  5536. }
  5537. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5538. rv = update_size(mddev, (sector_t)info->size * 2);
  5539. if (mddev->raid_disks != info->raid_disks)
  5540. rv = update_raid_disks(mddev, info->raid_disks);
  5541. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5542. if (mddev->pers->quiesce == NULL)
  5543. return -EINVAL;
  5544. if (mddev->recovery || mddev->sync_thread)
  5545. return -EBUSY;
  5546. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5547. /* add the bitmap */
  5548. if (mddev->bitmap)
  5549. return -EEXIST;
  5550. if (mddev->bitmap_info.default_offset == 0)
  5551. return -EINVAL;
  5552. mddev->bitmap_info.offset =
  5553. mddev->bitmap_info.default_offset;
  5554. mddev->pers->quiesce(mddev, 1);
  5555. rv = bitmap_create(mddev);
  5556. if (!rv)
  5557. rv = bitmap_load(mddev);
  5558. if (rv)
  5559. bitmap_destroy(mddev);
  5560. mddev->pers->quiesce(mddev, 0);
  5561. } else {
  5562. /* remove the bitmap */
  5563. if (!mddev->bitmap)
  5564. return -ENOENT;
  5565. if (mddev->bitmap->file)
  5566. return -EINVAL;
  5567. mddev->pers->quiesce(mddev, 1);
  5568. bitmap_destroy(mddev);
  5569. mddev->pers->quiesce(mddev, 0);
  5570. mddev->bitmap_info.offset = 0;
  5571. }
  5572. }
  5573. md_update_sb(mddev, 1);
  5574. return rv;
  5575. }
  5576. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5577. {
  5578. struct md_rdev *rdev;
  5579. if (mddev->pers == NULL)
  5580. return -ENODEV;
  5581. rdev = find_rdev(mddev, dev);
  5582. if (!rdev)
  5583. return -ENODEV;
  5584. md_error(mddev, rdev);
  5585. if (!test_bit(Faulty, &rdev->flags))
  5586. return -EBUSY;
  5587. return 0;
  5588. }
  5589. /*
  5590. * We have a problem here : there is no easy way to give a CHS
  5591. * virtual geometry. We currently pretend that we have a 2 heads
  5592. * 4 sectors (with a BIG number of cylinders...). This drives
  5593. * dosfs just mad... ;-)
  5594. */
  5595. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5596. {
  5597. struct mddev *mddev = bdev->bd_disk->private_data;
  5598. geo->heads = 2;
  5599. geo->sectors = 4;
  5600. geo->cylinders = mddev->array_sectors / 8;
  5601. return 0;
  5602. }
  5603. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5604. unsigned int cmd, unsigned long arg)
  5605. {
  5606. int err = 0;
  5607. void __user *argp = (void __user *)arg;
  5608. struct mddev *mddev = NULL;
  5609. int ro;
  5610. switch (cmd) {
  5611. case RAID_VERSION:
  5612. case GET_ARRAY_INFO:
  5613. case GET_DISK_INFO:
  5614. break;
  5615. default:
  5616. if (!capable(CAP_SYS_ADMIN))
  5617. return -EACCES;
  5618. }
  5619. /*
  5620. * Commands dealing with the RAID driver but not any
  5621. * particular array:
  5622. */
  5623. switch (cmd)
  5624. {
  5625. case RAID_VERSION:
  5626. err = get_version(argp);
  5627. goto done;
  5628. case PRINT_RAID_DEBUG:
  5629. err = 0;
  5630. md_print_devices();
  5631. goto done;
  5632. #ifndef MODULE
  5633. case RAID_AUTORUN:
  5634. err = 0;
  5635. autostart_arrays(arg);
  5636. goto done;
  5637. #endif
  5638. default:;
  5639. }
  5640. /*
  5641. * Commands creating/starting a new array:
  5642. */
  5643. mddev = bdev->bd_disk->private_data;
  5644. if (!mddev) {
  5645. BUG();
  5646. goto abort;
  5647. }
  5648. err = mddev_lock(mddev);
  5649. if (err) {
  5650. printk(KERN_INFO
  5651. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5652. err, cmd);
  5653. goto abort;
  5654. }
  5655. switch (cmd)
  5656. {
  5657. case SET_ARRAY_INFO:
  5658. {
  5659. mdu_array_info_t info;
  5660. if (!arg)
  5661. memset(&info, 0, sizeof(info));
  5662. else if (copy_from_user(&info, argp, sizeof(info))) {
  5663. err = -EFAULT;
  5664. goto abort_unlock;
  5665. }
  5666. if (mddev->pers) {
  5667. err = update_array_info(mddev, &info);
  5668. if (err) {
  5669. printk(KERN_WARNING "md: couldn't update"
  5670. " array info. %d\n", err);
  5671. goto abort_unlock;
  5672. }
  5673. goto done_unlock;
  5674. }
  5675. if (!list_empty(&mddev->disks)) {
  5676. printk(KERN_WARNING
  5677. "md: array %s already has disks!\n",
  5678. mdname(mddev));
  5679. err = -EBUSY;
  5680. goto abort_unlock;
  5681. }
  5682. if (mddev->raid_disks) {
  5683. printk(KERN_WARNING
  5684. "md: array %s already initialised!\n",
  5685. mdname(mddev));
  5686. err = -EBUSY;
  5687. goto abort_unlock;
  5688. }
  5689. err = set_array_info(mddev, &info);
  5690. if (err) {
  5691. printk(KERN_WARNING "md: couldn't set"
  5692. " array info. %d\n", err);
  5693. goto abort_unlock;
  5694. }
  5695. }
  5696. goto done_unlock;
  5697. default:;
  5698. }
  5699. /*
  5700. * Commands querying/configuring an existing array:
  5701. */
  5702. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5703. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5704. if ((!mddev->raid_disks && !mddev->external)
  5705. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5706. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5707. && cmd != GET_BITMAP_FILE) {
  5708. err = -ENODEV;
  5709. goto abort_unlock;
  5710. }
  5711. /*
  5712. * Commands even a read-only array can execute:
  5713. */
  5714. switch (cmd)
  5715. {
  5716. case GET_ARRAY_INFO:
  5717. err = get_array_info(mddev, argp);
  5718. goto done_unlock;
  5719. case GET_BITMAP_FILE:
  5720. err = get_bitmap_file(mddev, argp);
  5721. goto done_unlock;
  5722. case GET_DISK_INFO:
  5723. err = get_disk_info(mddev, argp);
  5724. goto done_unlock;
  5725. case RESTART_ARRAY_RW:
  5726. err = restart_array(mddev);
  5727. goto done_unlock;
  5728. case STOP_ARRAY:
  5729. err = do_md_stop(mddev, 0, 1);
  5730. goto done_unlock;
  5731. case STOP_ARRAY_RO:
  5732. err = md_set_readonly(mddev, 1);
  5733. goto done_unlock;
  5734. case BLKROSET:
  5735. if (get_user(ro, (int __user *)(arg))) {
  5736. err = -EFAULT;
  5737. goto done_unlock;
  5738. }
  5739. err = -EINVAL;
  5740. /* if the bdev is going readonly the value of mddev->ro
  5741. * does not matter, no writes are coming
  5742. */
  5743. if (ro)
  5744. goto done_unlock;
  5745. /* are we are already prepared for writes? */
  5746. if (mddev->ro != 1)
  5747. goto done_unlock;
  5748. /* transitioning to readauto need only happen for
  5749. * arrays that call md_write_start
  5750. */
  5751. if (mddev->pers) {
  5752. err = restart_array(mddev);
  5753. if (err == 0) {
  5754. mddev->ro = 2;
  5755. set_disk_ro(mddev->gendisk, 0);
  5756. }
  5757. }
  5758. goto done_unlock;
  5759. }
  5760. /*
  5761. * The remaining ioctls are changing the state of the
  5762. * superblock, so we do not allow them on read-only arrays.
