builtin-sched.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/parse-options.h"
  9. #include "util/trace-event.h"
  10. #include "util/debug.h"
  11. #include <sys/types.h>
  12. #include <sys/prctl.h>
  13. #include <semaphore.h>
  14. #include <pthread.h>
  15. #include <math.h>
  16. static char const *input_name = "perf.data";
  17. static int input;
  18. static unsigned long page_size;
  19. static unsigned long mmap_window = 32;
  20. static unsigned long total_comm = 0;
  21. static struct rb_root threads;
  22. static struct thread *last_match;
  23. static struct perf_header *header;
  24. static u64 sample_type;
  25. static char default_sort_order[] = "avg, max, switch, runtime";
  26. static char *sort_order = default_sort_order;
  27. #define PR_SET_NAME 15 /* Set process name */
  28. #define MAX_CPUS 4096
  29. #define BUG_ON(x) assert(!(x))
  30. static u64 run_measurement_overhead;
  31. static u64 sleep_measurement_overhead;
  32. #define COMM_LEN 20
  33. #define SYM_LEN 129
  34. #define MAX_PID 65536
  35. static unsigned long nr_tasks;
  36. struct sched_event;
  37. struct task_desc {
  38. unsigned long nr;
  39. unsigned long pid;
  40. char comm[COMM_LEN];
  41. unsigned long nr_events;
  42. unsigned long curr_event;
  43. struct sched_event **events;
  44. pthread_t thread;
  45. sem_t sleep_sem;
  46. sem_t ready_for_work;
  47. sem_t work_done_sem;
  48. u64 cpu_usage;
  49. };
  50. enum sched_event_type {
  51. SCHED_EVENT_RUN,
  52. SCHED_EVENT_SLEEP,
  53. SCHED_EVENT_WAKEUP,
  54. };
  55. struct sched_event {
  56. enum sched_event_type type;
  57. u64 timestamp;
  58. u64 duration;
  59. unsigned long nr;
  60. int specific_wait;
  61. sem_t *wait_sem;
  62. struct task_desc *wakee;
  63. };
  64. static struct task_desc *pid_to_task[MAX_PID];
  65. static struct task_desc **tasks;
  66. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  67. static u64 start_time;
  68. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  69. static unsigned long nr_run_events;
  70. static unsigned long nr_sleep_events;
  71. static unsigned long nr_wakeup_events;
  72. static unsigned long nr_sleep_corrections;
  73. static unsigned long nr_run_events_optimized;
  74. static unsigned long targetless_wakeups;
  75. static unsigned long multitarget_wakeups;
  76. static u64 cpu_usage;
  77. static u64 runavg_cpu_usage;
  78. static u64 parent_cpu_usage;
  79. static u64 runavg_parent_cpu_usage;
  80. static unsigned long nr_runs;
  81. static u64 sum_runtime;
  82. static u64 sum_fluct;
  83. static u64 run_avg;
  84. static unsigned long replay_repeat = 10;
  85. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  86. enum thread_state {
  87. THREAD_SLEEPING = 0,
  88. THREAD_WAIT_CPU,
  89. THREAD_SCHED_IN,
  90. THREAD_IGNORE
  91. };
  92. struct work_atom {
  93. struct list_head list;
  94. enum thread_state state;
  95. u64 wake_up_time;
  96. u64 sched_in_time;
  97. u64 runtime;
  98. };
  99. struct task_atoms {
  100. struct list_head atom_list;
  101. struct thread *thread;
  102. struct rb_node node;
  103. u64 max_lat;
  104. u64 total_lat;
  105. u64 nb_atoms;
  106. u64 total_runtime;
  107. };
  108. typedef int (*sort_fn_t)(struct task_atoms *, struct task_atoms *);
  109. static struct rb_root atom_root, sorted_atom_root;
  110. static u64 all_runtime;
  111. static u64 all_count;
  112. static int read_events(void);
  113. static u64 get_nsecs(void)
  114. {
  115. struct timespec ts;
  116. clock_gettime(CLOCK_MONOTONIC, &ts);
  117. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  118. }
  119. static void burn_nsecs(u64 nsecs)
  120. {
  121. u64 T0 = get_nsecs(), T1;
  122. do {
  123. T1 = get_nsecs();
  124. } while (T1 + run_measurement_overhead < T0 + nsecs);
  125. }
  126. static void sleep_nsecs(u64 nsecs)
  127. {
  128. struct timespec ts;
  129. ts.tv_nsec = nsecs % 999999999;
  130. ts.tv_sec = nsecs / 999999999;
  131. nanosleep(&ts, NULL);
  132. }
  133. static void calibrate_run_measurement_overhead(void)
  134. {
  135. u64 T0, T1, delta, min_delta = 1000000000ULL;
  136. int i;
  137. for (i = 0; i < 10; i++) {
  138. T0 = get_nsecs();
  139. burn_nsecs(0);
  140. T1 = get_nsecs();
  141. delta = T1-T0;
  142. min_delta = min(min_delta, delta);
  143. }
  144. run_measurement_overhead = min_delta;
  145. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  146. }
  147. static void calibrate_sleep_measurement_overhead(void)
  148. {
  149. u64 T0, T1, delta, min_delta = 1000000000ULL;
  150. int i;
  151. for (i = 0; i < 10; i++) {
  152. T0 = get_nsecs();
  153. sleep_nsecs(10000);
  154. T1 = get_nsecs();
  155. delta = T1-T0;
  156. min_delta = min(min_delta, delta);
  157. }
  158. min_delta -= 10000;
  159. sleep_measurement_overhead = min_delta;
  160. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  161. }
  162. static struct sched_event *
  163. get_new_event(struct task_desc *task, u64 timestamp)
  164. {
  165. struct sched_event *event = calloc(1, sizeof(*event));
  166. unsigned long idx = task->nr_events;
  167. size_t size;
  168. event->timestamp = timestamp;
  169. event->nr = idx;
  170. task->nr_events++;
  171. size = sizeof(struct sched_event *) * task->nr_events;
  172. task->events = realloc(task->events, size);
  173. BUG_ON(!task->events);
  174. task->events[idx] = event;
  175. return event;
  176. }
  177. static struct sched_event *last_event(struct task_desc *task)
  178. {
  179. if (!task->nr_events)
  180. return NULL;
  181. return task->events[task->nr_events - 1];
  182. }
  183. static void
  184. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  185. {
  186. struct sched_event *event, *curr_event = last_event(task);
