slub.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. /*
  140. * Currently fastpath is not supported if preemption is enabled.
  141. */
  142. #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
  143. #define SLUB_FASTPATH
  144. #endif
  145. #if PAGE_SHIFT <= 12
  146. /*
  147. * Small page size. Make sure that we do not fragment memory
  148. */
  149. #define DEFAULT_MAX_ORDER 1
  150. #define DEFAULT_MIN_OBJECTS 4
  151. #else
  152. /*
  153. * Large page machines are customarily able to handle larger
  154. * page orders.
  155. */
  156. #define DEFAULT_MAX_ORDER 2
  157. #define DEFAULT_MIN_OBJECTS 8
  158. #endif
  159. /*
  160. * Mininum number of partial slabs. These will be left on the partial
  161. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  162. */
  163. #define MIN_PARTIAL 5
  164. /*
  165. * Maximum number of desirable partial slabs.
  166. * The existence of more partial slabs makes kmem_cache_shrink
  167. * sort the partial list by the number of objects in the.
  168. */
  169. #define MAX_PARTIAL 10
  170. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  171. SLAB_POISON | SLAB_STORE_USER)
  172. /*
  173. * Set of flags that will prevent slab merging
  174. */
  175. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  176. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  177. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  178. SLAB_CACHE_DMA)
  179. #ifndef ARCH_KMALLOC_MINALIGN
  180. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  181. #endif
  182. #ifndef ARCH_SLAB_MINALIGN
  183. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  184. #endif
  185. /* Internal SLUB flags */
  186. #define __OBJECT_POISON 0x80000000 /* Poison object */
  187. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  188. /* Not all arches define cache_line_size */
  189. #ifndef cache_line_size
  190. #define cache_line_size() L1_CACHE_BYTES
  191. #endif
  192. static int kmem_size = sizeof(struct kmem_cache);
  193. #ifdef CONFIG_SMP
  194. static struct notifier_block slab_notifier;
  195. #endif
  196. static enum {
  197. DOWN, /* No slab functionality available */
  198. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  199. UP, /* Everything works but does not show up in sysfs */
  200. SYSFS /* Sysfs up */
  201. } slab_state = DOWN;
  202. /* A list of all slab caches on the system */
  203. static DECLARE_RWSEM(slub_lock);
  204. static LIST_HEAD(slab_caches);
  205. /*
  206. * Tracking user of a slab.
  207. */
  208. struct track {
  209. void *addr; /* Called from address */
  210. int cpu; /* Was running on cpu */
  211. int pid; /* Pid context */
  212. unsigned long when; /* When did the operation occur */
  213. };
  214. enum track_item { TRACK_ALLOC, TRACK_FREE };
  215. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  216. static int sysfs_slab_add(struct kmem_cache *);
  217. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  218. static void sysfs_slab_remove(struct kmem_cache *);
  219. #else
  220. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  221. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  222. { return 0; }
  223. static inline void sysfs_slab_remove(struct kmem_cache *s)
  224. {
  225. kfree(s);
  226. }
  227. #endif
  228. /********************************************************************
  229. * Core slab cache functions
  230. *******************************************************************/
  231. int slab_is_available(void)
  232. {
  233. return slab_state >= UP;
  234. }
  235. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  236. {
  237. #ifdef CONFIG_NUMA
  238. return s->node[node];
  239. #else
  240. return &s->local_node;
  241. #endif
  242. }
  243. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  244. {
  245. #ifdef CONFIG_SMP
  246. return s->cpu_slab[cpu];
  247. #else
  248. return &s->cpu_slab;
  249. #endif
  250. }
  251. /*
  252. * The end pointer in a slab is special. It points to the first object in the
  253. * slab but has bit 0 set to mark it.
  254. *
  255. * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
  256. * in the mapping set.
  257. */
  258. static inline int is_end(void *addr)
  259. {
  260. return (unsigned long)addr & PAGE_MAPPING_ANON;
  261. }
  262. void *slab_address(struct page *page)
  263. {
  264. return page->end - PAGE_MAPPING_ANON;
  265. }
  266. static inline int check_valid_pointer(struct kmem_cache *s,
  267. struct page *page, const void *object)
  268. {
  269. void *base;
  270. if (object == page->end)
  271. return 1;
  272. base = slab_address(page);
  273. if (object < base || object >= base + s->objects * s->size ||
  274. (object - base) % s->size) {
  275. return 0;
  276. }
  277. return 1;
  278. }
  279. /*
  280. * Slow version of get and set free pointer.
  281. *
  282. * This version requires touching the cache lines of kmem_cache which
  283. * we avoid to do in the fast alloc free paths. There we obtain the offset
  284. * from the page struct.
  285. */
  286. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  287. {
  288. return *(void **)(object + s->offset);
  289. }
  290. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  291. {
  292. *(void **)(object + s->offset) = fp;
  293. }
  294. /* Loop over all objects in a slab */
  295. #define for_each_object(__p, __s, __addr) \
  296. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  297. __p += (__s)->size)
  298. /* Scan freelist */
  299. #define for_each_free_object(__p, __s, __free) \
  300. for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
  301. __p))
  302. /* Determine object index from a given position */
  303. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  304. {
  305. return (p - addr) / s->size;
  306. }
  307. #ifdef CONFIG_SLUB_DEBUG
  308. /*
  309. * Debug settings:
  310. */
  311. #ifdef CONFIG_SLUB_DEBUG_ON
  312. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  313. #else
  314. static int slub_debug;
  315. #endif
  316. static char *slub_debug_slabs;
  317. /*
  318. * Object debugging
  319. */
  320. static void print_section(char *text, u8 *addr, unsigned int length)
  321. {
  322. int i, offset;
  323. int newline = 1;
  324. char ascii[17];
  325. ascii[16] = 0;
  326. for (i = 0; i < length; i++) {
  327. if (newline) {
  328. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  329. newline = 0;
  330. }
  331. printk(KERN_CONT " %02x", addr[i]);
  332. offset = i % 16;
  333. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  334. if (offset == 15) {
  335. printk(KERN_CONT " %s\n", ascii);
  336. newline = 1;
  337. }
  338. }
  339. if (!newline) {
  340. i %= 16;
  341. while (i < 16) {
  342. printk(KERN_CONT " ");
  343. ascii[i] = ' ';
  344. i++;
  345. }
  346. printk(KERN_CONT " %s\n", ascii);
  347. }
  348. }
  349. static struct track *get_track(struct kmem_cache *s, void *object,
  350. enum track_item alloc)
  351. {
  352. struct track *p;
  353. if (s->offset)
  354. p = object + s->offset + sizeof(void *);
  355. else
  356. p = object + s->inuse;
  357. return p + alloc;
  358. }
  359. static void set_track(struct kmem_cache *s, void *object,
  360. enum track_item alloc, void *addr)
  361. {
  362. struct track *p;
  363. if (s->offset)
  364. p = object + s->offset + sizeof(void *);
  365. else
  366. p = object + s->inuse;
  367. p += alloc;
  368. if (addr) {
  369. p->addr = addr;
  370. p->cpu = smp_processor_id();
  371. p->pid = current ? current->pid : -1;
  372. p->when = jiffies;
  373. } else
  374. memset(p, 0, sizeof(struct track));
  375. }
  376. static void init_tracking(struct kmem_cache *s, void *object)
  377. {
  378. if (!(s->flags & SLAB_STORE_USER))
  379. return;
  380. set_track(s, object, TRACK_FREE, NULL);
  381. set_track(s, object, TRACK_ALLOC, NULL);
  382. }
  383. static void print_track(const char *s, struct track *t)
  384. {
  385. if (!t->addr)
  386. return;
  387. printk(KERN_ERR "INFO: %s in ", s);
  388. __print_symbol("%s", (unsigned long)t->addr);
  389. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  390. }
  391. static void print_tracking(struct kmem_cache *s, void *object)
  392. {
  393. if (!(s->flags & SLAB_STORE_USER))
  394. return;
  395. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  396. print_track("Freed", get_track(s, object, TRACK_FREE));
  397. }
  398. static void print_page_info(struct page *page)
  399. {
  400. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  401. page, page->inuse, page->freelist, page->flags);
  402. }
  403. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  404. {
  405. va_list args;
  406. char buf[100];
  407. va_start(args, fmt);
  408. vsnprintf(buf, sizeof(buf), fmt, args);
  409. va_end(args);
  410. printk(KERN_ERR "========================================"
  411. "=====================================\n");
  412. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  413. printk(KERN_ERR "----------------------------------------"
  414. "-------------------------------------\n\n");
  415. }
  416. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  417. {
  418. va_list args;
  419. char buf[100];
  420. va_start(args, fmt);
  421. vsnprintf(buf, sizeof(buf), fmt, args);
  422. va_end(args);
  423. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  424. }
  425. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  426. {
  427. unsigned int off; /* Offset of last byte */
  428. u8 *addr = slab_address(page);
  429. print_tracking(s, p);
  430. print_page_info(page);
  431. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  432. p, p - addr, get_freepointer(s, p));
  433. if (p > addr + 16)
  434. print_section("Bytes b4", p - 16, 16);
  435. print_section("Object", p, min(s->objsize, 128));
  436. if (s->flags & SLAB_RED_ZONE)
  437. print_section("Redzone", p + s->objsize,
  438. s->inuse - s->objsize);
  439. if (s->offset)
  440. off = s->offset + sizeof(void *);
  441. else
  442. off = s->inuse;
  443. if (s->flags & SLAB_STORE_USER)
  444. off += 2 * sizeof(struct track);
  445. if (off != s->size)
  446. /* Beginning of the filler is the free pointer */
  447. print_section("Padding", p + off, s->size - off);
  448. dump_stack();
  449. }
  450. static void object_err(struct kmem_cache *s, struct page *page,
  451. u8 *object, char *reason)
  452. {
  453. slab_bug(s, reason);
  454. print_trailer(s, page, object);
  455. }
  456. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  457. {
  458. va_list args;
  459. char buf[100];
  460. va_start(args, fmt);
  461. vsnprintf(buf, sizeof(buf), fmt, args);
  462. va_end(args);
  463. slab_bug(s, fmt);
  464. print_page_info(page);
  465. dump_stack();
  466. }
  467. static void init_object(struct kmem_cache *s, void *object, int active)
  468. {
  469. u8 *p = object;
  470. if (s->flags & __OBJECT_POISON) {
  471. memset(p, POISON_FREE, s->objsize - 1);
  472. p[s->objsize - 1] = POISON_END;
  473. }
  474. if (s->flags & SLAB_RED_ZONE)
  475. memset(p + s->objsize,
  476. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  477. s->inuse - s->objsize);
  478. }
  479. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  480. {
  481. while (bytes) {
  482. if (*start != (u8)value)
  483. return start;
  484. start++;
  485. bytes--;
  486. }
  487. return NULL;
  488. }
  489. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  490. void *from, void *to)
  491. {
  492. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  493. memset(from, data, to - from);
  494. }
  495. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  496. u8 *object, char *what,
  497. u8 *start, unsigned int value, unsigned int bytes)
  498. {
  499. u8 *fault;
  500. u8 *end;
  501. fault = check_bytes(start, value, bytes);
  502. if (!fault)
  503. return 1;
  504. end = start + bytes;
  505. while (end > fault && end[-1] == value)
  506. end--;
  507. slab_bug(s, "%s overwritten", what);
  508. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  509. fault, end - 1, fault[0], value);
  510. print_trailer(s, page, object);
  511. restore_bytes(s, what, value, fault, end);
  512. return 0;
  513. }
  514. /*
  515. * Object layout:
  516. *
  517. * object address
  518. * Bytes of the object to be managed.
  519. * If the freepointer may overlay the object then the free
  520. * pointer is the first word of the object.
  521. *
  522. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  523. * 0xa5 (POISON_END)
  524. *
  525. * object + s->objsize
  526. * Padding to reach word boundary. This is also used for Redzoning.
  527. * Padding is extended by another word if Redzoning is enabled and
  528. * objsize == inuse.
  529. *
  530. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  531. * 0xcc (RED_ACTIVE) for objects in use.
  532. *
  533. * object + s->inuse
  534. * Meta data starts here.
  535. *
  536. * A. Free pointer (if we cannot overwrite object on free)
  537. * B. Tracking data for SLAB_STORE_USER
  538. * C. Padding to reach required alignment boundary or at mininum
  539. * one word if debuggin is on to be able to detect writes
  540. * before the word boundary.
  541. *
  542. * Padding is done using 0x5a (POISON_INUSE)
  543. *
  544. * object + s->size
  545. * Nothing is used beyond s->size.
  546. *
  547. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  548. * ignored. And therefore no slab options that rely on these boundaries
  549. * may be used with merged slabcaches.
  550. */
  551. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  552. {
  553. unsigned long off = s->inuse; /* The end of info */
  554. if (s->offset)
  555. /* Freepointer is placed after the object. */
  556. off += sizeof(void *);
  557. if (s->flags & SLAB_STORE_USER)
  558. /* We also have user information there */
  559. off += 2 * sizeof(struct track);
  560. if (s->size == off)
  561. return 1;
  562. return check_bytes_and_report(s, page, p, "Object padding",
  563. p + off, POISON_INUSE, s->size - off);
  564. }
  565. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  566. {
  567. u8 *start;
  568. u8 *fault;
  569. u8 *end;
  570. int length;
  571. int remainder;
  572. if (!(s->flags & SLAB_POISON))
  573. return 1;
  574. start = slab_address(page);
  575. end = start + (PAGE_SIZE << s->order);
  576. length = s->objects * s->size;
  577. remainder = end - (start + length);
  578. if (!remainder)
  579. return 1;
  580. fault = check_bytes(start + length, POISON_INUSE, remainder);
  581. if (!fault)
  582. return 1;
  583. while (end > fault && end[-1] == POISON_INUSE)
  584. end--;
  585. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  586. print_section("Padding", start, length);
  587. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  588. return 0;
  589. }
  590. static int check_object(struct kmem_cache *s, struct page *page,
  591. void *object, int active)
  592. {
  593. u8 *p = object;
  594. u8 *endobject = object + s->objsize;
  595. if (s->flags & SLAB_RED_ZONE) {
  596. unsigned int red =
  597. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  598. if (!check_bytes_and_report(s, page, object, "Redzone",
  599. endobject, red, s->inuse - s->objsize))
  600. return 0;
  601. } else {
  602. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  603. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  604. POISON_INUSE, s->inuse - s->objsize);
  605. }
  606. if (s->flags & SLAB_POISON) {
  607. if (!active && (s->flags & __OBJECT_POISON) &&
  608. (!check_bytes_and_report(s, page, p, "Poison", p,
  609. POISON_FREE, s->objsize - 1) ||
  610. !check_bytes_and_report(s, page, p, "Poison",
  611. p + s->objsize - 1, POISON_END, 1)))
  612. return 0;
  613. /*
  614. * check_pad_bytes cleans up on its own.