  5763. * However non-MD ioctls (e.g. get-size) will still come through
  5764. * here and hit the 'default' below, so only disallow
  5765. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5766. */
  5767. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5768. if (mddev->ro == 2) {
  5769. mddev->ro = 0;
  5770. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5771. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5772. md_wakeup_thread(mddev->thread);
  5773. } else {
  5774. err = -EROFS;
  5775. goto abort_unlock;
  5776. }
  5777. }
  5778. switch (cmd)
  5779. {
  5780. case ADD_NEW_DISK:
  5781. {
  5782. mdu_disk_info_t info;
  5783. if (copy_from_user(&info, argp, sizeof(info)))
  5784. err = -EFAULT;
  5785. else
  5786. err = add_new_disk(mddev, &info);
  5787. goto done_unlock;
  5788. }
  5789. case HOT_REMOVE_DISK:
  5790. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5791. goto done_unlock;
  5792. case HOT_ADD_DISK:
  5793. err = hot_add_disk(mddev, new_decode_dev(arg));
  5794. goto done_unlock;
  5795. case SET_DISK_FAULTY:
  5796. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5797. goto done_unlock;
  5798. case RUN_ARRAY:
  5799. err = do_md_run(mddev);
  5800. goto done_unlock;
  5801. case SET_BITMAP_FILE:
  5802. err = set_bitmap_file(mddev, (int)arg);
  5803. goto done_unlock;
  5804. default:
  5805. err = -EINVAL;
  5806. goto abort_unlock;
  5807. }
  5808. done_unlock:
  5809. abort_unlock:
  5810. if (mddev->hold_active == UNTIL_IOCTL &&
  5811. err != -EINVAL)
  5812. mddev->hold_active = 0;
  5813. mddev_unlock(mddev);
  5814. return err;
  5815. done:
  5816. if (err)
  5817. MD_BUG();
  5818. abort:
  5819. return err;
  5820. }
  5821. #ifdef CONFIG_COMPAT
  5822. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5823. unsigned int cmd, unsigned long arg)
  5824. {
  5825. switch (cmd) {
  5826. case HOT_REMOVE_DISK:
  5827. case HOT_ADD_DISK:
  5828. case SET_DISK_FAULTY:
  5829. case SET_BITMAP_FILE:
  5830. /* These take in integer arg, do not convert */
  5831. break;
  5832. default:
  5833. arg = (unsigned long)compat_ptr(arg);
  5834. break;
  5835. }
  5836. return md_ioctl(bdev, mode, cmd, arg);
  5837. }
  5838. #endif /* CONFIG_COMPAT */
  5839. static int md_open(struct block_device *bdev, fmode_t mode)
  5840. {
  5841. /*
  5842. * Succeed if we can lock the mddev, which confirms that
  5843. * it isn't being stopped right now.
  5844. */
  5845. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5846. int err;
  5847. if (mddev->gendisk != bdev->bd_disk) {
  5848. /* we are racing with mddev_put which is discarding this
  5849. * bd_disk.
  5850. */
  5851. mddev_put(mddev);
  5852. /* Wait until bdev->bd_disk is definitely gone */
  5853. flush_workqueue(md_misc_wq);
  5854. /* Then retry the open from the top */
  5855. return -ERESTARTSYS;
  5856. }
  5857. BUG_ON(mddev != bdev->bd_disk->private_data);
  5858. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5859. goto out;
  5860. err = 0;
  5861. atomic_inc(&mddev->openers);
  5862. mutex_unlock(&mddev->open_mutex);
  5863. check_disk_change(bdev);
  5864. out:
  5865. return err;
  5866. }
  5867. static int md_release(struct gendisk *disk, fmode_t mode)
  5868. {
  5869. struct mddev *mddev = disk->private_data;
  5870. BUG_ON(!mddev);
  5871. atomic_dec(&mddev->openers);
  5872. mddev_put(mddev);
  5873. return 0;
  5874. }
  5875. static int md_media_changed(struct gendisk *disk)
  5876. {
  5877. struct mddev *mddev = disk->private_data;
  5878. return mddev->changed;
  5879. }
  5880. static int md_revalidate(struct gendisk *disk)
  5881. {
  5882. struct mddev *mddev = disk->private_data;
  5883. mddev->changed = 0;
  5884. return 0;
  5885. }
  5886. static const struct block_device_operations md_fops =
  5887. {
  5888. .owner = THIS_MODULE,
  5889. .open = md_open,
  5890. .release = md_release,
  5891. .ioctl = md_ioctl,
  5892. #ifdef CONFIG_COMPAT
  5893. .compat_ioctl = md_compat_ioctl,
  5894. #endif
  5895. .getgeo = md_getgeo,
  5896. .media_changed = md_media_changed,
  5897. .revalidate_disk= md_revalidate,
  5898. };
  5899. static int md_thread(void * arg)
  5900. {
  5901. struct md_thread *thread = arg;
  5902. /*
  5903. * md_thread is a 'system-thread', it's priority should be very
  5904. * high. We avoid resource deadlocks individually in each
  5905. * raid personality. (RAID5 does preallocation) We also use RR and
  5906. * the very same RT priority as kswapd, thus we will never get
  5907. * into a priority inversion deadlock.
  5908. *
  5909. * we definitely have to have equal or higher priority than
  5910. * bdflush, otherwise bdflush will deadlock if there are too
  5911. * many dirty RAID5 blocks.
  5912. */
  5913. allow_signal(SIGKILL);
  5914. while (!kthread_should_stop()) {
  5915. /* We need to wait INTERRUPTIBLE so that
  5916. * we don't add to the load-average.
  5917. * That means we need to be sure no signals are
  5918. * pending
  5919. */
  5920. if (signal_pending(current))
  5921. flush_signals(current);
  5922. wait_event_interruptible_timeout
  5923. (thread->wqueue,
  5924. test_bit(THREAD_WAKEUP, &thread->flags)
  5925. || kthread_should_stop(),
  5926. thread->timeout);
  5927. clear_bit(THREAD_WAKEUP, &thread->flags);
  5928. if (!kthread_should_stop())
  5929. thread->run(thread->mddev);
  5930. }
  5931. return 0;
  5932. }
  5933. void md_wakeup_thread(struct md_thread *thread)
  5934. {
  5935. if (thread) {
  5936. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5937. set_bit(THREAD_WAKEUP, &thread->flags);
  5938. wake_up(&thread->wqueue);
  5939. }
  5940. }
  5941. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5942. const char *name)
  5943. {
  5944. struct md_thread *thread;
  5945. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5946. if (!thread)
  5947. return NULL;
  5948. init_waitqueue_head(&thread->wqueue);
  5949. thread->run = run;
  5950. thread->mddev = mddev;
  5951. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5952. thread->tsk = kthread_run(md_thread, thread,
  5953. "%s_%s",
  5954. mdname(thread->mddev),
  5955. name ?: mddev->pers->name);
  5956. if (IS_ERR(thread->tsk)) {
  5957. kfree(thread);
  5958. return NULL;
  5959. }
  5960. return thread;
  5961. }
  5962. void md_unregister_thread(struct md_thread **threadp)
  5963. {
  5964. struct md_thread *thread = *threadp;
  5965. if (!thread)
  5966. return;
  5967. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5968. /* Locking ensures that mddev_unlock does not wake_up a
  5969. * non-existent thread
  5970. */
  5971. spin_lock(&pers_lock);
  5972. *threadp = NULL;
  5973. spin_unlock(&pers_lock);
  5974. kthread_stop(thread->tsk);
  5975. kfree(thread);
  5976. }
  5977. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5978. {
  5979. if (!mddev) {
  5980. MD_BUG();
  5981. return;
  5982. }
  5983. if (!rdev || test_bit(Faulty, &rdev->flags))
  5984. return;
  5985. if (!mddev->pers || !mddev->pers->error_handler)
  5986. return;
  5987. mddev->pers->error_handler(mddev,rdev);
  5988. if (mddev->degraded)
  5989. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5990. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5991. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5992. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5993. md_wakeup_thread(mddev->thread);
  5994. if (mddev->event_work.func)
  5995. queue_work(md_misc_wq, &mddev->event_work);
  5996. md_new_event_inintr(mddev);
  5997. }
  5998. /* seq_file implementation /proc/mdstat */
  5999. static void status_unused(struct seq_file *seq)
  6000. {
  6001. int i = 0;
  6002. struct md_rdev *rdev;
  6003. seq_printf(seq, "unused devices: ");
  6004. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6005. char b[BDEVNAME_SIZE];
  6006. i++;
  6007. seq_printf(seq, "%s ",
  6008. bdevname(rdev->bdev,b));
  6009. }
  6010. if (!i)
  6011. seq_printf(seq, "<none>");
  6012. seq_printf(seq, "\n");
  6013. }
  6014. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6015. {
  6016. sector_t max_sectors, resync, res;
  6017. unsigned long dt, db;
  6018. sector_t rt;
  6019. int scale;
  6020. unsigned int per_milli;
  6021. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  6022. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6023. max_sectors = mddev->resync_max_sectors;
  6024. else
  6025. max_sectors = mddev->dev_sectors;
  6026. /*
  6027. * Should not happen.
  6028. */
  6029. if (!max_sectors) {
  6030. MD_BUG();
  6031. return;
  6032. }
  6033. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6034. * in a sector_t, and (max_sectors>>scale) will fit in a
  6035. * u32, as those are the requirements for sector_div.
  6036. * Thus 'scale' must be at least 10
  6037. */
  6038. scale = 10;
  6039. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6040. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6041. scale++;
  6042. }
  6043. res = (resync>>scale)*1000;
  6044. sector_div(res, (u32)((max_sectors>>scale)+1));
  6045. per_milli = res;
  6046. {
  6047. int i, x = per_milli/50, y = 20-x;
  6048. seq_printf(seq, "[");
  6049. for (i = 0; i < x; i++)
  6050. seq_printf(seq, "=");
  6051. seq_printf(seq, ">");
  6052. for (i = 0; i < y; i++)
  6053. seq_printf(seq, ".");
  6054. seq_printf(seq, "] ");
  6055. }
  6056. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6057. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6058. "reshape" :
  6059. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6060. "check" :
  6061. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6062. "resync" : "recovery"))),
  6063. per_milli/10, per_milli % 10,
  6064. (unsigned long long) resync/2,
  6065. (unsigned long long) max_sectors/2);
  6066. /*
  6067. * dt: time from mark until now
  6068. * db: blocks written from mark until now
  6069. * rt: remaining time
  6070. *
  6071. * rt is a sector_t, so could be 32bit or 64bit.
