vmscan.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/notifier.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/delay.h>
  37. #include <linux/kthread.h>
  38. #include <linux/freezer.h>
  39. #include <linux/memcontrol.h>
  40. #include <linux/delayacct.h>
  41. #include <linux/sysctl.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/div64.h>
  44. #include <linux/swapops.h>
  45. #include "internal.h"
  46. struct scan_control {
  47. /* Incremented by the number of inactive pages that were scanned */
  48. unsigned long nr_scanned;
  49. /* Number of pages freed so far during a call to shrink_zones() */
  50. unsigned long nr_reclaimed;
  51. /* This context's GFP mask */
  52. gfp_t gfp_mask;
  53. int may_writepage;
  54. /* Can mapped pages be reclaimed? */
  55. int may_unmap;
  56. /* Can pages be swapped as part of reclaim? */
  57. int may_swap;
  58. /* This context's SWAP_CLUSTER_MAX. If freeing memory for
  59. * suspend, we effectively ignore SWAP_CLUSTER_MAX.
  60. * In this context, it doesn't matter that we scan the
  61. * whole list at once. */
  62. int swap_cluster_max;
  63. int swappiness;
  64. int all_unreclaimable;
  65. int order;
  66. /* Which cgroup do we reclaim from */
  67. struct mem_cgroup *mem_cgroup;
  68. /*
  69. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  70. * are scanned.
  71. */
  72. nodemask_t *nodemask;
  73. /* Pluggable isolate pages callback */
  74. unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
  75. unsigned long *scanned, int order, int mode,
  76. struct zone *z, struct mem_cgroup *mem_cont,
  77. int active, int file);
  78. };
  79. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  80. #ifdef ARCH_HAS_PREFETCH
  81. #define prefetch_prev_lru_page(_page, _base, _field) \
  82. do { \
  83. if ((_page)->lru.prev != _base) { \
  84. struct page *prev; \
  85. \
  86. prev = lru_to_page(&(_page->lru)); \
  87. prefetch(&prev->_field); \
  88. } \
  89. } while (0)
  90. #else
  91. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  92. #endif
  93. #ifdef ARCH_HAS_PREFETCHW
  94. #define prefetchw_prev_lru_page(_page, _base, _field) \
  95. do { \
  96. if ((_page)->lru.prev != _base) { \
  97. struct page *prev; \
  98. \
  99. prev = lru_to_page(&(_page->lru)); \
  100. prefetchw(&prev->_field); \
  101. } \
  102. } while (0)
  103. #else
  104. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  105. #endif
  106. /*
  107. * From 0 .. 100. Higher means more swappy.
  108. */
  109. int vm_swappiness = 60;
  110. long vm_total_pages; /* The total number of pages which the VM controls */
  111. static LIST_HEAD(shrinker_list);
  112. static DECLARE_RWSEM(shrinker_rwsem);
  113. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  114. #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
  115. #else
  116. #define scanning_global_lru(sc) (1)
  117. #endif
  118. static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
  119. struct scan_control *sc)
  120. {
  121. if (!scanning_global_lru(sc))
  122. return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
  123. return &zone->reclaim_stat;
  124. }
  125. static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
  126. enum lru_list lru)
  127. {
  128. if (!scanning_global_lru(sc))
  129. return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
  130. return zone_page_state(zone, NR_LRU_BASE + lru);
  131. }
  132. /*
  133. * Add a shrinker callback to be called from the vm
  134. */
  135. void register_shrinker(struct shrinker *shrinker)
  136. {
  137. shrinker->nr = 0;
  138. down_write(&shrinker_rwsem);
  139. list_add_tail(&shrinker->list, &shrinker_list);
  140. up_write(&shrinker_rwsem);
  141. }
  142. EXPORT_SYMBOL(register_shrinker);
  143. /*
  144. * Remove one
  145. */
  146. void unregister_shrinker(struct shrinker *shrinker)
  147. {
  148. down_write(&shrinker_rwsem);
  149. list_del(&shrinker->list);
  150. up_write(&shrinker_rwsem);
  151. }
  152. EXPORT_SYMBOL(unregister_shrinker);
  153. #define SHRINK_BATCH 128
  154. /*
  155. * Call the shrink functions to age shrinkable caches
  156. *
  157. * Here we assume it costs one seek to replace a lru page and that it also
  158. * takes a seek to recreate a cache object. With this in mind we age equal
  159. * percentages of the lru and ageable caches. This should balance the seeks
  160. * generated by these structures.
  161. *
  162. * If the vm encountered mapped pages on the LRU it increase the pressure on
  163. * slab to avoid swapping.
  164. *
  165. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  166. *
  167. * `lru_pages' represents the number of on-LRU pages in all the zones which
  168. * are eligible for the caller's allocation attempt. It is used for balancing
  169. * slab reclaim versus page reclaim.
  170. *
  171. * Returns the number of slab objects which we shrunk.
  172. */
  173. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  174. unsigned long lru_pages)
  175. {
  176. struct shrinker *shrinker;
  177. unsigned long ret = 0;
  178. if (scanned == 0)
  179. scanned = SWAP_CLUSTER_MAX;
  180. if (!down_read_trylock(&shrinker_rwsem))
  181. return 1; /* Assume we'll be able to shrink next time */
  182. list_for_each_entry(shrinker, &shrinker_list, list) {
  183. unsigned long long delta;
  184. unsigned long total_scan;
  185. unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
  186. delta = (4 * scanned) / shrinker->seeks;
  187. delta *= max_pass;
  188. do_div(delta, lru_pages + 1);
  189. shrinker->nr += delta;
  190. if (shrinker->nr < 0) {
  191. printk(KERN_ERR "shrink_slab: %pF negative objects to "
  192. "delete nr=%ld\n",
  193. shrinker->shrink, shrinker->nr);
  194. shrinker->nr = max_pass;
  195. }
  196. /*
  197. * Avoid risking looping forever due to too large nr value:
  198. * never try to free more than twice the estimate number of
  199. * freeable entries.
  200. */
  201. if (shrinker->nr > max_pass * 2)
  202. shrinker->nr = max_pass * 2;
  203. total_scan = shrinker->nr;
  204. shrinker->nr = 0;
  205. while (total_scan >= SHRINK_BATCH) {
  206. long this_scan = SHRINK_BATCH;
  207. int shrink_ret;
  208. int nr_before;
  209. nr_before = (*shrinker->shrink)(0, gfp_mask);
  210. shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
  211. if (shrink_ret == -1)
  212. break;
  213. if (shrink_ret < nr_before)
  214. ret += nr_before - shrink_ret;
  215. count_vm_events(SLABS_SCANNED, this_scan);
  216. total_scan -= this_scan;
  217. cond_resched();
  218. }
  219. shrinker->nr += total_scan;
  220. }
  221. up_read(&shrinker_rwsem);
  222. return ret;
  223. }
  224. /* Called without lock on whether page is mapped, so answer is unstable */
  225. static inline int page_mapping_inuse(struct page *page)
  226. {
  227. struct address_space *mapping;
  228. /* Page is in somebody's page tables. */
  229. if (page_mapped(page))
  230. return 1;
  231. /* Be more reluctant to reclaim swapcache than pagecache */
  232. if (PageSwapCache(page))
  233. return 1;
  234. mapping = page_mapping(page);
  235. if (!mapping)
  236. return 0;
  237. /* File is mmap'd by somebody? */
  238. return mapping_mapped(mapping);
  239. }
  240. static inline int is_page_cache_freeable(struct page *page)
  241. {
  242. return page_count(page) - !!page_has_private(page) == 2;
  243. }
  244. static int may_write_to_queue(struct backing_dev_info *bdi)
  245. {
  246. if (current->flags & PF_SWAPWRITE)
  247. return 1;
  248. if (!bdi_write_congested(bdi))
  249. return 1;
  250. if (bdi == current->backing_dev_info)
  251. return 1;
  252. return 0;
  253. }
  254. /*
  255. * We detected a synchronous write error writing a page out. Probably
  256. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  257. * fsync(), msync() or close().
  258. *
  259. * The tricky part is that after writepage we cannot touch the mapping: nothing
  260. * prevents it from being freed up. But we have a ref on the page and once
  261. * that page is locked, the mapping is pinned.
  262. *
  263. * We're allowed to run sleeping lock_page() here because we know the caller has
  264. * __GFP_FS.
  265. */
  266. static void handle_write_error(struct address_space *mapping,
  267. struct page *page, int error)
  268. {
  269. lock_page(page);
  270. if (page_mapping(page) == mapping)
  271. mapping_set_error(mapping, error);
  272. unlock_page(page);
  273. }
  274. /* Request for sync pageout. */
  275. enum pageout_io {
  276. PAGEOUT_IO_ASYNC,
  277. PAGEOUT_IO_SYNC,
  278. };
  279. /* possible outcome of pageout() */
  280. typedef enum {
  281. /* failed to write page out, page is locked */
  282. PAGE_KEEP,
  283. /* move page to the active list, page is locked */
  284. PAGE_ACTIVATE,
  285. /* page has been sent to the disk successfully, page is unlocked */
  286. PAGE_SUCCESS,
  287. /* page is clean and locked */
  288. PAGE_CLEAN,
  289. } pageout_t;
  290. /*
  291. * pageout is called by shrink_page_list() for each dirty page.
  292. * Calls ->writepage().
  293. */
  294. static pageout_t pageout(struct page *page, struct address_space *mapping,
  295. enum pageout_io sync_writeback)
  296. {
  297. /*
  298. * If the page is dirty, only perform writeback if that write
  299. * will be non-blocking. To prevent this allocation from being
  300. * stalled by pagecache activity. But note that there may be
  301. * stalls if we need to run get_block(). We could test
  302. * PagePrivate for that.
  303. *
  304. * If this process is currently in generic_file_write() against
  305. * this page's queue, we can perform writeback even if that
  306. * will block.
  307. *
  308. * If the page is swapcache, write it back even if that would
  309. * block, for some throttling. This happens by accident, because
  310. * swap_backing_dev_info is bust: it doesn't reflect the
  311. * congestion state of the swapdevs. Easy to fix, if needed.
  312. * See swapfile.c:page_queue_congested().
  313. */
  314. if (!is_page_cache_freeable(page))
  315. return PAGE_KEEP;
  316. if (!mapping) {
  317. /*
  318. * Some data journaling orphaned pages can have
  319. * page->mapping == NULL while being dirty with clean buffers.
