common.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/mmu_context.h>
  16. #include <asm/hypervisor.h>
  17. #include <asm/processor.h>
  18. #include <asm/sections.h>
  19. #include <asm/topology.h>
  20. #include <asm/cpumask.h>
  21. #include <asm/pgtable.h>
  22. #include <asm/atomic.h>
  23. #include <asm/proto.h>
  24. #include <asm/setup.h>
  25. #include <asm/apic.h>
  26. #include <asm/desc.h>
  27. #include <asm/i387.h>
  28. #include <asm/mtrr.h>
  29. #include <asm/numa.h>
  30. #include <asm/asm.h>
  31. #include <asm/cpu.h>
  32. #include <asm/mce.h>
  33. #include <asm/msr.h>
  34. #include <asm/pat.h>
  35. #include <asm/smp.h>
  36. #ifdef CONFIG_X86_LOCAL_APIC
  37. #include <asm/uv/uv.h>
  38. #endif
  39. #include "cpu.h"
  40. /* all of these masks are initialized in setup_cpu_local_masks() */
  41. cpumask_var_t cpu_initialized_mask;
  42. cpumask_var_t cpu_callout_mask;
  43. cpumask_var_t cpu_callin_mask;
  44. /* representing cpus for which sibling maps can be computed */
  45. cpumask_var_t cpu_sibling_setup_mask;
  46. /* correctly size the local cpu masks */
  47. void __init setup_cpu_local_masks(void)
  48. {
  49. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  50. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  52. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  53. }
  54. static const struct cpu_dev *this_cpu __cpuinitdata;
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. #ifdef CONFIG_X86_64
  57. /*
  58. * We need valid kernel segments for data and code in long mode too
  59. * IRET will check the segment types kkeil 2000/10/28
  60. * Also sysret mandates a special GDT layout
  61. *
  62. * TLS descriptors are currently at a different place compared to i386.
  63. * Hopefully nobody expects them at a fixed place (Wine?)
  64. */
  65. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  66. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  67. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  68. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  69. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  70. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  71. #else
  72. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  73. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  74. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  75. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  76. /*
  77. * Segments used for calling PnP BIOS have byte granularity.
  78. * They code segments and data segments have fixed 64k limits,
  79. * the transfer segment sizes are set at run time.
  80. */
  81. /* 32-bit code */
  82. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  83. /* 16-bit code */
  84. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  85. /* 16-bit data */
  86. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  87. /* 16-bit data */
  88. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  89. /* 16-bit data */
  90. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  91. /*
  92. * The APM segments have byte granularity and their bases
  93. * are set at run time. All have 64k limits.
  94. */
  95. /* 32-bit code */
  96. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  97. /* 16-bit code */
  98. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  99. /* data */
  100. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  101. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  102. [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
  103. GDT_STACK_CANARY_INIT
  104. #endif
  105. } };
  106. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  107. static int __init x86_xsave_setup(char *s)
  108. {
  109. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  110. return 1;
  111. }
  112. __setup("noxsave", x86_xsave_setup);
  113. #ifdef CONFIG_X86_32
  114. static int cachesize_override __cpuinitdata = -1;
  115. static int disable_x86_serial_nr __cpuinitdata = 1;
  116. static int __init cachesize_setup(char *str)
  117. {
  118. get_option(&str, &cachesize_override);
  119. return 1;
  120. }
  121. __setup("cachesize=", cachesize_setup);
  122. static int __init x86_fxsr_setup(char *s)
  123. {
  124. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  125. setup_clear_cpu_cap(X86_FEATURE_XMM);
  126. return 1;
  127. }
  128. __setup("nofxsr", x86_fxsr_setup);
  129. static int __init x86_sep_setup(char *s)
  130. {
  131. setup_clear_cpu_cap(X86_FEATURE_SEP);
  132. return 1;
  133. }
  134. __setup("nosep", x86_sep_setup);
  135. /* Standard macro to see if a specific flag is changeable */
  136. static inline int flag_is_changeable_p(u32 flag)
  137. {
  138. u32 f1, f2;
  139. /*
  140. * Cyrix and IDT cpus allow disabling of CPUID
  141. * so the code below may return different results
  142. * when it is executed before and after enabling
  143. * the CPUID. Add "volatile" to not allow gcc to
  144. * optimize the subsequent calls to this function.