  6072. * So we divide before multiply in case it is 32bit and close
  6073. * to the limit.
  6074. * We scale the divisor (db) by 32 to avoid losing precision
  6075. * near the end of resync when the number of remaining sectors
  6076. * is close to 'db'.
  6077. * We then divide rt by 32 after multiplying by db to compensate.
  6078. * The '+1' avoids division by zero if db is very small.
  6079. */
  6080. dt = ((jiffies - mddev->resync_mark) / HZ);
  6081. if (!dt) dt++;
  6082. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6083. - mddev->resync_mark_cnt;
  6084. rt = max_sectors - resync; /* number of remaining sectors */
  6085. sector_div(rt, db/32+1);
  6086. rt *= dt;
  6087. rt >>= 5;
  6088. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6089. ((unsigned long)rt % 60)/6);
  6090. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6091. }
  6092. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6093. {
  6094. struct list_head *tmp;
  6095. loff_t l = *pos;
  6096. struct mddev *mddev;
  6097. if (l >= 0x10000)
  6098. return NULL;
  6099. if (!l--)
  6100. /* header */
  6101. return (void*)1;
  6102. spin_lock(&all_mddevs_lock);
  6103. list_for_each(tmp,&all_mddevs)
  6104. if (!l--) {
  6105. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6106. mddev_get(mddev);
  6107. spin_unlock(&all_mddevs_lock);
  6108. return mddev;
  6109. }
  6110. spin_unlock(&all_mddevs_lock);
  6111. if (!l--)
  6112. return (void*)2;/* tail */
  6113. return NULL;
  6114. }
  6115. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6116. {
  6117. struct list_head *tmp;
  6118. struct mddev *next_mddev, *mddev = v;
  6119. ++*pos;
  6120. if (v == (void*)2)
  6121. return NULL;
  6122. spin_lock(&all_mddevs_lock);
  6123. if (v == (void*)1)
  6124. tmp = all_mddevs.next;
  6125. else
  6126. tmp = mddev->all_mddevs.next;
  6127. if (tmp != &all_mddevs)
  6128. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6129. else {
  6130. next_mddev = (void*)2;
  6131. *pos = 0x10000;
  6132. }
  6133. spin_unlock(&all_mddevs_lock);
  6134. if (v != (void*)1)
  6135. mddev_put(mddev);
  6136. return next_mddev;
  6137. }
  6138. static void md_seq_stop(struct seq_file *seq, void *v)
  6139. {
  6140. struct mddev *mddev = v;
  6141. if (mddev && v != (void*)1 && v != (void*)2)
  6142. mddev_put(mddev);
  6143. }
  6144. static int md_seq_show(struct seq_file *seq, void *v)
  6145. {
  6146. struct mddev *mddev = v;
  6147. sector_t sectors;
  6148. struct md_rdev *rdev;
  6149. if (v == (void*)1) {
  6150. struct md_personality *pers;
  6151. seq_printf(seq, "Personalities : ");
  6152. spin_lock(&pers_lock);
  6153. list_for_each_entry(pers, &pers_list, list)
  6154. seq_printf(seq, "[%s] ", pers->name);
  6155. spin_unlock(&pers_lock);
  6156. seq_printf(seq, "\n");
  6157. seq->poll_event = atomic_read(&md_event_count);
  6158. return 0;
  6159. }
  6160. if (v == (void*)2) {
  6161. status_unused(seq);
  6162. return 0;
  6163. }
  6164. if (mddev_lock(mddev) < 0)
  6165. return -EINTR;
  6166. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6167. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6168. mddev->pers ? "" : "in");
  6169. if (mddev->pers) {
  6170. if (mddev->ro==1)
  6171. seq_printf(seq, " (read-only)");
  6172. if (mddev->ro==2)
  6173. seq_printf(seq, " (auto-read-only)");
  6174. seq_printf(seq, " %s", mddev->pers->name);
  6175. }
  6176. sectors = 0;
  6177. rdev_for_each(rdev, mddev) {
  6178. char b[BDEVNAME_SIZE];
  6179. seq_printf(seq, " %s[%d]",
  6180. bdevname(rdev->bdev,b), rdev->desc_nr);
  6181. if (test_bit(WriteMostly, &rdev->flags))
  6182. seq_printf(seq, "(W)");
  6183. if (test_bit(Faulty, &rdev->flags)) {
  6184. seq_printf(seq, "(F)");
  6185. continue;
  6186. }
  6187. if (rdev->raid_disk < 0)
  6188. seq_printf(seq, "(S)"); /* spare */
  6189. if (test_bit(Replacement, &rdev->flags))
  6190. seq_printf(seq, "(R)");
  6191. sectors += rdev->sectors;
  6192. }
  6193. if (!list_empty(&mddev->disks)) {
  6194. if (mddev->pers)
  6195. seq_printf(seq, "\n %llu blocks",
  6196. (unsigned long long)
  6197. mddev->array_sectors / 2);
  6198. else
  6199. seq_printf(seq, "\n %llu blocks",
  6200. (unsigned long long)sectors / 2);
  6201. }
  6202. if (mddev->persistent) {
  6203. if (mddev->major_version != 0 ||
  6204. mddev->minor_version != 90) {
  6205. seq_printf(seq," super %d.%d",
  6206. mddev->major_version,
  6207. mddev->minor_version);
  6208. }
  6209. } else if (mddev->external)
  6210. seq_printf(seq, " super external:%s",
  6211. mddev->metadata_type);
  6212. else
  6213. seq_printf(seq, " super non-persistent");
  6214. if (mddev->pers) {
  6215. mddev->pers->status(seq, mddev);
  6216. seq_printf(seq, "\n ");
  6217. if (mddev->pers->sync_request) {
  6218. if (mddev->curr_resync > 2) {
  6219. status_resync(seq, mddev);
  6220. seq_printf(seq, "\n ");
  6221. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6222. seq_printf(seq, "\tresync=DELAYED\n ");
  6223. else if (mddev->recovery_cp < MaxSector)
  6224. seq_printf(seq, "\tresync=PENDING\n ");
  6225. }
  6226. } else
  6227. seq_printf(seq, "\n ");
  6228. bitmap_status(seq, mddev->bitmap);
  6229. seq_printf(seq, "\n");
  6230. }
  6231. mddev_unlock(mddev);
  6232. return 0;
  6233. }
  6234. static const struct seq_operations md_seq_ops = {
  6235. .start = md_seq_start,
  6236. .next = md_seq_next,
  6237. .stop = md_seq_stop,
  6238. .show = md_seq_show,
  6239. };
  6240. static int md_seq_open(struct inode *inode, struct file *file)
  6241. {
  6242. struct seq_file *seq;
  6243. int error;
  6244. error = seq_open(file, &md_seq_ops);
  6245. if (error)
  6246. return error;
  6247. seq = file->private_data;
  6248. seq->poll_event = atomic_read(&md_event_count);
  6249. return error;
  6250. }
  6251. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6252. {
  6253. struct seq_file *seq = filp->private_data;
  6254. int mask;
  6255. poll_wait(filp, &md_event_waiters, wait);
  6256. /* always allow read */
  6257. mask = POLLIN | POLLRDNORM;
  6258. if (seq->poll_event != atomic_read(&md_event_count))
  6259. mask |= POLLERR | POLLPRI;
  6260. return mask;
  6261. }
  6262. static const struct file_operations md_seq_fops = {
  6263. .owner = THIS_MODULE,
  6264. .open = md_seq_open,
  6265. .read = seq_read,
  6266. .llseek = seq_lseek,
  6267. .release = seq_release_private,
  6268. .poll = mdstat_poll,
  6269. };
  6270. int register_md_personality(struct md_personality *p)
  6271. {
  6272. spin_lock(&pers_lock);
  6273. list_add_tail(&p->list, &pers_list);
  6274. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6275. spin_unlock(&pers_lock);
  6276. return 0;
  6277. }
  6278. int unregister_md_personality(struct md_personality *p)
  6279. {
  6280. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6281. spin_lock(&pers_lock);
  6282. list_del_init(&p->list);
  6283. spin_unlock(&pers_lock);
  6284. return 0;
  6285. }
  6286. static int is_mddev_idle(struct mddev *mddev, int init)
  6287. {
  6288. struct md_rdev * rdev;
  6289. int idle;
  6290. int curr_events;
  6291. idle = 1;
  6292. rcu_read_lock();
  6293. rdev_for_each_rcu(rdev, mddev) {
  6294. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6295. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6296. (int)part_stat_read(&disk->part0, sectors[1]) -
  6297. atomic_read(&disk->sync_io);
  6298. /* sync IO will cause sync_io to increase before the disk_stats
  6299. * as sync_io is counted when a request starts, and
  6300. * disk_stats is counted when it completes.
  6301. * So resync activity will cause curr_events to be smaller than
  6302. * when there was no such activity.
  6303. * non-sync IO will cause disk_stat to increase without
  6304. * increasing sync_io so curr_events will (eventually)
  6305. * be larger than it was before. Once it becomes
  6306. * substantially larger, the test below will cause
  6307. * the array to appear non-idle, and resync will slow
  6308. * down.