  187. /*
  188. * optimize an existing RUN event by merging this one
  189. * to it:
  190. */
  191. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  192. nr_run_events_optimized++;
  193. curr_event->duration += duration;
  194. return;
  195. }
  196. event = get_new_event(task, timestamp);
  197. event->type = SCHED_EVENT_RUN;
  198. event->duration = duration;
  199. nr_run_events++;
  200. }
  201. static void
  202. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  203. struct task_desc *wakee)
  204. {
  205. struct sched_event *event, *wakee_event;
  206. event = get_new_event(task, timestamp);
  207. event->type = SCHED_EVENT_WAKEUP;
  208. event->wakee = wakee;
  209. wakee_event = last_event(wakee);
  210. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  211. targetless_wakeups++;
  212. return;
  213. }
  214. if (wakee_event->wait_sem) {
  215. multitarget_wakeups++;
  216. return;
  217. }
  218. wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
  219. sem_init(wakee_event->wait_sem, 0, 0);
  220. wakee_event->specific_wait = 1;
  221. event->wait_sem = wakee_event->wait_sem;
  222. nr_wakeup_events++;
  223. }
  224. static void
  225. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  226. u64 task_state __used)
  227. {
  228. struct sched_event *event = get_new_event(task, timestamp);
  229. event->type = SCHED_EVENT_SLEEP;
  230. nr_sleep_events++;
  231. }
  232. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  233. {
  234. struct task_desc *task;
  235. BUG_ON(pid >= MAX_PID);
  236. task = pid_to_task[pid];
  237. if (task)
  238. return task;
  239. task = calloc(1, sizeof(*task));
  240. task->pid = pid;
  241. task->nr = nr_tasks;
  242. strcpy(task->comm, comm);
  243. /*
  244. * every task starts in sleeping state - this gets ignored
  245. * if there's no wakeup pointing to this sleep state:
  246. */
  247. add_sched_event_sleep(task, 0, 0);
  248. pid_to_task[pid] = task;
  249. nr_tasks++;
  250. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  251. BUG_ON(!tasks);
  252. tasks[task->nr] = task;
  253. if (verbose)
  254. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  255. return task;
  256. }
  257. static void print_task_traces(void)
  258. {
  259. struct task_desc *task;
  260. unsigned long i;
  261. for (i = 0; i < nr_tasks; i++) {
  262. task = tasks[i];
  263. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  264. task->nr, task->comm, task->pid, task->nr_events);
  265. }
  266. }
  267. static void add_cross_task_wakeups(void)
  268. {
  269. struct task_desc *task1, *task2;
  270. unsigned long i, j;
  271. for (i = 0; i < nr_tasks; i++) {
  272. task1 = tasks[i];
  273. j = i + 1;
  274. if (j == nr_tasks)
  275. j = 0;
  276. task2 = tasks[j];
  277. add_sched_event_wakeup(task1, 0, task2);
  278. }
  279. }
  280. static void
  281. process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
  282. {
  283. int ret = 0;
  284. u64 now;
  285. long long delta;
  286. now = get_nsecs();
  287. delta = start_time + event->timestamp - now;
  288. switch (event->type) {
  289. case SCHED_EVENT_RUN:
  290. burn_nsecs(event->duration);
  291. break;
  292. case SCHED_EVENT_SLEEP:
  293. if (event->wait_sem)
  294. ret = sem_wait(event->wait_sem);
  295. BUG_ON(ret);
  296. break;
  297. case SCHED_EVENT_WAKEUP:
  298. if (event->wait_sem)
  299. ret = sem_post(event->wait_sem);
  300. BUG_ON(ret);
  301. break;
  302. default:
  303. BUG_ON(1);
  304. }
  305. }
  306. static u64 get_cpu_usage_nsec_parent(void)
  307. {
  308. struct rusage ru;
  309. u64 sum;
  310. int err;
  311. err = getrusage(RUSAGE_SELF, &ru);
  312. BUG_ON(err);
  313. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  314. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  315. return sum;
  316. }
  317. static u64 get_cpu_usage_nsec_self(void)
  318. {
  319. char filename [] = "/proc/1234567890/sched";
  320. unsigned long msecs, nsecs;
  321. char *line = NULL;
  322. u64 total = 0;
  323. size_t len = 0;
  324. ssize_t chars;
  325. FILE *file;
  326. int ret;
  327. sprintf(filename, "/proc/%d/sched", getpid());
  328. file = fopen(filename, "r");
  329. BUG_ON(!file);
  330. while ((chars = getline(&line, &len, file)) != -1) {
  331. ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
  332. &msecs, &nsecs);
  333. if (ret == 2) {
  334. total = msecs*1e6 + nsecs;
  335. break;
  336. }
  337. }
  338. if (line)
  339. free(line);
  340. fclose(file);
  341. return total;
  342. }
  343. static void *thread_func(void *ctx)
  344. {
  345. struct task_desc *this_task = ctx;
  346. u64 cpu_usage_0, cpu_usage_1;
  347. unsigned long i, ret;
  348. char comm2[22];
  349. sprintf(comm2, ":%s", this_task->comm);
  350. prctl(PR_SET_NAME, comm2);
  351. again:
  352. ret = sem_post(&this_task->ready_for_work);
  353. BUG_ON(ret);
  354. ret = pthread_mutex_lock(&start_work_mutex);
  355. BUG_ON(ret);
  356. ret = pthread_mutex_unlock(&start_work_mutex);
  357. BUG_ON(ret);
  358. cpu_usage_0 = get_cpu_usage_nsec_self();
  359. for (i = 0; i < this_task->nr_events; i++) {
  360. this_task->curr_event = i;
  361. process_sched_event(this_task, this_task->events[i]);
  362. }
  363. cpu_usage_1 = get_cpu_usage_nsec_self();
  364. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  365. ret = sem_post(&this_task->work_done_sem);
  366. BUG_ON(ret);
  367. ret = pthread_mutex_lock(&work_done_wait_mutex);
  368. BUG_ON(ret);
  369. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  370. BUG_ON(ret);
  371. goto again;
  372. }
  373. static void create_tasks(void)
  374. {
  375. struct task_desc *task;
  376. pthread_attr_t attr;
  377. unsigned long i;
  378. int err;