  615. */
  616. check_pad_bytes(s, page, p);
  617. }
  618. if (!s->offset && active)
  619. /*
  620. * Object and freepointer overlap. Cannot check
  621. * freepointer while object is allocated.
  622. */
  623. return 1;
  624. /* Check free pointer validity */
  625. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  626. object_err(s, page, p, "Freepointer corrupt");
  627. /*
  628. * No choice but to zap it and thus loose the remainder
  629. * of the free objects in this slab. May cause
  630. * another error because the object count is now wrong.
  631. */
  632. set_freepointer(s, p, page->end);
  633. return 0;
  634. }
  635. return 1;
  636. }
  637. static int check_slab(struct kmem_cache *s, struct page *page)
  638. {
  639. VM_BUG_ON(!irqs_disabled());
  640. if (!PageSlab(page)) {
  641. slab_err(s, page, "Not a valid slab page");
  642. return 0;
  643. }
  644. if (page->inuse > s->objects) {
  645. slab_err(s, page, "inuse %u > max %u",
  646. s->name, page->inuse, s->objects);
  647. return 0;
  648. }
  649. /* Slab_pad_check fixes things up after itself */
  650. slab_pad_check(s, page);
  651. return 1;
  652. }
  653. /*
  654. * Determine if a certain object on a page is on the freelist. Must hold the
  655. * slab lock to guarantee that the chains are in a consistent state.
  656. */
  657. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  658. {
  659. int nr = 0;
  660. void *fp = page->freelist;
  661. void *object = NULL;
  662. while (fp != page->end && nr <= s->objects) {
  663. if (fp == search)
  664. return 1;
  665. if (!check_valid_pointer(s, page, fp)) {
  666. if (object) {
  667. object_err(s, page, object,
  668. "Freechain corrupt");
  669. set_freepointer(s, object, page->end);
  670. break;
  671. } else {
  672. slab_err(s, page, "Freepointer corrupt");
  673. page->freelist = page->end;
  674. page->inuse = s->objects;
  675. slab_fix(s, "Freelist cleared");
  676. return 0;
  677. }
  678. break;
  679. }
  680. object = fp;
  681. fp = get_freepointer(s, object);
  682. nr++;
  683. }
  684. if (page->inuse != s->objects - nr) {
  685. slab_err(s, page, "Wrong object count. Counter is %d but "
  686. "counted were %d", page->inuse, s->objects - nr);
  687. page->inuse = s->objects - nr;
  688. slab_fix(s, "Object count adjusted.");
  689. }
  690. return search == NULL;
  691. }
  692. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  693. {
  694. if (s->flags & SLAB_TRACE) {
  695. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  696. s->name,
  697. alloc ? "alloc" : "free",
  698. object, page->inuse,
  699. page->freelist);
  700. if (!alloc)
  701. print_section("Object", (void *)object, s->objsize);
  702. dump_stack();
  703. }
  704. }
  705. /*
  706. * Tracking of fully allocated slabs for debugging purposes.
  707. */
  708. static void add_full(struct kmem_cache_node *n, struct page *page)
  709. {
  710. spin_lock(&n->list_lock);
  711. list_add(&page->lru, &n->full);
  712. spin_unlock(&n->list_lock);
  713. }
  714. static void remove_full(struct kmem_cache *s, struct page *page)
  715. {
  716. struct kmem_cache_node *n;
  717. if (!(s->flags & SLAB_STORE_USER))
  718. return;
  719. n = get_node(s, page_to_nid(page));
  720. spin_lock(&n->list_lock);
  721. list_del(&page->lru);
  722. spin_unlock(&n->list_lock);
  723. }
  724. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  725. void *object)
  726. {
  727. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  728. return;
  729. init_object(s, object, 0);
  730. init_tracking(s, object);
  731. }
  732. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  733. void *object, void *addr)
  734. {
  735. if (!check_slab(s, page))
  736. goto bad;
  737. if (object && !on_freelist(s, page, object)) {
  738. object_err(s, page, object, "Object already allocated");
  739. goto bad;
  740. }
  741. if (!check_valid_pointer(s, page, object)) {
  742. object_err(s, page, object, "Freelist Pointer check fails");
  743. goto bad;
  744. }
  745. if (object && !check_object(s, page, object, 0))
  746. goto bad;
  747. /* Success perform special debug activities for allocs */
  748. if (s->flags & SLAB_STORE_USER)
  749. set_track(s, object, TRACK_ALLOC, addr);
  750. trace(s, page, object, 1);
  751. init_object(s, object, 1);
  752. return 1;
  753. bad:
  754. if (PageSlab(page)) {
  755. /*
  756. * If this is a slab page then lets do the best we can
  757. * to avoid issues in the future. Marking all objects
  758. * as used avoids touching the remaining objects.
  759. */
  760. slab_fix(s, "Marking all objects used");
  761. page->inuse = s->objects;
  762. page->freelist = page->end;
  763. }
  764. return 0;
  765. }
  766. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  767. void *object, void *addr)
  768. {
  769. if (!check_slab(s, page))
  770. goto fail;
  771. if (!check_valid_pointer(s, page, object)) {
  772. slab_err(s, page, "Invalid object pointer 0x%p", object);
  773. goto fail;
  774. }
  775. if (on_freelist(s, page, object)) {
  776. object_err(s, page, object, "Object already free");
  777. goto fail;
  778. }
  779. if (!check_object(s, page, object, 1))
  780. return 0;
  781. if (unlikely(s != page->slab)) {
  782. if (!PageSlab(page))
  783. slab_err(s, page, "Attempt to free object(0x%p) "
  784. "outside of slab", object);
  785. else
  786. if (!page->slab) {
  787. printk(KERN_ERR
  788. "SLUB <none>: no slab for object 0x%p.\n",
  789. object);
  790. dump_stack();
  791. } else
  792. object_err(s, page, object,
  793. "page slab pointer corrupt.");
  794. goto fail;
  795. }
  796. /* Special debug activities for freeing objects */
  797. if (!SlabFrozen(page) && page->freelist == page->end)
  798. remove_full(s, page);
  799. if (s->flags & SLAB_STORE_USER)
  800. set_track(s, object, TRACK_FREE, addr);
  801. trace(s, page, object, 0);
  802. init_object(s, object, 0);
  803. return 1;
  804. fail:
  805. slab_fix(s, "Object at 0x%p not freed", object);
  806. return 0;
  807. }
  808. static int __init setup_slub_debug(char *str)
  809. {
  810. slub_debug = DEBUG_DEFAULT_FLAGS;
  811. if (*str++ != '=' || !*str)
  812. /*
  813. * No options specified. Switch on full debugging.
  814. */
  815. goto out;
  816. if (*str == ',')
  817. /*
  818. * No options but restriction on slabs. This means full
  819. * debugging for slabs matching a pattern.
  820. */
  821. goto check_slabs;
  822. slub_debug = 0;
  823. if (*str == '-')
  824. /*
  825. * Switch off all debugging measures.
  826. */
  827. goto out;
  828. /*
  829. * Determine which debug features should be switched on
  830. */
  831. for (; *str && *str != ','; str++) {
  832. switch (tolower(*str)) {
  833. case 'f':
  834. slub_debug |= SLAB_DEBUG_FREE;
  835. break;
  836. case 'z':
  837. slub_debug |= SLAB_RED_ZONE;
  838. break;
  839. case 'p':
  840. slub_debug |= SLAB_POISON;
  841. break;
  842. case 'u':
  843. slub_debug |= SLAB_STORE_USER;
  844. break;
  845. case 't':
  846. slub_debug |= SLAB_TRACE;
  847. break;
  848. default:
  849. printk(KERN_ERR "slub_debug option '%c' "
  850. "unknown. skipped\n", *str);
  851. }
  852. }
  853. check_slabs:
  854. if (*str == ',')
  855. slub_debug_slabs = str + 1;
  856. out:
  857. return 1;
  858. }
  859. __setup("slub_debug", setup_slub_debug);
  860. static unsigned long kmem_cache_flags(unsigned long objsize,
  861. unsigned long flags, const char *name,
  862. void (*ctor)(struct kmem_cache *, void *))
  863. {
  864. /*
  865. * The page->offset field is only 16 bit wide. This is an offset
  866. * in units of words from the beginning of an object. If the slab
  867. * size is bigger then we cannot move the free pointer behind the
  868. * object anymore.
  869. *
  870. * On 32 bit platforms the limit is 256k. On 64bit platforms
  871. * the limit is 512k.
  872. *
  873. * Debugging or ctor may create a need to move the free
  874. * pointer. Fail if this happens.
  875. */
  876. if (objsize >= 65535 * sizeof(void *)) {
  877. BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
  878. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  879. BUG_ON(ctor);
  880. } else {
  881. /*
  882. * Enable debugging if selected on the kernel commandline.
  883. */
  884. if (slub_debug && (!slub_debug_slabs ||
  885. strncmp(slub_debug_slabs, name,
  886. strlen(slub_debug_slabs)) == 0))
  887. flags |= slub_debug;
  888. }
  889. return flags;
  890. }
  891. #else
  892. static inline void setup_object_debug(struct kmem_cache *s,
  893. struct page *page, void *object) {}
  894. static inline int alloc_debug_processing(struct kmem_cache *s,
  895. struct page *page, void *object, void *addr) { return 0; }
  896. static inline int free_debug_processing(struct kmem_cache *s,
  897. struct page *page, void *object, void *addr) { return 0; }
  898. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  899. { return 1; }
  900. static inline int check_object(struct kmem_cache *s, struct page *page,
  901. void *object, int active) { return 1; }
  902. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  903. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  904. unsigned long flags, const char *name,
  905. void (*ctor)(struct kmem_cache *, void *))
  906. {
  907. return flags;
  908. }
  909. #define slub_debug 0
  910. #endif
  911. /*
  912. * Slab allocation and freeing
  913. */
  914. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  915. {
  916. struct page *page;
  917. int pages = 1 << s->order;
  918. if (s->order)
  919. flags |= __GFP_COMP;
  920. if (s->flags & SLAB_CACHE_DMA)
  921. flags |= SLUB_DMA;
  922. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  923. flags |= __GFP_RECLAIMABLE;
  924. if (node == -1)
  925. page = alloc_pages(flags, s->order);
  926. else
  927. page = alloc_pages_node(node, flags, s->order);
  928. if (!page)
  929. return NULL;
  930. mod_zone_page_state(page_zone(page),
  931. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  932. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  933. pages);
  934. return page;
  935. }
  936. static void setup_object(struct kmem_cache *s, struct page *page,
  937. void *object)
  938. {
  939. setup_object_debug(s, page, object);
  940. if (unlikely(s->ctor))
  941. s->ctor(s, object);
  942. }
  943. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  944. {
  945. struct page *page;
  946. struct kmem_cache_node *n;
  947. void *start;
  948. void *last;
  949. void *p;
  950. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  951. page = allocate_slab(s,
  952. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  953. if (!page)
  954. goto out;
  955. n = get_node(s, page_to_nid(page));
  956. if (n)
  957. atomic_long_inc(&n->nr_slabs);
  958. page->slab = s;
  959. page->flags |= 1 << PG_slab;
  960. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  961. SLAB_STORE_USER | SLAB_TRACE))
  962. SetSlabDebug(page);
  963. start = page_address(page);
  964. page->end = start + 1;
  965. if (unlikely(s->flags & SLAB_POISON))
  966. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  967. last = start;
  968. for_each_object(p, s, start) {
  969. setup_object(s, page, last);
  970. set_freepointer(s, last, p);
  971. last = p;
  972. }
  973. setup_object(s, page, last);
  974. set_freepointer(s, last, page->end);
  975. page->freelist = start;
  976. page->inuse = 0;
  977. out:
  978. return page;
  979. }
  980. static void __free_slab(struct kmem_cache *s, struct page *page)
  981. {
  982. int pages = 1 << s->order;
  983. if (unlikely(SlabDebug(page))) {
  984. void *p;
  985. slab_pad_check(s, page);
  986. for_each_object(p, s, slab_address(page))
  987. check_object(s, page, p, 0);
  988. ClearSlabDebug(page);
  989. }
  990. mod_zone_page_state(page_zone(page),
  991. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  992. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  993. -pages);
  994. page->mapping = NULL;
  995. __free_pages(page, s->order);
  996. }
  997. static void rcu_free_slab(struct rcu_head *h)
  998. {
  999. struct page *page;
  1000. page = container_of((struct list_head *)h, struct page, lru);
  1001. __free_slab(page->slab, page);
  1002. }
  1003. static void free_slab(struct kmem_cache *s, struct page *page)
  1004. {
  1005. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1006. /*
  1007. * RCU free overloads the RCU head over the LRU
  1008. */
  1009. struct rcu_head *head = (void *)&page->lru;
  1010. call_rcu(head, rcu_free_slab);
  1011. } else
  1012. __free_slab(s, page);
  1013. }
  1014. static void discard_slab(struct kmem_cache *s, struct page *page)
  1015. {
  1016. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1017. atomic_long_dec(&n->nr_slabs);
  1018. reset_page_mapcount(page);
  1019. __ClearPageSlab(page);
  1020. free_slab(s, page);
  1021. }
  1022. /*
  1023. * Per slab locking using the pagelock
  1024. */
  1025. static __always_inline void slab_lock(struct page *page)
  1026. {
  1027. bit_spin_lock(PG_locked, &page->flags);
  1028. }
  1029. static __always_inline void slab_unlock(struct page *page)
  1030. {
  1031. bit_spin_unlock(PG_locked, &page->flags);
  1032. }
  1033. static __always_inline int slab_trylock(struct page *page)
  1034. {
  1035. int rc = 1;
  1036. rc = bit_spin_trylock(PG_locked, &page->flags);
  1037. return rc;
  1038. }
  1039. /*
  1040. * Management of partially allocated slabs
  1041. */
  1042. static void add_partial(struct kmem_cache_node *n,
  1043. struct page *page, int tail)
  1044. {
  1045. spin_lock(&n->list_lock);
  1046. n->nr_partial++;
  1047. if (tail)
  1048. list_add_tail(&page->lru, &n->partial);
  1049. else
  1050. list_add(&page->lru, &n->partial);
  1051. spin_unlock(&n->list_lock);
  1052. }
  1053. static void remove_partial(struct kmem_cache *s,
  1054. struct page *page)
  1055. {
  1056. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1057. spin_lock(&n->list_lock);
  1058. list_del(&page->lru);
  1059. n->nr_partial--;
  1060. spin_unlock(&n->list_lock);
  1061. }
  1062. /*
  1063. * Lock slab and remove from the partial list.
  1064. *
  1065. * Must hold list_lock.