  6309. * If there is a lot of outstanding resync activity when
  6310. * we set last_event to curr_events, then all that activity
  6311. * completing might cause the array to appear non-idle
  6312. * and resync will be slowed down even though there might
  6313. * not have been non-resync activity. This will only
  6314. * happen once though. 'last_events' will soon reflect
  6315. * the state where there is little or no outstanding
  6316. * resync requests, and further resync activity will
  6317. * always make curr_events less than last_events.
  6318. *
  6319. */
  6320. if (init || curr_events - rdev->last_events > 64) {
  6321. rdev->last_events = curr_events;
  6322. idle = 0;
  6323. }
  6324. }
  6325. rcu_read_unlock();
  6326. return idle;
  6327. }
  6328. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6329. {
  6330. /* another "blocks" (512byte) blocks have been synced */
  6331. atomic_sub(blocks, &mddev->recovery_active);
  6332. wake_up(&mddev->recovery_wait);
  6333. if (!ok) {
  6334. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6335. md_wakeup_thread(mddev->thread);
  6336. // stop recovery, signal do_sync ....
  6337. }
  6338. }
  6339. /* md_write_start(mddev, bi)
  6340. * If we need to update some array metadata (e.g. 'active' flag
  6341. * in superblock) before writing, schedule a superblock update
  6342. * and wait for it to complete.
  6343. */
  6344. void md_write_start(struct mddev *mddev, struct bio *bi)
  6345. {
  6346. int did_change = 0;
  6347. if (bio_data_dir(bi) != WRITE)
  6348. return;
  6349. BUG_ON(mddev->ro == 1);
  6350. if (mddev->ro == 2) {
  6351. /* need to switch to read/write */
  6352. mddev->ro = 0;
  6353. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6354. md_wakeup_thread(mddev->thread);
  6355. md_wakeup_thread(mddev->sync_thread);
  6356. did_change = 1;
  6357. }
  6358. atomic_inc(&mddev->writes_pending);
  6359. if (mddev->safemode == 1)
  6360. mddev->safemode = 0;
  6361. if (mddev->in_sync) {
  6362. spin_lock_irq(&mddev->write_lock);
  6363. if (mddev->in_sync) {
  6364. mddev->in_sync = 0;
  6365. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6366. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6367. md_wakeup_thread(mddev->thread);
  6368. did_change = 1;
  6369. }
  6370. spin_unlock_irq(&mddev->write_lock);
  6371. }
  6372. if (did_change)
  6373. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6374. wait_event(mddev->sb_wait,
  6375. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6376. }
  6377. void md_write_end(struct mddev *mddev)
  6378. {
  6379. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6380. if (mddev->safemode == 2)
  6381. md_wakeup_thread(mddev->thread);
  6382. else if (mddev->safemode_delay)
  6383. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6384. }
  6385. }
  6386. /* md_allow_write(mddev)
  6387. * Calling this ensures that the array is marked 'active' so that writes
  6388. * may proceed without blocking. It is important to call this before
  6389. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6390. * Must be called with mddev_lock held.
  6391. *
  6392. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6393. * is dropped, so return -EAGAIN after notifying userspace.
  6394. */
  6395. int md_allow_write(struct mddev *mddev)
  6396. {
  6397. if (!mddev->pers)
  6398. return 0;
  6399. if (mddev->ro)
  6400. return 0;
  6401. if (!mddev->pers->sync_request)
  6402. return 0;
  6403. spin_lock_irq(&mddev->write_lock);
  6404. if (mddev->in_sync) {
  6405. mddev->in_sync = 0;
  6406. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6407. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6408. if (mddev->safemode_delay &&
  6409. mddev->safemode == 0)
  6410. mddev->safemode = 1;
  6411. spin_unlock_irq(&mddev->write_lock);
  6412. md_update_sb(mddev, 0);
  6413. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6414. } else
  6415. spin_unlock_irq(&mddev->write_lock);
  6416. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6417. return -EAGAIN;
  6418. else
  6419. return 0;
  6420. }
  6421. EXPORT_SYMBOL_GPL(md_allow_write);
  6422. #define SYNC_MARKS 10
  6423. #define SYNC_MARK_STEP (3*HZ)
  6424. void md_do_sync(struct mddev *mddev)
  6425. {
  6426. struct mddev *mddev2;
  6427. unsigned int currspeed = 0,
  6428. window;
  6429. sector_t max_sectors,j, io_sectors;
  6430. unsigned long mark[SYNC_MARKS];
  6431. sector_t mark_cnt[SYNC_MARKS];
  6432. int last_mark,m;
  6433. struct list_head *tmp;
  6434. sector_t last_check;
  6435. int skipped = 0;
  6436. struct md_rdev *rdev;
  6437. char *desc;
  6438. /* just incase thread restarts... */
  6439. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6440. return;
  6441. if (mddev->ro) /* never try to sync a read-only array */
  6442. return;
  6443. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6444. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6445. desc = "data-check";
  6446. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6447. desc = "requested-resync";
  6448. else
  6449. desc = "resync";
  6450. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6451. desc = "reshape";
  6452. else
  6453. desc = "recovery";
  6454. /* we overload curr_resync somewhat here.
  6455. * 0 == not engaged in resync at all
  6456. * 2 == checking that there is no conflict with another sync
  6457. * 1 == like 2, but have yielded to allow conflicting resync to
  6458. * commense
  6459. * other == active in resync - this many blocks
  6460. *
  6461. * Before starting a resync we must have set curr_resync to
  6462. * 2, and then checked that every "conflicting" array has curr_resync
  6463. * less than ours. When we find one that is the same or higher
  6464. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6465. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6466. * This will mean we have to start checking from the beginning again.
  6467. *
  6468. */
  6469. do {
  6470. mddev->curr_resync = 2;
  6471. try_again:
  6472. if (kthread_should_stop())
  6473. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6474. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6475. goto skip;
  6476. for_each_mddev(mddev2, tmp) {
  6477. if (mddev2 == mddev)
  6478. continue;
  6479. if (!mddev->parallel_resync
  6480. && mddev2->curr_resync
  6481. && match_mddev_units(mddev, mddev2)) {
  6482. DEFINE_WAIT(wq);
  6483. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6484. /* arbitrarily yield */
  6485. mddev->curr_resync = 1;
  6486. wake_up(&resync_wait);
  6487. }
  6488. if (mddev > mddev2 && mddev->curr_resync == 1)
  6489. /* no need to wait here, we can wait the next
  6490. * time 'round when curr_resync == 2
  6491. */
  6492. continue;
  6493. /* We need to wait 'interruptible' so as not to
  6494. * contribute to the load average, and not to
  6495. * be caught by 'softlockup'
  6496. */
  6497. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6498. if (!kthread_should_stop() &&
  6499. mddev2->curr_resync >= mddev->curr_resync) {
  6500. printk(KERN_INFO "md: delaying %s of %s"
  6501. " until %s has finished (they"
  6502. " share one or more physical units)\n",
  6503. desc, mdname(mddev), mdname(mddev2));
  6504. mddev_put(mddev2);
  6505. if (signal_pending(current))
  6506. flush_signals(current);
  6507. schedule();
  6508. finish_wait(&resync_wait, &wq);
  6509. goto try_again;
  6510. }
  6511. finish_wait(&resync_wait, &wq);
  6512. }
  6513. }
  6514. } while (mddev->curr_resync < 2);
  6515. j = 0;
  6516. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6517. /* resync follows the size requested by the personality,
  6518. * which defaults to physical size, but can be virtual size
  6519. */
  6520. max_sectors = mddev->resync_max_sectors;
  6521. mddev->resync_mismatches = 0;
  6522. /* we don't use the checkpoint if there's a bitmap */
  6523. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6524. j = mddev->resync_min;
  6525. else if (!mddev->bitmap)
  6526. j = mddev->recovery_cp;
  6527. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6528. max_sectors = mddev->dev_sectors;
  6529. else {
  6530. /* recovery follows the physical size of devices */
  6531. max_sectors = mddev->dev_sectors;
  6532. j = MaxSector;
  6533. rcu_read_lock();
  6534. rdev_for_each_rcu(rdev, mddev)
  6535. if (rdev->raid_disk >= 0 &&
  6536. !test_bit(Faulty, &rdev->flags) &&
  6537. !test_bit(In_sync, &rdev->flags) &&
  6538. rdev->recovery_offset < j)
  6539. j = rdev->recovery_offset;
  6540. rcu_read_unlock();
  6541. }
  6542. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6543. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6544. " %d KB/sec/disk.\n", speed_min(mddev));
  6545. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6546. "(but not more than %d KB/sec) for %s.\n",
  6547. speed_max(mddev), desc);
  6548. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6549. io_sectors = 0;
  6550. for (m = 0; m < SYNC_MARKS; m++) {
  6551. mark[m] = jiffies;
  6552. mark_cnt[m] = io_sectors;
  6553. }
  6554. last_mark = 0;
  6555. mddev->resync_mark = mark[last_mark];
  6556. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6557. /*
  6558. * Tune reconstruction:
  6559. */
  6560. window = 32*(PAGE_SIZE/512);
  6561. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6562. window/2, (unsigned long long)max_sectors/2);
  6563. atomic_set(&mddev->recovery_active, 0);
  6564. last_check = 0;
  6565. if (j>2) {
  6566. printk(KERN_INFO
  6567. "md: resuming %s of %s from checkpoint.\n",
  6568. desc, mdname(mddev));
  6569. mddev->curr_resync = j;
  6570. }
  6571. mddev->curr_resync_completed = j;
  6572. while (j < max_sectors) {
  6573. sector_t sectors;
  6574. skipped = 0;
  6575. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6576. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6577. (mddev->curr_resync - mddev->curr_resync_completed)
  6578. > (max_sectors >> 4)) ||
  6579. (j - mddev->curr_resync_completed)*2
  6580. >= mddev->resync_max - mddev->curr_resync_completed
  6581. )) {
  6582. /* time to update curr_resync_completed */
  6583. wait_event(mddev->recovery_wait,
  6584. atomic_read(&mddev->recovery_active) == 0);
  6585. mddev->curr_resync_completed = j;
  6586. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6587. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6588. }
  6589. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6590. /* As this condition is controlled by user-space,
  6591. * we can block indefinitely, so use '_interruptible'
  6592. * to avoid triggering warnings.