  320. */
  321. if (page_has_private(page)) {
  322. if (try_to_free_buffers(page)) {
  323. ClearPageDirty(page);
  324. printk("%s: orphaned page\n", __func__);
  325. return PAGE_CLEAN;
  326. }
  327. }
  328. return PAGE_KEEP;
  329. }
  330. if (mapping->a_ops->writepage == NULL)
  331. return PAGE_ACTIVATE;
  332. if (!may_write_to_queue(mapping->backing_dev_info))
  333. return PAGE_KEEP;
  334. if (clear_page_dirty_for_io(page)) {
  335. int res;
  336. struct writeback_control wbc = {
  337. .sync_mode = WB_SYNC_NONE,
  338. .nr_to_write = SWAP_CLUSTER_MAX,
  339. .range_start = 0,
  340. .range_end = LLONG_MAX,
  341. .nonblocking = 1,
  342. .for_reclaim = 1,
  343. };
  344. SetPageReclaim(page);
  345. res = mapping->a_ops->writepage(page, &wbc);
  346. if (res < 0)
  347. handle_write_error(mapping, page, res);
  348. if (res == AOP_WRITEPAGE_ACTIVATE) {
  349. ClearPageReclaim(page);
  350. return PAGE_ACTIVATE;
  351. }
  352. /*
  353. * Wait on writeback if requested to. This happens when
  354. * direct reclaiming a large contiguous area and the
  355. * first attempt to free a range of pages fails.
  356. */
  357. if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
  358. wait_on_page_writeback(page);
  359. if (!PageWriteback(page)) {
  360. /* synchronous write or broken a_ops? */
  361. ClearPageReclaim(page);
  362. }
  363. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  364. return PAGE_SUCCESS;
  365. }
  366. return PAGE_CLEAN;
  367. }
  368. /*
  369. * Same as remove_mapping, but if the page is removed from the mapping, it
  370. * gets returned with a refcount of 0.
  371. */
  372. static int __remove_mapping(struct address_space *mapping, struct page *page)
  373. {
  374. BUG_ON(!PageLocked(page));
  375. BUG_ON(mapping != page_mapping(page));
  376. spin_lock_irq(&mapping->tree_lock);
  377. /*
  378. * The non racy check for a busy page.
  379. *
  380. * Must be careful with the order of the tests. When someone has
  381. * a ref to the page, it may be possible that they dirty it then
  382. * drop the reference. So if PageDirty is tested before page_count
  383. * here, then the following race may occur:
  384. *
  385. * get_user_pages(&page);
  386. * [user mapping goes away]
  387. * write_to(page);
  388. * !PageDirty(page) [good]
  389. * SetPageDirty(page);
  390. * put_page(page);
  391. * !page_count(page) [good, discard it]
  392. *
  393. * [oops, our write_to data is lost]
  394. *
  395. * Reversing the order of the tests ensures such a situation cannot
  396. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  397. * load is not satisfied before that of page->_count.
  398. *
  399. * Note that if SetPageDirty is always performed via set_page_dirty,
  400. * and thus under tree_lock, then this ordering is not required.
  401. */
  402. if (!page_freeze_refs(page, 2))
  403. goto cannot_free;
  404. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  405. if (unlikely(PageDirty(page))) {
  406. page_unfreeze_refs(page, 2);
  407. goto cannot_free;
  408. }
  409. if (PageSwapCache(page)) {
  410. swp_entry_t swap = { .val = page_private(page) };
  411. __delete_from_swap_cache(page);
  412. spin_unlock_irq(&mapping->tree_lock);
  413. mem_cgroup_uncharge_swapcache(page, swap);
  414. swap_free(swap);
  415. } else {
  416. __remove_from_page_cache(page);
  417. spin_unlock_irq(&mapping->tree_lock);
  418. mem_cgroup_uncharge_cache_page(page);
  419. }
  420. return 1;
  421. cannot_free:
  422. spin_unlock_irq(&mapping->tree_lock);
  423. return 0;
  424. }
  425. /*
  426. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  427. * someone else has a ref on the page, abort and return 0. If it was
  428. * successfully detached, return 1. Assumes the caller has a single ref on
  429. * this page.
  430. */
  431. int remove_mapping(struct address_space *mapping, struct page *page)
  432. {
  433. if (__remove_mapping(mapping, page)) {
  434. /*
  435. * Unfreezing the refcount with 1 rather than 2 effectively
  436. * drops the pagecache ref for us without requiring another
  437. * atomic operation.
  438. */
  439. page_unfreeze_refs(page, 1);
  440. return 1;
  441. }
  442. return 0;
  443. }
  444. /**
  445. * putback_lru_page - put previously isolated page onto appropriate LRU list
  446. * @page: page to be put back to appropriate lru list
  447. *
  448. * Add previously isolated @page to appropriate LRU list.
  449. * Page may still be unevictable for other reasons.
  450. *
  451. * lru_lock must not be held, interrupts must be enabled.
  452. */
  453. #ifdef CONFIG_UNEVICTABLE_LRU
  454. void putback_lru_page(struct page *page)
  455. {
  456. int lru;
  457. int active = !!TestClearPageActive(page);
  458. int was_unevictable = PageUnevictable(page);
  459. VM_BUG_ON(PageLRU(page));
  460. redo:
  461. ClearPageUnevictable(page);
  462. if (page_evictable(page, NULL)) {
  463. /*
  464. * For evictable pages, we can use the cache.
  465. * In event of a race, worst case is we end up with an
  466. * unevictable page on [in]active list.
  467. * We know how to handle that.
  468. */
  469. lru = active + page_is_file_cache(page);
  470. lru_cache_add_lru(page, lru);
  471. } else {
  472. /*
  473. * Put unevictable pages directly on zone's unevictable
  474. * list.
  475. */
  476. lru = LRU_UNEVICTABLE;
  477. add_page_to_unevictable_list(page);
  478. }
  479. /*
  480. * page's status can change while we move it among lru. If an evictable
  481. * page is on unevictable list, it never be freed. To avoid that,
  482. * check after we added it to the list, again.
  483. */
  484. if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
  485. if (!isolate_lru_page(page)) {
  486. put_page(page);
  487. goto redo;
  488. }
  489. /* This means someone else dropped this page from LRU
  490. * So, it will be freed or putback to LRU again. There is
  491. * nothing to do here.
  492. */
  493. }
  494. if (was_unevictable && lru != LRU_UNEVICTABLE)
  495. count_vm_event(UNEVICTABLE_PGRESCUED);
  496. else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  497. count_vm_event(UNEVICTABLE_PGCULLED);
  498. put_page(page); /* drop ref from isolate */
  499. }
  500. #else /* CONFIG_UNEVICTABLE_LRU */
  501. void putback_lru_page(struct page *page)
  502. {
  503. int lru;
  504. VM_BUG_ON(PageLRU(page));
  505. lru = !!TestClearPageActive(page) + page_is_file_cache(page);
  506. lru_cache_add_lru(page, lru);
  507. put_page(page);
  508. }
  509. #endif /* CONFIG_UNEVICTABLE_LRU */
  510. /*
  511. * shrink_page_list() returns the number of reclaimed pages
  512. */
  513. static unsigned long shrink_page_list(struct list_head *page_list,
  514. struct scan_control *sc,
  515. enum pageout_io sync_writeback)
  516. {
  517. LIST_HEAD(ret_pages);
  518. struct pagevec freed_pvec;
  519. int pgactivate = 0;
  520. unsigned long nr_reclaimed = 0;
  521. cond_resched();
  522. pagevec_init(&freed_pvec, 1);
  523. while (!list_empty(page_list)) {
  524. struct address_space *mapping;
  525. struct page *page;
  526. int may_enter_fs;
  527. int referenced;
  528. cond_resched();
  529. page = lru_to_page(page_list);
  530. list_del(&page->lru);
  531. if (!trylock_page(page))
  532. goto keep;
  533. VM_BUG_ON(PageActive(page));
  534. sc->nr_scanned++;
  535. if (unlikely(!page_evictable(page, NULL)))
  536. goto cull_mlocked;
  537. if (!sc->may_unmap && page_mapped(page))
  538. goto keep_locked;
  539. /* Double the slab pressure for mapped and swapcache pages */
  540. if (page_mapped(page) || PageSwapCache(page))
  541. sc->nr_scanned++;
  542. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  543. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  544. if (PageWriteback(page)) {
  545. /*
  546. * Synchronous reclaim is performed in two passes,
  547. * first an asynchronous pass over the list to
  548. * start parallel writeback, and a second synchronous
  549. * pass to wait for the IO to complete. Wait here
  550. * for any page for which writeback has already
  551. * started.
  552. */
  553. if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
  554. wait_on_page_writeback(page);
  555. else
  556. goto keep_locked;
  557. }
  558. referenced = page_referenced(page, 1, sc->mem_cgroup);
  559. /* In active use or really unfreeable? Activate it. */
  560. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
  561. referenced && page_mapping_inuse(page))
  562. goto activate_locked;
  563. /*
  564. * Anonymous process memory has backing store?
  565. * Try to allocate it some swap space here.
  566. */
  567. if (PageAnon(page) && !PageSwapCache(page)) {
  568. if (!(sc->gfp_mask & __GFP_IO))
  569. goto keep_locked;
  570. if (!add_to_swap(page))
  571. goto activate_locked;
  572. may_enter_fs = 1;
  573. }
  574. mapping = page_mapping(page);
  575. /*
  576. * The page is mapped into the page tables of one or more
  577. * processes. Try to unmap it here.
  578. */
  579. if (page_mapped(page) && mapping) {
  580. switch (try_to_unmap(page, 0)) {
  581. case SWAP_FAIL:
  582. goto activate_locked;
  583. case SWAP_AGAIN:
  584. goto keep_locked;
  585. case SWAP_MLOCK:
  586. goto cull_mlocked;
  587. case SWAP_SUCCESS:
  588. ; /* try to free the page below */
  589. }
  590. }
  591. if (PageDirty(page)) {
  592. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
  593. goto keep_locked;
  594. if (!may_enter_fs)
  595. goto keep_locked;
  596. if (!sc->may_writepage)
  597. goto keep_locked;
  598. /* Page is dirty, try to write it out here */
  599. switch (pageout(page, mapping, sync_writeback)) {
  600. case PAGE_KEEP:
  601. goto keep_locked;
  602. case PAGE_ACTIVATE:
  603. goto activate_locked;
  604. case PAGE_SUCCESS:
  605. if (PageWriteback(page) || PageDirty(page))
  606. goto keep;
  607. /*
  608. * A synchronous write - probably a ramdisk. Go
  609. * ahead and try to reclaim the page.
  610. */
  611. if (!trylock_page(page))
  612. goto keep;
  613. if (PageDirty(page) || PageWriteback(page))
  614. goto keep_locked;
  615. mapping = page_mapping(page);
  616. case PAGE_CLEAN:
  617. ; /* try to free the page below */
  618. }
  619. }
  620. /*
  621. * If the page has buffers, try to free the buffer mappings
  622. * associated with this page. If we succeed we try to free
  623. * the page as well.
  624. *
  625. * We do this even if the page is PageDirty().
  626. * try_to_release_page() does not perform I/O, but it is
  627. * possible for a page to have PageDirty set, but it is actually
  628. * clean (all its buffers are clean). This happens if the
  629. * buffers were written out directly, with submit_bh(). ext3
  630. * will do this, as well as the blockdev mapping.