  1066. */
  1067. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1068. {
  1069. if (slab_trylock(page)) {
  1070. list_del(&page->lru);
  1071. n->nr_partial--;
  1072. SetSlabFrozen(page);
  1073. return 1;
  1074. }
  1075. return 0;
  1076. }
  1077. /*
  1078. * Try to allocate a partial slab from a specific node.
  1079. */
  1080. static struct page *get_partial_node(struct kmem_cache_node *n)
  1081. {
  1082. struct page *page;
  1083. /*
  1084. * Racy check. If we mistakenly see no partial slabs then we
  1085. * just allocate an empty slab. If we mistakenly try to get a
  1086. * partial slab and there is none available then get_partials()
  1087. * will return NULL.
  1088. */
  1089. if (!n || !n->nr_partial)
  1090. return NULL;
  1091. spin_lock(&n->list_lock);
  1092. list_for_each_entry(page, &n->partial, lru)
  1093. if (lock_and_freeze_slab(n, page))
  1094. goto out;
  1095. page = NULL;
  1096. out:
  1097. spin_unlock(&n->list_lock);
  1098. return page;
  1099. }
  1100. /*
  1101. * Get a page from somewhere. Search in increasing NUMA distances.
  1102. */
  1103. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1104. {
  1105. #ifdef CONFIG_NUMA
  1106. struct zonelist *zonelist;
  1107. struct zone **z;
  1108. struct page *page;
  1109. /*
  1110. * The defrag ratio allows a configuration of the tradeoffs between
  1111. * inter node defragmentation and node local allocations. A lower
  1112. * defrag_ratio increases the tendency to do local allocations
  1113. * instead of attempting to obtain partial slabs from other nodes.
  1114. *
  1115. * If the defrag_ratio is set to 0 then kmalloc() always
  1116. * returns node local objects. If the ratio is higher then kmalloc()
  1117. * may return off node objects because partial slabs are obtained
  1118. * from other nodes and filled up.
  1119. *
  1120. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1121. * defrag_ratio = 1000) then every (well almost) allocation will
  1122. * first attempt to defrag slab caches on other nodes. This means
  1123. * scanning over all nodes to look for partial slabs which may be
  1124. * expensive if we do it every time we are trying to find a slab
  1125. * with available objects.
  1126. */
  1127. if (!s->remote_node_defrag_ratio ||
  1128. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1129. return NULL;
  1130. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1131. ->node_zonelists[gfp_zone(flags)];
  1132. for (z = zonelist->zones; *z; z++) {
  1133. struct kmem_cache_node *n;
  1134. n = get_node(s, zone_to_nid(*z));
  1135. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1136. n->nr_partial > MIN_PARTIAL) {
  1137. page = get_partial_node(n);
  1138. if (page)
  1139. return page;
  1140. }
  1141. }
  1142. #endif
  1143. return NULL;
  1144. }
  1145. /*
  1146. * Get a partial page, lock it and return it.
  1147. */
  1148. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1149. {
  1150. struct page *page;
  1151. int searchnode = (node == -1) ? numa_node_id() : node;
  1152. page = get_partial_node(get_node(s, searchnode));
  1153. if (page || (flags & __GFP_THISNODE))
  1154. return page;
  1155. return get_any_partial(s, flags);
  1156. }
  1157. /*
  1158. * Move a page back to the lists.
  1159. *
  1160. * Must be called with the slab lock held.
  1161. *
  1162. * On exit the slab lock will have been dropped.
  1163. */
  1164. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1165. {
  1166. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1167. ClearSlabFrozen(page);
  1168. if (page->inuse) {
  1169. if (page->freelist != page->end)
  1170. add_partial(n, page, tail);
  1171. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1172. add_full(n, page);
  1173. slab_unlock(page);
  1174. } else {
  1175. if (n->nr_partial < MIN_PARTIAL) {
  1176. /*
  1177. * Adding an empty slab to the partial slabs in order
  1178. * to avoid page allocator overhead. This slab needs
  1179. * to come after the other slabs with objects in
  1180. * order to fill them up. That way the size of the
  1181. * partial list stays small. kmem_cache_shrink can
  1182. * reclaim empty slabs from the partial list.
  1183. */
  1184. add_partial(n, page, 1);
  1185. slab_unlock(page);
  1186. } else {
  1187. slab_unlock(page);
  1188. discard_slab(s, page);
  1189. }
  1190. }
  1191. }
  1192. /*
  1193. * Remove the cpu slab
  1194. */
  1195. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1196. {
  1197. struct page *page = c->page;
  1198. int tail = 1;
  1199. /*
  1200. * Merge cpu freelist into freelist. Typically we get here
  1201. * because both freelists are empty. So this is unlikely
  1202. * to occur.
  1203. *
  1204. * We need to use _is_end here because deactivate slab may
  1205. * be called for a debug slab. Then c->freelist may contain
  1206. * a dummy pointer.
  1207. */
  1208. while (unlikely(!is_end(c->freelist))) {
  1209. void **object;
  1210. tail = 0; /* Hot objects. Put the slab first */
  1211. /* Retrieve object from cpu_freelist */
  1212. object = c->freelist;
  1213. c->freelist = c->freelist[c->offset];
  1214. /* And put onto the regular freelist */
  1215. object[c->offset] = page->freelist;
  1216. page->freelist = object;
  1217. page->inuse--;
  1218. }
  1219. c->page = NULL;
  1220. unfreeze_slab(s, page, tail);
  1221. }
  1222. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1223. {
  1224. slab_lock(c->page);
  1225. deactivate_slab(s, c);
  1226. }
  1227. /*
  1228. * Flush cpu slab.
  1229. * Called from IPI handler with interrupts disabled.
  1230. */
  1231. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1232. {
  1233. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1234. if (likely(c && c->page))
  1235. flush_slab(s, c);
  1236. }
  1237. static void flush_cpu_slab(void *d)
  1238. {
  1239. struct kmem_cache *s = d;
  1240. __flush_cpu_slab(s, smp_processor_id());
  1241. }
  1242. static void flush_all(struct kmem_cache *s)
  1243. {
  1244. #ifdef CONFIG_SMP
  1245. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1246. #else
  1247. unsigned long flags;
  1248. local_irq_save(flags);
  1249. flush_cpu_slab(s);
  1250. local_irq_restore(flags);
  1251. #endif
  1252. }
  1253. /*
  1254. * Check if the objects in a per cpu structure fit numa
  1255. * locality expectations.
  1256. */
  1257. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1258. {
  1259. #ifdef CONFIG_NUMA
  1260. if (node != -1 && c->node != node)
  1261. return 0;
  1262. #endif
  1263. return 1;
  1264. }
  1265. /*
  1266. * Slow path. The lockless freelist is empty or we need to perform
  1267. * debugging duties.
  1268. *
  1269. * Interrupts are disabled.
  1270. *
  1271. * Processing is still very fast if new objects have been freed to the
  1272. * regular freelist. In that case we simply take over the regular freelist
  1273. * as the lockless freelist and zap the regular freelist.
  1274. *
  1275. * If that is not working then we fall back to the partial lists. We take the
  1276. * first element of the freelist as the object to allocate now and move the
  1277. * rest of the freelist to the lockless freelist.
  1278. *
  1279. * And if we were unable to get a new slab from the partial slab lists then
  1280. * we need to allocate a new slab. This is slowest path since we may sleep.
  1281. */
  1282. static void *__slab_alloc(struct kmem_cache *s,
  1283. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1284. {
  1285. void **object;
  1286. struct page *new;
  1287. #ifdef SLUB_FASTPATH
  1288. unsigned long flags;
  1289. local_irq_save(flags);
  1290. #endif
  1291. if (!c->page)
  1292. goto new_slab;
  1293. slab_lock(c->page);
  1294. if (unlikely(!node_match(c, node)))
  1295. goto another_slab;
  1296. load_freelist:
  1297. object = c->page->freelist;
  1298. if (unlikely(object == c->page->end))
  1299. goto another_slab;
  1300. if (unlikely(SlabDebug(c->page)))
  1301. goto debug;
  1302. object = c->page->freelist;
  1303. c->freelist = object[c->offset];
  1304. c->page->inuse = s->objects;
  1305. c->page->freelist = c->page->end;
  1306. c->node = page_to_nid(c->page);
  1307. unlock_out:
  1308. slab_unlock(c->page);
  1309. out:
  1310. #ifdef SLUB_FASTPATH
  1311. local_irq_restore(flags);
  1312. #endif
  1313. return object;
  1314. another_slab:
  1315. deactivate_slab(s, c);
  1316. new_slab:
  1317. new = get_partial(s, gfpflags, node);
  1318. if (new) {
  1319. c->page = new;
  1320. goto load_freelist;
  1321. }
  1322. if (gfpflags & __GFP_WAIT)
  1323. local_irq_enable();
  1324. new = new_slab(s, gfpflags, node);
  1325. if (gfpflags & __GFP_WAIT)
  1326. local_irq_disable();
  1327. if (new) {
  1328. c = get_cpu_slab(s, smp_processor_id());
  1329. if (c->page)
  1330. flush_slab(s, c);
  1331. slab_lock(new);
  1332. SetSlabFrozen(new);
  1333. c->page = new;
  1334. goto load_freelist;
  1335. }
  1336. object = NULL;
  1337. goto out;
  1338. debug:
  1339. object = c->page->freelist;
  1340. if (!alloc_debug_processing(s, c->page, object, addr))
  1341. goto another_slab;
  1342. c->page->inuse++;
  1343. c->page->freelist = object[c->offset];
  1344. c->node = -1;
  1345. goto unlock_out;
  1346. }
  1347. /*
  1348. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1349. * have the fastpath folded into their functions. So no function call
  1350. * overhead for requests that can be satisfied on the fastpath.
  1351. *
  1352. * The fastpath works by first checking if the lockless freelist can be used.
  1353. * If not then __slab_alloc is called for slow processing.
  1354. *
  1355. * Otherwise we can simply pick the next object from the lockless free list.
  1356. */
  1357. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1358. gfp_t gfpflags, int node, void *addr)
  1359. {
  1360. void **object;
  1361. struct kmem_cache_cpu *c;
  1362. /*
  1363. * The SLUB_FASTPATH path is provisional and is currently disabled if the
  1364. * kernel is compiled with preemption or if the arch does not support
  1365. * fast cmpxchg operations. There are a couple of coming changes that will
  1366. * simplify matters and allow preemption. Ultimately we may end up making
  1367. * SLUB_FASTPATH the default.
  1368. *
  1369. * 1. The introduction of the per cpu allocator will avoid array lookups
  1370. * through get_cpu_slab(). A special register can be used instead.
  1371. *
  1372. * 2. The introduction of per cpu atomic operations (cpu_ops) means that
  1373. * we can realize the logic here entirely with per cpu atomics. The
  1374. * per cpu atomic ops will take care of the preemption issues.
  1375. */
  1376. #ifdef SLUB_FASTPATH
  1377. c = get_cpu_slab(s, raw_smp_processor_id());
  1378. do {
  1379. object = c->freelist;
  1380. if (unlikely(is_end(object) || !node_match(c, node))) {
  1381. object = __slab_alloc(s, gfpflags, node, addr, c);
  1382. break;
  1383. }
  1384. } while (cmpxchg_local(&c->freelist, object, object[c->offset])
  1385. != object);
  1386. #else
  1387. unsigned long flags;
  1388. local_irq_save(flags);
  1389. c = get_cpu_slab(s, smp_processor_id());
  1390. if (unlikely(is_end(c->freelist) || !node_match(c, node)))
  1391. object = __slab_alloc(s, gfpflags, node, addr, c);
  1392. else {
  1393. object = c->freelist;
  1394. c->freelist = object[c->offset];
  1395. }
  1396. local_irq_restore(flags);
  1397. #endif
  1398. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1399. memset(object, 0, c->objsize);
  1400. return object;
  1401. }
  1402. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1403. {
  1404. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1405. }
  1406. EXPORT_SYMBOL(kmem_cache_alloc);
  1407. #ifdef CONFIG_NUMA
  1408. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1409. {
  1410. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1411. }
  1412. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1413. #endif
  1414. /*
  1415. * Slow patch handling. This may still be called frequently since objects
  1416. * have a longer lifetime than the cpu slabs in most processing loads.
  1417. *
  1418. * So we still attempt to reduce cache line usage. Just take the slab
  1419. * lock and free the item. If there is no additional partial page
  1420. * handling required then we can return immediately.
  1421. */
  1422. static void __slab_free(struct kmem_cache *s, struct page *page,
  1423. void *x, void *addr, unsigned int offset)
  1424. {
  1425. void *prior;
  1426. void **object = (void *)x;
  1427. #ifdef SLUB_FASTPATH
  1428. unsigned long flags;
  1429. local_irq_save(flags);
  1430. #endif
  1431. slab_lock(page);
  1432. if (unlikely(SlabDebug(page)))
  1433. goto debug;
  1434. checks_ok:
  1435. prior = object[offset] = page->freelist;
  1436. page->freelist = object;
  1437. page->inuse--;
  1438. if (unlikely(SlabFrozen(page)))
  1439. goto out_unlock;
  1440. if (unlikely(!page->inuse))
  1441. goto slab_empty;
  1442. /*
  1443. * Objects left in the slab. If it
  1444. * was not on the partial list before
  1445. * then add it.
  1446. */
  1447. if (unlikely(prior == page->end))
  1448. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1449. out_unlock:
  1450. slab_unlock(page);
  1451. #ifdef SLUB_FASTPATH
  1452. local_irq_restore(flags);
  1453. #endif
  1454. return;
  1455. slab_empty:
  1456. if (prior != page->end)
  1457. /*
  1458. * Slab still on the partial list.
  1459. */
  1460. remove_partial(s, page);
  1461. slab_unlock(page);
  1462. #ifdef SLUB_FASTPATH
  1463. local_irq_restore(flags);
  1464. #endif
  1465. discard_slab(s, page);
  1466. return;
  1467. debug:
  1468. if (!free_debug_processing(s, page, x, addr))
  1469. goto out_unlock;
  1470. goto checks_ok;
  1471. }
  1472. /*
  1473. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1474. * can perform fastpath freeing without additional function calls.
  1475. *
  1476. * The fastpath is only possible if we are freeing to the current cpu slab
  1477. * of this processor. This typically the case if we have just allocated
  1478. * the item before.
  1479. *
  1480. * If fastpath is not possible then fall back to __slab_free where we deal
  1481. * with all sorts of special processing.
  1482. */
  1483. static __always_inline void slab_free(struct kmem_cache *s,
  1484. struct page *page, void *x, void *addr)
  1485. {
  1486. void **object = (void *)x;
  1487. struct kmem_cache_cpu *c;
  1488. #ifdef SLUB_FASTPATH
  1489. void **freelist;
  1490. c = get_cpu_slab(s, raw_smp_processor_id());
  1491. debug_check_no_locks_freed(object, s->objsize);
  1492. do {
  1493. freelist = c->freelist;
  1494. barrier();
  1495. /*
  1496. * If the compiler would reorder the retrieval of c->page to
  1497. * come before c->freelist then an interrupt could
  1498. * change the cpu slab before we retrieve c->freelist. We
  1499. * could be matching on a page no longer active and put the
  1500. * object onto the freelist of the wrong slab.