  6593. */
  6594. flush_signals(current); /* just in case */
  6595. wait_event_interruptible(mddev->recovery_wait,
  6596. mddev->resync_max > j
  6597. || kthread_should_stop());
  6598. }
  6599. if (kthread_should_stop())
  6600. goto interrupted;
  6601. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6602. currspeed < speed_min(mddev));
  6603. if (sectors == 0) {
  6604. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6605. goto out;
  6606. }
  6607. if (!skipped) { /* actual IO requested */
  6608. io_sectors += sectors;
  6609. atomic_add(sectors, &mddev->recovery_active);
  6610. }
  6611. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6612. break;
  6613. j += sectors;
  6614. if (j>1) mddev->curr_resync = j;
  6615. mddev->curr_mark_cnt = io_sectors;
  6616. if (last_check == 0)
  6617. /* this is the earliest that rebuild will be
  6618. * visible in /proc/mdstat
  6619. */
  6620. md_new_event(mddev);
  6621. if (last_check + window > io_sectors || j == max_sectors)
  6622. continue;
  6623. last_check = io_sectors;
  6624. repeat:
  6625. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6626. /* step marks */
  6627. int next = (last_mark+1) % SYNC_MARKS;
  6628. mddev->resync_mark = mark[next];
  6629. mddev->resync_mark_cnt = mark_cnt[next];
  6630. mark[next] = jiffies;
  6631. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6632. last_mark = next;
  6633. }
  6634. if (kthread_should_stop())
  6635. goto interrupted;
  6636. /*
  6637. * this loop exits only if either when we are slower than
  6638. * the 'hard' speed limit, or the system was IO-idle for
  6639. * a jiffy.
  6640. * the system might be non-idle CPU-wise, but we only care
  6641. * about not overloading the IO subsystem. (things like an
  6642. * e2fsck being done on the RAID array should execute fast)
  6643. */
  6644. cond_resched();
  6645. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6646. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6647. if (currspeed > speed_min(mddev)) {
  6648. if ((currspeed > speed_max(mddev)) ||
  6649. !is_mddev_idle(mddev, 0)) {
  6650. msleep(500);
  6651. goto repeat;
  6652. }
  6653. }
  6654. }
  6655. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6656. /*
  6657. * this also signals 'finished resyncing' to md_stop
  6658. */
  6659. out:
  6660. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6661. /* tell personality that we are finished */
  6662. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6663. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6664. mddev->curr_resync > 2) {
  6665. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6666. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6667. if (mddev->curr_resync >= mddev->recovery_cp) {
  6668. printk(KERN_INFO
  6669. "md: checkpointing %s of %s.\n",
  6670. desc, mdname(mddev));
  6671. mddev->recovery_cp =
  6672. mddev->curr_resync_completed;
  6673. }
  6674. } else
  6675. mddev->recovery_cp = MaxSector;
  6676. } else {
  6677. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6678. mddev->curr_resync = MaxSector;
  6679. rcu_read_lock();
  6680. rdev_for_each_rcu(rdev, mddev)
  6681. if (rdev->raid_disk >= 0 &&
  6682. mddev->delta_disks >= 0 &&
  6683. !test_bit(Faulty, &rdev->flags) &&
  6684. !test_bit(In_sync, &rdev->flags) &&
  6685. rdev->recovery_offset < mddev->curr_resync)
  6686. rdev->recovery_offset = mddev->curr_resync;
  6687. rcu_read_unlock();
  6688. }
  6689. }
  6690. skip:
  6691. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6692. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6693. /* We completed so min/max setting can be forgotten if used. */
  6694. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6695. mddev->resync_min = 0;
  6696. mddev->resync_max = MaxSector;
  6697. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6698. mddev->resync_min = mddev->curr_resync_completed;
  6699. mddev->curr_resync = 0;
  6700. wake_up(&resync_wait);
  6701. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6702. md_wakeup_thread(mddev->thread);
  6703. return;
  6704. interrupted:
  6705. /*
  6706. * got a signal, exit.
  6707. */
  6708. printk(KERN_INFO
  6709. "md: md_do_sync() got signal ... exiting\n");
  6710. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6711. goto out;
  6712. }
  6713. EXPORT_SYMBOL_GPL(md_do_sync);
  6714. static int remove_and_add_spares(struct mddev *mddev)
  6715. {
  6716. struct md_rdev *rdev;
  6717. int spares = 0;
  6718. int removed = 0;
  6719. mddev->curr_resync_completed = 0;
  6720. rdev_for_each(rdev, mddev)
  6721. if (rdev->raid_disk >= 0 &&
  6722. !test_bit(Blocked, &rdev->flags) &&
  6723. (test_bit(Faulty, &rdev->flags) ||
  6724. ! test_bit(In_sync, &rdev->flags)) &&
  6725. atomic_read(&rdev->nr_pending)==0) {
  6726. if (mddev->pers->hot_remove_disk(
  6727. mddev, rdev) == 0) {
  6728. sysfs_unlink_rdev(mddev, rdev);
  6729. rdev->raid_disk = -1;
  6730. removed++;
  6731. }
  6732. }
  6733. if (removed)
  6734. sysfs_notify(&mddev->kobj, NULL,
  6735. "degraded");
  6736. rdev_for_each(rdev, mddev) {
  6737. if (rdev->raid_disk >= 0 &&
  6738. !test_bit(In_sync, &rdev->flags) &&
  6739. !test_bit(Faulty, &rdev->flags))
  6740. spares++;
  6741. if (rdev->raid_disk < 0
  6742. && !test_bit(Faulty, &rdev->flags)) {
  6743. rdev->recovery_offset = 0;
  6744. if (mddev->pers->
  6745. hot_add_disk(mddev, rdev) == 0) {
  6746. if (sysfs_link_rdev(mddev, rdev))
  6747. /* failure here is OK */;
  6748. spares++;
  6749. md_new_event(mddev);
  6750. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6751. }
  6752. }
  6753. }
  6754. return spares;
  6755. }
  6756. static void reap_sync_thread(struct mddev *mddev)
  6757. {
  6758. struct md_rdev *rdev;
  6759. /* resync has finished, collect result */
  6760. md_unregister_thread(&mddev->sync_thread);
  6761. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6762. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6763. /* success...*/
  6764. /* activate any spares */
  6765. if (mddev->pers->spare_active(mddev))
  6766. sysfs_notify(&mddev->kobj, NULL,
  6767. "degraded");
  6768. }
  6769. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6770. mddev->pers->finish_reshape)
  6771. mddev->pers->finish_reshape(mddev);
  6772. /* If array is no-longer degraded, then any saved_raid_disk
  6773. * information must be scrapped. Also if any device is now
  6774. * In_sync we must scrape the saved_raid_disk for that device
  6775. * do the superblock for an incrementally recovered device
  6776. * written out.
  6777. */
  6778. rdev_for_each(rdev, mddev)
  6779. if (!mddev->degraded ||
  6780. test_bit(In_sync, &rdev->flags))
  6781. rdev->saved_raid_disk = -1;
  6782. md_update_sb(mddev, 1);
  6783. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6784. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6785. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6786. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6787. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6788. /* flag recovery needed just to double check */
  6789. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6790. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6791. md_new_event(mddev);
  6792. if (mddev->event_work.func)
  6793. queue_work(md_misc_wq, &mddev->event_work);
  6794. }
  6795. /*
  6796. * This routine is regularly called by all per-raid-array threads to
  6797. * deal with generic issues like resync and super-block update.
  6798. * Raid personalities that don't have a thread (linear/raid0) do not
  6799. * need this as they never do any recovery or update the superblock.
  6800. *
  6801. * It does not do any resync itself, but rather "forks" off other threads
  6802. * to do that as needed.
  6803. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6804. * "->recovery" and create a thread at ->sync_thread.
  6805. * When the thread finishes it sets MD_RECOVERY_DONE
  6806. * and wakeups up this thread which will reap the thread and finish up.
  6807. * This thread also removes any faulty devices (with nr_pending == 0).
  6808. *
  6809. * The overall approach is:
  6810. * 1/ if the superblock needs updating, update it.
  6811. * 2/ If a recovery thread is running, don't do anything else.
  6812. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6813. * 4/ If there are any faulty devices, remove them.