  379. err = pthread_attr_init(&attr);
  380. BUG_ON(err);
  381. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  382. BUG_ON(err);
  383. err = pthread_mutex_lock(&start_work_mutex);
  384. BUG_ON(err);
  385. err = pthread_mutex_lock(&work_done_wait_mutex);
  386. BUG_ON(err);
  387. for (i = 0; i < nr_tasks; i++) {
  388. task = tasks[i];
  389. sem_init(&task->sleep_sem, 0, 0);
  390. sem_init(&task->ready_for_work, 0, 0);
  391. sem_init(&task->work_done_sem, 0, 0);
  392. task->curr_event = 0;
  393. err = pthread_create(&task->thread, &attr, thread_func, task);
  394. BUG_ON(err);
  395. }
  396. }
  397. static void wait_for_tasks(void)
  398. {
  399. u64 cpu_usage_0, cpu_usage_1;
  400. struct task_desc *task;
  401. unsigned long i, ret;
  402. start_time = get_nsecs();
  403. cpu_usage = 0;
  404. pthread_mutex_unlock(&work_done_wait_mutex);
  405. for (i = 0; i < nr_tasks; i++) {
  406. task = tasks[i];
  407. ret = sem_wait(&task->ready_for_work);
  408. BUG_ON(ret);
  409. sem_init(&task->ready_for_work, 0, 0);
  410. }
  411. ret = pthread_mutex_lock(&work_done_wait_mutex);
  412. BUG_ON(ret);
  413. cpu_usage_0 = get_cpu_usage_nsec_parent();
  414. pthread_mutex_unlock(&start_work_mutex);
  415. for (i = 0; i < nr_tasks; i++) {
  416. task = tasks[i];
  417. ret = sem_wait(&task->work_done_sem);
  418. BUG_ON(ret);
  419. sem_init(&task->work_done_sem, 0, 0);
  420. cpu_usage += task->cpu_usage;
  421. task->cpu_usage = 0;
  422. }
  423. cpu_usage_1 = get_cpu_usage_nsec_parent();
  424. if (!runavg_cpu_usage)
  425. runavg_cpu_usage = cpu_usage;
  426. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  427. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  428. if (!runavg_parent_cpu_usage)
  429. runavg_parent_cpu_usage = parent_cpu_usage;
  430. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  431. parent_cpu_usage)/10;
  432. ret = pthread_mutex_lock(&start_work_mutex);
  433. BUG_ON(ret);
  434. for (i = 0; i < nr_tasks; i++) {
  435. task = tasks[i];
  436. sem_init(&task->sleep_sem, 0, 0);
  437. task->curr_event = 0;
  438. }
  439. }
  440. static void run_one_test(void)
  441. {
  442. u64 T0, T1, delta, avg_delta, fluct, std_dev;
  443. T0 = get_nsecs();
  444. wait_for_tasks();
  445. T1 = get_nsecs();
  446. delta = T1 - T0;
  447. sum_runtime += delta;
  448. nr_runs++;
  449. avg_delta = sum_runtime / nr_runs;
  450. if (delta < avg_delta)
  451. fluct = avg_delta - delta;
  452. else
  453. fluct = delta - avg_delta;
  454. sum_fluct += fluct;
  455. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  456. if (!run_avg)
  457. run_avg = delta;
  458. run_avg = (run_avg*9 + delta)/10;
  459. printf("#%-3ld: %0.3f, ",
  460. nr_runs, (double)delta/1000000.0);
  461. printf("ravg: %0.2f, ",
  462. (double)run_avg/1e6);
  463. printf("cpu: %0.2f / %0.2f",
  464. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  465. #if 0
  466. /*
  467. * rusage statistics done by the parent, these are less
  468. * accurate than the sum_exec_runtime based statistics:
  469. */
  470. printf(" [%0.2f / %0.2f]",
  471. (double)parent_cpu_usage/1e6,
  472. (double)runavg_parent_cpu_usage/1e6);
  473. #endif
  474. printf("\n");
  475. if (nr_sleep_corrections)
  476. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  477. nr_sleep_corrections = 0;
  478. }
  479. static void test_calibrations(void)
  480. {
  481. u64 T0, T1;
  482. T0 = get_nsecs();
  483. burn_nsecs(1e6);
  484. T1 = get_nsecs();
  485. printf("the run test took %Ld nsecs\n", T1-T0);
  486. T0 = get_nsecs();
  487. sleep_nsecs(1e6);
  488. T1 = get_nsecs();
  489. printf("the sleep test took %Ld nsecs\n", T1-T0);
  490. }
  491. static void __cmd_replay(void)
  492. {
  493. unsigned long i;
  494. calibrate_run_measurement_overhead();
  495. calibrate_sleep_measurement_overhead();
  496. test_calibrations();
  497. read_events();
  498. printf("nr_run_events: %ld\n", nr_run_events);
  499. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  500. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  501. if (targetless_wakeups)
  502. printf("target-less wakeups: %ld\n", targetless_wakeups);
  503. if (multitarget_wakeups)
  504. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  505. if (nr_run_events_optimized)
  506. printf("run events optimized: %ld\n",
  507. nr_run_events_optimized);
  508. print_task_traces();
  509. add_cross_task_wakeups();
  510. create_tasks();
  511. printf("------------------------------------------------------------\n");
  512. for (i = 0; i < replay_repeat; i++)
  513. run_one_test();
  514. }
  515. static int
  516. process_comm_event(event_t *event, unsigned long offset, unsigned long head)
  517. {
  518. struct thread *thread;
  519. thread = threads__findnew(event->comm.pid, &threads, &last_match);
  520. dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
  521. (void *)(offset + head),
  522. (void *)(long)(event->header.size),
  523. event->comm.comm, event->comm.pid);
  524. if (thread == NULL ||
  525. thread__set_comm(thread, event->comm.comm)) {
  526. dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
  527. return -1;
  528. }
  529. total_comm++;
  530. return 0;
  531. }
  532. struct raw_event_sample {
  533. u32 size;
  534. char data[0];
  535. };
  536. #define FILL_FIELD(ptr, field, event, data) \
  537. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  538. #define FILL_ARRAY(ptr, array, event, data) \
  539. do { \
  540. void *__array = raw_field_ptr(event, #array, data); \
  541. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  542. } while(0)
  543. #define FILL_COMMON_FIELDS(ptr, event, data) \
  544. do { \
  545. FILL_FIELD(ptr, common_type, event, data); \