  1501. *
  1502. * On the other hand: If we already have the freelist pointer
  1503. * then any change of cpu_slab will cause the cmpxchg to fail
  1504. * since the freelist pointers are unique per slab.
  1505. */
  1506. if (unlikely(page != c->page || c->node < 0)) {
  1507. __slab_free(s, page, x, addr, c->offset);
  1508. break;
  1509. }
  1510. object[c->offset] = freelist;
  1511. } while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
  1512. #else
  1513. unsigned long flags;
  1514. local_irq_save(flags);
  1515. debug_check_no_locks_freed(object, s->objsize);
  1516. c = get_cpu_slab(s, smp_processor_id());
  1517. if (likely(page == c->page && c->node >= 0)) {
  1518. object[c->offset] = c->freelist;
  1519. c->freelist = object;
  1520. } else
  1521. __slab_free(s, page, x, addr, c->offset);
  1522. local_irq_restore(flags);
  1523. #endif
  1524. }
  1525. void kmem_cache_free(struct kmem_cache *s, void *x)
  1526. {
  1527. struct page *page;
  1528. page = virt_to_head_page(x);
  1529. slab_free(s, page, x, __builtin_return_address(0));
  1530. }
  1531. EXPORT_SYMBOL(kmem_cache_free);
  1532. /* Figure out on which slab object the object resides */
  1533. static struct page *get_object_page(const void *x)
  1534. {
  1535. struct page *page = virt_to_head_page(x);
  1536. if (!PageSlab(page))
  1537. return NULL;
  1538. return page;
  1539. }
  1540. /*
  1541. * Object placement in a slab is made very easy because we always start at
  1542. * offset 0. If we tune the size of the object to the alignment then we can
  1543. * get the required alignment by putting one properly sized object after
  1544. * another.
  1545. *
  1546. * Notice that the allocation order determines the sizes of the per cpu
  1547. * caches. Each processor has always one slab available for allocations.
  1548. * Increasing the allocation order reduces the number of times that slabs
  1549. * must be moved on and off the partial lists and is therefore a factor in
  1550. * locking overhead.
  1551. */
  1552. /*
  1553. * Mininum / Maximum order of slab pages. This influences locking overhead
  1554. * and slab fragmentation. A higher order reduces the number of partial slabs
  1555. * and increases the number of allocations possible without having to
  1556. * take the list_lock.
  1557. */
  1558. static int slub_min_order;
  1559. static int slub_max_order = DEFAULT_MAX_ORDER;
  1560. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1561. /*
  1562. * Merge control. If this is set then no merging of slab caches will occur.
  1563. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1564. */
  1565. static int slub_nomerge;
  1566. /*
  1567. * Calculate the order of allocation given an slab object size.
  1568. *
  1569. * The order of allocation has significant impact on performance and other
  1570. * system components. Generally order 0 allocations should be preferred since
  1571. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1572. * be problematic to put into order 0 slabs because there may be too much
  1573. * unused space left. We go to a higher order if more than 1/8th of the slab
  1574. * would be wasted.
  1575. *
  1576. * In order to reach satisfactory performance we must ensure that a minimum
  1577. * number of objects is in one slab. Otherwise we may generate too much
  1578. * activity on the partial lists which requires taking the list_lock. This is
  1579. * less a concern for large slabs though which are rarely used.
  1580. *
  1581. * slub_max_order specifies the order where we begin to stop considering the
  1582. * number of objects in a slab as critical. If we reach slub_max_order then
  1583. * we try to keep the page order as low as possible. So we accept more waste
  1584. * of space in favor of a small page order.
  1585. *
  1586. * Higher order allocations also allow the placement of more objects in a
  1587. * slab and thereby reduce object handling overhead. If the user has
  1588. * requested a higher mininum order then we start with that one instead of
  1589. * the smallest order which will fit the object.
  1590. */
  1591. static inline int slab_order(int size, int min_objects,
  1592. int max_order, int fract_leftover)
  1593. {
  1594. int order;
  1595. int rem;
  1596. int min_order = slub_min_order;
  1597. for (order = max(min_order,
  1598. fls(min_objects * size - 1) - PAGE_SHIFT);
  1599. order <= max_order; order++) {
  1600. unsigned long slab_size = PAGE_SIZE << order;
  1601. if (slab_size < min_objects * size)
  1602. continue;
  1603. rem = slab_size % size;
  1604. if (rem <= slab_size / fract_leftover)
  1605. break;
  1606. }
  1607. return order;
  1608. }
  1609. static inline int calculate_order(int size)
  1610. {
  1611. int order;
  1612. int min_objects;
  1613. int fraction;
  1614. /*
  1615. * Attempt to find best configuration for a slab. This
  1616. * works by first attempting to generate a layout with
  1617. * the best configuration and backing off gradually.
  1618. *
  1619. * First we reduce the acceptable waste in a slab. Then
  1620. * we reduce the minimum objects required in a slab.
  1621. */
  1622. min_objects = slub_min_objects;
  1623. while (min_objects > 1) {
  1624. fraction = 8;
  1625. while (fraction >= 4) {
  1626. order = slab_order(size, min_objects,
  1627. slub_max_order, fraction);
  1628. if (order <= slub_max_order)
  1629. return order;
  1630. fraction /= 2;
  1631. }
  1632. min_objects /= 2;
  1633. }
  1634. /*
  1635. * We were unable to place multiple objects in a slab. Now
  1636. * lets see if we can place a single object there.
  1637. */
  1638. order = slab_order(size, 1, slub_max_order, 1);
  1639. if (order <= slub_max_order)
  1640. return order;
  1641. /*
  1642. * Doh this slab cannot be placed using slub_max_order.
  1643. */
  1644. order = slab_order(size, 1, MAX_ORDER, 1);
  1645. if (order <= MAX_ORDER)
  1646. return order;
  1647. return -ENOSYS;
  1648. }
  1649. /*
  1650. * Figure out what the alignment of the objects will be.
  1651. */
  1652. static unsigned long calculate_alignment(unsigned long flags,
  1653. unsigned long align, unsigned long size)
  1654. {
  1655. /*
  1656. * If the user wants hardware cache aligned objects then
  1657. * follow that suggestion if the object is sufficiently
  1658. * large.
  1659. *
  1660. * The hardware cache alignment cannot override the
  1661. * specified alignment though. If that is greater
  1662. * then use it.
  1663. */
  1664. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1665. size > cache_line_size() / 2)
  1666. return max_t(unsigned long, align, cache_line_size());
  1667. if (align < ARCH_SLAB_MINALIGN)
  1668. return ARCH_SLAB_MINALIGN;
  1669. return ALIGN(align, sizeof(void *));
  1670. }
  1671. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1672. struct kmem_cache_cpu *c)
  1673. {
  1674. c->page = NULL;
  1675. c->freelist = (void *)PAGE_MAPPING_ANON;
  1676. c->node = 0;
  1677. c->offset = s->offset / sizeof(void *);
  1678. c->objsize = s->objsize;
  1679. }
  1680. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1681. {
  1682. n->nr_partial = 0;
  1683. atomic_long_set(&n->nr_slabs, 0);
  1684. spin_lock_init(&n->list_lock);
  1685. INIT_LIST_HEAD(&n->partial);
  1686. #ifdef CONFIG_SLUB_DEBUG
  1687. INIT_LIST_HEAD(&n->full);
  1688. #endif
  1689. }
  1690. #ifdef CONFIG_SMP
  1691. /*
  1692. * Per cpu array for per cpu structures.
  1693. *
  1694. * The per cpu array places all kmem_cache_cpu structures from one processor
  1695. * close together meaning that it becomes possible that multiple per cpu
  1696. * structures are contained in one cacheline. This may be particularly
  1697. * beneficial for the kmalloc caches.
  1698. *
  1699. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1700. * likely able to get per cpu structures for all caches from the array defined
  1701. * here. We must be able to cover all kmalloc caches during bootstrap.
  1702. *
  1703. * If the per cpu array is exhausted then fall back to kmalloc
  1704. * of individual cachelines. No sharing is possible then.
  1705. */
  1706. #define NR_KMEM_CACHE_CPU 100
  1707. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1708. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1709. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1710. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1711. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1712. int cpu, gfp_t flags)
  1713. {
  1714. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1715. if (c)
  1716. per_cpu(kmem_cache_cpu_free, cpu) =
  1717. (void *)c->freelist;
  1718. else {
  1719. /* Table overflow: So allocate ourselves */
  1720. c = kmalloc_node(
  1721. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1722. flags, cpu_to_node(cpu));
  1723. if (!c)
  1724. return NULL;
  1725. }
  1726. init_kmem_cache_cpu(s, c);
  1727. return c;
  1728. }
  1729. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1730. {
  1731. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1732. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1733. kfree(c);
  1734. return;
  1735. }
  1736. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1737. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1738. }
  1739. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1740. {
  1741. int cpu;
  1742. for_each_online_cpu(cpu) {
  1743. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1744. if (c) {
  1745. s->cpu_slab[cpu] = NULL;
  1746. free_kmem_cache_cpu(c, cpu);
  1747. }
  1748. }
  1749. }
  1750. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1751. {
  1752. int cpu;
  1753. for_each_online_cpu(cpu) {
  1754. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1755. if (c)
  1756. continue;
  1757. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1758. if (!c) {
  1759. free_kmem_cache_cpus(s);
  1760. return 0;
  1761. }
  1762. s->cpu_slab[cpu] = c;
  1763. }
  1764. return 1;
  1765. }
  1766. /*
  1767. * Initialize the per cpu array.
  1768. */
  1769. static void init_alloc_cpu_cpu(int cpu)
  1770. {
  1771. int i;
  1772. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1773. return;
  1774. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1775. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1776. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1777. }
  1778. static void __init init_alloc_cpu(void)
  1779. {
  1780. int cpu;
  1781. for_each_online_cpu(cpu)
  1782. init_alloc_cpu_cpu(cpu);
  1783. }
  1784. #else
  1785. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1786. static inline void init_alloc_cpu(void) {}
  1787. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1788. {
  1789. init_kmem_cache_cpu(s, &s->cpu_slab);
  1790. return 1;
  1791. }
  1792. #endif
  1793. #ifdef CONFIG_NUMA
  1794. /*
  1795. * No kmalloc_node yet so do it by hand. We know that this is the first
  1796. * slab on the node for this slabcache. There are no concurrent accesses
  1797. * possible.
  1798. *
  1799. * Note that this function only works on the kmalloc_node_cache
  1800. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1801. * memory on a fresh node that has no slab structures yet.
  1802. */
  1803. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1804. int node)
  1805. {
  1806. struct page *page;
  1807. struct kmem_cache_node *n;
  1808. unsigned long flags;
  1809. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1810. page = new_slab(kmalloc_caches, gfpflags, node);
  1811. BUG_ON(!page);
  1812. if (page_to_nid(page) != node) {
  1813. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1814. "node %d\n", node);
  1815. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1816. "in order to be able to continue\n");
  1817. }
  1818. n = page->freelist;
  1819. BUG_ON(!n);
  1820. page->freelist = get_freepointer(kmalloc_caches, n);
  1821. page->inuse++;
  1822. kmalloc_caches->node[node] = n;
  1823. #ifdef CONFIG_SLUB_DEBUG
  1824. init_object(kmalloc_caches, n, 1);
  1825. init_tracking(kmalloc_caches, n);
  1826. #endif
  1827. init_kmem_cache_node(n);
  1828. atomic_long_inc(&n->nr_slabs);
  1829. /*
  1830. * lockdep requires consistent irq usage for each lock
  1831. * so even though there cannot be a race this early in
  1832. * the boot sequence, we still disable irqs.
  1833. */
  1834. local_irq_save(flags);
  1835. add_partial(n, page, 0);
  1836. local_irq_restore(flags);
  1837. return n;
  1838. }
  1839. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1840. {
  1841. int node;
  1842. for_each_node_state(node, N_NORMAL_MEMORY) {
  1843. struct kmem_cache_node *n = s->node[node];
  1844. if (n && n != &s->local_node)
  1845. kmem_cache_free(kmalloc_caches, n);
  1846. s->node[node] = NULL;
  1847. }
  1848. }
  1849. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1850. {
  1851. int node;
  1852. int local_node;
  1853. if (slab_state >= UP)
  1854. local_node = page_to_nid(virt_to_page(s));
  1855. else
  1856. local_node = 0;
  1857. for_each_node_state(node, N_NORMAL_MEMORY) {
  1858. struct kmem_cache_node *n;
  1859. if (local_node == node)
  1860. n = &s->local_node;
  1861. else {
  1862. if (slab_state == DOWN) {
  1863. n = early_kmem_cache_node_alloc(gfpflags,
  1864. node);
  1865. continue;
  1866. }
  1867. n = kmem_cache_alloc_node(kmalloc_caches,
  1868. gfpflags, node);
  1869. if (!n) {
  1870. free_kmem_cache_nodes(s);
  1871. return 0;
  1872. }
  1873. }
  1874. s->node[node] = n;
  1875. init_kmem_cache_node(n);
  1876. }
  1877. return 1;
  1878. }
  1879. #else
  1880. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1881. {
  1882. }
  1883. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1884. {
  1885. init_kmem_cache_node(&s->local_node);
  1886. return 1;
  1887. }
  1888. #endif
  1889. /*
  1890. * calculate_sizes() determines the order and the distribution of data within
  1891. * a slab object.
  1892. */
  1893. static int calculate_sizes(struct kmem_cache *s)
  1894. {
  1895. unsigned long flags = s->flags;
  1896. unsigned long size = s->objsize;
  1897. unsigned long align = s->align;
  1898. /*
  1899. * Determine if we can poison the object itself. If the user of
  1900. * the slab may touch the object after free or before allocation
  1901. * then we should never poison the object itself.
  1902. */
  1903. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1904. !s->ctor)
  1905. s->flags |= __OBJECT_POISON;
  1906. else
  1907. s->flags &= ~__OBJECT_POISON;
  1908. /*
  1909. * Round up object size to the next word boundary. We can only
  1910. * place the free pointer at word boundaries and this determines
  1911. * the possible location of the free pointer.
  1912. */
  1913. size = ALIGN(size, sizeof(void *));
  1914. #ifdef CONFIG_SLUB_DEBUG
  1915. /*
  1916. * If we are Redzoning then check if there is some space between the
  1917. * end of the object and the free pointer. If not then add an
  1918. * additional word to have some bytes to store Redzone information.