  631. * try_to_release_page() will discover that cleanness and will
  632. * drop the buffers and mark the page clean - it can be freed.
  633. *
  634. * Rarely, pages can have buffers and no ->mapping. These are
  635. * the pages which were not successfully invalidated in
  636. * truncate_complete_page(). We try to drop those buffers here
  637. * and if that worked, and the page is no longer mapped into
  638. * process address space (page_count == 1) it can be freed.
  639. * Otherwise, leave the page on the LRU so it is swappable.
  640. */
  641. if (page_has_private(page)) {
  642. if (!try_to_release_page(page, sc->gfp_mask))
  643. goto activate_locked;
  644. if (!mapping && page_count(page) == 1) {
  645. unlock_page(page);
  646. if (put_page_testzero(page))
  647. goto free_it;
  648. else {
  649. /*
  650. * rare race with speculative reference.
  651. * the speculative reference will free
  652. * this page shortly, so we may
  653. * increment nr_reclaimed here (and
  654. * leave it off the LRU).
  655. */
  656. nr_reclaimed++;
  657. continue;
  658. }
  659. }
  660. }
  661. if (!mapping || !__remove_mapping(mapping, page))
  662. goto keep_locked;
  663. /*
  664. * At this point, we have no other references and there is
  665. * no way to pick any more up (removed from LRU, removed
  666. * from pagecache). Can use non-atomic bitops now (and
  667. * we obviously don't have to worry about waking up a process
  668. * waiting on the page lock, because there are no references.
  669. */
  670. __clear_page_locked(page);
  671. free_it:
  672. nr_reclaimed++;
  673. if (!pagevec_add(&freed_pvec, page)) {
  674. __pagevec_free(&freed_pvec);
  675. pagevec_reinit(&freed_pvec);
  676. }
  677. continue;
  678. cull_mlocked:
  679. if (PageSwapCache(page))
  680. try_to_free_swap(page);
  681. unlock_page(page);
  682. putback_lru_page(page);
  683. continue;
  684. activate_locked:
  685. /* Not a candidate for swapping, so reclaim swap space. */
  686. if (PageSwapCache(page) && vm_swap_full())
  687. try_to_free_swap(page);
  688. VM_BUG_ON(PageActive(page));
  689. SetPageActive(page);
  690. pgactivate++;
  691. keep_locked:
  692. unlock_page(page);
  693. keep:
  694. list_add(&page->lru, &ret_pages);
  695. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  696. }
  697. list_splice(&ret_pages, page_list);
  698. if (pagevec_count(&freed_pvec))
  699. __pagevec_free(&freed_pvec);
  700. count_vm_events(PGACTIVATE, pgactivate);
  701. return nr_reclaimed;
  702. }
  703. /* LRU Isolation modes. */
  704. #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
  705. #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
  706. #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
  707. /*
  708. * Attempt to remove the specified page from its LRU. Only take this page
  709. * if it is of the appropriate PageActive status. Pages which are being
  710. * freed elsewhere are also ignored.
  711. *
  712. * page: page to consider
  713. * mode: one of the LRU isolation modes defined above
  714. *
  715. * returns 0 on success, -ve errno on failure.
  716. */
  717. int __isolate_lru_page(struct page *page, int mode, int file)
  718. {
  719. int ret = -EINVAL;
  720. /* Only take pages on the LRU. */
  721. if (!PageLRU(page))
  722. return ret;
  723. /*
  724. * When checking the active state, we need to be sure we are
  725. * dealing with comparible boolean values. Take the logical not
  726. * of each.
  727. */
  728. if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
  729. return ret;
  730. if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
  731. return ret;
  732. /*
  733. * When this function is being called for lumpy reclaim, we
  734. * initially look into all LRU pages, active, inactive and
  735. * unevictable; only give shrink_page_list evictable pages.
  736. */
  737. if (PageUnevictable(page))
  738. return ret;
  739. ret = -EBUSY;
  740. if (likely(get_page_unless_zero(page))) {
  741. /*
  742. * Be careful not to clear PageLRU until after we're
  743. * sure the page is not being freed elsewhere -- the
  744. * page release code relies on it.
  745. */
  746. ClearPageLRU(page);
  747. ret = 0;
  748. mem_cgroup_del_lru(page);
  749. }
  750. return ret;
  751. }
  752. /*
  753. * zone->lru_lock is heavily contended. Some of the functions that
  754. * shrink the lists perform better by taking out a batch of pages
  755. * and working on them outside the LRU lock.
  756. *
  757. * For pagecache intensive workloads, this function is the hottest
  758. * spot in the kernel (apart from copy_*_user functions).
  759. *
  760. * Appropriate locks must be held before calling this function.
  761. *
  762. * @nr_to_scan: The number of pages to look through on the list.
  763. * @src: The LRU list to pull pages off.
  764. * @dst: The temp list to put pages on to.
  765. * @scanned: The number of pages that were scanned.
  766. * @order: The caller's attempted allocation order
  767. * @mode: One of the LRU isolation modes
  768. * @file: True [1] if isolating file [!anon] pages
  769. *
  770. * returns how many pages were moved onto *@dst.
  771. */
  772. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  773. struct list_head *src, struct list_head *dst,
  774. unsigned long *scanned, int order, int mode, int file)
  775. {
  776. unsigned long nr_taken = 0;
  777. unsigned long scan;
  778. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  779. struct page *page;
  780. unsigned long pfn;
  781. unsigned long end_pfn;
  782. unsigned long page_pfn;
  783. int zone_id;
  784. page = lru_to_page(src);
  785. prefetchw_prev_lru_page(page, src, flags);
  786. VM_BUG_ON(!PageLRU(page));
  787. switch (__isolate_lru_page(page, mode, file)) {
  788. case 0:
  789. list_move(&page->lru, dst);
  790. nr_taken++;
  791. break;
  792. case -EBUSY:
  793. /* else it is being freed elsewhere */
  794. list_move(&page->lru, src);
  795. continue;
  796. default:
  797. BUG();
  798. }
  799. if (!order)
  800. continue;
  801. /*
  802. * Attempt to take all pages in the order aligned region
  803. * surrounding the tag page. Only take those pages of
  804. * the same active state as that tag page. We may safely
  805. * round the target page pfn down to the requested order
  806. * as the mem_map is guarenteed valid out to MAX_ORDER,
  807. * where that page is in a different zone we will detect
  808. * it from its zone id and abort this block scan.
  809. */
  810. zone_id = page_zone_id(page);
  811. page_pfn = page_to_pfn(page);
  812. pfn = page_pfn & ~((1 << order) - 1);
  813. end_pfn = pfn + (1 << order);
  814. for (; pfn < end_pfn; pfn++) {
  815. struct page *cursor_page;
  816. /* The target page is in the block, ignore it. */
  817. if (unlikely(pfn == page_pfn))
  818. continue;
  819. /* Avoid holes within the zone. */
  820. if (unlikely(!pfn_valid_within(pfn)))
  821. break;
  822. cursor_page = pfn_to_page(pfn);
  823. /* Check that we have not crossed a zone boundary. */
  824. if (unlikely(page_zone_id(cursor_page) != zone_id))
  825. continue;
  826. switch (__isolate_lru_page(cursor_page, mode, file)) {
  827. case 0:
  828. list_move(&cursor_page->lru, dst);
  829. nr_taken++;
  830. scan++;
  831. break;
  832. case -EBUSY:
  833. /* else it is being freed elsewhere */
  834. list_move(&cursor_page->lru, src);
  835. default:
  836. break; /* ! on LRU or wrong list */
  837. }
  838. }
  839. }
  840. *scanned = scan;
  841. return nr_taken;
  842. }
  843. static unsigned long isolate_pages_global(unsigned long nr,
  844. struct list_head *dst,
  845. unsigned long *scanned, int order,
  846. int mode, struct zone *z,
  847. struct mem_cgroup *mem_cont,
  848. int active, int file)
  849. {
  850. int lru = LRU_BASE;
  851. if (active)
  852. lru += LRU_ACTIVE;
  853. if (file)
  854. lru += LRU_FILE;
  855. return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
  856. mode, !!file);
  857. }
  858. /*
  859. * clear_active_flags() is a helper for shrink_active_list(), clearing
  860. * any active bits from the pages in the list.
  861. */
  862. static unsigned long clear_active_flags(struct list_head *page_list,
  863. unsigned int *count)
  864. {
  865. int nr_active = 0;
  866. int lru;
  867. struct page *page;
  868. list_for_each_entry(page, page_list, lru) {
  869. lru = page_is_file_cache(page);
  870. if (PageActive(page)) {
  871. lru += LRU_ACTIVE;
  872. ClearPageActive(page);
  873. nr_active++;
  874. }
  875. count[lru]++;
  876. }
  877. return nr_active;
  878. }
  879. /**
  880. * isolate_lru_page - tries to isolate a page from its LRU list
  881. * @page: page to isolate from its LRU list
  882. *
  883. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  884. * vmstat statistic corresponding to whatever LRU list the page was on.
  885. *
  886. * Returns 0 if the page was removed from an LRU list.
  887. * Returns -EBUSY if the page was not on an LRU list.
  888. *
  889. * The returned page will have PageLRU() cleared. If it was found on
  890. * the active list, it will have PageActive set. If it was found on
  891. * the unevictable list, it will have the PageUnevictable bit set. That flag
  892. * may need to be cleared by the caller before letting the page go.
  893. *
  894. * The vmstat statistic corresponding to the list on which the page was
  895. * found will be decremented.
  896. *
  897. * Restrictions:
  898. * (1) Must be called with an elevated refcount on the page. This is a
  899. * fundamentnal difference from isolate_lru_pages (which is called
  900. * without a stable reference).
  901. * (2) the lru_lock must not be held.
  902. * (3) interrupts must be enabled.
  903. */
  904. int isolate_lru_page(struct page *page)
  905. {
  906. int ret = -EBUSY;
  907. if (PageLRU(page)) {
  908. struct zone *zone = page_zone(page);
  909. spin_lock_irq(&zone->lru_lock);
  910. if (PageLRU(page) && get_page_unless_zero(page)) {
  911. int lru = page_lru(page);
  912. ret = 0;
  913. ClearPageLRU(page);
  914. del_page_from_lru_list(zone, page, lru);
  915. }
  916. spin_unlock_irq(&zone->lru_lock);
  917. }
  918. return ret;
  919. }
  920. /*
  921. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  922. * of reclaimed pages
  923. */
  924. static unsigned long shrink_inactive_list(unsigned long max_scan,
  925. struct zone *zone, struct scan_control *sc,
  926. int priority, int file)
  927. {
  928. LIST_HEAD(page_list);
  929. struct pagevec pvec;
  930. unsigned long nr_scanned = 0;
  931. unsigned long nr_reclaimed = 0;
  932. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  933. pagevec_init(&pvec, 1);
  934. lru_add_drain();
  935. spin_lock_irq(&zone->lru_lock);
  936. do {
  937. struct page *page;
  938. unsigned long nr_taken;
  939. unsigned long nr_scan;
  940. unsigned long nr_freed;
  941. unsigned long nr_active;
  942. unsigned int count[NR_LRU_LISTS] = { 0, };
  943. int mode = ISOLATE_INACTIVE;
  944. /*
  945. * If we need a large contiguous chunk of memory, or have
  946. * trouble getting a small set of contiguous pages, we
  947. * will reclaim both active and inactive pages.