  145. */
  146. asm volatile ("pushfl \n\t"
  147. "pushfl \n\t"
  148. "popl %0 \n\t"
  149. "movl %0, %1 \n\t"
  150. "xorl %2, %0 \n\t"
  151. "pushl %0 \n\t"
  152. "popfl \n\t"
  153. "pushfl \n\t"
  154. "popl %0 \n\t"
  155. "popfl \n\t"
  156. : "=&r" (f1), "=&r" (f2)
  157. : "ir" (flag));
  158. return ((f1^f2) & flag) != 0;
  159. }
  160. /* Probe for the CPUID instruction */
  161. static int __cpuinit have_cpuid_p(void)
  162. {
  163. return flag_is_changeable_p(X86_EFLAGS_ID);
  164. }
  165. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  166. {
  167. unsigned long lo, hi;
  168. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  169. return;
  170. /* Disable processor serial number: */
  171. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  172. lo |= 0x200000;
  173. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  174. printk(KERN_NOTICE "CPU serial number disabled.\n");
  175. clear_cpu_cap(c, X86_FEATURE_PN);
  176. /* Disabling the serial number may affect the cpuid level */
  177. c->cpuid_level = cpuid_eax(0);
  178. }
  179. static int __init x86_serial_nr_setup(char *s)
  180. {
  181. disable_x86_serial_nr = 0;
  182. return 1;
  183. }
  184. __setup("serialnumber", x86_serial_nr_setup);
  185. #else
  186. static inline int flag_is_changeable_p(u32 flag)
  187. {
  188. return 1;
  189. }
  190. /* Probe for the CPUID instruction */
  191. static inline int have_cpuid_p(void)
  192. {
  193. return 1;
  194. }
  195. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  196. {
  197. }
  198. #endif
  199. /*
  200. * Some CPU features depend on higher CPUID levels, which may not always
  201. * be available due to CPUID level capping or broken virtualization
  202. * software. Add those features to this table to auto-disable them.
  203. */
  204. struct cpuid_dependent_feature {
  205. u32 feature;
  206. u32 level;
  207. };
  208. static const struct cpuid_dependent_feature __cpuinitconst
  209. cpuid_dependent_features[] = {
  210. { X86_FEATURE_MWAIT, 0x00000005 },
  211. { X86_FEATURE_DCA, 0x00000009 },
  212. { X86_FEATURE_XSAVE, 0x0000000d },
  213. { 0, 0 }
  214. };
  215. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  216. {
  217. const struct cpuid_dependent_feature *df;
  218. for (df = cpuid_dependent_features; df->feature; df++) {
  219. if (!cpu_has(c, df->feature))
  220. continue;
  221. /*
  222. * Note: cpuid_level is set to -1 if unavailable, but
  223. * extended_extended_level is set to 0 if unavailable
  224. * and the legitimate extended levels are all negative
  225. * when signed; hence the weird messing around with
  226. * signs here...
  227. */
  228. if (!((s32)df->level < 0 ?
  229. (u32)df->level > (u32)c->extended_cpuid_level :
  230. (s32)df->level > (s32)c->cpuid_level))
  231. continue;
  232. clear_cpu_cap(c, df->feature);
  233. if (!warn)
  234. continue;
  235. printk(KERN_WARNING
  236. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  237. x86_cap_flags[df->feature], df->level);
  238. }
  239. }
  240. /*
  241. * Naming convention should be: <Name> [(<Codename>)]
  242. * This table only is used unless init_<vendor>() below doesn't set it;
  243. * in particular, if CPUID levels 0x80000002..4 are supported, this
  244. * isn't used
  245. */
  246. /* Look up CPU names by table lookup. */
  247. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  248. {
  249. const struct cpu_model_info *info;
  250. if (c->x86_model >= 16)
  251. return NULL; /* Range check */
  252. if (!this_cpu)
  253. return NULL;
  254. info = this_cpu->c_models;
  255. while (info && info->family) {
  256. if (info->family == c->x86)
  257. return info->model_names[c->x86_model];
  258. info++;
  259. }
  260. return NULL; /* Not found */
  261. }
  262. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  263. void load_percpu_segment(int cpu)
  264. {
  265. #ifdef CONFIG_X86_32
  266. loadsegment(fs, __KERNEL_PERCPU);
  267. #else
  268. loadsegment(gs, 0);
  269. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  270. #endif
  271. load_stack_canary_segment();
  272. }
  273. /*
  274. * Current gdt points %fs at the "master" per-cpu area: after this,
  275. * it's on the real one.