  546. FILL_FIELD(ptr, common_flags, event, data); \
  547. FILL_FIELD(ptr, common_preempt_count, event, data); \
  548. FILL_FIELD(ptr, common_pid, event, data); \
  549. FILL_FIELD(ptr, common_tgid, event, data); \
  550. } while (0)
  551. struct trace_switch_event {
  552. u32 size;
  553. u16 common_type;
  554. u8 common_flags;
  555. u8 common_preempt_count;
  556. u32 common_pid;
  557. u32 common_tgid;
  558. char prev_comm[16];
  559. u32 prev_pid;
  560. u32 prev_prio;
  561. u64 prev_state;
  562. char next_comm[16];
  563. u32 next_pid;
  564. u32 next_prio;
  565. };
  566. struct trace_wakeup_event {
  567. u32 size;
  568. u16 common_type;
  569. u8 common_flags;
  570. u8 common_preempt_count;
  571. u32 common_pid;
  572. u32 common_tgid;
  573. char comm[16];
  574. u32 pid;
  575. u32 prio;
  576. u32 success;
  577. u32 cpu;
  578. };
  579. struct trace_fork_event {
  580. u32 size;
  581. u16 common_type;
  582. u8 common_flags;
  583. u8 common_preempt_count;
  584. u32 common_pid;
  585. u32 common_tgid;
  586. char parent_comm[16];
  587. u32 parent_pid;
  588. char child_comm[16];
  589. u32 child_pid;
  590. };
  591. struct trace_sched_handler {
  592. void (*switch_event)(struct trace_switch_event *,
  593. struct event *,
  594. int cpu,
  595. u64 timestamp,
  596. struct thread *thread);
  597. void (*wakeup_event)(struct trace_wakeup_event *,
  598. struct event *,
  599. int cpu,
  600. u64 timestamp,
  601. struct thread *thread);
  602. void (*fork_event)(struct trace_fork_event *,
  603. struct event *,
  604. int cpu,
  605. u64 timestamp,
  606. struct thread *thread);
  607. };
  608. static void
  609. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  610. struct event *event,
  611. int cpu __used,
  612. u64 timestamp __used,
  613. struct thread *thread __used)
  614. {
  615. struct task_desc *waker, *wakee;
  616. if (verbose) {
  617. printf("sched_wakeup event %p\n", event);
  618. printf(" ... pid %d woke up %s/%d\n",
  619. wakeup_event->common_pid,
  620. wakeup_event->comm,
  621. wakeup_event->pid);
  622. }
  623. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  624. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  625. add_sched_event_wakeup(waker, timestamp, wakee);
  626. }
  627. static unsigned long cpu_last_switched[MAX_CPUS];
  628. static void
  629. replay_switch_event(struct trace_switch_event *switch_event,
  630. struct event *event,
  631. int cpu,
  632. u64 timestamp,
  633. struct thread *thread __used)
  634. {
  635. struct task_desc *prev, *next;
  636. u64 timestamp0;
  637. s64 delta;
  638. if (verbose)
  639. printf("sched_switch event %p\n", event);
  640. if (cpu >= MAX_CPUS || cpu < 0)
  641. return;
  642. timestamp0 = cpu_last_switched[cpu];
  643. if (timestamp0)
  644. delta = timestamp - timestamp0;
  645. else
  646. delta = 0;
  647. if (delta < 0)
  648. die("hm, delta: %Ld < 0 ?\n", delta);
  649. if (verbose) {
  650. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  651. switch_event->prev_comm, switch_event->prev_pid,
  652. switch_event->next_comm, switch_event->next_pid,
  653. delta);
  654. }
  655. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  656. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  657. cpu_last_switched[cpu] = timestamp;
  658. add_sched_event_run(prev, timestamp, delta);
  659. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  660. }
  661. static void
  662. replay_fork_event(struct trace_fork_event *fork_event,
  663. struct event *event,
  664. int cpu __used,
  665. u64 timestamp __used,
  666. struct thread *thread __used)
  667. {
  668. if (verbose) {
  669. printf("sched_fork event %p\n", event);
  670. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  671. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  672. }
  673. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  674. register_pid(fork_event->child_pid, fork_event->child_comm);
  675. }
  676. static struct trace_sched_handler replay_ops = {
  677. .wakeup_event = replay_wakeup_event,
  678. .switch_event = replay_switch_event,
  679. .fork_event = replay_fork_event,
  680. };
  681. struct sort_dimension {
  682. const char *name;
  683. sort_fn_t cmp;
  684. struct list_head list;
  685. };
  686. static LIST_HEAD(cmp_pid);
  687. static int
  688. thread_lat_cmp(struct list_head *list, struct task_atoms *l, struct task_atoms *r)
  689. {
  690. struct sort_dimension *sort;
  691. int ret = 0;
  692. BUG_ON(list_empty(list));
  693. list_for_each_entry(sort, list, list) {
  694. ret = sort->cmp(l, r);
  695. if (ret)
  696. return ret;
  697. }
  698. return ret;
  699. }
  700. static struct task_atoms *
  701. thread_atoms_search(struct rb_root *root, struct thread *thread,
  702. struct list_head *sort_list)
  703. {
  704. struct rb_node *node = root->rb_node;
  705. struct task_atoms key = { .thread = thread };
  706. while (node) {
  707. struct task_atoms *atoms;
  708. int cmp;
  709. atoms = container_of(node, struct task_atoms, node);
  710. cmp = thread_lat_cmp(sort_list, &key, atoms);
  711. if (cmp > 0)
  712. node = node->rb_left;
  713. else if (cmp < 0)
  714. node = node->rb_right;
  715. else {
  716. BUG_ON(thread != atoms->thread);
  717. return atoms;
  718. }
  719. }
  720. return NULL;
  721. }
  722. static void
  723. __thread_latency_insert(struct rb_root *root, struct task_atoms *data,
  724. struct list_head *sort_list)
  725. {
  726. struct rb_node **new = &(root->rb_node), *parent = NULL;
  727. while (*new) {
  728. struct task_atoms *this;
  729. int cmp;
  730. this = container_of(*new, struct task_atoms, node);
  731. parent = *new;
  732. cmp = thread_lat_cmp(sort_list, data, this);