  948. *
  949. * We use the same threshold as pageout congestion_wait below.
  950. */
  951. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  952. mode = ISOLATE_BOTH;
  953. else if (sc->order && priority < DEF_PRIORITY - 2)
  954. mode = ISOLATE_BOTH;
  955. nr_taken = sc->isolate_pages(sc->swap_cluster_max,
  956. &page_list, &nr_scan, sc->order, mode,
  957. zone, sc->mem_cgroup, 0, file);
  958. nr_active = clear_active_flags(&page_list, count);
  959. __count_vm_events(PGDEACTIVATE, nr_active);
  960. __mod_zone_page_state(zone, NR_ACTIVE_FILE,
  961. -count[LRU_ACTIVE_FILE]);
  962. __mod_zone_page_state(zone, NR_INACTIVE_FILE,
  963. -count[LRU_INACTIVE_FILE]);
  964. __mod_zone_page_state(zone, NR_ACTIVE_ANON,
  965. -count[LRU_ACTIVE_ANON]);
  966. __mod_zone_page_state(zone, NR_INACTIVE_ANON,
  967. -count[LRU_INACTIVE_ANON]);
  968. if (scanning_global_lru(sc))
  969. zone->pages_scanned += nr_scan;
  970. reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
  971. reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
  972. reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
  973. reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
  974. spin_unlock_irq(&zone->lru_lock);
  975. nr_scanned += nr_scan;
  976. nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
  977. /*
  978. * If we are direct reclaiming for contiguous pages and we do
  979. * not reclaim everything in the list, try again and wait
  980. * for IO to complete. This will stall high-order allocations
  981. * but that should be acceptable to the caller
  982. */
  983. if (nr_freed < nr_taken && !current_is_kswapd() &&
  984. sc->order > PAGE_ALLOC_COSTLY_ORDER) {
  985. congestion_wait(WRITE, HZ/10);
  986. /*
  987. * The attempt at page out may have made some
  988. * of the pages active, mark them inactive again.
  989. */
  990. nr_active = clear_active_flags(&page_list, count);
  991. count_vm_events(PGDEACTIVATE, nr_active);
  992. nr_freed += shrink_page_list(&page_list, sc,
  993. PAGEOUT_IO_SYNC);
  994. }
  995. nr_reclaimed += nr_freed;
  996. local_irq_disable();
  997. if (current_is_kswapd()) {
  998. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
  999. __count_vm_events(KSWAPD_STEAL, nr_freed);
  1000. } else if (scanning_global_lru(sc))
  1001. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
  1002. __count_zone_vm_events(PGSTEAL, zone, nr_freed);
  1003. if (nr_taken == 0)
  1004. goto done;
  1005. spin_lock(&zone->lru_lock);
  1006. /*
  1007. * Put back any unfreeable pages.
  1008. */
  1009. while (!list_empty(&page_list)) {
  1010. int lru;
  1011. page = lru_to_page(&page_list);
  1012. VM_BUG_ON(PageLRU(page));
  1013. list_del(&page->lru);
  1014. if (unlikely(!page_evictable(page, NULL))) {
  1015. spin_unlock_irq(&zone->lru_lock);
  1016. putback_lru_page(page);
  1017. spin_lock_irq(&zone->lru_lock);
  1018. continue;
  1019. }
  1020. SetPageLRU(page);
  1021. lru = page_lru(page);
  1022. add_page_to_lru_list(zone, page, lru);
  1023. if (PageActive(page)) {
  1024. int file = !!page_is_file_cache(page);
  1025. reclaim_stat->recent_rotated[file]++;
  1026. }
  1027. if (!pagevec_add(&pvec, page)) {
  1028. spin_unlock_irq(&zone->lru_lock);
  1029. __pagevec_release(&pvec);
  1030. spin_lock_irq(&zone->lru_lock);
  1031. }
  1032. }
  1033. } while (nr_scanned < max_scan);
  1034. spin_unlock(&zone->lru_lock);
  1035. done:
  1036. local_irq_enable();
  1037. pagevec_release(&pvec);
  1038. return nr_reclaimed;
  1039. }
  1040. /*
  1041. * We are about to scan this zone at a certain priority level. If that priority
  1042. * level is smaller (ie: more urgent) than the previous priority, then note
  1043. * that priority level within the zone. This is done so that when the next
  1044. * process comes in to scan this zone, it will immediately start out at this
  1045. * priority level rather than having to build up its own scanning priority.
  1046. * Here, this priority affects only the reclaim-mapped threshold.
  1047. */
  1048. static inline void note_zone_scanning_priority(struct zone *zone, int priority)
  1049. {
  1050. if (priority < zone->prev_priority)
  1051. zone->prev_priority = priority;
  1052. }
  1053. /*
  1054. * This moves pages from the active list to the inactive list.
  1055. *
  1056. * We move them the other way if the page is referenced by one or more
  1057. * processes, from rmap.
  1058. *
  1059. * If the pages are mostly unmapped, the processing is fast and it is
  1060. * appropriate to hold zone->lru_lock across the whole operation. But if
  1061. * the pages are mapped, the processing is slow (page_referenced()) so we
  1062. * should drop zone->lru_lock around each page. It's impossible to balance
  1063. * this, so instead we remove the pages from the LRU while processing them.
  1064. * It is safe to rely on PG_active against the non-LRU pages in here because
  1065. * nobody will play with that bit on a non-LRU page.
  1066. *
  1067. * The downside is that we have to touch page->_count against each page.
  1068. * But we had to alter page->flags anyway.
  1069. */
  1070. static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
  1071. struct scan_control *sc, int priority, int file)
  1072. {
  1073. unsigned long pgmoved;
  1074. int pgdeactivate = 0;
  1075. unsigned long pgscanned;
  1076. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1077. LIST_HEAD(l_inactive);
  1078. struct page *page;
  1079. struct pagevec pvec;
  1080. enum lru_list lru;
  1081. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1082. lru_add_drain();
  1083. spin_lock_irq(&zone->lru_lock);
  1084. pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
  1085. ISOLATE_ACTIVE, zone,
  1086. sc->mem_cgroup, 1, file);
  1087. /*
  1088. * zone->pages_scanned is used for detect zone's oom
  1089. * mem_cgroup remembers nr_scan by itself.
  1090. */
  1091. if (scanning_global_lru(sc)) {
  1092. zone->pages_scanned += pgscanned;
  1093. }
  1094. reclaim_stat->recent_scanned[!!file] += pgmoved;
  1095. if (file)
  1096. __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
  1097. else
  1098. __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
  1099. spin_unlock_irq(&zone->lru_lock);
  1100. pgmoved = 0;
  1101. while (!list_empty(&l_hold)) {
  1102. cond_resched();
  1103. page = lru_to_page(&l_hold);
  1104. list_del(&page->lru);
  1105. if (unlikely(!page_evictable(page, NULL))) {
  1106. putback_lru_page(page);
  1107. continue;
  1108. }
  1109. /* page_referenced clears PageReferenced */
  1110. if (page_mapping_inuse(page) &&
  1111. page_referenced(page, 0, sc->mem_cgroup))
  1112. pgmoved++;
  1113. list_add(&page->lru, &l_inactive);
  1114. }
  1115. /*
  1116. * Move the pages to the [file or anon] inactive list.
  1117. */
  1118. pagevec_init(&pvec, 1);
  1119. lru = LRU_BASE + file * LRU_FILE;
  1120. spin_lock_irq(&zone->lru_lock);
  1121. /*
  1122. * Count referenced pages from currently used mappings as
  1123. * rotated, even though they are moved to the inactive list.
  1124. * This helps balance scan pressure between file and anonymous
  1125. * pages in get_scan_ratio.
  1126. */
  1127. reclaim_stat->recent_rotated[!!file] += pgmoved;
  1128. pgmoved = 0;
  1129. while (!list_empty(&l_inactive)) {
  1130. page = lru_to_page(&l_inactive);
  1131. prefetchw_prev_lru_page(page, &l_inactive, flags);
  1132. VM_BUG_ON(PageLRU(page));
  1133. SetPageLRU(page);
  1134. VM_BUG_ON(!PageActive(page));
  1135. ClearPageActive(page);
  1136. list_move(&page->lru, &zone->lru[lru].list);
  1137. mem_cgroup_add_lru_list(page, lru);
  1138. pgmoved++;
  1139. if (!pagevec_add(&pvec, page)) {
  1140. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1141. spin_unlock_irq(&zone->lru_lock);
  1142. pgdeactivate += pgmoved;
  1143. pgmoved = 0;
  1144. if (buffer_heads_over_limit)
  1145. pagevec_strip(&pvec);
  1146. __pagevec_release(&pvec);
  1147. spin_lock_irq(&zone->lru_lock);
  1148. }
  1149. }
  1150. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1151. pgdeactivate += pgmoved;
  1152. __count_zone_vm_events(PGREFILL, zone, pgscanned);
  1153. __count_vm_events(PGDEACTIVATE, pgdeactivate);
  1154. spin_unlock_irq(&zone->lru_lock);
  1155. if (buffer_heads_over_limit)
  1156. pagevec_strip(&pvec);
  1157. pagevec_release(&pvec);
  1158. }
  1159. static int inactive_anon_is_low_global(struct zone *zone)
  1160. {
  1161. unsigned long active, inactive;
  1162. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1163. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1164. if (inactive * zone->inactive_ratio < active)
  1165. return 1;
  1166. return 0;
  1167. }
  1168. /**
  1169. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1170. * @zone: zone to check
  1171. * @sc: scan control of this context
  1172. *
  1173. * Returns true if the zone does not have enough inactive anon pages,
  1174. * meaning some active anon pages need to be deactivated.
  1175. */
  1176. static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
  1177. {
  1178. int low;
  1179. if (scanning_global_lru(sc))
  1180. low = inactive_anon_is_low_global(zone);
  1181. else
  1182. low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
  1183. return low;
  1184. }
  1185. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1186. struct zone *zone, struct scan_control *sc, int priority)
  1187. {
  1188. int file = is_file_lru(lru);
  1189. if (lru == LRU_ACTIVE_FILE) {
  1190. shrink_active_list(nr_to_scan, zone, sc, priority, file);
  1191. return 0;
  1192. }
  1193. if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
  1194. shrink_active_list(nr_to_scan, zone, sc, priority, file);
  1195. return 0;
  1196. }
  1197. return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
  1198. }
  1199. /*
  1200. * Determine how aggressively the anon and file LRU lists should be
  1201. * scanned. The relative value of each set of LRU lists is determined
  1202. * by looking at the fraction of the pages scanned we did rotate back
  1203. * onto the active list instead of evict.