  1919. */
  1920. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1921. size += sizeof(void *);
  1922. #endif
  1923. /*
  1924. * With that we have determined the number of bytes in actual use
  1925. * by the object. This is the potential offset to the free pointer.
  1926. */
  1927. s->inuse = size;
  1928. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1929. s->ctor)) {
  1930. /*
  1931. * Relocate free pointer after the object if it is not
  1932. * permitted to overwrite the first word of the object on
  1933. * kmem_cache_free.
  1934. *
  1935. * This is the case if we do RCU, have a constructor or
  1936. * destructor or are poisoning the objects.
  1937. */
  1938. s->offset = size;
  1939. size += sizeof(void *);
  1940. }
  1941. #ifdef CONFIG_SLUB_DEBUG
  1942. if (flags & SLAB_STORE_USER)
  1943. /*
  1944. * Need to store information about allocs and frees after
  1945. * the object.
  1946. */
  1947. size += 2 * sizeof(struct track);
  1948. if (flags & SLAB_RED_ZONE)
  1949. /*
  1950. * Add some empty padding so that we can catch
  1951. * overwrites from earlier objects rather than let
  1952. * tracking information or the free pointer be
  1953. * corrupted if an user writes before the start
  1954. * of the object.
  1955. */
  1956. size += sizeof(void *);
  1957. #endif
  1958. /*
  1959. * Determine the alignment based on various parameters that the
  1960. * user specified and the dynamic determination of cache line size
  1961. * on bootup.
  1962. */
  1963. align = calculate_alignment(flags, align, s->objsize);
  1964. /*
  1965. * SLUB stores one object immediately after another beginning from
  1966. * offset 0. In order to align the objects we have to simply size
  1967. * each object to conform to the alignment.
  1968. */
  1969. size = ALIGN(size, align);
  1970. s->size = size;
  1971. s->order = calculate_order(size);
  1972. if (s->order < 0)
  1973. return 0;
  1974. /*
  1975. * Determine the number of objects per slab
  1976. */
  1977. s->objects = (PAGE_SIZE << s->order) / size;
  1978. return !!s->objects;
  1979. }
  1980. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1981. const char *name, size_t size,
  1982. size_t align, unsigned long flags,
  1983. void (*ctor)(struct kmem_cache *, void *))
  1984. {
  1985. memset(s, 0, kmem_size);
  1986. s->name = name;
  1987. s->ctor = ctor;
  1988. s->objsize = size;
  1989. s->align = align;
  1990. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1991. if (!calculate_sizes(s))
  1992. goto error;
  1993. s->refcount = 1;
  1994. #ifdef CONFIG_NUMA
  1995. s->remote_node_defrag_ratio = 100;
  1996. #endif
  1997. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1998. goto error;
  1999. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2000. return 1;
  2001. free_kmem_cache_nodes(s);
  2002. error:
  2003. if (flags & SLAB_PANIC)
  2004. panic("Cannot create slab %s size=%lu realsize=%u "
  2005. "order=%u offset=%u flags=%lx\n",
  2006. s->name, (unsigned long)size, s->size, s->order,
  2007. s->offset, flags);
  2008. return 0;
  2009. }
  2010. /*
  2011. * Check if a given pointer is valid
  2012. */
  2013. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2014. {
  2015. struct page *page;
  2016. page = get_object_page(object);
  2017. if (!page || s != page->slab)
  2018. /* No slab or wrong slab */
  2019. return 0;
  2020. if (!check_valid_pointer(s, page, object))
  2021. return 0;
  2022. /*
  2023. * We could also check if the object is on the slabs freelist.
  2024. * But this would be too expensive and it seems that the main
  2025. * purpose of kmem_ptr_valid is to check if the object belongs
  2026. * to a certain slab.
  2027. */
  2028. return 1;
  2029. }
  2030. EXPORT_SYMBOL(kmem_ptr_validate);
  2031. /*
  2032. * Determine the size of a slab object
  2033. */
  2034. unsigned int kmem_cache_size(struct kmem_cache *s)
  2035. {
  2036. return s->objsize;
  2037. }
  2038. EXPORT_SYMBOL(kmem_cache_size);
  2039. const char *kmem_cache_name(struct kmem_cache *s)
  2040. {
  2041. return s->name;
  2042. }
  2043. EXPORT_SYMBOL(kmem_cache_name);
  2044. /*
  2045. * Attempt to free all slabs on a node. Return the number of slabs we
  2046. * were unable to free.
  2047. */
  2048. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  2049. struct list_head *list)
  2050. {
  2051. int slabs_inuse = 0;
  2052. unsigned long flags;
  2053. struct page *page, *h;
  2054. spin_lock_irqsave(&n->list_lock, flags);
  2055. list_for_each_entry_safe(page, h, list, lru)
  2056. if (!page->inuse) {
  2057. list_del(&page->lru);
  2058. discard_slab(s, page);
  2059. } else
  2060. slabs_inuse++;
  2061. spin_unlock_irqrestore(&n->list_lock, flags);
  2062. return slabs_inuse;
  2063. }
  2064. /*
  2065. * Release all resources used by a slab cache.
  2066. */
  2067. static inline int kmem_cache_close(struct kmem_cache *s)
  2068. {
  2069. int node;
  2070. flush_all(s);
  2071. /* Attempt to free all objects */
  2072. free_kmem_cache_cpus(s);
  2073. for_each_node_state(node, N_NORMAL_MEMORY) {
  2074. struct kmem_cache_node *n = get_node(s, node);
  2075. n->nr_partial -= free_list(s, n, &n->partial);
  2076. if (atomic_long_read(&n->nr_slabs))
  2077. return 1;
  2078. }
  2079. free_kmem_cache_nodes(s);
  2080. return 0;
  2081. }
  2082. /*
  2083. * Close a cache and release the kmem_cache structure
  2084. * (must be used for caches created using kmem_cache_create)
  2085. */
  2086. void kmem_cache_destroy(struct kmem_cache *s)
  2087. {
  2088. down_write(&slub_lock);
  2089. s->refcount--;
  2090. if (!s->refcount) {
  2091. list_del(&s->list);
  2092. up_write(&slub_lock);
  2093. if (kmem_cache_close(s))
  2094. WARN_ON(1);
  2095. sysfs_slab_remove(s);
  2096. } else
  2097. up_write(&slub_lock);
  2098. }
  2099. EXPORT_SYMBOL(kmem_cache_destroy);
  2100. /********************************************************************
  2101. * Kmalloc subsystem
  2102. *******************************************************************/
  2103. struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
  2104. EXPORT_SYMBOL(kmalloc_caches);
  2105. #ifdef CONFIG_ZONE_DMA
  2106. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
  2107. #endif
  2108. static int __init setup_slub_min_order(char *str)
  2109. {
  2110. get_option(&str, &slub_min_order);
  2111. return 1;
  2112. }
  2113. __setup("slub_min_order=", setup_slub_min_order);
  2114. static int __init setup_slub_max_order(char *str)
  2115. {
  2116. get_option(&str, &slub_max_order);
  2117. return 1;
  2118. }
  2119. __setup("slub_max_order=", setup_slub_max_order);
  2120. static int __init setup_slub_min_objects(char *str)
  2121. {
  2122. get_option(&str, &slub_min_objects);
  2123. return 1;
  2124. }
  2125. __setup("slub_min_objects=", setup_slub_min_objects);
  2126. static int __init setup_slub_nomerge(char *str)
  2127. {
  2128. slub_nomerge = 1;
  2129. return 1;
  2130. }
  2131. __setup("slub_nomerge", setup_slub_nomerge);
  2132. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2133. const char *name, int size, gfp_t gfp_flags)
  2134. {
  2135. unsigned int flags = 0;
  2136. if (gfp_flags & SLUB_DMA)
  2137. flags = SLAB_CACHE_DMA;
  2138. down_write(&slub_lock);
  2139. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2140. flags, NULL))
  2141. goto panic;
  2142. list_add(&s->list, &slab_caches);
  2143. up_write(&slub_lock);
  2144. if (sysfs_slab_add(s))
  2145. goto panic;
  2146. return s;
  2147. panic:
  2148. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2149. }
  2150. #ifdef CONFIG_ZONE_DMA
  2151. static void sysfs_add_func(struct work_struct *w)
  2152. {
  2153. struct kmem_cache *s;
  2154. down_write(&slub_lock);
  2155. list_for_each_entry(s, &slab_caches, list) {
  2156. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2157. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2158. sysfs_slab_add(s);
  2159. }
  2160. }
  2161. up_write(&slub_lock);
  2162. }
  2163. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2164. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2165. {
  2166. struct kmem_cache *s;
  2167. char *text;
  2168. size_t realsize;
  2169. s = kmalloc_caches_dma[index];
  2170. if (s)
  2171. return s;
  2172. /* Dynamically create dma cache */
  2173. if (flags & __GFP_WAIT)
  2174. down_write(&slub_lock);
  2175. else {
  2176. if (!down_write_trylock(&slub_lock))
  2177. goto out;
  2178. }
  2179. if (kmalloc_caches_dma[index])
  2180. goto unlock_out;
  2181. realsize = kmalloc_caches[index].objsize;
  2182. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
  2183. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2184. if (!s || !text || !kmem_cache_open(s, flags, text,
  2185. realsize, ARCH_KMALLOC_MINALIGN,
  2186. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2187. kfree(s);
  2188. kfree(text);
  2189. goto unlock_out;
  2190. }
  2191. list_add(&s->list, &slab_caches);
  2192. kmalloc_caches_dma[index] = s;
  2193. schedule_work(&sysfs_add_work);
  2194. unlock_out:
  2195. up_write(&slub_lock);
  2196. out:
  2197. return kmalloc_caches_dma[index];
  2198. }
  2199. #endif
  2200. /*
  2201. * Conversion table for small slabs sizes / 8 to the index in the
  2202. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2203. * of two cache sizes there. The size of larger slabs can be determined using
  2204. * fls.
  2205. */
  2206. static s8 size_index[24] = {
  2207. 3, /* 8 */
  2208. 4, /* 16 */
  2209. 5, /* 24 */
  2210. 5, /* 32 */
  2211. 6, /* 40 */
  2212. 6, /* 48 */
  2213. 6, /* 56 */
  2214. 6, /* 64 */
  2215. 1, /* 72 */
  2216. 1, /* 80 */
  2217. 1, /* 88 */
  2218. 1, /* 96 */
  2219. 7, /* 104 */
  2220. 7, /* 112 */
  2221. 7, /* 120 */
  2222. 7, /* 128 */
  2223. 2, /* 136 */
  2224. 2, /* 144 */
  2225. 2, /* 152 */
  2226. 2, /* 160 */
  2227. 2, /* 168 */
  2228. 2, /* 176 */
  2229. 2, /* 184 */
  2230. 2 /* 192 */
  2231. };
  2232. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2233. {
  2234. int index;
  2235. if (size <= 192) {
  2236. if (!size)
  2237. return ZERO_SIZE_PTR;
  2238. index = size_index[(size - 1) / 8];
  2239. } else
  2240. index = fls(size - 1);
  2241. #ifdef CONFIG_ZONE_DMA
  2242. if (unlikely((flags & SLUB_DMA)))
  2243. return dma_kmalloc_cache(index, flags);
  2244. #endif
  2245. return &kmalloc_caches[index];
  2246. }
  2247. void *__kmalloc(size_t size, gfp_t flags)
  2248. {
  2249. struct kmem_cache *s;
  2250. if (unlikely(size > PAGE_SIZE / 2))
  2251. return (void *)__get_free_pages(flags | __GFP_COMP,
  2252. get_order(size));
  2253. s = get_slab(size, flags);
  2254. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2255. return s;
  2256. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2257. }
  2258. EXPORT_SYMBOL(__kmalloc);
  2259. #ifdef CONFIG_NUMA
  2260. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2261. {
  2262. struct kmem_cache *s;
  2263. if (unlikely(size > PAGE_SIZE / 2))
  2264. return (void *)__get_free_pages(flags | __GFP_COMP,
  2265. get_order(size));
  2266. s = get_slab(size, flags);
  2267. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2268. return s;
  2269. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2270. }
  2271. EXPORT_SYMBOL(__kmalloc_node);
  2272. #endif
  2273. size_t ksize(const void *object)
  2274. {
  2275. struct page *page;
  2276. struct kmem_cache *s;
  2277. BUG_ON(!object);
  2278. if (unlikely(object == ZERO_SIZE_PTR))
  2279. return 0;
  2280. page = virt_to_head_page(object);
  2281. BUG_ON(!page);
  2282. if (unlikely(!PageSlab(page)))
  2283. return PAGE_SIZE << compound_order(page);
  2284. s = page->slab;
  2285. BUG_ON(!s);
  2286. /*
  2287. * Debugging requires use of the padding between object
  2288. * and whatever may come after it.
  2289. */
  2290. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2291. return s->objsize;
  2292. /*
  2293. * If we have the need to store the freelist pointer
  2294. * back there or track user information then we can
  2295. * only use the space before that information.
  2296. */
  2297. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2298. return s->inuse;
  2299. /*
  2300. * Else we can use all the padding etc for the allocation
  2301. */
  2302. return s->size;
  2303. }
  2304. EXPORT_SYMBOL(ksize);
  2305. void kfree(const void *x)
  2306. {
  2307. struct page *page;
  2308. void *object = (void *)x;
  2309. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2310. return;
  2311. page = virt_to_head_page(x);
  2312. if (unlikely(!PageSlab(page))) {
  2313. put_page(page);
  2314. return;
  2315. }
  2316. slab_free(page->slab, page, object, __builtin_return_address(0));
  2317. }
  2318. EXPORT_SYMBOL(kfree);
  2319. static unsigned long count_partial(struct kmem_cache_node *n)
  2320. {
  2321. unsigned long flags;
  2322. unsigned long x = 0;
  2323. struct page *page;
  2324. spin_lock_irqsave(&n->list_lock, flags);
  2325. list_for_each_entry(page, &n->partial, lru)
  2326. x += page->inuse;
  2327. spin_unlock_irqrestore(&n->list_lock, flags);
  2328. return x;
  2329. }
  2330. /*
  2331. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2332. * the remaining slabs by the number of items in use. The slabs with the
  2333. * most items in use come first. New allocations will then fill those up
  2334. * and thus they can be removed from the partial lists.
  2335. *
  2336. * The slabs with the least items are placed last. This results in them
  2337. * being allocated from last increasing the chance that the last objects
  2338. * are freed in them.