  733. if (cmp > 0)
  734. new = &((*new)->rb_left);
  735. else
  736. new = &((*new)->rb_right);
  737. }
  738. rb_link_node(&data->node, parent, new);
  739. rb_insert_color(&data->node, root);
  740. }
  741. static void thread_atoms_insert(struct thread *thread)
  742. {
  743. struct task_atoms *atoms;
  744. atoms = calloc(sizeof(*atoms), 1);
  745. if (!atoms)
  746. die("No memory");
  747. atoms->thread = thread;
  748. INIT_LIST_HEAD(&atoms->atom_list);
  749. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  750. }
  751. static void
  752. latency_fork_event(struct trace_fork_event *fork_event __used,
  753. struct event *event __used,
  754. int cpu __used,
  755. u64 timestamp __used,
  756. struct thread *thread __used)
  757. {
  758. /* should insert the newcomer */
  759. }
  760. __used
  761. static char sched_out_state(struct trace_switch_event *switch_event)
  762. {
  763. const char *str = TASK_STATE_TO_CHAR_STR;
  764. return str[switch_event->prev_state];
  765. }
  766. static void
  767. lat_sched_out(struct task_atoms *atoms,
  768. struct trace_switch_event *switch_event __used,
  769. u64 delta,
  770. u64 timestamp)
  771. {
  772. struct work_atom *atom;
  773. atom = calloc(sizeof(*atom), 1);
  774. if (!atom)
  775. die("Non memory");
  776. if (sched_out_state(switch_event) == 'R') {
  777. atom->state = THREAD_WAIT_CPU;
  778. atom->wake_up_time = timestamp;
  779. }
  780. atom->runtime = delta;
  781. list_add_tail(&atom->list, &atoms->atom_list);
  782. }
  783. static void
  784. lat_sched_in(struct task_atoms *atoms, u64 timestamp)
  785. {
  786. struct work_atom *atom;
  787. u64 delta;
  788. if (list_empty(&atoms->atom_list))
  789. return;
  790. atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
  791. if (atom->state != THREAD_WAIT_CPU)
  792. return;
  793. if (timestamp < atom->wake_up_time) {
  794. atom->state = THREAD_IGNORE;
  795. return;
  796. }
  797. atom->state = THREAD_SCHED_IN;
  798. atom->sched_in_time = timestamp;
  799. delta = atom->sched_in_time - atom->wake_up_time;
  800. atoms->total_lat += delta;
  801. if (delta > atoms->max_lat)
  802. atoms->max_lat = delta;
  803. atoms->nb_atoms++;
  804. atoms->total_runtime += atom->runtime;
  805. }
  806. static void
  807. latency_switch_event(struct trace_switch_event *switch_event,
  808. struct event *event __used,
  809. int cpu,
  810. u64 timestamp,
  811. struct thread *thread __used)
  812. {
  813. struct task_atoms *out_atoms, *in_atoms;
  814. struct thread *sched_out, *sched_in;
  815. u64 timestamp0;
  816. s64 delta;
  817. if (cpu >= MAX_CPUS || cpu < 0)
  818. return;
  819. timestamp0 = cpu_last_switched[cpu];
  820. cpu_last_switched[cpu] = timestamp;
  821. if (timestamp0)
  822. delta = timestamp - timestamp0;
  823. else
  824. delta = 0;
  825. if (delta < 0)
  826. die("hm, delta: %Ld < 0 ?\n", delta);
  827. sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
  828. sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
  829. in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  830. if (!in_atoms) {
  831. thread_atoms_insert(sched_in);
  832. in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  833. if (!in_atoms)
  834. die("in-atom: Internal tree error");
  835. }
  836. out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  837. if (!out_atoms) {
  838. thread_atoms_insert(sched_out);
  839. out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  840. if (!out_atoms)
  841. die("out-atom: Internal tree error");
  842. }
  843. lat_sched_in(in_atoms, timestamp);
  844. lat_sched_out(out_atoms, switch_event, delta, timestamp);
  845. }
  846. static void
  847. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  848. struct event *event __used,
  849. int cpu __used,
  850. u64 timestamp,
  851. struct thread *thread __used)
  852. {
  853. struct task_atoms *atoms;
  854. struct work_atom *atom;
  855. struct thread *wakee;
  856. /* Note for later, it may be interesting to observe the failing cases */
  857. if (!wakeup_event->success)
  858. return;
  859. wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
  860. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  861. if (!atoms) {
  862. thread_atoms_insert(wakee);
  863. return;
  864. }
  865. if (list_empty(&atoms->atom_list))
  866. return;
  867. atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
  868. if (atom->state != THREAD_SLEEPING)
  869. return;
  870. atom->state = THREAD_WAIT_CPU;
  871. atom->wake_up_time = timestamp;
  872. }
  873. static struct trace_sched_handler lat_ops = {
  874. .wakeup_event = latency_wakeup_event,
  875. .switch_event = latency_switch_event,
  876. .fork_event = latency_fork_event,
  877. };
  878. static void output_lat_thread(struct task_atoms *atom_list)
  879. {
  880. int i;
  881. int ret;
  882. u64 avg;
  883. if (!atom_list->nb_atoms)
  884. return;
  885. all_runtime += atom_list->total_runtime;
  886. all_count += atom_list->nb_atoms;
  887. ret = printf(" %s ", atom_list->thread->comm);
  888. for (i = 0; i < 19 - ret; i++)
  889. printf(" ");
  890. avg = atom_list->total_lat / atom_list->nb_atoms;
  891. printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
  892. (double)atom_list->total_runtime / 1e6,
  893. atom_list->nb_atoms, (double)avg / 1e6,
  894. (double)atom_list->max_lat / 1e6);
  895. }
  896. static int pid_cmp(struct task_atoms *l, struct task_atoms *r)
  897. {
  898. if (l->thread->pid < r->thread->pid)
  899. return -1;
  900. if (l->thread->pid > r->thread->pid)
  901. return 1;
  902. return 0;
  903. }
  904. static struct sort_dimension pid_sort_dimension = {
  905. .name = "pid",
  906. .cmp = pid_cmp,
  907. };