  1204. *
  1205. * percent[0] specifies how much pressure to put on ram/swap backed
  1206. * memory, while percent[1] determines pressure on the file LRUs.
  1207. */
  1208. static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
  1209. unsigned long *percent)
  1210. {
  1211. unsigned long anon, file, free;
  1212. unsigned long anon_prio, file_prio;
  1213. unsigned long ap, fp;
  1214. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1215. /* If we have no swap space, do not bother scanning anon pages. */
  1216. if (!sc->may_swap || (nr_swap_pages <= 0)) {
  1217. percent[0] = 0;
  1218. percent[1] = 100;
  1219. return;
  1220. }
  1221. anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
  1222. zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
  1223. file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
  1224. zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
  1225. if (scanning_global_lru(sc)) {
  1226. free = zone_page_state(zone, NR_FREE_PAGES);
  1227. /* If we have very few page cache pages,
  1228. force-scan anon pages. */
  1229. if (unlikely(file + free <= zone->pages_high)) {
  1230. percent[0] = 100;
  1231. percent[1] = 0;
  1232. return;
  1233. }
  1234. }
  1235. /*
  1236. * OK, so we have swap space and a fair amount of page cache
  1237. * pages. We use the recently rotated / recently scanned
  1238. * ratios to determine how valuable each cache is.
  1239. *
  1240. * Because workloads change over time (and to avoid overflow)
  1241. * we keep these statistics as a floating average, which ends
  1242. * up weighing recent references more than old ones.
  1243. *
  1244. * anon in [0], file in [1]
  1245. */
  1246. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1247. spin_lock_irq(&zone->lru_lock);
  1248. reclaim_stat->recent_scanned[0] /= 2;
  1249. reclaim_stat->recent_rotated[0] /= 2;
  1250. spin_unlock_irq(&zone->lru_lock);
  1251. }
  1252. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1253. spin_lock_irq(&zone->lru_lock);
  1254. reclaim_stat->recent_scanned[1] /= 2;
  1255. reclaim_stat->recent_rotated[1] /= 2;
  1256. spin_unlock_irq(&zone->lru_lock);
  1257. }
  1258. /*
  1259. * With swappiness at 100, anonymous and file have the same priority.
  1260. * This scanning priority is essentially the inverse of IO cost.
  1261. */
  1262. anon_prio = sc->swappiness;
  1263. file_prio = 200 - sc->swappiness;
  1264. /*
  1265. * The amount of pressure on anon vs file pages is inversely
  1266. * proportional to the fraction of recently scanned pages on
  1267. * each list that were recently referenced and in active use.
  1268. */
  1269. ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
  1270. ap /= reclaim_stat->recent_rotated[0] + 1;
  1271. fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
  1272. fp /= reclaim_stat->recent_rotated[1] + 1;
  1273. /* Normalize to percentages */
  1274. percent[0] = 100 * ap / (ap + fp + 1);
  1275. percent[1] = 100 - percent[0];
  1276. }
  1277. /*
  1278. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1279. */
  1280. static void shrink_zone(int priority, struct zone *zone,
  1281. struct scan_control *sc)
  1282. {
  1283. unsigned long nr[NR_LRU_LISTS];
  1284. unsigned long nr_to_scan;
  1285. unsigned long percent[2]; /* anon @ 0; file @ 1 */
  1286. enum lru_list l;
  1287. unsigned long nr_reclaimed = sc->nr_reclaimed;
  1288. unsigned long swap_cluster_max = sc->swap_cluster_max;
  1289. get_scan_ratio(zone, sc, percent);
  1290. for_each_evictable_lru(l) {
  1291. int file = is_file_lru(l);
  1292. unsigned long scan;
  1293. scan = zone_nr_pages(zone, sc, l);
  1294. if (priority) {
  1295. scan >>= priority;
  1296. scan = (scan * percent[file]) / 100;
  1297. }
  1298. if (scanning_global_lru(sc)) {
  1299. zone->lru[l].nr_scan += scan;
  1300. nr[l] = zone->lru[l].nr_scan;
  1301. if (nr[l] >= swap_cluster_max)
  1302. zone->lru[l].nr_scan = 0;
  1303. else
  1304. nr[l] = 0;
  1305. } else
  1306. nr[l] = scan;
  1307. }
  1308. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1309. nr[LRU_INACTIVE_FILE]) {
  1310. for_each_evictable_lru(l) {
  1311. if (nr[l]) {
  1312. nr_to_scan = min(nr[l], swap_cluster_max);
  1313. nr[l] -= nr_to_scan;
  1314. nr_reclaimed += shrink_list(l, nr_to_scan,
  1315. zone, sc, priority);
  1316. }
  1317. }
  1318. /*
  1319. * On large memory systems, scan >> priority can become
  1320. * really large. This is fine for the starting priority;
  1321. * we want to put equal scanning pressure on each zone.
  1322. * However, if the VM has a harder time of freeing pages,
  1323. * with multiple processes reclaiming pages, the total
  1324. * freeing target can get unreasonably large.
  1325. */
  1326. if (nr_reclaimed > swap_cluster_max &&
  1327. priority < DEF_PRIORITY && !current_is_kswapd())
  1328. break;
  1329. }
  1330. sc->nr_reclaimed = nr_reclaimed;
  1331. /*
  1332. * Even if we did not try to evict anon pages at all, we want to
  1333. * rebalance the anon lru active/inactive ratio.
  1334. */
  1335. if (inactive_anon_is_low(zone, sc))
  1336. shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
  1337. throttle_vm_writeout(sc->gfp_mask);
  1338. }
  1339. /*
  1340. * This is the direct reclaim path, for page-allocating processes. We only
  1341. * try to reclaim pages from zones which will satisfy the caller's allocation
  1342. * request.
  1343. *
  1344. * We reclaim from a zone even if that zone is over pages_high. Because:
  1345. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1346. * allocation or
  1347. * b) The zones may be over pages_high but they must go *over* pages_high to
  1348. * satisfy the `incremental min' zone defense algorithm.
  1349. *
  1350. * If a zone is deemed to be full of pinned pages then just give it a light
  1351. * scan then give up on it.
  1352. */
  1353. static void shrink_zones(int priority, struct zonelist *zonelist,
  1354. struct scan_control *sc)
  1355. {
  1356. enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
  1357. struct zoneref *z;
  1358. struct zone *zone;
  1359. sc->all_unreclaimable = 1;
  1360. for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
  1361. sc->nodemask) {
  1362. if (!populated_zone(zone))
  1363. continue;
  1364. /*
  1365. * Take care memory controller reclaiming has small influence
  1366. * to global LRU.
  1367. */
  1368. if (scanning_global_lru(sc)) {
  1369. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1370. continue;
  1371. note_zone_scanning_priority(zone, priority);
  1372. if (zone_is_all_unreclaimable(zone) &&
  1373. priority != DEF_PRIORITY)
  1374. continue; /* Let kswapd poll it */
  1375. sc->all_unreclaimable = 0;
  1376. } else {
  1377. /*
  1378. * Ignore cpuset limitation here. We just want to reduce
  1379. * # of used pages by us regardless of memory shortage.
  1380. */
  1381. sc->all_unreclaimable = 0;
  1382. mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
  1383. priority);
  1384. }
  1385. shrink_zone(priority, zone, sc);
  1386. }
  1387. }
  1388. /*
  1389. * This is the main entry point to direct page reclaim.
  1390. *
  1391. * If a full scan of the inactive list fails to free enough memory then we
  1392. * are "out of memory" and something needs to be killed.
  1393. *
  1394. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  1395. * high - the zone may be full of dirty or under-writeback pages, which this
  1396. * caller can't do much about. We kick pdflush and take explicit naps in the
  1397. * hope that some of these pages can be written. But if the allocating task
  1398. * holds filesystem locks which prevent writeout this might not work, and the
  1399. * allocation attempt will fail.
  1400. *
  1401. * returns: 0, if no pages reclaimed
  1402. * else, the number of pages reclaimed
  1403. */
  1404. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  1405. struct scan_control *sc)
  1406. {
  1407. int priority;
  1408. unsigned long ret = 0;
  1409. unsigned long total_scanned = 0;
  1410. struct reclaim_state *reclaim_state = current->reclaim_state;
  1411. unsigned long lru_pages = 0;
  1412. struct zoneref *z;
  1413. struct zone *zone;
  1414. enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
  1415. delayacct_freepages_start();
  1416. if (scanning_global_lru(sc))
  1417. count_vm_event(ALLOCSTALL);
  1418. /*
  1419. * mem_cgroup will not do shrink_slab.
  1420. */
  1421. if (scanning_global_lru(sc)) {
  1422. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1423. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1424. continue;
  1425. lru_pages += zone_lru_pages(zone);
  1426. }
  1427. }
  1428. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  1429. sc->nr_scanned = 0;
  1430. if (!priority)
  1431. disable_swap_token();
  1432. shrink_zones(priority, zonelist, sc);
  1433. /*
  1434. * Don't shrink slabs when reclaiming memory from
  1435. * over limit cgroups
  1436. */
  1437. if (scanning_global_lru(sc)) {
  1438. shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
  1439. if (reclaim_state) {
  1440. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  1441. reclaim_state->reclaimed_slab = 0;
  1442. }
  1443. }
  1444. total_scanned += sc->nr_scanned;
  1445. if (sc->nr_reclaimed >= sc->swap_cluster_max) {
  1446. ret = sc->nr_reclaimed;
  1447. goto out;
  1448. }
  1449. /*
  1450. * Try to write back as many pages as we just scanned. This
  1451. * tends to cause slow streaming writers to write data to the
  1452. * disk smoothly, at the dirtying rate, which is nice. But
  1453. * that's undesirable in laptop mode, where we *want* lumpy
  1454. * writeout. So in laptop mode, write out the whole world.
  1455. */
  1456. if (total_scanned > sc->swap_cluster_max +
  1457. sc->swap_cluster_max / 2) {
  1458. wakeup_pdflush(laptop_mode ? 0 : total_scanned);
  1459. sc->may_writepage = 1;
  1460. }
  1461. /* Take a nap, wait for some writeback to complete */
  1462. if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
  1463. congestion_wait(WRITE, HZ/10);
  1464. }
  1465. /* top priority shrink_zones still had more to do? don't OOM, then */
  1466. if (!sc->all_unreclaimable && scanning_global_lru(sc))
  1467. ret = sc->nr_reclaimed;
  1468. out:
  1469. /*
  1470. * Now that we've scanned all the zones at this priority level, note
  1471. * that level within the zone so that the next thread which performs
  1472. * scanning of this zone will immediately start out at this priority
  1473. * level. This affects only the decision whether or not to bring
  1474. * mapped pages onto the inactive list.