  276. */
  277. void switch_to_new_gdt(int cpu)
  278. {
  279. struct desc_ptr gdt_descr;
  280. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  281. gdt_descr.size = GDT_SIZE - 1;
  282. load_gdt(&gdt_descr);
  283. /* Reload the per-cpu base */
  284. load_percpu_segment(cpu);
  285. }
  286. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  287. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  288. {
  289. #ifdef CONFIG_X86_64
  290. display_cacheinfo(c);
  291. #else
  292. /* Not much we can do here... */
  293. /* Check if at least it has cpuid */
  294. if (c->cpuid_level == -1) {
  295. /* No cpuid. It must be an ancient CPU */
  296. if (c->x86 == 4)
  297. strcpy(c->x86_model_id, "486");
  298. else if (c->x86 == 3)
  299. strcpy(c->x86_model_id, "386");
  300. }
  301. #endif
  302. }
  303. static const struct cpu_dev __cpuinitconst default_cpu = {
  304. .c_init = default_init,
  305. .c_vendor = "Unknown",
  306. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  307. };
  308. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  309. {
  310. unsigned int *v;
  311. char *p, *q;
  312. if (c->extended_cpuid_level < 0x80000004)
  313. return;
  314. v = (unsigned int *)c->x86_model_id;
  315. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  316. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  317. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  318. c->x86_model_id[48] = 0;
  319. /*
  320. * Intel chips right-justify this string for some dumb reason;
  321. * undo that brain damage:
  322. */
  323. p = q = &c->x86_model_id[0];
  324. while (*p == ' ')
  325. p++;
  326. if (p != q) {
  327. while (*p)
  328. *q++ = *p++;
  329. while (q <= &c->x86_model_id[48])
  330. *q++ = '\0'; /* Zero-pad the rest */
  331. }
  332. }
  333. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  334. {
  335. unsigned int n, dummy, ebx, ecx, edx, l2size;
  336. n = c->extended_cpuid_level;
  337. if (n >= 0x80000005) {
  338. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  339. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  340. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  341. c->x86_cache_size = (ecx>>24) + (edx>>24);
  342. #ifdef CONFIG_X86_64
  343. /* On K8 L1 TLB is inclusive, so don't count it */
  344. c->x86_tlbsize = 0;
  345. #endif
  346. }
  347. if (n < 0x80000006) /* Some chips just has a large L1. */
  348. return;
  349. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  350. l2size = ecx >> 16;
  351. #ifdef CONFIG_X86_64
  352. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  353. #else
  354. /* do processor-specific cache resizing */
  355. if (this_cpu->c_size_cache)
  356. l2size = this_cpu->c_size_cache(c, l2size);
  357. /* Allow user to override all this if necessary. */
  358. if (cachesize_override != -1)
  359. l2size = cachesize_override;
  360. if (l2size == 0)
  361. return; /* Again, no L2 cache is possible */
  362. #endif
  363. c->x86_cache_size = l2size;
  364. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  365. l2size, ecx & 0xFF);
  366. }
  367. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  368. {
  369. #ifdef CONFIG_X86_HT
  370. u32 eax, ebx, ecx, edx;
  371. int index_msb, core_bits;
  372. if (!cpu_has(c, X86_FEATURE_HT))
  373. return;
  374. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  375. goto out;
  376. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  377. return;
  378. cpuid(1, &eax, &ebx, &ecx, &edx);
  379. smp_num_siblings = (ebx & 0xff0000) >> 16;
  380. if (smp_num_siblings == 1) {
  381. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  382. goto out;
  383. }
  384. if (smp_num_siblings <= 1)
  385. goto out;
  386. if (smp_num_siblings > nr_cpu_ids) {
  387. pr_warning("CPU: Unsupported number of siblings %d",
  388. smp_num_siblings);
  389. smp_num_siblings = 1;
  390. return;
  391. }
  392. index_msb = get_count_order(smp_num_siblings);
  393. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  394. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  395. index_msb = get_count_order(smp_num_siblings);
  396. core_bits = get_count_order(c->x86_max_cores);