  908. static int avg_cmp(struct task_atoms *l, struct task_atoms *r)
  909. {
  910. u64 avgl, avgr;
  911. if (!l->nb_atoms)
  912. return -1;
  913. if (!r->nb_atoms)
  914. return 1;
  915. avgl = l->total_lat / l->nb_atoms;
  916. avgr = r->total_lat / r->nb_atoms;
  917. if (avgl < avgr)
  918. return -1;
  919. if (avgl > avgr)
  920. return 1;
  921. return 0;
  922. }
  923. static struct sort_dimension avg_sort_dimension = {
  924. .name = "avg",
  925. .cmp = avg_cmp,
  926. };
  927. static int max_cmp(struct task_atoms *l, struct task_atoms *r)
  928. {
  929. if (l->max_lat < r->max_lat)
  930. return -1;
  931. if (l->max_lat > r->max_lat)
  932. return 1;
  933. return 0;
  934. }
  935. static struct sort_dimension max_sort_dimension = {
  936. .name = "max",
  937. .cmp = max_cmp,
  938. };
  939. static int switch_cmp(struct task_atoms *l, struct task_atoms *r)
  940. {
  941. if (l->nb_atoms < r->nb_atoms)
  942. return -1;
  943. if (l->nb_atoms > r->nb_atoms)
  944. return 1;
  945. return 0;
  946. }
  947. static struct sort_dimension switch_sort_dimension = {
  948. .name = "switch",
  949. .cmp = switch_cmp,
  950. };
  951. static int runtime_cmp(struct task_atoms *l, struct task_atoms *r)
  952. {
  953. if (l->total_runtime < r->total_runtime)
  954. return -1;
  955. if (l->total_runtime > r->total_runtime)
  956. return 1;
  957. return 0;
  958. }
  959. static struct sort_dimension runtime_sort_dimension = {
  960. .name = "runtime",
  961. .cmp = runtime_cmp,
  962. };
  963. static struct sort_dimension *available_sorts[] = {
  964. &pid_sort_dimension,
  965. &avg_sort_dimension,
  966. &max_sort_dimension,
  967. &switch_sort_dimension,
  968. &runtime_sort_dimension,
  969. };
  970. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  971. static LIST_HEAD(sort_list);
  972. static int sort_dimension__add(char *tok, struct list_head *list)
  973. {
  974. int i;
  975. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  976. if (!strcmp(available_sorts[i]->name, tok)) {
  977. list_add_tail(&available_sorts[i]->list, list);
  978. return 0;
  979. }
  980. }
  981. return -1;
  982. }
  983. static void setup_sorting(void);
  984. static void sort_lat(void)
  985. {
  986. struct rb_node *node;
  987. for (;;) {
  988. struct task_atoms *data;
  989. node = rb_first(&atom_root);
  990. if (!node)
  991. break;
  992. rb_erase(node, &atom_root);
  993. data = rb_entry(node, struct task_atoms, node);
  994. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  995. }
  996. }
  997. static void __cmd_lat(void)
  998. {
  999. struct rb_node *next;
  1000. setup_pager();
  1001. read_events();
  1002. sort_lat();
  1003. printf("-----------------------------------------------------------------------------------\n");
  1004. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
  1005. printf("-----------------------------------------------------------------------------------\n");
  1006. next = rb_first(&sorted_atom_root);
  1007. while (next) {
  1008. struct task_atoms *atom_list;
  1009. atom_list = rb_entry(next, struct task_atoms, node);
  1010. output_lat_thread(atom_list);
  1011. next = rb_next(next);
  1012. }
  1013. printf("-----------------------------------------------------------------------------------\n");
  1014. printf(" TOTAL: |%9.3f ms |%9Ld |\n",
  1015. (double)all_runtime/1e6, all_count);
  1016. printf("---------------------------------------------\n");
  1017. }
  1018. static struct trace_sched_handler *trace_handler;
  1019. static void
  1020. process_sched_wakeup_event(struct raw_event_sample *raw,
  1021. struct event *event,
  1022. int cpu __used,
  1023. u64 timestamp __used,
  1024. struct thread *thread __used)
  1025. {
  1026. struct trace_wakeup_event wakeup_event;
  1027. FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
  1028. FILL_ARRAY(wakeup_event, comm, event, raw->data);
  1029. FILL_FIELD(wakeup_event, pid, event, raw->data);
  1030. FILL_FIELD(wakeup_event, prio, event, raw->data);
  1031. FILL_FIELD(wakeup_event, success, event, raw->data);
  1032. FILL_FIELD(wakeup_event, cpu, event, raw->data);
  1033. trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
  1034. }
  1035. static void
  1036. process_sched_switch_event(struct raw_event_sample *raw,
  1037. struct event *event,
  1038. int cpu __used,
  1039. u64 timestamp __used,
  1040. struct thread *thread __used)
  1041. {
  1042. struct trace_switch_event switch_event;
  1043. FILL_COMMON_FIELDS(switch_event, event, raw->data);
  1044. FILL_ARRAY(switch_event, prev_comm, event, raw->data);
  1045. FILL_FIELD(switch_event, prev_pid, event, raw->data);
  1046. FILL_FIELD(switch_event, prev_prio, event, raw->data);
  1047. FILL_FIELD(switch_event, prev_state, event, raw->data);
  1048. FILL_ARRAY(switch_event, next_comm, event, raw->data);
  1049. FILL_FIELD(switch_event, next_pid, event, raw->data);
  1050. FILL_FIELD(switch_event, next_prio, event, raw->data);
  1051. trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
  1052. }
  1053. static void
  1054. process_sched_fork_event(struct raw_event_sample *raw,
  1055. struct event *event,
  1056. int cpu __used,
  1057. u64 timestamp __used,
  1058. struct thread *thread __used)
  1059. {
  1060. struct trace_fork_event fork_event;
  1061. FILL_COMMON_FIELDS(fork_event, event, raw->data);
  1062. FILL_ARRAY(fork_event, parent_comm, event, raw->data);
  1063. FILL_FIELD(fork_event, parent_pid, event, raw->data);
  1064. FILL_ARRAY(fork_event, child_comm, event, raw->data);
  1065. FILL_FIELD(fork_event, child_pid, event, raw->data);
  1066. trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
  1067. }
  1068. static void
  1069. process_sched_exit_event(struct event *event,
