mmu.h 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. /*
  2. * PowerPC memory management structures
  3. *
  4. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  5. * PPC64 rework.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _PPC64_MMU_H_
  13. #define _PPC64_MMU_H_
  14. #include <linux/config.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x9
  26. #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
  27. #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
  28. /*
  29. * SLB
  30. */
  31. #define SLB_NUM_BOLTED 3
  32. #define SLB_CACHE_ENTRIES 8
  33. /* Bits in the SLB ESID word */
  34. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  35. /* Bits in the SLB VSID word */
  36. #define SLB_VSID_SHIFT 12
  37. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  38. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  39. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  40. #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage 16M */
  41. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  42. #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
  43. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
  44. /*
  45. * Hash table
  46. */
  47. #define HPTES_PER_GROUP 8
  48. /* Values for PP (assumes Ks=0, Kp=1) */
  49. /* pp0 will always be 0 for linux */
  50. #define PP_RWXX 0 /* Supervisor read/write, User none */
  51. #define PP_RWRX 1 /* Supervisor read/write, User read */
  52. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  53. #define PP_RXRX 3 /* Supervisor read, User read */
  54. #ifndef __ASSEMBLY__
  55. /* Hardware Page Table Entry */
  56. typedef struct {
  57. unsigned long avpn:57; /* vsid | api == avpn */
  58. unsigned long : 2; /* Software use */
  59. unsigned long bolted: 1; /* HPTE is "bolted" */
  60. unsigned long lock: 1; /* lock on pSeries SMP */
  61. unsigned long l: 1; /* Virtual page is large (L=1) or 4 KB (L=0) */
  62. unsigned long h: 1; /* Hash function identifier */
  63. unsigned long v: 1; /* Valid (v=1) or invalid (v=0) */
  64. } Hpte_dword0;
  65. typedef struct {
  66. unsigned long pp0: 1; /* Page protection bit 0 */
  67. unsigned long ts: 1; /* Tag set bit */
  68. unsigned long rpn: 50; /* Real page number */
  69. unsigned long : 2; /* Reserved */
  70. unsigned long ac: 1; /* Address compare */
  71. unsigned long r: 1; /* Referenced */
  72. unsigned long c: 1; /* Changed */
  73. unsigned long w: 1; /* Write-thru cache mode */
  74. unsigned long i: 1; /* Cache inhibited */
  75. unsigned long m: 1; /* Memory coherence required */
  76. unsigned long g: 1; /* Guarded */
  77. unsigned long n: 1; /* No-execute */
  78. unsigned long pp: 2; /* Page protection bits 1:2 */
  79. } Hpte_dword1;
  80. typedef struct {
  81. char padding[6]; /* padding */
  82. unsigned long : 6; /* padding */
  83. unsigned long flags: 10; /* HPTE flags */
  84. } Hpte_dword1_flags;
  85. typedef struct {
  86. union {
  87. unsigned long dword0;
  88. Hpte_dword0 dw0;
  89. } dw0;
  90. union {
  91. unsigned long dword1;
  92. Hpte_dword1 dw1;
  93. Hpte_dword1_flags flags;
  94. } dw1;
  95. } HPTE;
  96. extern HPTE * htab_address;
  97. extern unsigned long htab_hash_mask;
  98. static inline unsigned long hpt_hash(unsigned long vpn, int large)
  99. {
  100. unsigned long vsid;
  101. unsigned long page;
  102. if (large) {
  103. vsid = vpn >> 4;
  104. page = vpn & 0xf;
  105. } else {
  106. vsid = vpn >> 16;
  107. page = vpn & 0xffff;
  108. }
  109. return (vsid & 0x7fffffffffUL) ^ page;
  110. }
  111. static inline void __tlbie(unsigned long va, int large)
  112. {
  113. /* clear top 16 bits, non SLS segment */
  114. va &= ~(0xffffULL << 48);
  115. if (large) {
  116. va &= HPAGE_MASK;
  117. asm volatile("tlbie %0,1" : : "r"(va) : "memory");
  118. } else {
  119. va &= PAGE_MASK;
  120. asm volatile("tlbie %0,0" : : "r"(va) : "memory");
  121. }
  122. }
  123. static inline void tlbie(unsigned long va, int large)
  124. {
  125. asm volatile("ptesync": : :"memory");
  126. __tlbie(va, large);
  127. asm volatile("eieio; tlbsync; ptesync": : :"memory");
  128. }
  129. static inline void __tlbiel(unsigned long va)
  130. {
  131. /* clear top 16 bits, non SLS segment */
  132. va &= ~(0xffffULL << 48);
  133. va &= PAGE_MASK;
  134. /*
  135. * Thanks to Alan Modra we are now able to use machine specific
  136. * assembly instructions (like tlbiel) by using the gas -many flag.
  137. * However we have to support older toolchains so for the moment
  138. * we hardwire it.