  397. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  398. ((1 << core_bits) - 1);
  399. out:
  400. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  401. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  402. c->phys_proc_id);
  403. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  404. c->cpu_core_id);
  405. }
  406. #endif
  407. }
  408. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  409. {
  410. char *v = c->x86_vendor_id;
  411. static int printed;
  412. int i;
  413. for (i = 0; i < X86_VENDOR_NUM; i++) {
  414. if (!cpu_devs[i])
  415. break;
  416. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  417. (cpu_devs[i]->c_ident[1] &&
  418. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  419. this_cpu = cpu_devs[i];
  420. c->x86_vendor = this_cpu->c_x86_vendor;
  421. return;
  422. }
  423. }
  424. if (!printed) {
  425. printed++;
  426. printk(KERN_ERR
  427. "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  428. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  429. }
  430. c->x86_vendor = X86_VENDOR_UNKNOWN;
  431. this_cpu = &default_cpu;
  432. }
  433. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  434. {
  435. /* Get vendor name */
  436. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  437. (unsigned int *)&c->x86_vendor_id[0],
  438. (unsigned int *)&c->x86_vendor_id[8],
  439. (unsigned int *)&c->x86_vendor_id[4]);
  440. c->x86 = 4;
  441. /* Intel-defined flags: level 0x00000001 */
  442. if (c->cpuid_level >= 0x00000001) {
  443. u32 junk, tfms, cap0, misc;
  444. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  445. c->x86 = (tfms >> 8) & 0xf;
  446. c->x86_model = (tfms >> 4) & 0xf;
  447. c->x86_mask = tfms & 0xf;
  448. if (c->x86 == 0xf)
  449. c->x86 += (tfms >> 20) & 0xff;
  450. if (c->x86 >= 0x6)
  451. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  452. if (cap0 & (1<<19)) {
  453. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  454. c->x86_cache_alignment = c->x86_clflush_size;
  455. }
  456. }
  457. }
  458. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  459. {
  460. u32 tfms, xlvl;
  461. u32 ebx;
  462. /* Intel-defined flags: level 0x00000001 */
  463. if (c->cpuid_level >= 0x00000001) {
  464. u32 capability, excap;
  465. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  466. c->x86_capability[0] = capability;
  467. c->x86_capability[4] = excap;
  468. }
  469. /* AMD-defined flags: level 0x80000001 */
  470. xlvl = cpuid_eax(0x80000000);
  471. c->extended_cpuid_level = xlvl;
  472. if ((xlvl & 0xffff0000) == 0x80000000) {
  473. if (xlvl >= 0x80000001) {
  474. c->x86_capability[1] = cpuid_edx(0x80000001);
  475. c->x86_capability[6] = cpuid_ecx(0x80000001);
  476. }
  477. }
  478. if (c->extended_cpuid_level >= 0x80000008) {
  479. u32 eax = cpuid_eax(0x80000008);
  480. c->x86_virt_bits = (eax >> 8) & 0xff;
  481. c->x86_phys_bits = eax & 0xff;
  482. }
  483. #ifdef CONFIG_X86_32
  484. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  485. c->x86_phys_bits = 36;
  486. #endif
  487. if (c->extended_cpuid_level >= 0x80000007)
  488. c->x86_power = cpuid_edx(0x80000007);
  489. }
  490. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  491. {
  492. #ifdef CONFIG_X86_32
  493. int i;
  494. /*
  495. * First of all, decide if this is a 486 or higher
  496. * It's a 486 if we can modify the AC flag
  497. */
  498. if (flag_is_changeable_p(X86_EFLAGS_AC))
  499. c->x86 = 4;
  500. else
  501. c->x86 = 3;
  502. for (i = 0; i < X86_VENDOR_NUM; i++)
  503. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  504. c->x86_vendor_id[0] = 0;
  505. cpu_devs[i]->c_identify(c);
  506. if (c->x86_vendor_id[0]) {
  507. get_cpu_vendor(c);
  508. break;
  509. }
  510. }
  511. #endif
  512. }
  513. /*
  514. * Do minimum CPU detection early.
  515. * Fields really needed: vendor, cpuid_level, family, model, mask,
  516. * cache alignment.
  517. * The others are not touched to avoid unwanted side effects.
  518. *
  519. * WARNING: this function is only called on the BP. Don't add code here
  520. * that is supposed to run on all CPUs.