  2339. */
  2340. int kmem_cache_shrink(struct kmem_cache *s)
  2341. {
  2342. int node;
  2343. int i;
  2344. struct kmem_cache_node *n;
  2345. struct page *page;
  2346. struct page *t;
  2347. struct list_head *slabs_by_inuse =
  2348. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2349. unsigned long flags;
  2350. if (!slabs_by_inuse)
  2351. return -ENOMEM;
  2352. flush_all(s);
  2353. for_each_node_state(node, N_NORMAL_MEMORY) {
  2354. n = get_node(s, node);
  2355. if (!n->nr_partial)
  2356. continue;
  2357. for (i = 0; i < s->objects; i++)
  2358. INIT_LIST_HEAD(slabs_by_inuse + i);
  2359. spin_lock_irqsave(&n->list_lock, flags);
  2360. /*
  2361. * Build lists indexed by the items in use in each slab.
  2362. *
  2363. * Note that concurrent frees may occur while we hold the
  2364. * list_lock. page->inuse here is the upper limit.
  2365. */
  2366. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2367. if (!page->inuse && slab_trylock(page)) {
  2368. /*
  2369. * Must hold slab lock here because slab_free
  2370. * may have freed the last object and be
  2371. * waiting to release the slab.
  2372. */
  2373. list_del(&page->lru);
  2374. n->nr_partial--;
  2375. slab_unlock(page);
  2376. discard_slab(s, page);
  2377. } else {
  2378. list_move(&page->lru,
  2379. slabs_by_inuse + page->inuse);
  2380. }
  2381. }
  2382. /*
  2383. * Rebuild the partial list with the slabs filled up most
  2384. * first and the least used slabs at the end.
  2385. */
  2386. for (i = s->objects - 1; i >= 0; i--)
  2387. list_splice(slabs_by_inuse + i, n->partial.prev);
  2388. spin_unlock_irqrestore(&n->list_lock, flags);
  2389. }
  2390. kfree(slabs_by_inuse);
  2391. return 0;
  2392. }
  2393. EXPORT_SYMBOL(kmem_cache_shrink);
  2394. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2395. static int slab_mem_going_offline_callback(void *arg)
  2396. {
  2397. struct kmem_cache *s;
  2398. down_read(&slub_lock);
  2399. list_for_each_entry(s, &slab_caches, list)
  2400. kmem_cache_shrink(s);
  2401. up_read(&slub_lock);
  2402. return 0;
  2403. }
  2404. static void slab_mem_offline_callback(void *arg)
  2405. {
  2406. struct kmem_cache_node *n;
  2407. struct kmem_cache *s;
  2408. struct memory_notify *marg = arg;
  2409. int offline_node;
  2410. offline_node = marg->status_change_nid;
  2411. /*
  2412. * If the node still has available memory. we need kmem_cache_node
  2413. * for it yet.
  2414. */
  2415. if (offline_node < 0)
  2416. return;
  2417. down_read(&slub_lock);
  2418. list_for_each_entry(s, &slab_caches, list) {
  2419. n = get_node(s, offline_node);
  2420. if (n) {
  2421. /*
  2422. * if n->nr_slabs > 0, slabs still exist on the node
  2423. * that is going down. We were unable to free them,
  2424. * and offline_pages() function shoudn't call this
  2425. * callback. So, we must fail.
  2426. */
  2427. BUG_ON(atomic_long_read(&n->nr_slabs));
  2428. s->node[offline_node] = NULL;
  2429. kmem_cache_free(kmalloc_caches, n);
  2430. }
  2431. }
  2432. up_read(&slub_lock);
  2433. }
  2434. static int slab_mem_going_online_callback(void *arg)
  2435. {
  2436. struct kmem_cache_node *n;
  2437. struct kmem_cache *s;
  2438. struct memory_notify *marg = arg;
  2439. int nid = marg->status_change_nid;
  2440. int ret = 0;
  2441. /*
  2442. * If the node's memory is already available, then kmem_cache_node is
  2443. * already created. Nothing to do.
  2444. */
  2445. if (nid < 0)
  2446. return 0;
  2447. /*
  2448. * We are bringing a node online. No memory is availabe yet. We must
  2449. * allocate a kmem_cache_node structure in order to bring the node
  2450. * online.
  2451. */
  2452. down_read(&slub_lock);
  2453. list_for_each_entry(s, &slab_caches, list) {
  2454. /*
  2455. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2456. * since memory is not yet available from the node that
  2457. * is brought up.
  2458. */
  2459. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2460. if (!n) {
  2461. ret = -ENOMEM;
  2462. goto out;
  2463. }
  2464. init_kmem_cache_node(n);
  2465. s->node[nid] = n;
  2466. }
  2467. out:
  2468. up_read(&slub_lock);
  2469. return ret;
  2470. }
  2471. static int slab_memory_callback(struct notifier_block *self,
  2472. unsigned long action, void *arg)
  2473. {
  2474. int ret = 0;
  2475. switch (action) {
  2476. case MEM_GOING_ONLINE:
  2477. ret = slab_mem_going_online_callback(arg);
  2478. break;
  2479. case MEM_GOING_OFFLINE:
  2480. ret = slab_mem_going_offline_callback(arg);
  2481. break;
  2482. case MEM_OFFLINE:
  2483. case MEM_CANCEL_ONLINE:
  2484. slab_mem_offline_callback(arg);
  2485. break;
  2486. case MEM_ONLINE:
  2487. case MEM_CANCEL_OFFLINE:
  2488. break;
  2489. }
  2490. ret = notifier_from_errno(ret);
  2491. return ret;
  2492. }
  2493. #endif /* CONFIG_MEMORY_HOTPLUG */
  2494. /********************************************************************
  2495. * Basic setup of slabs
  2496. *******************************************************************/
  2497. void __init kmem_cache_init(void)
  2498. {
  2499. int i;
  2500. int caches = 0;
  2501. init_alloc_cpu();
  2502. #ifdef CONFIG_NUMA
  2503. /*
  2504. * Must first have the slab cache available for the allocations of the
  2505. * struct kmem_cache_node's. There is special bootstrap code in
  2506. * kmem_cache_open for slab_state == DOWN.
  2507. */
  2508. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2509. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2510. kmalloc_caches[0].refcount = -1;
  2511. caches++;
  2512. hotplug_memory_notifier(slab_memory_callback, 1);
  2513. #endif
  2514. /* Able to allocate the per node structures */
  2515. slab_state = PARTIAL;
  2516. /* Caches that are not of the two-to-the-power-of size */
  2517. if (KMALLOC_MIN_SIZE <= 64) {
  2518. create_kmalloc_cache(&kmalloc_caches[1],
  2519. "kmalloc-96", 96, GFP_KERNEL);
  2520. caches++;
  2521. }
  2522. if (KMALLOC_MIN_SIZE <= 128) {
  2523. create_kmalloc_cache(&kmalloc_caches[2],
  2524. "kmalloc-192", 192, GFP_KERNEL);
  2525. caches++;
  2526. }
  2527. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
  2528. create_kmalloc_cache(&kmalloc_caches[i],
  2529. "kmalloc", 1 << i, GFP_KERNEL);
  2530. caches++;
  2531. }
  2532. /*
  2533. * Patch up the size_index table if we have strange large alignment
  2534. * requirements for the kmalloc array. This is only the case for
  2535. * mips it seems. The standard arches will not generate any code here.
  2536. *
  2537. * Largest permitted alignment is 256 bytes due to the way we
  2538. * handle the index determination for the smaller caches.
  2539. *
  2540. * Make sure that nothing crazy happens if someone starts tinkering
  2541. * around with ARCH_KMALLOC_MINALIGN
  2542. */
  2543. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2544. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2545. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2546. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2547. slab_state = UP;
  2548. /* Provide the correct kmalloc names now that the caches are up */
  2549. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
  2550. kmalloc_caches[i]. name =
  2551. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2552. #ifdef CONFIG_SMP
  2553. register_cpu_notifier(&slab_notifier);
  2554. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2555. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2556. #else
  2557. kmem_size = sizeof(struct kmem_cache);
  2558. #endif
  2559. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2560. " CPUs=%d, Nodes=%d\n",
  2561. caches, cache_line_size(),
  2562. slub_min_order, slub_max_order, slub_min_objects,
  2563. nr_cpu_ids, nr_node_ids);
  2564. }
  2565. /*
  2566. * Find a mergeable slab cache
  2567. */
  2568. static int slab_unmergeable(struct kmem_cache *s)
  2569. {
  2570. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2571. return 1;
  2572. if (s->ctor)
  2573. return 1;
  2574. /*
  2575. * We may have set a slab to be unmergeable during bootstrap.
  2576. */
  2577. if (s->refcount < 0)
  2578. return 1;
  2579. return 0;
  2580. }
  2581. static struct kmem_cache *find_mergeable(size_t size,
  2582. size_t align, unsigned long flags, const char *name,
  2583. void (*ctor)(struct kmem_cache *, void *))
  2584. {
  2585. struct kmem_cache *s;
  2586. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2587. return NULL;
  2588. if (ctor)
  2589. return NULL;
  2590. size = ALIGN(size, sizeof(void *));
  2591. align = calculate_alignment(flags, align, size);
  2592. size = ALIGN(size, align);
  2593. flags = kmem_cache_flags(size, flags, name, NULL);
  2594. list_for_each_entry(s, &slab_caches, list) {
  2595. if (slab_unmergeable(s))
  2596. continue;
  2597. if (size > s->size)
  2598. continue;
  2599. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2600. continue;
  2601. /*
  2602. * Check if alignment is compatible.
  2603. * Courtesy of Adrian Drzewiecki
  2604. */
  2605. if ((s->size & ~(align - 1)) != s->size)
  2606. continue;
  2607. if (s->size - size >= sizeof(void *))
  2608. continue;
  2609. return s;
  2610. }
  2611. return NULL;
  2612. }
  2613. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2614. size_t align, unsigned long flags,
  2615. void (*ctor)(struct kmem_cache *, void *))
  2616. {
  2617. struct kmem_cache *s;
  2618. down_write(&slub_lock);
  2619. s = find_mergeable(size, align, flags, name, ctor);
  2620. if (s) {
  2621. int cpu;
  2622. s->refcount++;
  2623. /*
  2624. * Adjust the object sizes so that we clear
  2625. * the complete object on kzalloc.
  2626. */
  2627. s->objsize = max(s->objsize, (int)size);
  2628. /*
  2629. * And then we need to update the object size in the
  2630. * per cpu structures
  2631. */
  2632. for_each_online_cpu(cpu)
  2633. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2634. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2635. up_write(&slub_lock);
  2636. if (sysfs_slab_alias(s, name))
  2637. goto err;
  2638. return s;
  2639. }
  2640. s = kmalloc(kmem_size, GFP_KERNEL);
  2641. if (s) {
  2642. if (kmem_cache_open(s, GFP_KERNEL, name,
  2643. size, align, flags, ctor)) {
  2644. list_add(&s->list, &slab_caches);
  2645. up_write(&slub_lock);
  2646. if (sysfs_slab_add(s))
  2647. goto err;
  2648. return s;
  2649. }
  2650. kfree(s);
  2651. }
  2652. up_write(&slub_lock);
  2653. err:
  2654. if (flags & SLAB_PANIC)
  2655. panic("Cannot create slabcache %s\n", name);
  2656. else
  2657. s = NULL;
  2658. return s;
  2659. }
  2660. EXPORT_SYMBOL(kmem_cache_create);
  2661. #ifdef CONFIG_SMP
  2662. /*
  2663. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2664. * necessary.
  2665. */
  2666. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2667. unsigned long action, void *hcpu)
  2668. {
  2669. long cpu = (long)hcpu;
  2670. struct kmem_cache *s;
  2671. unsigned long flags;
  2672. switch (action) {
  2673. case CPU_UP_PREPARE:
  2674. case CPU_UP_PREPARE_FROZEN:
  2675. init_alloc_cpu_cpu(cpu);
  2676. down_read(&slub_lock);
  2677. list_for_each_entry(s, &slab_caches, list)
  2678. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2679. GFP_KERNEL);
  2680. up_read(&slub_lock);
  2681. break;
  2682. case CPU_UP_CANCELED:
  2683. case CPU_UP_CANCELED_FROZEN:
  2684. case CPU_DEAD:
  2685. case CPU_DEAD_FROZEN:
  2686. down_read(&slub_lock);
  2687. list_for_each_entry(s, &slab_caches, list) {
  2688. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2689. local_irq_save(flags);
  2690. __flush_cpu_slab(s, cpu);
  2691. local_irq_restore(flags);
  2692. free_kmem_cache_cpu(c, cpu);
  2693. s->cpu_slab[cpu] = NULL;
  2694. }
  2695. up_read(&slub_lock);
  2696. break;
  2697. default:
  2698. break;
  2699. }
  2700. return NOTIFY_OK;
  2701. }
  2702. static struct notifier_block __cpuinitdata slab_notifier = {
  2703. &slab_cpuup_callback, NULL, 0
  2704. };
  2705. #endif
  2706. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2707. {
  2708. struct kmem_cache *s;
  2709. if (unlikely(size > PAGE_SIZE / 2))
  2710. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2711. get_order(size));
  2712. s = get_slab(size, gfpflags);
  2713. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2714. return s;
  2715. return slab_alloc(s, gfpflags, -1, caller);
  2716. }
  2717. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2718. int node, void *caller)
  2719. {
  2720. struct kmem_cache *s;
  2721. if (unlikely(size > PAGE_SIZE / 2))
  2722. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2723. get_order(size));
  2724. s = get_slab(size, gfpflags);
  2725. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2726. return s;
  2727. return slab_alloc(s, gfpflags, node, caller);
  2728. }
  2729. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2730. static int validate_slab(struct kmem_cache *s, struct page *page,
  2731. unsigned long *map)
  2732. {
  2733. void *p;
  2734. void *addr = slab_address(page);
  2735. if (!check_slab(s, page) ||
  2736. !on_freelist(s, page, NULL))
  2737. return 0;
  2738. /* Now we know that a valid freelist exists */
  2739. bitmap_zero(map, s->objects);
  2740. for_each_free_object(p, s, page->freelist) {
  2741. set_bit(slab_index(p, s, addr), map);
  2742. if (!check_object(s, page, p, 0))
  2743. return 0;
  2744. }
  2745. for_each_object(p, s, addr)
  2746. if (!test_bit(slab_index(p, s, addr), map))
  2747. if (!check_object(s, page, p, 1))
  2748. return 0;
  2749. return 1;
  2750. }
  2751. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2752. unsigned long *map)
  2753. {
  2754. if (slab_trylock(page)) {
  2755. validate_slab(s, page, map);
  2756. slab_unlock(page);
  2757. } else
  2758. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2759. s->name, page);
  2760. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2761. if (!SlabDebug(page))
  2762. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2763. "on slab 0x%p\n", s->name, page);
  2764. } else {
  2765. if (SlabDebug(page))
  2766. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2767. "slab 0x%p\n", s->name, page);
  2768. }
  2769. }
  2770. static int validate_slab_node(struct kmem_cache *s,
  2771. struct kmem_cache_node *n, unsigned long *map)
  2772. {
  2773. unsigned long count = 0;
  2774. struct page *page;
  2775. unsigned long flags;
  2776. spin_lock_irqsave(&n->list_lock, flags);
  2777. list_for_each_entry(page, &n->partial, lru) {
  2778. validate_slab_slab(s, page, map);
  2779. count++;
  2780. }
  2781. if (count != n->nr_partial)
  2782. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2783. "counter=%ld\n", s->name, count, n->nr_partial);
  2784. if (!(s->flags & SLAB_STORE_USER))
  2785. goto out;
  2786. list_for_each_entry(page, &n->full, lru) {
  2787. validate_slab_slab(s, page, map);
  2788. count++;
  2789. }
  2790. if (count != atomic_long_read(&n->nr_slabs))
  2791. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2792. "counter=%ld\n", s->name, count,
  2793. atomic_long_read(&n->nr_slabs));
  2794. out:
  2795. spin_unlock_irqrestore(&n->list_lock, flags);
  2796. return count;
  2797. }
  2798. static long validate_slab_cache(struct kmem_cache *s)
  2799. {
  2800. int node;
  2801. unsigned long count = 0;
  2802. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2803. sizeof(unsigned long), GFP_KERNEL);
  2804. if (!map)
  2805. return -ENOMEM;
  2806. flush_all(s);
  2807. for_each_node_state(node, N_NORMAL_MEMORY) {
  2808. struct kmem_cache_node *n = get_node(s, node);
  2809. count += validate_slab_node(s, n, map);
  2810. }
  2811. kfree(map);
  2812. return count;
  2813. }
  2814. #ifdef SLUB_RESILIENCY_TEST
  2815. static void resiliency_test(void)
  2816. {
  2817. u8 *p;
  2818. printk(KERN_ERR "SLUB resiliency testing\n");
  2819. printk(KERN_ERR "-----------------------\n");
  2820. printk(KERN_ERR "A. Corruption after allocation\n");
  2821. p = kzalloc(16, GFP_KERNEL);
  2822. p[16] = 0x12;
  2823. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2824. " 0x12->0x%p\n\n", p + 16);
  2825. validate_slab_cache(kmalloc_caches + 4);
  2826. /* Hmmm... The next two are dangerous */
  2827. p = kzalloc(32, GFP_KERNEL);
  2828. p[32 + sizeof(void *)] = 0x34;
  2829. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2830. " 0x34 -> -0x%p\n", p);
  2831. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2832. validate_slab_cache(kmalloc_caches + 5);
  2833. p = kzalloc(64, GFP_KERNEL);
  2834. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2835. *p = 0x56;
  2836. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2837. p);
  2838. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2839. validate_slab_cache(kmalloc_caches + 6);
  2840. printk(KERN_ERR "\nB. Corruption after free\n");
  2841. p = kzalloc(128, GFP_KERNEL);
  2842. kfree(p);
  2843. *p = 0x78;
  2844. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2845. validate_slab_cache(kmalloc_caches + 7);
  2846. p = kzalloc(256, GFP_KERNEL);
  2847. kfree(p);
  2848. p[50] = 0x9a;
  2849. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2850. validate_slab_cache(kmalloc_caches + 8);
  2851. p = kzalloc(512, GFP_KERNEL);
  2852. kfree(p);
  2853. p[512] = 0xab;
  2854. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2855. validate_slab_cache(kmalloc_caches + 9);
  2856. }
  2857. #else
  2858. static void resiliency_test(void) {};
  2859. #endif
  2860. /*
  2861. * Generate lists of code addresses where slabcache objects are allocated
  2862. * and freed.