  6814. * 5/ If array is degraded, try to add spares devices
  6815. * 6/ If array has spares or is not in-sync, start a resync thread.
  6816. */
  6817. void md_check_recovery(struct mddev *mddev)
  6818. {
  6819. if (mddev->suspended)
  6820. return;
  6821. if (mddev->bitmap)
  6822. bitmap_daemon_work(mddev);
  6823. if (signal_pending(current)) {
  6824. if (mddev->pers->sync_request && !mddev->external) {
  6825. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6826. mdname(mddev));
  6827. mddev->safemode = 2;
  6828. }
  6829. flush_signals(current);
  6830. }
  6831. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6832. return;
  6833. if ( ! (
  6834. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6835. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6836. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6837. (mddev->external == 0 && mddev->safemode == 1) ||
  6838. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6839. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6840. ))
  6841. return;
  6842. if (mddev_trylock(mddev)) {
  6843. int spares = 0;
  6844. if (mddev->ro) {
  6845. /* Only thing we do on a ro array is remove
  6846. * failed devices.
  6847. */
  6848. struct md_rdev *rdev;
  6849. rdev_for_each(rdev, mddev)
  6850. if (rdev->raid_disk >= 0 &&
  6851. !test_bit(Blocked, &rdev->flags) &&
  6852. test_bit(Faulty, &rdev->flags) &&
  6853. atomic_read(&rdev->nr_pending)==0) {
  6854. if (mddev->pers->hot_remove_disk(
  6855. mddev, rdev) == 0) {
  6856. sysfs_unlink_rdev(mddev, rdev);
  6857. rdev->raid_disk = -1;
  6858. }
  6859. }
  6860. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6861. goto unlock;
  6862. }
  6863. if (!mddev->external) {
  6864. int did_change = 0;
  6865. spin_lock_irq(&mddev->write_lock);
  6866. if (mddev->safemode &&
  6867. !atomic_read(&mddev->writes_pending) &&
  6868. !mddev->in_sync &&
  6869. mddev->recovery_cp == MaxSector) {
  6870. mddev->in_sync = 1;
  6871. did_change = 1;
  6872. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6873. }
  6874. if (mddev->safemode == 1)
  6875. mddev->safemode = 0;
  6876. spin_unlock_irq(&mddev->write_lock);
  6877. if (did_change)
  6878. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6879. }
  6880. if (mddev->flags)
  6881. md_update_sb(mddev, 0);
  6882. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6883. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6884. /* resync/recovery still happening */
  6885. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6886. goto unlock;
  6887. }
  6888. if (mddev->sync_thread) {
  6889. reap_sync_thread(mddev);
  6890. goto unlock;
  6891. }
  6892. /* Set RUNNING before clearing NEEDED to avoid
  6893. * any transients in the value of "sync_action".
  6894. */
  6895. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6896. /* Clear some bits that don't mean anything, but
  6897. * might be left set
  6898. */
  6899. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6900. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6901. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6902. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6903. goto unlock;
  6904. /* no recovery is running.
  6905. * remove any failed drives, then
  6906. * add spares if possible.
  6907. * Spare are also removed and re-added, to allow
  6908. * the personality to fail the re-add.
  6909. */
  6910. if (mddev->reshape_position != MaxSector) {
  6911. if (mddev->pers->check_reshape == NULL ||
  6912. mddev->pers->check_reshape(mddev) != 0)
  6913. /* Cannot proceed */
  6914. goto unlock;
  6915. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6916. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6917. } else if ((spares = remove_and_add_spares(mddev))) {
  6918. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6919. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6920. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6921. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6922. } else if (mddev->recovery_cp < MaxSector) {
  6923. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6924. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6925. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6926. /* nothing to be done ... */
  6927. goto unlock;
  6928. if (mddev->pers->sync_request) {
  6929. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6930. /* We are adding a device or devices to an array
  6931. * which has the bitmap stored on all devices.
  6932. * So make sure all bitmap pages get written
  6933. */
  6934. bitmap_write_all(mddev->bitmap);
  6935. }
  6936. mddev->sync_thread = md_register_thread(md_do_sync,
  6937. mddev,
  6938. "resync");
  6939. if (!mddev->sync_thread) {
  6940. printk(KERN_ERR "%s: could not start resync"
  6941. " thread...\n",
  6942. mdname(mddev));
  6943. /* leave the spares where they are, it shouldn't hurt */
  6944. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6945. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6946. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6947. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6948. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6949. } else
  6950. md_wakeup_thread(mddev->sync_thread);
  6951. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6952. md_new_event(mddev);
  6953. }
  6954. unlock:
  6955. if (!mddev->sync_thread) {
  6956. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6957. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6958. &mddev->recovery))
  6959. if (mddev->sysfs_action)
  6960. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6961. }
  6962. mddev_unlock(mddev);
  6963. }
  6964. }
  6965. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6966. {
  6967. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6968. wait_event_timeout(rdev->blocked_wait,
  6969. !test_bit(Blocked, &rdev->flags) &&
  6970. !test_bit(BlockedBadBlocks, &rdev->flags),
  6971. msecs_to_jiffies(5000));
  6972. rdev_dec_pending(rdev, mddev);
  6973. }
  6974. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6975. void md_finish_reshape(struct mddev *mddev)
  6976. {
  6977. /* called be personality module when reshape completes. */
  6978. struct md_rdev *rdev;
  6979. rdev_for_each(rdev, mddev) {
  6980. if (rdev->data_offset > rdev->new_data_offset)
  6981. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  6982. else
  6983. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  6984. rdev->data_offset = rdev->new_data_offset;
  6985. }
  6986. }
  6987. EXPORT_SYMBOL(md_finish_reshape);
  6988. /* Bad block management.
  6989. * We can record which blocks on each device are 'bad' and so just
  6990. * fail those blocks, or that stripe, rather than the whole device.
  6991. * Entries in the bad-block table are 64bits wide. This comprises:
  6992. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6993. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6994. * A 'shift' can be set so that larger blocks are tracked and
  6995. * consequently larger devices can be covered.
  6996. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6997. *
  6998. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6999. * might need to retry if it is very unlucky.
  7000. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7001. * so we use the write_seqlock_irq variant.
  7002. *
  7003. * When looking for a bad block we specify a range and want to
  7004. * know if any block in the range is bad. So we binary-search
  7005. * to the last range that starts at-or-before the given endpoint,
  7006. * (or "before the sector after the target range")
  7007. * then see if it ends after the given start.
  7008. * We return
  7009. * 0 if there are no known bad blocks in the range
  7010. * 1 if there are known bad block which are all acknowledged
  7011. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7012. * plus the start/length of the first bad section we overlap.
  7013. */
  7014. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7015. sector_t *first_bad, int *bad_sectors)
  7016. {
  7017. int hi;
  7018. int lo = 0;
  7019. u64 *p = bb->page;
  7020. int rv = 0;
  7021. sector_t target = s + sectors;
  7022. unsigned seq;
  7023. if (bb->shift > 0) {
  7024. /* round the start down, and the end up */
  7025. s >>= bb->shift;
  7026. target += (1<<bb->shift) - 1;
  7027. target >>= bb->shift;
  7028. sectors = target - s;
  7029. }
  7030. /* 'target' is now the first block after the bad range */
  7031. retry:
  7032. seq = read_seqbegin(&bb->lock);
  7033. hi = bb->count;
  7034. /* Binary search between lo and hi for 'target'
  7035. * i.e. for the last range that starts before 'target'
  7036. */
  7037. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7038. * are known not to be the last range before target.
  7039. * VARIANT: hi-lo is the number of possible
  7040. * ranges, and decreases until it reaches 1
  7041. */
  7042. while (hi - lo > 1) {
  7043. int mid = (lo + hi) / 2;
  7044. sector_t a = BB_OFFSET(p[mid]);
  7045. if (a < target)
  7046. /* This could still be the one, earlier ranges
  7047. * could not. */
  7048. lo = mid;
  7049. else
  7050. /* This and later ranges are definitely out. */
  7051. hi = mid;
  7052. }
  7053. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7054. if (hi > lo) {
  7055. /* need to check all range that end after 's' to see if
  7056. * any are unacknowledged.
  7057. */
  7058. while (lo >= 0 &&
  7059. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7060. if (BB_OFFSET(p[lo]) < target) {
  7061. /* starts before the end, and finishes after
  7062. * the start, so they must overlap
  7063. */
  7064. if (rv != -1 && BB_ACK(p[lo]))
  7065. rv = 1;
  7066. else
  7067. rv = -1;
  7068. *first_bad = BB_OFFSET(p[lo]);
  7069. *bad_sectors = BB_LEN(p[lo]);
  7070. }
  7071. lo--;
  7072. }
  7073. }
  7074. if (read_seqretry(&bb->lock, seq))
  7075. goto retry;
  7076. return rv;
  7077. }
  7078. EXPORT_SYMBOL_GPL(md_is_badblock);
  7079. /*
  7080. * Add a range of bad blocks to the table.
  7081. * This might extend the table, or might contract it
  7082. * if two adjacent ranges can be merged.
  7083. * We binary-search to find the 'insertion' point, then
  7084. * decide how best to handle it.