  521. */
  522. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  523. {
  524. #ifdef CONFIG_X86_64
  525. c->x86_clflush_size = 64;
  526. c->x86_phys_bits = 36;
  527. c->x86_virt_bits = 48;
  528. #else
  529. c->x86_clflush_size = 32;
  530. c->x86_phys_bits = 32;
  531. c->x86_virt_bits = 32;
  532. #endif
  533. c->x86_cache_alignment = c->x86_clflush_size;
  534. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  535. c->extended_cpuid_level = 0;
  536. if (!have_cpuid_p())
  537. identify_cpu_without_cpuid(c);
  538. /* cyrix could have cpuid enabled via c_identify()*/
  539. if (!have_cpuid_p())
  540. return;
  541. cpu_detect(c);
  542. get_cpu_vendor(c);
  543. get_cpu_cap(c);
  544. if (this_cpu->c_early_init)
  545. this_cpu->c_early_init(c);
  546. #ifdef CONFIG_SMP
  547. c->cpu_index = boot_cpu_id;
  548. #endif
  549. filter_cpuid_features(c, false);
  550. }
  551. void __init early_cpu_init(void)
  552. {
  553. const struct cpu_dev *const *cdev;
  554. int count = 0;
  555. printk(KERN_INFO "KERNEL supported cpus:\n");
  556. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  557. const struct cpu_dev *cpudev = *cdev;
  558. unsigned int j;
  559. if (count >= X86_VENDOR_NUM)
  560. break;
  561. cpu_devs[count] = cpudev;
  562. count++;
  563. for (j = 0; j < 2; j++) {
  564. if (!cpudev->c_ident[j])
  565. continue;
  566. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  567. cpudev->c_ident[j]);
  568. }
  569. }
  570. early_identify_cpu(&boot_cpu_data);
  571. }
  572. /*
  573. * The NOPL instruction is supposed to exist on all CPUs with
  574. * family >= 6; unfortunately, that's not true in practice because
  575. * of early VIA chips and (more importantly) broken virtualizers that
  576. * are not easy to detect. In the latter case it doesn't even *fail*
  577. * reliably, so probing for it doesn't even work. Disable it completely
  578. * unless we can find a reliable way to detect all the broken cases.
  579. */
  580. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  581. {
  582. clear_cpu_cap(c, X86_FEATURE_NOPL);
  583. }
  584. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  585. {
  586. c->extended_cpuid_level = 0;
  587. if (!have_cpuid_p())
  588. identify_cpu_without_cpuid(c);
  589. /* cyrix could have cpuid enabled via c_identify()*/
  590. if (!have_cpuid_p())
  591. return;
  592. cpu_detect(c);
  593. get_cpu_vendor(c);
  594. get_cpu_cap(c);
  595. if (c->cpuid_level >= 0x00000001) {
  596. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  597. #ifdef CONFIG_X86_32
  598. # ifdef CONFIG_X86_HT
  599. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  600. # else
  601. c->apicid = c->initial_apicid;
  602. # endif
  603. #endif
  604. #ifdef CONFIG_X86_HT
  605. c->phys_proc_id = c->initial_apicid;
  606. #endif
  607. }
  608. get_model_name(c); /* Default name */
  609. init_scattered_cpuid_features(c);
  610. detect_nopl(c);
  611. }
  612. /*
  613. * This does the hard work of actually picking apart the CPU stuff...
  614. */
  615. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  616. {
  617. int i;
  618. c->loops_per_jiffy = loops_per_jiffy;
  619. c->x86_cache_size = -1;
  620. c->x86_vendor = X86_VENDOR_UNKNOWN;
  621. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  622. c->x86_vendor_id[0] = '\0'; /* Unset */
  623. c->x86_model_id[0] = '\0'; /* Unset */
  624. c->x86_max_cores = 1;
  625. c->x86_coreid_bits = 0;
  626. #ifdef CONFIG_X86_64
  627. c->x86_clflush_size = 64;
  628. c->x86_phys_bits = 36;
  629. c->x86_virt_bits = 48;
  630. #else
  631. c->cpuid_level = -1; /* CPUID not detected */
  632. c->x86_clflush_size = 32;
  633. c->x86_phys_bits = 32;
  634. c->x86_virt_bits = 32;
  635. #endif
  636. c->x86_cache_alignment = c->x86_clflush_size;
  637. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  638. generic_identify(c);
  639. if (this_cpu->c_identify)
  640. this_cpu->c_identify(c);
  641. #ifdef CONFIG_X86_64
  642. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  643. #endif
  644. /*
  645. * Vendor-specific initialization. In this section we
  646. * canonicalize the feature flags, meaning if there are
  647. * features a certain CPU supports which CPUID doesn't
  648. * tell us, CPUID claiming incorrect flags, or other bugs,
  649. * we handle them here.