  1070. int cpu __used,
  1071. u64 timestamp __used,
  1072. struct thread *thread __used)
  1073. {
  1074. if (verbose)
  1075. printf("sched_exit event %p\n", event);
  1076. }
  1077. static void
  1078. process_raw_event(event_t *raw_event __used, void *more_data,
  1079. int cpu, u64 timestamp, struct thread *thread)
  1080. {
  1081. struct raw_event_sample *raw = more_data;
  1082. struct event *event;
  1083. int type;
  1084. type = trace_parse_common_type(raw->data);
  1085. event = trace_find_event(type);
  1086. if (!strcmp(event->name, "sched_switch"))
  1087. process_sched_switch_event(raw, event, cpu, timestamp, thread);
  1088. if (!strcmp(event->name, "sched_wakeup"))
  1089. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  1090. if (!strcmp(event->name, "sched_wakeup_new"))
  1091. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  1092. if (!strcmp(event->name, "sched_process_fork"))
  1093. process_sched_fork_event(raw, event, cpu, timestamp, thread);
  1094. if (!strcmp(event->name, "sched_process_exit"))
  1095. process_sched_exit_event(event, cpu, timestamp, thread);
  1096. }
  1097. static int
  1098. process_sample_event(event_t *event, unsigned long offset, unsigned long head)
  1099. {
  1100. char level;
  1101. int show = 0;
  1102. struct dso *dso = NULL;
  1103. struct thread *thread;
  1104. u64 ip = event->ip.ip;
  1105. u64 timestamp = -1;
  1106. u32 cpu = -1;
  1107. u64 period = 1;
  1108. void *more_data = event->ip.__more_data;
  1109. int cpumode;
  1110. thread = threads__findnew(event->ip.pid, &threads, &last_match);
  1111. if (sample_type & PERF_SAMPLE_TIME) {
  1112. timestamp = *(u64 *)more_data;
  1113. more_data += sizeof(u64);
  1114. }
  1115. if (sample_type & PERF_SAMPLE_CPU) {
  1116. cpu = *(u32 *)more_data;
  1117. more_data += sizeof(u32);
  1118. more_data += sizeof(u32); /* reserved */
  1119. }
  1120. if (sample_type & PERF_SAMPLE_PERIOD) {
  1121. period = *(u64 *)more_data;
  1122. more_data += sizeof(u64);
  1123. }
  1124. dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
  1125. (void *)(offset + head),
  1126. (void *)(long)(event->header.size),
  1127. event->header.misc,
  1128. event->ip.pid, event->ip.tid,
  1129. (void *)(long)ip,
  1130. (long long)period);
  1131. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1132. if (thread == NULL) {
  1133. eprintf("problem processing %d event, skipping it.\n",
  1134. event->header.type);
  1135. return -1;
  1136. }
  1137. cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
  1138. if (cpumode == PERF_EVENT_MISC_KERNEL) {
  1139. show = SHOW_KERNEL;
  1140. level = 'k';
  1141. dso = kernel_dso;
  1142. dump_printf(" ...... dso: %s\n", dso->name);
  1143. } else if (cpumode == PERF_EVENT_MISC_USER) {
  1144. show = SHOW_USER;
  1145. level = '.';
  1146. } else {
  1147. show = SHOW_HV;
  1148. level = 'H';
  1149. dso = hypervisor_dso;
  1150. dump_printf(" ...... dso: [hypervisor]\n");
  1151. }
  1152. if (sample_type & PERF_SAMPLE_RAW)
  1153. process_raw_event(event, more_data, cpu, timestamp, thread);
  1154. return 0;
  1155. }
  1156. static int
  1157. process_event(event_t *event, unsigned long offset, unsigned long head)
  1158. {
  1159. trace_event(event);
  1160. switch (event->header.type) {
  1161. case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
  1162. return 0;
  1163. case PERF_EVENT_COMM:
  1164. return process_comm_event(event, offset, head);
  1165. case PERF_EVENT_EXIT ... PERF_EVENT_READ:
  1166. return 0;
  1167. case PERF_EVENT_SAMPLE:
  1168. return process_sample_event(event, offset, head);
  1169. case PERF_EVENT_MAX:
  1170. default:
  1171. return -1;
  1172. }
  1173. return 0;
  1174. }
  1175. static int read_events(void)
  1176. {
  1177. int ret, rc = EXIT_FAILURE;
  1178. unsigned long offset = 0;
  1179. unsigned long head = 0;
  1180. struct stat perf_stat;
  1181. event_t *event;
  1182. uint32_t size;
  1183. char *buf;
  1184. trace_report();
  1185. register_idle_thread(&threads, &last_match);
  1186. input = open(input_name, O_RDONLY);
  1187. if (input < 0) {
  1188. perror("failed to open file");
  1189. exit(-1);
  1190. }
  1191. ret = fstat(input, &perf_stat);
  1192. if (ret < 0) {
  1193. perror("failed to stat file");
  1194. exit(-1);
  1195. }
  1196. if (!perf_stat.st_size) {
  1197. fprintf(stderr, "zero-sized file, nothing to do!\n");
  1198. exit(0);
  1199. }
  1200. header = perf_header__read(input);
  1201. head = header->data_offset;
  1202. sample_type = perf_header__sample_type(header);
  1203. if (!(sample_type & PERF_SAMPLE_RAW))
  1204. die("No trace sample to read. Did you call perf record "
  1205. "without -R?");
  1206. if (load_kernel() < 0) {
  1207. perror("failed to load kernel symbols");
  1208. return EXIT_FAILURE;
  1209. }
  1210. remap:
  1211. buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
  1212. MAP_SHARED, input, offset);
  1213. if (buf == MAP_FAILED) {
  1214. perror("failed to mmap file");
  1215. exit(-1);
  1216. }
  1217. more:
  1218. event = (event_t *)(buf + head);
  1219. size = event->header.size;
  1220. if (!size)
  1221. size = 8;
  1222. if (head + event->header.size >= page_size * mmap_window) {
  1223. unsigned long shift = page_size * (head / page_size);
  1224. int res;
  1225. res = munmap(buf, page_size * mmap_window);
  1226. assert(res == 0);
  1227. offset += shift;
  1228. head -= shift;
  1229. goto remap;
  1230. }
  1231. size = event->header.size;
  1232. if (!size || process_event(event, offset, head) < 0) {
  1233. /*
  1234. * assume we lost track of the stream, check alignment, and
  1235. * increment a single u64 in the hope to catch on again 'soon'.