  7085. */
  7086. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7087. int acknowledged)
  7088. {
  7089. u64 *p;
  7090. int lo, hi;
  7091. int rv = 1;
  7092. if (bb->shift < 0)
  7093. /* badblocks are disabled */
  7094. return 0;
  7095. if (bb->shift) {
  7096. /* round the start down, and the end up */
  7097. sector_t next = s + sectors;
  7098. s >>= bb->shift;
  7099. next += (1<<bb->shift) - 1;
  7100. next >>= bb->shift;
  7101. sectors = next - s;
  7102. }
  7103. write_seqlock_irq(&bb->lock);
  7104. p = bb->page;
  7105. lo = 0;
  7106. hi = bb->count;
  7107. /* Find the last range that starts at-or-before 's' */
  7108. while (hi - lo > 1) {
  7109. int mid = (lo + hi) / 2;
  7110. sector_t a = BB_OFFSET(p[mid]);
  7111. if (a <= s)
  7112. lo = mid;
  7113. else
  7114. hi = mid;
  7115. }
  7116. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7117. hi = lo;
  7118. if (hi > lo) {
  7119. /* we found a range that might merge with the start
  7120. * of our new range
  7121. */
  7122. sector_t a = BB_OFFSET(p[lo]);
  7123. sector_t e = a + BB_LEN(p[lo]);
  7124. int ack = BB_ACK(p[lo]);
  7125. if (e >= s) {
  7126. /* Yes, we can merge with a previous range */
  7127. if (s == a && s + sectors >= e)
  7128. /* new range covers old */
  7129. ack = acknowledged;
  7130. else
  7131. ack = ack && acknowledged;
  7132. if (e < s + sectors)
  7133. e = s + sectors;
  7134. if (e - a <= BB_MAX_LEN) {
  7135. p[lo] = BB_MAKE(a, e-a, ack);
  7136. s = e;
  7137. } else {
  7138. /* does not all fit in one range,
  7139. * make p[lo] maximal
  7140. */
  7141. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7142. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7143. s = a + BB_MAX_LEN;
  7144. }
  7145. sectors = e - s;
  7146. }
  7147. }
  7148. if (sectors && hi < bb->count) {
  7149. /* 'hi' points to the first range that starts after 's'.
  7150. * Maybe we can merge with the start of that range */
  7151. sector_t a = BB_OFFSET(p[hi]);
  7152. sector_t e = a + BB_LEN(p[hi]);
  7153. int ack = BB_ACK(p[hi]);
  7154. if (a <= s + sectors) {
  7155. /* merging is possible */
  7156. if (e <= s + sectors) {
  7157. /* full overlap */
  7158. e = s + sectors;
  7159. ack = acknowledged;
  7160. } else
  7161. ack = ack && acknowledged;
  7162. a = s;
  7163. if (e - a <= BB_MAX_LEN) {
  7164. p[hi] = BB_MAKE(a, e-a, ack);
  7165. s = e;
  7166. } else {
  7167. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7168. s = a + BB_MAX_LEN;
  7169. }
  7170. sectors = e - s;
  7171. lo = hi;
  7172. hi++;
  7173. }
  7174. }
  7175. if (sectors == 0 && hi < bb->count) {
  7176. /* we might be able to combine lo and hi */
  7177. /* Note: 's' is at the end of 'lo' */
  7178. sector_t a = BB_OFFSET(p[hi]);
  7179. int lolen = BB_LEN(p[lo]);
  7180. int hilen = BB_LEN(p[hi]);
  7181. int newlen = lolen + hilen - (s - a);
  7182. if (s >= a && newlen < BB_MAX_LEN) {
  7183. /* yes, we can combine them */
  7184. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7185. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7186. memmove(p + hi, p + hi + 1,
  7187. (bb->count - hi - 1) * 8);
  7188. bb->count--;
  7189. }
  7190. }
  7191. while (sectors) {
  7192. /* didn't merge (it all).
  7193. * Need to add a range just before 'hi' */
  7194. if (bb->count >= MD_MAX_BADBLOCKS) {
  7195. /* No room for more */
  7196. rv = 0;
  7197. break;
  7198. } else {
  7199. int this_sectors = sectors;
  7200. memmove(p + hi + 1, p + hi,
  7201. (bb->count - hi) * 8);
  7202. bb->count++;
  7203. if (this_sectors > BB_MAX_LEN)
  7204. this_sectors = BB_MAX_LEN;
  7205. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7206. sectors -= this_sectors;
  7207. s += this_sectors;
  7208. }
  7209. }
  7210. bb->changed = 1;
  7211. if (!acknowledged)
  7212. bb->unacked_exist = 1;
  7213. write_sequnlock_irq(&bb->lock);
  7214. return rv;
  7215. }
  7216. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7217. int is_new)
  7218. {
  7219. int rv;
  7220. if (is_new)
  7221. s += rdev->new_data_offset;
  7222. else
  7223. s += rdev->data_offset;
  7224. rv = md_set_badblocks(&rdev->badblocks,
  7225. s, sectors, 0);
  7226. if (rv) {
  7227. /* Make sure they get written out promptly */
  7228. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7229. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7230. md_wakeup_thread(rdev->mddev->thread);
  7231. }
  7232. return rv;
  7233. }
  7234. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7235. /*
  7236. * Remove a range of bad blocks from the table.
  7237. * This may involve extending the table if we spilt a region,
  7238. * but it must not fail. So if the table becomes full, we just
  7239. * drop the remove request.
  7240. */
  7241. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7242. {
  7243. u64 *p;
  7244. int lo, hi;
  7245. sector_t target = s + sectors;
  7246. int rv = 0;
  7247. if (bb->shift > 0) {
  7248. /* When clearing we round the start up and the end down.
  7249. * This should not matter as the shift should align with
  7250. * the block size and no rounding should ever be needed.
  7251. * However it is better the think a block is bad when it
  7252. * isn't than to think a block is not bad when it is.
  7253. */
  7254. s += (1<<bb->shift) - 1;
  7255. s >>= bb->shift;
  7256. target >>= bb->shift;
  7257. sectors = target - s;
  7258. }
  7259. write_seqlock_irq(&bb->lock);
  7260. p = bb->page;
  7261. lo = 0;
  7262. hi = bb->count;
  7263. /* Find the last range that starts before 'target' */
  7264. while (hi - lo > 1) {
  7265. int mid = (lo + hi) / 2;
  7266. sector_t a = BB_OFFSET(p[mid]);
  7267. if (a < target)
  7268. lo = mid;
  7269. else
  7270. hi = mid;
  7271. }
  7272. if (hi > lo) {
  7273. /* p[lo] is the last range that could overlap the
  7274. * current range. Earlier ranges could also overlap,
  7275. * but only this one can overlap the end of the range.
  7276. */
  7277. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7278. /* Partial overlap, leave the tail of this range */
  7279. int ack = BB_ACK(p[lo]);
  7280. sector_t a = BB_OFFSET(p[lo]);
  7281. sector_t end = a + BB_LEN(p[lo]);
  7282. if (a < s) {
  7283. /* we need to split this range */
  7284. if (bb->count >= MD_MAX_BADBLOCKS) {
  7285. rv = 0;
  7286. goto out;
  7287. }
  7288. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7289. bb->count++;
  7290. p[lo] = BB_MAKE(a, s-a, ack);
  7291. lo++;
  7292. }
  7293. p[lo] = BB_MAKE(target, end - target, ack);
  7294. /* there is no longer an overlap */
  7295. hi = lo;
  7296. lo--;
  7297. }
  7298. while (lo >= 0 &&
  7299. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7300. /* This range does overlap */
  7301. if (BB_OFFSET(p[lo]) < s) {
  7302. /* Keep the early parts of this range. */
  7303. int ack = BB_ACK(p[lo]);
  7304. sector_t start = BB_OFFSET(p[lo]);
  7305. p[lo] = BB_MAKE(start, s - start, ack);
  7306. /* now low doesn't overlap, so.. */
  7307. break;
  7308. }
  7309. lo--;
  7310. }
  7311. /* 'lo' is strictly before, 'hi' is strictly after,
  7312. * anything between needs to be discarded
  7313. */
  7314. if (hi - lo > 1) {
  7315. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7316. bb->count -= (hi - lo - 1);
  7317. }
  7318. }
  7319. bb->changed = 1;
  7320. out:
  7321. write_sequnlock_irq(&bb->lock);
  7322. return rv;
  7323. }
  7324. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7325. int is_new)
  7326. {
  7327. if (is_new)
  7328. s += rdev->new_data_offset;
  7329. else
  7330. s += rdev->data_offset;
  7331. return md_clear_badblocks(&rdev->badblocks,
  7332. s, sectors);
  7333. }
  7334. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7335. /*
  7336. * Acknowledge all bad blocks in a list.
  7337. * This only succeeds if ->changed is clear. It is used by
  7338. * in-kernel metadata updates
  7339. */
  7340. void md_ack_all_badblocks(struct badblocks *bb)
  7341. {
  7342. if (bb->page == NULL || bb->changed)
  7343. /* no point even trying */
  7344. return;
  7345. write_seqlock_irq(&bb->lock);
  7346. if (bb->changed == 0 && bb->unacked_exist) {
  7347. u64 *p = bb->page;
  7348. int i;
  7349. for (i = 0; i < bb->count ; i++) {
  7350. if (!BB_ACK(p[i])) {
  7351. sector_t start = BB_OFFSET(p[i]);
  7352. int len = BB_LEN(p[i]);
  7353. p[i] = BB_MAKE(start, len, 1);
  7354. }
  7355. }
  7356. bb->unacked_exist = 0;
  7357. }
  7358. write_sequnlock_irq(&bb->lock);
  7359. }
  7360. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7361. /* sysfs access to bad-blocks list.