  650. *
  651. * At the end of this section, c->x86_capability better
  652. * indicate the features this CPU genuinely supports!
  653. */
  654. if (this_cpu->c_init)
  655. this_cpu->c_init(c);
  656. /* Disable the PN if appropriate */
  657. squash_the_stupid_serial_number(c);
  658. /*
  659. * The vendor-specific functions might have changed features.
  660. * Now we do "generic changes."
  661. */
  662. /* Filter out anything that depends on CPUID levels we don't have */
  663. filter_cpuid_features(c, true);
  664. /* If the model name is still unset, do table lookup. */
  665. if (!c->x86_model_id[0]) {
  666. const char *p;
  667. p = table_lookup_model(c);
  668. if (p)
  669. strcpy(c->x86_model_id, p);
  670. else
  671. /* Last resort... */
  672. sprintf(c->x86_model_id, "%02x/%02x",
  673. c->x86, c->x86_model);
  674. }
  675. #ifdef CONFIG_X86_64
  676. detect_ht(c);
  677. #endif
  678. init_hypervisor(c);
  679. /*
  680. * On SMP, boot_cpu_data holds the common feature set between
  681. * all CPUs; so make sure that we indicate which features are
  682. * common between the CPUs. The first time this routine gets
  683. * executed, c == &boot_cpu_data.
  684. */
  685. if (c != &boot_cpu_data) {
  686. /* AND the already accumulated flags with these */
  687. for (i = 0; i < NCAPINTS; i++)
  688. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  689. }
  690. /* Clear all flags overriden by options */
  691. for (i = 0; i < NCAPINTS; i++)
  692. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  693. #ifdef CONFIG_X86_MCE
  694. /* Init Machine Check Exception if available. */
  695. mcheck_init(c);
  696. #endif
  697. select_idle_routine(c);
  698. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  699. numa_add_cpu(smp_processor_id());
  700. #endif
  701. }
  702. #ifdef CONFIG_X86_64
  703. static void vgetcpu_set_mode(void)
  704. {
  705. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  706. vgetcpu_mode = VGETCPU_RDTSCP;
  707. else
  708. vgetcpu_mode = VGETCPU_LSL;
  709. }
  710. #endif
  711. void __init identify_boot_cpu(void)
  712. {
  713. identify_cpu(&boot_cpu_data);
  714. init_c1e_mask();
  715. #ifdef CONFIG_X86_32
  716. sysenter_setup();
  717. enable_sep_cpu();
  718. #else
  719. vgetcpu_set_mode();
  720. #endif
  721. }
  722. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  723. {
  724. BUG_ON(c == &boot_cpu_data);
  725. identify_cpu(c);
  726. #ifdef CONFIG_X86_32
  727. enable_sep_cpu();
  728. #endif
  729. mtrr_ap_init();
  730. }
  731. struct msr_range {
  732. unsigned min;
  733. unsigned max;
  734. };
  735. static const struct msr_range msr_range_array[] __cpuinitconst = {
  736. { 0x00000000, 0x00000418},
  737. { 0xc0000000, 0xc000040b},
  738. { 0xc0010000, 0xc0010142},
  739. { 0xc0011000, 0xc001103b},
  740. };
  741. static void __cpuinit print_cpu_msr(void)
  742. {
  743. unsigned index_min, index_max;
  744. unsigned index;
  745. u64 val;
  746. int i;
  747. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  748. index_min = msr_range_array[i].min;
  749. index_max = msr_range_array[i].max;
  750. for (index = index_min; index < index_max; index++) {
  751. if (rdmsrl_amd_safe(index, &val))
  752. continue;
  753. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  754. }
  755. }
  756. }
  757. static int show_msr __cpuinitdata;
  758. static __init int setup_show_msr(char *arg)
  759. {
  760. int num;
  761. get_option(&arg, &num);
  762. if (num > 0)
  763. show_msr = num;
  764. return 1;
  765. }
  766. __setup("show_msr=", setup_show_msr);
  767. static __init int setup_noclflush(char *arg)
  768. {
  769. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  770. return 1;
  771. }
  772. __setup("noclflush", setup_noclflush);
  773. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  774. {
  775. const char *vendor = NULL;
  776. if (c->x86_vendor < X86_VENDOR_NUM) {
  777. vendor = this_cpu->c_vendor;