  1475. */
  1476. if (priority < 0)
  1477. priority = 0;
  1478. if (scanning_global_lru(sc)) {
  1479. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1480. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1481. continue;
  1482. zone->prev_priority = priority;
  1483. }
  1484. } else
  1485. mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
  1486. delayacct_freepages_end();
  1487. return ret;
  1488. }
  1489. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  1490. gfp_t gfp_mask, nodemask_t *nodemask)
  1491. {
  1492. struct scan_control sc = {
  1493. .gfp_mask = gfp_mask,
  1494. .may_writepage = !laptop_mode,
  1495. .swap_cluster_max = SWAP_CLUSTER_MAX,
  1496. .may_unmap = 1,
  1497. .may_swap = 1,
  1498. .swappiness = vm_swappiness,
  1499. .order = order,
  1500. .mem_cgroup = NULL,
  1501. .isolate_pages = isolate_pages_global,
  1502. .nodemask = nodemask,
  1503. };
  1504. return do_try_to_free_pages(zonelist, &sc);
  1505. }
  1506. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1507. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
  1508. gfp_t gfp_mask,
  1509. bool noswap,
  1510. unsigned int swappiness)
  1511. {
  1512. struct scan_control sc = {
  1513. .may_writepage = !laptop_mode,
  1514. .may_unmap = 1,
  1515. .may_swap = !noswap,
  1516. .swap_cluster_max = SWAP_CLUSTER_MAX,
  1517. .swappiness = swappiness,
  1518. .order = 0,
  1519. .mem_cgroup = mem_cont,
  1520. .isolate_pages = mem_cgroup_isolate_pages,
  1521. .nodemask = NULL, /* we don't care the placement */
  1522. };
  1523. struct zonelist *zonelist;
  1524. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  1525. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  1526. zonelist = NODE_DATA(numa_node_id())->node_zonelists;
  1527. return do_try_to_free_pages(zonelist, &sc);
  1528. }
  1529. #endif
  1530. /*
  1531. * For kswapd, balance_pgdat() will work across all this node's zones until
  1532. * they are all at pages_high.
  1533. *
  1534. * Returns the number of pages which were actually freed.
  1535. *
  1536. * There is special handling here for zones which are full of pinned pages.
  1537. * This can happen if the pages are all mlocked, or if they are all used by
  1538. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  1539. * What we do is to detect the case where all pages in the zone have been
  1540. * scanned twice and there has been zero successful reclaim. Mark the zone as
  1541. * dead and from now on, only perform a short scan. Basically we're polling
  1542. * the zone for when the problem goes away.
  1543. *
  1544. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  1545. * zones which have free_pages > pages_high, but once a zone is found to have
  1546. * free_pages <= pages_high, we scan that zone and the lower zones regardless
  1547. * of the number of free pages in the lower zones. This interoperates with
  1548. * the page allocator fallback scheme to ensure that aging of pages is balanced
  1549. * across the zones.
  1550. */
  1551. static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
  1552. {
  1553. int all_zones_ok;
  1554. int priority;
  1555. int i;
  1556. unsigned long total_scanned;
  1557. struct reclaim_state *reclaim_state = current->reclaim_state;
  1558. struct scan_control sc = {
  1559. .gfp_mask = GFP_KERNEL,
  1560. .may_unmap = 1,
  1561. .may_swap = 1,
  1562. .swap_cluster_max = SWAP_CLUSTER_MAX,
  1563. .swappiness = vm_swappiness,
  1564. .order = order,
  1565. .mem_cgroup = NULL,
  1566. .isolate_pages = isolate_pages_global,
  1567. };
  1568. /*
  1569. * temp_priority is used to remember the scanning priority at which
  1570. * this zone was successfully refilled to free_pages == pages_high.
  1571. */
  1572. int temp_priority[MAX_NR_ZONES];
  1573. loop_again:
  1574. total_scanned = 0;
  1575. sc.nr_reclaimed = 0;
  1576. sc.may_writepage = !laptop_mode;
  1577. count_vm_event(PAGEOUTRUN);
  1578. for (i = 0; i < pgdat->nr_zones; i++)
  1579. temp_priority[i] = DEF_PRIORITY;
  1580. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  1581. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  1582. unsigned long lru_pages = 0;
  1583. /* The swap token gets in the way of swapout... */
  1584. if (!priority)
  1585. disable_swap_token();
  1586. all_zones_ok = 1;
  1587. /*
  1588. * Scan in the highmem->dma direction for the highest
  1589. * zone which needs scanning
  1590. */
  1591. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  1592. struct zone *zone = pgdat->node_zones + i;
  1593. if (!populated_zone(zone))
  1594. continue;
  1595. if (zone_is_all_unreclaimable(zone) &&
  1596. priority != DEF_PRIORITY)
  1597. continue;
  1598. /*
  1599. * Do some background aging of the anon list, to give
  1600. * pages a chance to be referenced before reclaiming.
  1601. */
  1602. if (inactive_anon_is_low(zone, &sc))
  1603. shrink_active_list(SWAP_CLUSTER_MAX, zone,
  1604. &sc, priority, 0);
  1605. if (!zone_watermark_ok(zone, order, zone->pages_high,
  1606. 0, 0)) {
  1607. end_zone = i;
  1608. break;
  1609. }
  1610. }
  1611. if (i < 0)
  1612. goto out;
  1613. for (i = 0; i <= end_zone; i++) {
  1614. struct zone *zone = pgdat->node_zones + i;
  1615. lru_pages += zone_lru_pages(zone);
  1616. }
  1617. /*
  1618. * Now scan the zone in the dma->highmem direction, stopping
  1619. * at the last zone which needs scanning.
  1620. *
  1621. * We do this because the page allocator works in the opposite
  1622. * direction. This prevents the page allocator from allocating
  1623. * pages behind kswapd's direction of progress, which would
  1624. * cause too much scanning of the lower zones.
  1625. */
  1626. for (i = 0; i <= end_zone; i++) {
  1627. struct zone *zone = pgdat->node_zones + i;
  1628. int nr_slab;
  1629. if (!populated_zone(zone))
  1630. continue;
  1631. if (zone_is_all_unreclaimable(zone) &&
  1632. priority != DEF_PRIORITY)
  1633. continue;
  1634. if (!zone_watermark_ok(zone, order, zone->pages_high,
  1635. end_zone, 0))
  1636. all_zones_ok = 0;
  1637. temp_priority[i] = priority;
  1638. sc.nr_scanned = 0;
  1639. note_zone_scanning_priority(zone, priority);
  1640. /*
  1641. * We put equal pressure on every zone, unless one
  1642. * zone has way too many pages free already.
  1643. */
  1644. if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
  1645. end_zone, 0))
  1646. shrink_zone(priority, zone, &sc);
  1647. reclaim_state->reclaimed_slab = 0;
  1648. nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
  1649. lru_pages);
  1650. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  1651. total_scanned += sc.nr_scanned;
  1652. if (zone_is_all_unreclaimable(zone))
  1653. continue;
  1654. if (nr_slab == 0 && zone->pages_scanned >=
  1655. (zone_lru_pages(zone) * 6))
  1656. zone_set_flag(zone,
  1657. ZONE_ALL_UNRECLAIMABLE);
  1658. /*
  1659. * If we've done a decent amount of scanning and
  1660. * the reclaim ratio is low, start doing writepage
  1661. * even in laptop mode
  1662. */
  1663. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  1664. total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
  1665. sc.may_writepage = 1;
  1666. }
  1667. if (all_zones_ok)
  1668. break; /* kswapd: all done */
  1669. /*
  1670. * OK, kswapd is getting into trouble. Take a nap, then take
  1671. * another pass across the zones.
  1672. */
  1673. if (total_scanned && priority < DEF_PRIORITY - 2)
  1674. congestion_wait(WRITE, HZ/10);
  1675. /*
  1676. * We do this so kswapd doesn't build up large priorities for
  1677. * example when it is freeing in parallel with allocators. It
  1678. * matches the direct reclaim path behaviour in terms of impact
  1679. * on zone->*_priority.
  1680. */
  1681. if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
  1682. break;
  1683. }
  1684. out:
  1685. /*
  1686. * Note within each zone the priority level at which this zone was
  1687. * brought into a happy state. So that the next thread which scans this
  1688. * zone will start out at that priority level.
  1689. */
  1690. for (i = 0; i < pgdat->nr_zones; i++) {
  1691. struct zone *zone = pgdat->node_zones + i;
  1692. zone->prev_priority = temp_priority[i];
  1693. }
  1694. if (!all_zones_ok) {
  1695. cond_resched();
  1696. try_to_freeze();
  1697. /*
  1698. * Fragmentation may mean that the system cannot be
  1699. * rebalanced for high-order allocations in all zones.
  1700. * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
  1701. * it means the zones have been fully scanned and are still
  1702. * not balanced. For high-order allocations, there is
  1703. * little point trying all over again as kswapd may
  1704. * infinite loop.
  1705. *
  1706. * Instead, recheck all watermarks at order-0 as they
  1707. * are the most important. If watermarks are ok, kswapd will go
  1708. * back to sleep. High-order users can still perform direct
  1709. * reclaim if they wish.
  1710. */
  1711. if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
  1712. order = sc.order = 0;
  1713. goto loop_again;
  1714. }
  1715. return sc.nr_reclaimed;
  1716. }
  1717. /*
  1718. * The background pageout daemon, started as a kernel thread
  1719. * from the init process.
  1720. *
  1721. * This basically trickles out pages so that we have _some_
  1722. * free memory available even if there is no other activity
  1723. * that frees anything up. This is needed for things like routing
  1724. * etc, where we otherwise might have all activity going on in
  1725. * asynchronous contexts that cannot page things out.
  1726. *
  1727. * If there are applications that are active memory-allocators
  1728. * (most normal use), this basically shouldn't matter.
  1729. */
  1730. static int kswapd(void *p)
  1731. {
  1732. unsigned long order;
  1733. pg_data_t *pgdat = (pg_data_t*)p;
  1734. struct task_struct *tsk = current;
  1735. DEFINE_WAIT(wait);
  1736. struct reclaim_state reclaim_state = {
  1737. .reclaimed_slab = 0,
  1738. };
  1739. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1740. lockdep_set_current_reclaim_state(GFP_KERNEL);
  1741. if (!cpumask_empty(cpumask))
  1742. set_cpus_allowed_ptr(tsk, cpumask);
  1743. current->reclaim_state = &reclaim_state;
  1744. /*
  1745. * Tell the memory management that we're a "memory allocator",
  1746. * and that if we need more memory we should get access to it
  1747. * regardless (see "__alloc_pages()"). "kswapd" should
  1748. * never get caught in the normal page freeing logic.