  139. */
  140. #if 0
  141. asm volatile("tlbiel %0" : : "r"(va) : "memory");
  142. #else
  143. asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
  144. #endif
  145. }
  146. static inline void tlbiel(unsigned long va)
  147. {
  148. asm volatile("ptesync": : :"memory");
  149. __tlbiel(va);
  150. asm volatile("ptesync": : :"memory");
  151. }
  152. /*
  153. * Handle a fault by adding an HPTE. If the address can't be determined
  154. * to be valid via Linux page tables, return 1. If handled return 0
  155. */
  156. extern int __hash_page(unsigned long ea, unsigned long access,
  157. unsigned long vsid, pte_t *ptep, unsigned long trap,
  158. int local);
  159. extern void htab_finish_init(void);
  160. extern void hpte_init_native(void);
  161. extern void hpte_init_lpar(void);
  162. extern void hpte_init_iSeries(void);
  163. extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
  164. unsigned long va, unsigned long prpn,
  165. int secondary, unsigned long hpteflags,
  166. int bolted, int large);
  167. extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
  168. unsigned long prpn, int secondary,
  169. unsigned long hpteflags, int bolted, int large);
  170. #endif /* __ASSEMBLY__ */
  171. /*
  172. * VSID allocation
  173. *
  174. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  175. * is equal to the ESID, for user addresses it is:
  176. * (context << 15) | (esid & 0x7fff)
  177. *
  178. * The two forms are distinguishable because the top bit is 0 for user
  179. * addresses, whereas the top two bits are 1 for kernel addresses.
  180. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  181. * now.
  182. *
  183. * The proto-VSIDs are then scrambled into real VSIDs with the
  184. * multiplicative hash:
  185. *
  186. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  187. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  188. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  189. *
  190. * This scramble is only well defined for proto-VSIDs below
  191. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  192. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  193. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  194. * Because the modulus is 2^n-1 we can compute it efficiently without
  195. * a divide or extra multiply (see below).
  196. *
  197. * This scheme has several advantages over older methods:
  198. *
  199. * - We have VSIDs allocated for every kernel address
  200. * (i.e. everything above 0xC000000000000000), except the very top
  201. * segment, which simplifies several things.
  202. *
  203. * - We allow for 15 significant bits of ESID and 20 bits of
  204. * context for user addresses. i.e. 8T (43 bits) of address space for
  205. * up to 1M contexts (although the page table structure and context
  206. * allocation will need changes to take advantage of this).
  207. *
  208. * - The scramble function gives robust scattering in the hash
  209. * table (at least based on some initial results). The previous
  210. * method was more susceptible to pathological cases giving excessive
  211. * hash collisions.
  212. */
  213. /*
  214. * WARNING - If you change these you must make sure the asm
  215. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  216. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  217. *
  218. * You'll also need to change the precomputed VSID values in head.S
  219. * which are used by the iSeries firmware.
  220. */
  221. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  222. #define VSID_BITS 36
  223. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  224. #define CONTEXT_BITS 20
  225. #define USER_ESID_BITS 15
  226. /*
  227. * This macro generates asm code to compute the VSID scramble
  228. * function. Used in slb_allocate() and do_stab_bolted. The function
  229. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  230. *
  231. * rt = register continaing the proto-VSID and into which the
  232. * VSID will be stored
  233. * rx = scratch register (clobbered)
  234. *
  235. * - rt and rx must be different registers
  236. * - The answer will end up in the low 36 bits of rt. The higher
  237. * bits may contain other garbage, so you may need to mask the
  238. * result.
  239. */
  240. #define ASM_VSID_SCRAMBLE(rt, rx) \
  241. lis rx,VSID_MULTIPLIER@h; \
  242. ori rx,rx,VSID_MULTIPLIER@l; \
  243. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  244. \
  245. srdi rx,rt,VSID_BITS; \
  246. clrldi rt,rt,(64-VSID_BITS); \
  247. add rt,rt,rx; /* add high and low bits */ \
  248. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  249. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  250. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  251. * the bit clear, r3 already has the answer we want, if it \
  252. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  253. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  254. addi rx,rt,1; \
  255. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  256. add rt,rt,rx
  257. #ifndef __ASSEMBLY__
  258. typedef unsigned long mm_context_id_t;
  259. typedef struct {
  260. mm_context_id_t id;
  261. #ifdef CONFIG_HUGETLB_PAGE
  262. pgd_t *huge_pgdir;
  263. u16 htlb_segs; /* bitmask */
  264. #endif
  265. } mm_context_t;
  266. static inline unsigned long vsid_scramble(unsigned long protovsid)
  267. {
  268. #if 0
  269. /* The code below is equivalent to this function for arguments
  270. * < 2^VSID_BITS, which is all this should ever be called
  271. * with. However gcc is not clever enough to compute the
  272. * modulus (2^n-1) without a second multiply. */
  273. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  274. #else /* 1 */
  275. unsigned long x;
  276. x = protovsid * VSID_MULTIPLIER;
  277. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  278. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  279. #endif /* 1 */
  280. }
  281. /* This is only valid for addresses >= KERNELBASE */
  282. static inline unsigned long get_kernel_vsid(unsigned long ea)
  283. {
  284. return vsid_scramble(ea >> SID_SHIFT);
  285. }
  286. /* This is only valid for user addresses (which are below 2^41) */
  287. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  288. {
  289. return vsid_scramble((context << USER_ESID_BITS)
  290. | (ea >> SID_SHIFT));
  291. }
  292. #endif /* __ASSEMBLY */
  293. #endif /* _PPC64_MMU_H_ */