  778. } else {
  779. if (c->cpuid_level >= 0)
  780. vendor = c->x86_vendor_id;
  781. }
  782. if (vendor && !strstr(c->x86_model_id, vendor))
  783. printk(KERN_CONT "%s ", vendor);
  784. if (c->x86_model_id[0])
  785. printk(KERN_CONT "%s", c->x86_model_id);
  786. else
  787. printk(KERN_CONT "%d86", c->x86);
  788. if (c->x86_mask || c->cpuid_level >= 0)
  789. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  790. else
  791. printk(KERN_CONT "\n");
  792. #ifdef CONFIG_SMP
  793. if (c->cpu_index < show_msr)
  794. print_cpu_msr();
  795. #else
  796. if (show_msr)
  797. print_cpu_msr();
  798. #endif
  799. }
  800. static __init int setup_disablecpuid(char *arg)
  801. {
  802. int bit;
  803. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  804. setup_clear_cpu_cap(bit);
  805. else
  806. return 0;
  807. return 1;
  808. }
  809. __setup("clearcpuid=", setup_disablecpuid);
  810. #ifdef CONFIG_X86_64
  811. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  812. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  813. irq_stack_union) __aligned(PAGE_SIZE);
  814. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  815. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  816. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  817. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  818. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  819. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  820. /*
  821. * Special IST stacks which the CPU switches to when it calls
  822. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  823. * limit), all of them are 4K, except the debug stack which
  824. * is 8K.
  825. */
  826. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  827. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  828. [DEBUG_STACK - 1] = DEBUG_STKSZ
  829. };
  830. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  831. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  832. __aligned(PAGE_SIZE);
  833. /* May not be marked __init: used by software suspend */
  834. void syscall_init(void)
  835. {
  836. /*
  837. * LSTAR and STAR live in a bit strange symbiosis.
  838. * They both write to the same internal register. STAR allows to
  839. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  840. */
  841. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  842. wrmsrl(MSR_LSTAR, system_call);
  843. wrmsrl(MSR_CSTAR, ignore_sysret);
  844. #ifdef CONFIG_IA32_EMULATION
  845. syscall32_cpu_init();
  846. #endif
  847. /* Flags to clear on syscall */
  848. wrmsrl(MSR_SYSCALL_MASK,
  849. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  850. }
  851. unsigned long kernel_eflags;
  852. /*
  853. * Copies of the original ist values from the tss are only accessed during
  854. * debugging, no special alignment required.
  855. */
  856. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  857. #else /* CONFIG_X86_64 */
  858. #ifdef CONFIG_CC_STACKPROTECTOR
  859. DEFINE_PER_CPU(unsigned long, stack_canary);
  860. #endif
  861. /* Make sure %fs and %gs are initialized properly in idle threads */
  862. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  863. {
  864. memset(regs, 0, sizeof(struct pt_regs));
  865. regs->fs = __KERNEL_PERCPU;
  866. regs->gs = __KERNEL_STACK_CANARY;
  867. return regs;
  868. }
  869. #endif /* CONFIG_X86_64 */
  870. /*
  871. * Clear all 6 debug registers:
  872. */
  873. static void clear_all_debug_regs(void)
  874. {
  875. int i;
  876. for (i = 0; i < 8; i++) {
  877. /* Ignore db4, db5 */
  878. if ((i == 4) || (i == 5))
  879. continue;
  880. set_debugreg(0, i);
  881. }
  882. }
  883. /*
  884. * cpu_init() initializes state that is per-CPU. Some data is already
  885. * initialized (naturally) in the bootstrap process, such as the GDT
  886. * and IDT. We reload them nevertheless, this function acts as a
  887. * 'CPU state barrier', nothing should get across.