  1749. *
  1750. * (Kswapd normally doesn't need memory anyway, but sometimes
  1751. * you need a small amount of memory in order to be able to
  1752. * page out something else, and this flag essentially protects
  1753. * us from recursively trying to free more memory as we're
  1754. * trying to free the first piece of memory in the first place).
  1755. */
  1756. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  1757. set_freezable();
  1758. order = 0;
  1759. for ( ; ; ) {
  1760. unsigned long new_order;
  1761. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  1762. new_order = pgdat->kswapd_max_order;
  1763. pgdat->kswapd_max_order = 0;
  1764. if (order < new_order) {
  1765. /*
  1766. * Don't sleep if someone wants a larger 'order'
  1767. * allocation
  1768. */
  1769. order = new_order;
  1770. } else {
  1771. if (!freezing(current))
  1772. schedule();
  1773. order = pgdat->kswapd_max_order;
  1774. }
  1775. finish_wait(&pgdat->kswapd_wait, &wait);
  1776. if (!try_to_freeze()) {
  1777. /* We can speed up thawing tasks if we don't call
  1778. * balance_pgdat after returning from the refrigerator
  1779. */
  1780. balance_pgdat(pgdat, order);
  1781. }
  1782. }
  1783. return 0;
  1784. }
  1785. /*
  1786. * A zone is low on free memory, so wake its kswapd task to service it.
  1787. */
  1788. void wakeup_kswapd(struct zone *zone, int order)
  1789. {
  1790. pg_data_t *pgdat;
  1791. if (!populated_zone(zone))
  1792. return;
  1793. pgdat = zone->zone_pgdat;
  1794. if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
  1795. return;
  1796. if (pgdat->kswapd_max_order < order)
  1797. pgdat->kswapd_max_order = order;
  1798. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1799. return;
  1800. if (!waitqueue_active(&pgdat->kswapd_wait))
  1801. return;
  1802. wake_up_interruptible(&pgdat->kswapd_wait);
  1803. }
  1804. unsigned long global_lru_pages(void)
  1805. {
  1806. return global_page_state(NR_ACTIVE_ANON)
  1807. + global_page_state(NR_ACTIVE_FILE)
  1808. + global_page_state(NR_INACTIVE_ANON)
  1809. + global_page_state(NR_INACTIVE_FILE);
  1810. }
  1811. #ifdef CONFIG_PM
  1812. /*
  1813. * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
  1814. * from LRU lists system-wide, for given pass and priority.
  1815. *
  1816. * For pass > 3 we also try to shrink the LRU lists that contain a few pages
  1817. */
  1818. static void shrink_all_zones(unsigned long nr_pages, int prio,
  1819. int pass, struct scan_control *sc)
  1820. {
  1821. struct zone *zone;
  1822. unsigned long nr_reclaimed = 0;
  1823. for_each_populated_zone(zone) {
  1824. enum lru_list l;
  1825. if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
  1826. continue;
  1827. for_each_evictable_lru(l) {
  1828. enum zone_stat_item ls = NR_LRU_BASE + l;
  1829. unsigned long lru_pages = zone_page_state(zone, ls);
  1830. /* For pass = 0, we don't shrink the active list */
  1831. if (pass == 0 && (l == LRU_ACTIVE_ANON ||
  1832. l == LRU_ACTIVE_FILE))
  1833. continue;
  1834. zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
  1835. if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
  1836. unsigned long nr_to_scan;
  1837. zone->lru[l].nr_scan = 0;
  1838. nr_to_scan = min(nr_pages, lru_pages);
  1839. nr_reclaimed += shrink_list(l, nr_to_scan, zone,
  1840. sc, prio);
  1841. if (nr_reclaimed >= nr_pages) {
  1842. sc->nr_reclaimed += nr_reclaimed;
  1843. return;
  1844. }
  1845. }
  1846. }
  1847. }
  1848. sc->nr_reclaimed += nr_reclaimed;
  1849. }
  1850. /*
  1851. * Try to free `nr_pages' of memory, system-wide, and return the number of
  1852. * freed pages.
  1853. *
  1854. * Rather than trying to age LRUs the aim is to preserve the overall
  1855. * LRU order by reclaiming preferentially
  1856. * inactive > active > active referenced > active mapped
  1857. */
  1858. unsigned long shrink_all_memory(unsigned long nr_pages)
  1859. {
  1860. unsigned long lru_pages, nr_slab;
  1861. int pass;
  1862. struct reclaim_state reclaim_state;
  1863. struct scan_control sc = {
  1864. .gfp_mask = GFP_KERNEL,
  1865. .may_unmap = 0,
  1866. .may_writepage = 1,
  1867. .isolate_pages = isolate_pages_global,
  1868. .nr_reclaimed = 0,
  1869. };
  1870. current->reclaim_state = &reclaim_state;
  1871. lru_pages = global_lru_pages();
  1872. nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
  1873. /* If slab caches are huge, it's better to hit them first */
  1874. while (nr_slab >= lru_pages) {
  1875. reclaim_state.reclaimed_slab = 0;
  1876. shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
  1877. if (!reclaim_state.reclaimed_slab)
  1878. break;
  1879. sc.nr_reclaimed += reclaim_state.reclaimed_slab;
  1880. if (sc.nr_reclaimed >= nr_pages)
  1881. goto out;
  1882. nr_slab -= reclaim_state.reclaimed_slab;
  1883. }
  1884. /*
  1885. * We try to shrink LRUs in 5 passes:
  1886. * 0 = Reclaim from inactive_list only
  1887. * 1 = Reclaim from active list but don't reclaim mapped
  1888. * 2 = 2nd pass of type 1
  1889. * 3 = Reclaim mapped (normal reclaim)
  1890. * 4 = 2nd pass of type 3
  1891. */
  1892. for (pass = 0; pass < 5; pass++) {
  1893. int prio;
  1894. /* Force reclaiming mapped pages in the passes #3 and #4 */
  1895. if (pass > 2)
  1896. sc.may_unmap = 1;
  1897. for (prio = DEF_PRIORITY; prio >= 0; prio--) {
  1898. unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
  1899. sc.nr_scanned = 0;
  1900. sc.swap_cluster_max = nr_to_scan;
  1901. shrink_all_zones(nr_to_scan, prio, pass, &sc);
  1902. if (sc.nr_reclaimed >= nr_pages)
  1903. goto out;
  1904. reclaim_state.reclaimed_slab = 0;
  1905. shrink_slab(sc.nr_scanned, sc.gfp_mask,
  1906. global_lru_pages());
  1907. sc.nr_reclaimed += reclaim_state.reclaimed_slab;
  1908. if (sc.nr_reclaimed >= nr_pages)
  1909. goto out;
  1910. if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
  1911. congestion_wait(WRITE, HZ / 10);
  1912. }
  1913. }
  1914. /*
  1915. * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
  1916. * something in slab caches
  1917. */
  1918. if (!sc.nr_reclaimed) {
  1919. do {
  1920. reclaim_state.reclaimed_slab = 0;
  1921. shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
  1922. sc.nr_reclaimed += reclaim_state.reclaimed_slab;
  1923. } while (sc.nr_reclaimed < nr_pages &&
  1924. reclaim_state.reclaimed_slab > 0);
  1925. }
  1926. out:
  1927. current->reclaim_state = NULL;
  1928. return sc.nr_reclaimed;
  1929. }
  1930. #endif
  1931. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  1932. not required for correctness. So if the last cpu in a node goes
  1933. away, we get changed to run anywhere: as the first one comes back,
  1934. restore their cpu bindings. */
  1935. static int __devinit cpu_callback(struct notifier_block *nfb,
  1936. unsigned long action, void *hcpu)
  1937. {
  1938. int nid;
  1939. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  1940. for_each_node_state(nid, N_HIGH_MEMORY) {
  1941. pg_data_t *pgdat = NODE_DATA(nid);
  1942. const struct cpumask *mask;
  1943. mask = cpumask_of_node(pgdat->node_id);
  1944. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  1945. /* One of our CPUs online: restore mask */
  1946. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  1947. }
  1948. }
  1949. return NOTIFY_OK;
  1950. }
  1951. /*
  1952. * This kswapd start function will be called by init and node-hot-add.
  1953. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  1954. */
  1955. int kswapd_run(int nid)
  1956. {
  1957. pg_data_t *pgdat = NODE_DATA(nid);
  1958. int ret = 0;
  1959. if (pgdat->kswapd)
  1960. return 0;
  1961. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  1962. if (IS_ERR(pgdat->kswapd)) {
  1963. /* failure at boot is fatal */
  1964. BUG_ON(system_state == SYSTEM_BOOTING);
  1965. printk("Failed to start kswapd on node %d\n",nid);
  1966. ret = -1;
  1967. }
  1968. return ret;
  1969. }
  1970. static int __init kswapd_init(void)
  1971. {
  1972. int nid;
  1973. swap_setup();
  1974. for_each_node_state(nid, N_HIGH_MEMORY)
  1975. kswapd_run(nid);
  1976. hotcpu_notifier(cpu_callback, 0);
  1977. return 0;
  1978. }
  1979. module_init(kswapd_init)
  1980. #ifdef CONFIG_NUMA
  1981. /*
  1982. * Zone reclaim mode
  1983. *
  1984. * If non-zero call zone_reclaim when the number of free pages falls below
  1985. * the watermarks.
  1986. */
  1987. int zone_reclaim_mode __read_mostly;
  1988. #define RECLAIM_OFF 0
  1989. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  1990. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  1991. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  1992. /*
  1993. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  1994. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  1995. * a zone.
  1996. */
  1997. #define ZONE_RECLAIM_PRIORITY 4
  1998. /*
  1999. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  2000. * occur.
  2001. */
  2002. int sysctl_min_unmapped_ratio = 1;
  2003. /*
  2004. * If the number of slab pages in a zone grows beyond this percentage then
  2005. * slab reclaim needs to occur.
  2006. */
  2007. int sysctl_min_slab_ratio = 5;
  2008. /*
  2009. * Try to free up some pages from this zone through reclaim.
  2010. */
  2011. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2012. {
  2013. /* Minimum pages needed in order to stay on node */
  2014. const unsigned long nr_pages = 1 << order;
  2015. struct task_struct *p = current;
  2016. struct reclaim_state reclaim_state;
  2017. int priority;
  2018. struct scan_control sc = {
  2019. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  2020. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  2021. .may_swap = 1,
  2022. .swap_cluster_max = max_t(unsigned long, nr_pages,
  2023. SWAP_CLUSTER_MAX),
  2024. .gfp_mask = gfp_mask,
  2025. .swappiness = vm_swappiness,
  2026. .order = order,
  2027. .isolate_pages = isolate_pages_global,
  2028. };
  2029. unsigned long slab_reclaimable;
  2030. disable_swap_token();
  2031. cond_resched();
  2032. /*
  2033. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  2034. * and we also need to be able to write out pages for RECLAIM_WRITE
  2035. * and RECLAIM_SWAP.