  1236. */
  1237. if (unlikely(head & 7))
  1238. head &= ~7ULL;
  1239. size = 8;
  1240. }
  1241. head += size;
  1242. if (offset + head < (unsigned long)perf_stat.st_size)
  1243. goto more;
  1244. rc = EXIT_SUCCESS;
  1245. close(input);
  1246. return rc;
  1247. }
  1248. static const char * const sched_usage[] = {
  1249. "perf sched [<options>] {record|latency|replay}",
  1250. NULL
  1251. };
  1252. static const struct option sched_options[] = {
  1253. OPT_BOOLEAN('v', "verbose", &verbose,
  1254. "be more verbose (show symbol address, etc)"),
  1255. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1256. "dump raw trace in ASCII"),
  1257. OPT_END()
  1258. };
  1259. static const char * const latency_usage[] = {
  1260. "perf sched latency [<options>]",
  1261. NULL
  1262. };
  1263. static const struct option latency_options[] = {
  1264. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1265. "sort by key(s): runtime, switch, avg, max"),
  1266. OPT_BOOLEAN('v', "verbose", &verbose,
  1267. "be more verbose (show symbol address, etc)"),
  1268. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1269. "dump raw trace in ASCII"),
  1270. OPT_END()
  1271. };
  1272. static const char * const replay_usage[] = {
  1273. "perf sched replay [<options>]",
  1274. NULL
  1275. };
  1276. static const struct option replay_options[] = {
  1277. OPT_INTEGER('r', "repeat", &replay_repeat,
  1278. "repeat the workload replay N times (-1: infinite)"),
  1279. OPT_BOOLEAN('v', "verbose", &verbose,
  1280. "be more verbose (show symbol address, etc)"),
  1281. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1282. "dump raw trace in ASCII"),
  1283. OPT_END()
  1284. };
  1285. static void setup_sorting(void)
  1286. {
  1287. char *tmp, *tok, *str = strdup(sort_order);
  1288. for (tok = strtok_r(str, ", ", &tmp);
  1289. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1290. if (sort_dimension__add(tok, &sort_list) < 0) {
  1291. error("Unknown --sort key: `%s'", tok);
  1292. usage_with_options(latency_usage, latency_options);
  1293. }
  1294. }
  1295. free(str);
  1296. sort_dimension__add((char *)"pid", &cmp_pid);
  1297. }
  1298. static const char *record_args[] = {
  1299. "record",
  1300. "-a",
  1301. "-R",
  1302. "-c", "1",
  1303. "-e", "sched:sched_switch:r",
  1304. "-e", "sched:sched_stat_wait:r",
  1305. "-e", "sched:sched_stat_sleep:r",
  1306. "-e", "sched:sched_stat_iowait:r",
  1307. "-e", "sched:sched_process_exit:r",
  1308. "-e", "sched:sched_process_fork:r",
  1309. "-e", "sched:sched_wakeup:r",
  1310. "-e", "sched:sched_migrate_task:r",
  1311. };
  1312. static int __cmd_record(int argc, const char **argv)
  1313. {
  1314. unsigned int rec_argc, i, j;
  1315. const char **rec_argv;
  1316. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1317. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1318. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1319. rec_argv[i] = strdup(record_args[i]);
  1320. for (j = 1; j < (unsigned int)argc; j++, i++)
  1321. rec_argv[i] = argv[j];
  1322. BUG_ON(i != rec_argc);
  1323. return cmd_record(i, rec_argv, NULL);
  1324. }
  1325. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1326. {
  1327. symbol__init();
  1328. page_size = getpagesize();
  1329. argc = parse_options(argc, argv, sched_options, sched_usage,
  1330. PARSE_OPT_STOP_AT_NON_OPTION);
  1331. if (!argc)
  1332. usage_with_options(sched_usage, sched_options);
  1333. if (!strncmp(argv[0], "rec", 3)) {
  1334. return __cmd_record(argc, argv);
  1335. } else if (!strncmp(argv[0], "lat", 3)) {
  1336. trace_handler = &lat_ops;
  1337. if (argc > 1) {
  1338. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1339. if (argc)
  1340. usage_with_options(latency_usage, latency_options);
  1341. }
  1342. setup_sorting();
  1343. __cmd_lat();
  1344. } else if (!strncmp(argv[0], "rep", 3)) {
  1345. trace_handler = &replay_ops;
  1346. if (argc) {
  1347. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1348. if (argc)
  1349. usage_with_options(replay_usage, replay_options);
  1350. }
  1351. __cmd_replay();
  1352. } else {
  1353. usage_with_options(sched_usage, sched_options);
  1354. }
  1355. return 0;
  1356. }