  888. * A lot of state is already set up in PDA init for 64 bit
  889. */
  890. #ifdef CONFIG_X86_64
  891. void __cpuinit cpu_init(void)
  892. {
  893. struct orig_ist *orig_ist;
  894. struct task_struct *me;
  895. struct tss_struct *t;
  896. unsigned long v;
  897. int cpu;
  898. int i;
  899. cpu = stack_smp_processor_id();
  900. t = &per_cpu(init_tss, cpu);
  901. orig_ist = &per_cpu(orig_ist, cpu);
  902. #ifdef CONFIG_NUMA
  903. if (cpu != 0 && percpu_read(node_number) == 0 &&
  904. cpu_to_node(cpu) != NUMA_NO_NODE)
  905. percpu_write(node_number, cpu_to_node(cpu));
  906. #endif
  907. me = current;
  908. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  909. panic("CPU#%d already initialized!\n", cpu);
  910. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  911. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  912. /*
  913. * Initialize the per-CPU GDT with the boot GDT,
  914. * and set up the GDT descriptor:
  915. */
  916. switch_to_new_gdt(cpu);
  917. loadsegment(fs, 0);
  918. load_idt((const struct desc_ptr *)&idt_descr);
  919. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  920. syscall_init();
  921. wrmsrl(MSR_FS_BASE, 0);
  922. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  923. barrier();
  924. check_efer();
  925. if (cpu != 0)
  926. enable_x2apic();
  927. /*
  928. * set up and load the per-CPU TSS
  929. */
  930. if (!orig_ist->ist[0]) {
  931. char *estacks = per_cpu(exception_stacks, cpu);
  932. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  933. estacks += exception_stack_sizes[v];
  934. orig_ist->ist[v] = t->x86_tss.ist[v] =
  935. (unsigned long)estacks;
  936. }
  937. }
  938. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  939. /*
  940. * <= is required because the CPU will access up to
  941. * 8 bits beyond the end of the IO permission bitmap.
  942. */
  943. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  944. t->io_bitmap[i] = ~0UL;
  945. atomic_inc(&init_mm.mm_count);
  946. me->active_mm = &init_mm;
  947. BUG_ON(me->mm);
  948. enter_lazy_tlb(&init_mm, me);
  949. load_sp0(t, &current->thread);
  950. set_tss_desc(cpu, t);
  951. load_TR_desc();
  952. load_LDT(&init_mm.context);
  953. #ifdef CONFIG_KGDB
  954. /*
  955. * If the kgdb is connected no debug regs should be altered. This
  956. * is only applicable when KGDB and a KGDB I/O module are built
  957. * into the kernel and you are using early debugging with
  958. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  959. */
  960. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  961. arch_kgdb_ops.correct_hw_break();
  962. else
  963. #endif
  964. clear_all_debug_regs();
  965. fpu_init();
  966. raw_local_save_flags(kernel_eflags);
  967. if (is_uv_system())
  968. uv_cpu_init();
  969. }
  970. #else
  971. void __cpuinit cpu_init(void)
  972. {
  973. int cpu = smp_processor_id();
  974. struct task_struct *curr = current;
  975. struct tss_struct *t = &per_cpu(init_tss, cpu);
  976. struct thread_struct *thread = &curr->thread;
  977. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  978. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  979. for (;;)
  980. local_irq_enable();
  981. }
  982. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  983. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  984. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  985. load_idt(&idt_descr);
  986. switch_to_new_gdt(cpu);
  987. /*
  988. * Set up and load the per-CPU TSS and LDT
  989. */
  990. atomic_inc(&init_mm.mm_count);
  991. curr->active_mm = &init_mm;
  992. BUG_ON(curr->mm);
  993. enter_lazy_tlb(&init_mm, curr);
  994. load_sp0(t, thread);
  995. set_tss_desc(cpu, t);
  996. load_TR_desc();
  997. load_LDT(&init_mm.context);
  998. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  999. #ifdef CONFIG_DOUBLEFAULT
  1000. /* Set up doublefault TSS pointer in the GDT */
  1001. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1002. #endif
  1003. clear_all_debug_regs();
  1004. /*
  1005. * Force FPU initialization:
  1006. */
  1007. if (cpu_has_xsave)
  1008. current_thread_info()->status = TS_XSAVE;
  1009. else
  1010. current_thread_info()->status = 0;
  1011. clear_used_math();
  1012. mxcsr_feature_mask_init();
  1013. /*
  1014. * Boot processor to setup the FP and extended state context info.
  1015. */
  1016. if (smp_processor_id() == boot_cpu_id)
  1017. init_thread_xstate();
  1018. xsave_init();
  1019. }
  1020. #endif