  2036. */
  2037. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  2038. reclaim_state.reclaimed_slab = 0;
  2039. p->reclaim_state = &reclaim_state;
  2040. if (zone_page_state(zone, NR_FILE_PAGES) -
  2041. zone_page_state(zone, NR_FILE_MAPPED) >
  2042. zone->min_unmapped_pages) {
  2043. /*
  2044. * Free memory by calling shrink zone with increasing
  2045. * priorities until we have enough memory freed.
  2046. */
  2047. priority = ZONE_RECLAIM_PRIORITY;
  2048. do {
  2049. note_zone_scanning_priority(zone, priority);
  2050. shrink_zone(priority, zone, &sc);
  2051. priority--;
  2052. } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
  2053. }
  2054. slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2055. if (slab_reclaimable > zone->min_slab_pages) {
  2056. /*
  2057. * shrink_slab() does not currently allow us to determine how
  2058. * many pages were freed in this zone. So we take the current
  2059. * number of slab pages and shake the slab until it is reduced
  2060. * by the same nr_pages that we used for reclaiming unmapped
  2061. * pages.
  2062. *
  2063. * Note that shrink_slab will free memory on all zones and may
  2064. * take a long time.
  2065. */
  2066. while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
  2067. zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
  2068. slab_reclaimable - nr_pages)
  2069. ;
  2070. /*
  2071. * Update nr_reclaimed by the number of slab pages we
  2072. * reclaimed from this zone.
  2073. */
  2074. sc.nr_reclaimed += slab_reclaimable -
  2075. zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2076. }
  2077. p->reclaim_state = NULL;
  2078. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  2079. return sc.nr_reclaimed >= nr_pages;
  2080. }
  2081. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2082. {
  2083. int node_id;
  2084. int ret;
  2085. /*
  2086. * Zone reclaim reclaims unmapped file backed pages and
  2087. * slab pages if we are over the defined limits.
  2088. *
  2089. * A small portion of unmapped file backed pages is needed for
  2090. * file I/O otherwise pages read by file I/O will be immediately
  2091. * thrown out if the zone is overallocated. So we do not reclaim
  2092. * if less than a specified percentage of the zone is used by
  2093. * unmapped file backed pages.
  2094. */
  2095. if (zone_page_state(zone, NR_FILE_PAGES) -
  2096. zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
  2097. && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
  2098. <= zone->min_slab_pages)
  2099. return 0;
  2100. if (zone_is_all_unreclaimable(zone))
  2101. return 0;
  2102. /*
  2103. * Do not scan if the allocation should not be delayed.
  2104. */
  2105. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  2106. return 0;
  2107. /*
  2108. * Only run zone reclaim on the local zone or on zones that do not
  2109. * have associated processors. This will favor the local processor
  2110. * over remote processors and spread off node memory allocations
  2111. * as wide as possible.
  2112. */
  2113. node_id = zone_to_nid(zone);
  2114. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  2115. return 0;
  2116. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  2117. return 0;
  2118. ret = __zone_reclaim(zone, gfp_mask, order);
  2119. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  2120. return ret;
  2121. }
  2122. #endif
  2123. #ifdef CONFIG_UNEVICTABLE_LRU
  2124. /*
  2125. * page_evictable - test whether a page is evictable
  2126. * @page: the page to test
  2127. * @vma: the VMA in which the page is or will be mapped, may be NULL
  2128. *
  2129. * Test whether page is evictable--i.e., should be placed on active/inactive
  2130. * lists vs unevictable list. The vma argument is !NULL when called from the
  2131. * fault path to determine how to instantate a new page.
  2132. *
  2133. * Reasons page might not be evictable:
  2134. * (1) page's mapping marked unevictable
  2135. * (2) page is part of an mlocked VMA
  2136. *
  2137. */
  2138. int page_evictable(struct page *page, struct vm_area_struct *vma)
  2139. {
  2140. if (mapping_unevictable(page_mapping(page)))
  2141. return 0;
  2142. if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
  2143. return 0;
  2144. return 1;
  2145. }
  2146. /**
  2147. * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
  2148. * @page: page to check evictability and move to appropriate lru list
  2149. * @zone: zone page is in
  2150. *
  2151. * Checks a page for evictability and moves the page to the appropriate
  2152. * zone lru list.
  2153. *
  2154. * Restrictions: zone->lru_lock must be held, page must be on LRU and must
  2155. * have PageUnevictable set.
  2156. */
  2157. static void check_move_unevictable_page(struct page *page, struct zone *zone)
  2158. {
  2159. VM_BUG_ON(PageActive(page));
  2160. retry:
  2161. ClearPageUnevictable(page);
  2162. if (page_evictable(page, NULL)) {
  2163. enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
  2164. __dec_zone_state(zone, NR_UNEVICTABLE);
  2165. list_move(&page->lru, &zone->lru[l].list);
  2166. mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
  2167. __inc_zone_state(zone, NR_INACTIVE_ANON + l);
  2168. __count_vm_event(UNEVICTABLE_PGRESCUED);
  2169. } else {
  2170. /*
  2171. * rotate unevictable list
  2172. */
  2173. SetPageUnevictable(page);
  2174. list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
  2175. mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
  2176. if (page_evictable(page, NULL))
  2177. goto retry;
  2178. }
  2179. }
  2180. /**
  2181. * scan_mapping_unevictable_pages - scan an address space for evictable pages
  2182. * @mapping: struct address_space to scan for evictable pages
  2183. *
  2184. * Scan all pages in mapping. Check unevictable pages for
  2185. * evictability and move them to the appropriate zone lru list.
  2186. */
  2187. void scan_mapping_unevictable_pages(struct address_space *mapping)
  2188. {
  2189. pgoff_t next = 0;
  2190. pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
  2191. PAGE_CACHE_SHIFT;
  2192. struct zone *zone;
  2193. struct pagevec pvec;
  2194. if (mapping->nrpages == 0)
  2195. return;
  2196. pagevec_init(&pvec, 0);
  2197. while (next < end &&
  2198. pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  2199. int i;
  2200. int pg_scanned = 0;
  2201. zone = NULL;
  2202. for (i = 0; i < pagevec_count(&pvec); i++) {
  2203. struct page *page = pvec.pages[i];
  2204. pgoff_t page_index = page->index;
  2205. struct zone *pagezone = page_zone(page);
  2206. pg_scanned++;
  2207. if (page_index > next)
  2208. next = page_index;
  2209. next++;
  2210. if (pagezone != zone) {
  2211. if (zone)
  2212. spin_unlock_irq(&zone->lru_lock);
  2213. zone = pagezone;
  2214. spin_lock_irq(&zone->lru_lock);
  2215. }
  2216. if (PageLRU(page) && PageUnevictable(page))
  2217. check_move_unevictable_page(page, zone);
  2218. }
  2219. if (zone)
  2220. spin_unlock_irq(&zone->lru_lock);
  2221. pagevec_release(&pvec);
  2222. count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
  2223. }
  2224. }
  2225. /**
  2226. * scan_zone_unevictable_pages - check unevictable list for evictable pages
  2227. * @zone - zone of which to scan the unevictable list
  2228. *
  2229. * Scan @zone's unevictable LRU lists to check for pages that have become
  2230. * evictable. Move those that have to @zone's inactive list where they
  2231. * become candidates for reclaim, unless shrink_inactive_zone() decides
  2232. * to reactivate them. Pages that are still unevictable are rotated
  2233. * back onto @zone's unevictable list.
  2234. */
  2235. #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
  2236. static void scan_zone_unevictable_pages(struct zone *zone)
  2237. {
  2238. struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
  2239. unsigned long scan;
  2240. unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
  2241. while (nr_to_scan > 0) {
  2242. unsigned long batch_size = min(nr_to_scan,
  2243. SCAN_UNEVICTABLE_BATCH_SIZE);
  2244. spin_lock_irq(&zone->lru_lock);
  2245. for (scan = 0; scan < batch_size; scan++) {
  2246. struct page *page = lru_to_page(l_unevictable);
  2247. if (!trylock_page(page))
  2248. continue;
  2249. prefetchw_prev_lru_page(page, l_unevictable, flags);
  2250. if (likely(PageLRU(page) && PageUnevictable(page)))
  2251. check_move_unevictable_page(page, zone);
  2252. unlock_page(page);
  2253. }
  2254. spin_unlock_irq(&zone->lru_lock);
  2255. nr_to_scan -= batch_size;
  2256. }
  2257. }
  2258. /**
  2259. * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
  2260. *
  2261. * A really big hammer: scan all zones' unevictable LRU lists to check for
  2262. * pages that have become evictable. Move those back to the zones'
  2263. * inactive list where they become candidates for reclaim.
  2264. * This occurs when, e.g., we have unswappable pages on the unevictable lists,
  2265. * and we add swap to the system. As such, it runs in the context of a task
  2266. * that has possibly/probably made some previously unevictable pages
  2267. * evictable.
  2268. */
  2269. static void scan_all_zones_unevictable_pages(void)
  2270. {
  2271. struct zone *zone;
  2272. for_each_zone(zone) {
  2273. scan_zone_unevictable_pages(zone);
  2274. }
  2275. }
  2276. /*
  2277. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  2278. * all nodes' unevictable lists for evictable pages
  2279. */
  2280. unsigned long scan_unevictable_pages;
  2281. int scan_unevictable_handler(struct ctl_table *table, int write,
  2282. struct file *file, void __user *buffer,
  2283. size_t *length, loff_t *ppos)
  2284. {
  2285. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  2286. if (write && *(unsigned long *)table->data)
  2287. scan_all_zones_unevictable_pages();
  2288. scan_unevictable_pages = 0;
  2289. return 0;
  2290. }
  2291. /*
  2292. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  2293. * a specified node's per zone unevictable lists for evictable pages.
  2294. */
  2295. static ssize_t read_scan_unevictable_node(struct sys_device *dev,
  2296. struct sysdev_attribute *attr,
  2297. char *buf)
  2298. {
  2299. return sprintf(buf, "0\n"); /* always zero; should fit... */
  2300. }
  2301. static ssize_t write_scan_unevictable_node(struct sys_device *dev,
  2302. struct sysdev_attribute *attr,
  2303. const char *buf, size_t count)
  2304. {
  2305. struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
  2306. struct zone *zone;
  2307. unsigned long res;
  2308. unsigned long req = strict_strtoul(buf, 10, &res);
  2309. if (!req)
  2310. return 1; /* zero is no-op */
  2311. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  2312. if (!populated_zone(zone))
  2313. continue;
  2314. scan_zone_unevictable_pages(zone);
  2315. }
  2316. return 1;
  2317. }
  2318. static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  2319. read_scan_unevictable_node,
  2320. write_scan_unevictable_node);
  2321. int scan_unevictable_register_node(struct node *node)
  2322. {
  2323. return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
  2324. }
  2325. void scan_unevictable_unregister_node(struct node *node)
  2326. {
  2327. sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
  2328. }
  2329. #endif