  2863. */
  2864. struct location {
  2865. unsigned long count;
  2866. void *addr;
  2867. long long sum_time;
  2868. long min_time;
  2869. long max_time;
  2870. long min_pid;
  2871. long max_pid;
  2872. cpumask_t cpus;
  2873. nodemask_t nodes;
  2874. };
  2875. struct loc_track {
  2876. unsigned long max;
  2877. unsigned long count;
  2878. struct location *loc;
  2879. };
  2880. static void free_loc_track(struct loc_track *t)
  2881. {
  2882. if (t->max)
  2883. free_pages((unsigned long)t->loc,
  2884. get_order(sizeof(struct location) * t->max));
  2885. }
  2886. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2887. {
  2888. struct location *l;
  2889. int order;
  2890. order = get_order(sizeof(struct location) * max);
  2891. l = (void *)__get_free_pages(flags, order);
  2892. if (!l)
  2893. return 0;
  2894. if (t->count) {
  2895. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2896. free_loc_track(t);
  2897. }
  2898. t->max = max;
  2899. t->loc = l;
  2900. return 1;
  2901. }
  2902. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2903. const struct track *track)
  2904. {
  2905. long start, end, pos;
  2906. struct location *l;
  2907. void *caddr;
  2908. unsigned long age = jiffies - track->when;
  2909. start = -1;
  2910. end = t->count;
  2911. for ( ; ; ) {
  2912. pos = start + (end - start + 1) / 2;
  2913. /*
  2914. * There is nothing at "end". If we end up there
  2915. * we need to add something to before end.
  2916. */
  2917. if (pos == end)
  2918. break;
  2919. caddr = t->loc[pos].addr;
  2920. if (track->addr == caddr) {
  2921. l = &t->loc[pos];
  2922. l->count++;
  2923. if (track->when) {
  2924. l->sum_time += age;
  2925. if (age < l->min_time)
  2926. l->min_time = age;
  2927. if (age > l->max_time)
  2928. l->max_time = age;
  2929. if (track->pid < l->min_pid)
  2930. l->min_pid = track->pid;
  2931. if (track->pid > l->max_pid)
  2932. l->max_pid = track->pid;
  2933. cpu_set(track->cpu, l->cpus);
  2934. }
  2935. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2936. return 1;
  2937. }
  2938. if (track->addr < caddr)
  2939. end = pos;
  2940. else
  2941. start = pos;
  2942. }
  2943. /*
  2944. * Not found. Insert new tracking element.
  2945. */
  2946. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2947. return 0;
  2948. l = t->loc + pos;
  2949. if (pos < t->count)
  2950. memmove(l + 1, l,
  2951. (t->count - pos) * sizeof(struct location));
  2952. t->count++;
  2953. l->count = 1;
  2954. l->addr = track->addr;
  2955. l->sum_time = age;
  2956. l->min_time = age;
  2957. l->max_time = age;
  2958. l->min_pid = track->pid;
  2959. l->max_pid = track->pid;
  2960. cpus_clear(l->cpus);
  2961. cpu_set(track->cpu, l->cpus);
  2962. nodes_clear(l->nodes);
  2963. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2964. return 1;
  2965. }
  2966. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2967. struct page *page, enum track_item alloc)
  2968. {
  2969. void *addr = slab_address(page);
  2970. DECLARE_BITMAP(map, s->objects);
  2971. void *p;
  2972. bitmap_zero(map, s->objects);
  2973. for_each_free_object(p, s, page->freelist)
  2974. set_bit(slab_index(p, s, addr), map);
  2975. for_each_object(p, s, addr)
  2976. if (!test_bit(slab_index(p, s, addr), map))
  2977. add_location(t, s, get_track(s, p, alloc));
  2978. }
  2979. static int list_locations(struct kmem_cache *s, char *buf,
  2980. enum track_item alloc)
  2981. {
  2982. int len = 0;
  2983. unsigned long i;
  2984. struct loc_track t = { 0, 0, NULL };
  2985. int node;
  2986. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2987. GFP_TEMPORARY))
  2988. return sprintf(buf, "Out of memory\n");
  2989. /* Push back cpu slabs */
  2990. flush_all(s);
  2991. for_each_node_state(node, N_NORMAL_MEMORY) {
  2992. struct kmem_cache_node *n = get_node(s, node);
  2993. unsigned long flags;
  2994. struct page *page;
  2995. if (!atomic_long_read(&n->nr_slabs))
  2996. continue;
  2997. spin_lock_irqsave(&n->list_lock, flags);
  2998. list_for_each_entry(page, &n->partial, lru)
  2999. process_slab(&t, s, page, alloc);
  3000. list_for_each_entry(page, &n->full, lru)
  3001. process_slab(&t, s, page, alloc);
  3002. spin_unlock_irqrestore(&n->list_lock, flags);
  3003. }
  3004. for (i = 0; i < t.count; i++) {
  3005. struct location *l = &t.loc[i];
  3006. if (len > PAGE_SIZE - 100)
  3007. break;
  3008. len += sprintf(buf + len, "%7ld ", l->count);
  3009. if (l->addr)
  3010. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3011. else
  3012. len += sprintf(buf + len, "<not-available>");
  3013. if (l->sum_time != l->min_time) {
  3014. unsigned long remainder;
  3015. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3016. l->min_time,
  3017. div_long_long_rem(l->sum_time, l->count, &remainder),
  3018. l->max_time);
  3019. } else
  3020. len += sprintf(buf + len, " age=%ld",
  3021. l->min_time);
  3022. if (l->min_pid != l->max_pid)
  3023. len += sprintf(buf + len, " pid=%ld-%ld",
  3024. l->min_pid, l->max_pid);
  3025. else
  3026. len += sprintf(buf + len, " pid=%ld",
  3027. l->min_pid);
  3028. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3029. len < PAGE_SIZE - 60) {
  3030. len += sprintf(buf + len, " cpus=");
  3031. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3032. l->cpus);
  3033. }
  3034. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3035. len < PAGE_SIZE - 60) {
  3036. len += sprintf(buf + len, " nodes=");
  3037. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3038. l->nodes);
  3039. }
  3040. len += sprintf(buf + len, "\n");
  3041. }
  3042. free_loc_track(&t);
  3043. if (!t.count)
  3044. len += sprintf(buf, "No data\n");
  3045. return len;
  3046. }
  3047. enum slab_stat_type {
  3048. SL_FULL,
  3049. SL_PARTIAL,
  3050. SL_CPU,
  3051. SL_OBJECTS
  3052. };
  3053. #define SO_FULL (1 << SL_FULL)
  3054. #define SO_PARTIAL (1 << SL_PARTIAL)
  3055. #define SO_CPU (1 << SL_CPU)
  3056. #define SO_OBJECTS (1 << SL_OBJECTS)
  3057. static unsigned long slab_objects(struct kmem_cache *s,
  3058. char *buf, unsigned long flags)
  3059. {
  3060. unsigned long total = 0;
  3061. int cpu;
  3062. int node;
  3063. int x;
  3064. unsigned long *nodes;
  3065. unsigned long *per_cpu;
  3066. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3067. per_cpu = nodes + nr_node_ids;
  3068. for_each_possible_cpu(cpu) {
  3069. struct page *page;
  3070. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3071. if (!c)
  3072. continue;
  3073. page = c->page;
  3074. node = c->node;
  3075. if (node < 0)
  3076. continue;
  3077. if (page) {
  3078. if (flags & SO_CPU) {
  3079. if (flags & SO_OBJECTS)
  3080. x = page->inuse;
  3081. else
  3082. x = 1;
  3083. total += x;
  3084. nodes[node] += x;
  3085. }
  3086. per_cpu[node]++;
  3087. }
  3088. }
  3089. for_each_node_state(node, N_NORMAL_MEMORY) {
  3090. struct kmem_cache_node *n = get_node(s, node);
  3091. if (flags & SO_PARTIAL) {
  3092. if (flags & SO_OBJECTS)
  3093. x = count_partial(n);
  3094. else
  3095. x = n->nr_partial;
  3096. total += x;
  3097. nodes[node] += x;
  3098. }
  3099. if (flags & SO_FULL) {
  3100. int full_slabs = atomic_long_read(&n->nr_slabs)
  3101. - per_cpu[node]
  3102. - n->nr_partial;
  3103. if (flags & SO_OBJECTS)
  3104. x = full_slabs * s->objects;
  3105. else
  3106. x = full_slabs;
  3107. total += x;
  3108. nodes[node] += x;
  3109. }
  3110. }
  3111. x = sprintf(buf, "%lu", total);
  3112. #ifdef CONFIG_NUMA
  3113. for_each_node_state(node, N_NORMAL_MEMORY)
  3114. if (nodes[node])
  3115. x += sprintf(buf + x, " N%d=%lu",
  3116. node, nodes[node]);
  3117. #endif
  3118. kfree(nodes);
  3119. return x + sprintf(buf + x, "\n");
  3120. }
  3121. static int any_slab_objects(struct kmem_cache *s)
  3122. {
  3123. int node;
  3124. int cpu;
  3125. for_each_possible_cpu(cpu) {
  3126. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3127. if (c && c->page)
  3128. return 1;
  3129. }
  3130. for_each_online_node(node) {
  3131. struct kmem_cache_node *n = get_node(s, node);
  3132. if (!n)
  3133. continue;
  3134. if (n->nr_partial || atomic_long_read(&n->nr_slabs))
  3135. return 1;
  3136. }
  3137. return 0;
  3138. }
  3139. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3140. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3141. struct slab_attribute {
  3142. struct attribute attr;
  3143. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3144. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3145. };
  3146. #define SLAB_ATTR_RO(_name) \
  3147. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3148. #define SLAB_ATTR(_name) \
  3149. static struct slab_attribute _name##_attr = \
  3150. __ATTR(_name, 0644, _name##_show, _name##_store)
  3151. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3152. {
  3153. return sprintf(buf, "%d\n", s->size);
  3154. }
  3155. SLAB_ATTR_RO(slab_size);
  3156. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3157. {
  3158. return sprintf(buf, "%d\n", s->align);
  3159. }
  3160. SLAB_ATTR_RO(align);
  3161. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3162. {
  3163. return sprintf(buf, "%d\n", s->objsize);
  3164. }
  3165. SLAB_ATTR_RO(object_size);
  3166. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3167. {
  3168. return sprintf(buf, "%d\n", s->objects);
  3169. }
  3170. SLAB_ATTR_RO(objs_per_slab);
  3171. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3172. {
  3173. return sprintf(buf, "%d\n", s->order);
  3174. }
  3175. SLAB_ATTR_RO(order);
  3176. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3177. {
  3178. if (s->ctor) {
  3179. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3180. return n + sprintf(buf + n, "\n");
  3181. }
  3182. return 0;
  3183. }
  3184. SLAB_ATTR_RO(ctor);
  3185. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3186. {
  3187. return sprintf(buf, "%d\n", s->refcount - 1);
  3188. }
  3189. SLAB_ATTR_RO(aliases);
  3190. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3191. {
  3192. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  3193. }
  3194. SLAB_ATTR_RO(slabs);
  3195. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3196. {
  3197. return slab_objects(s, buf, SO_PARTIAL);
  3198. }
  3199. SLAB_ATTR_RO(partial);
  3200. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3201. {
  3202. return slab_objects(s, buf, SO_CPU);
  3203. }
  3204. SLAB_ATTR_RO(cpu_slabs);
  3205. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3206. {
  3207. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  3208. }
  3209. SLAB_ATTR_RO(objects);
  3210. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3211. {
  3212. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3213. }
  3214. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3215. const char *buf, size_t length)
  3216. {
  3217. s->flags &= ~SLAB_DEBUG_FREE;
  3218. if (buf[0] == '1')
  3219. s->flags |= SLAB_DEBUG_FREE;
  3220. return length;
  3221. }
  3222. SLAB_ATTR(sanity_checks);
  3223. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3224. {
  3225. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3226. }
  3227. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3228. size_t length)
  3229. {
  3230. s->flags &= ~SLAB_TRACE;
  3231. if (buf[0] == '1')
  3232. s->flags |= SLAB_TRACE;
  3233. return length;
  3234. }
  3235. SLAB_ATTR(trace);
  3236. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3237. {
  3238. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3239. }
  3240. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3241. const char *buf, size_t length)
  3242. {
  3243. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3244. if (buf[0] == '1')
  3245. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3246. return length;
  3247. }
  3248. SLAB_ATTR(reclaim_account);
  3249. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3250. {
  3251. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3252. }
  3253. SLAB_ATTR_RO(hwcache_align);
  3254. #ifdef CONFIG_ZONE_DMA
  3255. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3256. {
  3257. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3258. }
  3259. SLAB_ATTR_RO(cache_dma);
  3260. #endif
  3261. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3262. {