  7362. * We present two files.
  7363. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7364. * are recorded as bad. The list is truncated to fit within
  7365. * the one-page limit of sysfs.
  7366. * Writing "sector length" to this file adds an acknowledged
  7367. * bad block list.
  7368. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7369. * been acknowledged. Writing to this file adds bad blocks
  7370. * without acknowledging them. This is largely for testing.
  7371. */
  7372. static ssize_t
  7373. badblocks_show(struct badblocks *bb, char *page, int unack)
  7374. {
  7375. size_t len;
  7376. int i;
  7377. u64 *p = bb->page;
  7378. unsigned seq;
  7379. if (bb->shift < 0)
  7380. return 0;
  7381. retry:
  7382. seq = read_seqbegin(&bb->lock);
  7383. len = 0;
  7384. i = 0;
  7385. while (len < PAGE_SIZE && i < bb->count) {
  7386. sector_t s = BB_OFFSET(p[i]);
  7387. unsigned int length = BB_LEN(p[i]);
  7388. int ack = BB_ACK(p[i]);
  7389. i++;
  7390. if (unack && ack)
  7391. continue;
  7392. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7393. (unsigned long long)s << bb->shift,
  7394. length << bb->shift);
  7395. }
  7396. if (unack && len == 0)
  7397. bb->unacked_exist = 0;
  7398. if (read_seqretry(&bb->lock, seq))
  7399. goto retry;
  7400. return len;
  7401. }
  7402. #define DO_DEBUG 1
  7403. static ssize_t
  7404. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7405. {
  7406. unsigned long long sector;
  7407. int length;
  7408. char newline;
  7409. #ifdef DO_DEBUG
  7410. /* Allow clearing via sysfs *only* for testing/debugging.
  7411. * Normally only a successful write may clear a badblock
  7412. */
  7413. int clear = 0;
  7414. if (page[0] == '-') {
  7415. clear = 1;
  7416. page++;
  7417. }
  7418. #endif /* DO_DEBUG */
  7419. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7420. case 3:
  7421. if (newline != '\n')
  7422. return -EINVAL;
  7423. case 2:
  7424. if (length <= 0)
  7425. return -EINVAL;
  7426. break;
  7427. default:
  7428. return -EINVAL;
  7429. }
  7430. #ifdef DO_DEBUG
  7431. if (clear) {
  7432. md_clear_badblocks(bb, sector, length);
  7433. return len;
  7434. }
  7435. #endif /* DO_DEBUG */
  7436. if (md_set_badblocks(bb, sector, length, !unack))
  7437. return len;
  7438. else
  7439. return -ENOSPC;
  7440. }
  7441. static int md_notify_reboot(struct notifier_block *this,
  7442. unsigned long code, void *x)
  7443. {
  7444. struct list_head *tmp;
  7445. struct mddev *mddev;
  7446. int need_delay = 0;
  7447. for_each_mddev(mddev, tmp) {
  7448. if (mddev_trylock(mddev)) {
  7449. if (mddev->pers)
  7450. __md_stop_writes(mddev);
  7451. mddev->safemode = 2;
  7452. mddev_unlock(mddev);
  7453. }
  7454. need_delay = 1;
  7455. }
  7456. /*
  7457. * certain more exotic SCSI devices are known to be
  7458. * volatile wrt too early system reboots. While the
  7459. * right place to handle this issue is the given
  7460. * driver, we do want to have a safe RAID driver ...
  7461. */
  7462. if (need_delay)
  7463. mdelay(1000*1);
  7464. return NOTIFY_DONE;
  7465. }
  7466. static struct notifier_block md_notifier = {
  7467. .notifier_call = md_notify_reboot,
  7468. .next = NULL,
  7469. .priority = INT_MAX, /* before any real devices */
  7470. };
  7471. static void md_geninit(void)
  7472. {
  7473. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7474. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7475. }
  7476. static int __init md_init(void)
  7477. {
  7478. int ret = -ENOMEM;
  7479. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7480. if (!md_wq)
  7481. goto err_wq;
  7482. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7483. if (!md_misc_wq)
  7484. goto err_misc_wq;
  7485. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7486. goto err_md;
  7487. if ((ret = register_blkdev(0, "mdp")) < 0)
  7488. goto err_mdp;
  7489. mdp_major = ret;
  7490. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7491. md_probe, NULL, NULL);
  7492. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7493. md_probe, NULL, NULL);
  7494. register_reboot_notifier(&md_notifier);
  7495. raid_table_header = register_sysctl_table(raid_root_table);
  7496. md_geninit();
  7497. return 0;
  7498. err_mdp:
  7499. unregister_blkdev(MD_MAJOR, "md");
  7500. err_md:
  7501. destroy_workqueue(md_misc_wq);
  7502. err_misc_wq:
  7503. destroy_workqueue(md_wq);
  7504. err_wq:
  7505. return ret;
  7506. }
  7507. #ifndef MODULE
  7508. /*
  7509. * Searches all registered partitions for autorun RAID arrays
  7510. * at boot time.
  7511. */
  7512. static LIST_HEAD(all_detected_devices);
  7513. struct detected_devices_node {
  7514. struct list_head list;
  7515. dev_t dev;
  7516. };
  7517. void md_autodetect_dev(dev_t dev)
  7518. {
  7519. struct detected_devices_node *node_detected_dev;
  7520. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7521. if (node_detected_dev) {
  7522. node_detected_dev->dev = dev;
  7523. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7524. } else {
  7525. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7526. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7527. }
  7528. }
  7529. static void autostart_arrays(int part)
  7530. {
  7531. struct md_rdev *rdev;
  7532. struct detected_devices_node *node_detected_dev;
  7533. dev_t dev;
  7534. int i_scanned, i_passed;
  7535. i_scanned = 0;
  7536. i_passed = 0;
  7537. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7538. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7539. i_scanned++;
  7540. node_detected_dev = list_entry(all_detected_devices.next,
  7541. struct detected_devices_node, list);
  7542. list_del(&node_detected_dev->list);
  7543. dev = node_detected_dev->dev;
  7544. kfree(node_detected_dev);
  7545. rdev = md_import_device(dev,0, 90);
  7546. if (IS_ERR(rdev))
  7547. continue;
  7548. if (test_bit(Faulty, &rdev->flags)) {
  7549. MD_BUG();
  7550. continue;
  7551. }
  7552. set_bit(AutoDetected, &rdev->flags);
  7553. list_add(&rdev->same_set, &pending_raid_disks);
  7554. i_passed++;
  7555. }
  7556. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7557. i_scanned, i_passed);
  7558. autorun_devices(part);
  7559. }
  7560. #endif /* !MODULE */
  7561. static __exit void md_exit(void)
  7562. {
  7563. struct mddev *mddev;
  7564. struct list_head *tmp;
  7565. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7566. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7567. unregister_blkdev(MD_MAJOR,"md");
  7568. unregister_blkdev(mdp_major, "mdp");
  7569. unregister_reboot_notifier(&md_notifier);
  7570. unregister_sysctl_table(raid_table_header);
  7571. remove_proc_entry("mdstat", NULL);
  7572. for_each_mddev(mddev, tmp) {
  7573. export_array(mddev);
  7574. mddev->hold_active = 0;
  7575. }
  7576. destroy_workqueue(md_misc_wq);
  7577. destroy_workqueue(md_wq);
  7578. }
  7579. subsys_initcall(md_init);
  7580. module_exit(md_exit)
  7581. static int get_ro(char *buffer, struct kernel_param *kp)
  7582. {
  7583. return sprintf(buffer, "%d", start_readonly);
  7584. }
  7585. static int set_ro(const char *val, struct kernel_param *kp)
  7586. {
  7587. char *e;
  7588. int num = simple_strtoul(val, &e, 10);
  7589. if (*val && (*e == '\0' || *e == '\n')) {
  7590. start_readonly = num;
  7591. return 0;
  7592. }
  7593. return -EINVAL;
  7594. }
  7595. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7596. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7597. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7598. EXPORT_SYMBOL(register_md_personality);
  7599. EXPORT_SYMBOL(unregister_md_personality);
  7600. EXPORT_SYMBOL(md_error);
  7601. EXPORT_SYMBOL(md_done_sync);
  7602. EXPORT_SYMBOL(md_write_start);
  7603. EXPORT_SYMBOL(md_write_end);
  7604. EXPORT_SYMBOL(md_register_thread);
  7605. EXPORT_SYMBOL(md_unregister_thread);
  7606. EXPORT_SYMBOL(md_wakeup_thread);
  7607. EXPORT_SYMBOL(md_check_recovery);
  7608. MODULE_LICENSE("GPL");
  7609. MODULE_DESCRIPTION("MD RAID framework");
  7610. MODULE_ALIAS("md");
  7611. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);