  3263. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3264. }
  3265. SLAB_ATTR_RO(destroy_by_rcu);
  3266. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3267. {
  3268. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3269. }
  3270. static ssize_t red_zone_store(struct kmem_cache *s,
  3271. const char *buf, size_t length)
  3272. {
  3273. if (any_slab_objects(s))
  3274. return -EBUSY;
  3275. s->flags &= ~SLAB_RED_ZONE;
  3276. if (buf[0] == '1')
  3277. s->flags |= SLAB_RED_ZONE;
  3278. calculate_sizes(s);
  3279. return length;
  3280. }
  3281. SLAB_ATTR(red_zone);
  3282. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3283. {
  3284. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3285. }
  3286. static ssize_t poison_store(struct kmem_cache *s,
  3287. const char *buf, size_t length)
  3288. {
  3289. if (any_slab_objects(s))
  3290. return -EBUSY;
  3291. s->flags &= ~SLAB_POISON;
  3292. if (buf[0] == '1')
  3293. s->flags |= SLAB_POISON;
  3294. calculate_sizes(s);
  3295. return length;
  3296. }
  3297. SLAB_ATTR(poison);
  3298. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3299. {
  3300. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3301. }
  3302. static ssize_t store_user_store(struct kmem_cache *s,
  3303. const char *buf, size_t length)
  3304. {
  3305. if (any_slab_objects(s))
  3306. return -EBUSY;
  3307. s->flags &= ~SLAB_STORE_USER;
  3308. if (buf[0] == '1')
  3309. s->flags |= SLAB_STORE_USER;
  3310. calculate_sizes(s);
  3311. return length;
  3312. }
  3313. SLAB_ATTR(store_user);
  3314. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3315. {
  3316. return 0;
  3317. }
  3318. static ssize_t validate_store(struct kmem_cache *s,
  3319. const char *buf, size_t length)
  3320. {
  3321. int ret = -EINVAL;
  3322. if (buf[0] == '1') {
  3323. ret = validate_slab_cache(s);
  3324. if (ret >= 0)
  3325. ret = length;
  3326. }
  3327. return ret;
  3328. }
  3329. SLAB_ATTR(validate);
  3330. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3331. {
  3332. return 0;
  3333. }
  3334. static ssize_t shrink_store(struct kmem_cache *s,
  3335. const char *buf, size_t length)
  3336. {
  3337. if (buf[0] == '1') {
  3338. int rc = kmem_cache_shrink(s);
  3339. if (rc)
  3340. return rc;
  3341. } else
  3342. return -EINVAL;
  3343. return length;
  3344. }
  3345. SLAB_ATTR(shrink);
  3346. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3347. {
  3348. if (!(s->flags & SLAB_STORE_USER))
  3349. return -ENOSYS;
  3350. return list_locations(s, buf, TRACK_ALLOC);
  3351. }
  3352. SLAB_ATTR_RO(alloc_calls);
  3353. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. if (!(s->flags & SLAB_STORE_USER))
  3356. return -ENOSYS;
  3357. return list_locations(s, buf, TRACK_FREE);
  3358. }
  3359. SLAB_ATTR_RO(free_calls);
  3360. #ifdef CONFIG_NUMA
  3361. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3362. {
  3363. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3364. }
  3365. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3366. const char *buf, size_t length)
  3367. {
  3368. int n = simple_strtoul(buf, NULL, 10);
  3369. if (n < 100)
  3370. s->remote_node_defrag_ratio = n * 10;
  3371. return length;
  3372. }
  3373. SLAB_ATTR(remote_node_defrag_ratio);
  3374. #endif
  3375. static struct attribute *slab_attrs[] = {
  3376. &slab_size_attr.attr,
  3377. &object_size_attr.attr,
  3378. &objs_per_slab_attr.attr,
  3379. &order_attr.attr,
  3380. &objects_attr.attr,
  3381. &slabs_attr.attr,
  3382. &partial_attr.attr,
  3383. &cpu_slabs_attr.attr,
  3384. &ctor_attr.attr,
  3385. &aliases_attr.attr,
  3386. &align_attr.attr,
  3387. &sanity_checks_attr.attr,
  3388. &trace_attr.attr,
  3389. &hwcache_align_attr.attr,
  3390. &reclaim_account_attr.attr,
  3391. &destroy_by_rcu_attr.attr,
  3392. &red_zone_attr.attr,
  3393. &poison_attr.attr,
  3394. &store_user_attr.attr,
  3395. &validate_attr.attr,
  3396. &shrink_attr.attr,
  3397. &alloc_calls_attr.attr,
  3398. &free_calls_attr.attr,
  3399. #ifdef CONFIG_ZONE_DMA
  3400. &cache_dma_attr.attr,
  3401. #endif
  3402. #ifdef CONFIG_NUMA
  3403. &remote_node_defrag_ratio_attr.attr,
  3404. #endif
  3405. NULL
  3406. };
  3407. static struct attribute_group slab_attr_group = {
  3408. .attrs = slab_attrs,
  3409. };
  3410. static ssize_t slab_attr_show(struct kobject *kobj,
  3411. struct attribute *attr,
  3412. char *buf)
  3413. {
  3414. struct slab_attribute *attribute;
  3415. struct kmem_cache *s;
  3416. int err;
  3417. attribute = to_slab_attr(attr);
  3418. s = to_slab(kobj);
  3419. if (!attribute->show)
  3420. return -EIO;
  3421. err = attribute->show(s, buf);
  3422. return err;
  3423. }
  3424. static ssize_t slab_attr_store(struct kobject *kobj,
  3425. struct attribute *attr,
  3426. const char *buf, size_t len)
  3427. {
  3428. struct slab_attribute *attribute;
  3429. struct kmem_cache *s;
  3430. int err;
  3431. attribute = to_slab_attr(attr);
  3432. s = to_slab(kobj);
  3433. if (!attribute->store)
  3434. return -EIO;
  3435. err = attribute->store(s, buf, len);
  3436. return err;
  3437. }
  3438. static void kmem_cache_release(struct kobject *kobj)
  3439. {
  3440. struct kmem_cache *s = to_slab(kobj);
  3441. kfree(s);
  3442. }
  3443. static struct sysfs_ops slab_sysfs_ops = {
  3444. .show = slab_attr_show,
  3445. .store = slab_attr_store,
  3446. };
  3447. static struct kobj_type slab_ktype = {
  3448. .sysfs_ops = &slab_sysfs_ops,
  3449. .release = kmem_cache_release
  3450. };
  3451. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3452. {
  3453. struct kobj_type *ktype = get_ktype(kobj);
  3454. if (ktype == &slab_ktype)
  3455. return 1;
  3456. return 0;
  3457. }
  3458. static struct kset_uevent_ops slab_uevent_ops = {
  3459. .filter = uevent_filter,
  3460. };
  3461. static struct kset *slab_kset;
  3462. #define ID_STR_LENGTH 64
  3463. /* Create a unique string id for a slab cache:
  3464. * format
  3465. * :[flags-]size:[memory address of kmemcache]
  3466. */
  3467. static char *create_unique_id(struct kmem_cache *s)
  3468. {
  3469. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3470. char *p = name;
  3471. BUG_ON(!name);
  3472. *p++ = ':';
  3473. /*
  3474. * First flags affecting slabcache operations. We will only
  3475. * get here for aliasable slabs so we do not need to support
  3476. * too many flags. The flags here must cover all flags that
  3477. * are matched during merging to guarantee that the id is
  3478. * unique.
  3479. */
  3480. if (s->flags & SLAB_CACHE_DMA)
  3481. *p++ = 'd';
  3482. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3483. *p++ = 'a';
  3484. if (s->flags & SLAB_DEBUG_FREE)
  3485. *p++ = 'F';
  3486. if (p != name + 1)
  3487. *p++ = '-';
  3488. p += sprintf(p, "%07d", s->size);
  3489. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3490. return name;
  3491. }
  3492. static int sysfs_slab_add(struct kmem_cache *s)
  3493. {
  3494. int err;
  3495. const char *name;
  3496. int unmergeable;
  3497. if (slab_state < SYSFS)
  3498. /* Defer until later */
  3499. return 0;
  3500. unmergeable = slab_unmergeable(s);
  3501. if (unmergeable) {
  3502. /*
  3503. * Slabcache can never be merged so we can use the name proper.
  3504. * This is typically the case for debug situations. In that
  3505. * case we can catch duplicate names easily.
  3506. */
  3507. sysfs_remove_link(&slab_kset->kobj, s->name);
  3508. name = s->name;
  3509. } else {
  3510. /*
  3511. * Create a unique name for the slab as a target
  3512. * for the symlinks.
  3513. */
  3514. name = create_unique_id(s);
  3515. }
  3516. s->kobj.kset = slab_kset;
  3517. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3518. if (err) {
  3519. kobject_put(&s->kobj);
  3520. return err;
  3521. }
  3522. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3523. if (err)
  3524. return err;
  3525. kobject_uevent(&s->kobj, KOBJ_ADD);
  3526. if (!unmergeable) {
  3527. /* Setup first alias */
  3528. sysfs_slab_alias(s, s->name);
  3529. kfree(name);
  3530. }
  3531. return 0;
  3532. }
  3533. static void sysfs_slab_remove(struct kmem_cache *s)
  3534. {
  3535. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3536. kobject_del(&s->kobj);
  3537. kobject_put(&s->kobj);
  3538. }
  3539. /*
  3540. * Need to buffer aliases during bootup until sysfs becomes
  3541. * available lest we loose that information.
  3542. */
  3543. struct saved_alias {
  3544. struct kmem_cache *s;
  3545. const char *name;
  3546. struct saved_alias *next;
  3547. };
  3548. static struct saved_alias *alias_list;
  3549. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3550. {
  3551. struct saved_alias *al;
  3552. if (slab_state == SYSFS) {
  3553. /*
  3554. * If we have a leftover link then remove it.
  3555. */
  3556. sysfs_remove_link(&slab_kset->kobj, name);
  3557. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3558. }
  3559. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3560. if (!al)
  3561. return -ENOMEM;
  3562. al->s = s;
  3563. al->name = name;
  3564. al->next = alias_list;
  3565. alias_list = al;
  3566. return 0;
  3567. }
  3568. static int __init slab_sysfs_init(void)
  3569. {
  3570. struct kmem_cache *s;
  3571. int err;
  3572. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3573. if (!slab_kset) {
  3574. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3575. return -ENOSYS;
  3576. }
  3577. slab_state = SYSFS;
  3578. list_for_each_entry(s, &slab_caches, list) {
  3579. err = sysfs_slab_add(s);
  3580. if (err)
  3581. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3582. " to sysfs\n", s->name);
  3583. }
  3584. while (alias_list) {
  3585. struct saved_alias *al = alias_list;
  3586. alias_list = alias_list->next;
  3587. err = sysfs_slab_alias(al->s, al->name);
  3588. if (err)
  3589. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3590. " %s to sysfs\n", s->name);
  3591. kfree(al);
  3592. }
  3593. resiliency_test();
  3594. return 0;
  3595. }
  3596. __initcall(slab_sysfs_init);
  3597. #endif
  3598. /*
  3599. * The /proc/slabinfo ABI
  3600. */
  3601. #ifdef CONFIG_SLABINFO
  3602. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3603. size_t count, loff_t *ppos)
  3604. {
  3605. return -EINVAL;
  3606. }
  3607. static void print_slabinfo_header(struct seq_file *m)
  3608. {
  3609. seq_puts(m, "slabinfo - version: 2.1\n");
  3610. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3611. "<objperslab> <pagesperslab>");
  3612. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3613. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3614. seq_putc(m, '\n');
  3615. }
  3616. static void *s_start(struct seq_file *m, loff_t *pos)
  3617. {
  3618. loff_t n = *pos;
  3619. down_read(&slub_lock);
  3620. if (!n)
  3621. print_slabinfo_header(m);
  3622. return seq_list_start(&slab_caches, *pos);
  3623. }
  3624. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3625. {
  3626. return seq_list_next(p, &slab_caches, pos);
  3627. }
  3628. static void s_stop(struct seq_file *m, void *p)
  3629. {
  3630. up_read(&slub_lock);
  3631. }
  3632. static int s_show(struct seq_file *m, void *p)
  3633. {
  3634. unsigned long nr_partials = 0;
  3635. unsigned long nr_slabs = 0;
  3636. unsigned long nr_inuse = 0;
  3637. unsigned long nr_objs;
  3638. struct kmem_cache *s;
  3639. int node;
  3640. s = list_entry(p, struct kmem_cache, list);
  3641. for_each_online_node(node) {
  3642. struct kmem_cache_node *n = get_node(s, node);
  3643. if (!n)
  3644. continue;
  3645. nr_partials += n->nr_partial;
  3646. nr_slabs += atomic_long_read(&n->nr_slabs);
  3647. nr_inuse += count_partial(n);
  3648. }
  3649. nr_objs = nr_slabs * s->objects;
  3650. nr_inuse += (nr_slabs - nr_partials) * s->objects;
  3651. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3652. nr_objs, s->size, s->objects, (1 << s->order));
  3653. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3654. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3655. 0UL);
  3656. seq_putc(m, '\n');
  3657. return 0;
  3658. }
  3659. const struct seq_operations slabinfo_op = {
  3660. .start = s_start,
  3661. .next = s_next,
  3662. .stop = s_stop,
  3663. .show = s_show,
  3664. };
  3665. #endif /* CONFIG_SLABINFO */